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Ji-hyun Shin, Ph.D. 

Supervisory Professor: Mong-Hong Lee, Ph.D. 

  

SCF
FBXW7

 is a tumor suppressor E3 ligase protein that targets numerous 

oncoproteins such as Cyclin E, c-Myc, c-Jun and MCL1. The deregulation of these 

proteins often leads to the proliferation of cancer cells. Thus, intracellular stability and 

functional activity of FBXW7 is critical for regulating cancer. However, there is a gap of 

knowledge about the intracellular signaling pathway or if there is another ubiquitin ligase 

that regulates FBXW7 stability. Here, I identify a novel mechanism of FBXW7 stability 

regulation which involves constitutive photomorphogenic 1 (COP1), AKT and CSN6 (i.e. 

the COP9 signalosome 6).  

COP1 is an E3 ubiquitin ligase targeting important substrates such as, p53, 14-3-

3-σ, and c-Jun. I found that COP1 binds to FBXW7 at the binding motif at V200 and 

P201. Interestingly, binding between COP1 and FBXW7 was dissociated by loss function 

of AKT. In addition, IGF-1 or EGF induced AKT1 directly regulates FBXW7 stability 

through phosphorylation of FBXW7 at T226 and S227. Moreover, phosphorylation of 

FBXW7 at T226 and S227 by AKT facilitates its interaction with COP1, and 

consequently induces ubiquitination of FBXW7 by COP1. Significantly, TSAA FBXW7 

mutant reduced cell invasion, migration, proliferation and cell cycle progression. Thus, 

results define a novel signaling pathway for regulation of FBXW7 through the AKT-
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COP1 axis which can be applied for therapeutic intervention in cancers overexpressing 

AKT and COP1. 

CSN functions as an adaptor between substrate proteins and the 26S proteasome 

to facilitate proteasomal degradation of ubiquitinated proteins. In this study, I also found 

that CSN6 associates with, and causes the degradation of, FBXW7. Moreover, CSN6 

regulates stabilization of Cyclin E and c-Jun through its negative effect on FBXW7, 

which in turn reduces ubiquitin-mediated protein degradation of Cyclin E and c-Jun. 

Therefore, CSN6 knockdown results in reduced cell migration, transformational activity, 

and tumor growth. 

Together, my findings indicate the novel signaling pathway for regulation of 

FBXW7 through COP1, AKT or CSN6 which can be applied for therapeutic intervention 

in cancers overexpressing AKT and COP1 or Cyclin E and c-Jun.  
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CHAPTER 1 

INTRODUCTION 
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1. SCF
FBXW7

  

1-1 SCF complex in Ubiquitination 

 Ubiquitin is a small protein (~6kd) which can modify proteins to target them for 

the proteasome complex. The process of ubiquitination has multiple steps involving the 

E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme, and E3 ligase proteins. 

In the initial step, the E1 enzyme binds with both ATP and ubiquitin then activates 

ubiquitin proteins. Next the E3 ligase recognizes specific substrate proteins and the E2 

enzyme transfers active ubiquitin to substrate proteins. In this cascade reaction, the E2 

enzyme determines the fate of proteins dependent on which lysine residue, there are 

seven i.e. K6, K11, K27, K29, K33, K48 and K63, is linked to the construct ubiquitin 

chains [1]. For example, it is common that K48-linked ubiquitination is related with 

proteolysis thus, facilitating proteosomal degradation [2], whereas K63-linked 

ubiquitination is mainly related with regulation of signaling pathway and protein 

trafficking [3].  

Although the E2 enzyme has a critical function in ubiquitination, the E3 ligase has 

the most important function thorough selectively recognizing substrate proteins. In 

general, the E3 ubiquitin ligase is classified either homologous to the E6AP C-terminus 

(HECT) domain group or to the really interesting new gene (RING) domain group [4]. 

HECT domain E3 ligases have a specific enzyme site to transfer ubiquitin from E2 to 

substrate proteins, whereas RING domain E3 ligases do not have catalytic functions but 

work as a scaffold which can bind both E2 and substrates to facilitate the ubiquitination 

process [3]. Some studies also verify the ubiquitination function of the ligase protein in 

multi-protein complexes such as Skp1-Cullin-F-box protein (SCF) [5], Anaphase-
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Promoting Complex (APC) [6] and VHL/elongin C/elongin B (VCB) [7]. Among them, 

the SCF complex is the most commonly identified family of ubiquitin ligases. The SCF 

complex functions as a scaffold to ubiquitinate substrate proteins that are involved in 

various cellular regulations including cell cycle, tumorigenesis, and differentiation [5]. 

APC serves as an E3 ligase with Cdh1 protein in cell cycle regulation. Cdh1 contains a 

WD40 domain and functions as an adaptor between APC and substrate protein in cell 

cycle and facilitate ubiquitination [6]. VCB has Cullin-2 in the complex and also has a 

similar protein sequence as SCF and APC. Thus, based on structural similarity, VCB 

serves as an E3 ubiquitin ligase [7].  

As individual E3 ligases such as HECT or RING type are important in cell cycle 

regulation, multi-complex E3 ligases also have critical role in cellular regulation. Most 

importantly, the SCF complex is the largest complex which can regulatevarious substrate 

proteins including p21, p27 [8], β-Catenin [9], Cyclin E [10] and mTOR [11]. Recent 

studies support that the SCF E3 ligases play a pivotal role in cancer regulation and also 

abnormal function of the SCF E3 ligases facilitate tumorigenesis. Therefore, to 

understand the cellular function of the SCF E3 ligases, more research studies need to be 

done. 
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Figure 1. Ubiquitination Process. The E1 activating enzyme catalyzes the thioester 

bond between the c-terminus of ubiquitin and the cysteine of the E2 ubiquitin conjugating 

enzyme. In general, HECT domain containing E3 ligases have stronger catalytic activity 

than the RING domain E3 ligase. The E3 ligases directly transfer ubiquitin from the E2 

enzyme to substrate proteins. However, RING domain containing E3 ligases bind both 

the E2 enzyme and substrate protein as a linker and transfer ubiquitin to substrates.  

 

 

 



5 
 

1-2 F-box protein FBXW7 

 The SCF E3 ligase complex is also known as Cullin RING ligase (CRL). Skp-1, 

Cullins, F-box proteins and RING box proteins (RBX) are the major components of the 

complex. RBX is a RING finger protein that activates ubiquitination through binding 

Cullin protein in a complex. F-box proteins are responsible for recognizing specific 

binding motifs of substrate proteins [12]. Skp2, FBXW7, and β-TrCP are classified as F-

box proteins. Skp2 has been identified as an oncogenic protein [13] and β-TrCP has both 

oncogenic and tumor suppressor functions under different cellular conditions [14] 

whereas, FBXW7 is a well-defined tumor suppressor E3 ligase in SCF complex. 

Importantly, SCF
FBXW7

 (FBXW7, CDC4, AGO and SEL10) is an adaptor protein 

of the SCF ubiquitin ligase complexes. FBXW7 contains a DD domain for dimerization, 

an F-box motif for ligase function and 7 tandem repeat WD40 domain which is 

responsible for binds with target proteins for ubiquitination and degradation. Alternative 

splicing generates three isoforms of FBXW7 α, β, and γ, which have different N-terminal 

structures. Also, each isoform has a different cellular localization; FBXW7 α aggregates 

in the nucleoplasm, FBXW7 β in the cytoplasm, and FBXW7 γ in the nucleolar [15]. 

Moreover, recent studies suggest that nuclear localized isoforms are involved in cancer 

regulation but cytoplasmic isoforms correspond to response for oxidative stress in the 

endoplasmic reticulum membrane [16]. The FBXW7 α isoform is ubiquitously and more 

dominantly expressed than the other isoforms. Moreover, FBXW7 α is responsible for 

ubiquitination and degradation of most oncogenic substrates such as c-Myc, c-Jun, Mcl-1, 

Notch, and Cyclin E [17]. In a similar manner, FBXW7 γ is also involved in c-Myc 
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protein degradation in the nucleolus [15]. However, cellular functions of FBXW7 β in 

tumorigenesis are still not clear and need to be investigated.   
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1-3 FBXW7 and kinase 

E3 ubiquitin ligases recognize phosphorylated substrate proteins. In a similar 

manner, FBXW7 detects substrates through distinct sequences (T/S) PXX(S/T/E) called 

‘Cdc phosphodegrons (CPD)’ after they got phosphorylated by kinase. Glycogen 

synthase kinase-3 (GSK3) is a well-known kinase that phosphorylates most substrate 

proteins of FBXW7 at serine or threonine site in CPD region then facilitate ubiquitination 

[18]. GSK3 uses ‘priming phosphorylation’ to detect and phosphorylate substrates. It is a 

unique functional character of GSK3 to identify substrates and bind them at specific 

residues Arg86, Arg180, and Lys205 in the C-terminal region [19]. Originally, GSK3 

was identified as a protein kinase that phosphorylates glycogen synthase and 

phosphatidylinositol-3,4,5-trisphosphate, phosphoinositide-dependent kinase-1(PDK1). 

Additionally, AKT functions as a negative regulator of GSK3. It has been reported that 

inhibition of GSK3 possibly induces dephosphorylation of FBXW7 substrates c-Myc, 

Cyclin D1, and c-Jun. To correlate this, FBXW7 cannot detect non-phosphorylated 

substrates. And also, simultaneous mutations in the CPD region of substrate proteins 

causing a lost binding motif does not allow association of substrate protein with FBXW7 

and thus hinders FBXW7 mediated ubiquitination. For example, Burkitt lymphoma 

patients commonly have a CPD mutation of c-Myc at T58 [20]. It suggest that 

phosphorylation of substrate protein is a critical event for FBXW7 mediated 

ubiquitination. However, most studies were focused on GSK3 and only the information 

about other kinase functions of FBXW7 substrate proteins is about cyclin-dependent 

protein kinase 8(CDK8). CDK8 is implicated in NOTCH degradation and ubiquitination. 
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Therefore, function of other kinase in FBXW7-mediated ubiquitination needs to be 

verified. 

 

 

 

Figure 2. The substrates of FBXW7. Most of the substrates of FBXW7 contain a 

consensus phospho-degron motif (CPD). Followed by phosphorylation by specific kinase 

such as glycogen synthase kinase-3 (GSK3) or cyclin-dependent kinase 8(CDK8), 

FBXW7 recognizes the CPD of the substrate protein to facilitate ubiquitination. 
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1-4 FBXW7 in Cancer 

The chromosomal localization of human FBXW7 (hCDC4) is 4q31.3, which is 

commonly deleted in many type of cancers. In the animal mouse model, targeted deletion 

of FBXW7 gene caused genetic instability and tumor formation [21]. In addition, overall 

mutation rate of FBXW7 is approximately 6% in various human cancers. Moreover, 

approximately 35% of bile-duct cancer, 31% of blood related cancer and 9% colon cancer 

show significantly high mutation rates of FBXW7 [21]. FBXW7 mutations at Arg
465

 and 

Arg
479

 are critical to recognize substrate proteins for ubiquitination and degradation [21]. 

Due to genetic mutations or deletion of FBXW7 in many cancers and also the fact that 

most substrates of FBXW7 are oncoproteins, FBXW7 was defined as a tumor suppressor 

protein. It has been reported that FBXW7 regulates various proteins that regulate diverse 

biological functions. For example, c-Jun [22], c-Myc [23], Krüppel-like factor (KLF5) 

[24], and c-Myb [25] are transcriptional factors that regulate cell proliferation and growth. 

In addition, Cyclin E regulates cell cycle progression [10], Mcl-1 inhibit apoptosis [26] 

and mTOR involved in cell growth [27]. Among several substrates, Cyclin E and c-Jun 

are the most studied substrate proteins. 

Cyclin E is an activating subunit of CDK2 which promotesG1 to S phase of cell 

cycle progression and cell proliferation [28]. Cyclin E contains a dual CPD at both the N- 

and C- terminus and phosphorylation of Cyclin E at T62, T380, and S384 are related with 

its stability. Mutational study in each phosphorylation sites showed that T62 relatively 

low binding affinity with FBXW7 and mainly regulate its activity. However, T380 or 

T384 mutations completely lost binding ability with FBXW7 which then prevented 

FBXW7-mediated ubiqutination [29]. This suggests that T62 has an indirect effect on 
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Cyclin E turn over regulation but T380 and T384 sites have the pivotal function of 

FBXW7-mediated Cyclin E stability regulation. 

c-Jun is a major component to form activator protein 1 (AP1) transcriptional 

factor. c-Jun protects UV- induced and TNFα -induced cellular apoptosis [30]. There are 

two kinases involved to regulate c-Jun stability and cellular function; Jun N-terminal 

kinase (JNK) and GSK-3 [31]. JNK phosphorylates c-Jun at S63 and S73 then activated 

JNK cascade to induce target gene expression. In contrast, GSK3 phosphorylate c-Jun at 

T239 and S243 then increased FBXW7-mediated c-Jun protein degradation. Interestingly, 

mono phosphorylation of either T239 or S243 fails to bind with FBXW7. It suggest that 

dual-phosphorylation of c-Jun is an important event to FBXW7-mediated ubiquitination. 

 

   

 

  



11 
 

1-5 Upstream regulator of FBXW7 

Pin1 is a most recent verified upstream regulator of FBXW7. Pin-1 is a peptidyl-

prolyl cis/trans isomerase (PPIase) that isomerizes substrate proteins through binding 

with phosphorylated Ser/Thr-Pro (pSer/Thr-Pro) motifs then changes protein structure 

[32]. Pin-1 binds with FBXW7 in a phosphorylation dependent manner. Pin-1 detects and 

binds with phospho-T205 FBXW7 and destabilizes FBXW7 through promoting self-

ubiquitination of FBXW7. As results, Pin-1 mediated FBXW7 degradation contributes to 

tumorigenesis via stabilizing oncogenic substrate proteins of FBXW7 [33]. 

Polo-like kinase (PLK) regulates centriole duplication in mitosis result in 

involved cell cycle progression and embryonic development [34]. Cdk2/Cyclin E 

complex is required for initiation of centriole duplication thus Cyclin E expression level 

is important for regulating the cell cycle. It is known that FBXW7 is responsible for 

Cyclin E degradation. Interestingly, PLK2 phosphorylates FBXW7 at S25, S176, and 

S349 then degrades FBXW7 through destruction of homo-dimerization of FBXW7. As a 

result, PLK2 mediated FBXW7 degradation stabilizes Cyclin E in G1 toS phase and 

promotes cell cycle progression [34]. 

CCAAT/enhancer binding protein-δ (C/EBP δ) negatively regulates FBXW7 gene 

expression and increases breast cancer metastasis [35]. And also Presenilins (PS) is 

suppressed FBXW7 transcription then stabilizes Notch, one of the FBXW7 substrate 

proteins [36]. Early region 1A (E1A) derived from adenovirus, binds with FBXW7 and 

decreases ubiquitination of FBXW7 target oncogenic proteins [37]. 
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2. Constitutive photomorphogenesis 1 (COP1) 

2-1 COP1 in plants 

COP1 (also known as RFWD2) is a RING domain containing E3 ligase protein 

which is identified as a suppressor of photomorphogenic development in Arabidopsis. 

COP1 contains three functional domains; RING-finger motif, coiled-coil domain, and a 

WD40 domain. Cellular localization of COP1 is critical for function as a 

photomorphonenic suppressor. In the dark, pleiotropic COP/DET/FUS genes increase 

nuclear accumulation of COP1 and nuclear localization signals (NLS) regulate its 

subcellular localization [38]. In a nucleus, through RING-finger motif, COP1 recognize 

and suppress HY5 which is a bZIP transcription factor that responsible for activation of 

genes that related with plant development [39]. However, in the light, the amount of 

nuclear localized COP1 decreases and COP1 losses its suppressor functions.  
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Figure 3. Structual domain of COP1. COP1 contains three different functional domains. 

The RING-finger domain is responsible for recruitment of the ubiquitination complex. 

The coiled-coil domain is for either self-dimerization of COP1 or substrate protein 

binding such as Suppressor of PHYA-105 (SPA) and De-Etiolated 1 (DET1). The 7-

repeat WD40 domain function as a binding dock for substrate proteins such as HY5 and 

c-Jun.  
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2-2 COP1 substrates in mammal 

COP1 is conserved from plants to mammals and recent studies reported that 

COP1 was involved with various cellular regulations in mammalian cells via 

ubiquitination of substrate proteins such as p53, 14-3-3σ, c-Jun, and MTA [40,41,42,43]. 

COP1 recognizes substrates through the consensus binding motif (D/E-D/E-X-X-X-V-P) 

in each substrate sequence [44].  

COP1 is responsible for degradation of p53 independent from known p53 E3 

ubiquitin ligases such as MDM2 and Pirh2 [45]. In addition, COP1 regulates 14-3-3σ 

ubiquitination followed by stabilization by COP9 signalosome subunit 6 (CSN6) [40]. 

Binding between c-Jun and the WD40 domain of COP1 increases turnover of the c-Jun 

protein [42]. Metastasis-associated protein 1 (MTA1) is a substrate protein of COP1 that 

also has feedback loop regulation with COP1 though increasing self-ubiquitination of 

COP1 [43]. Transducer of regulated CREB activity 2 (TORC2) is also known as cAMP-

response element-binding protein (CREB) regulated transcription coactivator 2 (CRTC2) 

contains a COP1 binding motif. TORC2 phosphorylation by salt inducible kinase 2 (SIK2) 

at S171 regulates translocation of TORC2 in cytoplasm then COP1 binds with and 

facilitates ubiquitination [46]. COP1 regulates FOXO1 in an independent manner with 

known FOXO1 regulator CREB. COP1 decrease FOXO1 protein and also target gene 

expression such as glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate 

carboxykinase (PEPCK) which are important molecules for gluconeogenesis [47]. The 

oncogene ETV1, 4, 5 are substrates of COP1 regulation. ETV also contains a COP1 

binding motif and is negatively regulated by COP1. However, binding site mutations on 

ETV have significantly higher stability than wild-type ETV [48]. In fatty acid regulation, 
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pseudokinase Tribbles 3 (TRB3) recruits COP1 in adipose tissue under fasting conditions. 

Fatty acid oxidation is increased as a result of degradation of ACC by COP1 [49].  

 

Table 1. COP1 substrates 

  

Substrate Cellular function Character Reference 

p53 Transcription factor Tumor suppressor [41] 

14-3-3σ Conserved regulatory molecules Tumor suppressor [40] 

c-Jun Transcription factor Oncogene [50] 

MTA Transcription factor Oncogene [43] 

TORC2 Transcriptional coactivator Gluconeogenic gene regulator [51] 

FOXO1 Transcription factor Tumor suppressor [47] 

ETV1,4,5 Transcription factor Oncogene [48] 

ACC Lipid metabolism Fatty acid synthesis regulator [49] 
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2-3 COP1 in cancer 

COP1 is overexpressed in many type of cancer such as hepatocellular carcinoma 

(HCC), breast and ovarian cancer [52,53] and destabilized tumor suppressor proteins 

such as p53 and 14-3-3σ [40,41]. Thus, it is consider as an oncogenic E3 ligase protein. 

However, COP1 also recognizes and ubiquitinates oncoproteins as a substrate such as c-

Jun and ETV [50].  

Genetic studies support tumor suppressor function of COP1. Recent studies 

showed that partial or tissue specific loss of COP1 in mice promotes tumor formation in 

several organs such as liver, lung, and kidney [48,50]. Cop1 has an important function in 

embryogenesis in mouse development. Therefore, homozygous Cop1 
-/-

 is embryonic 

lethal and non-fertile whereas heterozygous Cop1
+/-

 mice are viable [54]. Although 

Cop1
hypo/hypo 

mice showed less body weight than wild-type and also immunohistological 

studies showed that Cop1
hypo/hypo

 mice have smaller organs than wild-type [50], there is 

no distinct phenotype difference between Cop1 deficient mice and wild-type mice. 

However, an interesting finding was that p53 expression level was not changed whereas 

c-Jun expression was increased in Cop1
+/-

 mice. Both Western Blot analysis and 

imunohistochemical studies support that c-Jun protein steady-state in Cop1
+/-

 mice was 

significantly increased compared to wild-type. However, there is no difference in c-Jun 

mRNA levels between Cop1
+/-

 and WT mice [50]. In addition Cop1 deficient mice with 

p53-null background showed that proliferation of cells occurred through stabilization of 

c-Jun proteins. COP1 control cell proliferation by regulating JNK pathway which can 

phosphorylate and activate c-Jun. Cop1 deficient mice induced accumulation of non-
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phosphorylated c-Jun proteins and as a result c-Jun mediated cell cycle progression was 

suppressed [50].   

Although cellular functions of COP1 have been identified from plants to 

mammals, there are still debatable questions about their function in cancer regulation. 

Therefore, to verify cellular function of COP1 in regulating cancer, functional 

mechanisms or substrate proteins of COP1 in various signaling pathway need to be 

investigated.  
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3. The COP9 signalosome (CSN)  

3-1 CSN and 26S proteasome complex 

The COP9 signalosome (CSN) is a protein complex that was first identified in 

Arabidopsis. CSN implicated in the seedling process of plants [55]. CSN is composed of 

8 subunits (CSN1-8), which are structurally similar to the proteasome complex. The 

proteasome complex is composed of a 20S core cylinder and a 19S lid. The 20S unit is 

responsible for the major function of the proteasome complex and it degrades 

ubiquitinated proteins. The 19S is regulatory particles serve as an adaptor between the 

proteasome complex and ubiquitinated proteins. The CSN has structural homology with 

the 19S proteasome lid [56]; thus it has been suggested that the CSN can guide 

ubiquitinated proteins to the 26S proteasome complex to facilitate their degradation of 

proteins [57]. Therefore, the function of CSN is linked to the ubiquitination pathway, 

which can regulate various aspects of the E3 ubiquitin ligase [58,59,60]. For example, 

either knock-down damaged-DNA binding protein (DDB), which is one of component of 

ubiquitin complex, or CSN1 with siRNA, can facilitate accumulation of p27 proteins [59].  
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Figure 4. Structural and functional similarity between the 26S proteasome and the 

CSN. The 26S proteasome complex is composed of a 19S lid and a 20S core cylinder. 

Based on structural similarity, the CSN captures ubiquitinated proteins and functions as 

an adaptor protein like 19S lid. After binding with the 19S or CSN complex, proteins are 

transferred to the 20S core and then are degraded.  
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3-2 CSN5 and CSN6 contain MPN domain 

Among the eight subunits of the CSN, six subunits (i.e. CSN1, 2, 3, 4, 7, and 8) 

contain Proteosome, COP9, and Initiation factor 3 (PCI) domain. Two subunits (CSN5 

and 6) contain the Mpr1-Pad1-N-terminal (MPN) domain. Thefunction of CSN5 has been 

well defined since it is involved in regulating the stability of the Skp1, Cullin, F-box 

(SCF) complex through deneddylation of the Cullin protein [61,62]. Typically, both PCI 

and MPN domains are function as a scaffold. However, only CSN5 has a Jab1/MPN 

metalloenzyme (JAMM) motif in the MPN domain and have deneddylation function. 

CSN5 contains conserved sequence (EXnHS/THPX7SX2D) in JAMM motif and this 

metalloprotease motif is analogous with zinc metalloproteases. The cullin protein is a one 

of the major components of the E3 ubiquitin ligase complex; therefore, the stability of 

cullin is critical for ligase function. Neddylation of cullin by CSN facilitates the SCF 

complex activity for ubiquitination. As previously reported, fission yeast CSN mutants 

lost deneddylation function for cullin proteins and inhibited ubiquitin ligase activity [63]. 

Interestingly, CSN6 also contains a MPN domain like CSN5, whereas CSN6 does not 

contain the JAMM motif. Although CSN6 and CSN5 both structurally closed, the role of 

CSN6 in SCF complex regulation remains elusive. Recent study showed that the CSN6 

MPN domain is involved with binding between CSN6 and 14-3-3σ [40]. However, the 

unique function of CSN6 through MPN domain is not clear and needs to be verified. 
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3-3 Oncogenic function of CSN6  

In a previous report, it was suggested that CSN6 has oncogenic function through 

binding with human immunodeficiency virus type-1 (HIV-1) viral protein R (Vpr) which 

facilitates virual infection in non- proliferating cells. Low expression of CSN6 suppressed 

cell cycle progression at the G2/M phase and therefore reduced cell proliferation and also 

increased HIV virus infected cell populations [64]. Based on some clues, recent studies 

strongly support the oncogenic function of CSN6. 

Integrative Genomic Microarray Analysis (SIGMA) showed that CSN6 gene is 

amplified in more than 70% of breast cancer patient sample. Moreover, myeloma, 

glioblastoma, leukemia, and lung cancer patients showed higher levels of CSN6 

expression. In vivo mouse model study suggested additional support for oncogenic 

function of CSN6. Csn6-knockout (Csn6
-/–

) mice are embryonic lethal whereas Csn6-

haplodeficient (Csn6
+/–

) mice are viable. Interestingly, Csn6
+/–

 mice have more p53 

expression and less MDM2 expression than wild-type mice. And also, under DNA 

damage stimuli, Csn6
+/–

 mice showed more p53-mediated apoptosis. These results 

suggest that CSN6 obtains a tumorigenic function by regulating the E3 ubiquitin ligase 

protein stability of MDM2 [65,66]. CSN6 stabilizes MDM2 through suppressing auto-

ubiquitination activity of MDM2, an E3 ligase of p53. As a result, both p53 expression 

and it’s tumor-suppressor function are decreased [65]. In addition, CSN6 is also involved 

in MDM2-mediated p53 degradation via HER2-Akt pathway. It has been known that 

HER2 mediated activation of Akt signaling pathway phosphorylates MDM2 at S166 and 

S186 which then facilitates p53 degradation in the nucleus. CSN6 was stabilized by 

activation of the Akt signaling pathway resulting in p53 being destabilized by MDM2. In 
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a similar manner, CSN6 destabilizes tumor suppressor protein 14-3-3σ by stabilizing the 

E3 ligase protein COP1. 14-3-3σ is positively regulated by p53 and COP1 is a known E3 

ligase of p53. CSN6 directly binds with COP1 and stabilize COP1 expression result in 

COP1-mediated p53 degradation is increased and then 14-3-3σ expression is suppressed 

[40]. p57 Kip2, a member of the Cip/Kip family of cyclin-dependent kinase (CDK) 

inhibitor (CDI) is also regulated by CSN6. Mutations of p57 were commonly found in 

ovarian cancer, colorectal cancer, pancreatic cancer, lung cancer and breast cancer [67]. 

In addition, p57 binds with Cyclin/CDK complex protein in G1 phase and induces G1 

cell cycle arrest. Therefore it was defined as a tumor suppressor protein. CSN6 interacts 

with both S-phase kinase-associated proteins 2 (SKP2), a known E3 ligase of p57, and 

p57 which then facilitates p57 degradation.  

It has been confirmed that CSN6 has oncogenic function by regulating the cell 

cycle, cell proliferation, and tumor formation. Although some substrates of CSN6 were 

identified, more biological functions and substrates need to be identified. 
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4. AKT 

4-1 Characteristic of AKT 

 AKT (also known as Protein Kinase B: PKB) is a serine/threonine kinase that has 

been identified as a homologue of the retroviral oncogene v-Akt [68]. AKT belongs to 

the AGC (PKA, PKG, PKC) family group which are regulated by another compound 

such as cyclic AMP, cyclic GMP, or lipid signaling [69]. AKT has three isoforms; AKT1, 

AKT2, and AKT3 which have conserved domains; the N-terminal pleckstrin homology 

(PH) domain, a central kinase domain (KD), and a carboxyl-terminal regulatory 

hydrophobic motif domain (HM). To activate AKT, PH domain serves as a phospholipid 

binding domain to integrate with PtdIns (3,4,5)P3 (PIP3) at the plasma membrane. PIP3 

is a secondary messenger for AKT activation and it is activated by the 

phophatidylinositol 3 Kinase (PI3K) pathway. PI3K/AKT is activated by several growth 

factors and signaling stimulators such as insulin, insulin-like growth factor I (IGF-I), 

epidermal growth factor (EGF), vascular endothelial cell growth factor (VEGF), 

fibroblast growth factor (FGF), human growth factor (HGF), human epidermal growth 

factor receptor 2 (HER2), and platelet derived growth factor receptor (PDGF-R) [70]. 

Followed by membrane recruitment, both T308 in KD and S473 in the HM domain get 

phosphorylated by 3-phosphoinositide-dependent protein kinase (PDK1) and the mTOR 

complex 2 (mTORC2)[71]. In contrast, phosphatase and tensin homolog (PTEN), a lipid 

phosphatase, negatively regulate the PI3K/AKT signaling pathway by PIP3 

dephosphorylation. In addition, serine/threonine phosphatase protein phosphatase 2A 

(PP2A) and PH domain leucine-rich repeat protein phosphatase (PHLPP) also negatively 

regulates AKT activity by dephosphorylating AKT on T308 and S473 [72,73].  
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4-2. AKT substrates in cancer regulation 

AKT is involved in various cellular regulations through phosphorylation of 

substrate proteins. AKT recognize a specific sequence, R-X-RX-X-S/T, in substrate 

proteins and facilitates either activate or inhibitory regulation of them. Up to now, 

MDM2, mammalian target of rapamycin (mTOR), glycogen synthase kinase-3β (GSK3β) 

and Bcl-2-associated death promoter (BAD) are the well-documented AKT substrate 

proteins that are linked to cell proliferation, cell cycle regulation, apoptosis, and 

metabolism regulation. Phosphorylated MDM2 by AKT translocate from cytoplasm to 

nucleus. As a result, p53 ubiquitination is increased and p53 mediated cell cycle arrest, 

apoptosis, and DNA repair are negatively regulated by AKT [74]. AKT activates mTOR 

through either direct phosphorylation of mTOR or inhibitory regulation of mTOR 

inhibitors, tuberous sclerosis complex 2 (TSC2), and AMP-activated protein kinase 

(AMPK). Therefore, mTOR mediated cell proliferation and cell growth are positively 

regulated by AKT [75]. GSK3 phosphorylation by AKT inactivates GSK3 then increase 

cell proliferation and metabolism [76]. Lastly, AKT directly phosphorylates and 

negatively regulates BAD on S136. Followed by phosphorylation, BAD creates a tumor 

suppressor 14-3-3 σ binding site which then induces apoptosis [77].  

Through modulating substrates, AKT is involved in cancer regulation. It has been 

reported that AKT1 is highly activated in many types of cancers including ovarian, breast, 

and prostate cancers [78]. In addition, AKT2 gene is over expressed and amplified in 

human ovarian and pancreatic carcinoma [79,80]. Moreover, amplification and 

overexpression of AKT3 was observed in triple negative breast cancer (TNBC) which 

have non-expression of the estrogen receptor (ER), progesterone receptor (PR) 
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expression, and the epidermal growth factor receptor 2 (HER2) [81]. Not only AKT but 

also regulators upstream AKT affect cancer regulation. PI3KCA, a positive regulator of 

AKT, gene copy number was increased in gastric cancer and expression level of active 

form of AKT was positively correlated with them. Also both somatic mutations of 

PI3KR1 and overexpression of AKT2 were founded in colon cancer and ovarian cancers 

[82]. In contrast, PTEN, a negative regulator of AKT, expression pattern is negatively 

correlated with active AKT in endometrial cancer samples [83]. Moreover, PTEN null 

cell injected nude mice form tumors and also Pten 
+/−

 mice are tumor prone [84].  

Although many AKT related downstream substrates and their cellular functions 

are identified, there are still unidentified AKT functions and substrates. Therefore, 

verification of AKT on novel substrates and discovery of mechanisms is still required.  
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Figure 5. AKT signaling Pathway. Growth factor induced PI3 Kinase activation 

phosphorylates PIP2 and generates PIP3 phospholipid. PIP3 recruits AKT to the 

cytoplasmic membrane and binds through the PH domain of AKT. PDK1 phosphorylates 

AKT on T308 and mTORC2 phosphorylates S473 to activate AKT. Fully activated AKT 

regulates various cellular functions through phosphorylating substrate proteins. The AKT 

signaling pathway is also negatively controlled by other dephosphatases. PTEN inhibits 

AKT activation through dephosphorylating PIP3. PDK1 is negatively regulated by PP2A 

and mTORC2 also dephosphorylates by PHLPP.  
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CHAPTER 2 

MATERIALS  

AND  

METHODS 
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2-1 Cell culture and reagents 

HCT116 FBXW7
+/+

 and FBXW7
−/−

 cells were gifted to us by Dr. Bert Vogelstein 

(The Johns Hopkins University, Baltimore, MD) and cultured in McCoy’s 5A medium. 

U2OS Myc-COP1 stable overexpressing cells have been described previously [85]. 

MDA-MB-453 WT and Dominant Negative Akt (DN-Akt) cells were gifted from Dr. 

Mien-Chie Hung (MD Anderson cancer center, Houston, TX). HEK 293, HEK 293T, 

U2OS, 3T3L1 and PC3 were purchased from ATCC and cultured in DMEM/F12 medium. 

All culture medium contained 10% fetal bovine serum (for HCT116, MDA-MB-231, 

HEK 293, HEK 293T, U2OS, PC3) or 10% bovine calf serum (for 3T3L1), 2 mM L-

glutamine (Cellgro) and 1% antibiotic-antimycotic solution (Invitrogen). TNT system 

was purchased from Promega; MG132 and Cycloheximide (CHX) were obtained from 

Sigma. Ni-NTA agarose was purchased from Invitrogen. IGF-1 and EGF were obtained 

from Calbiochem. LY294002 was purchased from Cell Signaling. CIP was obtained from 

NEB. GST-Akt recombinant protein, Flag-peptide, and HA-peptide were purchased from 

Sigma. Agarose beads A, G were obtained from Santa Cruz Biotechnology. Antibodies: 

Flag (M2 monoclonal antibody, Sigma), actin (Sigma), Hemagglutinin (HA, 12CA5, 

Roche), tubulin (Sigma), c-Myc, Ubiquitin, GST and Cyclin E (Santa Cruz), and His, Akt, 

p-Akt (Cell signaling), FBXW7 (Invitrogen), Notch (Abcam), COP1 (Bethyl Laboratory), 

CSN6 (BIOMOL International). 

2-2 Plasmids 

The human Csn6 gene was amplified by PCR and then subcloned either into 

pCMV5 with a Flag-tagged sequence or a GFP-tagged sequence or into pCDNA6 with a 
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Myc-tagged sequence. The PCR-generated Cyclin E DNA fragment was subcloned into 

pCMV5. shCSN6 was cloned into a pSilencer. His-ubiquitin WT, K48, K63 plasmids 

were kindly provided by Dr. Hui-Kuan Lin (M.D. Anderson Cancer Center), HA-

FBXW7 WT plasmid was gifted from Dr. Xin Lin (M.D. Anderson Cancer Center) and 

Flag-c-Jun plasmid was a gift from Dr. Zhimin Lu (M.D. Anderson Cancer Center). The 

Flag- FBXW WT, ∆D, N-terminus only, WD40 and ∆F-box expressing vectors have 

been previously described [86]. Flag- FBXW7 TA, SA, TSAA, TSDD, VA, PA and 

VPAA mutants were generated using PCR-directed mutagenesis. Myc-COP1 WT, Flag- 

COP1 WT, N-terminus only, WD40 and ∆RING expressing vectors have been described 

[85]. shCOP1 was cloned into a pSilencer (Ambion). HA-CA-Akt, HA-DN-Akt and 

GST-WT-Akt expressing vectors were generated using PCR.  

2-3 Immunoprecipitation and immunoblotting 

Cells were lysed with lysis buffer (20 mM Tris [Fisher], 100 mM NaCl [Fisher],  

0.5% Nonidet P-40 [USB Corp.], 0.5% Triton X-100 [Sigma], 1 mM EDTA [Fisher]). 

Fresh protease/phosphatase inhibitors (5 mM NaV, 1 mM NaF, 1 μM DTT, 0.1 mg/mL 

Pepstatin A, 1 mM PMSF, and 1,000× Complete Mixture Protease Inhibitor [Roche]) 

were added into the lysis buffer. Protein lysates were standardized, and equal amounts of 

proteins were subjected to immunoblot analysis. For immunoprecipitation, cells were 

lysed with lysis buffer and then the same amounts of proteins were directly pulled down 

with Flag (M2) agarose beads, or immunoprecipitated with specific antibody overnight at 

4ºC; the antibody was then pulled down with Protein A/G beads (Santa Cruz) for 3 hrat 

4ºC, and finally Western blot analysis was performed. 

2-4 In vitro binding assay 
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The indicated T7 promoter containing plasmid DNAs were reacted with a TNT 

system (transcription/translation reactions) for eukaryotic in vitro translation. 

Recombinant proteins were incubated in binding buffer and then immunoprecipitated 

overnight with specific antibody at 4ºC; the antibody was then pulled down with Protein 

A/G beads (Santa Cruz) for 3 hr at 4ºC, and finally Western blot analysis was performed. 

2-5 Protein turnover assay 

Cells were transfected with the indicated plasmids for 48 hr and were then treated 

with 200 μg/ml of cycloheximide (CHX) for the indicated times. Cells were collected at 

each indicated point in time and lysed with a protease/phosphatase inhibitor contained in 

cell lysis buffer, as previously described [87]. After the protein was standardized, equal 

amounts of protein were subjected to Western blot analysis with the indicated antibody. 

2-6 In vivo ubiquitination assay 

HEK293T, HCT116 WT, and HCT116 FBXW7
-/-

 cells were co-transfected with 

His-tag containing plasmids for 48 h. Before the cells were harvested, they were treated 

with 5 μg/ml of MG132 (Sigma) for 6 h. PBS-washed cells were lysed with denaturing 

buffer (6 M guanidine-HCl, 0.1 M Na2HPO4/NaH2PO4, 10 mM imidazole); the cell 

lysates were then incubated with Ni-NTA agarose beads for 3 hr at room temperature. 

Western blot analysis was then performed with the indicated antibody. 

 

2-7 In vitro ubiquitination assay 

Flag-FBXW7 and Flag-COP1 recombinant proteins were generated by TNT 

system (Promega, L1170). 200 pmol His6-ubiquitin, 2 pmol UBE1 (Biomol International), 
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10 pmol E2 (UbcH5a/5b), 2 mmol/L ATP, and active GST-Akt recombinant proteins 

were mixed and then incubated for 1 hr at 37°C.  

2-8 Generation of stable transfectants 

HEK293T cells were co-transfected with the indicated lentiviral plasmid DNAs 

Akt-lentiviral shRNA-1(5' CCGGCGTGCCATGATCTGTATTTAACTCGAGTTAAA 

TACAG ATCATGGCACGT TTTTG-3'), shRNA-2(5'-CCGGGGACAAGGACGGG 

CACATTAAC TCGAGTTAATGTGCCCGTC CTTGTCCTTTTT-3'), CSN6-lentiviral 

shRNA-1(5’- CCG GCGGAGTGACTGGGAGTGTTTCTCGAGAAACACTCCCAGT 

CACTCCGGTTTTTG-3’), CSN6-lentiviral shRNA-2(5’- CCGGCCTATGACCAAGC 

ACACAGATCTCGAGAT CTGTGTGCTTGGTCATAGGTTTTTG-3’), control shRNA 

and packaging (deltaVPR8.9) and envelope (VSV-G) plasmids to make lentiviral 

particles through the viral packaging process. Virus-containing supernatants were 

collected and filtered, then MDA-MB-231, 3T3L1 and HEK 293 cells were infected with 

lentiviral particles, either shLuciferase or target shRNA with 8 µg/ml of polybrene. After 

infection, cells were selected with 2-4 μg/mL of puromycin for 2 weeks.  

2-9 In vitro kinase assay 

In vitro kinase assay was performed as described [88]. Flag-FBXW7 WT, T226A, 

S227A and TSAA mutants were generated by TNT system. Each protein was incubated 

with γ32 ATP (Perkin-Elmer) and active GST-Akt recombinant proteins at 30 °C for 30 

min. Kinase activity was analysed by Western-Blotting and then gels were dried and 



32 
 

imaged using a phosphoimager cassette (Molecular Dynamics) and a Typhoon Trio 

variable mode imager. Images were processed using Image Quant 5.1 software. 

2-10 Wound healing, Trans-well migration assay, Soft agar colony formation assay, 

Invasion assay, FACS analysis 

A. Wound healing assay: the same amounts of HCT116 FBXW7
-/-

 or MDA-MB-231 

cells were plated into a 12-well plate and then cultured until confluence. After making a 

scratch with tip, plates were placed into a Microscope incubator for 30hr and images 

were captured at each time point. 

B. Trans-well migration assay: 0.6x10
5 

HCT116 FBXW7
-/-

 or MDA-MB-231 cells 

were plated onto a transwell membrane with 0.5% FBS containing culture media on top 

and add 10% FBS media on bottom then incubated for 12hr. Wiped top of the membrane 

and cells were fixed and stained with Crystal violet. 

C. Soft agar colony assay: 2.5 x 10
3
 MDA-MB-231 cells were suspended in 0.35% 

agarose containing complete media and then were seeded onto 0.7% agarose that 

contained a complete media bottom layer. Cells were cultured in agarose, and every 3 

days, culture medium was added onto the plate; this continued for 4 weeks. Colonies 

were stained with 0.5 mg/ml of p-iodonitrotetrazolium violet (Sigma) and were counted 

with use of a light microscope. 

D. Invasion assay: 0.6x10
5 

HCT116 FBXW7
-/-

 cells were plated onto a matrigel Boyden 

chamber with 0.5% FBS containing culture media on top and add 10% FBS media on the 
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bottom then incubated for 48hr. Wiped top of the membrane and cells was fixed and 

stained with Crystal violet. 

E. FACS analysis: HCT116 FBXW7
-/-

 cells were transfected with indicated FBXW7 

expressing vectors then 0.5x10
6 

cells were stained with Propidium Iodide (PI) for 30 min 

at RT. Cell cycle distribution was analyzed by flow cytometry.  

2-11 Nude mice experiment 

A total of 5 × 10
6
 cells, either shControl or shCSN6 3T3L1 cells, were injected 

into the flanks of 6-week-old nu/nu mice, which were then monitored for 6 weeks. Tumor 

volume was measured twice a week, and solid tumors were collected, weighed, and 

immunohistochemically analyzed with use of indicated antibodies. 

2-12 Immunohistochemical analysis 

Tumor tissues were fixed and embedded. Slide sections were then incubated 

overnight with the indicated primary antibody (1:100–1:200 dilutions) at 4°C. 

Hematoxylin staining was used for counterstaining. After the slides were stained, they 

were scanned and analyzed by an ACIS III image analyzer (DAKO). 

2-13 Human tumor samples 

Gene expression profiles of 278 patients of the GSE20194 cohort with stage I, II, 

or III breast cancer were retrieved from the Gene Expression Omnibus database and 

correlated with their corresponding clinical profile. These patients had not received any 

treatment at the time of sample collection. In addition, the samples from these patients 

contained fine needle aspirates with minimal contamination of normal tissues. Therefore, 
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this cohort was very reliable and appropriate for our analysis. Patients were then divided 

into 4 quartiles according to their CSN6 mRNA levels with use of Nexus Expression 3.0 

software (BioDiscovery). The high CSN6 quartile was compared with the low CSN6 

quartile with use of Gene Set Enrichment Analysis (Broad Institute, Massachusetts 

Institute of Technology). Overall and recurrence-free survival curves were built by using 

Graph Pad Prism v5.0d (GraphPad). A logrank test was used to compare the survival 

curves. To examine the frequent overexpression of CSN6 in multiple common types of 

cancer, we used the Oncomine database and analysis tools. N represented the total 

number of patients analyzed for each type of cancer. A 60% increase in CSN6 mRNA 

when compared with corresponding normal tissue was used as our standard. A patient 

was considered as having CSN6 overexpression only if their level of tumor CSN6 mRNA 

was at least 60% higher than that of her normal breast tissue.  
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CHAPTER 3 

COP1regulates FBXW7 stability  

in an AKT dependent manner  
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A. RATIONALE 

FBXW7 is a major tumor suppressor protein that ubiquitinates several oncogenic 

substrate proteins. Therefore, stability and activity of FBXW7 is critical to suppress 

tumorigenesis. However, only a few studies report that FBXW7 expression level or 

activity is regulated by other molecules. Kinase was suggested one of possible regulator 

of FBXW7. Kinases such as PLK2 [89] and PKC [90] regulate FBXW7 through 

controlling dimerization or cellular localization. It suggests that FBXW7 could be 

affected by kinase reaction. However, only a few kinases were verified to control 

FBXW7 and also signaling inducer to phosphorylate FBXW7 is unknown. It is a 

common phenomenon for the E3 ubiquitin ligases to detect phosphorylated substrates. 

Therefore, it is highly possible that phosphorylated FBXW7 could be detected by other 

E3 ubiquitin ligases as a substrate.  

The goal of this study is identify a novel kinase which can regulate FBXW7 

stability and also verify whether other E3 ubiquitin ligases are involve in regulation of 

FBXW7 stability.   
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B. RESULT 

3-1. FBXW7 is a substrate of AKT 

To investigate a novel kinase for FBXW7 and biological conditions, I analyzed 

possible kinase consensus sequences of FBXW7 protein with NetPhos program. I found 

that FBXW7 has AKT consensus binding sequence at T226 and S227 (Fig.6A). In vitro 

kinase assay with 
32

P labeled FBXW7 and recombinant AKT proteins clearly showed that 

mutations at T226 and S227 in FBXW7 proteins have less phosphorylation compared 

with WT FBXW7 (Fig.6B). I also examined whether AKT phosphorylates in vivo 

FBXW7 with dual phospho-FBXW7 (T226 and S227) antibody. Indeed, I detected 

phosphorylated FBXW7 in WT but not in T226A/S227A mutants (Fig.6C). IGF1 and 

EGF are known growth factors which activate the AKT signaling pathway [91]. Thus, I 

further investigated whether they can induce FBXW7 phosphorylation through AKT 

activation. Both IGF1 and EGF induced endogenous FBXW7 phosphorylation followed 

by AKT activation. Interestingly, I observed that endogenous FBXW7 proteins were 

destabilized whereas substrate proteins of FBXW7, Cyclin E, and c-Myc, expression 

levels were significantly increased according to IGF1 and EGF treatment (Fig.7). In 

contrast, PI3K inhibitor LY 294002 reversed both endogenous FBXW7 and 

phosphorylated FBXW7 expression levels under IGF1 treatment (Fig.8A). In addition, I 

verified the effect of IGF1 on FBXW7 phosphorylation with WT and T226A/S227A 

mutants. As a result, IGF1 induced FBXW7 phosphorylation in WT but not in T226 and 

S227 mutants (Fig.8B). Together, these results suggest that FBXW7 is a substrate of 

AKT kinase and both IGF1 and EGF work as a biological inducer to phosphorylate 
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FBXW7 followed by AKT activation then increase Cyclin E and c-Myc stability through 

destabilizing FBXW7. 

                          

 

 

Figure 6. AKT phosphorylates FBXW7. (A) AKT consensus site in human FBXW7. 

(B-C) Flag-FBXW7 proteins were made using a TNT system for in vitro kinase assay. 

Indicated Flag-FBXW7 proteins were incubated with recombinant active AKT1 protein 

and subjected to SDS-PAGE analysis.  
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Figure 7. IFG-1 and EGF induce FBXW7 phosphorylation. HEK 293 cells were 

serum starved for 24hr then treated with 100ng/ml IFG-1 or 50ng/ml EGF. Same amount 

of proteins were immunoblotted with T226/S227 dual phospho-FBXW7 antibody.   
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Figure 8. PI3K/AKT inhibitor LY294002 and phospho-dead mutant FBXW7 inhibit 

IGF-1 induced FBXW7 phosphorylation. (A) HEK 293 cells were serum starved for 

24hr and treated with 100ng/ml IGF-1 for 1hr with or without 20μM LY294002 for 6 hr 

before harvesting. (B) HEK 293 cells were transfected with Flag-tag WT FBXW7 or 

T226A/S227A FBXW7 plasmids and treated with 100ng/ml IGF-1 for indicated time 

after 24hr serum starvation. Equal amount of cell lysates were immunoprecipitated with 

anti-Flag and immunoblotted with anti-phospho FBXW7 antibody. IP: 

imunoprecipitation;   TCL: total cell lysates.  
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3-2. AKT affects FBXW7 stability 

  To further investigate whether FBXW7 phosphorylation by AKT regulates 

FBXW7 stability, I tested steady-state expression of FBXW7 using de novo protein 

synthesis inhibitor cycloheximide (CHX). Turnover rate of FBXW7 protein in shAKT 

HEK 293 cell was decelerated compare with control shRNA
 
cell (Fig.9). Consistent with 

these studies, increased dosage of LY294002 stabilized WT FBXW7 expression levels 

but failed to increase T226A/S227A in FBXW7 mutants (Fig.10). To investigate the 

underlying mechanisms of AKT-mediated FBXW7 destabilization, I examined whether 

AKT increased FBXW7 degradation through the proteasome complex. Indeed, AKT 

increase FBXW7 ubiquitination through K48-linked polyubiquitination (Fig.11). 

However, T226A/S227A FBXW7 mutant was rescued from AKT mediated 

ubiquitination (Fig.12A). FBXW7 ubiquitination levels were significantly decreased with 

DN AKT (Fig.12B). In contrast, CA AKT increased FBXW7 ubuquitination but 

LY294002 reversed FBXW7 ubiquitination level (Fig.13A). Moreover, endogenous 

FBXW7 ubiquitination levels were increased by IGF1 treatment (Fig.13B). I therefore 

conclude that AKT regulates FBXW7 stability through K48-linked proteostomal 

degradation system.  
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Figure 9. AKT have negative impact on FBXW7 stability. HEK 293 cells were 

infected with lentiviral shLuciferease or shAKT and were then treated with 

cycloheximide (CHX) for 0, 1, 2, 4 hr. Cell lysates were subjected to Western Blot 

analysis.  
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Figure 10. Phospho-dead mutant FBXW7 is not regulated by PI3K/AKT inhibitor. 

HEK 293 cells were transfected with WT or T226A/S227A FBXW7 plasmids for 48 hr 

then 10μM or 20μM LY294002 were treated for 6 hr before harvesting. Immunoblot 

analysis was performed. 
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Figure 11. AKT regulates FBXW7 stability through K48-linked proteostomal 

degradation. HA- Ubiquitin WT, K48 or K63 plasmids were transfected into HEK 293 

cells with Flag- FBXW7 and GST-WT-AKT. 48hr after transfection, cells were treated 

with 10 μM MG132 for 6 hr. Western blot analysis with Flag-antibody was performed 

followed by immunoprecipitate with HA antibody .  
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Figure 12. AKT ubiquitinates FBXW7. (A) HEK 293 cells were transfected with His-

Ubiquitin WT, HA-CA-AKT and Flag-FBXW7 WT or T226A/S227A plasmids. (B) 

HEK293 cells were transfected with His-Ubiquitin WT, HA-DN-AKT and Flag-FBXW7 

WT plasmids. All cells were treated with 10 μM MG132 for 6 hr then subjected to pull-

down with Ni-NTA. Denatured cell lysate were subjected for immunoblot with Flag 

antibody. PD: pull-down; Ni-NTA: nickel nitrilotriacetic acid.
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Figure 13. IGF-1 and LY294002 affect AKT-mediated FBXW7 ubiquitination. (A) 

HEK 293 cells were transfected with His-Ubiquitin WT, HA-CA-AKT and Flag-FBXW7 

WT plasmids. Cells were treated with 20μM LY 294002 for 6 hr and subjected to pull-

down with Ni-NTA. All cells were denatured cell lysate were subjected for immunoblot 

with Flag antibody. (B) HEK 293 cells were serum starved for 24hr then treated with 

100ng/ml IGF-1 for 1hr then immunoblot with FBXW7 after IP with Ubiquitin antibody. 

All cells were treated 10 μM MG132 and for 6 hr before harvesting.   
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3-3. COP1 interacts with FBXW7 

In a previous figure, I found that AKT regulates FBXW7 stability through 

proteasome complex. However, AKT is not an E3 ubiquitin ligase protein. Thus, to 

investigate a possible E3 ubiquitin ligase protein, I analyzed possible E3 ligase binding 

motifs of the FBXW7 protein. I found that FBXW7 has an evolutionary conserved COP1 

binding sequence (Fig.17). First, I confirmed both in vivo endogenous binding and in 

vitro binding between FBXW7 and COP1 (Fig.14 A, B). Domain mapping studies 

suggest that the FBXW7 N-terminus binds with C-terminus of COP1 (Fig.15). In addition, 

COP1 interacts with FBXW7 through the WD40 domain which is the substrates binding 

domain (Fig.16). In further investigation, I examined the binding affinity to COP1 with 

WT FBXW7 and V200A/P201A, a COP1 binding site mutant of FBXW7. As a result, 

WT FBXW7 associated with endogenous COP1 but V200A/P201A mutant FBXW7 

failed to bind with COP1 (Fig.17).   
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Figure 14. In vivo and in vitro binding between FBXW7 and COP1. (A) HEK 293T 

cells were harvested after MG132 treatment for 6hr then IP and IB with indicated 

antibody were performed. (B) Flag-COP1 and HA-FBXW7 were translated using an in 

vitro transcription/translation system (TNT). Flag-COP1 proteins were 

immunoprecipitated with anti-Flag and then immunoblott analysis was performed with 

the indicated antibodies.  
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Figure 15. FBXW7 interacts with COP1 through N-terminal domain. WT, 

dimerization domain deletion (∆D), N-terminus only or C-terminus only Flag-FBXW7 

constructs were transfected into HEK 293T cells. After 48 hr, cells were treated with 10 

μM MG132 and for 6 hr before harvesting. Cell lysates were immunoprecipitated with 

Flag-beads and Western Blot analysis was performed with COP1 antibody.  
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Figure 16. COP1 interacts with FBXW7 through WD40 domain. WT, N-terminus 

only or WD40 domain Flag-COP1 were transfected into HEK 293T cells. After 48 hr, 

cells were treated with 10 μM MG132 and for 6 hr before harvesting. Cell lysates were 

immunoprecipitated with Flag-beads and WesternBlot analysis was performed with 

FBXW7 antibody.  
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Figure 17. FBXW7 has evolutionary conserved COP1 binding motif at V200 and 

P201. WT, V200A, P201A or V200A/ P201A Flag-FBXW7 constructs were transfected 

into the cell then cell lysates were subjected for IP with Flag beads and IB with COP1 

antibody. All cells were treated with 10 μM MG132 and for 6 hr before harvesting.   
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3-4. COP1 work as an E3 ligase of FBXW7 

To further confirm negative regulation of COP1 on FBXW7, I verified the steady-

state expression of FBXW7. Steady-state of all isoforms of FBXW7 (α, β, γ) was 

decreased by overexpression of COP1 in HEK293 cell (Fig.18A). In addition, I verified 

the negative impact of COP1 on FBXW7 regulation with cycloheximide (CHX). Turn-

over rate of FBXW7 proteins was increased by stable overexpression of COP1 (Fig.18B). 

In contrast, FBXW7 turn-over rate was significantly decreased by knock-down COP1 

(Fig.18C). Interestingly, WT FBXW7 but not V200A, P201A and V2001/P201A 

FBXW7 mutants turn-over rate were regulated by COP1 (Fig.19). To further investigate 

the cellular mechanisms of COP1 mediated FBXW7 destabilization, I examined whether 

COP1 functions as an E3 ubiquitin ligase of FBXW7. FBXW7 degradation by COP1 was 

rescued with proteasome inhibitor MG132 treatment. Overexpression of COP1 increased 

FBXW7 poly-ubiquitination whereas shCOP1 decreased FBXW7 ubiquitination level 

(Fig.20A, B). Moreover, V2001/P201A FBXW7 rescued from COP1 mediated 

ubiquitination compare with WT FBXW7 (Fig.21). I also examined the effect of COP1 

on FBXW7 ubiquitination with WT, Ring Mut, and the truncated form (N-terminus, C-

terminus) of COP1. Only WT COP1 induced FBXW7 polyubiquitination (Fig.22). In 

vitro ubiquitination assay with TNT products also clearly show that COP1 increased 

FBXW7 polyubiquitination (Fig.23). To confirm that FBXW7 ubiquitination is not by 

self-ubuquitination, I examine effect of COP1 on FBXW7 with FBXW7∆F, which 

destroyed its auto-ubiquitination activity. As I expected, overexpression of COP1 

increased FBXW7∆F ubiquitination whereas shCOP1 significantly decreased FBXW7 
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ubiquitination (Fig.24). Thus, I conclude that FBXW7 is a novel substrate of COP1 and 

COP1 works as an E3 ubiquitin ligase of FBXW7.  
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Figure 18. COP1 negatively regulates FBXW7 stability. (A) Equal amounts of HEK 

293T cells were transfected with Flag-FBXW7 (α, β, γ) and different amount of Myc-

COP1 plasmids. (B) Control vector or Myc-COP1 stable overexpressing U2OS cells were 

treated with CHX for indicated time. (C) Control shRNA or COP1 shRNA infected HEK 

293 cells were treated with CHX for indicated time. Cell lysates were immunoblotted 

with indicated antibodies.   
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Figure 19. FBXW7 mutants at COP1 binding motif rescued by negative regulation 

of COP1. WT, V200A, P201A or V200A/ P201A Flag-FBXW7 constructs were co-

transfected with Myc-Flag-COP1 plasmid into the HEK 293 cell then subjected for 

Western Blot analysis followed by CHX treatment at different time points.  
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Figure 20. COP1 ubiquitinates FBXW7. (A) HEK 293T cells were co-transfected with 

His-Ubiquitin, HA- FBXW7 and Flag- COP1 constructs. (B) HEK 293T cells were co-

transfected with His-Ubiquitin, Flag - FBXW7 and shCOP1 constructs. Cell lysates were 

pulled down (PD) with Ni
++

 NTA beads and then immunoblotted (IB) with indicated 

antibodies. All cells were treated with 10 μM MG132 for 6 hr before harvesting.  
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Figure 21. COP1 fail to ubiquitinates FBXW7 mutants at COP1 binding motif. HEK 

293T cells were co-transfected with His-Ubiquitin, Flag-FBXW7 (WT, 200A/201A) and 

COP1 constructs for 24 hr and treated with MG132 for 6 hr. Cell lysates were pulled 

down (PD) with Ni
++ 

NTA beads and then immunoblotted (IB) with indicated antibodies.   
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Figure 22. RING domain mutated COP1 fail to ubiquitinates FBXW7. His-Ubiquitin, 

Ha-FBXW7 and WT, Ring-mutant, N-terminus only or C-terminus only Flag-COP1 

plasmids were transfected into cells. After MG132 treatment for 6 hr, cell lysates were 

PD with Ni-NTA and IB with HA-FBXW7.   
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Figure 23. In vitro ubiquitination of FBXW7 by COP1. Flag-COP1 and Flag-FBXW7 

were translated using an in vitro transcription/translation system (TNT). In vitro 

ubiquitination reaction was performed with recombinant E1, E2 and Ubi and then 

immunoblotting was performed with FBXW7 antibody.   
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Figure 24. COP1 ubiquitinates FBXW7 via proteasomal pathway. HEK 293T cells 

were transfected with His-Ubiquitin, F-box domain deleted Flag-FBXW7 (∆F), HA-

COP1 and shCOP1 constructs. Cell lysates were subject to pulldown with Ni-NTA beads 

then immunoblot was performed with Flag antibody.   
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3-5. COP1 regulates FBXW7 in an AKT dependent manner 

I found that AKT phosphorylates FBXW7 and COP1 is a novel E3 ligase of 

FBXW7. However, I still needed to verify whether AKT and COP1 collaborate to 

regulate FBXW7. Interestingly, I observed that the association between COP1 and 

FBXW7 is significantly decreased by CIP (Calf-intestinal alkaline phosphatase) 

treatment (Fig.26A). This suggests that any kinase possibly involves binding between 

COP1 and FBXW7. Thus, I examined whether AKT was related with COP1 and FBXW7 

binding. Indeed, AKT bound not only with FBXW7 but also with endogenous COP1 

(Fig.25A). In addition, I confirm in vitro association between AKT and FBXW7 

(Fig.25B). Next, I verified whether AKT affects binding between COP1 and FBXW7 

with MDA-MD-453 WT and DN AKT stable cell lines. Compared with WT AKT, DN-

AKT expressing cells showed less FBXW7 binding with COP1 (Fig.26B). In addition, I 

examined the binding affinity between COP1 with WT, T226A, S227A, T226A/S227A, 

and T226D/S227D FBXW7. T226A/S227A FBXW7 showed less binding with COP1 

whereas T226D/S227D FBXW7 showed more binding with COP1 (Fig.26C). To further 

investigate whether AKT phosphorylation affect COP1 mediated FBXW7 regulation, we 

tested steady-state of FBXW7 under COP1 overexpression condition. As a result, steady-

state of phosphorylation site mutants of FBXW7 (T226A, S227A, T226A/S227A) were 

stable compare with WT FBXW7 (Fig.27A). However, steady-state of T226D/S227D 

FBXW7 was decreased in COP1 overexpression compared with WT FBXW7 (Fig.27B). 

Not only steady-state but also ubiquitination of FBXW7 was affected by phosphorylation 

by AKT. Poly-ubiquitination level of FBXW7 was increased upon IGF1 treatment 

condition (Fig.28A). In a similar manner, COP1 mediated endogenous FBXW7 
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ubiquitination was significantly increased under IGF1 treatment (Fig.28B). Moreover, in 

vitro kinase assay clearly show that COP1 induced FBXW7 ubiquitination in vitro system. 

Importantly, phosphorylated FBXW7 by in vitro kinase reaction with AKT showed high 

level of ubiquitination compare with non-phosphorylated FBXW7 (Fig.29). To confirm 

effect of AKT in COP1 mediated FBXW7 ubiquitination, we examine poly-

ubiquitination level of FBXW7 with AKT knock-down condition. Compare with control 

knock-down group, FBXW7 have less ubiquitination level in shAKT group (Fig.30). In 

addition, phosphor-dead form of FBXW7 (T226A/S227A) showed less ubiquitination 

whereas phospho-mimic form of FBXW7 (T226D/S227D) showed much higher 

ubiquitination level when COP1 was overexpressed (Fig.31). Together, I conclude that 

phosphorylation status of FBXW7 by AKT is a critical condition for COP1 mediated 

FBXW7 polyubiquitination and degradation. 
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Figure 25. FBXW7 binds with AKT both in vivo and in vitro condition. (A) HEK 

293T cells were treated with MG132 for 6 hr and equal amount of cell lysate were used 

for IP and IB with indicated antibodies. (B) GST-AKT and Flag-FBXW7 were co-

transfected into the HEK 293T cells. GST-AKT was pull-down with GST beads and then 

Western blot was performed with indicated antibodies.  
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Figure 26. AKT facilitates FBXW7 binding to COP1. (A) HEK 293 cells were co-

transfected with Flag-COP1 and HA-FBXW7 plasmids then IP and IB were performed 

after CIP treatment for 1 hr. (B) WT or Dominant Negative AKT (DN-AKT) expressing 

MDA-MB-453 cells were treated with MG132 for 6 hr. Equal amounts of cell lysate were 

subject to IP and IB with indicated antibodies. (C) WT, T226A, S227A, T226A/S227A 

Flag-FBXW7 were transfected into HEK 293 cells and then immunoblotting was 

performed and followed by immunoprecipitation with Flag antibody. 
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Figure 27. AKT facilitates COP1 mediated FBXW7 degradation. (A) HEK 293T cells 

were co-transfected with WT, T226A, S227A, T226A/S227A Flag-FBXW7 and Flag-

COP1 plasmid for 48hours and performed Western Blot analysis. (B) HEK 293T cells 

were co-transfected with WT, T226D/S227D Flag-FBXW7 and Flag-COP1 plasmid for 

48 hr and immunoblotting was performed. 
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Figure 28. IGF-1 increases COP-mediated FBXW7 ubiquitination. (A) HEK 293 

cells were co-transfected with His-ubiquitin, HA-FBXW7 and Flag-COP1 plasmids. 

Cells were treated with 100ng/ml IGF1for 1 hr followed by 24hr serum starvation then 

subjected to nickel beads purification and Western-blot analysis. (B) HEK 293 cells were 

transfected with Flag-COP1. After 24 hr serum starvation, cells were treated with 100 

ng/ml IGF1 for 1 hours then IP with ubiquitin antibody and IB with FBXW7 were 

performed. All cells were treated with 10μM MG132 for 6 hr before harvesting.  
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Figure 29. AKT facilitates COP-mediated FBXW7 ubiquitination in vitro condition. 

Flag-COP1 and Flag-FBXW7 proteins were made using an in vitro 

Transcription/Translation system (TNT). Indicated proteins were incubated with E1, E2, 

ubiquitin, and recombinant active AKT1 for 30 min and subjected to SDS-PAGE analysis.  
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Figure 30. Knock-down AKT is failed to induce COP1-mediated FBXW7 

ubiquitination. HEK 293 cells were infected with lentiviral shLuciferease or shAKT and 

then co-transfected with His-ubiquitin, Ha-FBXW7, and Flag-COP1 plasmids for 48 hr. 

Equal amounts of cell lysate were subject to pull-down with Ni-NTA and 

immunoblotting was performed. All cells were treated with 10μM MG132 for 6 hr before 

harvesting. 
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Figure 31. FBXW7 phosphorylation status is critical for COP1-mediated FBXW7 

ubiquitination . WT, T226A/S227A, T226D/S227D Flag-FBXW7 were co-transfected 

with His-Ubi and Ha-COP1 into HEK 293 cells. Denatured cell lysates were subjected to 

nickel beads purification for In vivo ubiquitination assay and immunoblot analysis. All 

cells were treated with 10 μM MG132 for 6 hr before harvesting. 
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3-6. FBXW7 phosphorylation is deregulated during tumorigenesis 

To clarify the effect of COP1-Akt-FBXW7 axis regulation in tumorigenesis, I 

performed invasion and migration assay with both WT and mutant phosphorylation sites 

of FBXW7. Phospho-dead mutant form of FBXW7 (T226A/S227A) transfected cell 

showed less invasion and migration activity compare with WT FBXW7 transfected cell. 

However, phospho-mimic form of FBXW7 (T226D/S227D) transfected cell showed 

significantly higher invasion and migration activity (Fig.32A, B). In addition, I also 

examined cell proliferation activity with a Wound-healing assay. T226A/S227A FBXW7 

showed much less cell proliferation whereas T226D/S227D FBXW7 showed higher cell 

proliferation activity (Fig.32C). To further understand about cell cycle distribution in 

different phosphorylation status of FBXW7, I performed FACS analysis. Compared with 

Vector control and WT FBXW7 transfected group, the T226A/S227A FBXW7 group 

showed that more cells in G0 phase and also significantly less cells in S phase (Fig.33A, 

B). 

Thus, I concluded that the phosphorylation status of FBXW7 by AKT is a pivotal 

factor for FBXW7 stability and tumorigenesis. High phosphorylation of FBXW7 

increased carcinogenic activity such as cell migration, invasion, and proliferation by 

regulating the cell cycle.   
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Figure 32. AKT/COP1 mediated FBXW7 regulation has impact on tumorigenesis. 

HCT116 FBXW7 
-/-

 cells were transfected with Vector control, WT, T226A/S227A or 

T226D/S227D Flag-FBXW7 constructs. (A) Matrigel invasion assay (B) Transwell 

migration assay (C) Wound healing assay was performed. Activity was quantitated and 

presented as a bar graph.  
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Figure 33. FBXW7 phosphorylation status is critical for cell cycle regulation. (A) (B) 

HCT116 FBXW7 
-/-

 cells were transfected with Vector control, WT, T226A/S227A or 

T226D/S227D Flag-FBXW7 constructs and then a flow cytometry assay was performed.   
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Figure 34. Working model of AKT-COP1-FBXW7 axis regulation. Binding affinity 

between COP1 and FBXW7 through COP1 binding motif is increased by AKT-mediated 

FBXW7 phosphorylation. COP1 facilitates ubiquitination and degradation of 

phosphorylated FBXW7 via the proteasome complex.  
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CHAPTER 4 

CSN6 negatively regulates 

FBXW7’s degrading activity 

toward Cyclin E and c-Jun 
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RATIONALE 

CDC4 (FBXW7) is a one of the components of the SCF complex which is 

responsible for recognizing substrate proteins for ubiquitination. Activity of the SCF 

complex is regulated by CSN5 mediated deneddylation process on the Cullin protein 

which is another compound of SCF complex. It have been reported that in the 

nonfunctional SCF complex, FBXW7 can be targeted for auto-ubiquitination [92]. 

Moreover, another study reported that CSN inhibits FBXW7 by suppressing 

conformational activity [61]. It suggests that CSN is involved in FBXW7 stability 

regulation. However, CSN5 is the only subunit of the CSN complex that affects the SCF 

complex and functions of the other subunits are remains unclear. CSN6 is an only subunit 

which have same functional domain with CSN5. Therefore, it is highly possible that 

CSN6 have some impact on FBXW7 regulation. 

The goal of this study is identify biological function of CSN6 on FBXW7 regulation and 

also verify whether CSN6 can affect FBXW7 substrates Cyclin E and c-Jun stability.   
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RESULTS 

4-1. CSN6 negatively regulates FBXW7 stability through ubiquitination 

To investigate whether CSN6 impacts FBXW7 which is a part of the SCF 

complex, I first analyzed the interaction between CSN6 and FBXW7 with cell lysates that 

were cotransfected with FBXW7 and CSN6. Indeed, FBXW7 was able to associate with 

transfected CSN6 as proven by the co-immunoprecipitation assay (Fig. 35). Endogenous 

interaction between FBXW7 and CSN6 was also confirmed. As a CSN6-associated 

protein, it is possible that FBXW7 is regulated by CSN6. The FBXW7 family has three 

isoforms— (nuclear),  (cytoplasmic), and  (nucleolar)—each with distinct subcellular 

localization [29]. To determine whether all three isoforms are regulated by CSN6, I 

examined the steady-state expression of FBXW7 isoforms in the presence of increasing 

amounts of CSN6. Indeed, overexpression of CSN6 can reduce the steady-state 

expression of FBXW7 isoforms in a dose-dependent manner (Fig. 36 A). In keeping with 

these results, the steady-state expression of FBXW7 increased when CSN6 was knocked 

down (Fig.36 B). 

I also examined the turnover of FBXW7 in the presence of cycloheximide (CHX) 

when cotransfected with increasing amounts of CSN6 or shCSN6. The FBXW7 protein 

turnover rate increased in the CSN6 overexpression group when compared with the 

control group. In contrast, in the CSN6 knockdown group, the FBXW7 protein turnover 

rate was significantly decreased (Fig. 36 C). Furthermore, the proteasome inhibitor 

MG132 rescued CSN6-mediated FBXW7 downregulation, suggesting the involvement of 

proteasome-mediated degradation (Fig.37 A). I verified the effect of CSN6 on FBXW7 
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ubiquitination and degradation in denaturing conditions. Overexpression of CSN6 

increased FBXW7 polyubiquitination in a dose-dependent manner (Fig.37.B), whereas 

CSN6 knockdown decreased ubiquitination of FBXW7 (Fig.37.C). These results indicate 

that CSN6 is a negative regulator of FBXW7.  
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Figure 35. CSN6 interacts with FBXW7. (A) HEK 293T cells were transfected with 

Flag-CSN6 plasmid and equal amount of cell lysates were immunoprecipitated with anti-

Flag and then immunoblotted with anti-FBXW7 antibody. (B) Endogenous FBXW7 was 

immunoprecipitated with anti-FBXW7 and immunoblotted with indicated antibodies. All 

cells were treated with 10 μM MG132 for 6 hr before harvesting. 
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Figure 36. CSN6 negatively regulates FBXW7 stability. (A) Equal amounts of HEK 

293T cell lysate which were transfected with Myc-CSN6 and Flag-FBXW7 α, β, γ 

plasmids, were immunoblotted with indicated antibodies. (B) HEK 293T cells were 

transfected with HA-FBXW7 and shCSN6 constructs and then subjected to Western Blot 

analysis. (C) HEK 293T cells were cotransfected with the HA-FBXW7, Flag-CSN6 and 

shCSN6 plasmids and then treated with cycloheximide (CHX) for the indicated times. 

Cell lysates were immunoblotted with FBXW7.   
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Figure 37. CSN6 degrades FBXW7 via the proteasome. (A) HEK 293T cells were 

cotransfected with Flag-CSN6 and HA-FBXW7 plasmids for 48 hr then treated with 

DMSO or MG132 for 6 hr before harvest. Equal amounts of cell lysates were 

immunoblotted with the indicated antibodies. (B) Cells were transfected with His-

ubiquitin, HA-FBXW7 and Flag-CSN6 constructs. (C) Cells were transfected with His-

ubiquitin, HA-FBXW7 and sh-CSN6 constructs. Cell lysates were pulled down (PD) with 

Ni++ NTA beads and then immunoblotted (IB) with anti-HA. All cells were treated with 

MG132 for 6 hr before harvest. 
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4-2. CSN6 interacts with and regulates Cyclin E and c-Jun 

Cyclin E and c-Jun have been reported as substrate proteins of FBXW7 [93]. To 

further determine the impact of CSN6 in regulating FBXW7 stability, I examined 

whether CSN6 affects FBXW7-mediated Cyclin E and c-Jun regulation. Interestingly, 

endogenous CSN6 was associated with both endogenous Cyclin E and c-Jun (Fig.38 A). 

Also, transfected CSN6 interacted with Cyclin E and c-Jun (Fig.38 B). Domain mapping 

studies suggest that the CSN6 N-terminus (aa 1-184) conatins Cyclin E or c-Jun binding 

domain (Fig.39). Consistent with these studies, I confirmed in vitro binding between 

CSN6 and Cyclin E or c-Jun using in vitro translated products (Fig.40 A, B). I have 

demonstrated that CSN6 destabilized FBXW7. Because FBXW7 tightly regulates both 

Cyclin E and c-Jun protein stability, I then investigated whether CSN6 affects FBXW7-

mediated Cyclin E and c-Jun degradation. Both Cyclin E and c-Jun proteins were 

stabilized by the expression of CSN6 in a dose-dependent manner (Fig.41A). In contrast, 

CSN6 knockdown reduced the steady-state expression of Cyclin E and c-Jun (Fig.41B). 

Moreover, the turnover rate of both Cyclin E and c-Jun was significantly decreased in the 

CSN6 overexpression group (Fig.42A, B), whereas the turnover rate of both proteins was 

increased in the CSN6 knockdown group (Fig.43A, B). Together, these results suggest 

that the CSN6-FBXW7 axis regulates the stability of Cyclin E and c-Jun. 
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Figure 38. CSN6 interacts with both Cyclin E and c-Jun. (A) HEK 293T cells were 

subjected to immunoprecipitation (IP) with IgG and CSN6 antibodies and then 

immunoblotted (IB) with the indicated antibodies. (B) Equal amounts of HEK 293T cell 

lysates which were transfected with indicated plasmids, were immunoprecipitated with 

anti- Flag and then immunoblotted with the indicated antibodies. Cells were treated with 

10 μM MG132 for 6 hr before harvesting. 
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Figure 39. CSN6 binds with Cyclin E and c-Jun through N-terminus. (A) Flag- 

CSN6 WT, Flag-CSN6 N-terminus (aa 1-184), or C-terminus (aa 184-327) was 

transfected into HEK 293T cells. Equal amount of cell lysates were immunoprecipitated 

with anti-Flag and immunoblotted with anti-Cyclin E or c-Jun. Cells were treated with 10 

μM MG132 for 6 hr before harvesting. 
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Figure 40. CSN6 binds with either Cyclin E or c-Jun in vitro. Myc-CSN6, Flag-CSN6, 

Flag-c-Jun or Cyclin E proteins were translated using in vitro TNT. (A) Flag-CSN6 

proteins were immunoprecipitated with anti-Flag and then immunoblotted with Cyclin E 

antibodies. (B) Myc-CSN6 proteins were immunoprecipitated with anti-Myc and then 

immunoblotted with c-Jun antibodies. 10 μM MG132 was added into the mixture 6 hr 

before IP.  
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Figure 41. CSN6 stabilizes Cyclin E and c-Jun. (A) HEK 293T cells were transfected 

with different amount of GFP-CSN6 plasmids. Equal amounts of the indicated cell 

lysates were immunoblotted with Cyclin E or c-Jun antibodies. (B) HEK 293T cells were 

transfected with different amounts of shCSN6 constructs and then subjected to Western 

Blot analysis.  
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Figure 42. CSN6 expression leads to decreased turnover of c-Jun and Cyclin E. (A) 

HEK 293T Cells were cotransfected with Myc-CSN6 and His-Cyclin E plasmids. (B) 

HEK 293T Cells were cotransfected with Myc-CSN6 and Flag-c-Jun plasmids. After 

48hr transfection, cell were treated with cycloheximide (CHX) for the indicated times. 

Equal amounts of cell lysate were immunoblotted with Cyclin E or c-Jun antibodies.  
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Figure 43. CSN6 knockdown increased turnover of c-Jun and Cyclin E. (A) (B) HEK 

293T Cells were transfected with shCSN6. After 48 hr transfection, cells were treated 

with cycloheximide (CHX) for the indicated times. Equal amount of cell lysates were 

immunoblotted with Cyclin E or c-Jun antibodies.  
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4-3. CSN6-mediated stabilization of Cyclin E and c-Jun stability is FBXW7-

dependent 

To further confirm whether positive regulation of CSN6 on Cyclin E and c-Jun is 

FBXW7-dependent, I verified the steady-state expression of Cyclin E and c-Jun proteins 

in HCT116 FBXW7
+/+

 and HCT116 FBXW7
-/-

 cells (Fig.44 A,B). I demonstrated that 

knockdown of CSN6 decreased the steady-state expression of Cyclin E and c-Jun 

proteins in HCT116 FBXW7
+/+ 

but not in HCT116 FBXW7
-/-

 cells (Fig.44 A). In 

addition, I confirmed the positive impact of CSN6 on Cyclin E and c-Jun regulation using 

de novo protein synthesis inhibitor cycloheximide (CHX). Turn-over rate of both Cyclin 

E and c-Jun proteins was decreased by CSN6 expression in HCT116 FBXW7 
+/+ 

cells, 

whereas the turnover rate of both proteins was accelerated by CSN6 knockdown (Fig.44 

B). In contrast, protein stability of Cyclin E and c-Jun was not changed by CSN6 

expression level through ectopic expression or knockdown in HCT116 FBXW7
-/-

 cells 

(Fig.44 B). I therefore conclude that CSN6-mediated regulation of Cyclin E and c-Jun is 

through FBXW7. 
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Figure 44. CSN6 regulates Cyclin E and c-Jun in an FBXW7-dependent manner. (A) 

shCSN6 constructs were transfected into WT HCT116 or FBXW7
-/-

 HCT116 cell. (B) 

WT HCT116 or FBXW7
-/-

 HCT116 cell were transfected with Myc-CSN6 or shCSN6 

plasmid and then treated with cycloheximide (CHX) for the indicated times. Equal 

amounts of cell lysates were immunoblotted with Cyclin E or c-Jun antibodies.  
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4-4. CSN6 reduces Cyclin E and c-Jun ubiquitination via suppressing FBXW7 

To investigate the underlying mechanisms of CSN6-mediated Cyclin E and c-Jun 

stabilization, I examined whether CSN6 decreased Cyclin E and c-Jun degradation by 

suppressing FBXW7-mediated polyubiquitination activities. Increasing amounts of CSN6 

antagonized FBXW7-mediated ubiquitination of Cyclin E in a dose-dependent manner 

(Fig.45 A), whereas CSN6 knockdown enhanced FBXW7-mediated ubiquitination of 

Cyclin E (Fig.45 A). Consistently, I observed that CSN6 significantly reduced Cyclin E 

ubiquitination in HCT116 FBXW7
+/+ 

cells (Fig.46). HCT116 FBXW7
-/-

 cells served as a 

negative control to show that CSN6-mediated reduction of Cyclin E ubiquitination 

requires the presence of FBXW7. In a similar manner, overexpression of CSN6 clearly 

suppressed FBXW7-mediated c-Jun ubiquitination (Fig.46 A), whereas CSN6 deficiency 

enhanced FBXW7-mediated c-Jun ubiquitination (Fig.46 B). Again, I observed that 

CSN6 significantly reduced c-Jun ubiquitination in HCT116 FBXW7
+/+ 

cells (Fig.48). 

Also, HCT116 FBXW7
-/-

 cells served as a negative control to show that CSN6-mediated 

reduction of c-Jun ubiquitination requires the presence of FBXW7. Together, CSN6 

decreased Cyclin E and c-Jun ubiquitination by suppressing FBXW7’s ubiquitinating 

activity.  
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Figure 45. CSN6 reduces Cyclin E ubiquitination. (A) HEK 293T cells were 

cotransfected with Cyclin E, Flag-FBXW7, Myc-CSN6 and His-ubiquitin plasmids. (B) 

HEK 293T cells were transfected with Cyclin E, HA-FBXW7, shCSN6 and His-ubiquitin 

plasmids. Cell lysates were pulled down with Ni
++

 NTA beads and then immunoblotted 

with anti-Cyclin E. Cells were treated with 10 μM MG132 for 6 hr before harvesting. 
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Figure 46.  CSN6 regulates Cyclin E ubiquitination through FBXW7. WT HCT116 

or FBXW7
-/-

 HCT116 cell were transfected with Cyclin E, Myc-CSN6 and His-ubiquitin 

plasmids. Cell lysates were pulled down with Ni
++

 NTA beads and then immunoblotted 

with anti-Cyclin E. Cells were treated with 10 μM MG132 for 6 hr before harvesting. 
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Figure 47. CSN6 reduces c-Jun ubiquitination. (A) HEK 293T cells were 

cotransfected with Flag-c-Jun, HA-FBXW7, Myc-CSN6 and His-ubiquitin plasmids. (B) 

HEK 293T cells were transfected with Flag-c-Jun, HA-FBXW7, shCSN6 and His-

ubiquitin plasmids. Cell lysates were subject to pull-down with Ni
++

 NTA beads and then 

immunoblotted with anti-Flag. Cells were treated with 10 μM MG132 for 6 hr before 

harvesting.   
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Figure 48. CSN6 regulates c-Jun ubiquitination through FBXW7. WT HCT116 or 

FBXW7
-/-

 HCT116 cell were transfected with Flag-c-Jun, Myc-CSN6 and His-ubiquitin 

plasmids. Cell lysates were subject to pull-down with Ni
++

 NTA beads and then 

immunoblotted with anti-Cyclin E. Cells were treated with 10 μM MG132 for 6 hr before 

harvesting. 
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4-5. CSN6 knockdown hinders cell migration and transformational activity 

I screened breast cancer cell lines and found that the CSN6 expression positively 

correlates with the expression of Cyclin E and c-Jun (Fig.49 A, B). Because Cyclin E and 

c-Jun proteins are critical oncoproteins that have tumorigenic functions, I investigated 

whether the positive impact of CSN6 on Cyclin E and c-Jun promotes cell characteristics 

involved in carcinogenesis. I determined with use of the wound-healing assay that 

depletion of CSN6, by shRNA, decreased migration of MDA-MD-231 cells (Fig.50 A). 

In addition, the trans-well assay confirmed that the migration rate of MDA-MD-231 cells 

was significantly decreased in the CSN6 knockdown group compared with the control 

group (Fig.50 B). Flow cytometric analysis indicates that the CSN6 knockdown group 

has an increased sub-G1 population but a reduced S-phase population (Fig.50 C). I also 

performed an anchorage-independent colony formation assay and found that MDA-MB-

231 cells with CSN6 knockdown showed inhibited formation of anchorage-independent 

growth of colonies (Fig.50 D). This data illustrates that CSN6 plays an important role in 

oncogenic signaling including migration, cell proliferation, and transformation. The 

biological significance of CSN6’s positive impact on c-Jun and Cyclin E expression may 

contribute to the above-described oncogenic signaling activities.  
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Figure 49. CSN6 expression correlates with the expression of Cyclin E and c-Jun in 

breast cancer cell lines. Equal amounts of cell lysate from each cell line were 

immunoblotted with the Cyclin E, c-Jun or CSN6 antibodies.  
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Figure 50. CSN6 knockdown decreases tumorigenesis. MDA-MB-231 cells were 

infected with either lentiviral expressing luciferase control or shCSN6. (A) Wound 

healing assay (B) Cell migration assay (C) Flow cytometry assay (D) Anchorage-

independent colony formation assay were performed.   
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4-6. Role of CSN6 in tumorigenesis 

To understand the contribution of the CSN6-c-Jun axis to human tumorigenesis, I 

analyzed the gene expression profiles of 278 patients with stages I, II, or III breast cancer 

and found a positive correlation between CSN6 and c-Jun target genes (Fig.51 A). 

Moreover, GeneSet Enrichment Analysis demonstrated that CSN6 positively correlated 

with expression of c-Jun target genes (Fig.51 B). It has also been reported that CSN6 is 

overexpressed in breast and thyroid cancers [94]. To further demonstrate CSN6’s role in 

cancer, I found that CSN6 was overexpressed in many types of human cancers including 

liposarcoma after performing human clinical cancer sample analysis based on the 

Oncomine cancer microarray database and The Cancer Genome Atlas (TCGA) (Fig.52). 

 Liposarcoma is known to overexpress c-Jun. To investigate the contribution of 

CSN6 in tumorigenesis, I determined the tumor formation rate with use of a liposarcoma 

xenograft model. 3T3L1 cells can form liposarcoma with elevated c-Jun expression. I 

established 3T3L1 cell lines with CSN6 knockdown by infection with lentiviral CSN6 

shRNA. Stable CSN6 knockdown 3T3L1 cells demonstrated high ubiquitination levels of 

c-Jun and Cyclin E (Fig.53 A). CSN6 knockdown 3T3L1 cells were injected into the 

flanks of nude mice. Xenografted tumor volume was significantly decreased in the 

shCSN6 3T3L1 cell–injected group compared with the shRNA control group (Fig.53 A). 

Hematoxylin and eosin (H&E) staining clearly showed a morphological difference 

between the control and shCSN6 xenografts. shControl 3T3L1 cells would form tumors 

whereas shCSN6 3T3L1 cells differentiated into lipid cells, based on H&E staining 

(Fig.53 A). Furthermore, immunohistochemical staining of tumors obtained from this 

study indicated that both Cyclin E and c-Jun protein levels are downregulated in 
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shCSN6-expressing tumors (Fig.53 B). Also, the  proliferation marker Ki67 was found to 

be expressed less in shCSN6 tumors (Fig.53 B). 

I also examined the effect of CSN6 on human cancer survival by identifying and 

reviewing the medical records of breast cancer patients. Importantly, Kaplan-Meier 

analysis showed that high levels of CSN6 expression correlated with poor overall and 

recurrence-free survival in a cohort of breast cancer patients (Fig.54). Thus, CSN6’s 

positive impact on c-Jun can be confirmed in human cancer samples. High CSN6 

expression is prevalent in many types of cancer and could lead to poor cancer survival. 

Mouse cancer xenograft studies have demonstrated that CSN6 deficiency leads to 

downregulation of Cyclin E and c-Jun in tumor, thereby inhibiting tumor growth.  
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Figure 51. CSN6’s role in tumorigenicity and cancer survival. (A) High CSN6 

expression is associated with elevated mRNA levels of c-Jun target genes in breast cancer 

patients. (B) Gene set enrichment analysis indicates increased c-Jun target gene 

expression in high CSN6 breast cancer samples.  
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Figure 52. CSN6 is frequently overexpressed in many common types of cancer. 

Percentage of CSN6 overexpression was determined with use of Oncomine’s database 

and analysis tools. N represented the total number of patients analyzed for each type of 

cancer. A 60% increase in CSN6 mRNA when compared with corresponding normal 

tissue was defined as overexpression.   
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Figure 53. CSN6 - FBXW7- Cyclin E and c-Jun axis regulation induces 

tumorigenesis. (A) shControl and shCSN6 expressing 3T3L1 cells were harvested and 

s.c. injected into the flank region of nude mice. Tumor volumes were monitored for 6 

weeks. Tumor volumes were measured 6-day period. Bars, SD. Tumor slides stained with 

hematoxylin and eosin were shown. (B) Tumor slides obtained from (A) were 

immunostained with Cyclin E–, c-Jun–, or Ki-67–specific antibody, and signals of 

proteins were quantitated on the basis of immunohistochemical staining intensity.  
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Figure 54. CSN6 reduces survival rate of breast cancer patients. Kaplan-Meier 

analysis showed that high expression of CSN6 was associated with poor overall survival 

of breast cancer patients. High CSN6 expression also shortens recurrence-free survival. 
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Figure 55. Model of CSN6-mediated Cyclin E and c-Jun stabilization in affecting tumor 

progression. Note the role of CSN6 in enhancing FBXW7 ubiquitination.  
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CHAPTER 5 

DISCUSSION  
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1. COP1 ubiquitin ligase regulates FBXW7 stability in an AKT dependent manner 

In chapter 3, I demonstrated that FBXW7 is phosphorylated by AKT and COP1 

ubiquitinates phosphorylated FBXW7 proteins. FBXW7 is a well-defined tumor 

suppressor protein through recognizing and degrading several oncoproteins such as 

Cyclin E, c-Jun, c-Myc, and Mcl-1[10,30,95]. Therefore, abnormal expression of 

FBXW7 causes tumorigenesis via failing to decrease target oncoproteins [95,96]. Even 

though FBXW7 has a critical function in cancer regulation, only a few upstream 

regulators are verified to be involved in regulation of FBXW7 stability and activity 

[89,90,97]. In this study, the data suggests AKT and COP1 as novel upstream regulators 

of FBXW7.  

 

1-1 FBXW7 is a novel substrate of AKT 

It was reported that Protein Kinase C (PKC) induced mislocalization of FBXW7 

increase tumorigenesis [90]. And also Polo-like Kinase (PLK)-mediated FBXW7 

phosphorylation destabilized FBXW7 via regulating dimerization [89]. It suggested that 

FBXW7 stability affected by phosphorylation status and it could be regulated by kinase. 

Based on this possibility, I sought to identify a new kinase that affects FBXW7 regulation 

and I found an AKT consensus sequence at T226 and S227 in FBXW7 (Fig 6. A). Both 

in vivo and in vitro kinase assay showed that AKT have impact on FBXW7 

phosphorylation (Fig 6.B,C). This result suggests that FBXW7 is a new substrate of AKT. 

It is known that AKT promotes tumor progression through suppressing many of the 

tumor suppressor substrate proteins such as BAD [77], p27 [98], GSK-3β [99], and 
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FOXO [100]. In this study, I found that IGF1 and EGF induced-AKT signaling activation 

phosphorylates tumor suppressor protein FBXW7 at T226 and S227 resulting in FBXW7 

destabilization which then increased Cyclin E and c-Myc accumulation (Fig.7). However, 

PI3K/AKT inhibitor LY294002 suppressed kinase activity of AKT on FBXW7 and also 

phosphorylation site mutant form of FBXW7 rescued from AKT regulation (Fig.8 A, B). 

This is the first report about biological stimuli of FBXW7 signaling and also that AKT 

have tumorigenic function through FBXW7-mediated Cyclin E and c-Myc regulation. 

Steady state and turn-over rate studies of FBXW7 support negative impact of AKT 

(Fig.9,10).  

Protein degradation is commonly regulated by either the lysosome or proteasome 

[101]. Lysosome mediated protein degradation is non-selective whereas proteasome 

mediated degradation is highly selective. Therefore, I examined which pathway AKT 

uses to degrade FBXW7 and I found that AKT ubiquitinates FBXW7 via the proteasomal 

pathway. Proteasome complex facilitate protein degradation via L48- or L63-linked 

polyubiquitination. L48-linkage induces proteolytic degradation but L63-linkage affects 

cellular localization or signaling regulation. In this study, I found that AKT degrades 

FBXW7 via L48-liked polyubiquitination (Fig.11, 12, 13). These results proposed that 

AKT-mediated phosphorylation is critical for FBXW7 ubiquitination. Therefore, I tried 

to verify whether other E3 ligase proteins are involved in AKT-mediated FBXW7 

ubiquitination.  

1-2 COP1 function as an E3 ubiquitin ligase of FBXW7 
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 COP1 has been identified as a photo-morphogenic E3 ubiquitin ligase in plants 

[39]. However, recent studies report that COP1 is also involved in cancer regulation in 

mammals [40,53,85]. Interestingly, it has been reported that COP1 is positively regulated 

by the AKT induced signaling pathway [40]. In addition, most of COP1 substrates 

contain the COP1 binding motif ‘D(E)D(E)XnVPD(E)’ [40]. In this study, I found that 

FBXW7 contains an evolutionary conserved COP1 binding motif at V200 and P201 

(Fig.17 A). COP1 binds with FBXW7 both in vivo and in vitro (Fig.17 A). Especially, 

WD40 domain of COP1 which is substrate binding domain [95] associate with N-

terminal of FBXW7 (Fig.15, 16). However, V200A/P201A FBXW7 fails to integrate 

with COP1 (Fig.17 B). This finding suggests that COP1 regulates FBXW7 stability 

through those binding sites. Indeed, COP1 decreased steady-state of FBXW7 whereas 

increased ubiquitination level both in vivo and in vitro (Fig.20-23). However, 

V200A/P201A mutant FBXW7 was not regulated by COP1 (Fig.21). The RING mutant 

of COP1 which is lost the E3 ligase function failed to induce FBXW7 poly ubiquitination 

(Fig.22) [48]. This data confirmed that COP1 is a major functional E3 ligase of FBXW7. 

Like other known regulators, a recent study reported that prolyl isomerase Pin1 also 

destabilizes FBXW7 via self-ubiquitination manner by destruction of dimerization [97]. 

However, COP1 still regulated F-box deleted FBXW7 (∆F FBXW7) which is lost the 

self-ubiquitination function [95]. This data supports that FBXW7 is regulated by COP1 

not through self-ubiquitination regulation but by K48 liked poly ubiquitination (Fig.24). 

These results suggest that COP1 recognizes FBXW7 as a substrate and causes their 

destruction via the proteasome pathway. However, there is no evidence as to whether 
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AKT-mediated FBXW7 phosphorylation is necessary to target COP1-mediated 

ubiquitination of FBXW7.  

1-3 AKT-mediated FBXW7 phosphorylation is necessary to recognized by COP1. 

 E3 ubiquitin ligases commonly detect phosphorylated substrate proteins to target 

ubiquitination [102]. For example, FBXW7 recognizes most substrate proteins after 

phosphorylation by GSK3β kinase [19]. In this study, my data presented above suggests a 

possibility that AKT-mediated phosphorylation of FBXW7 might be critical for FBXW7 

destabilization by COP1. Indeed, FBXW7 phosphorylation status is critical for binding 

between FBXW7 and COP1 (Fig.25, 26). In addition, phospho-mutant FBXW7 rescued 

from COP1 mediated ubiquitination whereas phospho-mimic FBXW7 have high levels of 

ubiquitination (Fig.31). In vitro ubiquitination assay results strongly support that catalytic 

activation of FBXW7 by AKT is critical for ubiquitination by COP1 (Fig.29). These 

results confirmed that COP1 recognizes FBXW7 in a phosphorylation dependent manner. 

Moreover, upon IGF1 treatment, COP1 increase FBXW7 ubiquitination followed by 

FBXW7 phosphorylation through AKT signaling pathway (Fig.28). However, both under 

AKT knock down and LY294002 treatment conditions, COP1 failed to induce FBXW7 

degradation (Fig.30). 

 As I emphasized above, FBXW7 is a well-documented tumor suppressor protein 

via suppressing various oncoproteins. Loss of function FBXW7 will promote 

tumorigenesis. Thus, I performed further biological studies to understand whether 

FBXW7 phosphorylation is a key event for tumorigenesis. Indeed, high phosphorylation 

of FBXW7 increased cell migration, proliferation, and invasion rate of human colon 
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carcinoma (Fig.32). However, non-phosphorylated FBXW7 have significantly less S 

phase cell numbers (Fig.33). Taken together, this data supports that AKT-mediated 

FBXW7 phosphorylation facilitates COP1-mediated ubiquitination and increases 

tumorigenesis. 

 In conclusion, the inhibition of AKT and COP1 by therapeutic intervention can 

stabilize FBXW7 and this is expected to further suppress downstream cancer-promoting 

molecules involved in cancer growth as an effective cancer treatment.  
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2. CSN6 negatively regulates FBXW7’s degrading activity toward Cyclin E and c- 

Jun 

In chapter 4, I demonstrated that CSN6 destabilized the FBXW7 protein through 

ubiquitination and positively regulated FBXW7’s oncogenic substrate proteins, Cyclin E 

and c-Jun. The CSN complex is involved in a wide variety of regulatory processes, 

including cell cycle control, signal transduction, transcriptional activation, and 

tumorigenesis [66,103]. CSN6 is overexpressed in many different types of cancers [66] 

[104]. In this study, I discovered a critical role for CSN6: controlling Cyclin E and c-Jun 

homeostasis by regulating their ubiquitin-proteasomal degradation mediator—FBXW7. 

My results provide insight into the consequences of CSN6 overexpression that can lead to 

elevation of Cyclin E and c-Jun expression during carcinogenesis and cancer progression. 

 

2-1 CSN6 facilitates FBXW7 ubiquitination 

Recent studies demonstrated that CSN6 is emerging as an oncoprotein [94,104]. 

CSN6 increases the function of oncogenic E3 ligase proteins, which in turn suppress 

tumor-suppressor proteins. For example, CSN6 upregulates MDM2 to facilitate p53 

degradation [94]. CSN6 increases COP1 stability to suppress 14-3-3σ activity [105]. 

However, so far there is no evidence that CSN6 can regulate tumor-suppressive types of 

E3 ligase proteins. In this study, I show for the first time that CSN6 can downregulate the 

tumor-suppressive E3 ligase FBXW7, providing further evidence of its role as an 

oncogenic protein. CSN6 contains a MPN domain, which is found in the N-terminus of 

yeast Mpr1 and Pad1 proteins. [106,107,108]. Among 8 subunit of COP9 signalosome 
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complex, only CSN5 and CSN6 contain MPN domain. However, most of studies about 

function of MPN domain were related with CSN5 mediated- deneddylation function. 

CSN5 deneddylates the Cullin protein through metalloprotease containing JAMM motif 

in MPN domain and destabilize SCF activity. Although CSN6 consists of polar residues 

that resemble the active site residues of metalloproteases of CSN5, the biological 

function of the MPN domain of CSN6 remains to be determined [109]. In this study, my 

data shows that CSN6 associates with FBXW7 and facilitates the degradation of FBXW7 

(Fig.35, 36, 37). Even though CSN6 involved in FBXW7 regulation, it remains to be 

known whether the MPN domain of CSN6 participates in FBXW7 degradation. The 

reason is that the most functional region of the MPN domain of CSN5 is a JAMM motif, 

but CSN6 does not have it. Also, although CSN6 may be directly involved in FBXW7 

degradation through their structural homology with the 19S proteasome lid, it is also 

possible that CSN6 recruits other E3 ligases to degrade FBXW7 [56]. Although a detailed 

mechanism of CSN6-mediated FBXW7 ubiquitination is not clear, in this study I first 

found evidence of the function of CSN6 in tumor suppressor protein FBXW7 regulation. 

Based on this finding, I tried to demonstrate whether suppression of FBXW7 by CSN6 

has impact on tumorigenesis through regulating FBXW7 substrates. 

2-2 CSN6 has positive impact on FBXW7 substrates Cyclin E and c-Jun 

FBXW7 is the F-box protein that functions as a substrate-recognition subunit of 

SCF complexes. SCF
FBXW7

 is known to regulate the degradation of several important 

substrates such as Notch, c-Myc, Cyclin E, aurora A, aurora B, and c-Jun [110,111] [112]. 

Previous I found that CSN6 negatively regulates FBXW7 stability. Therefore, I tried to 

verify whether CSN6-mediated FBXW7 suppression affect to FBXW7 substrate proteins. 



113 
 

It is noteworthy to state that cells overexpressing CSN6 bind with Cyclin E and c-Jun 

both in vivo and in vitro (Fig.38-40). In addition, steady-state and turn-over of both 

substrates of FBXW7 were regulated by CSN6 (Fig.41-43). Although CSN6 have impact 

on Cyclin E and c-Jun, it needs to be verified if FBXW7 is the major mediator of this 

regulation. Steady-state, turn-over rate, and ubiquitination assay data showed that CSN6 

has no effect on the regulation of c-Jun or Cyclin E in FBXW7-null cells (Fig.44-48). 

This supports that FBXW7 works as a target of CSN6 during CSN6-mediated 

upregulation of c-Jun and Cyclin E. Although it remains to be determined whether 

CSN6’s negative impact on FBXW7 can extend to other FBXW7 substrates and affect 

their upregulation, my study suggests that CSN6 overexpression or FBXW7 

downregulation in cancer cells plays an important role in Cyclin E or c-Jun mediated cell 

proliferation and c-Jun target gene expression. Thus, I tried to characterize the axis of 

CSN6-FBXW7-Cyclin E/c-Jun in tumorigenesis. 

2-3 CSN6 mediated FBXW7 suppression facilitate tumorigenesis via Cyclin E and c-

Jun regulation 

CSN6 has been identified as an oncoprotein through inducing MDM2 mediated 

p53 degradation and COP1 mediated 14-3-3σ ubiquitination [40,113]. In this study, I 

found that CSN6 also regulates FBXW7 mediated Cyclin E and c-Jun ubiquitination. It 

has been well known that Cyclin E and c-Jun is involved in cell cycle regulation, 

proliferation, and apoptosis [17,30]. Therefore, in this study I tried to demonstrate 

oncogenic function of CSN6 through suppressing FBXW7 mediated Cyclin E and c-Jun 

regulation. Previous study reported that the CSN6 gene copy number is amplified in 

human breast cancer and that CSN6 is overexpressed in follicular thyroid carcinoma [94]. 
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In this study, CSN6 positively correlated with both Cyclin E and c-Jun in various human 

breast cancer cell lines (Fig.49). To support this finding, human clinical cancer sample 

analyses based on Oncomine and TCGA, showed that CSN6 is overexpressed in many 

types of cancer including breast cancer, liposarcoma, and glioblastoma (Fig.50). 

Significantly, CSN6 overexpression can lead to elevated expression of c-Jun target genes 

in breast cancer (Fig.51), suggesting that my biochemical studies of regulation between 

CSN6 and c-Jun can be confirmed by clinical sample analysis. In the same manner, cell 

proliferation, migration, anchorage independent colony formation, and cell cycle 

distribution data showed that CSN6 have oncogenic functions (Fig.52). Moreover, I 

demonstrated that xenografted tumor volume was significantly decreased in shCSN6-

expressing tumors. Furthermore, tumor analyses obtained from this xenograft tumor 

model study indicated that levels of Cyclin E and c-Jun were reduced when CSN6 

expression was knocked down (Fig.53A), confirming the relationship between CSN6 and 

Cyclin E/c-Jun in vivo. Cyclin E is known to be a positive regulator of the cell cycle [10], 

promoting cell growth; thus our CSN6-Cyclin E link provides a mechanistic explanation 

for the low Ki67 signals and more differentiated phenotype we observed in our shCSN6-

expressing xenograft mouse tumor samples (Fig.53B). Importantly, breast cancer patients 

who have high CSN6 expression, compared with those expressing low levels of CSN6, 

showed shorter overall and recurrence-free survival rates (Fig.54). 

Evidence from my study of CSN6-mediated FBXW7 degradation indicates that 

the CSN6-FBXW7-Cyclin E/c-Jun axis maintains equilibrium between FBXW7, Cyclin 

E, and c-Jun (Fig.55). FBXW7 negatively regulates Cyclin E and c-Jun, which keeps the 

levels of the two proteins in check and thereby prevents cancer formation. CSN6 
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overexpression, which tilts this delicate balance by preventing Cyclin E and c-Jun from 

degradation by FBXW7, may result in cancer growth. My data showed that CSN6 

overexpression decreases the stability of FBXW7 and subsequently suppresses FBXW7-

mediated Cyclin E and c-Jun degradation, thereby promoting cancer growth. 

In conclusion, CSN6 will be an important molecular target for rational cancer 

therapy. Since FBXW7 expression/restoration can correct abnormal cell growth mediated 

by Cyclin E/c-Jun activity, targeting CSN6 will be a useful therapeutic strategy for cancer 

intervention.  
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