
Texas Medical Center Library
DigitalCommons@The Texas Medical Center

UT GSBS Dissertations and Theses (Open Access) Graduate School of Biomedical Sciences

5-2014

EFFECTS OF RESTING STATE ON
PERCEPTUAL LEARNING
Sarah Eagleman Ph.D.

Follow this and additional works at: http://digitalcommons.library.tmc.edu/utgsbs_dissertations

Part of the Cognitive Neuroscience Commons, Other Neuroscience and Neurobiology
Commons, and the Systems Neuroscience Commons

This Dissertation (PhD) is brought to you for free and open access by the
Graduate School of Biomedical Sciences at DigitalCommons@The Texas
Medical Center. It has been accepted for inclusion in UT GSBS
Dissertations and Theses (Open Access) by an authorized administrator of
DigitalCommons@The Texas Medical Center. For more information,
please contact laurel.sanders@library.tmc.edu.

Recommended Citation
Eagleman, Sarah Ph.D., "EFFECTS OF RESTING STATE ON PERCEPTUAL LEARNING" (2014). UT GSBS Dissertations and
Theses (Open Access). Paper 432.

http://digitalcommons.library.tmc.edu?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/uthgsbs?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/57?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/62?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/62?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/61?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations/432?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laurel.sanders@library.tmc.edu


EFFECTS OF RESTING STATE ON PERCEPTUAL LEARNING 

by 

Sarah Eagleman, B.A. 

 

APPROVED: 

 

_______________________________________ 

Valentin Dragoi, Ph.D., Supervisory Professor 

 

 

 

_______________________________________ 

Daniel J. Felleman, Ph.D. 

 

 

_______________________________________ 

William Seifert, Ph.D. 

 

 

 

_______________________________________ 

Fabrizio Gabbiani, Ph.D. 

 

 

 

_______________________________________ 

Jeremy Slater, M.D. 

 

 

APPROVED: 

 

____________________________ 

Dean, The University of Texas 

Health Science Center at Houston 

Graduate School of Biomedical Sciences at Houston 



EFFECTS OF RESTING STATE ON VISUAL CORTICAL NETWORKS 

DURING PERCEPTUAL LEARNING 

 

A 

DISSERTATION 

Presented to the Faculty of  

The University of Texas  

Health Science Center at Houston  

and 

The University of Texas 

MD Anderson Cancer Center 

Graduate School of Biomedical Sciences  

in Partial Fulfillment 

of the Requirements 

for the Degree of 

DOCTOR OF PHILOSOPHY 

 

 

by 

 

 

Sarah Eagleman 

Houston, Texas 

May, 2014 

 

 

 



 iii 

DEDICATION 

 

 

 

~~~ 

This work is dedicated to my brother Stephen Alwin (1986-2010)  

who lives on in reactivations of networks in my brain.   

~~~ 

 

 

 

 

 

 

 

 

 

 



 iv 

ACKNOWLEDGEMENTS 
 

I would like to acknowledge the following people for their support and influence over 

the years: 

A doctoral program requires patient family members and for that I’m very thankful 

for the patience and support of my husband David Eagleman.  I’m also thankful for the 

support and encouragement from my mother, Susan Alwin-Popp, my stepfather, Thomas 

Popp, my father, Steven Alwin, my stepmother Shelley Alwin, and the rest of my large 

family.  I’m very fortunate to be surrounded by loving, encouraging people.  It is doubtful 

that I would be able to do half of what I do without them.  I’d also like to thank my son 

Ari, for being the kind of baby content to listen to science papers as bedtime stories.   

I’m grateful for the people I’ve shared lab space with for these past 7 years. I’d like to 

thank Diego Gutnisky for the long lectures and drawings of mathematics equations 

during my first few years.  Thank you also for continuing to be a close friend and mentor.  

Thank you Bryan Hansen for spending time teaching me how to work with all of the 

equipment in the lab and for having to rerun your own experiments to make up for things 

I’d break.  I’d also like to thank Marcello Mulas for the incredible collaboration we had 

collecting and analyzing data for the resting state projects.  Thank you to Jose Fernandez-

Leon for the collaboration with the analysis and discussion of the extended reactivation 

project presented in this thesis.  Having someone push me to defend what I do, has helped 

me become a better scientist and thinker.   Thank you to Mircea Chelaru for thoughtful 

discussions on much of the work that is presented here.  I’d also like to thank everyone 

else: Ariana Andrei, Neda Shahidi, Yeca Wang, Charles Beaman, Sorin Pojoga, and 



 v 

Ming Hu for their thoughtful input and for making the lab a pleasant place to come day in 

and day out.   

Thank you to my current supervisory committee members: Drs. Daniel Felleman, 

Fabrizio Gabbiani, William Seifert, and Jeremy Slater.  I’d also like to thank previous 

faculty members who have served on my committees in the past: Drs. Neal Waxham, 

Ruth Heidelberger, and Pramod Dash.  I’d like to thank Drs. Anthony Wright and Daniel 

Felleman for guiding me through rotation experiments early on in their laboratories 

before I joined Valentin’s lab.  I’d also like to thank my undergraduate adviser Dr. J. 

Timothy Petersik for making neuroscience fascinating, introducing me to research, and 

giving me the idea that one could actually study the brain as a career.   

Having friends in your workplace is as important as having good work colleagues.  

For making work fun outside of lab I’d like to thank Julie Hill, Caitlin Elmore and 

Natalia Rozas De O’laughlin.   I’d also like to thank the Center for Laboratory Animal 

Medicine and Care veterinary staff and technicians who care for our monkeys and keep 

them healthy and happy.  

Finally, I’d like to thank Valentin Dragoi for giving me the incredible opportunity to 

perform this research.  The investment of money and time over a graduate career is 

astounding when one thinks about it, and for that opportunity I’m deeply grateful.  As I 

was finishing my thesis, I was thinking about a PhD comic showing the progression of a 

graduate career.  This comic highlights the limited abilities one has at each stage of his or 

her career to study what they are truly interested in.  I’m at the very beginning of my 

career, and I am grateful for the opportunity he gave me to pursue something that truly 

interests me.  

 



 vi 

ABSTRACT 
 

EFFECTS OF RESTING STATE ON VISUAL CORTICAL NETWORKS 

DURING PERCEPTUAL LEARNING 

  
Sarah Eagleman B.A.* 

 

Supervisory Professor: Valentin Dragoi, Ph.D. 
 

Psychophysical experiments in humans have demonstrated that improvements in 

perceptual learning tasks occur following daytime rests.  The neural correlates of how 

rest influences subsequent sensory processing during these tasks remain unclear.  One 

possible neural mechanism that may underlie this behavioral improvement is reactivation.  

Previously evoked network activity reoccurs – reactivates - in the absence of further 

stimulation. Reactivation was initially discovered in the hippocampus but has now been 

found in several brain areas including cortex.  This phenomenon has been implicated as a 

general mechanism by which neural networks learn and store sensory information. 

However, whether reactivation occurs in areas relevant for perceptual learning is 

unknown.   

To investigate how sleep affects perceptual learning at the level of single neurons and 

networks, an experimental paradigm was designed to simultaneously perform 

extracellular recordings in visual cortical area V4 along with sleep classification in 

monkeys.  V4 is a midlevel visual area that responds to shapes, textures, and colors.  

Additionally, V4 is important for perceptual learning and shows significant attentional 

effects.  In this experiment, two monkeys were trained to perform a delayed match-to-

sample task before and after a 20 minute rest in a dark, quiet room.  Whether monkeys 
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exhibit the same improvements in perceptual learning previously shown in humans is 

unknown.  Here, monkeys did improve task performance following the 20 minute rest.   

Additionally, whether neural networks in V4 could reactivate was explored in a 

passive fixation task.  A reactivation of previously evoked sequential activity was 

observed in V4 networks following stimulus exposure in the absence of visual 

stimulation.  This reactivation was time-locked to when the stimulus was expected to 

occur after a cue, which indicated to monkeys the trial was starting.  Finally, whether the 

delayed match-to-sample task-evoked activity was spontaneously reactivated during the 

20 minute rest period was tested.  No evidence to suggest that reactivation occurs during 

this time was observed.  Considering previous reactivation results, this suggests the cue is 

necessary to initiate the reactivation.  In summary, this work represents an investigation 

of the neural correlates that underlie behavioral performance improvements following 

daytime rest.  Results can provide a better understanding of how daytime naps improve 

perceptual learning. 
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1. GENERAL INTRODUCTION 
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The brain “offline” 

During the past 70 years, the visual system has proven to be a useful model to study the 

properties of how the external world is coded and processed in individual neurons and 

circuits. The majority of visual systems neuroscience has been dedicated to understanding 

what is happening in the brain when it is actively engaged with its sensory environment.  

However, the brain is not always engaged in actively processing the external environment 

and during periods in which it is not engaged, it is not silent. In fact, while the brain is resting 

it uses 20% of the body’s resting metabolism when it only accounts for 2% of the body’s 

weight (Attwell and Laughlin, 2001).  Additionally, sleep can be found across all animal 

classes, including invertebrates, fish, amphibians, reptiles, birds and mammals (Campbell 

and Tobler, 1984).  Sleep duration and complexity varies across these species based on their 

environmental situations.  That is, some animals like dolphins sleep one hemisphere at a time 

so they can keep swimming and avoid predation, whereas, bears hibernate for months during 

periods when food is scarce (Lyamin et al., 2004; Shpak et al.; Siegel, 2009).  It also appears 

that predators, like lions, sleep more deeply than their prey, like giraffes (Siegel, 2005, 2009).  

In these cases, sleep may serve to protect the animal from environmental conditions; 

however, studies in rodents, birds and humans show that sleep may also enhance our learning 

and memory (e.g. Born et al., 2006; Diekelmann and Born, 2010; Stickgold, 2005; Stickgold 

and Walker, 2007).  What is the purpose of the activity during periods of time in which the 

brain is not engaged in the external environment and how does it impact subsequent sensory 

processing?   

One hypothesis suggests that rest “resets” the brain, so that it is able to learn new 

information during its next period of sensory engagement (Tononi and Cirelli, 2003a, 2006). 
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This framework begins with the observation that synapses between cells are strengthened as 

neurons are activated together during sensory processing in the awake state (Cooke and Bliss, 

2006; Hughes et al., 1956).  This strengthening of synapses is suggested as a mechanism by 

which the brain learns and stores new information (Hebb, 1949).  Because of a net 

strengthening of synapses, circuits may reach an asymptotic level of synaptic strength during 

wakefulness (Tononi and Cirelli, 2003b, 2006).  During sleep, synapses are weakened, 

“reset” so the brain is primed to learn new information.   Another way in which the brain 

may “reset” during sleep is by clearing out potential neurotoxins that can effect neural 

activity and cognition (Xie et al., 2013).  Toxins, such as proteins linked to 

neurodegenerative diseases, decrease during sleep compared to the awake state (Bateman et 

al., 2006; Kang and Maunsell, 2012; Xie et al., 2013).  Recent research has suggested that 

this decrease is due to the increase in interstitial space causing CSF to flush out these toxins 

(Xie et al., 2013).  Psychophysical studies in humans demonstrate limits in behavioral 

performance with extended periods of wakefulness.  For example, improvement in a visual 

discrimination task declines when stimuli are presented in the same visual location in 

multiple testing sessions over the course of a day (Mednick et al., 2002).  Testing participants 

at a new visual location (which utilizes a new region of cortical tissue), or taking a nap 

recovers the performance (Mednick et al., 2002).   

A second, non-exclusive hypothesis about the role of sleep proposes that sleep allows the 

consolidation of recent sensory experiences (Diekelmann and Born, 2010; Stickgold and 

Walker, 2007, 2013; Walker and Stickgold, 2004). This framework suggests that memories 

are redistributed and reorganized with sleep from the hippocampus to diffuse cortical areas 

(Born and Wilhelm, 2012; Buzsáki, 1998; Stickgold and Walker, 2007; Walker and 
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Stickgold, 2004).  Functional magnetic resonance imaging studies in humans support this 

claim during associative encoding tasks: an increase in correlated activity between the 

hippocampus and lateral occipital (LO) complex (areas active during the task) was found 

during rest succeeding the task compared to rest preceding the task (Tambini et al., 2010).  

Further, the stronger the correlated activity between the hippocampus and LO during rest the 

better the subsequent memory performance (Tambini et al., 2010).  Though both hypotheses 

about the purpose of activity during rest are under active investigation, details of the 

mechanisms at the individual neuron and network level remain unanswered.   

Reactivation during resting states 

In hippocampal networks, previously evoked activity reoccurs during sleep and quiescent 

awake periods (Diba and Buzsáki, 2007; Foster and Wilson, 2006; Gupta et al., 2010; Louie 

and Wilson, 2001; Skaggs and McNaughton, 1996; Wilson and McNaughton, 1994).  For 

example, hippocampal cells that are active at the same time during a task exhibit stronger 

correlated activity after the task than before (Wilson and McNaughton, 1994).  Further, a 

population of neurons activated in a sequence during a task show the same pattern of 

sequential firing during subsequent sleep (Skaggs and McNaughton, 1996). A reactivation 

composed of sequential firing of a previous experience is also observed during quiescent, 

awake periods (Diba and Buzsáki, 2007; Louie and Wilson, 2001), sometimes in the reverse 

direction from experience (Diba and Buzsáki, 2007; Foster and Wilson, 2006).  Further 

investigations have revealed that this phenomenon happens in several other cortical networks 

(Hoffman and McNaughton, 2002a), including early visual cortex in anesthetized (Han et al., 

2008; Xu et al., 2012; Yao et al., 2007), awake (Xu et al., 2012), and sleep states (Ji and 

Wilson, 2007).  Studies analyzing brain activity in humans using functional magnetic 
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resonance imaging (fMRI) demonstrate that brain sensory cortical areas activated during 

visual stimulation are also active during mental imagery (Gandhi, 2001; O’Craven and 

Kanwisher, 2000; Slotnick et al., 2005; Wheeler et al., 2000).  Thus, such reactivation of 

previously experienced activity appears to be a general property of neural networks and a 

candidate mechanism by which neural networks learn and store information.   

Improvements in behavior and neural coding following rest 

In addition to rehearsal of previously experienced stimuli, the brain is likely undergoing 

other processes during rest periods that optimize future neural coding.  This is suspected 

because humans show improvement in learning and memory following daytime naps 

(Mednick et al., 2003, 2002; Tietzel and Lack, 2001, 2002; Tucker and Fishbein, 2008; 

Tucker et al., 2006).  Even a nap as brief as 6-minutes can improve performance in list 

memory (Lahl et al., 2008).  Improvements in visual discrimination tasks are observed 

following brief 60-90 minute afternoon naps (Mednick et al., 2003).  In “nap” studies, 

multiple recordings including electroencephalograms (EEGs), electrooculograms (EOGs) and 

electromyograms (EMGs)—collectively called polysomnography—are employed to 

determine sleep stages.  Because I did not employ polysomnography at all stages of this 

thesis work, I will not use the term “nap”; instead, I will use the more general term “rest” for 

periods in which there is a dark, quiet room, with no requirements of sensory engagement.  

During rest, behaviors indicative of sleep onset, such as extended eye closure and muscle 

atonia, are commonly observed. As discussed above, humans show learning improvements 

when they are allowed to rest (Tambini et al., 2010).  Because humans improve behavioral 

performance after rest, neural correlates underlying those behavioral changes must exist. 
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What are the possible neural mechanisms that underlie this improvement?  As stated 

earlier, the visual system is a useful model to study how sensory information is processed and 

utilized by the brain to affect behavior.  Because humans show improvement in visual 

discrimination tasks after rest (Mednick et al., 2003, 2002), I can use the visual system to 

explore the neural correlates of this improvement.  Potential changes that could occur include 

improved coding of sensory stimuli (in which cells are more sensitive and respond more 

discriminately to features of behaviorally relevant stimuli), improved response reliability, and 

improved synchronization with downstream targets.  The ability to simultaneously record 

extracellular activity from multiple neurons allows several analyses of these properties in 

individual neurons and networks.  Such analyses and their use to address the influence of rest 

on neural coding will be discussed in Chapter 3. 

What has been missing to determine these neural correlates is an experimental paradigm 

that incorporates in vivo recordings and polysomnography in an animal model capable of 

exhibiting the complexity of behavior found in humans.  Monkeys (Macaca mulatta, also 

known as rhesus monkeys) are capable of performing visual discrimination tasks equivalent 

to humans and enable us to perform the recordings necessary to answer questions about rest 

at the level of individual neurons and networks.  In Chapter 3, I discuss the design and 

development of such an experimental paradigm using extracellular recordings in V4.  The 

integrity of V4 is important for perceptual learning (Merigan and Pham, 1998; Schiller, 1994, 

2013), and the activity of this area is modulated by higher cognitive processes such as 

attention (Connor et al., 1997; Desimone, 1998; Roe et al., 2012; Taylor et al., 2005; 

Williford and Maunsell, 2006).  These properties, along with others discussed in the next 

section, make V4 a promising location to study the impact of rest on neural coding. 
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Visual cortical area V4 

In the rhesus monkey, gross anatomical visual identification of V4 boarders are the lunate 

sulcus in the posterior portion and anteriorly by the superior temporal sulcus (Roe et al., 

2012).  However, specific functional, anatomical studies have shown that V4 is bordered 

posteriorly by V3 and anteriorly by V4A (Roe et al., 2012).  Much debate surrounds whether 

V4 should be considered one area or a collection of smaller subareas (Roe et al., 2012; 

Stepniewska et al., 2005).  A human homolog of V4 exists, but the exact boundaries are 

debated (Gallant et al., 2000; Hansen et al., 2007; Rizzo et al., 1992). An exploration of the 

connectivity patterns of V4 using tracer injections has revealed that V4 receives feedforward 

connections from early visual areas such as V1, V2 and V3, and projects  information along 

the temporal and parietal lobes (Felleman and Van Essen, 1991; Ungerleider et al., 2008). 

The functional properties of V4 were first characterized in the 1970s, at which time it was 

proposed that V4 is an area responsible for color processing (Zeki, 1973).  Further 

investigations showed that this area is much more complicated and heterogeneous—for 

example, V4 responds to color as well as complex contours, shapes, and patterns (Bouvier et 

al., 2008; Cadieu et al., 2007; Carlson et al., 2011; Desimone and Schein, 1987; Heywood 

and Cowey, 1987; Pasupathy and Connor, 2002; Roe et al., 2012; Schiller, 1994; Schiller and 

Lee, 1991).  The connectivity of V4 and its anatomical location suggest it is involved in the 

construction of object and scene identification from the amalgamation of rudimentary 

features such as orientation, spatial frequency and contrast . 

Another property of V4 is that it is the first area in the visual processing hierarchy to 

show strong attentional effects (Connor et al., 1997; Desimone, 1998; Fries et al., 2008; 

Moran and Desimone, 1985; Williford and Maunsell, 2006; Zhou and Desimone, 2011).  The 
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input from lower visual areas as well as its sensitivity to attention suggest that V4 is 

positioned at a nexus between bottom-up and top-down influences.  It is little surprise that 

lesions of V4 in monkeys and a homologous region in humans have revealed that this area is 

important for perceptual learning, specifically the detection and discrimination of visual 

features (Gallant et al., 2000; Rizzo et al., 1992; Schiller, 1994; Schiller and Lee, 1991). It 

has been recently suggested that the unifying purpose of this region is “context feature 

selection”, meaning that given the complexity of the responses in V4, this area has the 

capacity to select relevant visual features of the environment for subsequent processing (Roe 

et al., 2012).  In this thesis work, I begin with the hypothesis that V4 will exhibit hallmarks 

of rest-induced changes in neural coding, as it has important roles in attention and learning. 

In this thesis, I describe the development of an experimental paradigm to study the 

behavior and neural coding before and after rest, during a task.  Further, this paradigm can be 

used to study the neural properties of the rest period that affect subsequent coding and 

behavior.  In Chapter 2, I test the hypothesis that previously evoked activity reoccurs during 

brief awake states when no stimuli are presented.  Throughout this thesis I will refer to the 

reoccurrence of previously evoked activity as reactivation, which is synonymous with the 

term replay.  I will use the term rehearsal to imply reactivation as a mechanism by which the 

brain learns and stores information.  Chapter 3 contains a description of the resting state 

experimental paradigm that I have designed and developed to concurrently perform non-

invasive polysomnography, recordings used for sleep staging, along with extracellular 

recordings in macaques.  Using this paradigm, I tested the hypothesis that a 20-minute 

daytime rest improves behavioral performance.  In Chapter 3, I also describe several analyses 

that may reveal how rest improves neural coding.  Here, rest is defined as a period of time 
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when the brain is not actively engaged in sensory processing.  Rest can be understood as a 

period of quiescent wakefulness.  Though there is no polysomnography to determine sleep 

onset during rest, I observe extended eye closures and muscle atonia (specifically, a slack 

jaw).  In Chapter 4, I discuss a subset of analyses using the data I collected in Chapter 3.  I 

return to my investigation of reactivation in V4, testing the hypothesis that activity during a 

visual delayed match-to-sample task will reoccur during a 20 minute period of rest in a dark 

room.   
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“Daughter: Daddy, what is an instinct?  

Father: An instinct, my dear, is an explanatory principle.  

D: But what does it explain?  

F: Anything—almost anything at all. Anything you want it to explain.  

D: Don’t be silly. It doesn’t explain gravity.  

F: No, but that is because nobody wants instinct to explain gravity. If they did, it 

would explain it. We could simply say that the moon has an instinct whose strength 

varies inversely as the square of the distance …  

D: But that’s nonsense, Daddy.  

F: Yes, surely. But it was you who mentioned instinct, not I.  

D: All right—but then what does explain gravity?  

F: Nothing, my dear, because gravity is an explanatory principle. …  

D: Daddy, is an explanatory principle the same thing as an hypothesis?  

F: Nearly, but not quite. You see, a hypothesis tries to explain some particular 

something but an explanatory principle—like gravity or instinct—really explains 

nothing. It’s a sort of conventional agreement between scientists to stop trying to 

explain things at a certain point.“ 

 

– Gregory Bateson, Steps to an Ecology of Mind (1972, pp 38, 39). 
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2. IMAGE SEQUENCE REACTIVATION IN AWAKE V4 NETWORKS 
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This chapter is based upon Eagleman, S. L., & Dragoi, V. (2012). Image sequence 

reactivation in awake V4 networks. Proceedings of the National Academy of Sciences of the 

United States of America, 109(47), 19450–5. 

 

From PNAS website (http://www.pnas.org/site/aboutpnas/rightperm.xhtml):  

“Beginning with articles submitted in Volume 106 (2009) the author(s) retains copyright to 

individual articles, and the National Academy of Sciences of the United States of America 

retains an exclusive license to publish these articles and holds copyright to the collective 

work. Volumes 90–105 copyright © (1993–2008) by the National Academy of Sciences. 

Volumes 1–89 (1915–1992), the author(s) retains copyright to individual articles, and the 

National Academy of Sciences holds copyright to the collective work.” 

 

Introduction 

In natural environments the visual system is often exposed to successive, random image 

patches that are briefly inspected during periods of fixation. While the temporal coding of 

image sequences has been investigated during active vision by examining responses to 

sensory stimulation (Dragoi et al., 2000; Gutnisky and Dragoi, 2008; Hansen and Dragoi, 

2011; Herikstad et al., 2011; Vinje and Gallant, 2000; Wang et al., 2011), as was discussed 

previously, whether and how cortical neurons and networks encode temporal image 

sequences in the absence of sensory stimulation is largely unknown.  Here, I examined the 

possibility that during brief periods of quiescence stimulus-evoked responses could be 

‘rehearsed’, or reactivated, by V4 cortical networks previously activated during stimulus 

presentation.  

 To reiterate, reactivation, also known as reverberation, of stimulus-induced neuronal 

activity is the phenomenon by which neurons in selected brain regions exhibit specific 

spiking patterns during periods of sleep and quiescent awake states resembling previously 

evoked responses. For instance, hippocampal cells firing together during a task period have 

been shown to exhibit increased correlations during subsequent sleep (Wilson and 
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McNaughton, 1994) compared to the period preceding the task. Subsequent studies have not 

only supported the fact that task-coactivated hippocampal neurons are reactivated together 

during post-task slow-wave (O’Neill et al., 2008) and REM (Louie and Wilson, 2001) sleep, 

but have also shown that the temporal firing pattern of responses reoccurs in the same order 

as during the task (Lee and Wilson, 2002; Skaggs and McNaughton, 1996). Although 

reactivation has been originally reported in the hippocampus as a mechanism of memory 

consolidation (Buzsáki, 1998; Marr, 1971; McClelland et al., 1995), it may constitute a 

fundamental property of neural ensembles in many brain areas. Indeed, in addition to 

hippocampus, reactivation has been reported in rat prefrontal cortex (Euston et al., 2007; 

Johnson et al., 2010; Peyrache et al., 2009), in motor and somatosensory cortex during 

quiescent awake states (Hoffman and McNaughton, 2002b), in rat primary visual cortex (V1) 

during slow-wave sleep (Ji and Wilson, 2007), and in rat and cat V1 immediately after 

stimulus presentation
 
during anesthesia (Han et al., 2008; Xu et al., 2012; Yao et al., 2007).  

An important issue is whether the reactivation of previously evoked neuronal activity can 

be demonstrated in the awake state, not only during sleep or anesthesia. Indeed, sleep or 

anesthetized states are characterized by high synchronous activity due to widespread 

oscillations in the same frequency band and a global decrease in brain activity (Destexhe, 

2009). On the other hand, awake reactivation has been recently demonstrated during 

quiescent periods in hippocampal cells (Carr et al., 2011; Davidson et al., 2009; Foster and 

Wilson, 2006; Gupta et al., 2010; Karlsson and Frank, 2009), and has been shown to be 

influenced by the animal’s current location (Davidson et al., 2009; Diba and Buzsáki, 2007; 

Foster and Wilson, 2006; Karlsson and Frank, 2009), to occur with elevated precision in 

novel environments (Diba and Buzsáki, 2007; Foster and Wilson, 2006), and to represent 
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pathways not previously experienced by the animal (Gupta et al., 2010). Furthermore, a more 

recent study (Xu et al., 2012) found reactivation in awake rat visual cortical cells in response 

to a moving dot stimulus swept across a linear path of adjacent receptive fields following a 

conditioning period. Nonetheless, the issue of whether neuronal populations can exhibit 

experience-dependent reactivation of evoked activity remains unclear. Specifically, 

reactivation of neuronal responses has been exclusively demonstrated when cells are 

activated sequentially in a temporal sequence. While sequential firing may be representative 

of neuronal firing in areas such as the hippocampus, where place cells fire in a specific 

temporal order as the animal explores the environment, sequential firing is less common in 

sensory cortex where neuronal responses represent incoming stimuli as a complex temporal 

spiking pattern. For instance, in visual cortex, neurons with non-overlapping receptive fields 

respond sparsely to successive fixation patches during natural viewing such that spikes from 

multiple neurons often occur coincidentally or at different times during the same viewing 

episode (Gutnisky and Dragoi, 2008; Vinje and Gallant, 2000). Whether neuronal networks 

can exhibit reactivation of complex, random patterns, such as those encountered in natural 

viewing conditions, is unknown.  

Here, I examined the capacity of neuronal populations to exhibit reactivation in visual 

cortical area V4, where neurons respond to complex image features (Desimone and Schein, 

1987; Gallant et al., 2000; Hegdé and Van Essen, 2005; Sheinberg and Logothetis, 2001) and 

play a key role in perceptual learning (Schiller, 1994; Schiller and Lee, 1991). Response 

reactivation was investigated by using a random presentation of image patches reminiscent of 

stimuli encountered during successive fixation episodes during natural viewing. I describe a 

novel form of rapid cortical reactivation at the network level induced in the awake state 
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precisely at the time when a stimulus is expected to occur. Specifically, I found that repeated, 

brief stimulation with random image sequences causes a significant ‘memory trace’ in a 

subsequent blank fixation trial and an increased similarity between the stimulus-evoked 

response and the network ongoing spiking pattern. 

 

Methods 

Behavioral Paradigm  

All experiments were performed in accordance with NIH Guidelines for the Care and Use 

of Animals for Experimental Procedures and the Animal Welfare Committee at the 

University of Texas Health Science Center at Houston.  Two male rhesus monkeys (Macaca 

mulatta) were trained to fixate on a centrally located fixation point (0.4 deg in size) within a 

2 deg fixation window. To ensure fixation, eye position was continuously monitored using an 

eye tracker system operating at 1 kHz (EyeLink II, SR Research Ltd.).  

 

Visual Stimuli 

Stimulus trials consisted of 2 x 2 deg image patches randomly presented in a 

spatiotemporal sequence. The image patches were clipped from a larger image (10 x 10 deg) 

that covered the multiple receptive fields recorded within a session (I ensured that each 

receptive field was stimulated at least once during sequence presentation). A total of 25 

image patches were presented for 120 ms each for a total of 3 s. The same sequence of image 

patches was presented throughout a given session. To determine whether response 

reactivation is stimulus specific in a subset of the sessions (13 out of 19) I added another 
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block of trials in which the same image patches were displayed in a new temporal order. 

Each block of trials contained pre-stimulus, stimulus, blank and post-stimulus conditions.  

 

Electrophysiological Recordings 

I used two recording techniques for multiple single-unit extracellular recordings in visual 

cortex area V4. First, in 8 of the sessions I used a custom Crist grid recording technique 

(Dragoi et al., 2002). Microelectrodes (tungsten, 1-2MΩ at 1kHz, FHC Inc.) were advanced 

transdurally through stainless steel guide tubes into V4. I recorded up to 10 units 

simultaneously with up to 12 electrodes in each session at depths between 200 and 400 µm. 

Recording sites were located between 1 mm and 2 mm of each other. Second, in 11 of the 

sessions I used laminar electrodes (U-probe, Plexon Inc) consisting of a linear array of 16 

equally spaced contacts (100 µm inter-contact spacing). Each electrode contact was 25 µm in 

diameter and was coated with platinum iridium. The impedance at each contact is 0.3–0.5 

MΩ. I recorded up to 19 units simultaneously in each session. Laminar electrodes were used 

either along with single contact electrodes or with multiple laminar electrodes. Real-time 

neuronal signals recorded from both electrode types (simultaneous 40 kHz A/D conversion 

on each channel) were analyzed using the Multichannel Acquisition Processor system (MAP 

system, Plexon Inc). Single-unit recordings were amplified, filtered, and viewed on an 

oscilloscope and heard through a speaker. Individual neurons were isolated through spike 

waveform sorting using Plexon’s offline sorter program. Recording sites were selected on the 

basis of the quality of the signal (signal-to-noise ratio) and responsiveness to visual stimuli. 

 



 17 

Receptive field mapping 

Single units were identified at the beginning of each recording session and receptive 

fields mapped for all cells using reverse correlation stimuli. The range of receptive field sizes 

was 2–4 deg. Figure 2.1 shows an example of receptive field mappings from four channels 

recorded simultaneously in one session.     

 

Neuronal Reactivation Analysis 

All analyses used z-scored response-time matrices, using 10 ms time bins. I assessed 

reactivation both in neuronal populations and individual cells. I calculated the two-

dimensional Pearson correlation coefficient between two matrices containing the averaged z-

scored firing rates of all the cells in the recorded population as a function of time (in different 

stimulus conditions).  The Pearson correlation coefficient between two response-time 

matrices is defined by:  

    
∑ ∑ (     ̅)(     ̅)  

√(∑ ∑ (     ̅) (∑ ∑ (     ̅)     
                                (1) 

where A and B are matrices of z-scored firing rates across the population,   ̅ and  ̅ are the 

mean z-scored firing rates of each matrix, and m and n represent locations within the matrix 

(   represents a value in matrix A in row m and column n). The correlation measures the 

degree of association between observed values. Correlation values range between -1 and +1. 

Negative values indicate that the firing rates are anti-correlated, i.e., high values in A are 

associated with low values in B. Positive correlation coefficients indicate that firing rates are 

positively correlated, i.e., high values in A are associated with high values in B. A correlation 

of 0 means there is no relationship between the firing rates in A and B.  The correlation 

calculation can be saturated when neurons within the same population have largely different 
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firing rates, such as when one neuron has very low firing rates and another one has very high 

firing rates, hence responses were normalized using z-scores. However, I did not find a 

significant relationship between firing rate and correlations (Figure 2.6). 

 

Mutual Information Analysis  

I quantified how much information about image patches was conveyed in the population 

response. I binned neuronal responses from each cell individually in 120 ms bins (the 

duration of each image frame). I calculated mutual information using the information 

breakdown toolbox (Magri et al., 2009).  I compared the mutual information values between 

populations showing statistically significant reactivation (using shuffled responses and 

bootstrapping) and those that did not show reactivation. Additionally, I confirmed that my 

information values were valid by shuffling the average firing rate responses and then 

performed the same analysis on the shuffled responses. 

 

Results 

Response Reactivation in V4 Populations 

I performed extracellular recordings using multiple electrodes while monkeys performed 

a passive fixation task. The stimulus consisted of a 10 x 10 deg image encompassing multiple 

receptive field locations (Figure 2.1). The image was divided into 2 x 2 deg image patches, 

and each patch was presented serially in a random spatiotemporal sequence (Figure 2.2 and 

Figure 2.3A). Each receptive field was stimulated at least once during sequence presentation, 

and 25 image patches were presented throughout the 3-s movie (each image patch was 

flashed for 120 ms). Each 3-s stimulus trial was followed by a 3-s blank trial (Figure 2.3A) 
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triggered by the onset of a fixation point (the duration of the blank trial was equal to that of 

the stimulus trial). Each session was comprised of 150 stimulus and 150 blank trials. Baseline 

ongoing activity was assessed over 30 blank fixation trials prior to stimulus presentation 

(pre-stimulus), and this condition was repeated following the alternating stimulus-blank 

presentations at the end of the session (post-stimulus; these trials were identical to blank 

fixation trials). Sessions in which the monkeys did not achieve and maintain fixation for at 

least 70% of the trials were excluded. A total of 149 visually responsive cells were isolated 

across 19 sessions in two monkeys. 
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Figure 2.1. Examples of receptive field maps relative to the image position for four 

simultaneously recorded V4 cells. 

Receptive fields were mapped by using reverse correlation stimuli consisting of four 0.5-

deg–oriented gratings (0°, 45°, 90°, and 135°) briefly flashed across the receptive field 

locations. The dashed white lines represent the 10 × 10-deg image layout. The image was 

placed on the screen such as to stimulate all receptive field locations. Note that image patches 

were presented one at a time in a random spatiotemporal sequence; not all receptive fields 

would be active at the same time. 
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Figure 2.2. Example image used in the reactivation experiments.  

Grayscale image was used to induce reactivation (the grid illustrates the size of each image 

patch). Each image patch was randomly presented at a different time at its original location in 

the image, thus creating a spatiotemporal image sequence. 
 

Contrary to expectation, the firing rates of the neurons activated by the stimulus were 

increased not only when the movie was presented, but also during the alternating blank trials 

(Figure 2.3 B-C). Indeed, I analyzed the responses of the cells in my population throughout 

an extended time window starting with stimulus offset and ending with the subsequent blank 

presentation. By collapsing this time window analysis across trials for all the recorded cells 

(Figure 2.4), I found an increase in neuronal responses to the stimulus followed by a decrease 

in the inter-trial interval, and then a pronounced increase immediately after the onset of the 

fixation point in the subsequent blank condition (P < 0.001, Wilcoxon signed rank test; 

comparing the mean firing rates in the 3-s window before fixation onset in the blank 

condition and the 3-s window after the blank trial onset). The increase in firing rate in the 



 22 

blank condition raised the possibility that neuronal responses may exhibit reactivation of the 

previously evoked spiking activity during the stimulus trial.  
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Figure 2.3. Experimental paradigm. 

(A) Stimulus protocol – two monkeys performed a passive fixation task. The sequence 

presentation (stimulus) consisted of 2 x 2 deg patches of a natural scene presented serially in 

a random spatiotemporal sequence for 3 s. Each 3 s stimulus trial was followed by a blank 

fixation trial of similar duration, and was triggered by the onset of the fixation point. 

Baseline spontaneous activity was determined over 30 blank fixation trials prior to stimulus 

presentation (pre-stimulus). This condition was mirrored by 30 blank fixation trials following 

the alternating stimulus-blank presentations (post-stimulus; these trials were identical to the 

interleaved blank fixation trials).  (B) Raster plots depicting the responses of one neuron in 

one session composed of successive blocks of pre-stimulus/stimulus/blank/post-stimulus 

trials. (C) Same as B for a different neuron.  
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Figure 2.4. Neuronal response following stimulus presentation increases during 

subsequent blank 

The peristimulus time histogram (PSTH) of the average firing rate across all trials and 

neurons in my population is shown relative to stimulus onset. Red lines indicate the onset and 

offset of the stimulus sequence; blue lines indicate the onset and offset of the following blank 

period. Gray lines indicate the onset of the fixation point in both stimulus and blank 

conditions (400 ms prior to stimulus or blank onset). ITI is the intertrial interval. Shaded 

envelopes represent S.E.M. of all visually responsive cells (n=149) in all sessions (19 

sessions, 32 sequences). 

 

Thus, I tested the hypothesis that repeated stimulus exposure causes a reactivation (at the 

same time scale) of the temporal pattern of stimulus-evoked neuronal responses across the 

population of cells in the absence of sensory stimulation. To quantify reactivation across the 

population of cells I measured the degree of similarity between the temporal pattern of 

neuronal firing in the stimulus and blank conditions. This was done by using the two-

dimensional Pearson correlation coefficient (CC) after time-binning and z-scoring the 

neurons’ average firing rates (Eq. 1; firing rates were computed for the entire 3 s of stimulus 
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presentation using 10 ms bins, and then averaged across trials for each condition; pre, stim, 

blank and post were all averaged and z-scored separately). Since cells with high average 

firing rates may impact my correlation measure more than those with low firing rates (de la 

Rocha et al., 2007), the responses of each cell were normalized across trials for each 

condition (using z-scores; Figure 2.5A; I found that the mean firing rates are uncorrelated 

with my Pearson correlation of z-scored response-time matrices, Figure 2.6). Since the 

increase in firing rates in the blank condition occurred at the same time as during stimulus 

presentation, I measured the correlation between the two response-time matrices using the 

same time scale. To determine the statistical significance of the correlation, I created a 

pseudoblank matrix by shuffling the blank z-scored neuronal responses across time bins and 

cells, which allowed us to compare the correlation between the stimulus and pseudoblank to 

the correlation between stimulus and blank (bootstrap method) – I found that 75% of sessions 

(24 out of 32) exhibited significant reactivation (Figure 2.7A, p < 0.05, this was calculated 

from a total of 32 sequence presentations [sequences]; 13 sessions contained blocks of two 

unique sequences).   

I next assessed the magnitude of reactivation by comparing the correlation between the 

temporal responses across the network of cells during the stimulus and blank periods to that 

between stimulus and pre-stimulus. Clearly, my expectation was that the evoked response 

pattern would be more similar to the blank response than to the pre-stimulus response. 

Indeed, I found that the average response correlation between the stimulus and blank 

conditions was greater than that between stimulus and pre-stimulus (Figure 2.5B; CCS-B = 

0.10, CCS-Pre = 0.02, p < 0.01, Wilcoxon rank sum test, results from 32 sequences). In 

addition, I compared the correlation between the stimulus and pre-stimulus conditions with 
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that between stimulus and post-stimulus, but failed to find a significant difference between 

the two (CCS-Pre= 0.02, CCS-Post = 0.03, p > 0.05, Wilcoxon signed rank test; results from 32 

sequences). I confirmed that these differences are not due to differences in eye movements 

between the different conditions (Table 2.1).  Furthermore, I assessed whether reactivation 

was larger in the first half of stimulus presentation (i.e. the first 1.5 s) than in the second half 

of sequences that elicited significant reactivation (24 sequences, CCS-B first half = 0.15, CCS-

B second half = 0.14, p > 0.05, Wilcoxon signed rank; both values were significantly different 

from the correlation between stimulus and pre-stimulus conditions p < 0.001 [first] , p < 0.01 

[last], Wilcoxon rank sum). 
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Figure 2.5. Response reactivation in visual cortical networks 

 (A) Averaged and z-scored response-time matrices for one population of cells in each 

condition for two different stimulus presentations (Sequence 1 and Sequence 2) are depicted. 

Neuronal firing rates were calculated for the entire 3 s of stimulus presentation using 10-ms 

bins, averaged across trials separately for each condition, and then normalized to obtain z-

scores. (B) Stimulus specificity of response reactivation. I exposed the network of cells to 

two successive stimulus sequences and computed correlations between the stimulus-blank 

response-time matrices at the same time scale. I compared correlations between stimulus and 

blank periods within the same sequence and between sequences. (C) The effect of bin size on 

stimulus-blank correlations using 10, 60 and 120 ms bins. Correlations between stimulus and 

pre-stimulus (S-Pre), stimulus and blank (S-B), and stimulus and post-stimulus (S-Post) were 

compared for all bin sizes (* indicates P < 0.05, n.s. indicates P > 0.05; Error bars represent 

S.E.M.). 
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Figure 2.6. Stimulus–blank correlations are independent of firing rate 

I examined the relationship between the average firing rate and average stimulus –blank 

correlation for each population of cells in each session. No significant trend between mean 

correlations and mean firing rates was observed for the stimulus (filled circles) and blank 

(open circles) conditions (p > 0.05 for both comparisons). Thus, correlation strength cannot 

be attributed to an overall change in firing rate. 
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Figure 2.7. Distribution of significance values for shuffling and bootstrapping method 

(A) To determine the significance of my reactivation, I compared the correlation between the 

sequence and blank period to the correlation between the sequence and a shuffled 

(‘pseudoblank’) period. I performed this comparison 1,000 times and interpreted values of 

<0.05 as significant correlation values. (B) I also performed this comparison 10,000 times. 
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Table 2.1. Changes in eye position across conditions do not account for response 

reactivation 

To determine whether eye movements had an effect on the neurons’ capacity to show 

reactivation, I compared eye movements in the stimulus period to blank, prestimulus, and 

poststimulus conditions.  I averaged the horizontal (x axis) and vertical (y axis) eye traces 

across trials in each condition (stimulus, blank, prestimulus, and poststimulus).  I then 

computed the Pearson correlation coefficient between the averaged traces for stimulus and 

blank, stimulus and prestimulus, and stimulus and poststimulus conditions.  The statistical 

significance of the correlation was assessed by using the shuffling and bootstrapping method.  

I found that none of the correlations were statistically significant, hence indicating that eye 

movements were not a confounding variable in my study.  Errors are reported as SEM.  
 

In principle, my results might have been influenced by the size of the time bin (10 ms) 

used to measure neuronal activity. I found that the increase in bin size causes a significant 

increase in stimulus-blank correlation (Figure 2.5C; 10 ms bins: CCS-B = 0.10; 60 ms bins: 

CCS-B = 0.22; 120 ms bins: CCS-B = 0.29; F(2, 32) = 3.24; p < 0.05, 1-way ANOVA). 

Specifically, the 60-ms and 120-ms binned stimulus-blank correlation coefficients were 

significantly greater than the 10-ms binned correlation coefficient, but not significantly 

different from each other. However, despite the fact that correlations increased with bin size, 

the difference between the stimulus/blank and stimulus/pre-stimulus correlations remained 

statistically significant for all bin sizes (p < 0.0001 [60 ms], p < 0.001 [120 ms], Wilcoxon 

rank sum; correlation values between the stimulus and post-stimulus responses were not 

significantly higher than those between stimulus and pre-stimulus, p > 0.05 [60 ms], p > 0.05 

[120 ms], Wilcoxon rank sum). In addition, I found that 72% (23 out of 32) of the 60-ms 

binned and 69% (22 out of the 32) of the 120-ms binned sessions showed significant 

reactivation (using the pseudoblank and bootstrap method; results from 32 sequences).   
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To rule out the fact that reactivation in the blank condition could be due to a general 

increase in firing rates of neurons, possibly caused by a stimulus-independent increase in 

arousal or attention, I examined whether the effects described above exhibit stimulus 

specificity. I addressed this issue by exposing the network of cells to a second stimulus 

following initial stimulation. That is, after the initial completion of a pre-

stim1/stim1/blank1/post-stim1 block of trials, I exposed the same network to a new block, 

pre-stim2/stim2/blank2/post-stim2, by presenting a new stimulus sequence (stim2) consisting 

of identical image patches, but presented in a new temporal order. Using the same correlation 

analysis as described above, I compared the correlation between stimulus and blank periods 

within the same sequence (stim1-blank1 and stim2-blank2) and between sequences (stim1-

blank2 and stim2-blank1). I found a clear signature of stimulus specificity of reactivation – 

the stimulus-blank correlations within each sequence was significantly greater than those 

between sequences (Figure 2.5B; mean CCWithin = 0.10; mean CCBetween = 0.03, p < 0.01, 

Wilcoxon signed rank test; results from 13 sessions with 2 unique sequences).  Importantly, 

this effect was not due to differences in recording stability as firing rates remained stable 

between sessions (Figure 2.8).   



 32 

 
Figure 2.8. Firing rates do not change between successive sequence presentations 

To determine whether the stimulus specificity of neuronal reactivation is related to possible 

differences in firing rates across different sequence presentations, I calculated the average 

firing rates during the 3-s stimulus period for all of the cells in my population (separately for 

each condition).  Specifically, I calculated firing rates in 120-ms (for each image patch 

presentation) and then averaged them across bins and traisl for the presimulus (Pre), stimulus 

(Stim), blank (Blank), and postimulus (Post) conditions and for each block separately (the 

first sequence block firing rates are shown in black; the second sequence firing rates are 

shown in gray).  I found no significant difference between firing rates associated with 

sequence 1 and 2, indicating that the difference in correlations (within and between 

sequences) is not due to differences in firing rates (p < 0.05, Wilcoxon signed rank 

performed for each condition pair separately, i.e., Seq1Pre – Seq2Pre, Seq1Stim – Seq2Stim, etc.).  

Notice that overall firing rates are relatively low due to the image patch presentations as cells 

responded sparsely when image patches were presented.  Error bars represent SEM; n.s., p > 

0.05. 
 

Previous reports of response reactivation have shown that this phenomenon can occur in 

the forward or reverse direction (Louie and Wilson, 2001). To determine the direction of 

response reactivation in my study, I reversed the blank period along the time axis (Figure 

2.9A) and performed the same correlation analysis by using only the sessions with 

statistically significant reactivation (24 sequences). I found that the average correlation 

between the stimulus and ‘forward’ blank responses was significantly higher than that 
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between the stimulus and ‘reverse’ blank responses (Figure 2.9B; CCForward = 0.14, CCReverse 

= -0.02, p < 0.00001, Wilcoxon signed rank test).  

 

 

 

Figure 2.9. Reactivation only occurs in forward direction 

 (A) Averaged and z-scored response-time matrices of stimulus, blank, and reverse-blank 

conditions for one session. The ‘reverse blank’ condition is the blank response reversed along 

the time axis. (B) Correlation analysis comparing the forward and reverse reactivations. Only 

the sessions with a statistically significant effect were included in this analysis; * indicates P 

< 0.05; Error bars represent S.E.M.. 
 

 

My results so far depend critically on the temporal correlation between the population 

responses in the stimulus and blank conditions measured in a fixed 3-s window. Even though 

firing rates in the blank condition clearly increase immediately after the onset of the fixation 

spot (cf. Figure 2.4), it may be possible that correlations might have reached statistical 

significance even before the 3-s period following blank onset. To control for this possibility, 

I computed the correlation between the 3-s stimulus-evoked response and a 3-s moving 

window response sliding between stimulus offset and the end of the subsequent blank trial 
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only in those sessions showing significant reactivation (24 sequences). I used 60 ms time-

binned, averaged, z-scored responses, and the time window was shifted in 60 ms increments 

until 4.2 s after blank onset (Figure 2.10). Interestingly, the correlation coefficient reached a 

maximum exactly at the starting point of the 3-s window corresponding to blank onset 

(Figure 2.10A; correlation values were normalized within each session). I further computed 

the statistical significance of the correlation as a function of time (using the pseudoblank and 

bootstrap method) and found that the only time window in which the correlation was 

significant (i.e. p < 0.05) was the 3-s blank window signaled by blank onset (Figure 2.10B). 

Altogether, these results further confirm the significance of the temporal correlation between 

the stimulus and blank trial responses.  

 

 

Figure 2.10.Correlation between the stimulus-evoked response and a 3-s moving 

window. 

(A) Average normalized correlation between the 3-s stimulus-evoked response and a 3-s 

window (shifted every 60 ms) moving between stimulus offset and 1.2 s after blank onset 

(indicated by the gray dashed line). The peak correlation is observed at the expected onset of 

the stimulus during subsequent blank period. (B) Statistical significance of the correlation 

coefficient as a function of time. The only time window in which correlation is significant (p 

≤ 0.05) corresponds to the starting point of the 3-s blank window associated with blank onset. 

The figure represents the average p-value corresponding to each 3-s moving window (shifted 

every 60 ms). Shaded envelopes represent S.E.M.  
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Temporal Dynamics of Reactivation 

I examined the temporal dynamics of stimulus-specific reactivation. To this end, 

correlations were calculated for blocks of two trials, and then normalized by the standard 

deviation of correlations for all conditions in each session. I performed this analysis on the 24 

sequences (from 16 recording sessions) that showed significant reactivation. Figure 2.11A 

shows average normalized correlation values across sessions – stimulus-blank correlation 

increased with the number of stimulus exposures (r = 0.42, p < 0.01). In addition, I found a 

significant correlation between stimulus and blank trials (assessed using the bootstrap 

method, p < 0.05) even after few stimulus presentations – 73% of sessions were associated 

with a significant reactivation after 6 stimulus presentations; 94% of all sessions had a 

significant reactivation after 12 stimulus presentations. I also found that, on average, around 

42% of sessions were associated with significant reactivation for each block of 2 trials 

(Figure 2.12). Furthermore, the probability of significant reactivation was increased as the 

neuronal population was exposed to more stimulus presentations (r = 0.37, p < 0.01).  
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Figure 2.11. Temporal dynamics of response reactivation, effect of population size, and 

mutual information analysis 
 (A) Stimulus-blank correlation strength increases with the number of stimulus exposures. 

Each point represents the stimulus-blank correlation computed by averaging the z-scored 

network responses of two successive trials normalized by standard deviation of correlations 

within each session (normalized correlations were averaged across sessions). To eliminate 

variability in the total number of trials across sessions only the first 110 pairs of stimulus-

blank trials were included in this analysis. The first and last points represent the mean 

correlations for stimulus-prestimulus and stimulus-poststimulus conditions computed for the 

30 trials at the beginning and end of each session. Error bars represent S.E.M. (B) The 

probability of a significant reactivation event increases with the number of cells in the 

population. The percentage of combinations of cells showing significant reactivation was 

determined by comparing the CCStimulus, Blank with CCStimulus, Pseudoblank using the shuffling and 

bootstrap procedure. This analysis was exclusively performed on populations that showed 

significant reactivation.  (C) Mutual information between population neuronal responses and 

image patches. Populations exhibiting significant reactivation carry more information about 

stimuli (* indicates p < 0.05, Error bars represent S.E.M.). 
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Figure 2.12. Increase in significant reactivation with the number of stimulus exposures 

I determined the percentage of sessions that showed statistically significant correlation 

between stimulus and blank across trials.  Specifically, I determined how many sessions 

showed significant reactivation for each block of two trials.  I used stimulus and blank 

response-time matrices containing the average, z-scored responses calculated every two 

trials.  To assess the statistical significance of the reactivation event, I used the shuffling and 

bootstrapping procedure.  I found that, on average, 42% of session exhibited significant 

reactivation events on a block-by-block basis.  That is, for every two stimulus presentations, 

there was a 42% chance that the neuronal population would exhibit reactivation.  As the 

population is exposed to more stimulus presentations the probability of significant 

reactivation increases, as indicated by the trend line. 

 

Reactivation Depends on Population Size 

Does the strength of reactivation change when the number of cells in the network varies? 

To examine this issue, I employed a cell-dropping procedure to calculate the percentage of 

populations showing significant reactivation when the number of cells in the network is 
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gradually decreased (by using all possible combinations of simultaneously recorded cells). 

Specifically, after determining whether the stimulus-blank correlation was significant (for the 

entire network of n cells recorded within a session), I removed one cell from the population 

and recalculated the stimulus-blank correlation for the population of n-1 cells, and then 

assessed the statistical significance of the correlation. This procedure was repeated until I 

was left with only one cell. The cell dropping procedure was repeated multiple times such 

that all possible combinations of cells were analyzed. I found that whereas 47% of single 

cells showed significant reactivation, the percentage of populations with statistically 

significant reactivation increased with the number of cells included in the population (r = 

0.94, p < 0.001, Figure 2.11B; I only used neuronal populations that exhibited significant 

reactivation in the first sequence presentation, if multiple sequences were presented, when all 

neurons were considered).  Furthermore, I extended my correlation analysis to local field 

potentials (LFPs).  I observed significant reactivation as well as significant differences 

between the stimulus/pre-stimulus correlations and stimulus/blank correlations (Figure 2.13).   
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Figure 2.13. Reactivation effects in LFPs   

I extended my analysis to LFPs, because LFPs reflect the summation of signals originating 

from ~250 μm around the electrode tip (Katzner et al., 2009).  LFP traces were filtered using 

high-pass and low-pass filters or band-passed filtered for alpha (8-12 Hz), beta (15-35 Hz), or 

gamma bands (30-90 Hz, see LFP Pre-processing for filter descriptions); I then applied a 60 

Hz notch filter if the frequency range included 60 Hz. I assessed power in time-binned 

intervals for filtered LFPs. The length of each bin varied for each band-pass filtered LFP to 

ensure accurate calculation of power for each frequency band (i.e., total: 200 ms; alpha: 120 

ms; beta 80 ms; and gamma 30 ms). Similar to the spike data, the binned power plots were z-

scored to eliminate channels with higher power biasing the calculation of the correlation. I 

also found that the correlation between the stimulus and post-stimulus was greater than that 

between the stimulus and pre-stimulus for the total, alpha, and gamma filtered LFPs, but not 

for the beta filtered LFPs (total power: CCStimulus, Prestimulus = 0.40, CCStimulus, Poststimulus,  = 0.54, 

p < 0.05, alpha power: CCStimulus, Prestimulus = 0.10, CCStimulus, Poststimulus= 0.29, p < 0.05, beta 

power: CCStimulus, Prestimulus = 0.27, CCStimulus, Poststimulus= 0.33, p > 0.05, gamma power: 

CCStimulus, Prestimulus = 0.14, CCStimulus, Poststimulus = 0.36, p < 0.05, Wilcoxon signed rank).  (A) 

Averaged and z-scored plots of total, alpha, beta, and gamma filtered LFPs (respectively, 

from top to bottom) during each session condition. (B) The correlation between stimulus and 

pre-stimulus is significantly lower than the correlation between stimulus and blank for all 

frequency bands. Additionally, the correlation between the stimulus and post-stimulus was 

significantly higher than the correlation between stimulus and pre-stimulus for alpha and 

gamma bands indicating that reactivation extended beyond the stimulus/blank fixation trials 

(* indicates p <= 0.05, n.s. indicates p > 0.05, Error bars represent S.E.M.).  
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Stronger Reactivation in Highly Informative Cells  

I further examined whether the populations of cells exhibiting significant reactivation are 

those that are most informative about the stimulus. I tested this hypothesis by determining 

how much information about the stimulus is carried by the population response by computing 

mutual information between the population responses and image patches (Magri et al., 2009). 

I found that all information values were statistically significant regardless of whether the 

population responses exhibited reactivation or not. Interestingly, I found that populations 

exhibiting statistically significant reactivation carried more information about the stimulus 

(Figure 2.11C). That is, the populations of cells (24 sequences) showing statistically 

significant reactivation had a statistically higher average mutual information, 0.99 bits, while 

the populations of cells not showing reactivation (8 sequences) had an average mutual 

information of 0.39 bits (p < 0.05, Wilcoxon rank sum test, Figure 2.11C).  

Discussion 

I have demonstrated that populations of neurons in awake macaque visual cortex exhibit 

stimulus-specific, cue-triggered reactivation of previous evoked responses at the timescale of 

visual fixation. I found that the network reactivation of evoked activity is more robust in 

larger populations of cells and is observed in both multiple neuron responses and LFP 

activity. Additionally, I have demonstrated that the presence of reactivation is related to the 

capacity of neuronal populations to carry information about the stimulus.  

One might argue that my results may be due to stimulus expectation, arousal, or attention, 

as neurons in visual cortex are known to increase their responses when a stimulus is expected 

or when attention is directed towards it (Kastner et al., 1999; de Oliveira et al., 1997). 

However, while I did observe a firing rate increase in blank trials, the fact that response 
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reactivation is stimulus specific (i.e., stimulus-blank within-sequence correlation is greater 

than that between sequences) and occurs exclusively in the forward direction argues against a 

general modulatory effect due to expectation, arousal, or attention. In addition, the fact that 

firing rates were normalized (using z-scores) prior to calculating correlation coefficients 

argues against a general modulatory effect on temporal correlations between stimulus and 

blank neuronal responses.  

My study differs from previous stimulus entrainment reports involving repetitive stimulus 

exposure to induce firing at the same frequency as my stimulus presentation did not occur at 

a fixed receptive field location (Williams et al., 2004; Yakovlev et al., 1998). Indeed, my 

stimulus presentation is significantly different from that during entrainment – the 

presentation of image patches occurs at random locations within a 10 x 10 deg window, thus 

making it impossible for image patches to stimulate V4 receptive fields at a fixed frequency. 

Clearly, the temporal structure of my random stimulus presentation is captured by responses 

across the entire network, not the frequency-entrained responses of only one neuron. 

Furthermore, whereas entrainment studies describe how neuronal responses are modified 

immediately following stimulus exposure, my results demonstrate response reactivation 

exactly at the time when stimuli are expected to occur in the subsequent trial. One could also 

argue that the refresh rate of the monitor may be entraining neurons to exhibit reactivation. 

However, if this were the case, I would not find a significant difference between temporal 

correlations in responses occurring in the pre/stimulus-stimulus and blank/stimulus 

conditions, nor would I find stimulus specificity in my reactivation events (the same refresh 

rate is used throughout the experiments). 
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Previous studies using voltage-sensitive dye imaging (Han et al., 2008; Kenet et al., 

2003) and single-cell electrophysiology in cat V1 (Yao et al., 2007) have shown that ongoing 

activity resembles orientation map responses to grating stimuli (Kenet et al., 2003) and 

natural movies (Yao et al., 2007), and can exhibit a ‘memory trace’ response immediately 

after the stimulus is extinguished (Yao et al., 2007). Furthermore, ‘recall’ responses were 

recently found in visual cortical networks following conditioning with a moving dot stimulus 

upon presentation of the first dot in the sequence (Xu et al., 2012).  However, there are major 

differences between these findings and those in my study. In addition to the fact that most 

previous visual cortex reactivation studies have been performed in anesthetized V1 or during 

sleep, the spatial similarity between ongoing activity and stimulus-evoked response was 

either independent of stimulus history (Kenet et al., 2003) or was observed immediately after 

stimulus offset (Yao et al., 2007). In contrast, I found clear evidence for reactivation in the 

awake state in V4 networks at the expected time of stimulus onset while monkeys performed 

a fixation task. In agreement with the Xu et al study (2012), I was able to elicit response 

reactivation by using the fixation spot as a trigger stimulus. Thus, the onset of the fixation 

point at the beginning of a trial can be considered as a ‘go’ signal triggering response 

reactivation. This claim is supported by my finding that neuronal activity in the blank 

condition increases at the same time relative to the onset of the fixation spot as in the 

stimulus condition, and that the correlation between the evoked and ongoing activity reaches 

the maximum at exactly this point in time.  The apparent necessity of the fixation point to 

elicit the reactivation suggests that the effect I have characterized is due to bottom-up 

mechanisms.  Further investigation of this phenomenon during extended periods of 
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quiescence in the absence of a cue is required to determine whether the brain can elicit this 

activity through top-down mechanisms.  I will explore this question in Chapter 4.  

The relationship between the stimulus-induced and ongoing cortical activity revealed in 

my study has certain similarities with the ‘replay’ of neuronal activity in neural circuits 

mediating episodic (Carr et al., 2011; Louie and Wilson, 2001; Nádasdy et al., 1999) and 

sensorimotor (Dave and Margoliash, 2000) learning. In those studies, the temporal firing 

patterns of multiple neurons during learning are repeated either during sleep (Dave and 

Margoliash, 2000; Louie and Wilson, 2001; Nádasdy et al., 1999) or in the awake state 

(Foster and Wilson, 2006). However, there are major differences between classical replay 

and the effects shown here. For instance, in hippocampal circuits replay occurs at irregular 

intervals and the replayed sequences are often compressed (Foster and Wilson, 2006) or 

expanded (Louie and Wilson, 2001) in time. In contrast, my study reveals reactivation 

patterns occurring at the same rate as stimulus presentation that can be externally controlled 

by a trigger cue. Finally, an important departure from previous work is my demonstration 

that neuronal networks in sensory cortex exhibit reactivation after exposure to a complex, 

random temporal stimulation that is representative of stimuli encountered during natural 

visual experience. 

Altogether, my results are consistent with Hebb’s hypothesis (Hebb, 1949) that 

simultaneously activated neurons that share a common experience may form a ‘cell-

assembly’ which exhibits cue-triggered recall.  Since my stimulus sequence activates the 

receptive fields of neurons at different times, spike-timing-dependent plasticity (STDP) could 

alter the strength of intracortical synapses between successively activated neurons to increase 

their probability of spontaneous co-firing. Indeed, previous models and experimental work 
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have suggested that STDP could be a mechanism by which recurrent excitatory connections 

could be altered to allow the learning of temporal sequences (Bi and Poo, 1999; Hebb, 1949). 

Consistent with this hypothesis is the fact that the strength of network reactivation increases 

with the number of stimulus exposures. Finally, my results raise the possibility that the 

capacity of neuronal networks to reverberate may explain how the brain is able to learn and 

store events that occur in time following passive stimulus exposure during sensory 

experience (Chelaru and Dragoi, 2008; Dragoi et al., 2002; Gutnisky et al., 2009; Rao and 

Sejnowski, 2001; Sietz and Watanabe, 2003; Watanabe et al., 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 45 

 

 

 

 

 

 

 

 

“…Maybe one day we’ll wake up and this will all just be a dream” 

 –Mockingbird, Eminem 2005 
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3. DESIGN AND DEVELOPMENT OF SIMULTANEOUS SLEEP 

CLASSIFICATION AND EXTRACELLULAR RECORDINGS 
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Introduction 

Behavioral improvements in learning and memory typically follow sleep (Gais et al., 

2000; Hennevin et al., 1995; Stickgold, 2005; Stickgold et al., 2000, 2002; Wagner et al., 

2004; Walker and Stickgold, 2004).  Similar improvements can be observed after a brief 

afternoon nap (Backhaus and Junghanns, 2006; Lahl et al., 2008; Mednick et al., 2003; 

Nishida and Walker, 2007; Tambini et al., 2010). The brain is not quiet during these periods 

of time.  Electrophysiological recordings from electrodes placed on the scalps of humans, 

called an electroencephalogram (EEG), reveal that the brain oscillates between measurably 

different stages of distinct neural activity during sleep.  These distinct activity patterns 

revealed with EEG, coupled with recordings of eye movements, known as an 

electrooculogram (EOG), and muscle tone, known as electromyogram (EMG), are 

collectively called polysomnography.  Using polysomnography, distinct activity patterns 

have been classified into rapid eye movement (REM) sleep, and non-rapid eye movement 

(NREM) sleep, which can be further classified into stages 1-4. Stages 3 and 4 of NREM 

sleep, known as slow-wave (SW) sleep, are characterized by a decreased behavioral response 

to the external environment and by an increase in electrophysiological delta oscillations (1-4 

Hz) throughout the brain.  Human psychophysical experiments have correlated the presence 

of stages of sleep during naps with improvements in behavioral performance during 

perceptual learning tasks (Aeschbach et al., 2008a; Karni et al., 1994; Mednick et al., 2003).  

However, that research has produced conflicting evidence.  Improvements in visual 

discrimination tasks have been observed after naps containing SW activity (Aeschbach et al., 

2008b), REM activity (Karni et al., 1994), and  only when both are present (Mednick et al., 
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2003).  Thus, there is not a consistent sleep characteristic at the global level associated with 

improvements in perceptual learning.   

More intriguing is that the definition of sleep has been expanded in recent years.  

Research has unveiled that sleep has rich local components at the level of individual neural 

networks as well as global, whole-brain characteristics (Huber et al., 2004; Tononi and 

Cirelli, 2003a).  Further, this local sleep-like activity occurs during daytime, awake states 

(Vyazovskiy et al., 2011). The identification of local sleep-like activity merits a more 

detailed examination of neural networks.  Despite the prevalence and impact of sleep on 

perceptual learning, little is known about the neural mechanisms underlying this 

improvement. This is primarily due to the lack of electrophysiological studies during 

experimental learning paradigms that include sleep.   

This absence is primarily due to the difficulty in performing concurrent 

polysomnography and extracellular recordings in an animal model capable of performing 

complex psychophysical tasks similar to humans.  Monkeys are an ideal model because they 

have a similar brain organization to humans and similar sleep patterns as humans – including 

daytime naps (Daley et al., 2006a; Hsieh et al., 2008).  The difficulty of developing sleep 

paradigms incorporating polysomnography in monkeys includes complicated surgeries to 

implant recording electrodes and telemetry devices (Crowley et al., 1972; Daley et al., 2006a; 

Hsieh et al., 2008; Reite et al., 1965; Weitzman et al., 1965).  Here, I have attempted to fill 

this gap by designing and developing a removable cap where I can simultaneously record 

EEGs, EOGs, and EMGs along with video, and I follow polysomnography rules outlined for 

human sleep characterization (e.g. electrode placement, filter settings, and sampling 

frequency) (Berry et al., 2013; Rechtschaffen and Kales, 1968).  Given the demands of 
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recording time and constraints of controlling behavioral testing, I designed an experimental 

paradigm to study the neural correlates surrounding daytime naps instead of a night of sleep.  

To this end, I trained two monkeys to perform a natural image delayed-match-to-sample 

tasks before and after a daytime 20-minute nap.   

I began by testing the hypothesis that monkeys improve with a 20-minute rest in the task. 

I refer to the period between the tasks as rest because I did not include polysomnography 

until later stages of the development of this paradigm.  However, during the rest period I 

observed both monkeys to have their eyes closed and jaw slack for extended periods of time, 

indicating the presence of sleep onset.  

The ultimate goal of this experimental design is to study the underlying neural correlates 

of behavioral improvement in visual cortex area V4.  Thus, I chose a natural image delayed 

match-to-sample task.  V4 neurons respond to shapes, textures and contours (Bouvier et al., 

2008; David et al., 2006; Hayden and Gallant, 2013; Liebe et al., 2011; Roe et al., 2012) 

which are features present in natural scenes.   

Potential neural correlates of improvement are expected in two well-defined neural 

response properties: improved discriminability of stimuli and increased response reliability.  

Using analytical techniques for electrophysiological data recorded from single and 

populations of neurons, I am able to quantify how well neurons respond selectively to 

stimulus features.  Moreover, neurons do not always respond in the same way to the same 

stimulus; there is some inherent variability in responses (Holt et al., 1996; Shadlen and 

Newsome, 1998).  Combining these two ideas, the more distinct and reliable a response is, 

the better downstream neurons receiving the response are able to determine what stimulus 
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was presented.  These measures can be compared before and after rest to determine how rest 

influences neural coding.    

The results discussed in this chapter all relate to development of an experimental 

paradigm to determine the neural correlates of behavioral improvement during tasks after a 

daytime nap.  The second goal of developing these methods is to elucidate the characteristics 

of the individual and network activity during rest that correlate with neural and behavioral 

improvements.  Using data from this experiment, I tested the hypothesis that reactivation of 

stimulus-evoked activity occurred during subsequent rest periods.  This will be discussed in 

Chapter 4.   

Methods 

Behavioral Paradigm  

All experiments were performed in accordance with NIH Guidelines for the Care and Use 

of Animals for Experimental Procedures and the Animal Welfare Committee at the 

University of Texas Health Science Center at Houston.  To determine the neural correlates of 

how rest improves behavioral performance in a visual image orientation discrimination task, 

I exposed two trained male rhesus monkeys (Macaca mulatta, referred to as M1 and M2) to a 

task before and after a brief rest (M1: 23 sessions; M2: 6 sessions, Figure 3.1A,C).  During 

rest periods monkeys remained in the experimental room with lights and monitors off and 

with a white noise background for 20 minutes.  Eye closure was monitored using an eye 

tracker and/or video camera during this time.  I coordinated the timing of my experiments 

such that monkeys were in the dark room around 2 pm, a time previously reported when 

monkeys were observed to nap (Daley et al., 2006b). Prior to experimentation, monkeys were 

trained to perform the natural image orientation discrimination task with all images used 
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during the experiment—this was meant to eliminate practice effects (Karni and Sagi, 1991, 

1993).  Acquisition of the task was assumed when the monkey could perform the 

discrimination task with an 80% correct performance for each image used for three days.  To 

control for the effect of rest, I also implemented a no rest condition in which monkeys were 

not allowed to rest in between task sessions (Figure 3.1C).  Animals were either presented 

videos for 20 minutes (M1 2 sessions, M2 6 sessions), or placed in a dark room with a 

random, auditory, buzzing noise (M1 2 sessions).  As in the rest condition, both monkeys 

were monitored during this time either using the eye tracker for eye closure or video 

monitoring.   

In my first design of the experiment with monkey 1, I preceded the first task by a 20-

minute period of rest so I could utilize the data to explore both of my goals: improvement 

after rest in task performance and changes in the structure of activity during rest after task 

exposure.  However, after comparing rest and no rest data from Task 1, I found that monkey 

1 had better performance when Task 1 was preceded by a rest, than when it did not.  

Specifically, he exhibited significantly fewer false alarms (63% fewer false alarms with rest, 

p < 0.01, Wilcoxon rank sum test) and had a significantly higher percentage of correct 

responses (16% and 25% more correct responses at the two largest orientation differences, 

both p<0.01, Wilcoxon rank sum test). I still observed a significant difference between task 

performances; however, I reasoned that the actual difference in performance between tasks 

may be diminished by including this first rest period.  Thus, in monkey 2 I incorporated a 

third experimental design where the monkey did not have a rest preceding Task 1 (Figure 3.1 

C).   To summarize, data from monkey 1 includes experiments with Rest1 – Task1 – Rest 2 –
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Task 2 and Task 1 – No Rest – Task 2, and data from monkey 2 includes experiments with 

Rest1 – Task1 – Rest 2 –Task 2, Task 1 – No Rest – Task 2, and Task 1 – Rest – Task 2.   

 

Visual Orientation Discrimination Task 

Monkeys were trained to fixate a centrally located fixation point (0.4 deg in diameter).  

400 ms after the monkeys achieved fixation, an 8-10 deg natural image (target) was 

presented for 300 ms over all of the receptive fields of the simultaneously recorded neurons 

(Figure 3.1 D).  After a blank interstimulus interval of 1 s, the same image was presented 

(test) in the same position either at the same or at a rotated orientation.  Monkey 2 had 

slightly different timing: 366 ms stimuli on the screen and 1.25 s interstimulus interval.  The 

difference in timing was due to a difference in the refresh rates of the computer monitors 

used for stimulus presentation, 60 Hz was used for M1 and 75 Hz for M2.  After the second 

image was presented the fixation point turned red indicating to the monkey to release or hold 

a response bar to indicate whether the images were presented at the same or different 

orientation, respectively.  Correct responses were rewarded with juice.  An equal number of 

rotated and not rotated trials were presented.   

To accurately assess the monkeys’ behavioral improvement and keep them motivated in 

the task, 5 orientations were used with the smallest orientations around each monkeys’ 

discrimination threshold (3 – 20 deg M1, and 2 – 40 deg M2).  Out of all of the rotated trials 

25% were at the orientations threshold, 25% were within 3 degrees below, 25% were within 

5 degrees above threshold, and 25% were at a larger orientation that the monkey could 

discriminate with almost 100% accuracy. I found that this combination of stimuli kept the 

monkey motivated throughout the experiment (hard orientation combinations would cause 
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the animal to not work) and still allows monkeys to improve after rest.  Additionally, equal 

numbers of trials were used per stimulus because of the intended neural analyses.  I ensured 

the monkeys were actively performing the task by calculating the false alarm rate which is 

the percent of same trials the monkeys correctly responded subtracted from 100.   Sessions in 

which false alarms exceeded 60% during either Task 1 or Task 2 were discarded as I could 

not assess whether behavioral changes were due to changes in discrimination.  I then 

assessed how well monkeys were performing at different levels of difficulty (varying degrees 

of rotation between target and test) by calculating the percent correctly identified.    
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Figure 3.1. Experimental Design and image orientation discrimination task 
(A) Experimental design to elucidate network changes that occur within task periods before 

and after rest.  Task periods consisted of a natural image same-different task.  During rest 

periods, monkeys were in a dark, quiet room for approximately 20 minutes. (B) Experimental 

design for control experiments where monkeys did not rest.  During the period of no rest 

monkeys either watched a video for 20 minutes or were in a dark room for 20 minutes with 

intermittent auditory noise.  (C) Experimental design used for monkey 2.  Monkey was not 

able to rest until he completed Task 1.  This session structure was implemented for monkey 2 

to control for behavioral improvements observed in task 1 for monkey 1 when a rest 

preceded it.  (D) Natural image same-different task consisting of two serially presented 

images.  The second image was presented at the same or a rotated orientation.  The monkey 

is expected to respond when the fixation point turned red by either holding or releasing a 

response bar if the images are at a different or same orientation, respectively. Timing is 

shown for M1; slightly different timing was used for M2 (see Methods).  
 



 55 

Classification of rest and no rest sessions based on eye closure  

I monitored eye closure throughout the duration of my experiments using an eye tracker 

and used it to quantify the rest the monkeys had between tasks.  The eye tracker converts the 

position of the monkeys’ eyes in to a voltage.  Daily calibration aligned the eye position 

coordinates in the eye tracking software to those on the computer screen where I presented 

the visual stimuli by adjusting the output voltage of the eye tracking hardware. When the eye 

tracker is not able to detect the animals’ eye position (which only occurs when it is closed), 

the eye tracker outputs a maximally negative voltage.  In M1, this voltage was -1, and in M2 

it was -4 V (Figure 3.2).  The values differ between animals because I performed the 

experiments using two different eye trackers which had different voltage output (Eyelink II 

for M1 and Eyelink 1000 desktop mount for M2, SR Research). I recorded these voltage 

fluctuations and considered 80% of the minimum voltage value as times when the animal had 

his eyes closed.  The threshold I use to determine whether the eyes are open or closed for 

each monkey is shown in Figure 3.2 by the dashed, horizontal red lines.  

To elucidate the impact of rest on task performance I was interested in the amount of rest 

the animals had between tasks.  Thus, I focused my analysis on Rest 2.  I observed that 

during no rest sessions, both animals remained awake throughout the period.  However, when 

examining eye traces during rest sessions, I observed that during some sessions the monkeys 

had their eyes open for most of the time.  In fact, I observed two distinct types of eye closure 

behavior for all experimental sessions, one in which the monkeys closed their eyes for 

extended periods of time when they were left to rest, and one in which monkeys appeared to 

have their eyes open for most of the time.  To classify sessions as rest and no rest, I 

calculated the percentage of time the monkey closed his eyes for 1 minute or longer 
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throughout the rest period.  Sessions that had <5% closures were considered no rest sessions 

and those with >15% closures were considered rest sessions (Figure 3.3).  Example traces of 

eye positions classified as rest and no rest are presented in Figure 3.2.  Vertical lines with the 

‘LO’ designation between them represent the periods of time when the lights were off in the 

experimental room during Rest 1 (only in M1 examples, Figure 3.2A) and Rest 2.  Using this 

classification, M1 had 8 rest sessions and 9 no rest sessions (Figure 3.3A). M2 had 12 rest 

sessions and 6 no rest sessions (Figure 3.3B).   
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Figure 3.2. Examples of eye traces for rest and no rest sessions 

During experimental recordings, I monitored eye position to ensure that the monkeys were 

fixating during presentation of stimuli, as well as to determine the percentage of time they 

closed their eyes during rest.  The eye tracker converts the x and y coordinates of the 

monkeys’ eye position into a voltage.  When the eye tracker is unable to detect the pupil, 

which only occurs when the monkey’s eyes are closed, the eye tracker outputs a negative 

voltage (-1 for M1 and -4 V for M2, as a result of using different eye trackers).  I considered 

values below 80% of the minimum voltage (indicated here with the red dashed line) as 

periods when the eye was closed. Periods separated by vertical black dashed lines are when 

the monkeys were in the room with the lights off (LO).  In the left column are example rest 

sessions (left) in which the monkey closed his eyes for extended periods of time, and in the 

right column are no rest sessions in which the monkey had his eyes open while in the dark 

room. 
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Figure 3.3. Distribution of eye closure across sessions and classification of rest and no 

rest 

During no rest sessions both monkeys kept their eyes open for the duration of the task.  

However, during some rest sessions, both monkeys kept their eyes open for the duration of 

the time he was in the dark room (even though they was supposed to be napping).  Therefore, 

to more accurately classify sessions into rest and no rest conditions, I calculated the 

percentage of time the monkey closed his eyes for 1 minute or longer during his 20-minute 

rest.  I then classified no rest sessions as those with <5% of time with eyes closed and those 

with >15% of time with eyes closed as rest.  The red dashed line indicates my boundary 

between rest and no rest classifications. 

 

Polysomnography in monkeys 

To accurately determine the neural correlates of behavioral improvement following rest 

and relate those correlates to research in the human nap literature, I needed to have the 

capacity to identify sleep stages in the monkeys.  As previously discussed the combination of 

electroencelphalograms (EEGs), electrooculograms (EOGs), and electromyograms 

(EMGs)—collectively known as polysomnography—and how that can be used to determine 

sleep stages in humans and animals using the combined patterns of activity observed during a 

period of sleep. Previous research has successfully identified sleep stages in macaques 

identical to humans (Balzamo et al., 1998; Crowley et al., 1972; Daley et al., 2006a; Hsieh et 

al., 2008; Reite et al., 1965; Weitzman et al., 1965).  However, all of these studies have used 

chronically implanted electrodes for their recordings, which require complicated surgical 
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procedures.  Because I am interested in studying the effects of daytime napping on 

behavioral performance, I wanted a non-invasive and removable cap to conduct sleep staging 

along with extracellular recordings.  A sleep cap combined with video monitoring similar to 

that used in humans allows for daily removal of polysomnography electrodes and 

implementation of daytime nap protocols that do not require complicated surgical techniques 

to obtain sleep data.   

Incorporating polysomnography with extracellular recordings in monkeys is not well 

established. Thus, after consultation with a sleep physician at the University of Texas 

Medical School, Dr. Jeremy Slater, and a polysomnograph technician from Memorial 

Hermann Hospital, Carla Bodden, I designed and created a cap that incorporated EEGs, 

EOGs, and a chin EMG that could be used to determine sleep stages in the monkeys.  

Specifically, 6 mm cast silver, gold-plated, cup electrodes (Grass Technologies) were 

attached to an elastic cap (Figure 3.5) fitted to each monkey over the international standard 

10-20 system of EEG sites corresponding to F3, C3 and O1 according to the AASM Manual 

for scoring human sleep (Berry et al., 2013).  Electrodes were secured to separate straps that 

attached to the cap, positioning electrodes above the right eye and below the left eye to detect 

eye movements.  An electrode located on the mentalis muscle was used to detect muscle 

tone.  One ear clip electrode was placed on each ear lobe (RE, right ear  and LE, left ear) and 

all EEG electrodes were referenced to RE and grounded to LE (Berry et al., 2013).  EOGs 

were referenced to LE and grounded to RE.  Electrodes were applied with Ten20 conductive 

paste.  Recorded data was sampled at 500 Hz for all recording sites.  EEGs and EOGs were 

low-pass filtered online at 150 Hz and EMGs were bandpassed filtered between 10 Hz and 

250 Hz.  Offline EEGs and EOGs were bandpassed filtered between 0.3 and 35 Hz.   
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Extracellular recordings 

Extracellular recordings were recorded using identical procedures for M1 as discussed in 

Chapter 2.  M2 data were recorded using the Cerebus system (Blackrock Microsystems).  

Further, all M2 data were recorded using single contact electrodes.  As before, single units 

were identified and isolated manually offline using Offline Sorter (Plexon).  Single units 

were identified using PCA analysis.  Clusters that were significantly different from the 

background noise were further used in analyses (ANOVA for PC1 and PC2 between noise 

and single unit, p < 0.05).  Cells included in the analysis were those that responded to the 

visual stimulus and had stable firing rates between the task periods.  To identify visually 

responsive cells, I calculated the firing rate for all trials for all cells for the duration of the 

target stimulus (evoked, 300 ms) in Task 1.  I then calculated the firing rate 300 ms before 

fixation onset (baseline) for all trials and cells. Visually responsive cells were those with 

evoked activity significantly greater than the baseline activity (p<0.05, Wilcoxon signed rank 

test).  Additionally, I calculated the evoked activity in Task 2.  Cells that had no significant 

change in firing rate between the task periods were considered stable (p>0.05, paired t-test). 

Results 

Behavioral performance improves after a 20 minute rest 

Behavioral performance was assessed by calculating the percent of correct trials at 

varying orientation differences between target and test for Task 1 and Task 2.   I used 

different orientations for each image and for each monkey based on the monkeys’ 

performance as described previously. However, the same orientations were used for the same 

image for both rest and no rest conditions.  To compare the monkeys’ performances, I 

labeled the orientation differences based on the level of difficulty (LOD) for each monkey 
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(Figure 3.4).  Small target and test orientation differences were harder for the monkeys to 

discriminate and thus given a LOD of 4, while large orientation differences were easier and 

thus were given an LOD of 1.  Both monkeys improved their behavioral performance 

significantly after rest (Figure 3.4, left panels, M1: 11% more correct trials at LOD 2, p < 

0.001; M2: 11% more correct trials at LOD 3, p < 0.01; Wilcoxon signed rank test with 

Bonferroni correction) but not when they did not rest (Figure 3.4 right panels, no 

significantly differences in behavior between Task 1 and Task 2 for either monkey were 

observed, all p > 0.05).   
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Figure 3.4 Behavioral performance improves with rest 

Percent correct performance by orientation difference for monkey 1 (A) and monkey 2 (B) 

during Task 1 (orange) and Task 2 (blue) averaged over rest sessions (left) and no rest 

sessions (right).  FA represents the false alarm rate – the percentage of same trials the 

monkey held the bar when he should have released it.  Low false alarm rates indicate that the 

monkeys were actively performing the task.  Both monkeys improved performance with rest 

but not without rest. Error bars represent S.E.M. and * represents p < 0.01. 

 

Identification of sleep stages in macaque 

To characterize the sleep stages of the monkeys during the 20 minute nap, I designed and 

created a custom polysomnograph cap that employs EEG, EOG and EMG recordings, all 

designed to be similar to those used in humans to stage sleep.  After recording my resting 

state experiments in the M1, in a separate set of experiments (13 sessions) I allowed M1 to 

sleep for 45-60 minutes.  Since this species of macaque has approximately a 56-minute sleep 

cycle, I reasoned that 45-60 minutes would allow me to observe all the stages of sleep.  
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Additionally, I included polysomnography in 16 sessions in M2 during the 20 minutes 

between tasks in both rest and no rest conditions.  One sleep polysomnograph technician 

staged the sleep throughout the recordings in M1 using rules defined for staging humans 

sleep (Figure 3.5B) (Berry et al., 1968).  Figure 3.5C shows an example of the activity 

associated with the transition of the monkey from an epoch scored as awake stage to an 

epoch scored as stage 2 sleep, as defined by the scorer.  Note the decrease of high frequency 

activity in the EEG (F, C, and O) traces and decrease of muscle tone, indicated by decrease in 

activity in EMG recording on the chin.  Analysis of sleep classification of the 12 sessions I 

recorded shows that the monkey was almost exclusively in wake, stage 1, or stage 2 sleep 

during these 45 – 60 minute naps (Figure 3.6A).  The sleep technician did observe REM 

sleep in 5 of the 12 sessions.  Only 2 sessions had any slow-wave sleep (i.e., stages 3 or 4).  

Only one session had both REM and SWS. I assessed the time to the first scorable stage of 

sleep, known as sleep latency.  I found a wide range of sleep latencies (Figure 3.6B, mean 

sleep latency = 7 ± 2.47 min).  Previous reports of daytime naps in macaques found sleep 

latencies ranged from 8.6 to 20 minutes (Daley et al., 2006b).  The average sleep latency in 

this experiment is close to the shorter time period previously reported. This may be because 

the  monkey used in the current experiments was exposed to the experimental paradigm for 3 

months prior to these experiments, and thus was well accustomed to falling asleep during this 

time.   
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Figure 3.5. Polysomnography cap for macaques and sleep scoring 

(A) Sleep cap designed for performing polysomnography recordings during daytime naps in 

monkeys.  Recordings consisted of 3 electroencephalograms (EEGs) over F3, C3 and O1 

locations, electrooculograms (EOGs) above right eye (R) and below left eye (L) and an 

electromyograms (EMG) over the monkeys mentalis muscle on the chin.  Two ear-clip 

electrodes were used as ground and reference electrodes. (B) Example scoring of sleep by 

one polysomnograph technician. (C) Activity from electrodes at red arrow shown in B 

indicate a transition to sleep.  Note the decrease in high frequency activity in EEGs and 

suppression of muscle activity (chin) as the monkey goes to sleep. 
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Figure 3.6. Sleep characterization from visual scoring of polysomnography  

A total of 12 sessions from the polysomnography cap was scored by a polysomnograph 

technician using guidelines for human sleep scoring.  (A) Average percentage of sleep stages 

over the 12 sessions.  (B) Time to first epoch of scorable sleep, known as sleep latency, is 

shown.  Red arrow shows mean sleep onset ± S.E.M. 

 

Discussion 

The goal of this work was to establish an experimental paradigm to elucidate neural 

correlates of perceptual learning improvement following daytime naps.  To compare my 

work to human psychophysical literature, I needed to first test whether monkeys could show 

behavioral improvement in a perceptual learning task after rest.  I trained two monkeys to 

perform a delayed match-to-sample natural image task before and after a 20 minute period 

where they were in a room with lights and monitors off.  Quantification of the amount of 

time monkeys closed their eyes during the Lights Out period revealed that both monkeys had 

their eyes open with only periodic blinking during no rest sessions.  Further, there were a few 

sessions in which the monkeys had their eyes open for the entirety of what was supposed to 

be a rest session. I therefore re-classified sessions into rest and no rest based on the 

percentage of time monkeys closed their eyes during the rest period. Using this classification, 

I observed a significant improvement in behavioral performance for both monkeys with rest. 



 66 

This improvement was not seen in no rest sessions for either monkey.  This is the first report 

demonstrating an improvement in a visual discrimination task after rest in monkeys.  These 

behavioral results are similar to those observed in human nap studies and allow us to search 

for neural correlates underlying this effect.   

To explore the neural correlates of this phenomenon, I implemented polysomnography to 

determine his sleep characteristics during daytime naps.  Previous studies that performed 

polysomnography in nonhuman primates involve implantation of electrodes to determine 

sleep stages (Daley et al., 2006a; Hsieh et al., 2008; Reite et al., 1965; Weitzman et al., 

1965).  Since I was interested in studying the effects of daytime naps on perceptual learning 

and not a night of sleep, implantation of similar electrodes was not desired.  Additionally, 

current polysomnography caps commercially available do not allow for simultaneous 

extracellular recordings.  Thus, for these experiments, I designed a removable cap with EEG, 

EOG and EMG electrodes following rules standardized for humans (Berry et al, 2013).  

Scoring of the polysomnography was performed by one technician at Memorial Hermann 

Hospital trained to score human sleep.  Analysis of the first scoring revealed that the daytime 

naps consist mostly of stages 1 and 2.   

Given the improvement in behavioral performance, improved neural coding at the 

individual and network level in V4 after rest is expected.  The ability to record both sleep 

stages as well as extracellular activity opens up the opportunity to explore whether similar 

improvements in V4 activity can be detected after rest. Many analytical techniques applied to 

electrophysiological data have been optimized to determine the coding capabilities of 

neurons whether by calculating their ability to discriminate stimuli or in the reliability of 

their response.  Separate analyses have been established to investigate these measures in 



 67 

individual neurons as well as populations; however, they have yet to be used to determine 

differences in coding properties of neurons with rest. At the level of individual neurons the 

discriminability of stimuli using concepts adapted from signal detection theory (Green and 

Swets, 1989) can be assessed.  For example, I can calculate the difference in the mean firing 

rate of a single neuron in response to two different stimuli over the variance in the responses; 

this is known as d-prime (d’).  The greater the difference in the mean responses and the 

smaller the variance, the higher the d’ values and the more discriminability a neuron exhibits.   

Another measure adapted from information theory (Shannon, 1948), mutual information, 

uses the same concept—how well neurons exhibit distinct firing rates—but infers this using 

probability.  The basis of the information measurement is entropy, which relates to the 

variability in the response (specifically, the probability of observing each possible response).  

By considering the probability of observing a response for a particular stimulus and the 

variability within that response to each stimulus, I can assess how much information a neuron 

carries about various stimuli. A high probability of observing the same response for the same 

stimulus with low variability will give high information values, and vice versa.   

Intrinsic to all of these discriminability measures is the known fact that neurons do not 

always exhibit the same response to the same stimulus.  This variability in response can be 

measured directly.  A specific example is the coefficient of variation (CV) (Yang and 

Maunsell, 2004). CV is calculated by dividing the standard deviation of the response by the 

mean response (Reinagel et al., 1999).  Thus, the more reliably a neuron responds, the higher 

the CV.  Given the nature of V4 as a feature selection extractor (Roe et al., 2012), 

demonstration of these improvements at the neural level would suggest that V4 is able to 
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modify its activity during rest such that individual neurons and networks are better able to 

encode behaviorally relevant features for the visual discrimination task I presented.   

Because no neuron in the brain exists in isolation, examining population responses to 

stimuli is critical for determining how rest influences neural activity.  This is especially true 

as rest might affect not only single neuron responses but also their responses in context of the 

rest of the population. To this end, measures have been established for studying the capability 

of networks to encode stimulus features, using principles similar to those for individual 

neurons.  In populations, the same questions can be assessed: how efficiently are populations 

exhibiting distinct activity to different stimuli and how variable are the responses?  Another 

way to think about the distinctness of the neural response is to ask how well one can 

determine which stimulus was presented, given the neural response.  Determining the 

distinctness of neural responses to different stimuli can be achieved with a classifier.  For 

example, to predict which test stimulus was presented, given a neural response, one can train 

a classifier with a distribution of stimuli and their measured neural responses from previously 

recorded trials.  The performance of the classifier can be used as a measure to determine how 

unique the responses are to the different stimuli.  The more distinct the responses, the more 

easily the classifier can separate out the responses by stimuli and the better performance it 

will have.   

As with individual neurons, the variability in the population response can be computed.  

The degree of correlated variability is known as noise correlations (Abbott and Dayan, 1999; 

Averbeck and Lee, 2006; Averbeck et al., 2006). Noise correlations are calculated as the 

trial-by-trial correlated variability between two neurons.  Restructuring correlated activity is 

one potential mechanism for how these features are extracted by which V4 could modify its 



 69 

activity following rest.   Since noise correlations can have opposing effects given the 

response properties of the neurons (Abbott and Dayan, 1999; Averbeck and Lee, 2006; 

Averbeck et al., 2006), it will be important to gently tease apart the relationships between 

neural codes and correlations in subsequent analyses.  These analyses coupled with the sleep 

stages of monkeys during naps will provide an unprecedented view of how neural activity is 

modified following naps during perceptual learning. 

Examination of the activity before and after rest is only one characterization that can be 

made from this activity.  It is also possible to look at the extracellular activity during rest to 

search for neural correlates underlying the improvement in behavioral performance.  In the 

next chapter, I will discuss a subset of analyses on the rest period activity.  This work is a 

continuation of the research that I performed in Chapter 2, and the goal is to determine 

whether reactivation of task activity occurs during the 20 minute daytime rest period I 

described in this chapter. 
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“…Most animals have either keen eyes or sensitive eyes: cats have iridescent tapeta 

in their eyes for gathering the palest traces of light; but all that gathered scattery 

light in their eyes, then prevents cats from perceiving fine details.  And hawks detect 

details, but since they do not have tapeta for collecting flickers, they must depend on 

the sun to boom down obvious light for them to see by.  Your blessing is your curse 

and your curse is your blessing.  Because you see details, you cannot see hints of 

light; because you see hints of light, you cannot see details.  You would need diverse 

eyes if you wished to be equally penetrating and sensitive. 

 

You would need to have eyes like the box jellyfish, with its sixteen light-sensitive eyes 

and eight acute cameralike eyes - all twenty-four eyes hanging down on stalks. 

 

However, you would also need a brain. 

 

But maybe that is not possible; maybe, in fact, the brainlessness of the box jellyfish is 

a direct consequence of its tremendous powers of sight.  Perhaps neither the animal 

nor the prophet has been invented who could process so thorough a vision.  It is 

disquieting enough to be hyperacute or hypersensitive; perhaps being both would 

very soon melt your brain and leave you quiescent, hanging transparently in the giant 

dancing green waters of the world.” 

 

-Please Don’t Yell at the Sea Cucumber from “Things that Are” by Amy Leach 2012 
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4. REACTIVATION IN V4 DURING REST 
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Introduction 

My discovery of reactivation in V4 cortical networks during awake states (Chapter 2) led 

me next to ask if reactivation was a general property of V4 networks.  That is, does 

reactivation occur in other circumstances in V4?  The time-locking of the reactivation event 

to the expected onset of the stimulus during blank trials suggested that reactivation in V4 

may be dependent on an external cue.   

To unpack this hypothesis, I first ask what events—external or internal—can trigger 

reactivation events in other regions of the brain.  First, it is clear that external sensory input 

can cue reactivation in hippocampal place cells (Csicsvari et al., 2007; O’Neill et al., 2006).  

These cells respond selectively given the animal’s physical position in space—for example, 

the animal’s location along a linear track.  Reactivation events during awake states are more 

likely to begin with place cells encoding the animals current location then other place cells 

involved in the sequential reactivation (Csicsvari et al., 2007; O’Neill et al., 2006).  To the 

best of my reading, all of the examples of sequential reactivation in the hippocampal 

literature are either triggered by an external stimulus—or are associated with an internally 

generated event, such as sharp-wave ripples (SWRs) produced by the hippocampus (Maier et 

al., 2003).  For example, reactivation events in the hippocampus during sleep are observed 

during or after SWRs (Lee and Wilson, 2002; Louie and Wilson, 2001).  In other studies, 

during slow-wave sleep, SWRs appear to initiate and coordinate reactivation events in the 

hippocampus and primary visual cortex (Ji and Wilson, 2007). During the awake state, SWRs 

are associated with reactivation events in the hippocampus as well (Diba and Buzsáki, 2007; 

Foster and Wilson, 2006; O’Neill et al., 2008).  The exception of this requirement of an 

initiation event is reactivation found in the hippocampus during REM sleep (Louie and 
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Wilson, 2001).  Here, it is not immediately obvious what the trigger might be; however, the 

robust theta oscillations found during this time may be capable of initiating a sequence 

(Buzsaki, 2010).   

In other words, examples of reactivation in the cortex suggest that internal cues are 

capable of initiating reactivation.  For example, a spontaneous rehearsal of a sequence of 

squares causing a wave of electrical activity across visual cortex was observed in an 

anesthetized rat experiment using voltage sensitive dyes (Han et al., 2008).  The wave of 

electrical activity was more likely to occur in the same pattern as the stimulus-evoked 

activity after stimulus presentation.  When a human or animal is anesthetized, the brain 

exhibits slow oscillations between periods of high activity and low activity, commonly 

known as ‘up’ and ‘down’ states (Steriade et al., 1993).  Such oscillatory activity itself, apart 

from internal events such as SWRs, has been proposed as a possible initiator and modulator 

of reactivation activity (Buzsaki, 2010).  Thus, this innate oscillation of activity, especially 

the bursting ‘up’ states, in which cells are highly depolarized and exhibit bursting activity 

(Steriade et al., 1993) during anesthesia, could be the top-down influence that initiates this 

spontaneous reactivation.  

A key question is whether internal initiation events can occur during resting states in 

cortex when SWRs and other obvious initiation events are notably absent.  Reactivation in 

distributed cortical circuits involved in a sequential reaching task was demonstrated in 

monkeys during rest (Hoffman and McNaughton, 2002b).  In this experiment, 12 x 12 arrays 

of electrodes were implanted in posterior parietal cortex (PP), motor cortex (M), 

somatosensory cortex (SS) and dorsal prefrontal cortex (PFC) in 1 monkey.  The monkey had 

a 30-minute rest before and after the task.  They found that cells in these distributed areas 
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showed more correlated activity after the task than before.  Specifically, this was found 

within M, and SS and between PP and M (Hoffman and McNaughton, 2002b).  This suggests 

that neurons in distributed brain continue to have coordinated activity after a task coactivates 

them, even in the absence of an obvious external cue.  The presence of increased correlated 

activity within cortical areas after task exposure suggests that networks may be capable of 

reactivating sequences of task-evoked activity during resting states.  However, this has yet to 

be tested experimentally.   

To determine whether reactivation occurs during quiescent resting states in visual area 

V4, I examined two 20 minute rest periods occurring both before (Rest 1) and after (Rest 2) a 

delayed-match-to-sample task.  Using a template-matching method, I tested whether 

stimulus-evoked activity was reactivated during a rest period after the task while the monkey 

was in a dark, quiet room.  With this analysis, I am able to assess two properties of the neural 

activity that reflect reactivation: the similarity of the reactivation events to the task and the 

percentage of time a reactivation event is observed.  Since reactivation has been shown to 

decay in cortex after stimulus offset (Han et al., 2008; Hoffman and McNaughton, 2002a; Xu 

et al., 2012), I reasoned that Rest 2, which occurs after exposure to the task, should show 

either a greater similarity of sequential activity to the task or a greater percentage of 

reactivation events than Rest 1.   

 

Methods  

Experimental Design 

All experiments were performed in accordance with NIH Guidelines for the Care and Use 

of Animals for Experimental Procedures and the Animal Welfare Committee at the 
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University of Texas Health Science Center at Houston.  Two male rhesus monkeys rested in 

an experimental room with the lights and monitors off and with white background noise for 

20 minutes (Rest 1; Figure 4.1A). During this time, eye closure was monitored using an eye 

tracker (Eyelink II for M1 and Eyelink 1000 desktop mount for M2, SR Research) and 

infrared video monitoring.  The monkeys then performed a delayed match-to-sample natural 

image task (Figure 4.1B).  After the task, monkeys again remained in the room with lights 

and monitors off and white background noise for another 20 minutes (Rest 2).  For task 

specifics, refer to the Visual Orientation Discrimination Task description in Chapter 3.  Note 

that the timing of the task was different for each monkey.  Both had a 400 ms fixation period 

before the target appeared.  However, M1 had 300 ms stimulus presentation separated by a 

1000 ms interstimulus interval (ISI) and M2 had 366 ms stimulus presentation separated by a 

1250 ms ISI. 
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Figure 4.1 Experimental design  

(A) Experimental design. To investigate whether reactivation occurs during periods of 

quiescence, monkeys were placed in a dark, quiet room before (Rest 1) and after (Rest 2) task 

exposure for a 20 minute rest.  (B) Natural image delayed match-to-sample task.  In this task, 

the same natural image was serially presented either at the same orientation or with the test 

image rotated.  The monkeys released or held a response bar to indicate whether the images 

are the same or rotated, respectively.  The degree of rotation between the images was 

adjusted so the task remained difficult for the monkeys. The timing for M1 is shown.  Refer 

to Experimental Design for the timing of the task, as this was different for each monkey. 
 

 

Electrophysiological recordings 

For extracellular recording methods refer to the Electrophysiological Recordings section 

in Chapter 2. The same data described in Chapter 3 was used here.  I recorded a total of 25 

sessions with M1 with 100 cells responsive to visual stimuli and 6 sessions with M2 with 26 

visually responsive cells (see Extracellular recordings in Chapter 3 for details on selection of 

visually responsive cells). 
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Reactivation analysis 

To determine whether previously stimulus-evoked activity was reactivated during the 20 

minute rest period, I used a template-matching method (Louie and Wilson, 2001; Ribeiro et 

al., 2004a; Tatsuno et al., 2006).  This method can be used to assess the similarity between 

the task evoked activity and equivalent chunks of the rest period activity.  To construct the 

template, I averaged the stimulus evoked activity per cell starting from 80 ms after target 

onset and ending 80 ms after test offset for both monkeys in 50 ms bins.  This was the period 

of time in which I observed the start of the evoked response to the target and decrease in 

response to the test.  The timing is consistent with previous reports of V4 response latencies 

(Schmolesky et al., 1998).  The average firing rate for all simultaneously recorded cells made 

up the task template (Figure 4.2C).    An equivalent time window during the rest period 

(chunk) for the same cells starting at the beginning of the time when the monkeys were in the 

dark quiet room was compared to this template (Figure 4.2A rest period activity, C and D are 

examples of rest period activity organized into the same dimensions as the template). The 

template (A) and equivalent rest chunk (B) were M x N matrices:  

   [

          
          
    
          

] ,    [

          
          
    
          

] 

where M represents the number of simultaneously recorded cells and N represents the 

number of bins.  The number of cells per template varied by the number of neurons recorded 

simultaneously per session.  M1 had a 1.65 s template of 33 bins and M2 had a 1.95 s 

template of 39 bins.  The difference in timing between the monkeys had to do with the 

different stimulus presentation times (M1: 300 ms image presentation, 1000 ms ISI; M2: 366 

ms image presentation, 1250 ms ISI) given the differences in monitor refresh rates (M1: 60 
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Hz, M2: 75 Hz).  Values in these matrices were then z-scored across bins for each cell 

separately using the following equations:  
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where  ̅ and  ̅ were the means calculated as:  
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and σ is the standard deviation calculated as:  
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The similarity between the two z-scored response matrices was computed using Pearson 

correlation (CC, see Equation 1 in Chapter 2).  Positive correlations indicate similar activity, 

0 means there is no related activity, and negative correlations indicate the rest activity 

exhibits an opposite pattern from the task activity.  In addition, I calculated the significance 

of the correlation for each template comparison.  This was performed by creating a t-statistic 

by transforming the correlation with n-2 degrees of freedom, where n is the number of cells 

in the template (Cohen et al., 2002).  The confidence level (CL) is set by an asymptotic 

normal distribution: 

           (
    

    
)                                                    (5) 

where CC is the Pearson correlation between the response matrices.  The distribution has an 

approximate variance of:  

 

   
                                                                       (6) 

where n is the number of matrix elements.  This method of significance testing will be 

referred to as the t-statistic method.   
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The template was continuously compared to rest chunks by a sliding window of 50 ms 

(the bin width) for the entire duration of the rest period.  Each time the template was 

compared to the chunk, a correlation and the significance of that correlation was calculated.  

This analysis was performed for the pre-task rest (Rest 1) and post-task rest (Rest 2) periods 

using the same task template.   

For each rest period, the average total positive correlations (PC), the percentage of 

significant reactivations or percent matches (PM, p<0.05), and the average significant 

correlation values (SC, the correlation when p<0.05) were assessed.  Because reactivation 

has been shown to decline with time after stimulus offset (Han et al., 2008; Hoffman and 

McNaughton, 2002a; Xu et al., 2012), the correlation values should be greater in Rest 2 than 

Rest 1.  Alternatively, more significant matches should occur in Rest 2 compared with Rest 1 

if reactivation occurred during this time.  Several variations on this calculation, described 

below, were performed to test whether reactivation occurs in V4 during extended, quiescent 

awake periods. 

Results 

Reactivation during rest  

I used multi-unit extracellular recordings in macaque V4 to determine whether a 

reactivation of the stimulus-evoked response occurred during a 20 minute rest after task 

exposure.  During the 20 minute rest, lights and monitors were turned off in the experimental 

room and white background noise was played.  Monkeys were observed to close their eyes 

for various amounts of time throughout this period (Figure 3.2).  An example of the neuronal 

activity during both rest sessions is depicted in Figure 4.2A.  The task template (Figure 4.2B) 

captured the responses of all neurons to the stimulus, and differences between cells in the 
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interstimulus interval activity.  Examples of the template-matching method ‘matches’ (Figure 

4.2C) and ‘non-matches’ (Figure 4.2D) illustrates this method detects rest activity visually 

similar to the template. 

 

Figure 4.2 Examples of rest period activity and templates 

A template matching procedure was used to determine whether reactivation occurred after 

task exposure during rest.  (A) The responses of representative neurons across Rest 1 and 

Rest 2. (B) The template was created by combining averaged and z-scored activity from each 

cell during the task period stimulus presentation in to a matrix of responses.  An equivalent 

window of time was compared during rest periods and a correlation was calculated.  The 

template was moved across the rest period in a sliding window by one bin at a time.  The 

significance of the correlation was calculated at each comparison  A p-value of less than 0.05 

was considered a match (C).  A p-value greater than 0.05 was considered a non-match (D). 

 

 

The important comparison to determine whether reactivation occurs during this time is 

that there is more similarity between rest activity and templates (higher positive correlations 

PC or significant correlations, SC) or a significantly greater percentage of reactivation events 
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(percent matches, PM) in Rest 2 compared to Rest 1.  Here, matches were considered 

significant using the t-statistic method to generate the p-value.  The results from the shuffling 

method will be discussed next. 

A significant difference in positive correlations (PC), significant correlations (SC), or 

percent matches (PM) was not observed between Rest 1 and Rest 2 in either monkey (Figure 

4.3 A-C).  No significant difference in total positive correlations (M1: PCR1 = 0.10, PCR2 = 

0.10, n = 10, p > 0.05; M2: PCR1 = 0.09, PCR2 = 0.09, n = 6, p > 0.05, Wilcoxon signed 

rank), percent template matches (M1: PMR1 = 6.78%, PMR2 = 8.57%, p > 0.05; M2: PMR1 = 

7.85%, PMR2 = 8.43%, p > 0.05), nor significant positive correlations (M1: SCR1 = 0.23, 

SCR2 = 0.24, p > 0.05; M2: SCR1 = 0.21, SCR2 = 0.21, p > 0.05).  I also tested the hypothesis 

that reactivation may occur at the individual cell level, which would be demonstrated by 

increases in the same measures in Rest 2 compared to Rest 1 in individual cells.  I did not 

find a significant increase in any of the measures in Rest 2 compared to Rest 1 (Figure 4.3 D-

F).  This was true for total positive correlations (M1: PCR1 = 0.17, PCR2 = 0.17, n = 91, p > 

0.05; M2: PCR1 = 0.17, PCR2 = 0.17, n = 30, p > 0.05), percent matches (M1: PMR1 = 4.83%, 

PMR2 = 4.98%, p > 0.05; M2: PMR1 = 6.33%, PMR2 = 6.03%, p > 0.05), and significant 

positive correlations (M1: SCR1 = 0.45, SCR2 = 0.45, p > 0.05; M2: SCR1 = 0.42, SCR2 = 

0.41, p > 0.05). 
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Figure 4.3. Reactivation template-matching analysis using z-score normalization yields 

no significant difference in reactivation between Rest 1 and Rest 2   

A template matching procedure was used to determine if reactivation occurred in populations 

of simultaneously recorded cells or individual neurons during a rest period following the 

task.  If reactivation occurred, then a higher average positive correlation, more significant 

reactivation events, matches, or higher significant positive correlations between the template 

and rest activity should occur following task exposure.  I did not observe a higher overall 

positive correlation (A), greater percentage of matches (B), or higher significant correlations 

(C) in Rest 2 compared to Rest 1.  The same analysis was performed on individual neurons 

testing the same hypothesis.  Higher positive correlations (D), a greater number of matches 

(E), nor higher significant correlations were observed.  Results for M1 are shown in blue and 

for M2 in red.  All comparisons of Rest 1 to Rest 2 were not significant with all p > 0.05. 

 

Normalizing firing rates to zero mean with unit variance using z-scoring does not 

maintain the differences in firing rates between cells.  Thus, the correlation between z-scored 

neural responses only captures the firing rate fluctuations in response to the stimulus.  

Perhaps differences in mean firing rates between cells are important for accurately capturing 

reactivation. To that end, I investigated whether an alternative normalization method would 

cause differences in my reactivation estimates.  Thus, I examined the correlation after 
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normalizing responses by dividing individual cells by their root mean squared (RMS) firing 

rates (Louie and Wilson, 2001; Ribeiro et al., 2004b) using the following equation:   
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                               (7) 

As previously defined, M is the number of simultaneously recorded cells and N is the number 

of bins in response matrices for the task template, A, and equivalent chunk of time during 

rest, B.  I tested whether there are significantly greater positive or significant correlations or 

greater percent template matches at the same timescale as the evoked activity in Rest 2 

compared with Rest 1. 

In this analysis, no significant difference between Rest 1 and Rest 2 was observed (Figure 

4.4 A-C) in total positive correlations (M1: PCR1 = 0.10, PCR2 = 0.10, n = 10 p > 0.05; M2: , 

PCR1 = 0.09, PCR2 = 0.09, n = 6, p > 0.05, Wilcoxon signed rank test), percent template 

matches (M1: PMR1 = 7.02%, PMR2 = 9.08%, p > 0.05; M2: PMR1 = 7.40%, PMR2 = 8.53%, 

p > 0.05), nor significant positive correlations (M1: SCR1 = 0.24, SCR2 = 0.24, p > 0.05; M2: 

SCR1 = 0.21, SCR2 = 0.21, p > 0.05).  I also tested whether this occurred in individual cells 

and again did not observed a significant difference between Rest 1 and Rest2 (Figure 4.4 D-

F) in average positive correlations (M1: PCR1 = 0.17, PCR2 = 0.17, n = 91, p > 0.05; M2: 

PCR1 = 0.17, PCR2 = 0.17, n = 30, p > 0.05), percent template matches (M1: PMR1 = 4.85%, 

PMR2 = 4.97%, p > 0.05; M2: PMR1 = 6.33%, PMR2 = 6.03%, p > 0.05), and average 

significant positive correlations (M1: SCR1 = 0.45, SCR2 = 0.45, p > 0.05; M2: SCR1 = 0.42, 

SCR2 = 0.41, p > 0.05). 
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Figure 4.4. Template-matching analysis using root-mean-square normalization does not 

show evidence for increased reactivation during rest 

Normalizing the data using z-scores does not preserve the firing rate differences between 

cells which may be important for reactivation analyses.  Thus, values were normalized by 

dividing each cell by its root-mean-square (RMS) prior to the correlation computation.  The 

total positive correlations, percent matches, and significant correlations were computed.  No 

difference was observed in these measures between Rest 1 and Rest2. Specifically, no 

difference in populations in positive correlations (A), percent matches (B), or greater 

significant correlations (C) were observed.  The RMS method was also used to test whether 

individual cells exhibited reactivation. No significant effects in any of these measures (D-F) 

were observed.  All comparisons were not significant, all p > 0.05. 

 

 

Because the reactivation analysis does not differ significantly between the z-score 

normalization method and RMS-method, I can conclude that maintaining the firing rate 

differences between cells does not influence correlations.  The z-score method was used to 

test further possibilities of how reactivation may be occur in V4 to make results more 

consistent with those in Chapter 2.   
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Temporal dynamics of extended reactivation after stimulus offset  

Previous reports have found that reactivation decays within an hour after exposure in the 

hippocampus (Kudrimoti et al., 1999; Pennartz et al., 2004) and visual areas (Han et al., 

2008; Xu et al., 2012).  A decay within as little as 10 minutes in cortical networks has also 

been reported (Hoffman and McNaughton, 2002a).  Thus, by examining the entire rest 

period, it is possible that differences between Rest 1 and Rest 2 were not observed because 

time after the reactivation had already decayed was included in the analysis.  To determine if 

this was true, the hypothesis that the correlation values decayed with time from task offset in 

Rest 2 was tested.  Additionally, whether smaller percentage of matches were observed with 

increasing time from the task was tested.  For comparison the same decay analysis was 

performed on Rest 1. 

To test if there was a significant change in the correlations with time the total number of 

comparisons across 15 minutes of rest activity (18000 comparisons) were averaged in to 1 

min bins (1200 comparisons per bin, 15 bins total).  The average correlation was then 

calculated across all sessions.  A regression between the average correlation vector and time 

(1 through 15 minutes) was performed for both Rest 1 and Rest 2 separately (Figure 4.5A).  

A significant negative correlation in Rest 2 would represent decay in reactivation following 

task offset.  No significant correlation (CD) was observed for either monkey in either rest 

conditions (M1: CDCCR1 = -0.07, p > 0.05, CDCCR2 = -0.23, p > 0.05; M2: CDCCR1 = -0.0442, 

p > 0.05, CDCCR2 = -0.24, p > 0.05).  Additionally, another way in which reactivation may 

decay is in the frequency of reactivation of events.  To test this, the percentage of matches 

(positive correlations with p-values < 0.05) were computed across all comparisons starting 

from task offset to 15 minutes post task in 1 minute bins (1200 comparisons per bin, 15 bins 
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total; Figure 4.5B).  A regression between the vector of percent matches was then correlated 

with time for each rest period individually to determine whether decay occurred.  A 

significant negative correlation in Rest 2 would mean there was less frequent reactivation 

events with increasing time from stimulus offset. No significant correlation was observed 

between the percent matches and time for M1 (CDPMR1 = 0.0007, p > 0.05, CDPMR2 = 0.0003, 

p > 0.05).  However, a significant increase in percent matches was observed for M2 for both 

rest periods (CDPMR1 = 0.38, p < 0.05, CDPMR2 = 0.37, p < 0.05).  Both of these results 

demonstrate that the temporal proximity to stimulus offset does not decrease the likelihood of 

reactivation.  

 

 

Figure 4.5. Temporal dynamics of reactivation after stimulus exposure 

The possibility that reactivation was not found because it declined after stimulus offset was 

explored. (A) The Pearson correlation from the first comparison after from task offset to 15 

minutes post task was averaged across all sessions for the Rest 2 period.     (B) Additionally, 

the percentage of matches across all recorded sessions was calculated for the same 

comparisons in this time window.  If either of these measures showed a significant negative 

trend with time, it means that reactivation declines after task offset.  No decay in either 

measure was observed.  A significant increase in the percentage of matches was observed in 

M2. 
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Since a significant increased frequency of percent matches was observed in M2, I further 

tested whether proximity to the task affected whether or not I observed reactivation.  To this 

end, the first 10 minutes of Rest 1 was compared to the first 10 minutes of Rest 2. No 

difference between the first 10 minutes of each rest period in total positive correlations (M1: 

PCR1 = 0.11, PCR2 = 0.10,  n = 9, p > 0.05; M2: PCR1 = 0.09, PCR2 = 0.08, n = 6, p > 0.05, 

Wilcoxon signed rank), number of significant reactivation events (M1: PMR1 = 10.14%, 

PMR2 = 9.16%, p > 0.05; M2: PMR1 = 7.67%, PMR2 = 8.49%, p > 0.05), or differences in the 

significant correlations (M1: SCR1 = 0.24, SCR2 = 0.24, p > 0.05; M2: SCR1 = 0.20, SCR2 = 

0.20, p > 0.05) was observed.   For comparison, the second 10 minutes of Rest 1 was 

compared to the first 10 minutes of Rest 2. There was also no significant difference observed 

between the rest periods.  Specifically, no significant differences in total positive correlations 

(M1: PCR1 = 0.11, PCR2 = 0.10, n = 9, p > 0.05; M2: PCR1 = 0.09, PCR2 = 0.08, n = 6,  p > 

0.05), number of significant reactivation events (M1: PMR1 = 9.69%, PMR2 = 9.16%, p > 

0.05; M2: PMR1 = 9.88%, PMR2 = 8.49%, p > 0.05), or differences in the significant 

correlations (M1: SCR1 = 0.24, SCR2 = 0.24, p > 0.05; M2: SCR1 = 0.21, SCR2 = 0.20, p > 

0.05) were observed.    
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Figure 4.6 Reactivation during the first and second half of rest 
To determine whether reactivation occurred within the first 10 minutes of Rest 2, the first 10 min of 

Rest 1 was compared using the template matching method measures (positive correlations, percent 

matches, and significant correlations) to the first 10 minutes of Rest 2 (A-C).  For comparison, the 

second half of Rest 1 was compared to the first half of Rest 2 (D-F).  Results are shown for M1 (blue) 

and M2 (red) separately.  All comparisons were not significant, p > 0.05. 

 

Reactivation and eye closure 

Although previous work in the hippocampus has found reactivation during periods of 

awake, quiescent, immobility (Carr et al., 2011; Foster and Wilson, 2006; Karlsson and 

Frank, 2009; Louie and Wilson, 2001; Pavlides and Winson, 1989) and during running 

(Cheng and Frank, 2008; O’Neill et al., 2006), I reasoned that perhaps the ongoing demands 

of the visual system while the eyes are open (Barry et al., 2007) may inhibit reactivation from 

occurring.  Previous work using fMRI in humans has shown that distinct areas are active 

during rest in a dark room when eyes are open or closed (Marx et al., 2003, 2004).  

Specifically, while the eyes were open, they found that areas involved in attention and eye 

movements were active such as the right precentral gyrus extending to the middle frontal 
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gyrus, in cerebellar structures, and bilaterally in the oribitofrontal cortex (Marx et al., 2003, 

2004).   When the eyes were closed, sensory cortices (visual, somatosensory, vestibular, and 

auditory) were active when eyes were closed (Marx et al., 2003, 2004).  Specific activations 

were found in the inferior, middle and superior occipital gyri, the fusiform gyri, and the 

lingual gyri (Marx et al., 2003, 2004).  They suggest that the activation of sensory cortices 

during eye closure represents an internally directed (“interoceptive”) state compared to an 

externally directed (“exteroceptive”) state when eyes are open (Marx et al., 2003, 2004).  .   

Thus, I tested whether significant correlations or percent matches changed when the 

monkeys had their eyes opened or closed.  This analysis was only performed for M1 as the 

majority of sessions were recorded in this animal and I was unable to determine accurate eye 

closure for M2.  No difference in the percentage of time the monkey had his eyes closed 

between Rest 1 and Rest 2 was observed (R1: 16 ± 4 %, R2: 17 ± 3%, p > 0.05, Table 4.1).  

Further, there was no difference in the average amount of time the monkey closed his eyes 

during these two rest periods (R1: 1.29 ± 0.27 s, R2: 1.47 ± 0.25 s, p > 0.05, Table 4.1).    

Additionally, there was no significant difference between Rest 1 and Rest 2 (Figure 4.7), 

or a significant difference when the monkey had his eyes open or closed.  Specifically, there 

was no difference between rest periods in total positive correlations (Closed: PCR1 = 0.11, 

PCR2 = 0.11, n = 8, p > 0.05; Open: PCR1 = 0.12, PCR2 = 0.10, p > 0.05), number of 

significant reactivation events (Closed: PMR1 = 8.85%, PMR2 = 9.97%, p > 0.05; Open: PMR1 

= 10.9%, PMR2 = 9.07%, p > 0.05), or differences in the significant correlations (Closed: 

SCR1 = 0.24, SCR2 = 0.25, p > 0.05; Open: SCR1 = 0.26, SCR2 = 0.25, p > 0.05).   Individual 

cells do not exhibit any significant differences between Rest 1 and Rest 2.  There are no 

significant differences in total positive correlations (Closed: PCR1 = 0.17, PCR2 = 0.17, n = 
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81, p > 0.05; Open: PCR1 = 0.17, PCR2 = 0.17, p > 0.05), number of significant reactivation 

events (Closed: PMR1 = 5.20%, PMR2 = 5.15%, p > 0.05; Open: PMR1 = 5.49%, PMR2 = 

4.91%, p > 0.05), or differences in the significant correlations (Closed: SCR1 = 0.46, SCR2 = 

0.45, p > 0.05; Open: SCR1 = 0.45, SCR2 = 0.45, p > 0.05).    

 

 
Table 4.1. Eye closure during rest  

The amount of time the monkey had his eyes closed during each period of rest was evaluated 

by the average duration of time he closed his eyes during Rest 1 and Rest 2 and the 

percentage of the total time he closed his eyes while in the room with the lights off.  These 

results are for M1 only.   
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Figure 4.7 Reactivation does not depend on eye closure 

I explored whether I did not find reactivation because it might only occur when the animal 

had his eyes closed, as this may represent a more rested state in visual cortex.  I examined 

whether the overall positive correlations, percentage of matches, or significant correlations 

were greater in Rest 2 compared to Rest 1 when the monkey had his eyes open or closed.  

There is no significant increase in Rest 2 at the population level (A-C), nor a significant 

difference in these measures when the monkey had his eyes open or closed.  

 

 

Examining compressed and expanded reactivation 

Previous work in the hippocampus and early visual cortex (V1) has demonstrated that 

reactivation occurs at a compressed timescale, roughly twice the speed of the original 

experience, from the original experience during subsequent sleep (Ji and Wilson, 2007).  I 

explored whether this was true in my data by altering the bin size of the rest period templates 

I was comparing to the task template.  As an example, I explored whether reactivation 

occurred at twice the speed of the original experience by keeping the template bin size at 50 

ms and comparing the template to 25 ms bins during the rest experience. Note that this does 

not alter the number of bins I am selecting for each comparison, only the size of the bin for 

the rest period.  Using this analysis, I did not find any evidence of reactivation in the total 
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positive correlations (M1: PCR1 = 0.11, PCR2 = 0.11, n = 8, p > 0.05; M2: PCR1 = 0.11, PCR2 

= 0.09, n = 5, p > 0.05), number of significant reactivation events (M1: PMR1 = 4.74%, PMR2 

= 7.63%, p > 0.05; M2: PMR1 = 7.13%, PMR2 = 7.17%, p > 0.05), or differences in the 

significant correlations (M1: SCR1 = 0.26, SCR2 = 0.26, p > 0.05; M2: SCR1 = 0.26, SCR2 = 

0.21 , p > 0.05).  As in previous analyses I also compared individual cells using the same 

measure and again did not find any significant differences between Rest 1 and Rest 2 in total 

positive correlations (M1: PCR1 = 0.17, PCR2 = 0.17, n = 90 p > 0.05; M2: PCR1 = 0.17, PCR2 

= 0.17, n = 30, p > 0.05), number of significant reactivations (M1: PMR1 = 4.41%, PMR2 = 

4.53%, p > 0.05; M2: PMR1 = 6.28%, PMR2 = 5.88%, p > 0.05), nor differences in significant 

correlations (M1: SCR1 = 0.46, SCR2 = 0.45, p > 0.05; M2: SCR1 = 0.42, SCR2 = 0.41 , p > 

0.05). 
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Figure 4.8. Reactivation does not occur at a compressed timescale from original sensory 

experience 

Previous evidence examining reactivation in visual cortex found that it occurred at twice the 

speed of original sensory evoked activity.  Using my template matching procedure I explored 

whether this was the case.  I binned rest period activity using half the bin size compared to 

the task template.  My assumptions were that I would find a greater number of matches or 

significant correlations in Rest 2 compared to Rest 1.  I did not find reactivation at a faster 

rate than stimulus presentation in populations (A-C) nor individual cells (D – F). 

 

Studies of reactivation during REM sleep has found it at an expanded timescale from the 

original experience – specifically at twice the experienced time (Louie and Wilson, 2001).  I 

explored whether reactivation occurred at half the speed of the original experience by 

keeping the template bin size at 50 ms and comparing the template to 100 ms bins during the 

rest experience. Using this analysis, I did not find any evidence of reactivation in the total 

positive correlations (M1: PCR1 = 0.10, PCR2 = 0.10, n = 15, p > 0.05; M2: PCR1 = 0.08, 

PCR2 = 0.09, n = 6, p > 0.05), number of significant reactivation events (M1: PMR1 = 7.10%, 

PMR2 = 8.04%, p > 0.05; M2: PMR1 = 7.27%, PMR2 = 8.15%, p > 0.05), or differences in the 

significant correlations (M1: SCR1 = 0.23, SCR2 = 0.24, p > 0.05; M2: SCR1 =0.20, SCR2 = 
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0.20, p > 0.05).   Individual cells do not exhibit any evidence in reactivation.  There are no 

significant differences in total positive correlations (M1: PCR1 = 0.17, PCR2 = 0.17, n = 94, p 

> 0.05; M2: PCR1 = 0.16, PCR2 = 0.16, n = 30, p > 0.05), number of significant reactivation 

events (M1: PMR1 = 4.75%, PMR2 = 4.94%, p > 0.05; M2: PMR1 = 5.76%, PMR2 = 5.79%, p 

> 0.05), or differences in the significant correlations (M1: SCR1 = 0.45, SCR2 = 0.45, p > 

0.05; M2: SCR1 = 0.41, SCR2 = 0.41, p > 0.05).    

 

 

Figure 4.9. Reactivation does not occur at an expanded timescale from original sensory 

experience 

I tested the alternate hypothesis that perhaps reactivation occurred at an expanded timescale 

than the sensory experience, specifically half the speed.  To this end, I used my template 

matching method with rest bins twice the size of those used for the template.  I did not find 

any evidence of reactivation at the population (A-C) or individual cell (D-F) level.   

 

 

 

Note there is a slight difference in the number of sessions and number of cells that are used 

for each of these calculations.  This is because increasing or decreasing the size of the bin 

either increases or decreases the probability of finding a significant number of spikes in the 
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rest window I am exploring.  If the window size is cut in half, as in my compressed analysis, 

then I am less likely to pass the threshold of the minimum number of spikes I set per 

correlation comparison compared to the normal timescale comparison.  This caused me to 

lose 3 sessions and 1 cell between the two monkeys for not having enough significant 

comparisons throughout the rest period to be considered in my overall analysis comparing 

the two rest periods. As a reminder, I only considered sessions that had 60% or greater 

comparisons out of the total number of comparisons.  By this same reasoning, when I 

expanded the bin size during the rest period to twice that used in the same timescale I 

experienced the opposite issue where more comparisons passed my 6-spike minimum 

threshold and thus 6 more sessions were included and 6 more cells between the two 

monkeys.  In a separate analysis, I selected only sessions that were present in all of these 

conditions and made the same comparisons (data not shown); however, no significant 

differences in total positive correlations, percent matches or significant correlations were 

observed between Rest 1 and Rest 2 were observed.  Thus, I did not find evidence of 

reactivation in V4 during 20 minute rest periods when the monkeys were in a dark, quiet 

room. 

Discussion 

Whether reactivation of stimulus evoked activity during a delayed match-to-sample task 

was reactivated in V4 cortical networks during a rest period following task exposure was 

tested.  Specifically, I wanted to test whether the sequential activity found in a rest period 

following the task more closely resembled the activity that occurred during the task than a 

rest period preceding it.  A template-matching method was utilized to compare the task 

evoked activity to the rest period activity.  Three different measures were used to test 
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whether reactivation occurred.  These measures would reveal whether Rest 2 activity was 

more similar to the task evoked activity (positive correlations [PC] or significant correlations 

[SC]) than Rest 1, or that a reactivation of task evoked activity occurred more frequently 

(percent matches[PM]) in Rest 2.  Significantly greater values in Rest 2 compared to Rest 1 

in any of these measures, would suggest that reactivation occurred in Rest 2.    

Several variations comparing task template activity to rest did not reveal significantly 

greater similarity in any of these measures between Rest 1 and Rest 2.  These include testing 

for reactivation at multiple timescales and testing whether reactivation depends on eye 

closure.  Thus I conclude that reactivation of previously evoked sequential activity does not 

occur in V4 circuits during a 20 minute period of rest following a task.  

It is possible that reactivation only occurs during particular brain states in visual cortex 

such as during slow-wave or rapid eye movement (REM) sleep when the brain is sufficient 

removed from processing sensory stimuli.  Some preliminary evidence I recorded in a 

separate experiment indicated that the monkeys only entered Stage 1 and 2 during this 20 

minute nap.  To my knowledge, there has not been a demonstration of reactivation during 

early stages of sleep. 

Interestingly, a decay in reactivation was not observed with time as was previously 

reported during rest in areas involved in a sequential motor task (Hoffman and McNaughton, 

2002a).  This study did not specifically test for reactivated sequences, only whether cells 

exhibited more correlated activity during rest following task exposure.  Thus, it is possible 

that reactivation may exist in V4 in the sense that cells exhibit more correlated activity after 

stimulus presentation.  This would mean that the network was primed for sensory 
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reactivation from task exposure, but lacked the capacity to exhibit sequential reactivation.  A 

separate analysis replicating their analyses would have to be performed to determine this.   

Reactivation can occur due to the activation of cells within a time window that enables 

spike-timing dependent plasticity (STDP).  During this window synaptic changes occur that 

sequentially link neurons that participate in the same sensory event (Bi and Poo, 1999; Hebb, 

1949).  This process can modify the synaptic weights between neurons and enable the 

formation of a ‘cellular ensemble’ capable of reactivating a sequential response (Hebb, 

1949).  One difference between this experiment and that described in Chapter 2 is the 

stimulus presentation.  In Chapter 2, patches of an image covering approximately a quarter of 

the receptive field were presented in a random spatiotemporal sequence.  In the present 

experiment, one large image was presented over all the receptive fields twice.  These 

different presentations may lead cells to fire in a sequential pattern in the first experiment and 

not in the second.  Thus, the reactivation in the first experiment is due to the temporal 

sequence of neurons, where the second requires that a population of neurons exhibit the same 

activity with time.  This second possibility may be more difficult or impossible for 

populations to exhibit. 

Another key difference in the experimental design from the experiment I performed in 

chapter 2 is that I did not provide a cue to ‘trigger’ the reactivation sequence.  Results found 

in chapter 2 demonstrated that the reactivation only occurred at the time that the stimulus was 

expected to occur after the onset of the fixation.  If reactivation is a general property of 

awake V4 neural circuits, then sufficient internal events would be needed to initiate the 

reactivated sequential activity I reported in Chapter 2 when the cue is absent.  Previous work 

that has observed reactivation in visual cortex during awake state (Xu et al., 2012) and 
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anesthetized state (Han et al., 2008; Yao et al., 2007) demonstrated that a cue was required to 

initiate the sequence. Evidence of reactivation during slow-wave sleep in visual cortex area 

V1 showed that the reactivation followed a sharp-wave ripple (SWR) event in the 

hippocampus (Ji and Wilson, 2007).  Because it is possible that V4 may show reactivation 

during slow-wave sleep when SWRs are more likely to occur, this difference in reactivation 

suggests there may be two distinct types of reactivation.  

I will categorize two distinct types of reactivation based on what initiates their sequence: 

bottom-up or top-down mechanisms.  A top-down mechanism is one that is driven by 

internal events.  Bottom-down influences are externally driven and arise from activity as it is 

processed from the external world up the layers of processing hierarchy.  Both of these could 

have different functional roles and provide different mechanisms by which the brain utilizes 

reactivation for sensory processing.  A bottom-up, externally driven mechanism of 

reactivation, similar to that observed during the awake state, could enable more reliable 

responses for behaviorally relevant events.  A top-down, internally driven mechanism of 

reactivation, like those observed during slow-wave sleep, would allow coordination of 

multiple brain structures in order to synchronize and encode a sensory experience across 

networks. These two potential drivers of rehearsal and their relevance to how the brain 

receives and processes sensory information will be addressed in more detail in the next 

chapter. 
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5. GENERAL DISCUSSION 
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Development of simultaneous sleep classification and extracellular recordings in 

macaques 

I designed and implemented an experimental paradigm to perform concurrent sleep 

classification and extracellular recordings.  This involved a two-step process: one to 

determine if monkeys could show improvement in a perceptual learning task following a 

daytime rest, and two to integrate polysomnography into an extracellular recording setup.  I 

initially wanted to determine whether monkeys showed improvement in a behavioral task 

following a 20 minute daytime nap.  My resting state experiment included the first 

demonstration of improved behavioral performance in monkeys following a quiet rest in a 

dark room.  Investigation of the underlying neural mechanisms that are important to the 

behavioral improvement observed following rest is underway and will be discussed in the 

Future  section.   

Examining reactivation in visual area V4 

During the course of a day, our brains fluctuate between states of active processing of the 

sensory environment and quiescent, resting states.  Given that the brain remains active during 

these quiescent times, raises the question: how might this activity impact subsequent neural 

coding?  One possibility is that the brain rehearses previous experiences, as demonstrated, for 

example, by the sequential reactivation of cell ensembles that were activated during the 

initial sensory experience.  Several examples of this have been found in the hippocampus 

during sleep (Lee and Wilson, 2002; Louie and Wilson, 2001; Skaggs and McNaughton, 

1996; Wilson and McNaughton, 1994) and awake states (Carr et al., 2011; Davidson et al., 

2009; Diba and Buzsáki, 2007; Foster and Wilson, 2006).  Further, evidence of rehearsal in 

the early visual cortex (V1) has been found during anesthetized (Han et al., 2008; Xu et al., 



 101 

2012; Yao et al., 2007), sleep (Ji and Wilson, 2007), and awake states (Xu et al., 2012).  

However, several questions remain open about this rehearsal in cortical sites.  Further, the 

capability of the brain to initiate reactivation versus requiring external signals to drive it 

affects the interpretation for the usefulness of this rehearsal. Finally, discovery and 

characterization of this phenomenon in an area responsible for perceptual learning, such as 

V4, has important implications for how the brain learns and stores information passively 

about the sensory environment.   

My work is the first demonstration and characterization of reactivation in visual cortical 

area V4.  Through this investigation, I have demonstrated several properties about rehearsal 

in V4.  First reactivation in V4 observed during cued awake states is stimulus-specific, 

occurs in the forward direction, and is also observed in the local field potential activity.  It 

does not occur spontaneously after stimulus exposure during quiescent awake states.  Instead, 

it appears to require an external cue to trigger the sequence.   The cue requirement suggests 

that during quiescent, resting states V4 does not receive sufficient internally generated 

signals to cause networks to reactivate.  This does not mean that top-down mechanisms do 

not play a role.  These areas involved in the sensory experience may require an external cue 

to initiate their effects on V4.  This finding may in fact generalize to all cortical areas as this 

was the first attempt to find reactivation of sequential activity in an extended resting state 

without environmental cues, not during sleep, nor during a period of time without obvious 

initiation events such as SWRs (Carr et al., 2011; Davidson et al., 2009; Foster and Wilson, 

2006).  Thus, my results in Chapter 4 suggest that the reactivation I observed in Chapter 2 

requires an external event to initiate the sequence and coordinate the reactivation.  Further, 

V4 and possibly other cortical sites appear to require a deeper level of removal from the 
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external stimuli (for example, a stage like slow-wave sleep) to receive sufficient internally 

generated signals that have the capacity to initiate sequential rehearsal.  A future 

investigation of reactivation in V4 during slow-wave sleep would need to be performed to 

verify these claims. 

The divergence in network capabilities during the awake and sleep state to initiate 

reactivation opens up a much bigger picture about processes in the brain.  Specifically, 

control of how reactivation occurs during these two states represents the primary goals of the 

brain during these times.  Indeed, the two potential mechanisms by which reactivation is 

driven - external and internal - may serve two distinct purposes within neural circuits.  For 

instance, these two mechanisms of driving reactivation may be the way in which the brain 

solves the stability-plasticity dilemma (Diekelmann and Born, 2010; Diekelmann et al., 

2011).  The stability-plasticity dilemma highlights the mystery that the brain can encode new 

sensory information without altering previously consolidated experiences.  Integration of 

these two possible driving mechanisms (internal and external) with the two-stage model of 

memory consolidation (Diekelmann and Born, 2010) may help provide a mechanism of how 

the brain overcomes this issue.  The two-stage model of memory consolidation proposes that 

there are two modes of storage within the brain, the first being temporary memory storage 

which can acquire knowledge quickly using temporary, local network changes, and the 

second being stable, long-term memory storage that involves coordination of diffuse brain 

networks spanning several areas (Diekelmann and Born, 2010).  This means that local 

reactivation of experienced activity requires external cues to initiate the sequence.  The cue 

requisite ensures that circuits are only reactivated for behaviorally relevant stimuli or salient 

stimuli.  This is a possible mechanism by which the brain can filter information so as to avoid 
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overload by irrelevant sensory information.  It can instead selectively rehearse items in the 

sensory environment grounded to relevant cues.  Networks can then strengthen synapses 

locally between neurons encoding the sensory event.  If this is the case, it follows that the 

brain does not rehearse everything it sees.  Instead, it grounds importance to things in the 

environment that have meaning.  The fixation point is something in my experimental 

paradigm that has meaning to the monkeys.  It indicates to them that a stimulus is about to be 

presented on the computer monitor.  Attention to this area is important for them as it signals 

upcoming rewards.  The fixation point thus becomes a behaviorally relevant stimulus.  Local, 

temporary stores of this information can be useful to create more accurate responses to 

external stimuli and strengthen networks involved in encoding relevant information. 

Networks coactivated during sensory experience during awake states can be 

simultaneously stimulated with internal events during rest to cause more diffuse rehearsal 

during offline periods in distributed cortical sites.  During deep sleep, when external 

distractors are removed, internal signals can be generated, sent, and received across several 

areas.  Then, multiple areas that are remotely rehearsed during the day can be reactivated 

together at night.  The spontaneous waves of activity that sweep across cortex during slow 

wave sleep can activate and deactivate ensembles, enabling the redistribution and re-

organization of memories stored throughout the brain (Buzsaki, 2010, 2011; Diekelmann and 

Born, 2010).  During SWS, ripples can coordinate reactivation in several areas as previously 

demonstrated in the hippocampus and visual cortex (Ji and Wilson, 2007).  This intuitively 

makes sense that the awake state is not the right time for this to occur when the brain needs 

to either be actively engaged in its sensory environment or making only small modulations in 

preparation to engage.  The 20 minutes I allowed the monkey to rest might not have been 
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enough time to allow the brain to generate these internal signals and reach a state where more 

diffuse areas could communicate with one another. 

 

Future directions 

Significant improvement in behavior with rest suggests that the experimental paradigm I 

developed has promise to reveal neural characteristics of this improvement.  I here propose 

several analyses that can reveal the properties of the neural activity that are affected by rest 

and are important for identifying behaviorally relevant features of the stimuli.  As I stated in 

the introduction, V4 has several properties that make this an interesting area to search for 

neural correlates of behavioral performance improvement following rest.  The activity in V4 

is strongly influenced by higher cognitive functions, such as attention (Desimone, 1998; 

Moran and Desimone, 1985; Zhou and Desimone, 2011).  Additionally, the function of V4 is 

summarized as a ‘context feature extractor’ (Roe et al., 2012).  These properties as well as 

the heterogeneity of responses within V4 identify it as an area capable of modulating the 

flow of visual information to select behaviorally salient features for subsequent processing.   

I suggest two possible mechanisms by which neurons could exhibit greater selectivity for 

stimulus features.  One method is by modulating firing rates, such that a neuron shows more 

preference for a particular stimulus orientation and less for others after rest.  This would 

cause improvements in discriminability.  Modulating firing rates for all neurons within the 

area would affect the capability of the network to encode stimuli.  Another possible way V4 

could accomplish this could be by the restructuring of correlated activity after rest.  To 

determine whether this mechanism underlies the behavioral improvement, future analyses 

will examine noise correlations within V4 before and after rest along with the context of how 
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neurons are tuned to properties of the stimuli.  Noise correlations can have different impact 

on coding based on the tuning properties of neurons (Abbott and Dayan, 1999; Averbeck and 

Lee, 2006; Averbeck et al., 2006).  Here I expected to find that neurons similarly tuned to 

behaviorally relevant features would exhibit reduced noise correlations, increasing the 

information in the neural code, and vice versa, neurons oppositely or not tuned to 

behaviorally relevant features would exhibit increased or no change in noise correlations.   

Examining neural changes in V4 enables me to look at the mechanisms that are involved 

in this improvement (i.e. whether this phenomenon results from top-down or bottom-up 

mechanisms).  A possible top-down mechanism could be enhanced attention in the task 

following rest.  Increases in gamma-band coherence within V4 (Taylor et al., 2005) and 

between V4 and prefrontal cortex (Gregoriou et al., 2009) found during attention directed 

tasks is another analysis I could use in conjunction with those I have described to explore 

before and after rest.  Examination of coherent activity between V4 and its input areas, such 

as V1 or V2, could elucidate bottom-up influences.  A more thorough examination of the 

concerted efforts of multiple areas is needed to tease apart the influences on V4 responses, 

but this preliminary analysis to identify features that change after rest is an important first 

step.  

Research has revealed a rich local component of sleep, which expands our previous view 

about sleep as a global phenomenon.  Thus, only focusing on the global aspects of sleep 

limits our ability to determine how sleep improves learning and memory.  Indeed, local 

networks actively engaged in a task can exhibit different levels of sleep than surrounding 

brain regions (Huber et al., 2004) and this can even occur during awake states (Vyazovskiy et 

al., 2011).  This suggests that there may be several unknown fundamental processes that 
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occur during resting states that may underlie our capacity to learn and store information 

about our sensory environment.  The combination of identifying changes in neural activity 

during rest, and correlating these with behavioral improvements after rest, is imperative for 

teasing apart how and why rest influences perceptual learning.   
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