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NEURAL CORRELATES OF AUDIOVISUAL SPEECH PERCEPTION IN 

APHASIA AND HEALTHY AGING 

Sarah Haller Baum, B.S. 

Supervisory Professor: Michael Beauchamp, Ph.D. 

 

Understanding speech in face-to-face conversation utilizes the integration 

of multiple pieces of information, most importantly the auditory vocal sounds and 

visual lip movements. Prior studies of the neural underpinnings of audiovisual 

integration in the brain have provided converging evidence to suggest that 

neurons within the left superior temporal sulcus (STS) provide a critical neural 

hub for the integration of auditory and visual information in speech. While most 

studies of audiovisual processing focus on neural mechanisms within healthy, 

young adults, we currently know very little about how changes to the brain can 

affect audiovisual integration in speech. To examine this further, two particular 

cases of changing neural structure were investigated. I first conducted a case 

study with patient SJ, who suffered damage from a stroke that injured a large 

portion of her left tempo-parietal area, including the left STS. I tested SJ five 

years after her stroke with behavioral testing and determined that she is able to 

integrate auditory and visual information in speech. In order to understand the 

neural basis of SJ’s intact multisensory integration abilities, I examined her and 

23 age-matched controls with functional magnetic resonance imaging (fMRI). SJ 

had a greater volume of multisensory cortex as well as greater response 

amplitude in her right STS in response to an audiovisual speech illusion than the 
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age-matched controls. This evidence suggests that SJ’s brain reorganized after 

her stroke such that the right STS now supports the functions of the stroke 

damaged left-sided cortex. Because changes to the brain occur even with 

healthy aging, I next examined the neural response to audiovisual speech in 

healthy older adults. Many behavioral studies have noted that older adults show 

not only performance declines during various sensory and cognitive tasks, but 

also greater variability in performance. I sought to determine if there is a neural 

counterpart to this increased behavioral variability. I found that older adults 

exhibited greater intrasubject variability in their neural responses across trials 

compared to younger adults. This was true in individual regions-of-interest in the 

multisensory speech perception network and across all brain voxels that 

responded to speech stimuli. This increase in variability may underlie a 

decreased ability of the brain to distinguish between similar stimuli (such as the 

categorical boundaries of speech perception), which could link these findings to 

declines in speech perception in aging.  
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CHAPTER 1: INTRODUCTION 

  



	
   	
  
	
  

2 

Speech perception is one of the most important cognitive functions 

performed by the human brain. In face-to-face conversation, understanding 

speech is a multisensory process in which auditory information (vocal sounds) 

and visual information (lip movements) are integrated into a single, coherent 

percept. Although these two pieces of information are naturally and 

automatically integrated in the brain when both cues are clear and salient, the 

combination of both pieces of information is even more important when either 

cue is presented in the context of noise, such as in a loud room (Sumby & 

Pollack, 1954, MacLeod & Summerfield, 1990, Ross et al., 2007).  

To measure multisensory integration in a laboratory setting, multiple types 

of speech stimuli are used. Speech can be presented with auditory information 

alone, which in most situations is clearly and accurately understood (Figure 

1.1A). Typical, everyday speech includes congruent auditory and visual 

information (Figure 1.1B). One obstacle to studying multisensory integration in 

speech, however, is that with clear, natural speech, there is often no difference 

in the reported percept between auditory-only and audiovisual presentation of 

speech (compare percepts in Figure 1.1A and B). Therefore, although a listener 

will integrate typical congruent audiovisual speech if they pay attention to both 

cues, it is harder to show on a trial-to-trial basis that subjects were successfully 

integrating both auditory and visual information because the same percept could 

be achieved by only listening to the auditory component of the stimulus. 

Consequently, a third type of speech stimulus is used in many audiovisual 

speech experiments. The McGurk effect is an audiovisual speech illusion 
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(McGurk & MacDonald, 1976) in which a video of a voiced syllable (e.g. “ba”) is 

paired with a different mouthed syllable (e.g. “ga”), which for some subjects 

results in the perception of a completely different, third syllable (e.g. “da”) 

(Figure 1.1C). The only way to account for this perception is through 

multisensory integration, since the percept is different than the actual presented 

sensory information in either the auditory or visual component. Using this 

incongruent, non-natural stimulus provides a clear marker for audiovisual 

integration in speech on an individual trial basis, and is therefore a powerful tool 

for studying multisensory integration.  

 

 
 
Figure 1.1 Types of speech stimuli.  
A: Unisensory speech contains only auditory information presented without any 
visual information. The resulting percept is driven by the auditory information 
alone. B: Congruent AV speech contains both auditory and visual information 
with the same syllable presented in each component. The resulting percept 
integrates both pieces of information. C: Incongruent audiovisual speech 
contains both auditory and visual information but the auditory syllable and visual 
syllable are different. In some combinations, the two syllables are integrated into 
a fused percept. 
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The general principles of multisensory integration in speech have been 

studied extensively through behavioral tests alone, but the combination of 

behavioral data and neuroimaging can shed light on the neural mechanisms that 

support multisensory integration. The most popular technique to measure 

human brain function non-invasively is functional magnetic resonance imaging 

(fMRI) (Friston, 2009). Unlike other brain imaging techniques, MRI can be used 

to image both brain structure and function. These two complementary pieces of 

evidence provide information about both neural structure and neural activity, 

both of which may differ between groups of subjects and patients.  

Figure 1.2 Structural MRI of a healthy young adult subject. 
Sagittal, axial, and coronal slices from a structural T1 scan of a healthy subject. 
Images taken from MRI scan of author. 
 
 

Structural MRI images the underlying neural anatomy of the brain. In the 

presence of a strong magnetic field (B0), protons in hydrogen atoms align with 

the direction of the magnetic field. A radio frequency pulse then temporarily 

knocks these protons out of alignment. The most common structural scan, T1, 

measures the time it takes these protons to relax back to the lower energy state 

and realign with the magnetic field. This time constant is different for various 
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biological tissues (e.g., white matter, gray matter, bone, and cerebrospinal fluid). 

For example, protons in gray matter realign much slower than white matter, 

which results in the different level of brightness between the two tissue types: in 

a T1 scan, gray matter is darker than white matter (Huettel et al., 2009) (Figure 

1.2). The frequency at which protons are excited depends on the strength of the 

magnetic field. Therefore, by systematically varying the exact strength of the 

magnetic field in space along x, y, and z gradients, a single slice of brain can be 

excited at a time, which allows for the measurement of relaxation rates (and 

therefore different tissue types) in 3D space. A typical T1 scan lasts 

approximately 4 minutes and has a resolution of 1mm x 1mm x 1mm.  

 In contrast, functional MRI (fMRI) relies on the local changes in blood flow 

induced by increased neural activity in a given region. Following increased 

neuronal activity, neurons send signals locally to nearby blood vessels to 

increase the blood flow and bring more oxygenated blood. These signals 

increase blood flow and overcompensate with an excess of oxygenated blood 

(Fox & Raichle, 1986, Fox et al., 1988). This response is called functional 

hyperemia, although the exact physiological mechanisms of this response are 

unknown. Astrocytes have been strongly implicated in the link between neuronal 

activity and the resulting increases in cerebral blood flow (Gordon et al., 2007), 

but recent work suggests that stimulus-induced vasodilation can occur even 

without calcium-dependent release of vasodilators (Nizar et al., 2013). 

Oxygenated blood is diamagnetic, meaning that it does not create any magnetic 

moment because there are no unpaired electrons. Conversely, deoxygenated 
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blood is paramagnetic, which creates small distortions in the magnetic field 

because it has a significant magnetic moment and unpaired electrons. Because 

oxygenated blood and deoxygenated blood have different magnetic 

susceptibilities, the proportion of oxygenated blood and deoxygenated blood can 

be detected in a high strength magnetic field (Ogawa & Lee, 1990). The contrast 

of oxygenated and deoxygenated blood is known as the blood oxygen level 

dependent (BOLD) signal and is useful to study neural processing because the 

proportion of oxygenated blood changes with changes in brain activity. A second 

time constant used in MRI is the T2 constant. Unlike the T1 constant, which 

measures how long protons take to realign to the longitudinal B0 plane, T2 

measures relaxation in the transverse magnetic plane (perpendicular to the B0 

field). When inhomogeneities are present (such as those disturbances created 

by paramagnetic deoxygenated blood), the decay constant is known as T2
*. A 

T2
* scan is one of the most commonly used scans for measuring functional brain 

activation in MRI (Logothetis & Wandell, 2004). In a typical T2* scan, an entire 

brain volume is acquired approximately every 2 seconds. The resolution of an 

fMRI scan varies depending on the strength of the magnetic field. With a 3T 

scanner at the UT Medical School a resolution of 2.75mm x 2.75mm x 2.75mm 

can be obtained.  

Despite the many advantages that MRI offers, there are also some 

limitations. The BOLD signal is both an indirect and relative measure of neuronal 

activity. Neural activity is measured in relative units, percent signal change from 

baseline, and a typical significant difference in neural activity will be in the range 
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of 0.1% - 1% signal change. Unlike neuronal activity, which changes on a 

millisecond time scale, the hemodynamic signal is much slower and peaks 

approximately 4-6 seconds after the presentation of a stimulus. Due to the slow 

nature of the BOLD signal, fMRI is not well suited to research questions 

involving the exact timing of different neural inputs and processes. Because of 

the relatively low spatial resolution (~3mm), activity is averaged over thousands 

of cells. Studies of the physiological basis of fMRI have used simultaneous 

measurements of electrophysiological and fMRI responses from monkeys. The 

results of these studies suggest that the BOLD response amplitude represented 

a combination of local field potentials and action potentials (Logothetis & 

Wandell, 2004). Roughly 90% of synapses in cortex are excitatory, so the 

majority of this average comes from excitatory signals (Braitenberg & Schuez, 

1998). 

By combining fMRI and behavioral measures, we can investigate the 

neural substrates of behavior and sensory processing. Previous studies have 

suggested that the superior temporal sulcus (STS) is a critical site for the 

integration of audiovisual speech (Calvert et al., 2000, Miller & D'Esposito, 

2005). The STS exhibits a greater BOLD signal response to multisensory stimuli 

as compared to auditory-only or visual-only stimuli (Beauchamp et al., 2004, 

Stevenson & James, 2009). The amplitude of the left STS is correlated with the 

amount audiovisual integration in individual subjects, as measured by 

susceptibility to the McGurk effect, in both children and young adults (Nath et al., 
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2011, Nath & Beauchamp, 2012). Together these findings suggest that the STS 

is a critical locus for the integration auditory and visual information. 

In the experiments presented in this dissertation, a combination of 

behavioral and neuroimaging measures are used to examine neural correlates 

of multisensory speech perception. The neural structures that support the 

function of multisensory integration in the brain are well studied in healthy, 

young subjects. However, what happens if these underlying neural structures 

change? I have conducted two studies that examine pieces of this puzzle. The 

goals of this project were two-fold:  

1. To describe a case study of audiovisual processing in which a 

stroke patient incurred damage to the left STS (Chapter 2). 

2. To characterize changes to neural responses to multisensory 

speech perception in healthy older subjects (Chapter 3). 

I report a patient, SJ, who suffered a cerebral vascular accident that 

damaged the left tempo-parietal area, including the left STS, resulting in mild 

anomic aphasia (Baum et al., 2012). Previous studies have demonstrated a 

critical role of the left STS in multisensory speech perception (Scott & 

Johnsrude, 2003, Beauchamp, 2005, Miller & D'Esposito, 2005, Stevenson & 

James, 2009, Nath & Beauchamp, 2011, 2012). Because temporary disruption 

of the left STS with TMS impairs multisensory speech perception (Beauchamp et 

al., 2010), one might expect the lesion suffered by SJ to greatly reduce 

multisensory integration. I first tested patient SJ with a series of behavioral tests 

to determine if she was able to integrate auditory and visual information in 
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speech. I predicted that, given the damage to the left STS, SJ’s multisensory 

abilities should be at the same level or worse than the controls whose left STS 

activity was temporarily disrupted with TMS. Surprisingly, SJ demonstrated 

intact multisensory abilities in the behavioral testing.  

Based on the observed improvements in speech perception, neural 

plasticity and rehabilitation in SJ might have resulted changes in neural 

processing, leading to her improved abilities. This would predict different 

patterns of brain activity during multisensory speech perception in SJ compared 

with age-matched controls. To test this hypothesis, I then completed an fMRI 

experiment with SJ and 23 healthy age-matched controls to determine the 

neural correlates of her multisensory abilities. I found that SJ had more 

functionally multisensory cortex in her right STS than any of the age-matched 

controls tested. Furthermore, the response amplitude in the right STS to McGurk 

stimuli was much greater in SJ than in healthy controls. Together, these results 

suggest that the SJ’s right STS now suberves the multisensory functions 

previously completed by the left STS. 

I next considered the healthy older adults as a cohort to investigate the 

neural basis of changes in audiovisual perception during the process of aging. 

Older adults experience declines in their unisensory abilities, notably their ability 

to hear speech in noise, even without any significant hearing loss (Divenyi et al., 

2005). Not only does performance decrease with aging, there is also a 

significant amount of performance variability, such that performance is not only 

worse but also more inconsistent from trial to trial. I hypothesized that the well-
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documented increases in behavioral variability could also be observed on a 

neural level. To test this, I presented multiple trials of simple audiovisual speech 

stimuli and measured each subject’s variability from their individual neural 

responses. I found that older adults have much more inconsistent neural 

responses to speech (higher intrasubject variability) from trial-to-trial than 

younger adults.  

Increased neural variability may provide a mechanism for declines in 

speech perception observed in healthy aging. This increased variability may lead 

to difficulty in discriminating between stimuli, which would decrease the ability to 

accurately identify sensory information. Many studies analyze only the 

differences in response amplitudes, but these results demonstrate that it may be 

important to examine variability (as well as average amplitude of the response) 

when examining changes in neuronal processing in the aging brain. These 

patterns of differential variability as a function of age or cognitive ability may 

provide an additional way to characterize changes in brain function that are often 

overlooked.   
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CHAPTER 2: MULTISENSORY SPEECH PERCEPTION WITHOUT THE LEFT 

SUPERIOR TEMPORAL SULCUS 
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Introduction 
Speech can be understood through the auditory modality alone, but 

combining audition with vision improves speech perception (Sumby & Pollack, 
1954, Stein & Meredith, 1993, Grant & Seitz, 2000). One striking behavioral 
example of audiovisual multisensory integration in speech perception is the 
McGurk effect (McGurk & MacDonald, 1976) in which an auditory syllable 
paired with a video clip of a different visual syllable results in the percept of a 
distinct new syllable (e.g. auditory “ba” + visual “ga” results in the percept 
“da”). Because the fused percept is different than either the auditory or visual 
stimulus, it can only be explained by multisensory integration. 

  
A number of studies suggest that the left superior temporal sulcus 

(STS) is an important site of audiovisual multisensory integration. The left 
STS exhibits a larger BOLD response to multisensory stimuli as compared to 
unisensory stimuli (Calvert et al., 2000, Beauchamp et al., 2004, Stevenson & 
James, 2009). Tracer studies in rhesus macaque monkeys reveal that the 
STS is anatomically connected both to auditory cortex and extrastiate visual 
cortex (Seltzer et al., 1996, Lewis & Van Essen, 2000). There is a correlation 
between the amplitude of activity in the left STS and the amount of McGurk 
perception in both individual adults (Nath & Beauchamp, 2012) and children 
(Nath et al., 2011). Inter-individual differences in left STS activity have also 
been linked to language comprehension abilities (McGettigan et al., 2012). 
When the left STS is temporarily inactivated with transcranial magnetic 
stimulation (TMS) in normal subjects, the McGurk effect is reduced 
(Beauchamp et al., 2010). Unlike the transient disruptions created by TMS, 
lesions caused by brain injury can give insight into the results of brain 
plasticity that occur after a stroke. In particular, damage to areas in the 
language network can result in brain reorganization, with increased activity in 
the areas homologous to the damaged tissue (Buckner et al., 1996, Thomas, 
1997, Cao et al., 1999, Blasi et al., 2002, Winhuisen et al., 2005).  

 
We describe a patient, SJ, with a lesion that completely ablated her left 

posterior STS. Following her stroke, SJ underwent intensive behavioral 
therapy. In the years following her stroke, her speech perception abilities 
improved. Five years after her stroke SJ demonstrated multisensory speech 
perception similar to 23 age-matched controls when tested with two 
independent behavioral measures. To understand the neural substrates of 
this ability, we examined patient SJ and age-matched controls with structural 
and functional MRI. 
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Methods 
Patient SJ 
 All subjects provided informed consent under an experimental protocol 
approved by the Committee for the Protection of Human Subjects of the 
University of Texas Health Science Center at Houston. All participants 
received compensation for their time. Patient SJ is a 63 year-old, right-
handed female who presented with a language impairment following a stroke, 
which destroyed a large portion of her left temporal lobe, including the left 
STS (Figure 2.1 and Table 2.1). Patient SJ was 58 years old when she 
suffered a stroke in the left tempo-parietal area in September 2006. Prior to 
her stroke SJ worked in public relations and had completed one year of 
college. SJ’s performance on the Western Aphasia Battery indicated a 
classification of anomic aphasia. Her auditory comprehension was impaired 3 
years after the stroke (48% on auditory lexical decision and 86% for CV 
miminal pairs, compared with expected 95 – 100% for controls). 5 years after 
the stroke, her auditory recognition had improved to near normal range (87% 
on auditory lexical decision and 95% for CV miminal pairs). SJ was scanned 
two times, once for structural MRI in February 2010, and again for structural 
and functional MRI in March 2011. 
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Figure 2.1 Anatomical MRI of SJ  
A. Sagittal and axial slices of SJ’s structural MRI. White dashed lines indicate 
the location of the STS. Red dashed circle indicates stroke-damaged cortex in 
left hemisphere (left is left on all images). 
B. Cortical surface reconstruction of SJ’s brain from the structural MRI.  
Taken from Baum et al. (2012). 
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Healthy Age-Matched Control Subjects  
23 healthy older adults ranging in age from 53-75 years (14 female, 

mean age 62.9 years) served to provide a healthy age-matched comparison 
to patient SJ. Participants were recruited through word-of-mouth and flyers 
distributed around the greater Houston area. 21 subjects were right-handed 
as assessed by the Edinburgh Handedness Inventory (Oldfield, 1971).  All 
subjects were fluent English speakers.  
 
Stimuli used for testing 
 Stimuli consisted of a digital video recording of a female native English 
speaker speaking “ba”, “ga”, “da”, “pa”, “ka” and “ta”. Digital video editing 
software (iMovie, Apple Computer) was used to crop the total length of each 
video stimulus such that each clip both started and ended in a neutal, mouth-
closed position. Each video clip ranged from 1.7 to 1.8 seconds.  
 

Auditory-only stimuli were created by extracting the auditory track of 
each video and pairing it with white visual fixation crosshairs on a gray 
screen. Visual-only stimuli were created by removing the auditory track of 
each video. Two separate McGurk stimuli were created by pairing the 
auditory “ba” with the visual of “ga” (canonical percept “da”), and pairing the 
auditory “pa” with the visual of “ka” (canonical percept “ta”). Non-McGurk 
incongruent stimuli were created by reversing the pairing of the two McGurk 
stimuli (auditory “ga” with visual “ba”, resulting in the percept “ga”, and 
auditory “ka” with visual “pa”, resulting in the percept “ka” ). These stimuli 
were used for both behavioral testing and the fMRI experiment (Figure 2.2). 
Eight additional McGurk stimuli were obtained from youtube.com for 
additional behavioral testing with SJ. 
 

 
Figure 2.2 Stimuli used in experiments.  
Three audiovisual (AV) speech stimuli used in the experiments described in 
Chapters 2 and 3. A: AV Congruent stimuli: same voiced and mouthed 
syllables. Incongruent stimuli (spoken and mouthed syllables different) were 
categorized as either B: McGurk stimuli (likely to be integrated and result in a 
fused percept) or C: Non-McGurk Incongruent stimuli (not integrated, percept 
likely to be auditory syllable). 
 

AV Congruent

“ba”“ba”

McGurk

“ga”“ba”

Non-McGurk 
Incongruent

“ba”“ga”

percept: “ba” percept: “da” percept: “ga”
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Behavioral Testing of Healthy Controls 
 Each subject’s perception of auditory only, congruent, and McGurk 
syllables was assessed. Stimuli were presented in two separate runs: 
auditory-only syllables (10 trials of each syllable) and AV syllables (10 trials 
each of “ba”/“da” McGurk syllables, “pa”/“ka” McGurk syllables, and “ba”, “da”, 
“pa” and “ka” congruent syllables) in random order. Auditory stimuli were 
delivered through headphones at approximately 70 dB, and visual stimuli 
were presented on a computer screen. For all stimuli, subjects were 
instructed to watch the mouth movements (if present) and listen to the 
speaker. Perception was assessed by asking the subject to verbally repeat 
out loud the perceived syllable. The response was open choice and no 
constraints were placed on allowed responses. This response format was 
chosen because it has been shown to provide a more conservative estimate 
of McGurk perception (Colin et al., 2005).  All spoken responses were 
recorded by a microphone and the experimenter writing down each response. 
For SJ, the testing procedure was identical, but additionals trials of McGurk 
stimuli were presented (15 trials vs. 10 in controls).  
 
Morphed Audiovisual Syllables 

An additional, independent, test of multisensory integration was 
obtained by measuring SJ’s perception of audiovisual syllables along a 
continuum of “ba” to “da” (Massaro et al., 1993). Synthetic auditory speech 
stimuli were created by taking tokens of “ba” and “da” and manipulating the 
first 80ms to create five auditory syllables ranging from A1 (100% ba/0% “da”) 
to A5 (0% “ba”/100% “da”). Similarly, synthetic visible speech stimuli were 
created by using a computer-animated display whose mouth position at the 
syllable onset was systematically altered to create V1 (100% “ba”/0% “da”) to 
V5 (0% “ba”/100% “da”). Each audiovisual syllable stimulus (five auditory 
times five visual for 25 total) was presented 20 times in random order in a two 
alternative forced choice task where SJ was instructed to respond if she 
perceived the audiovisual syllable to be more like “ba” or “da”. Responses 
were made on a mouse with the left button labeled “ba” and the right button 
labeled “da”. Written instructions were also presented on the screen after 
each trial. We compared SJ’s responses with those of 82 healthy subjects 
viewing the same stimuli, reported in Massaro et al. (1993). 
 
fMRI McGurk Experiment 

Each fMRI run lasted approximately four minutes and two scan runs 
were collected from each subject. In each run, single syllables were 
presented within the 2-second trial using a rapid event-related design. Trials 
were pseudo-randominzed for an optimal rapid-event related order (Dale, 
1999). In each trial, a video clip was presented followed by fixation crosshairs 
for the remainder of the trial. The crosshairs were positioned such that they 
were in the same location as the mouth during visual speech in order to 
minimize eye movements and draw attention to the visual mouth movements. 
Subjects responded to target trials only (the word “press”). For SJ and six 
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control subjects, each run contained 25 McGurk trials, 25 non-McGurk 
incongruent trials, 25 congruent trials, 20 target trials, and 25 trials of fixation 
baseline. For the remaining 17 control subjects each run contained 40 
McGurk trials, 20 non-McGurk incongruent trials, 20 congruent trials, 15 
target trials and 25 trials of fixation baseline. All stimuli were identical to those 
used for behavioral testing outside the scanner. 
 
fMRI Functional Localizer Experiment 

In order to prevent bias when analyzing the McGurk fMRI data, a 
separate scan series was performed to identify independent regions of 
interest. The functional localizer scan consisted of six blocks of one syllable 
words (two auditory-only, two visual-only and two audiovisual blocks in 
random order) which contained 20 seconds of stimulus (10 two second trials, 
one word per trial) followed by 10 seconds of fixation baseline between each 
block. Each block contained a target trial (the word “press”) of the same 
stimulus type as the other stimuli in the block; subjects were instructed to pay 
attention to each stimulus and press a button during target trials but not to 
any other stimuli.  
 
MRI and fMRI Analysis 

Two T1-weighted MP-RAGE anatomical MRI scans were collected at 
the beginning of each scanning session with a 3 tesla whole-body MR 
scanner (Phillips Medical Systems) using a 32-channel head coil. The two 
anatomical scans were aligned to each other and averaged in order to 
provide maximal gray-white matter contrast. These scans were then used to 
create a cortical surface model using FreeSurfer (Dale et al., 1999, Fischl et 
al., 1999) for visualization in SUMA (Argall et al., 2006). For the fMRI scan 
series, T2* weighed images were collected using gradient echo-planar 
imaging (TR = 2000 ms, TE = 30 ms, flip angle = 90°) with in-plane resolution 
of 2.75 x 2.75 mm. The McGurk syllable scan series and localizer scan series 
consisted of 123 and 138 brain volumes, respectively. The first three volumes 
were discarded because they were collected before equilibrium magnetization 
was reached. This resulted in 120 and 135 usable brain volumes, 
respectively. Auditory stimuli were presented through MRI-compatible in-ear 
headphones (Sensimetrics, Malden, MA) which were covered with ear muffs 
to reduce the amount of noise from the scanner.  Visual stimuli were 
presented on a projection screen with an LCD projector and viewed through a 
mirror attached to the head coil. Responses to the target trials were collected 
using a fiber-optic button response pad (Current Designs, Haverford, PA). 

 
 Analysis of the functional scan series was conducted using Analysis of 
Functional NeuroImages (AFNI) (Cox, 1996). Data were analyzed for each 
subject individually and then the data for all healthy control subjects was 
combined using a random-effects model. Functional data for each subject 
was first aligned to the averaged anatomical dataset and then motion-
corrected using a local Pearson correlation (Saad et al., 2009). The analysis 
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of all voxels was carried out with the AFNI function 3dDeconvolve, which uses 
a generalized linear model utilizing a maximum-likelihood approach. Tent-
zero functions were used in the deconvolution to estimate the individual 
hemodynamic response function in each voxel for each stimulus type that 
began at stimulus onset and ended 16 seconds after stimulus onset for rapid 
event related runs and 26 seconds for block design runs.  
 A modified, conservative t-test (Crawford, 1998) was used to compare 
single data points from SJ with averaged data from controls. To test for the 
significance of any differences in fMRI response amplitude by stimulus type, 
the within type variance was computed as follows. For controls, we 
considered the average response to a stimulus in each individual control 
subject as a sample. For SJ, we considered the response to individual 
presentations of each stimulus, calculated with a least-square sum method in 
the AFNI program 3dLSS (Mumford et al., 2012). This analysis was used for 
all ROIs except for the left STS, for which the response was 0 for all trials, 
necessitating the use of the conservative single point t-test. 
 
Group Analysis 

Two strategies were used for group analysis. Converging evidence 
from both strategies indicates a robust difference between SJ and controls. In 
the first strategy, regions of interest (ROI) are selected based on the 
individual anatomy in each subject (Saxe et al., 2006). Because the course of 
the STS is highly variable across subjects, standard 3-D anatomical 
templates fail to accurately align STS gray matter. Using a cortical-surface 
based analysis, the STS in each subject is aligned to the STS of a 2-D 
template for labeling purposes. This allows for unbiased measurement of 
activity in the STS (and other regions). Each ROI was created using the 
FreeSurfer anatomic parcellation of the cortical surface constructed from each 
individual subject’s structural scans (Fischl et al., 2004, Destrieux et al., 
2010). The parcellation defined 74 distinct regions for each hemisphere in 
each subject. SJ’s automated parcellation was manually inspected to ensure 
that the 3-D reconstruction was an accurate representation of her structural 
damage. This parcellation was then manually edited for SJ’s left hemisphere 
to ensure that no labels were assigned to the lesion zone.  

 
ROIs created in each subject’s individual native space were used in 

the main analysis, thus any potential discrepancy between the un-normalized 
brain and reference template did not affect the analysis results. These ROIs 
were then analyzed with data from independently collected runs, eliminating 
bias (Kriegeskorte et al., 2009). The STS ROI was defined by finding all 
voxels in the posterior half of the anatomically defined STS that responded to 
both auditory-only words and visual-only words (t > 2 for each modality). For 
some subjects (n = 5 in left hemisphere, n = 1 in right hemisphere), there 
were no voxels in the posterior STS that were significantly active during both 
auditory-only and visual-only word blocks. For these subjects the STS ROI 
was defined by finding all voxels in the anatomically defined posterior STS 
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that were active (t > 2) during the audiovisual word blocks.  The auditory 
cortex ROI was defined by finding voxels in the anatomically parcellated 
transverse temporal gyrus, lateral superior temporal gyrus and planum 
temporale that were active (t > 2) during the auditory-only blocks. The 
extrastriate visual cortex ROI was defined by finding voxels in the 
anatomically parcellated extrastriate lateral occipitotemporal cortex that were 
active (t > 2) during the visual-only blocks. We chose a later visual area to 
study because of its prominent role in visual speech perception and strong 
activation during audiovisual speech.  

 
In the second strategy, a whole-brain voxel-wise analysis is used 

(Friston et al., 2006). Each individual subject brain and functional dataset was 
aligned to the N27 atlas brain (Mazziotta et al., 2001) with the auto_tlrc 
function in AFNI. The functional dataset for each subject was then smoothed 
using a 3 x 3 x 3mm FWHM Gaussian kernel. We wished to minimize blurring 
between the ROIs of interest and adjacent ROIs, so a small blurring kernel of 
approximately the same size as the voxel was chosen (Skudlarski et al., 
1999). Areas with significantly different activation to McGurk stimuli between 
SJ and controls were searched for with 3dttest++. These results were then 
transformed from the MRI volume to the cortical surface using 3dSurf2Vol 
and clusters were identified with SurfClust. Clusters size threshold was 500 
mm2 with a z-score threshold of 3.5. 
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Results 
Location and quantification of the lesion 

Patient SJ’s lesion destroyed a substantial portion of the lateral 
posterior left hemisphere (Figure 2.1 and Table 2.1). To quantify the extent of 
the lesion, we used automated anatomical parcellation to compare SJ’s left 
hemisphere with 23 age-matched controls. The supramarginal gyrus and the 
STS were the areas with the greatest loss of gray matter. The lesion also 
extended into the temporal plane of the superior temporal gyrus, the location 
of auditory cortex.   
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Label t-value Delta 
(mm3) 

Volume in 
SJ (mm3) 

Mean ± SD 
Volume in 

Controls (mm3) 
Supramarginal gyrus 6.8 -4984 438 5422 ± 714 
Superior Temporal Sulcus 5.5 -4872 3038 7910 ± 867 
Postcentral sulcus 4.1 -2023 1376 3399 ± 482 
Inferior segment of the 
circular sulcus of the 
insula 

4.7 -1853 547 2400 ± 385 

Temporal plane of the 
superior temporal gyrus 4.4 -1732 4 1736 ± 389 

Posterior segment of the 
lateral fissure 6.6 -1376 14 1390 ± 203 

Anterior transverse 
temporal gyrus 4.8 -856 30 886 ± 174 

Long insular gyrus and 
central sulcus of the insula 4.5 -747 287 1034 ± 163 

Transverse temporal 
sulcus 4 -429 4 433 ± 287 

 
Table 2.1 Anatomical regions in left hemisphere impacted by stroke. 
Column 1 shows the FreeSurfer automatic parcellation anatomical label. 
Column 2 shows the t-value of the volume difference between SJ and 
controls.  All differences are statistically significant at a level of p < 0.01 
corrected for multiple comparisons. Column 3 shows the difference between 
the gray matter volume in SJ and the average gray matter volume in 23 age-
matched controls (column 4 – column 5).  
Taken from Baum et al. (2012).  
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Auditory and McGurk Perception: Behavioral Results 
Sensory input is a prerequisite for multisensory integration. Because 

the lesion damaged regions of auditory cortex, we first examined SJ’s 
auditory comprehension. When compared with 23 age-matched controls 
during our auditory-only syllable identification task, SJ was within the normal 
range (78% in SJ vs. 90% ± 15% in controls, t22 = 0.75, p = 0.46; Figure 
2.3A). Next, we examined SJ’s perception of McGurk stimuli, incongruent 
auditory and visual syllables in which an illusory percept indicates the 
presence of multisensory integration. SJ and controls reported similar rates of 
the illusory McGurk percept (66% vs. 59% ± 42%, t22 = 0.16, p = 0.87; Figure 
2.3B).  

 
Morphed Audiovisual Stimuli: Behavioral Results 

As an independent test of multisensory integration, we presented 25 
morphed audiovisual syllables along a continuum from “ba” to “da”.  SJ’s 
perception was significantly influenced by both auditory and visual 
information. For instance, an ambiguous auditory stimulus (A4) was perceived 
as “da” 10% of the time when paired with one visual stimulus (V1) but was 
perceived as “da” 75% of the time when paired with a different visual stimulus 
(V5) (p = 10-8 with binomial distribution). Conversely, an ambiguous visual 
stimulus (V4) was perceived as “da” 35% when paired with one auditory 
stimulus (A1) but 75% when paired with a different auditory stimulus (A5) (p = 
10-5 with binomial distribution). While SJ’s multisensory integration in this task 
was significant, it was weaker for some stimuli than in the 82 controls tested 
by Massaro (1998) (A4V1, 10% vs. 66% ± 30% “da”, t81 = 1.91, p = 0.06; 
A4V5, 75% vs. 98% ± 2%, t81 = 9.38, p = 10-14; A1V4, 35% vs. 17% ± 25%, t81 
= 0.69, p = 0.49; A5V4, 75% vs. 98% ± 2%, t81 = 8.62, p = 10-13) (Figure 
2.3C). 
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Figure 2.3 Behavioral testing results 
A. Averaged auditory-only performance for six syllables (chance performance 
17%) for SJ (yellow) and age-matched controls (blue).  
B. Behavioral performance for one congruent audiovisual stimulus and one 
McGurk stimulus for SJ (yellow) and age-matched controls (blue).  
C. Behavioral performance with 4 exemplar audiovisual morphed syllables. 
Data for SJ (yellow) and controls (green); control data from (Massaro, 1998). 
Taken from Baum et al. (2012).  
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Functional MRI of Patient SJ and controls 
SJ’s behavioral results showed evidence for multisensory integration 

despite the extensive damage to her left STS. To understand the neural 
substrates of this preserved integration, we used fMRI to examine brain 
responses to multisensory speech. 

 
We first presented separate blocks of auditory, visual and audiovisual 

words.  Normal controls showed bilateral responses to audiovisual speech 
stimuli, with especially strong responses in the left superior temporal gyrus 
(STG) and STS. As expected from the extensive lesional damage, no activity 
was observed in SJ’s left STS. However, activity was observed in her right 
hemisphere. Especially for the right STS, this activity appeared more 
extensive than in normal controls (Figure 2.4A). We used three strategies to 
quantify this observation. First, we measured the volume of active cortex 
within ROIs as defined by the localizer scan consisting of whole words. 
Second, we measured the amplitude of the response within localizer-defined 
ROIs to McGurk stimuli. Third, we performed a whole-brain analysis of activity 
evoked by the McGurk stimuli. 
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Figure 2.4 fMRI activation during localizer scan 
A. Response to audiovisual speech in right hemisphere (lateral view of 
cortical surface model, color scale indicates significance of response) in one 
age-matched control (left, case IN) and stroke patient (right, case SJ). White 
dashed lines indicate STS, red arrow indicates activity in right STS. 
B. Location of STS (red), extrastriate visual cortex (blue), and auditory cortex 
(green) ROIs in the right hemisphere of age-matched control (left, case IN) 
and stroke patient (right, case SJ). 
Taken from Baum et al. (2012).  
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Method 1:Volume of Activated Cortex 
To quantify activity, we measured the volume of cortex that showed 

significant responses to whole word audiovisual speech in three regions of 
interest: the STS, lateral extrastriate visual cortex, and auditory cortex (Figure 
2.4B). As expected from the damage caused by the lesion, there was no 
active cortex in SJ’s left STS vs. a large volume of STS activation in controls 
(0 vs. 34 ± 27 mm3, t22= 6.18, p = 10-6) (Figure 2.5A). However, in right STS, 
SJ had much more active cortex than normal controls (96 vs.  30 ± 20 mm3, 
t22 = 3.21 , p = 0.004). In fact, the volume of active cortex in SJ’s right STS 
was greater than in any normal individual (Figure 2.5B). This finding (less 
active cortex in left hemisphere, more active cortex in right hemisphere) was 
not found in other ROIs. In extrastriate visual cortex, located close to the STS 
but just posterior and ventral to the lesion zone, there was no significant 
difference between SJ and controls in either the left hemisphere (174 vs. 152 
± 68 mm3, t22 = 0.32, p = 0.75) or the right hemisphere (164 vs. 167 ± 70 
mm3, t22 = 0.04, p = 0.97). In auditory cortex, which overlapped the lesion 
zone, there was less active cortex in left hemisphere in SJ compared with 
controls (75 vs. 242 ± 76 mm3, t22 = 2.16, p = 0.04) and no difference in right 
hemisphere (202 vs. 213 ± 71 mm3, t22 = 0.15, p = 0.88). 
 
Method 2: Amplitude of HDR to McGurk Stimuli 

Next, we examined the amplitude of the response to McGurk stimuli 
within the STS, visual cortex, and auditory cortex ROIs. Because these ROIs 
were created with independent localizer scans that contained words and not 
McGurk stimuli, the analysis was not biased (Kriegeskorte et al., 2009, Vul et 
al., 2009). There was no response in SJ’s left STS (0% in SJ vs. 0.11% in 
controls t22= 4.25, p = 10-4) but the response in SJ’s right STS was 
significantly greater that controls (0.29% in SJ vs 0.13% in controls, t71 = 2.57, 
p = 0.01) (Figure 2.5C). This pattern (less activity than controls in left 
hemisphere, more activity than controls in right hemisphere) was not found in 
other ROIs. In visual cortex, there were no significant difference in McGurk 
amplitude in the left extrastriate cortex (0.07% in SJ vs 0.10% in controls, t71 
= 0.67, p = 0.50) while right hemisphere showed greater response (0.21% in 
SJ vs 0.12% in controls, t71 = 1.96, p = 0.05). In auditory cortex, SJ’s 
response was significantly weaker in left hemisphere (-0.06% in SJ vs 0.22% 
in controls, t71 = 5.64, p = 3 x 10-7) but was similar to controls in right 
hemisphere (0.26% in SJ vs 0.19% in controls, t71 = 1.33, p = 0.19).  

 
If SJ’s right STS subserved new functions because of the lesion to SJ’s 

left STS, we would expect a differential pattern of activity in SJ’s right STS 
compared to other right hemisphere ROIs. To test this idea, we performed an 
ANOVA on right hemisphere responses to McGurk stimuli across the ROIs 
between SJ and controls (the variance was computed within subject for SJ 
and across subjects for controls). A main effect of subject group (SJ vs. 
controls) would suggest that all right hemisphere ROIs showed different 
responses between SJ and controls. A main effect of ROI (STS, auditory 
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cortex, visual cortex) would suggest that a particular ROI was more active, 
regardless of group. A significant interaction would suggest differential effects 
between different right hemisphere ROIs between SJ and controls. The 
ANOVA found a significant interaction between group and ROI (F2,213 = 4.70, 
p = 0.01) without significant main effects for group or ROI. This suggests that 
the different ROIs in the right hemisphere responded differently in SJ 
compared with controls, driven by a greater a response in right STS in SJ 
compared with controls.  
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Figure 2.5 Multisensory responses in the STS in SJ and controls 
A. Volume of active cortex in the left STS of SJ (yellow) and age-matched 
controls (blue). 
B. Volume of active cortex in the right STS of SJ (yellow) and age-matched 
controls (blue). 
C. Hemodynamic response for SJ (yellow) and healthy controls (blue) in the 
right STS in response to the McGurk syllable A-“ba”/V-“ga”. Error bars denote 
standard error of the mean (within-subject variance for SJ and between-
subject variance for controls). 
Taken from Baum et al. (2012).  
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Method 3: Whole Brain Analysis 
In a third strategy to look for neural differences between SJ and 

controls, we performed a whole brain analysis of the response to McGurk 
stimuli. Regions with both increased and decreased responses relative to 
controls were observed (Table 2.2). The region with the largest area of 
increased activity in SJ relative to controls was in the right STS. The region 
with the largest decrease in activity in SJ relative to controls was in the left 
STS and the remainder of the lesion zone in the left hemisphere.  
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Increased Activity in SJ 
Label Area (mm2) 
R superior temporal sulcus (45, -59, 18) 1250 
R superior frontal sulcus (29, 9, 48) 1120 
L frontomarginal sulcus (-29, 49, 2) 935 
L central sulcus (-25, -31, 62) 748 
L angular gyrus (-45, -69, 22) 731 
R frontomarginal sulcus (33, 49, -2) 547 
 
Decreased Activity in SJ 
Label Area (mm2) 
L lateral-posterior temporal, including STS (-43, 24, 7) 4449 
L postcentral sulcus (-35, -43, 38) 695 
 
Table 2.2 Areas of differential activation in SJ and controls 
Regions from the whole brain analysis of significant difference in response to 
McGurk stimuli between SJ and age-matched controls, mapped to the cortical 
surface. Regions are ranked by area on the cortical surface. Talairach 
coordinates following anatomical label in (x, y, z) format are the weighted 
center of mass of the cluster. 
Taken from Baum et al. (2012).  
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Amplitude of HDR to Congruent and Non-McGurk Incongruent Stimuli 
In addition to McGurk stimuli (which were of greatest interest because 

they require multisensory integration) we also measured the response to 
congruent stimuli and non-McGurk incongruent stimuli. In the STS of normal 
controls,  the largest response was to non-McGurk incongruent stimuli with 
significantly weaker responses to congruent and McGurk stimuli (incongruent 
stimuli: 0.22% in left STS, 0.25% in right STS compared with congruent: 
0.16% in left STS, t22 = 2.74, p=0.01; 0.17% in right STS, t22 = 3.08, p=0.01; 
compared with McGurk: 0.14% in left STS, t22 = 2.41, p=0.03; 0.14% in right 
STS, t22 = 3.08, p=0.01; no significant hemispheric differences) (Figure 2.6A). 
This response pattern was markedly altered in SJ. Instead of the maximal 
response to non-McGurk incongruent stimuli observed in controls, SJ had 
similar amplitudes of response to each stimulus type in her right STS (non-
McGurk incongruent = 0.25%, McGurk = 0.29%, congruent = 0.29% , F2,147 = 
0.33, p = 0.72) (Figure 2.6B).  
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Figure 2.6 Hemodynamic response to all audiovisual stimuli  
A. Response to non-McGurk incongruent (red), McGurk (yellow) and 
congruent (blue) audiovisual stimuli in the right STS of age-matched controls. 
Error bars denote standard error of the mean across subjects. 
B. Response to the same stimuli in the right STS of SJ. Error bars denote 
standard error of the mean within SJ.  
Taken from Baum et al. (2012). 
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Conclusions 
We examined a subject, SJ, whose stroke completely destroyed a 

large portion of her left temporal lobe, including the left STS. Previous studies 
have demonstrated a critical role of the left STS in multisensory speech 
perception (Scott & Johnsrude, 2003, Beauchamp, 2005, Miller & D'Esposito, 
2005, Stevenson & James, 2009, Nath & Beauchamp, 2011, 2012). Because 
temporary disruption of the left STS with TMS impairs multisensory speech 
perception (Beauchamp et al., 2010) one might expect the lesion suffered by 
SJ to greatly reduce multisensory integration. Surprisingly, patient SJ showed 
robust multisensory integration when tested with two independent behavioral 
tests five years after her stroke.  

 
Evidence suggests that SJ’s speech perception abilities changed in the 

years following her stroke, during which she received extensive rehabilitation 
therapy. She spent 12 hours a week for approximately 40 weeks a year in the 
years following her stroke at the Houston Aphasia Recovery Center as well as 
receiving additional speech and language therapy. SJ and her husband report 
that this intensive therapy has been extremely beneficial to her recovery. 
Consistent with this anecdotal report, SJ’s speech perception abilities 
improved following her stroke, from 48% on auditory lexical decision 3 years 
following the stroke to 87% at 5 years following the stroke (because 
multisensory integration was only tested 5 years following the stroke, we do 
not know whether SJ's multisensory abilities showed a parallel improvement.)  

 
Based on the observed improvements in speech perception, neural 

plasticity and rehabilitation in SJ might have resulted in brain changes, 
leading to her improved abilities. This would predict different patterns of brain 
activity during multisensory speech perception in SJ compared with age-
matched controls. To test this hypothesis, we studied the neuroanatomical 
substrates of multisensory speech perception with structural and functional 
MRI in SJ and 23 age-matched controls. Age-matched controls had large 
volumes of active multisensory cortex in both the left and right STS when 
perceiving audiovisual speech. In comparison, speech evoked no activity in 
SJ’s left STS but a larger volume of active cortex in right STS than in any 
age-matched control. The response amplitude to McGurk stimuli in the right 
STS was significantly greater than the right STS response in the healthy age-
matched controls. These results suggest that SJ’s multisensory speech 
perception may be supported by her right STS. As auditory noise increases, 
multisensory integration becomes more important (Ross et al., 2007). SJ’s 
diminished auditory abilities immediately following her stroke may have driven 
the recruitment of right hemisphere areas in the service of multisensory 
integration for speech comprehension.  

 
A notable finding is that the response amplitude in SJ’s right STS to all 

three types of audiovisual syllables was large and relatively uniform, in 
contrast with the maximal activation to incongruent stimuli observed in healthy 
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controls (van Atteveldt et al., 2010, Stevenson et al., 2011).  This could reflect 
an attentional effect, in which healthy subjects automatically process most 
audiovisual speech, with an enhanced response to incongruent stimuli 
because they attract attention. SJ’s right STS processing of speech may 
require more conscious effort on her part, resulting in attentional modulation 
(and enhanced response) for all audiovisual speech stimuli. Indeed, SJ 
reports that watching speakers on TV (such as a newscast) or conversing 
with others is especially mentally effortful.  

 
Our results are consistent with a large body of literature showing that 

the contralesional hemisphere is able to compensate for damage after a brain 
injury. Left hemisphere strokes often result in aphasia (Dronkers et al., 2004) 
that resolves (at least partially) over time. Functional imaging studies of these 
cases have demonstrated increased activity in right-hemisphere homologues 
of left hemisphere language areas (Buckner et al., 1996, Thomas, 1997, Cao 
et al., 1999, Blasi et al., 2002, Winhuisen et al., 2005). While these studies 
used high-level language tasks, such as word retrieval, we observed similar 
right hemisphere compensation in a low-level task that required integration of 
auditory and visual speech information. 

 
  While the finding that SJ has multisensory integration is surprising 
based on the McGurk perception literature from healthy controls, it is in line 
with other reports from aphasics in the literature showing that aphasics are 
able to integrate sensory information. Champoux et al. (2006) examined a 12 
year old child with damage to the right inferior colliculus and noted that when 
McGurk stimuli were presented in the left hemifield, the patient’s perception of 
the illusion was dramatically reduced. McGurk fusion percepts have also been 
found in stroke patients whose lesion locations are less well defined 
(Campbell et al., 1990, Schmid et al., 2009). Youse et al. (2004) describe a 
patient, JP, who suffered a left hemisphere stroke and perceived the McGurk 
effect (although poor performance on the auditory-only syllables makes this 
more difficult to interpret than in SJ). Other audiovisual integration effects 
have been noted in patients who presented with visual neglect, hemianopia, 
or both (Frassinetti et al., 2005). An important distinction is between auditory-
visual language stimuli in which both modalities are presented in their natural 
speech form (i.e. auditory “ba” + video of speaker saying “ba”) with an 
orthographic representation (i.e. auditory “ba” + printed letters “ba”). Although 
orthographic auditory-visual tasks also recruit the STS (Raij et al., 2000, van 
Atteveldt et al., 2004, Blau et al., 2008) there are differences between letter-
speech and audiovisual speech processing (Froyen et al., 2010) and lesions 
might be expected to differentially impair these two tasks. For instance, 
Hickok et al. (2011) found that Broca’s aphasics were impaired on an 
auditory-visual grapheme discrimination task.  
 

We observed significant variability within our population of 23 age-
matched controls, which may be linked to individual differences in 
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multisensory integration and language ability (Kherif et al., 2009, Nath et al., 
2011, McGettigan et al., 2012, Nath & Beauchamp, 2012). Because we do 
not have pre-injury data for SJ, we cannot refute the null hypothesis that her 
right hemisphere subserved multisensory integration even before the stroke 
and that no cortical reorganization occurred. However, the observation that 
SJ’s volume of speech-evoked activity in right STS was greater than in any 
age-matched control (and that no activity was observed in SJ’s left STS, far 
less than in any age-matched control) supports a neural plasticity explanation. 
SJ’s extensive rehabilitation efforts are similar to those known to cause 
dramatic reorganization in language networks, such as in illiterate adults 
undergoing literacy training (Carreiras et al., 2009).  

 
  While our study does not provide direct evidence that the activity 
observed in SJ’s right STS is critical for her multisensory abilities, other 
studies have shown that disrupting the right hemisphere of recovered aphasia 
patients using TMS (Winhuisen et al., 2005), intracarotid amobarbital 
(Kinsbourne, 1971, Czopf, 1979) or even additional infarcts (Turkeltaub et al., 
2011) results in profound language impairments. We hypothesize that a 
similar manipulation, such as TMS of SJ’s right STS, would greatly reduce her 
multisensory speech perception. 

 

 
Taken from Baum, S.H., Martin, R.C., Hamilton, A.C., and M.S. Beauchamp 
(2012) “Multisensory speech perception without the left superior temporal 
sulcus.” NeuroImage 62(3) 1825-1836.  
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CHAPTER 3: INCREASED NEURAL VARIABILITY IN MULTISENSORY 

SPEECH PERCEPTION IN OLDER ADULTS 
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Introduction 

The ability of older adults to understand both auditory-only and audiovisual 

speech declines with age (Sumby & Pollack, 1954, Dubno et al., 1984, Grant & 

Seitz, 2000, Gosselin & Gagne, 2011). This decline extends to other important 

cognitive functions, such as memory, visuospatial abilities, and speed of 

information processing (Cerella & Hale, 1994, Jenkins et al., 2000, Hedden & 

Gabrieli, 2004, Peich et al., 2013). Interestingly, performance declines with age 

are not uniform across multiple trials of the same task. Older adults exhibit much 

greater variability in performance: on some trials, older adults perform as well as 

younger adults, but on other trials, older adults perform much worse (Lovden et 

al., 2007, Bielak et al., 2013, Vandermorris et al., 2013). This type of 

performance decline, referred to as increased intrasubject variability, may be a 

particularly sensitive measure of age-related cognitive changes (Butts & 

Goldman, 2006). 

We hypothesized that the increased intrasubject variability observed 

behaviorally should have a neural counterpart. That is, across multiple 

presentations of the same stimulus, the neural response evoked by the stimulus 

should show greater variability in older subjects than younger subjects. Increased 

neural variability with age has been observed in the visual cortex of experimental 

animals (rhesus macaques and cats) presented with simple visual stimuli 

(Schmolesky et al., 2000, Hua et al., 2006, Liang et al., 2010). 

To determine if the same effect is found in human subjects perceiving 

complex audiovisual speech, we used rapid event-related blood-oxygen level 
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dependent magnetic resonance imaging (BOLD fMRI). Specifically, we predicted 

that repeated presentations of identical speech stimuli would evoke fMRI 

responses that were more variable in older adults than in younger adults. We 

examined neural responses to audiovisual speech consisting of single syllables 

using two complementary methods. First, we used a region-of-interest (ROI) 

analysis focused on the three core areas of the multisensory speech perception 

network: auditory cortex, visual cortex, and the superior temporal sulcus (STS). 

Second, we used a voxel-wise whole-brain analysis. 
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Methods 

Subjects 

All subjects provided informed consent and were compensated for their time in 

accordance with an experimental protocol approved by the Committee for the 

Protection of Human Subjects of the University of Texas Health Science Center 

at Houston. 24 healthy older adults participated in the study. Five subjects were 

excluded (see section: Behavioral tests for older adults and exclusion criteria) 

leaving 19 subjects whose data are reported here (53-70 years, 12 female, mean 

age 63.0 years, 17 right-handed and 2 ambidextrous). Data from the 

ambidextrous subjects was similar to that of the right-handed subjects so they 

were analyzed together. The young adult cohort consisted of 14 subjects (14 

subjects, 20-39 years, 6 female, mean age 26.1 years, 14 right-handed). 

Handedness was assessed by the Edinburgh Handedness Inventory (Oldfield, 

1971). 

Overview of fMRI experiment and analysis 

We used two independent methods for fMRI analysis: region-of-interest 

(ROI) and voxel-wise whole-brain analysis, which give complementary 

information about brain activity (Friston et al., 2006, Saxe et al., 2006). ROI 

analysis allows us to examine areas for which we have an a priori hypothesis and 

does not require that data be transformed to a brain template, thus allowing for 

differences in individual anatomy. Furthermore, it limits Type I errors by limiting 

the number of statistical tests to a handful of ROIs (Poldrack, 2007). However, in 

a voxel-wise whole-brain analysis there are no possible biases in how the ROIs 
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are defined and potentially interesting patterns of results are not missed by 

averaging over a group of defined voxels.  

Block-design localizer 

A block-design localizer was used to generate ROIs. Each block contained 

10 two-second trials, one word per trial, followed by 10 seconds of fixation 

baseline. Each trial contained a single word from a bank of digital video 

recordings of 105 single-syllable words (e.g. “view”, “door”, “make”) spoken by a 

female native English speaker. Words were selected from the MRC 

Psycholinguistic Database (Wilson, 1988). Auditory-only words consisted of the 

auditory component of each video with a white visual fixation crosshairs and 

visual-only words consisted of only the visual component of the video recording.  

In older adults, the localizer scan series contained six blocks (two 

auditory-only, two visual-only and two audiovisual blocks in random order). Each 

block contained a target trial (the word “press”) of the same type (auditory-only, 

visual-only, or audiovisual) as the other stimuli in the block; subjects were 

instructed to pay attention to each stimulus and press a response button only 

during target trials.  In younger adults, ten blocks were presented (five auditory-

only and five visual-only in random order) with no target trials.  

fMRI responses to audiovisual speech syllables 

For the main experiment, stimuli were presented in two-second trials in a 

rapid event-related design. Each trial contained a single audiovisual syllable, 

consisting of McGurk  (auditory “ba” + visual “ga”, auditory “pa” + visual “ka”), 

non-McGurk incongruent (auditory “ga” + visual “ba”, auditory “ka” + visual “pa”), 
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congruent (“ba”, “ga”, “da”, “pa”, “ka” and “ta”), target (audiovisual “press” in older 

adults, audiovisual “ma” in younger subjects) and fixation trials (fixation 

crosshairs only). Subjects were instructed to respond with a button press only to 

target trials and to make no response to all other trials. Behavioral data in the 

scanner was not collected for two younger subjects. Nearly all subjects 

performed very well on this task (18/19 older adults at 100% accuracy; 10/12 

younger adults at 100% accuracy) suggesting a high degree of alertness (no 

significant difference between groups, t29 = 0.6, p = 0.57).  

Because we used target trials in the localizer scan in addition to the main 

experiment in older adults, the designated target trial was changed so that it was 

the same type of stimulus (auditory-only, visual-only, or audiovisual word) as the 

rest of the stimuli within that block. This change in target trial was extended 

through the rapid event related scan series for consistency. For both older and 

younger adults, the target trials in the rapid event related runs were analyzed 

with a separate regressor in the generalized linear model, which allowed us look 

at the activation elicited by the target trials independently from the audiovisual 

syllables. 

Fixation trials were used as the baseline for the analysis. Target trials 

were found to evoke brain responses related to motor planning and execution 

(Beauchamp et al., 2007). The brain response to all audiovisual syllables 

(McGurk, non-McGurk incongruent, and congruent) was similar, so they were 

combined for further analysis and only the average across stimulus types 

(excluding target trials) is reported.   
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The total length of each video was cropped with digital video editing 

software (iMovie, Apple Computer) such that each clip started and ended in a 

neutral, mouth-closed position. Each video stimulus varied in length from 1.7 to 

1.8 seconds followed by fixation crosshairs for the remainder of the trial (the 

crosshairs were always presented in the same screen location as the mouth of 

the talker visible during other trials in order to minimize eye movements). Prior to 

the scan, a volume check was conducted for each subject outside the scanner 

without the presence of scanner noise. Sample videos from the experiment were 

played and the volume was adjusted so that the volume was “as loud as possible 

without being uncomfortable or hurting in any way”. After each scan series 

subjects were asked if they could hear the stimuli presented and if any volume 

adjustments were necessary. 

Each scan series contained multiple trials. The number of trials in each 

scan series was as follows: older subjects (n = 6): 75 audiovisual syllables, 25 

fixation trials, 20 target trials; older subjects (n = 13): 80/25/15; younger subjects 

(n = 5): 110/35/10; younger subjects (n = 9): 100/40/10. Two scan series were 

collected in each older subject. Three or four scan series were collected in each 

younger subject, but only the first two were analyzed to roughly equate the 

amount of data collected in younger and older subjects.  

MRI and fMRI analysis 

Two T1-weighted MP-RAGE anatomical MRI scans were collected at the 

beginning of each scanning session with a 3 Tesla whole-body MR scanner 

(Phillips Medical Systems). The two anatomical scans were aligned to each other 
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and averaged in order to provide maximal gray-white matter contrast. These 

scans were then used to create a cortical surface model using FreeSurfer (Dale 

et al., 1999, Fischl et al., 1999) for visualization in SUMA (Argall et al., 2006). For 

the fMRI scan series, T2* weighed images were collected using gradient echo-

planar imaging (TR = 2000 ms, TE = 30 ms, flip angle = 90°) with in-plane 

resolution of 2.75 x 2.75 mm. Auditory stimuli were presented through MRI-

compatible in-ear headphones (Sensimetrics, Malden, MA) which were covered 

with ear muffs to reduce the amount of noise from the scanner.  Visual stimuli 

subtending approximately 20 x 30 degrees of visual angle were presented on a 

projection screen with an LCD projector and viewed through a mirror attached to 

the head coil. Responses to the target trials were collected using a fiber-optic 

button response pad (Current Designs, Haverford, PA). Analysis of the functional 

scan series was conducted using Analysis of Functional NeuroImages (AFNI) 

(Cox, 1996).  

fMRI analysis: response amplitude and variability 

The voxel-wise analysis was carried out with the AFNI function 

3dDeconvolve, which uses maximum-likelihood estimation in the context of the 

generalized linear model (GLM). TENTzero functions were used to estimate the 

individual hemodynamic response function (using the option –iresp) and standard 

deviation of each response function (using the option –sresp) in each voxel for 

each stimulus type, beginning at stimulus onset and ending 16 seconds later for 

single syllables and 26 seconds later for blocks of words. For single syllables, we 

estimated the amplitude of the response as the mean of the response at 4 
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seconds and 6 seconds after stimulus onset (the peak of the hemodynamic 

response function). To estimate BOLD variability within each subject for single 

syllables, the standard deviation at the 4-second and 6-second time points of 

each impulse response function were averaged to produce a single value per 

voxel.  

An important methodological point is that the standard deviation was 

calculated from the response in each individual voxel, not from a fixed 

hemodynamic response function shape, such as a gamma variate. The use of a 

fixed function could introduce a confound because of differences in the shape of 

individual subjects’ hemodynamic response functions. For instance, if older 

people had slightly broader hemodynamic response functions, then their 

deviation from a fixed function would be greater, unrelated to trial-to-trial 

variability in the amplitude of the response. 

Region-of-interest selection 

Data were first analyzed for each subject individually in native image 

space. ROIs were selected to target brain areas that are reliably active during 

multisensory speech perception (Nath & Beauchamp, 2011). A combination of 

anatomical and functional criteria was used. The anatomic parcellation of the 

cortical surface was constructed from each individual subject's structural scans 

with FreeSurfer (Fischl et al., 2004, Destrieux et al., 2010). Functional criteria 

were constructed from the independent localizer runs, eliminating bias 

(Kriegeskorte et al., 2009).  

We considered three contrasts when constructing the three ROIs: auditory 
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words vs. fixation baseline, visual words vs. fixation baseline, and audiovisual 

words vs. fixation baseline. The STS ROI was defined by finding all voxels in the 

posterior half of the anatomically parcellated STS that showed a significant 

response (t > 2 for auditory-only word blocks vs. baseline and t > 2 for visual-only 

word blocks vs. baseline). For 5 out of 19 older adults, no voxels in the left STS 

met this criterion, so an alternative criterion was used (t > 2 for audiovisual word 

blocks vs. baseline). Spread of neural activity often observed in healthy older 

adults might have resulted in the ‘spill’ of much of the multisensory activity 

outside the bounds of the posterior STS for these subjects, and because of this 

the robust multisensory activation required to meet the threshold of the 

conjunction definition for the STS ROI may not have been met.  The auditory 

cortex ROI was defined by finding voxels in the anatomically parcellated 

transverse temporal gyrus, lateral superior temporal gyrus and planum temporale 

that were significantly active during the auditory-only blocks (t > 2 for auditory-

only word blocks vs. baseline). The extrastriate visual cortex ROI was defined by 

finding voxels in the anatomically parcellated extrastriate lateral occipitotemporal 

cortex that were active during the visual-only blocks (t > 2 for visual-only word 

blocks vs. baseline).  

Whole-brain analysis 

For the whole-brain voxel-wise analysis, subjects’ individual data were first 

aligned to the N27 atlas brain (Mazziotta et al., 2001) using the AFNI function 

auto_tlrc.  Blurring kernels of approximately 3-6 mm have been found to be the 

most sensitive for detecting activation clusters (Skudlarski et al., 1999). We 
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chose a 3 x 3 x 3 mm FWHM Gaussian kernel to minimize blurring between 

adjacent ROIs.  

To conduct a voxel-wise search for any differences in response amplitude, 

the average response amplitude (average of the response to all non-target 

audiovisual speech stimuli relative to fixation baseline at the 4 and 6 second time 

points) was calculated in each voxel in each subject. 3dttest++ was used to 

perform an unpaired t-test for every voxel in standard space between the old and 

young adult groups. The results were mapped from the MRI volume to the 

cortical surface with 3dSurf2Vol and masked with the group t-statistic (t > 2 for 

the contrast of all audiovisual syllables vs. baseline). After the voxel-wise t-test 

we preformed a clustering technique (Xiong et al., 1995). This finds only voxels 

that are significantly active above a particular threshold and spatially contiguous. 

The probability of finding two voxels above a particular threshold and being 

adjacent is much smaller than the chance of a single voxel above that threshold 

(Forman et al., 1995). Using the AFNI program slow_surf_clustsim.py, we 

estimated that a cluster with a size of 160mm2 would have a corrected p-value of 

0.045. A clusterizing filter on the surface (SurfClust) was applied and only 

regions larger than 160 mm2 (and t > 2 for the contrast of all audiovisual syllables 

vs. baseline) are reported.  

To conduct a voxel-wise search for differences in intersubject variability, 

the MATLAB function vartestn was used to perform a Bartlett’s multiple sample 

test for equal variances on the response amplitudes, followed by clusterizing.  

To conduct a voxel-wise search for differences in intrasubject variability, 
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an unpaired t-test between groups was performed on the standard deviation of 

the response at each voxel (3dttest++) followed by clusterizing. 

Motion correction 

Functional data for each subject was first aligned to the averaged 

anatomical dataset for that subject and then motion-corrected using local 

Pearson correlation with the AFNI script align_epi_anat.py (Saad et al., 2009). 

For each volume, an estimate of the amount of motion in each direction, relative 

to the reference, was produced. These estimates were used as regressors of no 

interest in the fMRI analysis. To capture a single value describing the amount of 

head motion in each subject, the standard deviation of each motion direction 

across time was averaged across motion directions. 

Because differences in head movements during fMRI may confound 

intergroup comparisons (Van Dijk et al., 2012, Wylie et al., 2012), two older 

subjects were excluded for large head motions (standard deviation of motion 

regressor > 3mm). Head movements tend to be larger in healthy aging and 

patient populations.  

We also performed a “motion scrubbing” procedure developed by Power 

and colleagues (Power et al., 2012). First, motion estimates at each time point 

were calculated in each of the six motion directions (rotational measures: roll, 

pitch, yaw, and displacement measures: superior, left, and posterior directions). 

Rotational displacement measures were converted to millimeters using the 

formula: 

d = R*(π 180 )*r  
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where R is the rotation in degrees and r is the radius (we used r = 50 mm as 

prescribed by Power). To express the total amount of motion for each time point 

in a single value, the absolute value of the displacement in each direction was 

summed, where the total displacement at the ith data point was: 

Di = |dα| + |dβ| + |dγ| + |dx| + |dy| + |dz|.  

Then the framewise displacement for the ith time point was calculated as: 

FDi = D(i-1) - Di  

to express instantaneous head motion. The scrubbing threshold was half of the 

smallest voxel dimension, as recommended by Power (EPI volumes were 

collected using a 2.75mm isotropic voxel, therefore we used a threshold of 1.375 

mm). The GLM analysis was then completed a second time, excluding the data 

points with a FD exceeding this threshold. 

Behavioral tests for older adults and exclusion criteria 

Tests for vision, hearing, and cognitive function were conducted on the 

older adults. In total, 5 subjects were excluded from the fMRI analysis (two for 

impaired hearing, three for fMRI data quality concerns). Of the 24 total subjects 

recruited for the study, only the data from the remaining 19 subjects is reported 

here. 

Vision was assessed using a Snellen eye chart at the same visual ability 

they would have in the scanner (i.e. corrective contacts, if worn, but not glasses). 

Each eye was tested separately. The range of acuities was 20/20 to 20/70.  

Hearing was evaluated using a modified Bekesy threshold test at 500 and 

2000 Hz (Price, 1963). No subjects were excluded for poor simple hearing. The 
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range of hearing thresholds with both ears for normal aging in the age range of 

the subjects in our study is 10.5±11.1 dB – 14.3±12.6 dB at 500 Hz and 

14.1±15.3 dB – 28.6±20.9 dB at 2000 Hz (Brant & Fozard, 1990).  Our subjects 

had a range of 6.7 dB – 30.9 dB (mean: 13.5 dB, standard deviation: 4.8 dB) for 

500 Hz and 7.3 – 39.4 dB (mean: 15.8 dB, standard deviation: 8.1 dB) for 2000 

Hz. Therefore, our subjects were within the normal range (within two standard 

deviations of the mean) for hearing thresholds based on their age. However, 

speech abilities decline at a different rate than pure audiometric measures later 

in life (Divenyi et al., 2005), therefore we also tested identification of auditory-only 

and audiovisual syllables. Most subjects scored near ceiling on auditory-only 

syllable identification (83% - 100%, average performance 93%) and audiovisual 

syllables. Two subjects scored poorly on auditory-only syllable identification 

(<70%) and were excluded from the analysis. One older subject was excluded 

because an initial analysis found response amplitudes more than 3 standard 

deviations greater than the mean.  

Cognitive function was assessed using the standardized Mini Mental State 

Examination (MMSE) (Folstein et al., 1975). All subjects’ scores indicated no 

decline in cognitive function (scores ranged from 26-30, mean MMSE 28.4, 

scores 25 out of 30 points or greater indicate normal cognitive function).  
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Results 

Responses in the ROIs to audiovisual speech 

Our initial analysis focused on three ROIs implicated as critical nodes in 

the network for multisensory speech perception: the left superior temporal sulcus 

(STS), the left auditory cortex, and the left extrastriate visual cortex.  

Mean and standard deviation of the hemodynamic response across subjects  

The left STS showed a robust hemodynamic response to audiovisual 

syllables that was similar in older and younger subjects (Figure 3.1A). An 

unpaired t-test with percent signal change in the left STS as the dependent 

measure revealed slightly greater amplitude of mean response in younger adults  

(0.19% in younger adults vs. 0.12% in older adults, t31 = 2.1, p = 0.048). There 

were no significant differences in auditory cortex (0.26% vs. 0.24%, t31 = 0.5, p = 

0.63) or visual cortex (0.16% vs. 0.10%, t31 = 1.5, p = 0.15).  

The standard deviation of the response across subjects was similar 

between old and young (Figure 3.1B; left STS: SD of 0.08% for younger adults 

vs. 0.12% for older adults, Bartlett’s multiple sample test for equal variances 𝜒!!= 

2.5, p = 0.12; left auditory cortex: 0.14% vs. 0.12%, 𝜒!! = 0.7, p = 0.41; left visual 

cortex: 0.08% vs. 0.12%, 𝜒!! = 2.3, p = 0.13), indicating that the older adult group 

did not show greater intersubject (across subject) variability across the three a 

priori ROIs. 
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Figure 3.1 BOLD responses to audiovisual speech 
A: Average hemodynamic response to audiovisual syllables in the left STS for 
older adults (red) and younger adults (blue). Shaded region indicates standard 
deviation of the group response (intersubject variability). 
B. Response amplitudes in the left STS (STS), left auditory cortex (Aud), and left 
visual cortex (Vis) across all older adults (red) and younger adults (blue). Error 
bars show the complete range of data (subjects with maximum and minimum 
response); middle bar shows subject with median response. 
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Variability of the hemodynamic response within subjects  

An important behavioral difference between older and younger subjects is 

the variability across trials within individual subjects (intrasubject variability). To 

measure a neural parallel of this value, we first calculated the hemodynamic 

response function in every voxel and then measured the standard deviation from 

this response across trials.  

Figures 3.2A and 3.2B show data from the left STS of a representative 

older and younger subject, respectively (selected by choosing the individuals 

whose standard deviation was closest to the mean standard deviation for the 

group). While the response amplitudes are similar for the two subjects, the 

variability at each time is much larger in the older subject.  

To quantify this difference, we averaged the standard deviation from the 

peak of the response (4 and 6 seconds after stimulus onset) to produce a single 

number for intrasubject variability for each ROI for each subject, which was then 

plotted (Figure 3.2C-E). For each ROI, there was much greater within-subject 

standard deviation in older subjects (STS: 0.14% in older adults vs. 0.09% in 

younger adults, t31 = 4.2, p = 2 x 10-4; auditory cortex: 0.18% vs. 0.11%, t31 = 5.9, 

p = 10-6; visual cortex: 0.18% vs. 0.08%, t31 = 7.0, p = 10-8).  
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Figure 3.2 Intrasubject variability in older and younger subjects 
A: Hemodynamic response in the left STS of a single older adult (subject JI). 
Error bars indicate standard deviation of the response within that subject 
(intrasubject variability) at each time point. The variability at the 4 second and 6 
second time points (bold error bars) were used for group analysis. 
B: Hemodynamic response in the left STS of a single younger adult (subject HU).  
C: Scatter plot of age vs. within-subject standard deviation of the STS response. 
Each blue symbol represents a single younger adult; each red symbol a single 
older adult. The lines show the mean of the within-subject standard deviation 
across each group. The brackets show the results of an unpaired t-test between 
the within-subject standard deviation in each group. 
D: Scatter plot of age vs. within-subject standard deviation of the left auditory 
cortex response.  
E: Scatter plot of age vs. within-subject standard deviation of the left visual cortex 
response. 
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Whole-brain Analysis 

Our first set of analyses was limited to our three a priori ROIs created 

using block-design localizers. To overcome this limitation, and to prevent any 

biases introduced by slight differences in the localizers between old and young 

subjects, our second set of analyses examined the entire brain. First, we 

selected all voxels that showed a significant positive response (t > 2 for all 

audiovisual syllables vs. baseline) to audiovisual syllables across old and young 

subjects (Table 3.1 and Figure 3.3A). 

 
 
Label Area (mm2) Peak t-value 
R fusiform gyrus, inferior occipital gyrus, middle 
occipital gyrus (26, -71, -6) 4593 6.2 

R fusiform gyrus, inferior occipital gyrus, middle 
occipital gyrus (55, -21, 2) 3054 4.3 

R superior temporal sulcus and gyrus (55, -21, 2) 2361 7.4 
L superior temporal gyrus (-46, -33, 16) 2315 5.8 
L middle occipital gyrus (-23, -93, 5) 560 4.9 
R supramarginal gyrus and subcentral gyrus (49, 
-6, 44) 219 3.9 

              Total         13552 
Table 3.1 Activation to audiovisual speech syllables across both younger 
and older adults.  
Regions are ranked by area (only clusters greater than 160 mm2 are reported) 
and Talairach coordinates following anatomical label in (x, y, z) format are the 
weighted center of mass of the cluster. 
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Mean and standard deviation of the hemodynamic response across subjects 

We compared the mean amplitude of response between young and older 

adults. As shown in Table 3.2 and Figure 3.3B, we found regions in right and left 

visual cortex and right superior temporal sulcus (total area on the cortical surface 

= 1000 mm2) where younger adults had greater response amplitude than older 

adults (peak t-statistic = 4.3, p = 2 x 10-5). There were no regions where 

response amplitude was greater in older subjects. 

 
Increased Response Amplitude in Younger Adults 
Label Area (mm2) Peak t-value 
R occipital pole (13, -94, 5) 302 3.3 
R superior temporal sulcus (47, -36, 4) 273 3.8 
L occipital pole (-17, -93, 5) 223 4.3 
L subcentral sulcus (-53, -21, 13) 202 3.6 
                  Total         1000 
Table 3.2 Whole-brain response amplitude in younger and older adults. 
Regions are ranked by area (only clusters greater than 160 mm2 are reported) 
and Talairach coordinates following anatomical label in (x, y, z) format are the 
weighted center of mass of the cluster. 
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Next, we compared the standard deviation of the response at every brain 

voxel. As shown in Table 3.3 and Figure 3.3C, the amplitude of response was 

more variable across older subjects in bilateral visual cortex and right superior 

temporal cortex (total area = 4367 mm2, peak Bartlett’s 𝜒!!= 29, p = 9 x 10-8). 

There were no regions where the variability across subjects was greater in 

younger adults. 

 
Increased Intersubject Variability in Older Adults 
Label Area (mm2) Peak χ2 
L inferior occipital gyrus (-30, -75, -12) 1819 29 
R inferior occipital gyrus (24, -81, -8) 1552 27 
R superior temporal gyrus (62, -8, 2) 438 15 
R transverse temporal gyrus (44, -24, 10) 200 7.8 
R fusiform gyrus (34, -49, -19) 194 9.7 
L superior frontal gyrus (-1, 0, 56) 164 27 
          Total           4367 
Table 3.3 Whole-brain intersubject variability in younger and older adults. 
Regions are ranked by area (only clusters greater than 160 mm2 are reported) 
and Talairach coordinates following anatomical label in (x, y, z) format are the 
weighted center of mass of the cluster. 
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Variability of the hemodynamic response within subjects 

We calculated the variability of the response within each subject at each 

voxel, and then compared the two groups. Many brain regions showed greater 

intrasubject variability in older adults (Table 3.4 and Figure 3.3D), including left 

auditory cortex and bilateral extrastriate visual cortex (total area = 7026 mm2; 

peak t-statistic = 5.8, p = 2 x 10-6). There were no regions where intrasubject 

variability was greater in younger adults. 

 
Increased Intrasubject Variability in Older Adults 
Label Area (mm2) Peak t-value 
R superior temporal gyrus (54, -19, 1) 2341 5.0 
L middle and inferior occipital gyri (-38, -69, -3) 1943 5.8 
L planum temporale (-47, -29, 13) 1697 4.9 
R inferior occipital gyrus (37, -61, -13) 882 4.2 
R superior temporal sulcus (45, -56, 5) 163 5.3 
       Total            7026 
Table 3.4 Whole-brain intrasubject variability in younger and older adults.  
Regions are ranked by area (only clusters greater than 160 mm2 are reported) 
and Talairach coordinates following anatomical label in (x, y, z) format are the 
weighted center of mass of the cluster. 
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Figure 3.3 Whole-brain analysis of differences in older and younger adults 
Whole-brain group analysis results are displayed on lateral views of the left and 
right hemisphere of the cortical surface model of the N27 atlas brain.  
A: Regions that show a significant positive response (t > 2 for all audiovisual 
syllables vs. baseline) to audiovisual speech in both older and younger adults. 
B: Differences in response amplitude to audiovisual speech in active regions 
from (A). Green regions indicate no difference in response amplitude; blue 
regions indicate areas of greater response amplitude in younger adults. 
C: Differences in intersubject variability (variability of the amplitude of the BOLD 
response across subjects). Orange regions indicate areas with greater response 
variability in older adults.  
D: Differences in intrasubject variability (variability of the amplitude of the BOLD 
response within each subject). Orange regions indicate areas with greater 
intrasubject variability in older adults.  
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Potential confound: differences in head movements between younger and older 

adults  

Head movements can confound intergroup comparisons (Power et al., 

2012, Van Dijk et al., 2012). While our estimates of head movements were small, 

they were larger in older than younger adults (0.48 mm vs. 0.32 mm, p = 0.004). 

In addition to the standard analysis techniques of motion correction and inclusion 

of motion estimates in regressors of no interest in the general linear model used 

to reduce the effects of head motion of fMRI data, we performed a number of 

additional analyses. First, we used the “motion scrubbing” procedure developed 

by Power and colleagues (Power et al., 2012). Older adults had slightly greater 

number of data frames flagged for removal (average of 6.5 data frames in older 

adults vs. 2.2 data frames in younger adults, t31 = 4.1, p = 3 x 10-4). Our finding of 

increased BOLD signal variability in older adults remained unchanged after the 

scrubbing procedure (scrubbed data: STS: 0.13% vs. 0.09%, t31 = 3.4, p = 0.002; 

auditory cortex: 0.18% vs. 0.10%, t31 = 5.3, p  = 8 x 10-6; visual cortex: 0.17% vs. 

0.09%, t31 = 5.5, p = 1.6 x 10-5).  

There was no correlation in both older and younger adults between 

amount of head motion and variability (older adults: r = 0.04, p = 0.88; younger 

adults:  r = 0.16, p = 0.59) (Figure 3.4). An ANCOVA was performed the ROI 

data with age group as one factor, head motion as a covariate, and standard 

deviation of the fMRI response as the dependent variable and revealed no 

interaction between age group and head motion in any ROI (p > 0.68), and the 

finding of increased intrasubject variability in older adults remained significant 
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(STS: F1,29 = 13, p = 0.001; auditory cortex: F1,29 = 25, p = 3 x 10-5; visual cortex: 

F1,29 = 34, p = 2 x 10-6). A whole-brain ANCOVA that included the amount of head 

motion in each subject as a covariate gave results nearly identical to the analysis 

without the head motion covariate.  

Finally, we discarded the six older adults with the greatest amount of head 

motion (resulting in a total group size of 13 older adults), which rendered the 

differences in head movements between groups insignificant (0.39 mm vs. 0.32 

mm, p = 0.10), but left the main finding of increased intrasubject variability in 

older subjects intact (left STS: 0.14% vs. 0.09%, t25 = 3. 7, p = 0.001; left auditory 

cortex: 0.18% vs. 0.11%, t25 = 5.4, p = 10-4; visual cortex: 0.17% vs. 0.08%, t25 = 

6.7, p = 5 x 10-7).  
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Figure 3.4 Relationship between head motion and variability 
Scatter plot of average head motion vs. the average standard deviation of the 
response to audiovisual syllables in each older subject (red) and each younger 
subject (blue).  
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Behavioral performance  

Before the scanning session, subjects were tested on a variety of 

behavioral tests, including auditory, visual, and cognitive measures. We found no 

correlation between test of auditory thresholds and the amplitude of response 

(STS: r = -0.16, p = 0.51 at 500 Hz, r = 0.21, p = 0.39 at 2000 Hz; auditory 

cortex: r = -0.23, p = 0.34 at 500 Hz, r = -0.33, p = 0.17 at 2000 Hz; visual cortex: 

r = -0.18, p = 0.46 at 500 Hz, r = 0.15, p = 0.54 at 2000 Hz) or the variability of 

the response (STS: r = 0.03, p = 0.90 at 500 Hz, r = -0.14, p = 0.57 at 2000 Hz; 

auditory cortex: r = 0.23, p = 0.34 at 500 Hz, r = -0.04, p = 0.87 at 2000 Hz; 

visual cortex: r = 0.12, p = 0.62 at 500 Hz, r = -0.11, p = 0.65 at 2000 Hz).  

Similarly, we found no correlation between visual acuity and the amplitude 

of response (STS: r = -0.23, p = 0.34; auditory cortex: r = -0.05 p = 0.84; visual 

cortex: r = -0.16, p = 0.51) or the variability of the response (STS: r = 0.11, p = 

0.65; auditory cortex: r = -0.06, p = 0.81; visual cortex: r = 0.15, p = 0.54), nor 

any correlation between MMSE score and the amplitude of response (STS: r = -

0.36, p = 0.13; auditory cortex: r = 0.04, p = 0.87; visual cortex: r = 0.002, p = 

0.99) or the variability of the response (STS: r = -0.11, p = 0.65; auditory cortex: r 

= -0.31, p = 0.20; visual cortex: r = -0.23, p = 0.34).  

Performance on the syllable identification task was near-ceiling (auditory-

only syllables: 93%, audiovisual syllables: 98%). Because of these near-ceiling 

values, no correlation with the fMRI data was performed.  
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Conclusions  

We compared brain responses to audiovisual speech in healthy older and 

younger adults using fMRI. The most important finding was greater intrasubject 

variability in the older adults: across multiple trials of the same stimulus, older 

adults had greater variability in their brain responses than younger adults. This 

was true across all of the brain areas that responded to audiovisual speech and 

was confirmed with two independent types of analysis (ROI and whole-brain). We 

also observed two less robust effects: older adults had smaller response 

amplitudes than younger adults, and older adults had greater intersubject 

variability than younger adults.  

Across a variety of behavioral tasks, older adults have worse performance 

and increased intrasubject variability compared with young adults (Hultsch et al., 

2002, West et al., 2002, Murphy et al., 2007, MacDonald et al., 2012, Lovden et 

al., 2013). Older adults with mild dementia show more intrasubject variability than 

healthy age-matched controls (MacDonald et al., 2006) and healthy older adults 

with more trial-to-trial variability showed greater cognitive declines over time 

(Lovden et al., 2007).  

While a link between increased neural (BOLD fMRI) variability and 

increased behavioral variability is sensible on its face, the precise link between 

the two is a matter of speculation. With increased neural variability the 

distribution of responses in a population of neurons to a given stimulus would 

become wider, which in turn would make it harder for the brain to differentiate 

between the possible stimuli that evoked the response (Li et al., 2001). 
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Consistent with this idea, decreased stimulus specificity has been observed in 

single cell recordings of older cats and non-human primates (Schmolesky et al., 

2000, Hua et al., 2006, Liang et al., 2010). Older adults are particularly impaired 

in perceiving speech if it is embedded in artificially generated noise (Dubno et al., 

1984, Humes, 1996, Sommers et al., 2005, Gosselin & Gagne, 2011). The 

increased noise in the stimulus could exacerbate the effects of increased neural 

variability, which could be considered “neural noise”. We did not test older 

subjects using noisy audiovisual speech, the type of speech on which they are 

most impaired. Therefore, we could not directly compare the increased neural 

variability we observed in older subjects with the decreased performance of 

recognizing speech in noise that they are known to have. Future studies using 

noisy stimuli would be expected to produce poorer performance and reveal 

differences between subjects correlated with BOLD variability.  

Older adult subjects with poor auditory-only or audiovisual syllable 

identification performance were excluded from the study. This resulted in a group 

of high-functioning older adults with very nearly identical behavioral scores to the 

younger adults, which still revealed a difference in neural variability across age 

groups. Just as high behavioral variability in high-functioning older adults predicts 

later declines in cognitive function (Lovden et al., 2007), increased neural 

variability might also provide a similar marker for future cognitive deficits in the 

absence of any behavioral differences.  

Neural variability at early stages of cortical sensory processing might be 

compounded by neural variability at decision layers higher in the cortical 
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hierarchy. Speech perception involves categorical judgments about the identity of 

each syllable. Neuronal variability could impair these decisions, an effect that 

may be even more important than added sensory noise (Beck et al., 2012).  

Neuronal variability may also differentially affect the ability to make both 

fine and coarse discriminations. Low levels of neuronal variability favor fine 

discriminations performed at locations in stimulus space in which neuronal 

selectivity changes rapidly, while high levels of neuronal variability favor coarse 

discriminations performed at locations in stimulus space where neuronal 

responses are maximal (Butts & Goldman, 2006). Therefore, increased neuronal 

variability with aging might impair fine discrimination while leaving coarse 

discriminations relatively intact.  

While our literature search did not reveal any fMRI studies examining 

multisensory speech perception in healthy older adults, there have been a 

number of fMRI studies comparing young and older adults in other tasks. The 

preponderance of studies have reported more variability in older adults, as we 

observed in our dataset. D’Esposito et al. (1999) measured BOLD responses in 

motor cortex to a bilateral button press cued by the appearance of a briefly 

presented white circle. Greater intrasubject variability in older adults compared to 

younger adults was observed; there were no differences in response amplitude 

and only a small increase in intersubject variability. Huettel et al. (2001) 

measured responses in visual cortex to checkerboard stimuli with no behavioral 

task. Greater intrasubject and intersubject variability in older adults was 

observed, with no difference in amplitude of response. Samanez-Larkin et al. 
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(2010) found that healthy older adults exhibited suboptimal decision-making on a 

financial investment task compared to younger adults and also exhibited greater 

temporal variability in the nucleus accumbens.  

In contrast to these studies that reported more variability in older adults, 

Garrett et al. (2012) reported less neural variability in older adults using a variety 

of complex cognitive tasks. One possible explanation for this result is that the 

analysis of Garrett et al. used a measure derived from multivariate voxel pattern 

analysis (MVPA) to measure variability across all brain voxels. MVPA analyses 

and traditional univariate analyses such as ours may give conflicting or even 

contradictory results. The explanation for these discrepancies is a matter of 

debate (Jimura & Poldrack, 2012). 

A potential confound in BOLD fMRI studies of older populations is 

vascular changes with age (Fang, 1976). However, studies that directly measure 

neuronal activity also find age-related changes in variability. Anderson et al. 

(2012) presented auditory syllables to healthy older adults and measured the 

auditory brain stem response, an electrophysiological measure of neuronal 

activity that is not influenced by the vasculature, and found greater variability in 

older adults. In a study of non-human primates, single neuron responses in V1 

and MT of older monkeys had greater variability than in younger monkeys (Yang 

et al., 2009). These findings suggest that the variability differences in our study 

have a neuronal component in addition to any possible vascular sources. 

Although the results presented here concur with previous results in the 

literature, including neural processing in older adults as well as 
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electrophysiological results from older experimental animals, it will be important 

to definitively demonstrate that variability in the BOLD signal has a distinctively 

neural origin and is not the result of changes to neural-vascular coupling in aging. 

To do this, physiological measurements (e.g. heart rate and respiration) can be 

recorded during the fMRI experiment for both younger and older subjects and 

RETROICOR can be used to filter respiration and cardiac induced noise (Glover 

et al., 2000). If older adults still have greater BOLD signal variability after 

corrections for differences in heart rate and respiration, this would strengthen the 

claim that variability in the BOLD signal is neural as opposed to vascular.  

Intergroup differences in fMRI studies may also be driven by differences in 

head movements. This is especially of concern in studies of resting state 

functional connectivity (Power et al., 2012, Van Dijk et al., 2012). In a resting 

state study, movements can introduce correlations in the MR time series 

between distant brain areas that can be wrongly interpreted as evidence for 

functional connectivity. However, in our study, we did not perform a functional 

connectivity analysis, nor did we analyze resting state data. In a task-based 

study such as ours, averaging the response to multiple stimuli can reduce 

movement effects, since head movements and stimulus presentation are 

independent. We used five different methods (including the motion scrubbing 

procedure suggested by Power and colleagues) to account for differences in 

head motion, and found no effect on our main results. Consistent with these 

analyses, two previous studies (Huettel et al. (2001) and D’Esposito et al. (1999)) 

did not find a correlation between head motion and BOLD signal variability.  
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Our secondary findings of lower response amplitude and greater 

intersubject variability in older adults were more pronounced in the whole-brain 

than the ROI analyses. One possibility is that the anatomical templates used for 

normalization (only necessary for the whole-brain analysis) can introduce group 

differences (Samanez-Larkin & D'Esposito, 2008). For instance, if older brains 

atrophy or undergo other morphological changes that vary from individual to 

individual, they will be less likely to align with the template. Then, the same 

functional brain region will lie in different locations in standard space in different 

subjects, leading to increased intersubject variability and decreased response 

amplitude that has an anatomical, rather than a functional origin. The ROI 

analysis is less susceptible to this problem because the regions are defined 

functionally, not based on their location in standard space. 

Our most robust finding was of greater intrasubject variability in older 

adults. This finding was true in both the ROI and whole-brain analysis. Among 

the physical changes to the aging brain, a decrease in myelination has been 

observed (Lu et al., 2011, Kerchner et al., 2012). These decreases in white 

matter integrity could lead to increases in neuronal variability by preventing 

neurons from firing consistently even with the same sensory input. Better 

understanding the neural sources of this variability and its behavioral 

consequences may help in designing strategies to ameliorate declines in speech 

perception, one of our most important cognitive functions. 
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CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS 
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Speech perception is a critical cognitive function, but the brain 

mechanisms that support this process are not entirely understood, especially 

after changes to the brain after stroke or during healthy aging.  In Chapter 2, I 

presented the results of a case study of patient SJ, which illustrated how the 

brain can support multisensory integration following damage to the left STS. 

Case studies can be particularly useful when a patient presents with a unique 

but interpretable deficit that can illuminate something about the organization of 

the brain (Editorial, 2004).  

 Patient SJ suffered a cerebrovascular insult damaged the left STS and 

surrounding tempo-parietal area. Although the left STS seems to be a critical 

hub in the multisensory speech perception network in healthy adults (Scott & 

Johnsrude, 2003, Beauchamp, 2005, Miller & D'Esposito, 2005, Stevenson & 

James, 2009, Beauchamp et al., 2010, Nath & Beauchamp, 2011, 2012), SJ 

demonstrated multisensory integration abilities through behavioral testing at a 

level similar to healthy controls. My fMRI study provided evidence that SJ’s right 

STS now supports multisensory integration in speech, as demonstrated by 

greater multisensory cortex and increased response amplitude in the right STS 

compared to healthy controls.  

This is remarkable because recovered function after a stroke is a desired, 

but not always actual outcome. Another stroke patient, AWF, acquired a 

selective impairment in audiovisual processing as the result of an unknown 

neurologic event (Hamilton et al., 2006). An MRI did not reveal any noticeable 

damage but a single positron emission computed tomography (SPECT) study 
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revealed hypoperfusion in parietal cortex bilaterally. AWG performed better on a 

number of tasks during the unimodal (auditory information only) but not bimodal 

(auditory and visual information available) conditions, and he did not perceive 

the McGurk effect. Although this case study did not include functional MRI 

testing, it would be interesting to contrast the neural response to audiovisual 

speech in AWG to SJ. It is possible that due to the diffuse nature of the stroke 

damage bilaterally, AWG’s brain was unable to compensate for the damaged 

area with increased function in healthy cortex.  

Like the left STS, the right STS is also anatomically connected to auditory 

cortex and visual cortex, but may play a less important role in audiovisual 

integration in speech in healthy subjects. After brain damage, these redundant 

connections may be utilized to recover lost functions of the damaged cortex. 

One area that is currently under investigated is the role of the right STS in 

healthy subjects. Although approximately 93% of healthy adults right-handed 

adults (Knecht et al., 2000) and 78% of left-handed adults (Szaflarski et al., 

2002) show left hemisphere dominance in language perception, the role of the 

right hemisphere in language processing in healthy adults is not entirely known. 

Healthy subjects who show less language lateralization (more bilateral 

processing) are less susceptible to unilateral virtual lesions with TMS (Knecht et 

al., 2002). Because other studies have shown that disrupting the right 

hemisphere of recovered aphasic patients results in language impairments 

(Kinsbourne, 1971, Czopf, 1979, Winhuisen et al., 2005, Turkeltaub et al., 2011), 
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I predict that disruption of the right STS with TMS would have a much greater 

impact on SJ’s remaining multisensory abilities than healthy controls. 

These individual differences in where and how language is processed in 

the brain may provide some patients with a greater predisposition for recovery 

than others. In the TMS study by Beauchamp et al. (2010), only left STS activity 

was disrupted. A follow-up study should also include the multisensory cortex in 

right STS as an additional TMS site. I predict that the impact of TMS on the right 

STS of healthy controls would be less than the disruption of left STS activity, but 

still might decrease McGurk perception. Furthermore, the impact of TMS on 

McGurk perception in the right hemisphere in individual subjects might be 

related to degree of language lateralization in each subject.  

Future work should track stroke patients through recovery, conducting 

fMRI and behavioral testing at multiple time points. For those patients that 

eventually show strong recovery after a stroke, I would predict that the area of 

multisensory cortex should increase commensurate with improvement on 

standardized language testing. In patients with Alzheimer’s disease, right 

hemisphere recruitment of language processing correlated positively with 

performance accuracy in a naming test (Nelissen et al., 2011), demonstrating 

that certain neural measures may provide an additional marker for disease 

progression or recovery. In the future, these neural measures could be used in 

conjunction with traditional neuropsychological testing. Although Beauchamp et 

al. (2010) used TMS to produce inhibitory effects, altering the frequency and 

intensity of TMS pulses can also produce excitatory effects (Pascual-Leone et 
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al., 1994). Techniques that enhance right hemisphere recruitment, like repetitive 

TMS (rTMS) or transcranial direct current stimulation (tDCS), may be useful to 

augment language recovery in patients with left hemisphere damage (Medina et 

al., 2012). 

In Chapter 3, I discussed neural responses to audiovisual speech in 

healthy older and younger adults. I sought to understand some of the neural 

mechanisms underlying multisensory speech perception in healthy aging. In 

behavioral tasks, older adults show much greater variability in their trial-to-trial 

performance. Measures of behavioral variability in healthy aging have shown 

that this greater variability in performance is associated with greater declines in 

cognition. For example, intraindividual variability on a simple reaction time task 

in healthy older adults was shown to be a strong predictor of information 

retained after a 1 week interval: those with greater intraindividual variability 

forgot more information than those with less performance variability (Papenberg 

et al., 2011). To determine if intraindividual variability on neuropsychological 

testing measures were associated with performance deficits on a more real-

world situation, Kennedy et al. (2013) examined performance in a flight simulator 

in healthy middle-aged and older pilots and found that high intraindividual 

variability on neuropsychological tests was associated with worse performance 

on communication, emergency detection, and traffic avoidance while in the flight 

simulation.  

The results of the work presented here show that there is a neural 

counterpart to this behavioral observation: in older adults there is greater 
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intraindividual neural variability compared to younger adults. This was true both 

in specific nodes in the multisensory speech perception network (auditory cortex, 

visual cortex, and the STS) and across areas that were significantly active 

during audiovisual speech perception. This, in addition to evidence of increased 

neural variability from other sensory tasks (D'Esposito et al., 1999, Huettel et al., 

2001, Samanez-Larkin et al., 2010), suggests that increased neural variability 

may be a general feature of the aging brain.  

The fact that increased behavioral variability is reliably correlated with 

declines in cognitive function suggests that there is a link between behavioral 

variability and cognition. The ability for the brain to receive, filter, and process 

sensory information is unlikely to be independent from cognitive processes, 

which also rely on the processing and transforming of information. If this is the 

case, then the study of variability is important both in its own right and as a 

window into cognition. The relationship between behavioral variability and neural 

variability is currently unknown. Preliminary work has suggested two possible 

mechanisms, including decreased binding of the dopamine D2 receptor 

(MacDonald et al., 2009) Specifically, decreased D2 receptor binding in the 

orbitofrontal cortex, anterior cingulate cortex, and hippocampus is correlated 

with increases in intraindividual standard deviation on cognitive tasks in middle-

aged adults. Additionally, decreased white matter integrity (Lu et al., 2011, 

Kerchner et al., 2012) is correlated with decreases in information processing 

speed in the aging brain. Decreased myelination and receptor binding may 
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reduce the efficiency of the propagation of the neural signal, and thus may play 

a role in the neural and behavioral changes found in the aging brain. 

In future studies of healthy aging, it will be important to combine 

behavioral measures (such as a hearing speech-in-noise task) with fMRI. The 

Quick Speech-in-Noise (SIN) test (Killion et al., 2004) tests language 

comprehension at multiple signal-to-noise ratios (SNRs), and it would be 

interesting to compare speech-in-noise performance with intrasubject BOLD 

variability. If behavioral variability and neural variability are related, then 

behavioral measures should correlate with our neural measure of variability, 

such that older adults with greater neural variability should also show worse 

performance on sensory behavioral tasks like Quick SIN. This variability may 

also be correlated with stimulus noise (greater neural variability with decreasing 

SNR), reflecting both the internal neural noise and external stimulus noise. If we 

are better able to understand the neural mechanisms of this behavioral 

variability and its potentially detrimental effects on behavioral performance, this 

may help in designing strategies to increase speech perception (and other kinds 

of sensory processing) in older adults. 
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