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Altered ovarian cancer metabolism increases the neuronal n-acetylaspartate to 

promote tumor growth 

Publication No._____ 

Behrouz Zand, M.D. 

Supervisory Professor:  Anil K. Sood, M.D. 

Background:  Altered metabolism is a well-established trait in many cancers, and is 

an emerging hallmark of cancer.  Recent resurgence of cancer metabolism studies 

has identified dysregulated metabolic pathways that produce novel oncometabolites 

in various cancers.  However, large scale studies of dysregualted high grade serous 

epithelial ovarian cancers (HGSOC) are unknown.       

Materials and Methods:  Following IRB approval, metabolic profiling of 101 

HGSOC patients and 15 normal ovaries were obtained using GC/LC mass 

spectrometry from 2 U.S. academic centers to identify highly up-regulated 

metabolites.  Samples from a cohort of 135 and 208 patients from a single 

institution were evaluated for gene expression and protein expression of NAT8L, 

respectively.  Gene expression of NAT8L and clinical outcomes were further 

investigated from publicly available databases from the cancer genomics atlas 

(TCGA) using www.cbioportal.org, and two previously published melanoma gene 

expression profiles.   Reverse Phase Protein Array (RPPA) and gene expression 

array were evaluated in HeyA8 ovarian cancer cell lines to investigate the protein 

and gene expression changes associated with NAT8L siRNA. In vitro and in vivo 

http://www.cbioportal.org/
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experiments of NAT8L siRNA were investigated to evaluate its effects on cancer 

proliferation, apoptosis, cell cycle, and invasion/migration.     

Results:  A total of 313 metabolites were identified between these two groups, of 

which 172 were significantly altered (p<0.05) between HGSOC and normal ovary 

tissues.  NAA was one of the most significant alterations in HGSOC compared to 

the normal ovary with a greater than 28 fold elevation in ovarian cancer compared 

to the normal ovary (p=2.30E-11).  NAA levels in HGSOC were strongly correlated 

with its biosynthetic enzyme NAT8L gene expression levels (r=0.52, p<0.0001), and 

not with its degradation enzyme ASPA (r= -0.11, 0=0.30).  Patients with higher 

levels of NAA had worse overall survival (1295 days) compared to patients with low 

NAA levels (not reached) (p=0.038).  Two separate HGSOC gene expression 

cohorts revealed that high expression of NAT8L is associated with worse median 

overall survival in HGSOC (35 months, 40 months) compared to low NAT8L gene 

expression (45 months, 52 months) (p=0.03, p=0.005).  High NAT8L protein 

expression was associated with poor overall survival in ovarian cancer with 3.86 

years overall survival compared to 9.09 years with low NAT8L expression 

(p<0.001).  Furthermore, high NAT8L gene expression was found to have 

significantly worse overall survival in invasive breast, lung squamous, colon, uterine, 

melanoma and kidney renal cell cancers. 

HeyA8 and A2780 cell lines showed that NAT8L siRNA significantly 

increased total apoptosis compared to control (NT) siRNA by 38.53% (p<0.001) and 

37.85% (p<0.001), respectively.  HeyA8 cells treated with paclitaxel and NAT8L 

siRNA had a 29.83% increase in apoptosis compared to paclitaxel and NT siRNA 
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treated cells (p<0.001).  HEYA8 and A2780 cells treated with NAT8L siRNA had a 

significantly decreased cell proliferation by 23.65% (p<0.001) and 19.13% 

(p<0.001), respectively.  HEYA8 cells treated with NAT8L siRNA had an 8.4% 

increase in the number of cells with G1 phase (p<0.001), and an 11.65% decrease 

in the number cells in the S phase (p<0.001).  Knockdown of NAT8L in HEYA8 cells 

significantly decreased migration and invasion by 91% and 92%, respectively 

(p<0.001).  In HEYA8 orthotopic ovarian cancer mouse models, DOPC NAT8L 

siRNA had significantly decreased tumor burden by 69.17% (p<0.01), respectively.  

Furthermore, NAT8L siRNA + paclitaxel had significantly less tumor burden 

compared to NT siRNA (p<0.001), paclitaxel + NT siRNA (p=0.004), and NAT8L 

siRNA alone (p=0.032).  We observed similar effects in A2780, SKOV3 orthotopic 

ovarian cancer mouse models and orthotopic A375-SM melanoma mouse model.   

Genomic analysis of HEYA8 cells transfected with NAT8L siRNA compared 

to NT siRNA showed 1961 significantly different gene expression data (p<0.001).  

Hierarchical cluster analysis of RPPA from NAT8L siRNA and NT siRNA had 171 

significantly different protein expression data (p<0.05).  Computational network 

analysis (NetWalker) showed significant decreases in a large number of genes 

involved in mitosis and the M phase of the cell cycle, regulation of catabolic 

processes, and regulation of cell death being altered.    

Conclusion:  HGSOC metabolic profiling revealed highly altered metabolism 

compared to the normal ovary.  NAA is one of the most up-regulated metabolites in 

HGSOC.  High levels of NAA are associated with worse overall survival in HGSOC.  

Furthermore, high expression of its biosynthetic gene (NAT8L) is associated with 



 

vii 
 

worse overall survival in HGSOC, invasive breast, lung squamous, colon, uterine, 

melanoma and renal cell cancers. Inhibiting NAA production decreases tumor 

growth, and tilts the cancer cell to a more catabolic steady state.  Therefore, our 

data indicate that targeting cancer’s NAA production maybe an effective therapeutic 

approach. 
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Background and Introduction 

Ovarian Cancer 

In the U.S., ovarian cancer is the fifth most common cause of cancer related 

deaths in women [1].  Approximately 22,280 women in the U.S. will be diagnosed, 

and 15,500 will die in one year of ovarian cancer [1].  Despite drug developments, 

ovarian cancer remains a high mortality cancer with diagnosis in late stage of 

disease and high tumor burden[2].  This high mortality is due the incidence of 

recurrence remaining high, and little has changed over 30 years [3,4]. 

  Treatment of primary ovarian cancer is a combination of tumor cytoreductive 

surgery and combination intravenous paclitaxel and carboplatin chemotherapy.  The 

role of surgery is important to extend overall survival with the ultimate goal of 

cytoreduction to no residual disease [5,6,7].    Patients with primary ovarian cancer 

have a 70-80% chemotherapy response rate; however, 40-50% will recur within two 

years.  Various chemotherapy route administration and dose adjustment have been 

attempted to improve outcomes.  For example, the administration of intraperitoneal 

(I.P.) chemotherapy has been shown to increase overall survival in patients with 

residual disease < 1 cm after surgery[8].  However, it remains controversial as 

direct comparison doses to intravenous chemotherapy is not available, and toxicity 

of I.P. remains a major issue[2].  Given the  poor survival and high recurrence of 

ovarian cancer with little improvement in patient outcomes despite cytotoxic drug 

developments over the years, the focus is turning on understand the tumor biology  

to identify new targets in therapy. 
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Cancer Metabolism 

 Altered metabolism is a well-established trait in many cancers, and is an 

emerging hallmark essential to cancer’s biology[9].  In order to better understand 

cancer metabolism, knowledge of unicellular microbes and proliferating cell in 

multicellular organisms can better illustrate the effect of environmental nutrition on 

cell functioning.  Under adequate nutrition availability, unicellular organisms such as 

microbes and proliferating cells in multicellular organisms have evolutionary 

pressure to replicate new cells.   These cells and unicellular organisms will uptake 

nutrients to provide carbon, nitrogen, and free energy to build new cells.  Glucose is 

the main nutrient metabolized by these cells, and through glycolysis will excrete 

carbons through lactate, ethanol, or other organic acids such as acetate or butyric 

acid[10].  In periods of nutrient deficiency or cell starvation, these cells will alter their 

metabolism to provide maximum amount of free energy for cell survival and 

temporarily halt cell replication[10].   

 In multicellular organisms, most cells are exposed to a constant supply of 

nutrients.  To prevent uncontrolled cell proliferation, these cells need growth factor 

stimulation of signaling receptors to stimulate uptake of nutrients.  Cancer cells 

overcome this by specific gene mutations that can alter receptor signaling 

pathways.  These pathways can be constitutively active allowing for constant 

nutrient uptake and metabolism that promote cell survival and growth[10].  

Therefore, altered cancer metabolism presents a promising approach to anti-cancer 

therapy development, and this has caused a resurgence of research revealing new 

metabolic pathways not seen in non-cancerous cells.      
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Glycolysis and Warburg Effect 

Under adequate oxygen supply, differentiated or non-proliferating cells 

metabolize glucose to CO2 by oxidizing pyruvate in the tricarboxylic acid cycle (TCA 

cycle).  This results in reduction of nicotinamide adenine dinucleotide (NADH).  

NADH fuels oxidative phosphorylation to maximize ATP production[10].  In 

anaerobic conditions, differentiated cells primarily rely on glycolysis for energy 

production, and therefore produce large amounts of lactate.  However, cancer cells, 

normal proliferating cells, and unicellular microbes rely heavily on glycolysis and 

produce large amounts of lactate even in the presence of adequate oxygen supply.  

This alteration of cell metabolism in cancer cells compared to non-cancerous cells 

was first reported by Otto Warburg in 1956[11].  This “Warburg effect” of high 

glucose consumption and high lactate production has clinically been taken 

advantage of by fluorodeoxyglucose positron emission tomography (FDG-PET) 

scans [12].   

The metabolism of one molecule of glucose using oxidative phosphorylation 

in the TCA cycle yields 36 ATP molecules, whereas under glycolysis, glucose only  

yields 2 ATPs[13].  So why do cancer cells rely heavily on glycolysis even when 

oxygenation is plentiful?  One explanation is that cancer cells are highly proliferative 

and require large amounts of biomass (lipids, amino acids, and nucleotides) to 

divide therefore these cells demand more than just ATP.  There is accumulating 

evidence that a “Supply-Based” model is more likely in cancer cells [14].  In this 

model, growth factor signaling directly increases nutrient uptake and alters 
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metabolism to maximize biomass production independent of ATP.  Thus, ATP is a 

secondary process in proliferating cancer cells.  An example of this is shown by Van 

Heiden et al. for the major cell membrane molecule, palmitate[10].   Palmitate 

synthesis requires 7 molecules of ATP, 16 carbons from 8 molecules of acetyl-coA, 

and 28 electrons from 14 molecules of reduced nicotinamide adenine dinucleotide 

phosphate (NADPH).  A glucose molecule can either provide 36 ATPs via oxidative 

phosphorylation, 30 ATPs and 2 molecules of NADPH though pentose phosphate 

pathway, or 6 carbons in the form of acetyl-CoA for macromolecular synthesis. 

Therefore, proliferating cells demands for glucose are inclined more for NADPH and 

acetyl-CoA production for palmitate synthesis, and not ATP from oxidative 

phosphorylation.  Furthermore, the commitment of glucose into maximal ATP 

production by oxidative phosphorylation would increase ATP/ADP ratio therefore 

inhibiting NADPH and acetyl-CoA production.  Therefore, glucose consumption in 

proliferating and cancer cells is more so needed for acetyl-CoA production for lipid 

synthesis, diversion to PPP for ribose production for nucleotide synthesis, and 

glycolytic intermediates for non-essential amino acid production.  

Mitochondria and cancer 

  The mitochondria genome includes one to two thousand nuclear DNA gene, 

and thousands of copies of mitochondrial DNA inside the mitochondria[15].  The 

mitochondrial DNA contains the 13 most important genes for oxidative 

phosphorylation while the nuclear DNA contains the rest including genes for 

mitochondrial metabolic regulation[15].  The mitochondria has many essential 

cellular functions and regulates energy production, oxidation-reduction (redox) 
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status, cytoplasmic calcium levels, reactive oxygen species (ROS) production, 

biosynthetic precursors such as acetyl-CoA, and apoptosis[15].  It is clear that many 

cancer cells do not have dysfunctional mitochondria as a well-functioning 

mitochondrion is needed for cell viability and growth [16,17].  Mitochondrial DNA 

mutations can alter cell metabolism and enhance tumorigenesis by impairing 

oxidative phosphorylation and adapting the cell’s bioenergetics state for 

proliferation[18]. Mutations in mitochondrial nuclear DNA genes can also contribute 

to tumorigenicity.  Mutations in succinate dehydrogenase (SDH), fumurate 

hydratase (FH), and IDH1 and IDH2 can increase levels of succinate, fumurate, and 

R-2-hydroxyglutarate [(R)-2-HG][19,20,21].  This can inhibit various alpha-

ketoglutarate dioxygenase levels and activate NRF2 response leading to increased 

tumorigenicity [20,22]. 

Altered cancer metabolism can increase ROS produced by mitochondria.  

Mitochondrial ROS is a potent mitogen, and if apoptosis is inhibited, high ROS can 

cause neoplastic transformation [23,24].  Furthermore mitochondrial ROS can 

stabilize hypoxia inducible factors (HIF), nuclear factor kappa-B (NF-Kβ), and FOS-

JUN transcription factors thereby increasing cell proliferation [15,25].   Cancer cell 

ROS can also affect the tumor microenvironment whereby it inactivates caveolin-1 

in the surrounding stromal fibroblasts.  This increases fibroblast mitophagy reducing 

its mitochondrial function, and increases fibroblast lactate production.  The over 

production of lactate in fibroblasts can fuel cancer cells to aid in proliferation and 

growth.  [26] 
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Lipogenesis in cancer 

Most non-cancerous mammalian cells get lipids from the blood stream, and 

de novo lipogenesis occurs mainly in liver, adipocytes, and lactating breasts[27].  

Cancer cells can synthesize lipids similar to embryonic cells by reactivating de novo 

lipogenesis [28,29].  The increase in lipid synthesis has important consequences to 

cancer cell survival and growth.   One consequence of lipogenesis is for the 

massive biomass accumulation.  In fact, inhibition of lipid synthesis has been shown 

to decrease cancer cell proliferation and tumor growth [30,31,32,33].  Fatty acids 

contribute to phospholipids (phosphotidylcholine, phosphotidylethalamine) for cell 

membrane synthesis, and phospholipids are associated with poor survival in several 

cancers [34,35].   

There is evidence that lipid synthesis confers resistance in cancer cells to 

oxidative stress.  Cancer cells have high rates of saturated and mono-unsaturated 

fatty acid synthesis, and this has been shown to reduce cell death induced by 

oxidative stress or chemotherapy agents[36].  Inhibition of lipid synthesis may seem 

promising to combine with chemotherapy agents to improve the efficacy of its 

cytotoxicity.   

Increased lipid synthesis may also confer cell resistance to the effects of 

energy stress.  Some tumors rely on lipid oxidation as a source of energy 

production by using mitochondrial beta-oxidation to produce ATP via OXPHOS 

[37,38].  Activation of beta-oxidation seems to be needed for cancer cell viability 

during times of energy stress [39,40].   
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The regulation of lipid synthesis is mainly done by Sterol Regulatory Element 

Binding Transcription Factor (SREBPs)[41].  There are three isoforms that regulate 

lipogenesis:  SREBP1a, SREBP1c, and SREBP2[42].  SREBP1a is most abundant 

in cultured cells [43].  Although there are overlaps, SREBP1s mainly regulate fatty 

acid, phospholipid, and triaceylglyceride synthesis, and SREBP2 main regulates 

cholesterol synthesis [41].  Cancer tissues show elevated level of SREBPs[27].  

Regulation of SREBPs can be positively regulated by PI3K/AKT/mTOR, loss of 

retinoblastoma (Rb), and mutant p53 [44,45,46].  Negative regulation of SREBPs is 

seen with high phosphotidlycholine or AMPK activity [47,48].   

Amino acids and Cancer metabolism 

Amino acids (AA) are carbon molecules that contain amino and acid groups 

that have variable side chains giving them different biochemical functions [49].  

There are 300 known amino acids, but only 20 of them serve as building blocks for 

proteins(Table 1) [49].  Amino acids such as ornithine, citrulline, homocysteine, 

taurine, and β-alanine have major roles in cell metabolism [50,51,52,53].  Important 

functions of AA catabolism leads to metabolites with important biologic functions 

such as ammonia, carbon dioxide, long and short-chain fatty acids, glucose, ketone 

bodies, nitric oxide, urea, uric acid, polyamines, and nitrogenous substances[49].    

In addition AA can regulate gene expression and proteins signaling, synthesize 

hormones and low-molecular weight nitrogenous substances, and regulate 

metabolic pathways for growth and survival.    
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Table 1.  Twenty protein building amino acids 

Essential amino acids Non-essential amino acids 

Arginine Alanine 

Histidine Asparagine 

Isoleucine Aspartate 

Leucine Cysteine 

Lysine Glutamate 

Methionine Glutamine 

Phenylalanine Glycine 

Threonine Proline 

Tryptophan Serine 

Valine Tyrosine 

 

AA can regulate gene expression at transcription, translation, and post-

translational protein modifications [49].  For example, methionine, glycine, serine 

and histidine can methylate proteins and DNA, thus regulating gene and protein 

signaling [49].  Glutamine, arginine, and leucine can stimulate mTOR1 in a cell 

specific manner therefore increasing its anabolic activity of protein synthesis and 

inhibiting autophagy [54,55].   

     AA can be precursors for low-molecular weight hormones and neurotransmitters.  

Tyrosine or phenylalanine can be synthesized into epinephrine, norepinephrine, 

dopamine, and thyroid hormones [49].  Tryptophan is a precursor for serotonin and 
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melatonin.  Glutamate is the precursor for GABA [49].  Furthermore, high doses of 

oral of intravenous AA can stimulate hormones from endocrine cells.  Arginine, 

glutamine, and leucine can stimulate insulin, growth hormone, prolactin, glucagon, 

progesterone, and placental lactogen [56,57].   

   Another important function of AA is regulating key metabolic pathways in cells.  

For example, glutamate and aspartate mediate transfer of reducing equivalents 

across the mitochondrial membrane via the malate-aspartate shuttle which affects 

glycolysis and cell redox status.  The net result of the malate-aspartate shuttle is 

that NADH is transported from the cytosol into the mitochondria generating 3 ATP 

molecules [58].  Another example of metabolic regulation by AA is with arginine.  

Arginine increases expression of AMPK and peroxisome proliferator-activated 

receptor γ co-activator 1-α (PPAR) proteins which has been shown to affect 

mitochondrial energy status and rat fat mass [59].   

  Glutamine is one of the highest nutrients to be consumed by cancer cells.  

Glutamine is a non-essential amino acid because humans are able to synthesize it 

from glutamate and ammonia via the enzyme glutamine synthetase(GS)[13].  

However, not all human tissues have GS therefore these tissues rely on glutamine 

uptake from tissues that are able to synthesize glutamine.  Glutamine can be used 

in cells for protein synthesis, nucleotide synthesis, and glucosamine production[60]. 

Cells that are driven to growth by the oncogene MYC are particularly sensitive to 

glutamine availability.  MYC driven cells will undergo apoptosis by failing 

anaplerosis from glutamine derived substrates [61].     
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Glutamine together with glucose provides most of the carbon and nitrogen 

needed for cell replication [62].  In glioblastoma cells, approximately 60% of 

glutamine and 90% of glucose can produce lactate and alanine waste.  Glutamine 

provides TCA intermediate alpha-ketoglutarate for anaplerosis which promotes 

NADPH production via malic enzyme. Pyruvate is synthesized in this reaction which 

is then converted to lactate by lactate dehydrogenase [62].  Therefore, the excess 

lactate production seen in the “Warburg effect” is not only a consequence of 

glucose/glycolysis, but also of the glutatmine/glutaminolysis pathway.    

Although glucose is the major lipogenic precursor in cancer cells, glutamine 

can also provide carbons for lipid synthesis.  14C labeling of glutamine showed that 

25% fatty acyl molecules in glioblastoma cells were derived from glutamine.  

Furthermore, glutamine analplerosis provides oxaloacetate substrate that combines 

with glucose derived acetyl-coA for citrate production via citrate synthetatase[62].  

However, some cancer cells with mutations in TCA cycle enzymes or electron 

transport chain have defective mitochondrial functioning for lipid synthesis.  These 

cancer cells rely on glutamine dependent reductive carboxylation for citrate 

formation.  This pathway relies on cytoplasmic and mitochondria isocitrate 

dehydrogenase enzyme (IDH), therefore rendering glutamine as the major source 

for acetyl-coA production in lipid synthesis [63].    

   There is emerging evidence for the role of other amino acids and their role in 

cancer progression.  For example, inhibiting glycine uptake and its mitochondrial 

biosynthesis impairs proliferation in cancer cells [64].  Prostate cancer cells have 

high levels of the amino acid sarcosine (a glycine derivative), and high levels of 
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sarcosine lead to cancer progression and metastases [65].  Functional genomics 

has shown that serine synthesis is essential for breast cancer carcinogenesis [66].  

Inhibition of the isoform M2 pyruvate kinase (PKM2) leads to accumulation of 

glycolytic intermediates into the serine synthesis pathway therefore maintains 

mTOR1 activity [67].    Furthermore, serine starvation in p53 deficient cells resulted 

in oxidative stress, reduced cell viability and increased cell proliferation [68]. 

Besides glucose, glutamine is also another nutrient heavily consumed by 

cancer cells.  Glutamine is a non-essential amino acid because humans are able to 

synthesize it from glutamate and ammonia via the enzyme glutamine 

synthetase(GS)[13].  However, not all human tissues have GS therefore these 

tissues rely on glutamine uptake from tissues that are able to synthesize glutamine.  

Glutamine can be used in cells for protein synthesis, nucleotide synthesis, and 

glucosamine production[60]. Cells that are driven to growth by the oncogene MYC 

are particularly sensitive to glutamine availability.  MYC driven cells will undergo 

apoptosis by failing anaplerosis from glutamine derived substrates [61].     

Glutamine together with glucose provides most of the carbon and nitrogen 

needed for cell replication [62].  In glioblastoma cells, approximately 60% of 

glutamine and 90% of glucose can produce lactate and alanine waste.  Glutamine 

provides TCA intermediate alpha-ketoglutarate for anaplerosis which promotes 

NADPH production via malic enzyme. Pyruvate is synthesized in this reaction which 

is then converted to lactate by lactate dehydrogenase [62].  Therefore, the excess 

lactate production seen in the “Warburg effect” is not only a consequence of 

glucose/glycolysis, but also of the glutatmine/glutaminolysis pathway.    
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Although glucose is the major lipogenic precursor in cancer cells, glutamine 

can also provide carbons for lipid synthesis.  14C labeling of glutamine showed that 

25% fatty acyl molecules in glioblastoma cells were derived from glutamine.  

Furthermore, glutamine analplerosis provides oxaloacetate substrate that combines 

with glucose derived acetyl-coA for citrate production via citrate synthase [62].  

However, some cancer cells with mutations in TCA cycle enzymes or electron 

transport chain have defective mitochondrial functioning for lipid synthesis.  These 

cancer cells rely on glutamine dependent reductive carboxylation for citrate 

formation.  This pathway relies on cytoplasmic and mitochondria isocitrate 

dehydrogenase enzyme (IDH), therefore rendering glutamine as the major source 

for acetyl-coA production in lipid synthesis [63]. 

AMPK and cell metabolism 

 One of the key metabolic regulators in eukaryotic cells is AMP-activated 

protein kinase (AMPK)[69].  Ultimately, the role of AMPK is to balance the ratio of 

ATP consumption and ATP generation.  AMPK promotes cell catabolism to 

generate more ATP, and inhibits anabolic pathways[69].    AMPK can be activated 

by lowering of intracellular ATP; AMP or ADP can directly bind to its regulatory 

subunit causing a conformational change that protects its activating phosphorylation 

[70,71].  The major phosphorylation mechanism of AMPK is by the threonine/serine 

kinase Liver Kinase B1 (LKB1) at Thr172 [72,73].  AMPK can also be 

phosphorylated at Thr 172 by calcium flux, independent of LKB1, by CAMKK2 

(CAMKKβ) kinase [74].  The majority of AMPK regulation in cell are by LKB1, 

however, CAMKK2 appears to be major AMPK regulators in T-cells and neurons 
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[75,76]. TAK1of the MAPKKK family can also activate AMPK by phosphorylating 

Thr172 [77].  Additional controls of AMPK regulation are currently unknown.   

 In mammalian cells, AMPK can be activated by a variety of cell stresses and 

variety of drugs which increase cellular levels of AMP, ADP, or calcium [78]. 

Metformin, the type 2 diabetes drug, can activate AMPK in a LKB1 dependent 

manner[79].   Metformin indirectly causes AMPK activation by inhibiting Complex I 

of the respiratory chain leading to lower ATP levels[80,81].  The AMPK agonist 

AICAR is a precursor to ZMP which mimics AMP, and also indirectly activates 

AMPK[82].  The chemotherapy drug pemetrexed can also result in elevated ZMP 

therefore activating AMPK [83].   

 There is emerging evidence that AMPK can be activated independent of 

AMP, ADP, or calcium.  In cultured cells, AMPK is activated by reactive oxygen 

species (ROS).  The mechanism of action is unclear, but it has been proposed to 

involve inhibition of mitochondrial ATP synthesis[80], oxidation of two conserved 

cysteine residues in the AMPK alpha subunit[84], or by the protein ataxia 

telangiectasia (ATM) which can phosphorylate LKB1[85].  Genotoxic agents such as 

etoposide, doxorubicin, and ionizing radiation can also activate AMPK, although the 

mechanism is not clear [86,87,88]. 

 AMPK coordinates PI3K/AKT/mTOR pathway to control cell growth and 

autophagy.  For example, mTORC1 is tightly regulated by AMPK.   AMPK can 

either phosphorylated the tumor suppressor TSC2 on serine 1387 or directly 

phosphorylate Raptor (regulator associated protein of mTOR) blocking the ability of 
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mTORC1 kinase to phosphorylate its substrates [89,90].  The autophagy 

components ULK1 can be directly activated by AMPK or by mTORC1[91,92] .  

Autophagy is activated to replenish metabolites and nutrients in times of low energy 

state.  AMPK can trigger destruction of defective mitochondria though ULK1 

dependent mitophagy and trigger mitochondrial biogenesis though PGC-1-alpha 

transcription[69].  In hematopoietic stem cells, genetic knockout of LKB1 or AMPK 

catalytic subunits caused a significant rise in defective mitochondria[93].  Therefore, 

AMPK is a key regulator of mitochondrial homeostasis. 

AMPK can alter cellular metabolism by directly regulating metabolic enzymes or 

by altering transcription.  AMPK is a key regulator of acetyl-coA carboxylase (ACC) 

and HMG-coA reductase which are rate limiting steps for fatty acid and sterol 

synthesis, respectively[94,95].  In fat cells, AMPK directly phosphorylates lipases 

such as hormone sensitive lipase and adipocyte triglyceride lipase (ATGL)[96,97].  

AMPK can regulate glucose uptake of cells by playing a key role in GLUT4 

endocytic trafficking [98].   AMPK can phosphorylate a number of transcription 

factors, coactivators, acetyltransferase p300, histone deacetylases, and histones 

that can alter cell metabolism[69].  One example is the lipogenic transcription factor 

(SREBP1) by phosphorylating a conserved serine site suppressing its activation.  

SREBP1 induces expression of ACC and FASN to promote de novo lipogenesis, 

and tumor growth [99,100].  AMPK can negatively regulate cAMP-regulated 

transcriptional co-activators (CRTCs) and histone deacetylates(HDACs) [101,102].  

Negative regulations of CRTCs have recently been shown to prolong lifespan in C. 

elegans opening up a new potential of biological functions for these co-activators 
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[101].  AMPK phosphorylation of HDACs in the liver can translocate to the nucleus 

to deaceytlate FOXO family transcription factors and regulate glucose homeostasis 

in the liver[103].   Increased expression of CRTCs and HDACs can promote tumor 

progression and growth [104,105,106].   

P53 and tumor metabolism 

Findings from The Cancer Genome Atlas (TCGA) showed that many high 

grade epithelial ovarian cancers have p53 mutations (96%), a high rate of somatic 

mutations with few recurrent mutations, and high copy number alterations[107].  

P53 is a tumor suppressor by two mechanisms: 1.) regulating repair and survival of 

damaged cells 2.) Discarding damaged cells that cannot be repaired through 

apoptosis or autophagy.  Activation of p53 from DNA damage leads to G1 cell cycle 

arrest and DNA repair activation.  This mechanism allows to cells to resume normal 

cell cycle functioning and the genomic integrity is maintained.  To remove damaged 

cells that can’t be repaired, p53 can activate pro-apoptotic genes such as Bax, 

Noxa, and Puma. In addition to cell survival and death, p53 can also influence 

cellular metabolism. 

   The evidence of p53 regulation of glycolysis is complex and unclear.  

Emerging evidence is revealing p53 a major negative regulator of glycolysis 

mediated by p53 transcriptional activation of TP53-induced glycolysis and apoptosis 

regulator (TIGAR).  TIGAR dephosphorylates fructose-2, 6-bisphosphate (F2-6P) 

and lowers its cellular levels.  F2-6p is a potent activator of the glycolytic rate 

limiting enzyme 6-phosphofructo-1-kinase (PFK-1), therefore p53 inhibits glycolysis 

through this mechanism [108].  Also, p53 can down-regulate phosphoglycerate 
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mutase (PGM) which converts 3-phosphoglycerate to 2-phosphoglycerate in 

glycolysis, thus inhibiting glycolytic flux.  On the other hand, some studies are 

showing that p53 can activate glycolysis by stimulating type II hexokinase promoter 

gene expression, and this activation leads to increased tumor survival[109,110].  

Clearly, further studies are needed to clarify p53’s role in glycolysis. 

  P53 can stimulate mitochondrial oxidative respiration by activating several 

key components of the electron transport chain in cancer cell.  Furthermore, p53 

can increase the TCA cycle rate by activating glutaminase 2 (GLS2)[111,112].  

GLS2 is a mitochondrial protein that hydrolyzes glutamine to glutamate, and 

deamination of glutamate leads to alpha-ketoglutarate synthesis.  Furthermore, p53 

knock-out mice display impaired mitochondria respiration [112].   

 De novo lipogenesis has also been shown to be regulated by p53.  AMPK 

expression is up-regulated by p53 and this result in increased inactivation of the 

lipid rate limiting enzyme ACC [102].  P53 also regulated biomass production by 

inactivating glucose-6-phosphate dehydrogenase resulting in suppression of 

pentose phosphate pathway and decreased NADPH production [113].  As stated 

before, NADPH is critical for lipogenesis in proliferating cells.  On the other hand, 

emerging evidence is developing that in times of energy stress, p53 can up-regulate 

fatty acid oxidation to produce ATP and NADPH further promoting cell survival and 

resistance to the metabolic stress[114].  For example, a new p53 target GAMT has 

been identified which is involved in the creatine pathway.   GAMT is involved in p53 

induced apoptosis under genotoxic stress.  However, under glucose deprivation and 

energy stress, p53 dependent up-regulation of GAMT induces fatty acid oxidation 
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increasing cell survival [115].  This complicated dual role of p53 in cancer 

metabolism suggests that its role may be tissue and/or cancer specific.  Further 

understanding of various cancer types and the role of p53 in regulating its 

mechanism are needed.   

Targeting Cancer Metabolism 

 It is important to note that targeting cancer metabolism is not a new approach 

in cancer therapy history.  Sidney Farber noticed that adding folic acid to leukemic 

cells caused an increase in cancer growth[116].  This discovery lead to the 

development of the first folate analogue drug aminopterin which lead to the first 

remission of Acute Lymphoblastic Leukemia[117]. Another folate analogue, 

methotrexate lead to the first cure of solid tumors when administered to 

choriocarcinoma patients[118].     

The emerging studies of altered cancer metabolism have revealed the high 

consumption of various nutrients, the increased biosynthetic pathways, and the 

oncogenic signaling driving these changes are paving the way for novel approaches 

to anti-cancer therapy development.  For example, circulating levels of insulin and 

insulin growth factor (IGF) seen in obesity and diabetes promote cancer progression 

by activating cancer growth signaling [119,120,121].  Lowering blood glucose levels 

is associated with improving cancer outcomes [121].  The diabetic drug Metformin is 

being explored as an agent that can improve cancer outcomes.  Metformin lowers 

blood glucose by inhibiting mitochondrial complex I in liver which decreases ATP 

production [79,119].  This up-regulates AMPK signaling, which inhibits 
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gluconeogenesis, effectively lowering blood glucose levels and increasing insulin 

sensitivity to lower circulating levels of insulin [79].  

Despite driver mutations causing cancer growth and progression, there are 

no effective treatments against these mutations.  Targeting metabolic enzymes 

seems a promising approach to disrupt these driver mutation effects.  For example 

k-RAS and MYC rely on glucose and glutamine uptake for cell growth and survival, 

respectively [61,122].  Disrupting glucose or glutamine uptake or their pathway 

molecules in these cells can be an important approach to stopping its growth 

mechanism.  Cytoxic chemotherapy can also disrupt glucose uptake, therefore 

synthetic lethality approaches by combining chemotherapy and metabolic enzyme 

drug targets would seem like a promising approach[119].  

Ovarian cancer metabolism 

 Recent investigation of ovarian cancer revealed a shift in cancer metabolism 

paradigm, Nieman et al. showed that ovarian cancer cells behave like parasites to 

the surrounding host cells by inducing catabolic processes in the adipocytes and 

tumor stroma.  Ovarian cancer cells were homed to the host cells by cytokines such 

as IL-8, and would increase catabolic processes such as aerobic glycolysis; 

mitophagy, autophagy, and lipolysis in the host cells.   Because of this processes, 

cancer cells were able to extract nutrients such as lactate, fatty acids, glutamine, 

and ketones to fuel the mitochondria and promote growth and metastasis [123].  

Therefore, ovarian cancer cells up-regulated their oxidative phosphorylation and 

beta-oxidation to use these substrates for ATP production.  Interestingly, the 
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authors saw that SKOV3ip1 cells co-cultured with adipocytes had up-regulated 

AMPK, inhibition of ACC, and up-regulation of beta-oxidation in cancer cells.   

RPPA analysis of primary ovarian tumors compared to omental metastasis tumor 

revealed that the metastatic tumors had greater ACC phosphorylation.  This was a 

surprising finding given the many other results show that show up-regulation of 

AMPK and inhibition of ACC to lead to decreased tumor 

growth[33,124,125,126,127].     

Along with fatty acid metabolism, ovarian cancers have increased choline-

containing metabolites [35].  These include phosphotidylcholine, phosphocholine, 

glycerophosphocholine, and choline is important for many cell functions including 

proliferation and cell membrane synthesis.  Mechanisms behind these elevations 

include choline transport, choline mediated choline kinase phosphorylation, and 

activation of phosphotidylcholine phospholipases. Inhibition of these 

phosphotidycholine metabolic pathways can inhibit tumor growth, and a novel 

choline kinase inhibitor Mn58b, has shown to inhibit growth in carcinoma models 

[128]. 

There has been one attempt at a large scale metabolic profile in ovarian 

cancer, Denkert C. et al. profiled 66 ovarian cancer tissues and 9 borderline tissues 

using GC/mass spectrometry.  They detected 291 metabolites, but were only able to 

identify 114 (39%) of these metabolites.  Using a threshold of p<0.01, they were 

able to identify 51 metabolites that differed from ovarian cancer and borderline 

tumors.  An increase in glycerolipid, purine and pyrimidine, and energy metabolism 

were noted to be higher in ovarian cancer.  Interestingly, several fatty acids and 
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lactate were higher in borderline tumors.  A major limitation of the study was that the 

ovarian cancer samples included 25% non-serous tumors, and 43% of the ovarian 

cancer tumors were not high grade tumors. 

Oncometabolites 

 The recent resurgence of cancer metabolism studies has identified dysregulated 

metabolic pathways that produce novel oncometabolites in cancer.  Genome-wide 

sequencing of glioblastoma multiforme (GBM) or WHO III and III astrocytoma and 

oligodendroglioma revealed that the majority of these tumors harbor an IDH1 or 

IDH2 mutation[129,130].  The two initial studies showed that IDH1 and IDH2 

mutation in these patients doubled the median overall survival compared to the wild 

type IDH1/2 patients [129,130].  These mutations are not only prevalent in high 

grade gliomas, but also in acute myeloid leukemia [131]. These mutations cause the 

loss of the cell’s ability to convert α-ketoglutarate to isocitrate when the mutant IDH 

protein forms a heterodimer with the wild type IDH protein therefore inactivating the 

physiologic IDH enzyme function.  When the IDH mutant protein forms a homodimer 

protein,  these mutations gain the ability to create the metabolite called (R)-2-

hydroxyglutarate (2HG) [21,131] from α-ketoglutarate and glutamate which can lead 

to DNA hyper methylation [132,133,134].  Furthermore, studies of 2HG are 

identifying that 2HG has tumorigenic properties instead of the tumor suppressive 

role.  Recently, high serum levels of 2HG are associated with worse overall survival 

in AML [135].  
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   In a metabolic profile of human oligodendroglioma cells (HOG), Reitman et al 

evaluated the effects of isocitrate dehydrogenase 1(IDH1-R132) and 2 (IDH2-R172) 

mutations.  One of the most striking findings in their study was that the levels of N-

acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) in IDH1-R132 and 

IDH2-R172 cells compared with wild type IDH1 and IDH2 cells were significantly 

decreased. No pathogenesis as result of low NAA or NAAG was investigated in this 

study; therefore the role of NAA and NAAG is unclear in this setting. The authors 

speculated that since acetyl CoA or free amino acid levels were not decreased 

between the wild type and IDH mutated cells in this the HOG cells, the decreased 

NAA can be a result of low NAT8L expression or high ASPA expression.  In a 

separate study of non-invasive detection of 2HG in WHO grade 2 and 3 glioma 

patients using proton magnetic resonance spectroscopy (MRS) showed with high 

sensitivity and specificity in IDH1 and IDH2 mutated gliomas had higher 2HG and 

lower NAA peaks compared to wild type IDHI/2 gliomas.  Therefore, both IDH 

mutation metabolic studies show that the wild type IDH1/2 gliomas lead to low 2HG 

and higher NAA levels compared to the mutant IDH1/2 gliomas.  With that said, the 

mechanism of IDH mutation decreasing NAA levels is currently unclear and further 

work is needed to provide insight into the function of NAA and 2HG in gliomas.    

The neuron specific metabolite NAA 

 NAA is the N-acetylated amino acid aspartic acid via the amine nitrogen 

group.  Acetylation is the transfer of an acetyl group from acetyl-coA to another 

molecule; in this case the amino acid aspartic acid accepts the acetyl group to form 

NAA.   The molecular weight of this compound is 175 Daltons in its ionic form.  NAA 
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biosynthesis occurs in neurons by the catalysis of the enzyme N-acetylaspartate 

synthetase (NAT8L)[136,137].  The NAA metabolic pathway in the neuron illustrated 

is discussed below (Figure 1)[138].   

.   

Figure 1.  Schematic presentation of NAA metabolism [138].NAA is 
synthesized in the neuron via the enzyme NAT8L by acetyl-coA and aspartate.  
NAA and glutamate form NAAG in an ATP dependent manner via the enzyme 
NAAGS.  NAAG is transported out of the neuron by an uknown mechanism to the 
extra-neuronal space (ECF).  NAAG is hydrolyzed into NAA and glutamate in the 
ECF.  Glutamate binds to the metabotropic glutamate receptor 3 (mGLuR3) to 
activate the glutamatergic neurotransmission process.   NAA is taken up by 
oligodendrocytes by sodium-dependent dicarboxylate transporter (NaDC3).  Inside 
oligodendrocytes, NAA is metabolized by aspartoacyclase (ASPA) into aspartate 
and acetate.  Acetate is proposed to be used for the myelin lipid synthesis.  

  

The sources for acetyl-coA for NAA in the brain of developing rats are pyruvate 

from glycolysis and 3-hydroxybutyrate (a ketone body).  The aspartate arises from 

aspartate transamination (AST) by using the substrates glutamate and oxaloacetate 

forming aspartate and alpha-ketoglutarate [139].  The NAT8L enzyme has only 

been localized in the neuronal mitochondria and microsomes (likely endoplasmic 



 

23 
 

reticulum) [136,140,141].  NAA production is faster under high respiration energy 

state than in low respiration energy state[139]. NAA production can be stimulated by 

ADP, and inhibited by ATP production [142].      

NAA is a major form of aspartic acid in the brain, and NAA concentrations in the 

brain are on average 3-8 mM [143], making it one of the most distinct signals that is 

prominent by brain magnetic resonance spectroscopy (MRS)[144,145,146]  [147].   

After its synthesis, NAA can bind with glutamate to form NAAG by the ATP 

dependent enzyme NAAG synthetase [138].  NAAG is transported out of neuron 

into the ECF where it can be hydrolyzed back into NAA and glutamate by the 

membrane bound enzyme Glutamate Carboxypeptidase II (GCP-II) or CGP-III.  

Genes encoding for these proteins are FOLH1 and NAALAD2, respectively.  The 

glutamate binds to astrocyte Glu metabotropic receptor 3 (GRM3), and is taken up 

to form glutamine[147].  Furthermore, GRM3 activation can signal endothelial cells 

to form new capillaries allowing for transport of glucose and oxygen to 

neurons[147].  NAA is targeted towards oligodendrocytes [140], where it is taken up 

by the sodium ion transporter NaDC3.   

Uptake of NAA allows for its degradation into acetate and aspartate by the 

enzyme aspartoacyclase (ASPA) [148].  ASPA is zinc containing carboxypeptidase 

enzyme, which deacetylates NAA [149]. ASPA is present in several tissues such as 

CNS, liver, and kidney in the developing rat [150].  The mammalian neurons do not 

contain ASPA, therefore oligodendrocyte are where the NAA are transported to be 

metabolized in the CNS [151]. 
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The primary function of NAA remains elusive as most studies have focused on 

MRS studies compared to the biochemistry of NAA.  Furthermore, almost all studies 

are based on the mammalian brain.  It is proposed that NAA can function as 

alternative source of acetate for lipid synthesis by transporting into oligodendrocytes 

where it is broken down into acetate by ASPA for lipid synthesis [152,153,154,155]. 

Alternatively, NAA has been proposed to act as an osmotic regulator by transporting 

water bound to NAA into ECF [156].   

NAA has also been linked to ATP production, and proposed to be involved in 

analplerosis [38,139,142].  This is based on the theory that depletion of aspartate 

from the mitochondria would promote the kinetics of aspartate transaminase (AST) 

towards aspartic acid and alpha-ketoglutarate production [148,157].  It is reasonable 

to assume that all of these functions can co-exist as the consequences of NAA 

biosynthesis and metabolism, and further research would help clarify NAA’s biologic 

role.  

More evidence of its biological role are highlighted by two inborn errors of 

metabolism diseases which involve disruption of the NAA metabolic pathway.  The 

first is called hypoacetylaspartia characterized by the inability to biosynthesize NAA 

by NAT8L.  There has been one documented case in history of a patient with 

hypoacetylaspartia.  This patient suffered from severe mental retardation, ataxia, 

microcephaly, and seizures[158].  This patient was found to have homozygous 

mutation of NAT8L [137].  In a single reported study of NAT8L knockout mice study 

the focus was mainly on the social behavior of mice which showed decreased social 

interaction and greater anxiety like behaviors in homozygous deleted NAT8L [159]; 



 

25 
 

no other histological or MRS detection of NAA was reported in this study limiting 

any generalizability to the human condition.   

The second inborn error of metabolism disease with abnormal NAA levels is 

Canavan disease.  Canavan disease is characterized by a lack of ASPA activity 

which leads to NAA accumulation.  Clinically,  patients with this disease display 

macrocephaly, severe cognitive and motor delay, seizures, and death by the third 

decade of life [160].   The pathologic hallmark of Canavan disease is 

dysmyleination, intramyelinic edema , and central white matter vacuoles[160].  The 

knockout mice studies for ASPA have recapitulated the biologic effects seen in 

human Canavan disease.   Homozygous (-/-) ASPA mice display failure to thrive, 

macrocephaly, neurologic impairments such as tremors, abnormal gait, lethargy, 

pain insensitivity, and some developed seizures by 6 months of age.  MRS of the -/- 

ASPA mice showed abnormally high levels of NAA compared to the wild type mice, 

and histopathologic evaluation of the brain showed features similar to those seen in 

Canavan disease [161].   

NAA has recently been detected outside of the CNS [65,162,163,164].  

Aspiration from ovarian tumor cysts (OTC) has been linked to be significantly higher 

in the serous histology type benign, borderline, and malignant tumors [163,164], 

and there was no difference between NAA levels in OTC between the malignant, 

borderline, or benign serous tumors.  The range of OTC NAA concentrations in 

serous tumors have been reported between 5-187 µM [163,164,165].  However,  

higher NAA concentrations in ovarian cyst fluid  of malignant serous ovarian 

cancers have been found to be associated with advanced stage disease (Stage III 
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and IV)[163].  The concentrations of NAA levels in OTC have also been found to be 

relatively similar to the concentration present in malignant ascites[163].  These 

findings suggest that NAA in cyst and ascites fluid are associated with higher stage 

disease, and that NAA levels may be associated with worsening outcomes.  

In a small study, the metabolome of normal human ovaries, primary ovarian 

adenocarcinomas (POC) and metastatic omental ovarian cancer (MOC) tumors 

were profiled by LC and GC mass spectrometry.   NAA and NAAG levels were 

elevated by 3.5 and 2.2 fold, respectively, in POC compared to the normal ovary.  

NAA and NAAG were further elevated by 85.6 and 8.5 fold, respectively, in MOC 

compared to the normal ovary[162].  This indicates that NAA levels are even much 

higher in the metastatic tumors compared to the primary ovarian cancer site, and 

suggests that its accumulation may have a role in ovarian cancer pathogenesis.   
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Hypothesis and specific aims: 

Hypothesis #1:  Metabolic profiling of ovarian cancer compared to the normal 

ovary will identify tumor promoting metabolites   

Specific Aim:  Identify the most up-regulated metabolite in ovarian cancer 

compared to the normal ovary in human patients and determine the consequences 

to tumor growth when its production is inhibited   

Hypothesis #2:  High levels of NAA are associated with worse outcomes in 

ovarian cancer 

• Specific Aim:  Determine the clinical consequences of alterations in 

the NAA pathway in ovarian cancer 

Hypothesis #3:  Decreasing NAA production will decrease tumor growth and 

progression 

• Specific Aim: Examine the biological effects of inhibiting NAA 

production by siRNA NAT8L in ovarian cancer cell proliferation, 

survival, and invasion using in vitro and in vivo assays 
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Methods 

Clinical Analysis 

 After IRB approval was obtained, patients were identified at the University of 

Texas at M.D. Anderson Cancer Center (MDACC) and the University of Iowa who 

were diagnosed with ovarian, primary peritoneal, or fallopian tube carcinoma.  

Patients were excluded if they did not receive primary therapy at the institution of 

record or did not have routine follow-up at that institution.  All patients were treated 

by surgical cytoreduction performed by a gynecologic oncologist in addition to 

adjuvant or neoadjuvant taxane- and/or platinum-based chemotherapy. Surgical 

staging was performed according to International Federation of Gynecology and 

Obstetrics guidelines. All treatments were administered at the institution of record. 

Specimens were reviewed by a gynecological pathologist at the institution of record. 

Clinical data collected included patient demographics, tumor characteristics, details 

of treatment, as well as outcomes data such as progression-free interval and overall 

survival. Optimal cytoreduction was defined by convention as residual disease less 

than 1 cm as reported by the surgeon of record.  Tissue samples were obtained at 

the time of primary evaluation surgery.  Patients who were known to be alive and/or 

progression-free at the time of last contact were censored accordingly.  Kaplan-

Meier survival curves were generated and compared using a 2-sided log-rank 

statistic.   
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Metabolic profiling 

Sample Preparation:  Ovarian cancer tissue and normal ovary samples were 

stored at -80oC.  At the time of analysis, samples were extracted and prepared for 

analysis using a standard solvent extraction method.  The sample preparation 

process was carried out using the automated MicroLab STAR® system from 

Hamilton Company.  Recovery standards were added prior to the first step in the 

extraction process for QC purposes.  Sample preparation was conducted using a 

proprietary series of organic and aqueous extractions to remove the protein fraction 

while allowing maximum recovery of small molecules.  The resulting extract was 

divided into two fractions; one for analysis by LC and one for analysis by GC.  

Samples were placed briefly on a TurboVap® (Zymark) to remove the organic 

solvent.  Each sample was then frozen and dried under vacuum.  Samples were 

then prepared for the appropriate instrument, either LC/MS or GC/MS. 

Liquid chromatography/Mass Spectrometry (LC/MS):  The LC/MS portion of 

the platform was based on a Waters ACQUITY UPLC and a Thermo-Finnigan LTQ 

mass spectrometer, which consisted of an electrospray ionization (ESI) source and 

linear ion-trap (LIT) mass analyzer.  The sample extract was split into two aliquots, 

dried, then reconstituted in acidic or basic LC-compatible solvents, each of which 

contained 11 or more injection standards at fixed concentrations.  One aliquot was 

analyzed using acidic positive ion optimized conditions and the other using basic 

negative ion optimized conditions in two independent injections using separate 

dedicated columns.  Extracts reconstituted in acidic conditions were gradient eluted 

using water and methanol both containing 0.1% Formic acid, while the basic 
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extracts, which also used water/methanol, contained 6.5mM Ammonium 

Bicarbonate.  The MS analysis alternated between MS and data-dependent MS 

scans using dynamic exclusion. 

  Gas chromatography/Mass Spectrometry (GC/MS):  The samples 

destined for GC/MS analysis were re-dried under vacuum desiccation for a 

minimum of 24 hours prior to being derivatized under dried nitrogen using 

bistrimethyl-silyl-triflouroacetamide (BSTFA).  The GC column was 5% phenyl 

and the temperature ramp is from 40° to 300° C in a 16 minute period.  

Samples were analyzed on a Thermo-Finnigan Trace DSQ fast-scanning 

single-quadrupole mass spectrometer using electron impact ionization.  The 

instrument was tuned and calibrated for mass resolution and mass accuracy 

on a daily basis.  The information output from the raw data files was 

automatically extracted as discussed below. 

Accurate Mass Determination and MS/MS fragmentation (LC/MS), 

(LC/MS/MS):  The LC/MS portion of the platform was based on a Waters ACQUITY 

UPLC and a Thermo-Finnigan LTQ-FT mass spectrometer, which had a linear ion-

trap (LIT) front end and a Fourier transform ion cyclotron resonance (FT-ICR) mass 

spectrometer backend.    For ions with counts greater than 2 million, an accurate 

mass measurement could be performed.  Accurate mass measurements could be 

made on the parent ion as well as fragments.  The typical mass error was less than 

5 ppm.  Ions with less than two million counts require a greater amount of effort to 

characterize.  Fragmentation spectra (MS/MS) were typically generated in data 
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dependent manner, but if necessary, targeted MS/MS could be employed, such as 

in the case of lower level signals. 

Bioinformatics:  The informatics system consisted of four major components, 

the Laboratory Information Management System (LIMS), the data extraction and 

peak-identification software, data processing tools for QC and compound 

identification, and a collection of information interpretation and visualization tools for 

use by data analysts.  The hardware and software foundations for these informatics 

components were the LAN backbone, and a database server running Oracle 

10.2.0.1 Enterprise Edition. 

Compound identification:  Compounds were identified by comparison to 

library entries of purified standards or recurrent unknown entities.  Identification of 

known chemical entities was based on comparison to metabolomics library entries 

of purified standards.  As of this writing, more than 1000 commercially available 

purified standard compounds had been acquired registered into LIMS for 

distribution to both the LC and GC platforms for determination of their analytical 

characteristics.  The combination of chromatographic properties and mass spectra 

gave an indication of a match to the specific compound or an isobaric entity.  

Additional entities could be identified by virtue of their recurrent nature (both 

chromatographic and mass spectral).  These compounds have the potential to be 

identified by future acquisition of a matching purified standard or by classical 

structural analysis.   
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Normalization:  For studies spanning multiple days, a data normalization step 

was performed to correct variation resulting from instrument inter-day tuning 

differences.  Essentially, each compound was corrected in run-day blocks by 

registering the medians to equal one (1.00) and normalizing each data point 

proportionately.   For studies that did not require more than one day of analysis, no 

normalization is necessary, other than for purposes of data visualization. 

Metabolite statistics:  All Wilcoxon rank-sum tests and t-tests are two-sided 

using a threshold of P < 0.05 for significance. Class-specific metabolomics patterns 

were visualized using heat maps. Unsupervised clustering of samples using 

metabolomics signatures was performed using Cluster and TreeView, and 

visualized using heat maps.  

NAT8L gene expression:   

To determine NAT8L gene expression across different cancer types, RNA 

expression of 20 cancer types were analyzed by RNASeqV2 data available from the 

open access TCGA web page as of Jan 18, 2013 were accessed. The normalized 

counts were log2 transformed (after adding 1) to emphasize differences on a 

multiplicative scale.  The copy number data was analyzed as well using all of the 

public level 3 data available as of Oct 30, 2012.    

To determine gene expression of NAT8L’s association with clinical 

outcomes, RNA expression data was analyzed by RNASeqV2 data available from 

the open access TCGA web site www.cbioportal.org  as of April 2013 were 

http://www.cbioportal.org/


 

33 
 

accessed.  Overall survival was analyzed by best cut-off method on provisional 

databases, and based on all tumors from each query.   

To validate gene expression data from non-TCGA cohorts, clinical 

information CEL (Affymetrix U133Plus2)) arrays files from the publication by Tinker 

et al. [166] were analyzed to validate ovarian cancer NAT8L outcomes.  To 

determine NAT8L gene expression’s association with melanoma outcomes, clinical 

information CEL (Affymetrix U133Plus2)) arrays files from the publication Bogunovic 

et al.[167] was accessed for analysis.  Also, clinical information and expression 

values from melanoma samples profiled with Illumina arrays by Jonsson G et 

al.[168]  were analyzed.  All analyses were performed in R (version 2.14.2) 

(http:///www.r-project.org/).   The RMA gene expression values were analyzed, and 

best cut off method to identify clinical outcomes.   For survival analysis the patients 

were grouped into percentiles according to NAT8L expression.  Gene expression by 

best cut-off was done to optimally split the samples into two groups.  The Log-rank 

test was employed to determine the significance of the association between NAT8L 

expression and overall survival.  The Kaplan-Meyer method was used to generate 

survival curves.   

Immunohistochemistry 

Immunohistochemical (IHC) analysis was done on formalin-fixed, paraffin-

embedded samples, using standard techniques. For NAT8L, antigen retrieval was in 

citrate buffer for 45 minutes in an atmospheric pressure steamer, using anti-NAT8L 

antibody (Sigma-Aldrich) at 1:100 dilution was incubated overnight at 4°C. Primary 

http://www.r-project.org/
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antibody detection was with Biotenelatled HRP polymer for 6 minutes at room 

temperature, followed by diaminobenzidine incubation. After IHC staining, a semi-

quantitative H-score was done. Briefly, the intensity of tumor cells positive for 

NAT8L was 1= weak, 2 = moderate, or 3= strong intensity.  NAT8L counted and 

expressed as a percentage of all tumor cells by an examiner blinded to clinical 

outcome. Patient samples were categorized as having low (<25%) =1, intermediate 

(25 %< x<75%) =2 or high (>75%) =3.  The product of percentage of cell score and 

intensity score equaled the H-Score.  The IHC analysis was done on samples 

collected at primary debulking surgery on 209 untreated patients with stage III–IV, 

high-grade papillary serous adenocarcinoma; with institutional review board 

approval, clinical information was collected. Progression-free and overall survival 

were plotted with the Kaplan–Meier method for patients in each group of NAT8L 

expression and compared with the log-rank statistic. 

Gene Array 

Gene array data from HeyA8 ovarian cancer cells double transfected with NAT8L 

siRNA and NT siRNA were deposited into the GEO database.  Array data 

processing was performed on Illumina BeadStudio software. We normalized gene 

expression data using Quantile normalization and log2 transformation. To export to 

a data matrix, Sample Gene Profile option of this software was used. BRB-

ArrayTools were primarily used to identify genes differentially expressed between 

the 2 subgroups [169], and all other statistical analyses were performed in the R 

language environment. Gene expression differences were considered significant 

if P values were less than 0.001.  A random-walk based network scoring method, 
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NetWalker, for genomic data analysis was employed (Komurov, White et al 2010). 

 The replicates in gene expression array (siRNA NAT8L in HeyA8) were averaged 

and the ratio of average siRNA NATBL/average Control in HeyA8 was considered. 

The gene names were converted into HUGO formats. Unbiased network of the top 

down and up regulating genes (considered around top 100 interactions) is displayed 

by running NetWalker on the entire gene set. 

Reverse Phase Protein Array 

HeyA8 cell lines were double transfected with NAT8L siRNA and NT siRNA.  

Cellular proteins were denatured by 1% SDS (with beta-mercaptoethanol) and 

diluted in five 2-fold serial dilutions in dilution buffer (lysis buffer containing 1% 

SDS). Serial diluted lysates were arrayed on nitrocellulose-coated slides (Grace 

Biolab) by Aushon 2470 Arrayer (Aushon BioSystems). Total 5808 array spots were 

arranged on each slide including the spots corresponding to positive and negative 

controls prepared from mixed cell lysates or dilution buffer, respectively. 

Each slide was probed with a validated primary antibody plus a biotin-

conjugated secondary antibody. Only antibodies with a Pearson correlation 

coefficient between RPPA and western blotting of greater than 0.8 were used in 

reverse phase protein array study. Antibodies with a single or dominant band on 

western blotting were further assessed by direct comparison to RPPA using cell 

lines with differential protein expression or modulated with ligands/inhibitors or 

siRNA for phospho- or structural proteins, respectively. 

The signal obtained was amplified using a Dako Cytomation–catalyzed 

system (Dako) and visualized by DAB colorimetric reaction. The slides were 



 

36 
 

scanned, analyzed, and quantified using a customerized-software Microvigene 

(VigeneTech Inc.) to generate spot intensity. 

Each dilution curve was fitted with a logistic model (“Supercurve Fitting” 

developed by the Department of Bioinformatics and Computational Biology in MD 

Anderson Cancer Center, “http://bioinformatics.mdanderson.org/OOMPA”). This fits 

a single curve using all the samples (i.e., dilution series) on a slide with the signal 

intensity as the response variable and the dilution steps are independent variable. 

The fitted curve is plotted with the signal intensities – both observed and fitted - on 

the y-axis and the log2-concentration of proteins on the x-axis for diagnostic 

purposes. The protein concentrations of each set of slides were then normalized by 

median polish, which was corrected across samples by the linear expression values 

using the median expression levels of all antibody experiments to calculate a 

loading correction factor for each sample. "Linear after normalization" values were 

transformed to Log2 values and median centered for hierarchical clustering 

analysis.  Heatmaps for unsupervised hierarchical clustering (antibody 

unsupervised but samples in order for reference).  The heatmap was generated in 

Cluster 3.0 (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) as a 

hierarchical cluster using Pearson correlation and a centered metric. The resulting 

heat map was visualized in Treeview (http://www.eisenlab.org/eisen).   

Network of the top up and down regulating proteins and phosphorylated 

proteins was displayed. The protein names were converted into HUGO formats. 

NetWalker was used to display the network of the proteins in red-green colormap 

and the phosphor-proteins in the yellow-blue colormap.  Note that if for some 

http://www.eisenlab.org/eisen
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protein the total and phosphor both were down (or up, respectively) then the color is 

dominated by the level of the total protein.  The RPPA data was median centered 

and the ratio of the NAT8L/Control was considered to draw these networks.  

Cell lines and culture conditions 

      The derivation of the human ovarian cancer cell lines A2780, HeyA8, SKOV3-

IP1, are previously reported [170,171,172,173,174]. The cell lines A2780, HeyA8, 

and SKOV3-IP1 were maintained in RPMI-1640 medium with 15% Fetal Bovine 

Serum (FBS). HeyA8-MDR and SKOV3-TR are taxane-resistant derivations of 

HeyA8 and SKOV3ip1 (Dr. Isaiah J. Fidler, MDACC, Houston, TX).  The taxane-

resistant phenotype was maintained by adding 300 ng/mL (HeyA8-MDR) and 100 

ng/mL (SKOV3-TR) of paclitaxel to the media used for HeyA8 and SKOV3-ip1.  The 

human melanoma cell line A375SM was established from pooled lung metastases 

produced by A375-P cells injected intravenously into nude mice [175]. These cells 

were maintained in Eagle's minimal essential medium supplemented with 10% fetal 

bovine serum (FBS)[176]. The melanoma cell lines UACC 62, UACC 257, and M14 

were obtained from Dr. Suhendan Ekmekcioglu (The University of Texas-MD 

Anderson Cancer Center; Houston, Texas), and were maintained in MEM 

supplemented with 10% fetal bovine serum, 100 μg/ml glutamine, penicillin (100 

units/mL), and streptomycin (100 μg/mL) (Invitrogen, Carlsbad, CA).  The Ishikawa 

human endometrial cancer cell line was maintained in MEM supplemented with 

10% FBS and 0.1% gentamicin sulfate (gift from Dr. Russell Broaddus, MDACC, 

Houston, TX) [177].  Cell lines were also routinely tested to confirm absence of 

Mycoplasma.  Cells were maintained at 37°C in a humidified incubator infused with 
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20% O2 and 5% CO2.   

Orthotopic model of ovarian cancer and melanoma in nude mice 

Female athymic nude (NCr-nu) were purchased from Taconic Farms, Inc. 

(Rockville, MD). The development and characterization of the orthotopic mouse 

model of ovarian cancer has been previously described [178,179,180]. Briefly, 

SKOV3-IP1 (1 x 106), A2780 (1 x 106), HeyA8 (0.25 x 106) human ovarian cancer 

cells were lifted with trypsin/edta, washed with PBS, and resuspended in 200 µL of 

Hank’s balanced salt solution (HBSS, Mediatech, Inc. Manassas, VA) and were 

injected into the peritoneal cavity of female nude mice.  A375-SM subcutaneous 

tumors were produced by injecting 1 × 106 cells/0.2 ml HBSS over the right hip 

region of the mice. Growth of subcutaneous tumors was monitored by weekly 

examination of the mice and measurement of tumors with calipers.  All cell lines 

have been shown to reliably form macroscopic tumor implants on peritoneal 

surfaces throughout the pelvis and abdominal cavity.   

Tumor weight was recorded at the time of necropsy and tumor tissue was 

harvested for histopatholoigcal analysis.  Proliferation index and apoptosis were 

evaluated in tumor sections with immunohistochemical staining for Ki67 and 

cleaved caspase-3 antigens, respectively.  Frozen sections were fixed in acetone + 

chloroform 1:1 for 5 minutes between two 5 minute incubations in cold acetone 

alone.  Endogenous peroxidases and non-specific epitopes were blocked with 3% 

H2O2 in PBS and 5% normal horse serum + 1% normal goat serum in PBS, 

respectively.  Sections were then incubated with primary antibody directed against 
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either Ki-67 (1:200, Neomarker, Fremont, CA) or CD31 (1:800, Cell Signaling, 

Danvers, MA) at 4°C overnight.  After washing with PBS, the appropriate HRP-

conjugated secondary antibody in blocking solution was added for 1 hour at room 

temperature.  Slides were developed with 3, 3’-diaminobenzidine (DAB) chromogen 

(Invitrogen, Carlsbad, CA) and counterstained with Gil No.3 hematoxylin (Sigma-

Aldrich, St. Louis, MO).  Proliferative index and cleaved caspase 3 index was 

calculated by dividing the number of positive nuclei (brown) or by the total number 

of cells for each of 5 randomly selected 200x high power fields per tumor specimen 

for each treatment group. 

Forward transfection 

 In the case of forward transfection, 6-well plates were inoculated with 

150,000 cancer cells per well with a goal of transfection at 50% confluence within 

12-24 hours of plating. Based on validation experiments, the appropriate amount of 

the siRNA of choice was incubated for 20 minutes at room temperature in serum-

free culture medium (1 mL/well) with Lipofectamine 2000 (Invitrogen, Carlsbad, CA) 

at a 3:1 ratio of volume (µL) Lipofectamine 2000 to microgram siRNA. After 

incubation, siRNA/Lipofectamine-containing medium were added to cells and media 

to achieve a siRNA concentration of 50 nM. Cells and transfection media were 

incubated at 37oC for 4 hours, and then transfection medium was changed to 

serum-containing medium.  

Reverse transfection 
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 In the case of reverse transfection, and based on previously performed 

validation experiments, the appropriate amount of the siRNA of choice was 

incubated for 20 minutes at room temperature in serum-free culture medium (500 

mcL/well) with Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA) at a 5:1 ratio of 

volume of Lipofectamine RNAiMAX to mcL siRNA. After incubation, 500 mcL of the 

solution was placed in each well, and then 75,000 cancer cells in 2.5 mL of serum-

free media were added to each well to achieve a final siRNA concentration of 50 

nM. Cells were incubated with the transfection medium for 4-6 hours at 37oC, and 

then medium was changed to serum-containing medium.  

Double transfection 

 If a longer duration of mRNA knockdown was needed than was offered by 

single forward or reverse transfection, then sequential double transfection was 

used. In this case, forward transfection was initially performed, and 72 hours later, a 

reverse transfection was performed. 

RNA Extraction 

      Total RNA was extracted from cells growing in vitro using RNeasy Kit (Quiagen, 

Venlo, Netherlands). Cells were lifted with trypsin/edta, washed with PBS, and 

centrifuged at 10,000 rpm for 5 minutes to form the pellet. The supernatant was 

discarded, and RNA was extracted according to the company protocol. RNA was 

quantified using a spectrophotometer and 1 µg was transcribed into complementary 

DNA (cDNA) using the Verso cDNA kit (Thermo Fisher Scientific), closely following 
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the manufacturer’s protocol.  Quantitative RT PCR was then used to assess levels 

of expression.                           

In vitro apoptosis 

 Cells were plated in 6-well plates at 150,000 cells per plate, targeting 

approximately 50% confluence in serum-containing medium.   After two rounds of 

transfection with siRNA (144 hours), cell viability was assessed using Annexin V 

and 7-amino-actinomycin-D (7AAD) staining (BD PharmingenTM, Franklin Lakes, 

NJ) by flow cytometry. Briefly, cells were harvested, washed in PBS, and incubated 

with PE-Annexin V and 7AAD according to package insert instructions for 20 

minutes prior to flow cytometric analysis. 

In vitro proliferation 

Cells were plated in 6-well plates at 150,000 cells per plate, targeting 

approximately 50% confluence in serum-containing medium. After two rounds of 

siRNA transfection at time point 96 hours, the percentages of cells proliferating 

(defined as S-phase) were determined using the Click-iT EdU flow cytometry kit 

(Invitrogen, Carlsbad, CA). Cells were incubated with 10 mcM 5-ethynyl-2-

deoxyuridine (EdU) for 2 hours, lifted, and washed with 1% bovine serum antigen in 

d-PBS. Cells were fixed with 4% paraformaldehyde in d-PBS for 15 minutes at room 

temperature and then maintained at 4oC protected from light until the time of flow 

cytometric analysis, duration not to exceed 7 days. On the day of analysis, cells 

were washed in 1% BSA in d-PBS and then permeabilized with 1x saponin-based 

reagent for 15 minutes at room temperature. The cells were then incubated with a 
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solution of 1x reaction buffer, CuSO4, Alexa-Fluor 488 azide dye, and proprietary 

reaction buffer additive for 30 minutes at room temperature prior to flow cytometric 

analysis. 

In vitro cell cycle 

For cell-cycle analysis, cells were transfected with siRNA as described for 48 

hours, trypsinized, washed in PBS, and fixed in 75% ethanol overnight. Cells were 

then centrifuged, washed twice in PBS, and reconstituted in PBS with 50 μg/mL of 

propidium iodide. Propidium iodide fluorescence was assessed by flow cytometry. 

In vitro invasion and migration 

 A polycarbonate membrane with 10-μm pores (Osmonics, Livermore, CA) 

was uniformly coated with a defined basement membrane matrix consisting of 

human laminin/type IV collagen/gelatin and used as the intervening barrier to 

invasion.   The bottom well contained 500 µl of 5% FBS media.  Cancer cells were 

added to the top wells with approximately 100,000 cells/well in serum free media. 

After 24-hour incubation in a humidified incubator at 37°C with 5% CO2, cells that 

had invaded through the basement membrane were collected, stained, and counted 

by light microscopy[181]. Motility (migration) was determined in membrane invasion 

culture system chambers containing polycarbonate filter (with 10 μm pores) that had 

been soaked in 0.1% gelatin. Tumor cells (5 × 104) were seeded in each upper well, 

allowed to incubate at 37°C for 6 hours in complete media, and subsequently 

processed as described for the invasion assay. 
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Results 

Metabolic Profile of high grade serous epithelial ovarian cancer  

To evaluate the global metabolic profile of human epithelial ovarian cancer 

(n=71) tissues and normal non-cancerous ovarian tissue (n=15), we used both 

liquid and gas chromatography coupled with mass spectrometry to identify relative 

metabolite levels.  A total of 313 metabolites were identified between these two 

groups (Figure 2), of which 172 were significantly altered (p<0.05) between ovarian 

cancer tissues and normal ovary tissues. Of those 172 significantly altered 

metabolites, 142 were elevated and 30 were decreased in ovarian cancer.  For 

visualizing the relationship between the 172 altered metabolites, hierarchical 

clustering was used to arrange the metabolites on the basis of their relative 

abundance levels across samples (Figure 3). 
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Figure 2.  Global metabolic profile of ovarian cancer and normal ovary.  
Hierarchical clustering of 313 metabolites identified in LC/MS and GC/ MS 
metabolic progiling of ovarian cancer (n=72) and normal ovarian sample (n=15).  
Analysis reported with relative intensity to the median value for each metabolite set 
to 1. 
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Figure 3.  Significantly altered metabolites in ovarian cancer.  
Hierarchical clustering of 172 significantly altered metabolites (p<0.05).   
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Of the 142 metabolites that were significantly up-regulated, the majority involved 

the lipid pathway (53.5%); this was followed by amino acid (19.0%), carbohydrate 

(9.9%), and nucleotide metabolic pathways (9.2%) (Figure 4).   

 

 

 

Figure 4.  Pathways affected by altered metabolism in ovarian cancer.  

 

Although lactate levels were not significantly elevated in ovarian cancer as 

compared to the normal ovary, the changes observed in the glycolytic intermediates 

was consistent with increased glucose metabolism in ovarian cancer.  Increased 

levels of 6-carbon glycolytic intermediates glucose-6-phosphate (G6P) and fructose-

6-phosphate (F6P) reflect increased utilization of intracellular glucose, while 

decreased levels of glucose, 3-phosphoglycerate (3-PG), 2-phosphoglycerate (2-

PG) and phosphoenolpyruvate (PEP) suggest increased glycolytic activity with 
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contributions to lipid, amino acid, and nucleotide synthesis through pentose 

phosphate pathway (Figure 5). 

 

Figure 5. Increased glucose metabolism in ovarian cancer.  Values are mean 
values of the relative intensity ± SEM.   
 

Indeed, ovarian cancer revealed low 6-phosphogluconate, and elevated 

ribose-5-phosphate, and sedoheptulose-7-phosphate further suggesting increased 

activity of the pentose phosphate pathway (PPP) to promote NADPH production 

and nucleotide synthesis (Figure 6). 
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Figure 6.  Increased PPP metabolism in ovarian cancer.  Values are mean 
values of the relative intensity ± SEM.   
 

The major pathway altered in ovarian cancer from the normal ovary was the 

lipid pathway.   Ovarian cancer showed significantly elevated levels for essentially 

all long-chain fatty acids, with the notable exception of arachidonate and adrenate 

(Table 2).  
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Table 2.  Elevation of long-chain fatty acids in ovarian cancer.  Fold changes 
are the mean relative values of ovarian cancer over the normal ovary.  NS is 
p>0.05. 

Metabolite Fold Change p-value 

conjugated linoleate 4.19 1.86E-05 
eicosenoate (20:1n9 or 11) 3.50 1.32E-06 
10-nonadecenoate (19:1n9) 3.06 5.70E-06 
behenate (22:0) 2.81 6.10E-05 
docosadienoate (22:2n6) 2.61 0.0002 
dihomo-linoleate (20:2n6) 2.33 0.0005 
palmitoleate (16:1n7) 2.24 2.33E-05 
10-heptadecenoate (17:1n7) 2.18 4.39E-05 
docosatrienoate (22:3n3) 2.10 0.0148 
oleate (18:1n9) 1.89 0.0004 
myristoleate (14:1n5) 1.73 0.0002 
nonadecanoate (19:0) 1.72 2.07E-10 
stearidonate (18:4n3) 1.67 NS 
margarate (17:0) 1.66 1.80E-06 
adrenate (22:4n6) 1.46 NS 
pentadecanoate (15:0) 1.44 0.0306 
myristate (14:0) 1.39 0.0053 
palmitate (16:0) 1.38 0.0027 
arachidonate (20:4n6) 1.24 NS 
stearate (18:0) 1.20 0.0073 

 

The most up-regulated long chain fatty acid was the bacterial gut derived 

conjugated linoleate (Fold change 4.19, p-value 1.86E-05).  Also, odd-numbered 

carbon chain fatty acids such as pentadecanoate and margarate, and both 

saturated (e.g. palmitate and stearate) and unsaturated (e.g. palmitoleate and 

oleate) fatty acids were elevated.  Interestingly, in ovarian cancer, there are 

significantly increased levels of the essential fatty acids linoleic acid (n-6), and 

linolenic acid (n-3) (Figure 7).  Importantly, n-6 and n-3 levels are the precursors for 

prostaglandins, thromboxanes, leukotrienes, hydroxy fatty acids, and lipoxins[182].  

Higher levels of these compounds are associated with a pro-inflammatory state in 
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cancer.  Indeed, a significant up-regulation of eicosanoids were seen in the ovarian 

cancer samples compared to the normal ovarian tissue with prostaglandin E2 being 

the highest up-regulated eicosanoid (Fold change 15.15, p-value: 4.09E-08) (Table 

3).   

 

 

Figure 7. Elevated levels of the essential fatty acids, linoleic acid (n-6) and 
linolenic acid (n-3), in ovarian cancer . Values are relative scaled intensity mean 
values±SEM.  
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Table 3.  Up-regulation of eicosanoids in ovarian cancer.  Fold changes are the 
mean relative values of ovarian cancer over the normal ovary.  NS is p>0.05. 

 

Metabolite Fold Change p-value 

prostaglandin E2 15.15 4.09E-08 
6-keto prostaglandin F1alpha 11.12 1.88E-06 
prostaglandin I2 8.25 8.21E-06 
prostaglandin A2 6.80 5.14E-05 
15-HETE 6.28 8.81E-05 
prostaglandin D2 5.87 1.00E-04 
prostaglandin E1 5.04 1.05E-06 
thromboxane B2 2.57 1.72E-06 
 

Along with the up-regulated fatty acids and eicosanoids in the lipid pathway, a 

similar lipid profile was seen with multiple components of the phospholipid 

biosynthetic pathways to support elevated membrane demands of cancer.  There 

were significantly elevated levels of the membrane phospholipid precursor 

compounds such as choline, ethanolamine, and cytidine 5'-diphosphocholine  

(CDP-choline), and multiple lysophospholipid intermediates in membrane 

phospholipid biosynthesis (e.g. 2-myristoylglycerophosphocholine, 2-

palmitoleoylglycerophosphoethanolamine, and 1-stearoylglycerophosphoinositol).  

These changes along with changes in cholesterol metabolism together indicate the 

massively altered membrane phospholipid metabolism in cancer.  

 

 

 



 

52 
 

Brain specific N-acetylaspartate (NAA) is one of the highest up-regulated 

metabolites in ovarian cancer 

For further evaluation of each individual of the 142 metabolites that were 

significantly up-regulated, we narrowed our list to the 20 highest fold changes of 

metabolites in ovarian cancer (Table 4).  

Table 4.  Twenty highest up-regulated metabolites in ovarian cancer.  Fold 
changes are the mean relative values of ovarian cancer over the normal ovary.   

 

Metabolic 

Pathway 
Metabolite 

Fold 

Change 
p-value 

Nucloetide adenosine 5'-monophosphate (AMP) 58.54 2.53E-06 
Lipids CDP-choline 30.38 1.00E-16 
Amino Acid N-acetylaspartate (NAA) 28.38 2.30E-11 
Lipids 2-oleoylglycerophosphocholine 19.4 1.13E-10 
Lipids prostaglandin E2 15.15 4.09E-08 
Amino Acid 5-methylthioadenosine (MTA) 13.13 3.94E-12 
Lipids 6-keto prostaglandin F1alpha 11.12 1.88E-06 
Amino Acid gamma-aminobutyrate (GABA) 11.07 0.001 
Lipids 1-palmitoylglycerophosphocholine 10.19 6.06E-06 
Carbohydrates UDP-glucuronate 9.27 3.10E-09 
Amino Acid N-acetyl-aspartyl-glutamate (NAAG) 9.14 3.51E-10 
Lipids 1-oleoylglycerophosphocholine 9.07 1.39E-07 
Lipids 2-palmitoylglycerophosphocholine 8.38 2.91E-07 
Lipids prostaglandin I2 8.25 8.21E-06 
Nucloetide thymine 7.83 8.27E-07 
Lipids 2-arachidonoylglycerophosphocholine 7.72 8.93E-05 
Lipids prostaglandin A2 6.8 5.14E-05 
Lipids 1,2-propanediol 6.77 0.0105 
Amino Acid 4-hydroxyphenylpyruvate 6.63 9.23E-08 
Lipids 15-HETE 6.28 8.81E-05 

 

Again, the majority of the highest up-regulated metabolites involved lipid and 

amino acid pathways.  The highest fold change was the nucleotide and energy 

signaling molecule adenosine 5'-monophosphate (AMP), followed by the lipid 
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membrane precursor CDP-choline, and NAA.  Since these fold changes were based 

on mean values, and there are skewed distributions across metabolites,  we 

analyzed the median values of the top 8 up-regulated metabolites from table 1 to 

further determine which metabolites are consistently more abundant in ovarian 

cancer.  Of these 8, NAA had the highest median level in ovarian cancer (Figure 8). 

 

 

 

 

 

Figure 8.  Median levels of the highest fold-change metabolites in ovarian 
cancer and in the normal ovary.  

 

NAA was one of the most significant alterations in ovarian cancer tissues 

compared to the normal ovary. NAA was greater than 28 fold up-regulated in 

ovarian cancer compared to the normal ovary (2.30E-11) (Table 4).  NAA levels in 

ovarian cancer tumors were strongly positively correlated with the brain dipeptide N-
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acetyl-aspartyl-glutamate (NAAG) (r=0.85, p<0.001), along with several eicosanoids 

including prostaglandins E1 (r=0.54, p<0.001) and E2 (r=0.50, p<0.001), the TCA 

cycle substrate malate (r=0.45, p<0.001), and AMP (r=0.40, p<0.001) (Table 5).  

NAAG was greater than 9 fold elevated in ovarian cancer (p<3.51E-10) (Table 4).   
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Table 5.  Metabolites associated with NAA levels.  List of metabolites that were 
strongly significantly associated with NAA levels.  

 

 

As mentioned, there are several known biochemical reactions that form and 

breakdown NAA (Figure 9).  The main biosynthetic enzyme for NAA is Aspartate N-

acetyltransferase (NAT8L).  The substrates for the NAT8L enzyme are acetyl-coA 

and aspartic acid which form NAA and coA.  This hydrolysis of NAAG releases 

glutamate and NAA.   The main breakdown enzyme for NAA is aspartocyclase 

(ASPA).  NAA is hydrolyzed by ASPA into aspartate and a carboxylate, typically 

acetate.  NAA reacts with glutamate to form NAAG by the enzyme NAAG 

Synthetase encoded by RIMKLB. To determine if the elevation in NAA was 

associated with its accumulation or its breakdown, we determined patient gene 

Metabolite Super-
Pathway 

Spearmon’s 
r p-value 

N-acetyl-aspartyl-glutamate  
(NAAG) Amino acid 0.85 <0.001 

prostaglandin E1 Lipid 0.54 <0.001 
6-keto prostaglandin F1-alpha Lipid 0.52 <0.001 
homocysteine Amino acid 0.51 <0.001 
prostaglandin E2 Lipid 0.50 <0.001 
prostaglandin I2 Lipid 0.46 <0.001 
malate Energy 0.45 <0.001 
thromboxane B2 Lipid 0.44 <0.001 

nicotinamide Cofactors and 
vitamins 0.44 <0.001 

gamma-glutamylalanine Peptide 0.44 <0.001 
prostaglandin D2 Lipid 0.42 <0.001 
inositol 1-phosphate (I1P) Lipid 0.42 <0.001 
phenyllactate (PLA) Amino acid 0.41 <0.001 
3-(4-hydroxyphenyl)lactate Amino acid 0.41 <0.001 
adenosine 5'-monophosphate 
(AMP) Nucleotide 0.40 <0.001 
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expression levels of NAT8L, FOLH1, and NAALAD2 as the NAA accumulation 

genes. ASPA and RIMKLB gene expression levels were evaluated as the NAA 

breakdown genes (Figure 10). NAA levels was strongly correlated with NAT8L gene 

expression levels (r=0.52, p<0.0001), FOLH1 was weakly correlative (r=0.25, 

p=0.017), and NAALAD2 was weakly negatively correlative (r= -0.24, p=0.023).  

ASPA and RIMKLB had no correlation with NAA levels.  This suggests that high 

NAA levels in ovarian cancer are driven by up-regulation of its biosynthesis NAT8L.  

Furthermore, the low levels of its substrate aspartate in ovarian cancer further 

suggest that NAA biosynthesis as the cause of high NAA levels (Figure 11).   

One possibility of elevated NAA is due to global up-regulation of N-acetylation 

across various amino acids.  However, our metabolic profile did not show a 

consistent pattern of elevated N-acetyl amino acids (Table 6).  In fact, aspartic acid 

was disproportionately more N-acetylated than all of the N-acetylated amino acids 

in ovarian cancer.  This suggests that elevated NAA is not a result of global N-

acetylation processes of amino acids; rather, there is a significant selection for N-

acetylation of aspartic to form NAA in ovarian cancer. 
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Table 6.  Fold change N-acetylation of amino acids in ovarian cancer.  Fold 
change is relative intensity of ovarian cancer over the normal ovary.  
[red box= up regulation(p<0.05), green box= down regulation (p<0.05)] 

Amino Acid Fold Change N-acetylated 
amino acid Fold change 

serine 1.03 N-acetylserine 0.88 
threonine 1.1 N-acetylthreonine 1.6 
alanine 1.35 N-acetylalanine 0.91 

aspartate 0.71 N-acetylaspartate 
(NAA) 28.38 

glutamate 1.14 N-acetylglutamate 4.62 
tryptophan 0.87 N-acetyltryptophan 0.65 
methionine 0.97 N-acetylmethionine 0.76 
ornithine 0.48 N-acetylornithine 0.8 
putrescine 3.72 N-acetylputrescine 2 
glycine 1.27 N-acetylglycine 0.7 
 

To validate that NAA levels were significantly higher in ovarian cancer 

compared to the normal ovary, we evaluated a separate cohort of ovarian cancer 

(n=47) and normal ovarian samples (n=3) using NMR spectroscopy.  NMR also has 

the advantage of giving exact quantification of metabolite concentrations.  Indeed, 

the NAA peak at 2.0-2.1 ppm was distinctly seen in ovarian cancer samples, and 

absent in the normal ovary (Figure 12a).  Ovarian cancer samples had significantly 

higher levels of NAA compared to the normal ovary (Figure 12b) with concentrations 

on average at 104.2 µM (±14.57 SEM), and NMR could not detect any NAA in 

normal ovaries (p<0.0001).   
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Figure 9. Schema of the NAA-NAAG pathway.  NAA is biosynthesized by 
aspartate N-acetyltransferase (NAT8L) from acetyl CoA (Ac-CoA) and aspartate.  
NAA is metabolized into acetate and aspartate by aspartoacyclase (ASPA).  NAA 
can also form NAAG by reacting with glutamate by the enzyme NAAGS encoded by 
RIMKLB gene.  NAAG can also revert back to NAA and glutamate by the enzymes 
GCP-II encoded by FOLH1 or by GCP-III encoded by NAALAD2.  
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Figure 10. NAT8L is strongly correlated with NAA levels in ovarian cancer.  
Spearmon’s correlation (r )  of relative NAA levels in 101 ovarian cancer patients 
and patient gene expression levels of the NAA pathway.   
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Figure 11. Low levels of aspartic acid in ovarian cancer.  Aspartate levels of 101 
ovarian cancer samples and 15 normal ovary samples shows lower levels of 
aspartate in ovarian cancer compared to the normal ovary.  
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Figure 12.  NMR spectroscopy:  higher levels of NAA in ovarian cancer.   a.) 
NMR spectra of 3 ovarian cancer samples and 2 normal ovary samples shows the 
distinct NAA peak in ovarian cancer. (blue, purple, red color spectra=  3 ovarian 
cancer samples; black and green color spectra= 2 normal ovary samples) b.) NMR 
spectroscopy of NAA samples showing the levels of NAA in 69 ovarian cancer 
samples and 10 normal ovaries.  
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Clinical implications of NAA biosynthesis 

On the basis of substantial elevations in NAA observed in ovarian cancer, we 

next wondered if there were any clinical implications of these elevations.  We 

investigated the relative NAA levels of 101 ovarian cancer samples using GC/LC 

mass spectrometry.  Patients with higher levels of NAA had worsening overall 

survival compared to patients with low NAA levels (Figure 13).  High NAA overall 

survival was 1295 days and low NAA survival was not reached (p=0.038). 

 

 

Figure 13.  High NAA levels are associated with worsening overall 
survival in ovarian cancer.  Kaplan-Meier analysis of relative NAA levels and 
overall survival in 101 ovarian cancer patients.   

 
On the basis of NAA levels being strongly correlated with NAT8L gene 

expression, we next examined clinical outcomes of 485 patients based on NAT8L 

gene expression from the TCGA.  Analysis of RNASeq gene expression data 

revealed that high expression of NAT8L (cut-off > 0.5 z-score) is associated with 
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worse overall survival in high grade serous ovarian cancer (Figure 14a).  The 

median overall survival of the high NAT8L expression was 35 months compared to 

45 months in the low NAT8L group (p=0.031).  To validate, we analyzed a second 

independent cohort of 285 ovarian cancer patients (Figure 14b). Concordantly, high 

NAT8L (cut-off > 47th percentile) gene expression was associated with worse 

overall survival compared to the low NAT8L gene expression group.  The median 

overall survival of the high NAT8L expression were  40 months compared to 52 

months in the low NAT8L group (p=0.005). Finally, we evaluated mRNA levels of 

NAT8L in a cohort of ovarian cancer patients from our institution (n= 135) and 

normal non-cancerous ovaries (n=15).  Ovarian cancer patients had over a 3 fold 

increased levels of NAT8L expression compared to the normal ovary (p<0.001) 

(Figure 15). 
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Figure 14.  High NAT8L gene expression is associated with worse overall 
survival.  a.) Kaplan Meier analysis of NAT8L gene expression and overall survival 
using RNASeq platform in TCGA. b.) Kaplan Meier analysis of NAT8L gene 
expression and overall survival from Tothill gene expression database. 
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Figure 15.  NAT8L gene expression is significantly higher in ovarian cancer.  
RT-PCR of NAT8L gene expression comparing ovarian cancer samples (n=135) to 
normal ovary samples (n=15).  Mean RQ values ± SEM.   
 

To determine if NAT8L protein levels were also significantly elevated in 

ovarian cancer and the normal ovary, we examined 209 ovarian cancer patients and 

10 normal ovary tissues from our institution using immunohistochemistry of anti-

NAT8L protein in a tissue microarray.  We found significantly higher expression of 

NAT8L compared to the normal ovary (Figure 16).  Based on a semi-quantitative H-

score method, ovarian cancer had a 1.92 fold higher levels of NAT8L staining 

compared to the normal ovary (p<0.0001). Furthermore, higher NAT8L staining was 

associated with poor overall survival in ovarian cancer (Figure 17).  High NAT8L 

expression was associated with 3.86 years overall survival compared to 9.09 years 

with low NAT8L expression (p<0.001). 
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Figure 16.   Ovarian cancer has significantly higher NAT8L protein levels 
compared to the normal . Immunohistochemistry of anti-NAT8L in 208 ovarian 
cancer samples and 10 normal ovarian samples.  *=p<0.001.   
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Figure 17.  High NAT8L protein levels are associated with worse overall 
survival in ovarian cancer.  Kaplan-Meier analysis of NAT8L protein expression 
and overall survival in 208 ovarian cancer samples.   
 

On the basis that high NAT8L up-regulation is driving NAA accumulation in 

ovarian cancer; we considered the relative NAT8L gene expression across various 

cancer types in the TCGA.  We evaluated the relative gene expression levels and 

copy number alterations of NAT8L from across the 20 cancer types.  Surprisingly, 

we found relatively high levels of NAT8L expression in HSOEC, skin cutaneous 

melanoma; glioblastoma multiforme (GBM), kidney chromophobe, and brain lower 

grade glioma cancer having the  highest expressions of NAT8L in the TCGA (Figure 

18) (Table.   Breast, uterine endometroid, and thyroid cancer also had relatively 

high NAT8L expression among the 20 tumors assessed from the TCGA.  NAT8L 
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copy number alterations distinctly showed that ovarian cancer had the greatest 

degree of copy number alterations among the 20 cancer types (Figure 19). 

 

Figure 18.  NAT8L gene expression across 20 different tumor types. Gene 
expression data of NAT8L Log2 normalized from TCGA. 
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Table 7.  TCGA acronymns for figure 18 and 19.    

Acronymn Tumor Type 
BRCA Breast cancer 
KIRC Renal clear cell 
COAD, READ Colon and Rectal adenocarcinoma 
UCEC Endometrial Cancer 
GBM Glioblastoma multiforme 
LUSC Lung squamous carcinoma 
OV Ovarian 
LUAD Lung adenocarcinoma 
HNSC Head and neck squamous cell 

carcinoma 
THCA Pappillary thyroid cancer 
SKCM Cutaneous melanoma 
STAD Stomach adenocarcinoma 
BLCA Bladder cancer 
LGG Lower grade glioma 
CESC Cervical 
LAML Acute Myeloid leukemia 
DLBC Diffuse large B cell lymphoma 
ESCA Esophageal carcinoma 
KIRP Papillary kidney 
LIHC Liver 
PAAD Pancreatic adenomcarcinoma 
PRAD  Prostate adenocarcinoma 
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Figure 19.  NAT8L copy number alterations across 20 types. TCGA Copy 
number alterations Log2 transforemed. 
 

Based on the fact that NAT8L gene expression levels were comparatively 

high across several tumor types, we evaluated the TCGA database to determine if 

high NAT8L affects clinical outcomes in other cancer types.  Using the publically 

available website www.cbioportal.org, TCGA survival data for NAT8L was analyzed.  

TCGA currently does not have melanoma survival data, therefore we analyzed two 

different patient cohort gene arrays in melanoma.  Profoundly, high NAT8L 

expression was found to have worse overall survival in invasive breast, lung 

http://www.cbioportal.org/
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squamous, colon, uterine, melanoma and kidney renal cell cancers (Figure 20).  

Thus suggesting that worsening survival due to elevated NAA biosynthesis is not 

unique only to ovarian cancer. 

 

Figure 20.  High NAT8L with worse overall survival in several cancer types.  
NAT8L gene expression data from TCGA (breast cancer, lung squamous, colon 
adenocarcinoma, uterine endometrioid carcinoma, renal cell carcinoma) and 
melanoma gene expression from previously published database [167-168]. 
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Biologic significance of NAA synthesis 

To determine the biological significance of NAA biosynthesis in ovarian cancer, 

we next screened the CCLE and NCI-60 database to identify cell lines and cancer 

types with high NAT8L expression.  Indeed in the CCLE, ovarian cancer cell lines 

had some of the highest expressions of NAT8L (Figure 21).  We also analyzed the 

NCI-60 cell lines, the median (±S.D.) NAT8L expression level of all 60 cancer lines 

was 4.45(±0.81) GCRMA.  Melanoma, lung, renal, and ovarian cancer cell lines had 

some of the highest expression of NAT8L (Figure 22). 
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Figure 21.  Gene expression of NAT8L from CCLE.   Gene expression of cell 
lines clustered by cancer type.  Numbers in paraenthesis after each cancer type are 
the number of cell lines.   
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Figure 22. NCI-60 cell lines with high NAT8L gene expression (sorted by top 
50%). LC=lung cancer, ME=melanoma, RE= renal, OV= ovary, CO=colon cancer, 
PR=prostate cancer, BR=breast, LE=leukemia. 

 

 

 

To determine the effects of NAT8L inhibition in cancer cells, siRNA was used to 

reduce NAT8L levels in cancer cell lines.  To confirm NAT8L knockdown, transient 

transfection of several ovarian (HEYA8, SKOV3, A2780) and melanoma cell lines 
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(UACC 257, UACC 62, and M14) caused 60-96% knockdown of NAT8L gene 

expression at 48 hours (Figure 23).  

 

Figure 23. siRNA NAT8L knockdown  of NAT8L gene expression in ovarian 
and melanoma cancer cell lines.   Gene expression levels of NAT8L detected by 
RT-PCR.  RQ= relative real time quantitation.  Values are mean±SEM.  
 

We next evaluated the effect of NAT8L knockdown on cancer cell growth and 

survival.   We selected HEYA8 and A2780 cell lines in ovarian cancer as they had 

the highest knockdown of NAT8L using siRNA.  First, we evaluated the effect of 

NAT8L knockdown on cell viability (Trypan blue) after one [72 hours(3 days)] and 

two [144 hours(6 days)] rounds of transfections (Figure 24).  After the one round, 
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cell viability was decreased by 9.4% by siRNA NAT8L compared to the control non-

target siRNA (siRNA NT) (p<0.003).  After two rounds of transfections, cell viability 

was decreased by 24.0% by siRNA NAT8L compared to siRNA NT (p<0.01).  We 

also analyzed a synthetic lethality screen for chemotherapy resistant cell lines 

A2780-CP, HEYA8-MDR, and SKOV3-TR.  Surprisingly, after one round NAT8L 

knockdown and chemotherapy at 120 hours (Day 5), we saw a significant decrease 

in cell viability in all three chemo-resistant cell lines (Figure 25).  Thus, the effect of 

NAT8L knockdown in cancer cell viability using siRNA appears to occur after 5 days 

of treatment.  Therefore, we performed the remainder of our in vitro siRNA 

experiments with two rounds of transfections unless noted otherwise.  
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Figure 24.  Effect of siRNA NAT8L on cancer cell viability after one and two 
rounds of transfections.  Values are mean ±SEM. 
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Figure 25.  Cell viability with siRNA NAT8L compared to siRNA NT  in 
chemotherapy resistant cell lines.  Values are mean ±SEM. 
 

Trypan blue stains cells that are either dead or have damaged cell 

membranes; therefore we investigated if NAT8L knockdown increased cellular 

apoptosis.  Indeed, HEYA8 and A2780 showed that siRNA NAT8L had a significant 

increase of total apoptosis compared to siRNA NT by 38.53% (p<0.001) and 

37.85% (p<0.001), respectively (Figure 26).  To evaluate the in vitro generalizability 

of siRNA NAT8L, melanoma cell lines UACC 257, UACC 62, and M14 similarly 

showed an increase in apoptosis consistent with findings in ovarian cancer cell lines 

(Figure 27).  Furthermore, knockdown of NAT8L in combination with paclitaxel 

treatment displayed a synergistic effect on apoptosis (Figure 28).  Cells treated with 

paclitaxel and siRNA NAT8L had a 29.83% increase in apoptosis compared to 

paclitaxel and siRNA NT treated cells (p<0.001). 
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Figure 26.  Knockdown of NAT8L increases apoptosis in ovarian cancer cells.  
Values are mean ±SEM.  *= p<0.001. 
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Figure 27.  Knockdown of NAT8L increases apoptosis in melanoma cancer 
cells.  Values are mean ±SEM.  *= p<0.001. 
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Figure 28. Knockdown of NAT8L increases sensitivity of paclitaxel’s effect on 
ovarian cancer cell apoptosis.  Values are mean ±SEM.  *= p<0.001 
 

On the basis that NAT8L is a putative GCN5 related gene (GCN5 is a 

ubiquitous histone acetyltransferase that promotes transcriptional activation), we 

investigated if NAT8L knockdown has an effect in cancer cell proliferation and cell 

cycle progression.   Indeed, ovarian cancer cells treated with siRNA NAT8L had a 

significantly decreased cell proliferation compared to siRNA NT (Figure 29a).  
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Proliferation decreased by 23.65% (p<0.001) and 19.13% (p<0.001) in A2780 and 

HEYA8 cells, respectively.  Furthermore, cells treated with siRNA NAT8L decreased 

cell cycle progression compared to siRNA NT.   HEYA8 cells with down-regulated 

NAT8L had an 8.4% increase in the number of cells with G1 phase (p<0.001), and 

an 11.65% decrease in the number cells in the S phase (p<0.001) (Figure 29b).  

Thus, knockdown of NAT8L decreased ovarian cancer cell’s ability to proliferate and 

progress through the cell cycle suggesting that NAT8L acetylation may have 

functions similar to histone acetyltransferases to promote transcriptional activation.    
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Figure 29.  Knockdown of NAT8L decreases cell proliferation and cell cycle 
progression.  Values are mean ±SEM.  *= p<0.001 
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On the basis that one of the proposed functions and association of NAA 

biosynthesis in the human brain is in cell energy production, we hypothesized that 

knockdown of NAT8L would decrease the levels of ATP in cancers cells.  We 

observed a significant decrease in ATP and ADP levels in HEYA8 cells treated with 

siRNA NAT8L, and a decrease of ADP in A2780 cells (Figure 30).  ATP levels 

decreased by 20.8% (p=0.03) in HEYA8 cells.  In A2780, although ATP levels were 

decreased by 13%, this was not statistically significant (p=0.17).  ADP levels were 

decreased by 19 %( p<0.001) and 32% (p=0.002) in HEYA8 and A2780 cells, 

respectively.  

 

Figure 30.  The effect of siRNA NAT8L on intracellular ATP and ADP.  Values 
are mean ±SEM. 
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Due to the decreased ATP and ADP levels in siRNA NAT8L, we hypothesized that 

this catabolic switch would significantly decrease cancer cell’s metastatic potential.  

Indeed, knockdown of NAT8L in HEYA8 cells significantly decreased migration and 

invasion by 91% and 92%, respectively (p<0.001) (Figure 31). 

 

.  

Figure 31.  Knockdown of NAT8L significantly decreased migration and 
invasion Values are mean ±SEM. 
 

To better understand the consequences of inhibiting NAA production on cancer 

cell gene and protein signaling, we evaluated siRNA NAT8L knockdown in HEYA8 

cells using a high throughput antibody based reverse phase protein array (RPPA) 

and high throughput gene expression array.  We used HEYA8 cell lines due to the 

fact that there was 96% knockdown of NAT8L from the siRNA, and its robust 

therapeutic response.  From our RPPA analysis, one of the largest effects of siRNA 

NAT8L was inhibition of negative cell death regulation, and increase in regulation of 
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kinase activity (Figure 32A).  One of the largest effects was down-regulation of AKT 

phosphorylation at Serine 479 and Threonine 308 suggesting that the anabolic and 

tumorigenic effects of this major oncogenic kinase were abrogated (Figure 32A).  

Furthermore in this network, significant inhibition in regulation of cell localization is 

predicted with decreases in paxillin, fibronectin, PKC-α, and Src phosphorylation at 

Y416 and Y527, thus suggesting decreased metastatic potential in cancer cells.  In 

the network of regulation of kinase activity, AMPK (PRKAA1) phosphorylation at 

Threonine 172 was dramatically higher with NAT8L knockdown.  Furthermore, there 

was high phosphorylation of acetyl-coA carboxylase (ACC) at residue position 

serine 79 which inhibits its activity (Figure 32A).  AKT is a major negative regulator 

of AMPK.  This indicates that knockdown of NAT8L switches HEYA8 cancer cells 

from an anabolic state to a catabolic state.  Since ACC is the major rate limiting 

enzyme reaction for de novo lipid synthesis, we evaluated the effect NAT8L 

knockdown on the cell’s fatty acid levels.  Cells were transfected with siRNA NAT8L 

lead to a dramatic decrease in cell fatty acids compared to NT siRNA (Figure 32B).  

NAT8L siRNA caused a 67.7% decrease of fatty acid levels compared to the NT 

siRNA (p=0.0004). 
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Figure 32.  Knockdown of NAT8L up-regulates switches cell to a catabolic 
state and decreases de novo lipogenesis.  Red boxes = upregulation, green 
boxes= down regulation, black boxes = no change.  Red circle = upregulation of 
protein levels, Yellow circle = upregulation of protein phosphorylation, Green ciricle= 
down regulation of protein levels, blue circle = down regulation of phosphorylation of 
protein.  *=p<0.001.   
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Hierarchical cluster analysis of integrated gene expression from siRNA 

NAT8L and siRNA NT had 1961 significantly different gene expression data 

(p<0.001) (Figure 33).  Network analysis showed significant decreases in a large 

number of genes involved in mitosis and the M phase of the cell cycle.    On the 

other hand, a number of genes involved in the catabolic processes were up-

regulated with NAT8L knockdown.  These gene and protein expression results 

indicate that one of the major roles of NAA biosynthesis involves regulation of cell 

division and growth in mitosis, and the absence of NAA biosynthesis confers a 

catabolic process in cancers cells decreasing its potential for proliferation, 

metastasis, and survival. 
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Figure 33.  Knockdown of NAT8L involves the negative regulation of cell 
division/mitosis and  positive regulation of  catabolic genes. Green boxes= 
down regulation of gene expression, Red boxes= up regulation of gene expression.  
Red circle = upregulation of gene expression levels, Green ciricle= down regulation 
of protein levels. 
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Effect of NAA biosynthesis in orthotopic ovarian cancer mouse model 

On the basis of the clinical and in vitro findings, we evaluated the effect of siRNA 

NAT8L in orthotopic ovarian cancer models.  As compared to mice treated with 

siRNA NT, those treated with siRNA NAT8L had significantly decreased tumor 

growth (Figure 34a).  A2780 and HEYA8 orthotopic ovarian cancer model had an 

84.14% (p<0.001) and 69.17% (p<0.01) decrease in tumor weight, respectively.  

A2780 and HEYA8 mouse models also had statistically significant two-three fold 

reduction in the number of intraperitoneal tumor nodules.  We also observed a 

synergistic effect of siRNA NAT8L and paclitaxel (Figure 34b).   Using the HEYA8 

orthotopic in vivo model, siRNA NAT8L + paclitaxel had significantly less tumor 

burden  compared to siRNA NT(p<0.001), paclitaxel + siRNA NT (p=0.004), and 

siRNA NAT8L alone (p=0.032).  We also observed a decrease in the number of 

intraperitoneal tumor nodules with siRNA NAT8L + paclitaxel compared to siRNA 

NT (p=0.008), and siRNA NT + paclitaxel (p=0.020); however, no difference was 

observed between siRNA NAT8L alone and siRNA NAT8L + paclitaxel (p=0.611).  

To validate our in vitro data where siRNA NAT8L had significant effect on cell 

proliferation and apoptosis, we performed immunohistochemistry of ki67 and 

caspase-3 from our in vivo models.  Consistent with the in vitro findings, HEYA8 

tissues treated with siRNA NAT8L had significantly less proliferation (p<0.001) 

(Figure 35), and significantly more apoptosis (Figure 36).  IHC staining using 

cleaved-caspase 3 was increased by 2.46 fold in siRNA NAT8L compared to siRNA 

NT (p=0.003) (Figure 36a).  Although siRNA NAT8L + paclitaxel had a 1.57 fold 
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increase in apoptosis compared to paclitaxel treatment alone, this was not 

statistically significant (p=0.19) (Figure 36b). 

 

Figure 34.  Effect of siRNA NAT8L treatment in orthotopic ovarian cancer 
mouse models. Values are mean ±SEM.   
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Figure 35.  Effect of siRNA NAT8L on cell proliferation in HEYA8 orthotopic 
mouse model. Values are mean ±SEM.   
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Figure 36.  Effect of siRNA NAT8L +/- paclitaxel on apoptosis in HEYA8 
orthotopic mouse model.  Values are mean ±SEM. 
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To test the specificity and any possible off target effect of NAT8L siRNA, we 

did an experiment with two separate sequences of NAT8L siRNA in SKOV3 

orthotopic mouse model.  Our results showed that both NAT8L siRNA significantly 

reduced tumor burden.  Our first sequence and second sequences decreased tumor 

burden by 70% and 76%, respectively (Figure 37).  Furthermore, there were no 

significant differences in tumor burden between either NAT8L siRNA sequences.   

 

   

Figure 37.  SKOV3 orthotopic ovarian cancer mouse model.  Mice treated with 
DOPC NAT8L siRNA  using two different sequences. Values are mean ±SEM. 
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To evaluate the generalizability of NAT8L siRNA , we evaluated its effect in 

an A375-SM orthotopic melanoma mouse model.  Mice treated with NAT8L siRNA 

had a 62% decrease in tumor burden than the control mice.  This indicates that 

NAT8L siRNA decreases tumor growth in melanoma cancer by inhibiting NAA 

production.   

. 

 

Figure 38.  A375-SM orthotopic melanoma mouse model. Mice treated with 
DOPC NAT8L siRNA  and NT (control) siRNA.  Values are mean ±SEM.   
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Discussion 

Clinical Relevance of NAA production 

Our study is the largest metabolomics profile of high grade serous epithelial 

ovarian cancer (HGSOC) to date.  We observed an increase in glycolytic 

intermediates seen in the “Warburg effect”.  Furthermore, nearly 75% of the 

alterations involved lipid and amino acid pathways.  One of the most drastic up-

regulations involved is the neuron biosynthesized NAA metabolite which is derived 

from acetylation of aspartic acid which we detected in cultured ovarian cancer cells. 

More importantly, high levels of NAA and its biosynthetic enzyme NAT8L leads to 

worsening patient survival.  We observed that knockdown of NAT8L leads to 

significant decreases in tumor growth in an in vitro setting by decreasing tumor 

proliferation, cell cycle progression, increasing cellular apoptosis, and decreasing 

cancer cell invasion.   In the In vivo setting, siRNA NAT8L decreased tumor 

proliferation and increased apoptosis.  These findings along with the worsening 

clinical outcomes associated with high NAT8L gene expression in melanoma, 

breast, colon, lung squamous, renal clear cell, and uterine endometrial cancers 

provide compelling evidence that NAA production confers oncogenic properties, and 

functions as an oncometabolite. 

The overwhelming majority of metabolites altered in HGSOC involved lipid and 

amino acid metabolic pathways when compared to the normal ovary.  Eicosanoids 

and phospholipids were some of the highest fold changes in HGSOC highlighting 

the need for pro-inflammatory and pro-proliferative components.  PGE2 is the most 

up-regulated eicosanoid in HGSOC tissues.  PGE2 is the most abundant 
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prostaglandin in various cancers, and high levels are associated with worsening 

outcomes [183,184,185].  In colon cancer, PGE2 contributes to tumor growth by 

DNA methylation [186]. Interestingly, some essential diet derived fatty acids were 

elevated indicating, in addition to de novo lipogenesis, ovarian cancer cells also rely 

on the absorption of fatty acids from their microenvironment.  This is in accordance 

with a recent study showing that breast and prostate cancers absorb diet derived 

fatty acids to promote tumor growth and proliferation[187].  In ovarian cancer tumors 

metastasized to the omentum, up-regulation of Fatty Acid Binding Protein 4 

(FABP4) has been shown to significantly affect tumor growth and metastasis [123].  

Thus, emphasizing the importance of fatty acid uptake in ovarian cancer.  

Amino acid metabolism was the second most altered pathway in ovarian cancer 

with some of highest increases involving metabolites in the alanine/aspartate, 

glutamate/glutamine, and phenylalanine/tyrosine pathways suggesting that these 

are important amino acid pathways in HGSOC pathophysiology.  There is emerging 

evidence that many cancers have dysregulated amino acid metabolism that lead to 

tumor aggressiveness.  For example, cancer cells can divert glycolytic carbons into 

serine and glycine metabolic pathways [188].  The serine pathway has been found 

recently to be a major route for the conversion of glutamine to alpha-ketoglutarate 

for analeperosis in the TCA cycle to support tumor growth [66].  Glycine is used for 

de novo purine nucleotide synthesis in cancer cells [64].   

Our analysis of HGSOC amino acid pathways showed that NAA involved in the 

aspartate/alanine pathway to be the most up regulated metabolites.  The high up-

regulation of NAA in ovarian cancer compared to the normal ovary is consistent with 
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recent metabolomics studies [162,163,189].  In a study by Fong et al, NAA was 

elevated in primary ovarian cancer and even in greater amount in omental 

metastatic tumors compared to the normal ovary [162].  Interestingly, the primary 

ovarian cancer samples were from stage I-IIIC patients and omental metastatic 

tumors were from stage IIIC-IV patients suggesting that higher levels of NAA would 

be detected in more advanced cancers.  In a study by Ben Sellem et al, NMR 

analysis of serous, endometrioid, and mucinous cancers compared to the normal 

ovary showed specifically highest up-regulation of NAA in serous ovarian cancers. 

Furthermore, partial least square discriminant analysis  showed a clear separation 

of high grade (grade III) serous ovarian cancers from the normal ovary when 

compared to grade I and II [189].  In a study by Kolwijck et al, aspiration of ovarian 

cyst fluid (OCF) from serous, mucinous, endometrial, and clear cell  ovarian cancers 

showed that serous ovarian cancer had the largest concentrations of NAA.  

Furthermore, regardless of subtypes, patients with higher concentrations of NAA in 

OCF had more advanced stage disease (Stage III-IV).  Interestingly, NAA 

concentrations of OCF were also comparable to the malignant ascites levels[163].  

All of these studies suggest that high levels of NAA are associated with more 

advanced disease in ovarian cancer and the results of our study is the first direct 

evidence that high levels of NAA are in fact associated with worsening outcomes in 

HGSOC. 

However, some of our data differ from these previous studies [162,163,189].  

For example in our study of primary ovarian cancer samples (POC), NAA was up-

regulated 28 fold vs. 3 fold in the study by Fong et al [162] when compared to the 
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normal ovary.  Our POC were primarily from patients with advanced stage high 

grade epithelial ovarian cancers (Stages III-IV).  Fong et al’s POCs were mostly 

early stage ranging from Stage I-III.  However, when they compared omental 

metastatic ovarian tumors (Stage IIIC-IV) to the normal ovary, they detected a 

dramatically 85 fold increase in NAA suggesting more aggressive tumors have 

higher levels of NAA.  Second, the histopathologies of their ovarian 

adenocarcinomas were not specified, therefore making the metabolomics 

comparison to our HSOEC difficult.  Finally, our sample size of POC was larger with 

71 patients compared to 11 patients in their study.  In the study by Kolwijck et al, 

aspiration from OCF did detect NAA in serous borderline and benign tumors, and 

they did not detect a difference between NAA concentration in OTC between the 

malignant, borderline, or benign serous tumors[163].  There are several issues with 

interpretation and comparisons with our study.  First, this study was done in cystic 

fluid, and no tumor tissue was evaluated so it would be difficult to say where the 

source of NAA levels in serous borderline and benign tumors would be.  Second, 

there were only 9 serous ovarian cancer patients OTC evaluated, and no details 

about the grade of the tumor were available.  However, the authors did find 

significantly higher concentration of NAA in advanced stage disease compared to 

early stage disease.  This suggests that higher levels of NAA would be associated 

with worsening prognosis.   As we have shown in multiple large cohorts of ovarian 

cancer patients, at the gene-protein-metabolite level, high NAA production is 

significantly associated with worsening outcomes in HGSOC.  
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Biologic relevance of NAA production 

This was the first time that the effects of NAT8L knockdown have been reported 

in cancer cells.  We observed that the knockdown of the NAT8L leads to significant 

decreases in tumor growth in the in vitro and in vivo setting by decreasing tumor 

proliferation, cell cycle progression, invasion/migration, and increasing cellular 

apoptosis.  Furthermore, knockdown of NAT8L resulted in up-regulation of the 

major metabolic regulator AMPK, and decreased activity of AKT and ACC in HEYA8 

ovarian cancer cells.  Metabolically, NAT8L knockdown decreased fatty acid levels 

in the cancer cell.  These results suggest that abrogation of NAA biosynthesis 

switches cancer cells from an anabolic to a catabolic state, thus decreasing 

cancer’s ability to proliferate and become more susceptible to cell death. 

It is noteworthy that similar results of tumor inhibition by activating the catabolic 

state in tumors by activating AMPK activity.  Drugs such as metformin have shown 

to activate AMPK activity, and cause cell cycle arrest and decreased cell 

proliferation in various cancers [124], metformin treated of several ovarian cancer 

cell lines caused cell cycle arrest and decreased cell proliferation.  Metformin 

caused a significant increase in AMPK phosphorylation and ACC phosphorylation 

enhancing fatty acid beta-oxidation and decreased lipid synthesis.  Interestingly, 

metformin’s anti-proliferative effects were seen both through an AMPK dependent 

and independent pathways.  In another study by Rattan et al [190], A2780 ovarian 

cancer orthotopic mice treated with metformin resulted in significant reduction of 

tumor growth with decreased tumor cell proliferation.  Furthermore, metformin 

significantly increased cisplatin cytotoxicity.  Moreover, the metformin treated group 



 

100 
 

had significantly increased activation of AMPK.  In a study of the ovarian cancer 

cells SKOV3 [191], the FASN inhibitor drug C93 caused significant increase in 

AMPK activation and a decrease in ACC activity.  As a result, fatty acid synthesis 

was decreased and glucose oxidation was increased possibly to conserve energy.  

This treatment worsened cell redox status causing cell death.  Furthermore, C93 

treatment of SKOV3 xenograft athymic mice showed significant anti-tumor effects 

and apoptosis.   

Although siRNA NAT8L treatment had similar effects on AMPK activity as 

metformin and C93, there were some differences that we have noted from our 

study.  The study by Rattan et al [124] showed anti-proliferative effects of metformin 

on various ovarian cancer cell lines (with the exception of SKOV3ip cell lines), 

unfortunately, no orthotopic model of these cell lines were included as validation in 

their study.  In a separate study by Rattan et al [190], an orthotopic in vivo model of 

A2780 with metformin did show anti-tumor effects.  However, there is a shortcoming 

for generalizability towards the more common high grade serous ovarian cancer; 

A2780 is an endometrioid ovarian cancer cell line.  In the study by Zhou et al [191], 

the in vivo model was a xenograft model rather than orthotopic model affecting its 

generalizability.  Furthermore, only one cell line was used for both in vitro and in 

vivo therapy.  In our study, the therapeutic implications of siRNA NAT8L were tested 

in several in vivo models.  We evaluated the effect of siRNA NAT8L in high grade 

serous and endometroid ovarian cancer cell lines. Furthermore, we evaluated the 

effect of siRNA NAT8L in several melanoma cell lines for generalizability.   
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Study limitations 

Although we show compelling evidence that abrogating NAA production will 

have anti-tumor effects by switching cancer cells from a catabolic to anabolic state, 

the mechanism of how NAA contributes to cell anabolism and survival remains 

unknown at this point.  Based on the protein and signaling alteration observed with 

knockdown of NAT8L, it would be helpful to profile HEYA8 cells to determine the 

metabolomics profile.  This would give further insight into the mechanism of how 

NAA production affects cancer cells from gene, protein, and metabolic levels.  

Another limitation related to the mechanism of NAA functioning in cancer cell is the 

question why NAA and NAT8L are elevated in cancer cells.  Our investigation is 

suggestive that NAA production is advantageous to cancer cells, and identifying the 

cause of NAA and NAT8L up-regulation elevation would be compelling to identify. 

Another limitation of our study is based on the assumption that high levels of 

NAA would be present in other cancers that are associated with worse outcomes 

with high NAT8L gene expression.  Although metabolomics profiling of human 

cancer tissues remains at its infancy, various metabolomics studies have shown 

significant up-regulation of NAA compared in invasive breast cancer and prostate 

cancer[65,192].   Furthermore, our clinical outcomes results of high NAT8L gene 

expression, and decreased tumor growth in our orthotopic melanoma mouse model 

treated with NAT8L siRNA, highly suggest that NAA levels would be high in several 

cancers promoting tumor growth.   
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Implications  

 From our study, we observed the increased expression of NAT8L in ovarian 

cancer compared to the normal ovary is a characteristic of this disease.  

Furthermore, from our clinical analysis, in vitro and in vivo experiments, we show 

that targeting NAT8L significantly inhibits tumor growth.  Therefore, ovarian cancer 

is associated with the genetic up-regulation of the NAA biosynthetic machinery to 

promote growth and survival of the tumor.   This unique characteristic of ovarian 

cancer not present in the normal ovarian tissue makes targeting NAT8L an 

attractive target to abrogating tumor growth and improving patient outcomes by 

blocking an important up-regulated cancer metabolic pathway.  A better 

understanding of molecular mechanisms of why some cancers are more dependent 

on NAA production would help in improving the efficacy of targeting this pathway.  

Furthermore, with the distinct elevation of NAA in ovarian cancer, there is 

promise that NAA may be used as a biomarker.   With advances of clinical MRS 

technology, our metabolic results have implications for the possibility of NAA as a 

potential novel biomarker in tumors outside of the CNS.  Recently, the novel 

oncometabolite 2-HG was shown to be detected in a non-invasive manner using 

MRS in glioma patients with IDH 1 and 2 mutations [193].  NAA would be an ideal 

marker in ovarian cancer due to its dramatic elevation compared to the normal 

ovary.  It would be interesting to see if MRS technology could aid in diagnosis of 

ovarian cancer in woman who present with ovarian masses.   Furthermore, the 

levels of NAA may be used in MRS techniques to assess response to 
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chemotherapy would be of use to assess. If NAA levels do decrease with therapy in 

ovarian cancer, then this holds great promise to use NAA as treatment biomarker.   

Finally, our study reveals that NAA is not only unique to brain metabolism, but 

also in the metabolism of cancer.  Since its discovery in 1956, NAA’s biological role 

has remained unclear and elusive.  The majority of studies related to NAA are in the 

area of NMR spectroscopy and its relationship to human brain pathologies.  

Diseases such as multiple sclerosis, cerebral vascular accidents, major head 

traumas, certain psychiatric conditions, and Canavan disease are all associated 

with deregulated NAA levels.  More studies looking into the biology and 

biochemistry is needed to help understand the mechanism of this abundant 

metabolite in the human brain and cancers.   

In conclusion, our study reveals that metabolic alteration in ovarian cancer 

involves mainly lipid and amino acid metabolic pathways.   Targeting unique 

pathways such as NAA production seems to have promising effects in abrogating 

the results of this metabolic alteration by inhibiting tumor growth and metastasis.  

Furthermore, our clinical and biologic studies of several cancer types revealed that 

NAA production seems relevant not only in ovarian cancer but also in several 

cancers, and further understanding of its mechanism would not only contribute to 

understanding of its role in cancer but also further an understanding of its role in the 

human brain.   
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