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ABSTRACT 
 

 

BASIS FOR TARGETING MET ACTIVATION MEDIATED RESISTANCE TO PI3K 

INHIBITION IN BREAST CANCER 

 

Ana Maria Gonzalez-Angulo, M.D. 

Supervisory Professor: Gordon B. Mills, M.D., PhD. 

 

 

The identification of resistance mechanisms to emerging therapies, such as those 

targeting the PI3K pathway and the MET receptor, has the potential to benefit a significant 

number of patients with breast cancer. In this study we hypothesized that concurrent 

aberrations in PI3K and MET will render breast cancers resistant to therapies targeting each 

pathway, and that combination therapy targeting the PI3K and MET pathway will optimize 

therapy-effect by preventing the acquisition of resistance.  

 

We analyzed cMET and phospho-cMET levels in 257 breast cancer samples and found 

that high levels of both the proteins were seen in all breast cancer subtypes, which correlated 

with poor prognosis.(1) We also analyzed DNA from 971 FFPE early breast tumors, and 

showed that MET and PIK3CA are frequently co-amplified, and a high copy number of either 

gene is associated with poorer prognostic features and the triple negative disease.(2) 

Additionally, we determined the effect of MET-T1010I, MET-Y1253D and MET overexpression, 

found in breast cancers, on the activity of the two most common breast cancer PIK3CA 

mutations (E545K and H1047R), in a model of breast epithelial cells (MCF-10A) and a cell line 

breast cancer model (HCC1954). Our results suggest that tumors with concurrent aberrations 

in MET and PIK3CA are likely to be more aggressive and resistant to therapies targeting each 

pathway, and that combinatorial therapy (with MET and PI3K pathway inhibitors) could 

circumvent this resistance. 

 

This is the first study to investigate the significance of differential expression of cMET 

and p-cMET in different breast cancer subtypes, to report p-cMET levels as a prognostic factor 

in breast cancer, and also, the first to report MET gene copy number, its distribution by tumor 

subtype, and correlation with patient outcome.(2) Our study is also unique for showing that the 
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presence of MET aberrations enhances the tumorigenic effects induced by the PIK3CA 

mutations in breast cancer/epithelial cells; results from our tumor xenograft models 

corroborate with these in vitro findings. Moreover, we are the first to provide evidence for the 

potential activity of combinatorial therapy using MET and PI3K pathway inhibitors against 

breast cancer. 
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CHAPTER 1: INTRUDUCTION 
 

Breast cancer is the second most common cancer worldwide after lung cancer, the fifth 

most common cause of cancer death, and the leading cause of cancer death in women. The 

global burden of breast cancer exceeds all other cancers and the incidence rates of breast 

cancer are increasing(3). Over 200,000 cases and around 40,000 breast cancer related 

deaths occurred in the US in 2012.(4)  

 

Breast Cancer is a heterogenous group of neoplasms originating from the epithelial 

cells lining the milk ducts(5). Breast tumor heterogeneity has been noted in histology and 

clinical outcome for a long time, and these differences have served as the basis for disease 

classification(5). Gene expression studies have identified several major subtypes of breast 

cancer: the luminal subtypes, which typically express hormone-receptor related genes, and 

two hormone receptor-negative subtypes- the human epidermal growth factor receptor 2 

(HER2) positive/estrogen receptor (ER) negative subtype and the basal-like subtype(6).  

 

In gene arrays, basal breast cancers are characterized by low expression of ER-related 

genes and HER2-related genes, for this reason in clinical specimens they are usually ER-

negative, progesterone receptor (PR) negative and lack HER2 overexpression. This is called 

the triple-negative phenotype(6). Triple-negative tumors typically have a higher histologic 

grade, elevated mitotic count, scant stromal content, central necrosis, pushing margins of 

invasion, a stromal lymphocytic response and multiple apoptotic cells(7, 8). Histologically they 

are largely ductal, but several unusual histologies are also overrepresented, including 

metaplastic(7, 9, 10), atypical or typical medullary(7, 11), or adenoid cystic carcinomas. Due to 

the lack of expression of ER, PR or HER2, these tumors do not respond to hormonal therapies 

or HER2-targeted therapies, and are associated with poor prognosis. Thus, new systemic 

therapies are desperately needed.  

 

Detailed understanding of the genetic abnormalities that drive subsets of cancer has 

led to the development of highly specific inhibitors targeting key oncogenic pathways(12). The 

PI3K (phosphatidylinositol 3 kinase) and the HGF/MET (hepatocyte growth 

factor/mesenchymal epithelial transition receptor) are two such pathways. The PI3K pathway 

is mutationally activated in more tumors than any other pathway making it a highly attractive 

therapeutic target. Indeed, more drugs are in or about to enter clinical trials targeting this 
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pathway than any other. Studies suggest that overexpression of HGF (MET ligand) and MET 

contributes to resistance, both inherent and treatment-acquired, to endocrine therapy as well 

as to trastuzumab treatment. (13, 14) The anti-apoptotic, prosurvival effect of the HGF/MET 

signaling pathway makes MET inhibition a potential therapeutic target for breast cancers that 

are resistant and refractory to conventional therapies.(2) Several small molecule MET kinase 

inhibitors and antibodies against HGF and MET, are in various stages of development as 

potential cancer therapies. (15-17) Hence, it is pertinent to understand the role of the PI3K and 

MET signaling pathway in breast cancer.  

 

The PI3K pathway in breast cancer: This pathway plays a key role in cell growth, 

protein translation, autophagy, metabolism, and cell survival.(18, 19) Thus, tight regulation of 

the PI3K pathway is paramount to ensure that cellular inputs are integrated for appropriate 

cellular outcomes. The PI3K pathway is downstream of most growth factor tyrosine kinase 

receptors (TKR) including MET, EGFR, HER2 and IGFR that have been implicated in breast 

cancer. Further, the Akt protein kinase is frequently phosphorylated in breast, NSCLC (non 

small cell lung cancer), endometrial, prostate, colon, gastric, and pancreatic cancers, as well 

as glioblastoma, reflecting pathway activation. Increased levels of Akt 

phosphorylation/activation and PTEN loss are predictors of poor outcome in breast cancer and 

linked to therapy resistance to TKR inhibitors.(20)  

 

The PI3K pathway is mutationally activated in more tumors than any other cellular 

pathway making it a highly attractive therapeutic target. PI3K signaling is deregulated through 

a variety of mechanisms, including overexpression or activation of TKR, activating mutations, 

gene amplification of PIK3CA and AKT isoforms, as well as loss of key negative regulators 

including PTEN and INPP4B as well as aberrations in multiple other pathway members. We 

have demonstrated activating mutations in PIK3CA, the gene encoding the p110alpha catalytic 

subunit of PI3K, in 22% of breast cancers indicating that the PI3K pathway is an important 

target in this disease.(21) Further, other forms of deregulation and aberrations of this pathway 

have been implicated not only in breast cancer development and progression,(22) but also in 

resistance to targeted therapies directed to TKR and hormone receptors.(23-26) As a result, 

multiple drugs targeting the PI3K pathway are in early clinical trials as mono or combination 

therapies in breast cancer.(27) Thus, it is critically important to identify mechanisms of 

resistance to PI3K pathway inhibitors. 
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Evidence of importance of the HGF/MET axis and resistance to targeted 
therapies for cancer: The hepatocyte growth factor (HGF) and its receptor, the 

transmembrane tyrosine kinase MET, promote cell proliferation, survival, motility, and 

invasion, as well as morphogenic changes that in normal cells stimulate tissue repair and 

regeneration but are also co-opted during tumor growth.(28-35) MET over-expression, with or 

without gene amplification, has been reported in a variety of human cancers including breast, 

lung, and GI malignancies.(36-38) Further, high levels of HGF and/or MET correlate with poor 

prognosis in several tumor types, including breast, ovarian, cervical, gastric, head and neck, 

and non-small cell lung cancer (NSCLC).(38-42) Gene amplification and protein over-

expression of MET drive resistance to EGFR inhibitors, both in NSCLC cell lines and in 

patients.(43) The concept that rational combinatorial therapy will be needed for optimal 

efficacy is supported by the observation that inhibition of either MET or EGFR was insufficient 

to fully block signaling in gefitinib-resistant cell lines, whereas the combination completely 

inhibited signaling.(43) A recent phase II randomized clinical trial evaluating Onartuzumab, an 

antibody to the MET receptor, in combination with erlotinib, in patients with advanced NSCLC 

showed that Onartuzumab combined with erlotinib improved progression-free survival PFS 

(hazard ratio (HR), 0.56) and overall survival (HR 0.55) in patients with tumors with high MET 

expression.   

 

An additional mechanism that causes MET activation of is the presence of activating 

mutations. Missense germ-line mutations in kinase domain of MET were initially described in 

patients with hereditary papillary renal carcinoma.(44) Sporadic and germline mutations have 

been detected in multiple solid tumors. However, only some of these mutant alleles have been 

proven to cause malignant transformation as a result of constitutive receptor activation posing 

a potential for therapeutic target.(45) Oncogenic somatic and germline mutations have been 

found to be predominantly located in the non-kinase domain, mainly in regions encoding the 

extracellular semaphorin domain (E168D, L229F, S323G, and N375S) and the intracellular 

juxtamembrane domain (R988C, T1010I, S1058P, and exon-14 deletions).(45) The 

juxtamembrane domain regulates ligand-dependent MET internalization by Y1003 

phosphorylation in response to HGF binding leading to MET ubiquitination and 

degradation(33). Somatic or germline mutations in the juxtamembrane domains can result in 

MET accumulation at the cell surface and persistent HGF-stimulation leading to 

tumorigenesis.(46) Overall, MET mutations occur at a lower frequency than other mechanisms 

of pathway activation, however, they provide strong evidence of the axis oncogenic potential 

and may identify patients that can either benefit from MET-directed therapies, or those in 
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which some of these therapies may not be effective.(47) A strong response to therapeutic 

inhibition with cMET small-molecule inhibitors has been demonstrated in cell line models 

harboring MET oncogenic mutations when these cause increased MET expression, 

phosphorylation and downstream signaling.(47) A more in-depth description of the frequency 

and biological implications of cMET aberrations can be found at the introduction of chapter 2 of 

this document. 

 

Our preliminary analysis of hotspot mutations with Sequenom showed T1010I and 

Y1253D as the two most common mutations. The Y1253D activating somatic point mutation is 

located in MET exon 19,(48) and was first identified in the lymph node metastasis of head and 

neck squamous cell carcinoma (HNSCC).(49) It was found to change one of the two tyrosines 

(Y1252/Y1253) known as the MET receptor major autophosphorylation sites.(50) MET 

Y1253D has also been shown to couple and activate signaling pathways, which confer a 

motile-invasive phenotype on cancer cells.(50) The missense MET sequence alteration 

T1010I, located in exon 14 encoding for the juxtamembrane domain of MET, has been 

reported in thyroid carcinoma, renal papillary carcinoma, small cell lung cancer, human gastric 

carcinoma and in a breast cancer biopsy.(44) T1010I has been reported as a germline 

mutation in colorectal cancer,(51) thyroid cancer,(52) and hereditary renal papillary 

cancer,(53) however, its capacity to contribute to oncogenesis has been a topic of debate.(54) 

Schmidt et al. showed that T1010I lacks the ability to transform NH3T3 cells,(55) wherein, Lee 

and colleagues observed that it was more active than the wild type MET in the athymic nude 

mice tumorigenesis assay.(53) Considering the significance of the identification of the two 

major breast cancer hereditary susceptibility genes, BRCA1 and BRCA2, it is pertinent to 

throw light on the functionality of other germline mutations. Our study aims to evaluate the 

functional significance of the T1010I aberration in the pathogenesis of breast cancer. A more 

in-depth description of the frequency of reported copy number alterations and co-alterations in 

cMET and PIK3CA can be found at the introduction of chapter 3 of this document. 

 

In some instances aberrations can occur as germline as well as somatic; for example, 

the germline versus somatic BRCA1/2 mutations found in Ovarian Cancers. Germline DNA of 

28 ovarian cancer patients, harboring a BRCA1 or BRCA2 mutation, was analyzed by 

Hennessey and colleagues.(56) In these, 11 ovarian tumor BRCA1 (nine of 21; 42.9%) and 

BRCA2 (two of seven; 28.6%) mutations could be demonstrated to be somatic due to an 

inability to detect the aberration in germline DNA, whereas, 17 mutations (60.7%) were found 

in both tumor and germline DNA.(56) Hence, it is important to determine the nature of the 
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T1010I aberration in Breast Cancer, and we are currently in the process of sequencing Breast 

Cancer tumors for the same. Keeping in mind that the recent TCGA (The Cancer Genome 

Atlas) report on human breast tumors has excluded all the Database SNPs (dbSNPs),(57) and 

has not reported T1010I, for the purpose of this study we are addressing T1010I as a Single 

Nucleotide Polymorphism (SNP); rs56391007.(51, 58)  

 

Studies with breast cancer models are just beginning. Ponzo and colleagues have 

illustrated that MMTV-driven-MET mutant mouse models produce tumors resembling human 

basal breast cancer.(59) Their study used mice that were transgenic for oncogenic variants of 

the MET receptor- M1248T, Y1003F/M1248T. They have demonstrated that these Metvariants 

induce mammary tumors with diverse histology, which, based on immunohistochemistry and 

expression profiling, includes tumors with basal and luminal characteristics. Our study 

investigates the role of the SNP MET T1010I and the somatic MET mutation Y1253D in the 

pathogenesis of Breast Cancer. Further, in collaborative studies, we have demonstrated that 

MET overexpression was selected in PI3K driven mouse mammary tumors that were resistant 

to PI3K inhibition.(60) A recent completed trial is assessing the combination of bevacizumab 

and paclitaxel +/- Onartuzumab in patients with advanced triple receptor-negative breast 

cancer.(61) 

 

PIK3CA and MET and response to targeted therapeutics in cancer: We and others 

have demonstrated that PI3K pathway aberrations correlate with resistance to receptor 

targeted therapies.(23-26) As an example, in lung cancer cells, HGF induces EGFR-TKI 

resistance by activating MET with restoration of downstream MAPK-ERK1/2 and PI3K 

signaling. (62)  Indeed, transient blockade of the PI3K pathway with PI-103 (PI3K inhibitor) 

and gefitinib overcame HGF-mediated resistance to EGFR-TKIs by inducing apoptosis in 

EGFR mutant lung cancer cell lines.(62) The effects may be bidirectional, as in collaborative 

studies we have shown that MET amplification can induce resistance to PI3K pathway 

inhibition in breast cancer murine model systems.(60) Thus, crosstalk between MET and the 

PI3K pathway may mediate cross resistance to targeted therapies.  A more in-depth 

description of the biological implications of cMET aberrations in the presence of PIK3CA 

aberrations is presented in the introduction of chapter 4 of this document. 

 

We completed multiplexed mutational analysis of almost 1000 primary untreated breast 

cancers in 44 different cancer genes including PIK3CA. Strikingly, with one exception, the 

frequency of co-mutations (mutations in more than one of the 44 different cancer genes 
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assessed) was lower than predicted by chance indicating that most of the mutations assessed 

are mutually exclusive. However, mutations in both PIK3CA and the cell surface receptor MET 

were present at much greater than expected frequency. We found that 22% of the tumors (218 

of 962) harbored PIK3CA mutations, and that 4% of the tumors (39 of 962) harbored MET 

mutations. Remarkably, 16% (34 of 218) of breast cancers with PIK3CA mutations exhibited 

co-mutations in MET suggesting concurrent selection of PI3K and MET pathway aberrations. 

Thus, 4-5% of breast cancer patients (8,000-10,000 new patients a year in the US) are likely to 

demonstrate concurrent mutations. This analysis was published prior to the recent TCGA 

publication(57) on human breast tumors. Our findings differ from the TCGA results, possibly 

due to the elimination of dbSNPs in their report. When PI3K pathway aberrations (PIK3CA 

amplification, AKT mutation and amplification, PTEN and INPP4B loss) and MET aberrations 

(MET protein and RNA overexpression and gene amplification) were assessed, our 

preliminary analysis indicated that at least 10% of breast cancers (20,000 cases per year) will 

exhibit concurrent aberrations. Further, our preliminary data suggests that the incidence of 

PI3K and MET pathway aberrations and particularly concurrent aberrations varies by breast 

cancer subtype. MET amplification or mutation may be selected by PI3K pathway targeted 

therapy or vice versa. The frequency of MET mutations and PI3K pathway aberrations in 

patients entering trials (i.e., patients with metastatic disease that have PI3K pathway or MET 

receptor aberrations) is unknown. However, Dr. Funda Meric-Bernstam has provided 

preliminary data from 420 metastatic breast cancer patients. Using Ion AmpliSeqTM Cancer 

Panel they have sequenced 46 cancer-related genes for over 900 known cancer mutations 

and have found that that 26% of the tumors (109 of 420) harbored PIK3CA mutations, and that 

4% of the tumors (16 of 420) harbored MET mutations. Interestingly, 9% (10 of 109) of breast 

cancers with PIK3CA mutations exhibited co-mutations in MET.  It is thus critical to ascertain 

the role of concurrent mutations in PIK3CA and MET in response to select therapeutics 

targeting each pathway in breast cancer.  
 

Hypothesis: We hypothesized that concurrent aberrations in PI3K and MET will render 

breast cancers resistant to therapies targeting each pathway, and that combination therapy 

targeting the PI3K and MET pathway will optimize therapy effectiveness by preventing the 

acquisition of resistance. We have tested this hypothesis through the following specific aims: 

 

Specific Aims:  
• To determine MET protein levels and MET/PIK3CA copy number elevations in breast 

cancers- 
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•  By measuring the protein levels of total cMET and p-cMET by breast cancer 

subtype, and their correlation with patient outcome.  

• By measuring the frequency of MET and PIK3CA copy numbers in breast cancer 

patients, and their associations with patient outcome.   

• To determine the effect of co-mutations/SNPs in MET and MET overexpression found in 

breast cancers, on the activity of the two most common breast cancer PIK3CA mutations 

(E545K and H1047R) in vitro-  

a) Using parental (Wild Type), single mutant (PIK3CA or MET) and co-mutant (PIK3CA 

and MET) immortalized Breast Epithelial Cells to: 

• Analyze the effects of the aberrations on their cell growth, proliferation, colony 

formation, cell morphology, anchorage independent proliferation, cell invasion and 

cell signaling. 

• Analyze their sensitivity to selective PI3K pathway inhibitors (alone), MET receptor 

inhibitors (alone), and their combination. 

b) Using parental (Wild Type), single mutant (PIK3CA or MET) and co-mutant (PIK3CA 

and MET) immortalized Breast Cancer Cells to: 

• Analyze the effects of the aberrations on their cell growth, proliferation, colony 

formation, cell morphology, anchorage independent proliferation, cell invasion and 

cell signaling. 

• Analyze their sensitivity to selective PI3K pathway inhibitors (alone), MET receptor 

inhibitors (alone), and their combination. 

 

Based on the proposed specific aims, in the next three chapters there will be more in-deph 

introduction reviewing 1. The frequency and biological implications of cMET aberrations.  2. 

The frequency of reported copy number alterations and co-alterations in cMET and PIK3CA.  

3. A more in-depth description of the biological implications of cMET aberrations in the 

presence of PIK3CA aberrations is presented in the introduction of chapter 4 of this document 
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CHAPTER 2: CMET AND PHOSPHO-CMET PROTEIN LEVELS IN BREAST CANCERS AND 
SURVIVAL OUTCOMES 

 
INTRODUCTION  

 
The HGF-cMET Axis: The c-MET proto-oncogene is located on chromosome 7q21. 

The protein product of this gene is a cell surface receptor tyrosine kinase (RTK) that is 

expressed in the epithelial cells of many organs, including the liver, pancreas, prostate, kidney 

etc, during both embryogenesis and adulthood. The established form of the cMET receptor is 

a disulfide-linked heterodimer composed of an extracellular α-chain and a transmembrane β-

chain (Figure 1), that results from the proteolytic cleavage of a precursor protein. The β-chain 

has an extracellular domain, a transmembrane domain and a cytoplasmic portion, wherein the 

cytoplasmic portion contains juxtamembrane and tyrosine kinase (TK) domains, and a 

carboxy-terminal tail essential for substrate docking and downstream signaling.(63)  

 

Hepatocyte growth factor (HGF) or scatter factor (SF) acts as a ligand for the cMET 

receptor. The active form of HGF is made of an amino-terminal domain (N), four Kringle 

domains (K1 to K4), and a serine protease homology domain (SPH)(64) where the N-K1 

portion mediates receptor binding by engaging two cMET molecules, leading to receptor 

dimerization.(65) Additional contacts with cMET may be provided by the residues within the 

SPH domain. (64)  

 

Active HGF binds to functionally established cMET resulting in receptor 

dimerization/multimerization, phosphorylation of multiple tyrosine residues in the intracellular 

region, catalytic activation, and downstream signaling through docking of a number of 

substrates transducing multiple biological activities as motility, proliferation, survival, and 

morphogenesis.(66, 67) (Figure 1)  

 

Kinase activity of the receptor is regulated by HGF binding, which induces cMET 

autophosphorylation on the tyrosine residues Y1234 and Y1235 at the TK domain. This in turn 

forms a multifunctional docking site that recruits intracellular adapters through Src homology-2 

domains and other motifs, and activates downstream signaling.(66, 68) The main substrates 

and adapter proteins in this axis are signal transducer and activator of transcription 3 (STAT3), 

growth factor receptor-bound protein 2 (Grb2), Gab1, phosphatidylinositol 3-kinase (PI3K), 

phospholipase C-γ, Shc, Src, Shp2, Ship1. Gab1 and Grb2 are critical effectors that interact 

directly with the receptor. They recruit a network of adaptor proteins that are involved in 
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signaling and multiple biological effects induced by the activated axis. In order for cMET to 

achieve its maximal activity in promoting invasive cell growth (Figure 1), it is pertinent to 

maintain the integrity of the entire signal transduction machinery.(66, 68)  Through the renin–

angiotensin system/mitogen-activated protein kinase (RAS/MAPK) signaling pathway or the 

recruitment of the focal adhesion kinase (FAK)/paxillin complex, the HGF-mediated activation 

of cMET leads to the activation of downstream effectors involved in epithelial-mesenchymal 

transition (EMT).(69, 70)  

 

The HGF-cMET pathway is modulated by other proteins including α6β4-integrin, which works 

as a signaling platform that potentiates HGF-triggered activation of RAS and PI3K,(71) plexin 

B1, which transactivates cMET in response to semaphorin stimulation (72) and the death 

receptor Fas, which can associate with cMET preventing Fas-ligand binding and inhibiting 

Fas-induced apoptosis.(73) In addition, HGF-mediated cMET effects.may be potentiated by 

the activation of other RTKs. EGFR plays a significant role in enhancing HGF-cMET-mediated 

proliferation and invasion of epithelial cells (74), and cMET can synergize with HER2 to 

promote a malignant phenotype.(75). cMET and the IGF1 receptor work together to induce 

migration and invasion of pancreatic cancer cells.(76) In summary, a complex system of 

interactions modulates and governs the magnitude and duration of cMET signaling in the cell. 

 

The HGF-cMET Axis and Cancer: Under normal conditions, HGF-induced cMET-TK 

activation is tightly regulated by ligand activation at the cell surface, ligand-activated receptor 

internalization/degradation, and paracrine ligand delivery.  However, pathway deregulation 

occurs in multiple neoplasms. Persistent ligand stimulation can lead to protein overexpression 

as HGF upregulates various genes including cMET, and the encoding proteases that are 

required for HGF and cMET metabolism.(66) Other mechanisms of oncogenic pathway 

activation include aberrant paracrine or autocrine ligand production, constitutive kinase 

activation in the presence or absence of cMET gene amplification, and cMET gene 

mutations.(77, 78)  

 

Several studies have characterized the effects of sustained cMET activation through 

preclinical models. Through direct involvement of angiogenic pathways in-vivo studies have 

shown that activation of HGF-cMET signaling promotes cell invasiveness and triggers 

metastases.(79) The oncogenic TPR-MET fusion protein is constitutively active and in animal 

models its transgenic expression leads to the development of malignancies.(46) In human 

gastric cancer this rearrangement has been detected in both precursor lesions and in the 



10 
 

adjacent normal mucosa indicating predisposition to develop gastric cancers.(80) Studies have 

shown that a number of cultured cancer cell lines, from  NSCLCs and gastric carcinomas, 

exhibiting cMET gene amplification are dependent on cMET for growth and survival, and 

cMET inhibition results in both, decreased proliferation and cell death.(43, 77)  

 

 
Figure 1 The hepatocyte growth factor HGF-cMET axis signaling network and ongoing targeted 
therapy strategies.  
The pathway, which transduces invasive growth signals from mesenchymal to epithelial cells 
(secreted by mesenchymal cells), is activated by HGFA and binds to the cMET receptor on 
epithelial cells. cMET kinase activation results in trans-autophosphorylation and binding of 
adaptor proteins, forming scaffolds for recruitment and activation of signaling proteins. Signals 
generated from these structures lead to activation of signaling pathways related to increased 
proliferation, survival, motility, invasiveness, and stimulation of angiogenesis. EGFR, epidermal 
growth factor receptor; FAK, focal adhesion kinase; GRB2, growth factor receptor–bound 
protein 2; HER, human epidermal growth factor receptor; mTOR, mammalian target of 
rapamycin; PI3K, phosphatidylinositol 3-kinase; RAS, renin–angiotensin system; STAT, signal 
transducer and activator of transcription.(47)  
Reprinted with permission. © (2012) American Society of Clinical Oncology. All rights reserved. 
 
In the absence of gene aberrations, protein overexpression due to transcriptional 

upregulation is the most frequent cause of constitutive cMET activation in human cancers. A 

variety of epithelial tumors have been found to display elevated levels of cMET 

expression.(81) Multiple studies have been conducted to examine expression/overexpression 
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of cMET in primary cancers. cMET has been shown to be overexpressed in neoplastic tissue 

compared to normal surrounding tissue, and the extent of expression correlates with disease 

extension and outcome in several tumor types.(82-84) Strong cMET expression and p-cMET 

expression has been observed in up to 60% and 40-100% of NSCLC cases, respectively,(85) 

depending on the specific lung cancer tissue assessed.(82, 85-87) Over 80%of cases have 

been observed with cMET overexpression in malignant renal cell carcinoma and pleural 

mesothelioma.(88) cMET overexpression has also been reported in breast,(89) and seems to 

be associated with advanced disease stage and poor outcome in NSCLC, colon, breast and 

ovarian cancer.(84, 87, 90, 91)  

 

Protein overexpression and constitutive activation of the kinase domain is a result of 

cMET gene amplification,(77) and has been observed in both, primary tumors or as a 

secondary event affecting therapy sensitivity in cancer cells.(43, 92) Additionally, several 

studies have shown that increased cMET copy number is an independent negative prognostic 

factor in surgically resected NSCLC (93) or is associated with advanced stage and liver 

metastases in colorectal cancer. (90) 

 

The presence of activating mutations too causes cMET activation. Hereditary papillary 

renal carcinoma patients are observed with missense germ-line mutations in the TK 

domain.,(94) Sporadic mutations are more prevalent and can involve the TK, juxtamembrane 

or sema domains.  However, only some of these mutant alleles have been proven to be the 

cause of constitutive receptor activation resulting in malignant.(85) Oncogenic mutations have 

been found to be predominantly located in the non-kinase domain, mainly in regions encoding 

the extracellular semaphorin domain (E168D, L229F, S323G, and N375S) and the intracellular 

juxtamembrane domain (R988C, T1010I, S1058P, and exon-14 deletions) of NSCLC cell lines, 

in 12.5% of SCLC cases, as well as in 8% of samples of lung human adenocarcinomas.(85, 

95) cMET internalization is regulated by phosphorylation of Y1003 in the juxtamembrane 

domain, in response to HGF binding, leading to cMET ubiquitination and degradation. (46) 

Exon-14 deletion leads to the loss of Y1003 followed by cMET accumulation at the cell surface 

and persistent HGF-stimulation leading to tumorigenesis.(46) Though cMET mutations occur 

at a lower frequency compared to other mechanisms of pathway activation, they provide 

strong evidence of the axis oncogenic potential. This in turn could help screen patients that 

can benefit from cMET-directed therapies.  
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cMET oncogenic mutations lead to elevated phosphorylated cMET and downstream signaling, 

and cell line models harboring these mutations respond strongly to small-molecule inhibitors 

against cMET.(85, 96) The presence of cMET mutations in lymph nodes and metastatic sites 

could suggest the selection of these mutated cells during metastatic progression.(49) The 

presence of cMET activation mutations and prognosis has not been explored extensively as 

yet.  

 

The HGF/cMET axis plays a key role in tumor progression in breast cancers. Clarifying 

the prognostic implication and differential impact of cMET expression on survival in breast 

cancer subtypes is a necessary first step to application of targeted therapy against cMET in 

breast cancers. We found that high levels of cMET and p-cMET were seen in all breast cancer 

subtypes and correlated with poor prognosis. Inhibition of the cMET axis is a promising new 

therapeutic strategy and needs further investigation.  We performed an analysis of primary 

breast cancer specimens to evaluate the protein levels of total cMET and p-cMET by breast 

cancer subtype using reverse phase protein arrays (RPPA), and their correlation with patient 

outcome.  

  

MATERIALS AND METHODS 
 
  Patients and tumor samples: Fine needle aspirates from 257 primary invasive 
breast cancers were obtained and snap frozen.  All specimens were collected under 
Institutional Review Board (IRB)-approved protocols. The breast tumors were classified 
into three clinically relevant subtypes defined by immunohistochemistry (IHC) for 
estrogen receptor (ER) and progesterone receptor (PR) status and by IHC or 
fluorescent in situ hybridization (FISH) for HER2 status as per American Society of 
Clinical Oncology and College of American Pathologists (ASCO/CAP) guidelines (97, 
98). These subtypes were defined by the dominant traditional prognostic molecular 
marker (ER, PR and HER2). Hormone receptor-positive (HR-positive) tumors were ER-
positive and/or PR-positive and HER2-negative. Similarly, HER2-positive group 
included all HER2 positive tumors irrespective of hormone receptor status. Triple 
negative subtype included all cases that were ER/PR and HER2 negative.  

 
The samples used for the study were archived samples from previously 

collected tumor specimens from patient treated at MD Anderson Cancer Center 
between 1986 and 2007. The corresponding clinical data was obtained from the Breast 
Cancer Management System database at MD Anderson Cancer Center. Missing 
information from the database was collected by chart review.   

 
Reverse phase protein lysate microarray (RPPA): Protein was extracted 

from the human tumors and RPPA was performed in our laboratory as described 
previously (99). Briefly, lysis buffer was used to lyse frozen tumors by homogenization. 
Tumor lysates were normalized to 1 µg/µL concentration using bicinchoninic acid assay 
and boiled with 1% SDS, and the supernatants were manually diluted in six or eight 2-
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fold serial dilutions with lysis buffer. An Aushon Biosystems (Burlington, MA) 2470 
arrayer created 1,056 sample arrays on nitrocellulose-coated FAST slides (Schleicher 
& Schuell BioScience, Inc.) from the serial dilutions. A slide was then probed with 
validated primary cMET and p-cMET antibodies (Cell Signaling Technology, Danvers, 
MA) and the signal was amplified using a DakoCytomation–catalyzed system. The 
antibodies for cMET (Mouse) and p-cMET (Rabbit, Y1235) were used at a dilution of 
1:250 for RPPA. A secondary antibody was used as a starting point for amplification. 
The slides were scanned, analyzed, and quantitated using Microvigene software 
(VigeneTech Inc.) to generate serial dilution–signal intensity curves for each sample 
with the logistic fit model: ln(y) = a + (b – a) / (1 + exp (c*(d – ln(x)))). A representative 

natural logarithmic value of each sample curve on the slide (curve average) was then 
used as a relative quantification of the amount of each protein in each sample. The 
level of cMET and p-cMET in each sample was expressed as a log mean centered 
value after correction for protein loading using the average expression levels of over 
150 proteins as previously described (99). Refer to appendix 1 for antibody validation 
method.  
 
  Statistical Methods: Boxplots were generated for original and log2 
transformed expressions of total cMET and p-cMET by breast cancer subtypes. The 
original expressions were right-skewed but the log2 transformation data was normally 
distributed. Hence, all following statistical analyses were based on the log2 
transformation of the original expression values. P values less than 0.05 were 
considered statistically significant and all tests were two-sided. Statistical analyses 
were done with R statistical software version 2.12.0 (R Development Core Team, 2010, 
Vienna, Austria).  
 

Mean and standard deviations were generated for total cMET and p-cMET by 
tumor subtypes. Linear regression models were used to determine if the mean total 
cMET and p-cMET expression was different by tumor subtypes. Martingale residual 
plots with lowess smooth for Cox’s model for total cMET and p-cMET separately as 
covariate by tumor subtypes suggested a non-linear effect of total and p-cMET. A 
regression tree method was applied to find the best cutoff point for total cMET and p-
cMET expression. Combining the results from martingale residual plots and regression 
trees, total cMET expression was divided into high level (>0) expression and low level 
(≤0) expression. Similarly, p-cMET was divided as high level (>0.35) and low level 
(≤0.35). Patient and tumor characteristics including age, stage, grade and subtype 
were tabulated between high and low level expressions of total cMET and p-cMET 
individually. Groups were then compared with the Chi-square tests (100).  

 
Overall survival (OS) and corresponding censoring were computed in months 

from diagnosis to death for each patient. Relapse-free survival (RFS) was regarded as 
the time to first relapse after diagnosis. Median RFS and OS were estimated 
nonparametrically with the use of Kaplan-Meier curves by patient characteristics and 
levels of total cMET and p-cMET expression and compared by the log-rank statistic. 
Log-rank tests were used to evaluate the hazard ratio by total cMET and p-cMET 
expression levels among all patients and patients within each subtype. Cox 
proportional hazards models were fit to determine the association of cMET and p-
cMET levels with the risk of recurrence and death after adjustment for other patient and 
disease characteristics.  

 
Reprinted with permission. © (2012) American Association for Cancer Research. All rights 
reserved. 
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RESULTS 
 

Median patient age was 51 years (range 23-85 years). There were a total of 
140 (54.5%) hormone receptor (HR)-positive tumors, 53 (20.6%) HER2-positive tumors 
and 64 (24.9%) triple receptor-negative (TN) tumors. Using the selected cutoffs, a total 
of 181 (70.4%) and 123 (47.9%) patients had high expression of cMET and p-cMET, 
respectively.  
 
  Patient and clinic characteristics by levels of total cMET and p-cMET are 
summarized in table 1.  There was no statistically significant difference in clinical or 
pathologic parameters in patients with high or low level of total cMET. Patients with 
high p-cMET expression tended to be older (Age > 50: 60.2% vs. 41.0%, P = .003) and 
had fewer high grade tumors (Grade III: 60% vs. 72.2% P = .046).  
 
  No significant differences in mean levels of total cMET expressions (P = 0.128) 
and p-cMET expressions (P = 0.088) were seen between different tumor subtypes, as 
seen in table 2. At a median follow up of 42.23 months (5.17-277.77 months), there 
were 76 (30%) relapses and 50 (20%) deaths.  
 

 

Table 1 Patient and clinical characteristics by total cMET and phospho-cMET (1)  
Reprinted with permission. © (2012) American Association for Cancer Research. All rights 
reserved. 
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Table 2. Total cMET and phospho-cMET expressions by tumor subtype (1) 
Reprinted with permission. © (2012) American Association for Cancer Research. All rights 
reserved. 
 

 Table 3 summarizes the median RFS estimates by c-MET and p-cMET 
expression and by tumor subtypes. Dichotomized total cMET expression (cutoff point 
0) was a significant prognostic factor for RFS (HR: 2.44, 95% CI: 1.34-4.44, P = 0.003). 
Estimated 5-year RFS rates were 61.3% (95% CI: 53.2%-70.7%) and 78.9% (95% CI: 
68.6%-90.8%) for patients with high cMET and low cMET level, respectively (P = 
0.003). Likewise, dichotomized p-cMET expression (cutoff point 0.35) was also a 
significant prognostic factor for RFS (HR: 1.64, 95% CI: 1.04-2.60, P = 0.033) and 
estimated 5-year RFS rates for patients with high p-cMET and low p-cMET levels were 
58.9% (95% CI: 49.1%-70.7%) and 73.8% (95% CI: 65.6%-83.1%), respectively (P = 
0.033). Total cMET was also a significant predictor of RFS within the HR-positive 
subtype (HR: 3.44, 95% CI: 1.21-9.81, P = 0.014). In contrast, p-cMET was a 
significant predictor of RFS within the HER2-positive subtype (HR: 3.02, 95% CI: 1.15-
7.96, P = 0.019). The Kaplan-Meier survival curves for RFS for all patients and by 
breast tumor subtypes are as shown in figure 2. Although, there was a trend towards 
worse RFS with high cMET levels (HR 2.36; 95% CI: 0.86-6.51) in triple-negative 
subtype, this did not reach statistical significance (P = 0.086).  

 

 
Table 3. RFS and OS by total cMET and phospho-cMET levels and breast cancer subtype  
RFS and OS by total cMET and phospho-cMET levels and breast cancer subtype (1) 
Reprinted with permission. © (2012) American Association for Cancer Research. All rights 
reserved. 
 
  Table 3 summarizes the median OS estimates by c-MET and p-cMET 
expression and by tumor subtypes. At the time of analysis, 207 of the 257 patients 
(80.5%) were still alive. As was seen with RFS analysis, dichotomized cMET level was 
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a significant prognostic factor of OS (HR: 3.18, 95% CI: 1.43-7.11, P = 0.003). 
Estimated 5-year OS rates were 72.4% (95% CI: 64.7%-81.0%) and 93.3% (95% CI: 
87.8%-99.2%) for patients with high cMET and low cMET levels, respectively (P = 
0.003). Dichotomized p-cMET level was a significant prognostic factor of OS (HR: 1.92, 
95% CI: 1.08-3.44, P = 0.025). The estimated 5-year OS rates for patients with high p-
cMET and low p-cMET levels were 72.4% (95% CI: 63.7%-82.3%) and 85.8% (95% CI: 
79.4%-92.7%), respectively (P = 0.025). With regards to breast cancer subtypes, total 
cMET (HR: 8.28, 95% CI: 1.10-62.59, P = 0.006) and p-cMET (HR: 5.49, 95% CI: 1.20-
25.10, P = 0.014) were significant predictor of OS within HR-positive tumors and 
HER2-positive tumors, respectively. The Kaplan-Meier survival curves for OS for all 
patients and by subtypes are as shown in figure 3. Although, there was a trend towards 
worse OS with high p-cMET levels (HR 2.02; 95% CI: 0.80-5.13) in triple-negative 
subtype, this did not reach statistical significance (P = 0.128). 
 

Multivariable models for RFS and OS are summarized on table 4. After 
adjustment for patient factors, tumor characteristics and treatment, patients with tumors 
expressing high levels of cMET had a significant higher risk of recurrence (HR 2.06; 
95% CI: 1.08-3.94; P = 0.028) and death (HR 2.81; 95% CI: 1.19-6.64; P = 0.019) 
compared to patients with low cMET levels. Also, patients with tumors expressing high 
levels of p-cMET had a significant higher risk of recurrence (HR 1.79; 95% C: 1.08-
2.95; P = 0.020) compared to patients with high p-cMET levels. 

 
Figure 2. Kaplan-Meier estimates illustrating the RFS of patients 

Kaplan-Meier estimates illustrating the RFS of patients by (A) total cMET and (B) p-cMET 
expression levels and OS of patients by (C) total cMET and (D) p-cMET expression levels. 
High: total cMET > 0, Low: total cMET<=0. High: p-cMET>0.35, Low: p-cMET <=0.35(1) 
Reprinted with permission. © (2012) American Association for Cancer Research. All rights 
reserved. 
 

To evaluate whether cMET confers radio-resistance, we performed a 
exploratory sub-group analysis among 164 patients who received radiation therapy. 
Dichotomized total cMET level was a significant prognostic factor for both RFS (HR 
3.37; 95% CI: 1.50-7.57, P = 0.002) and OS (HR 4.03; 95% CI: 1.39-11.67, P = 0.006) 
for patients who received radiation therapy. Similarly, dichotomized p-cMET was a 
significant prognostic factor for RFS (HR 2.07; 95% CI: 1.12-3.84, P = 0.017) and OS 
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(HR 2.25; 95% CI: 1.05-4.85, P = 0.033) in this group. In contrast, among 93 patients 
who did not receive radiation therapy, total cMET and p-cMET were not significant 
prognostic factors for either RFS or OS.   
 

 
Figure 3. Kaplan-Meier estimates illustrating (A) OS and (B) RFS 

Kaplan-Meier estimates illustrating (A) OS and (B) RFS of patients by total cMET in hormone 
receptor positive breast cancer. Kaplan-Meier estimates illustrating (C) OS and (D) RFS of 
patients by p-cMET in HER2 positive breast cancer. High: total cMET>0, Low: total cMET<=0. 
High: p-cMET> 0.35, Low: p-cMET<=0.35(1).  
Reprinted with permission. © (2012) American Association for Cancer Research. All rights 
reserved. 
 

 
Table 4. Multivariable Cox proportional hazards model 
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 Multivariable Cox proportional hazards model for RFS and OS relative to total cMET and 
phosphor-cMET expression(1) American Association for Cancer Research owns the copyright 
for this content, and has granted us the permission to reuse this material. 
Reprinted with permission. © (2012) American Association for Cancer Research. All rights 
reserved. 
 

DISCUSSION 
The protein product of the cMET proto-oncogene is a cell surface RTK that binds with 

high affinity to HGF/SF (101). The receptor ligand interaction results in receptor 

homodimerization and phosphorylation of tyrosine residues, which in turn activates 

downstream effectors such as PI3K/AKT, PLC γ (Phospholipase Cγ), RAS-MAPK, c-Src, and 

STATs(102, 103). Strong evidence supports that a cascade of the above events contributes to 

carcinogenesis and angiogenesis, in a wide variety of human malignancies (102).  

 

We analyzed 257 breast cancer samples, and used RPPA to show that increased 

levels of total cMET and p-cMET are observed in approximately 70% and 50% of breast 

cancers, respectively. We have also shown that the levels of total cMET and p-cMET do not 

significantly differ among different breast cancer subtypes. Survival analysis reveals that total 

cMET and p-cMET levels are significant prognostic factors for both RFS and OS. When 

survival outcomes were analyzed among various tumor subtypes, it was observed that 

elevated levels of cMET and pcMET were poor prognostic factors for hormone receptor-

positive and HER2-positive breast cancers, respectively.   

 

cMET expression has been correlated with progression, aggressive behavior, and poor 

survival outcomes in breast cancers (42, 91, 104, 105). However, to the best of our 

knowledge, this is the first study to investigate the significance of differential expression of 

cMET and p-cMET in different breast cancer subtypes (HR positive, HER2-positive, and 

TNBC). We are also the first to report p-cMET levels as a prognostic factor in breast cancer. 

Additionally, we evaluated cMET expression using RPPA, wherein, previous investigators 

used ELISA, Immunoperoxidase, IHC, and Immunofluorescence techniques to study this 

receptor. Recent data from our laboratory has shown significant correlations between RPPA 

and IHC in snap-frozen primary breast tumors and has established reliability of RPPA in 

functional proteomic "fingerprinting".  RPPA is more sensitive when compared to IHC or ELISA 

as it reduces variability, and avoids observer dependency (106). RPPA analysis of molecular 

targets can be developed as a clinical application. It allows for a cost-effective, quick, precise, 

reliable, and reproducible quantification of phosphorylated/non-phosphorylated proteins in 

multiple samples, simultaneously, with the help of limited clinical material (107, 108).  
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Several reports suggest that high levels of HGF and cMET expression correlate with 

poor prognosis in breast cancer. HGF/cMET activation imparts multiple phenotypic properties 

to tumor cells resulting in the above mentioned clinical outcomes. HGF/cMET signaling 

enhances the transition from pre-invasive DCIS to invasive carcinoma (37), and promotes cell 

motility and angiogenesis (109, 110). Bone metastasis in breast cancers is established by 

HGF-dependent β-catenin stabilization (111). Synergy between HER2 and HGF/cMET 

signaling promotes the breakdown of cell-cell junctions and enhances cell invasiveness (112). 

It is possible that the cross-talk results in the poor prognosis observed in HER2-positive breast 

cancers with increased p-cMET (RFS: P= 0.019 and OS: P=0.014).  

 

Therapy resistance is one of the major obstacles cropping-up in breast cancer 

treatment. In vitro studies have reported that the HGF/cMET signaling pathway can confer 

resistance against induction of apoptosis by various DNA damaging agents (radiation and 

cytotoxic agents such as anthracyclines and taxanes) (113). Additionally, the HGF/cMET 

signaling pathway also promotes cell survival by enhancing DNA repair (114).  It has also 

been suggested that resistance, both inherent and treatment acquired, to endocrine and 

trastuzumab therapy could be a consequence of HGF and cMET overexpression (13, 14). 

Radiotherapy, anthracyclines, taxanes, endocrine therapy, and trastuzumab form the 

backbone of breast cancer therapy. MET inhibition, owing to the antiapoptotic and prosurvival 

effect of the HGF/cMET pahway, is emerging as a potential therapeutic target for breast 

cancers that are resistant to conventional therapies. cMET plays a pivotal role in the 

acquisition of resistance to treatment, therefore, combining MET inhibitors as first-line therapy 

with traditional treatments could benefit a subset of breast cancers.  

 

MET expression has been reported to confer radioresistance in cancer cells (115). De 

Bacco and colleagues reported that human breast cancer cell lines (MDA-MB-231 and MDA-

MB-435S) subjected to therapeutic doses of ionizing radiation showed increased MET 

expression, ligand independent MET phosphorylation/signal transduction, and promoted cell 

invasion and survival (115). Furthermore, these effects were counteracted by using siRNA 

against MET and by using kinase inhibitors. In oropharyngeal squamous cell carcinomas 

treated with radiotherapy, cMET expression correlates with a decrease in the rates of 

complete remission, shorter disease-free survival, and OS (115). This data suggests that 

targeting MET may increase the radiosensitivity of tumor cells and could prove to be an 

attractive target for radiosensitization. 
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Preclinical data suggests that cMET inhibition in tumor cells impairs cell proliferation, 

survival, motility, invasion, and angiogenesis (116, 117). Antibodies against HGF and against 

cMET and small molecule cMET kinase inhibitors are in various stages of development 

against cancer (15-17). Targeted therapy for breast cancers with preselection based on 

overexpression of cMET and p-cMET with MET inhibition needs further exploration after 

adequate optimization of predictive markers. 

 

Our study indicates that total cMET and p-cMET levels are uniformly elevated 

irrespective of the breast cancer subtype, and are significant prognostic factors for RFS and 

OS. However, the predictive potential of cMET should be assessed in the clinical trials of 

cMET targeted therapy, as a retrospective analysis does not allow reliable assessment. cMET 

inhibition has immense potential to improve breast cancer treatment, and deserves further 

assessment.  
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CHAPTER 3: FREQUENCY OF MET AND PIK3CA COPY NUMBER ELEVATION AND 

CORRELATION WITH OUTCOME IN PATIENTS WITH EARLY STAGE BREAST CANCER 
 

INTRODUCTION 
As mentioned in the previous chapter, the HGF/cMET signaling promotes cell 

proliferation, survival motility, invasion, as well as morphogenic changes that in normal cells 

stimulate tissue repair and regeneration but are also co-opted during tumor growth. 

Additionally, MET over-expression, with or without gene amplification, has been reported in a 

variety of human cancers including breast, lung, and gastrointestinal malignancies.(28-35) 

MET over-expression, with or without gene amplification, has been reported in a variety of 

human cancers including breast, lung, and gastrointestinal malignancies.(36-38) Further, high 

levels of HGF and/or MET correlate with poor prognosis in several tumor types, including 

breast, ovarian, cervical, gastric, head and neck, and non-small cell lung cancer.(38-42)  

 
The PI3K pathway plays a key role in cell growth, protein translation, autophagy, 

metabolism, and cell survival. (18, 19, 22) Therefore, deregulation of this pathway can have 

detrimental effects on cellular outcomes. Most tyrosine kinase receptors implicated in breast 

cancer, such as MET, EGFR, HER2 and IGFR, are upstream of the PI3K pathway. Some of 

the mechanisms involved in the deregulation of the PI3K pathway include overexpression or 

activation of TKR, activating mutations, gene amplification of PIK3CA and AKT isoforms, as 

well as loss of the negative regulators PTEN and INPP4B.(24, 118) Deregulation and 

aberrations in this pathway have been implicated in breast cancer development and 

progression. Several studies have suggested the involvement of this pathway in the 

development of resistance to targeted therapies against tyrosine kinase and hormone 

receptors.(23-26) As a result, multiple drugs targeting the PI3K pathway are in early clinical 

trials as mono or combination therapies in breast cancer.(22, 27)  

 

In breast cancer, we have limited information on MET receptor and PI3K pathway 

aberrations. The purpose of this study is to determine the frequency and association between 

recurrence-free survival (RFS) and MET and PIK3CA copy number elevations and their 

interaction in a large cohort of patients with early stage breast cancer. 

 

MATERIALS AND METHODS 

Patients and tumor samples: Adequate tumor DNA from formalin-fixed 
paraffin-embedded (FFPE) tissue blocks, clinical history, and follow-up data of 1,003 
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patients diagnosed with early breast cancer between 1985 and 1999 were identified 
from the Early Stage Breast Cancer Repository (ESBCR) at MD Anderson Cancer 
Center. Clinical information (including patient’s age, race/ethnicity, stage, tumor size, 
lymph node status, nuclear grade, hormone receptor (HR) status) and primary 
treatment (including surgery, radiotherapy therapy, chemotherapy, and endocrine 
therapy) was extracted from the medical records. 

 
Molecular inversion probes and copy number: Tumor DNA was extracted 

from FFPE tissues and processed for copy number analyses.  Briefly, 5-10 (5-μm) 
macrodissected tumor sections containing > 80% tumor cells per protocol were pooled 
and treated three times with proteinase K in ATL Tissue Lysis Buffer™ (Qiagen, 
Valencia, CA). Following lysis, samples were applied to uncoated Argylla Particles™ 
(Argylla Technologies, Tucson, AZ) and processed according to manufacturer 
recommendations. For 129 cases, DNA from non-tumor bearing lymph nodes, stored 
as FFPE, was isolated as an internal germline reference for the population. Tumor and 
normal DNA at 10 ng/μL was shipped to the Affymetrix™ MIP laboratory for copy 
number measurement. The laboratory was blinded to all sample and subject 
information including identity of duplicates.  Data from the MIP high-density arrays are 
deposited at the National Center for Biotechnology Information (NCBIs) (GSE31424). 
Nexus Copy Number v5.1 (BioDiscovery, El Segundo, CA) was used for processing 
the MIP data of these patients’ samples. Nexus Copy Number segmented the data 
using the SNP-FASST2 segmentation algorithm, and called copy number gains or 
losses when the estimated copy number of each segment was greater/less than 
2.3/1.7 respectively. Thus, copy number values greater than 2.3 were categorized as 
gains, and copy number values less than 1.7 were categorized as losses. Each sample 
has, in general, a different set of segments.  Common segments were derived in order 
to perform analyses, with a size of 77,487 of the union of all segment break-points for 
971 samples.  In order to reduce the dimensionality of the data, similar procedures 
were followed for the CGH regions. We clustered consecutive segments if no two 
segments within the cluster had different gain/loss calls for at least 97% of the 
samples. This simple criterion yielded 3378 segments with common breakpoints across 
all 971 samples. 

 
Statistical Analysis: Patient characteristics were tabulated and described by 

their medians and ranges by copy number (high vs. normal/low) with a chi-square test 
or Wilcoxon’s rank sum test as appropriate.  Relapse free-survival (RFS) was 
measured from the date of diagnosis to the date of first local/distant metastasis or last 
follow-up.  Patients who died before experiencing a disease recurrence were 
considered censored at their date of death in the analysis. Survival outcomes were 
estimated according to the Kaplan-Meier product limit method.  Using log rank 
statistics, groups were compared between high copy number and normal/low copy 
number groups for MET, PI3KCA and their co-amplifications as well as other important 
clinical variables. Three multivariate Cox proportional hazard models were developed. 
The first model incorporated MET, PIK3CA, copy number and their interaction. The 
second and third models incorporated either MET copy number or PIK3CA copy 
number and other prognostic clinical variables.  Models were based on a backward 
selection procedure where all variables of interest were first included in a full model for 
screening and only variables with P<0.1 were retained. P-values less than 0.05 were 
considered statistically significant.  Analysis was performed by using R 2.11.2. (R 
Development Core Team, 2010, Vienna, Austria).  
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Reprinted with permission. © (2012) American Cancer Society. The Material shall at all times 
remain the exclusive property of John Wiley & Sons, Inc.  
 

 

Table 5. Patient and Tumor characteristics (2) 
Reprinted with permission. © (2012) American Cancer Society. The Material shall at all times 
remain the exclusive property of John Wiley & Sons, Inc. 

RESULTS 

Table 5 illustrates the patient and tumor characteristics as well as the therapy 
received by MET and PIK3CA copy number groups.  Eighty-two (8.44%) were found to 
have elevated MET copy number, 134 (13.8%) had elevated PIK3CA copy number 
respectively, 25.6% of tumors with elevated MET copy number, also had elevated 
PIK3CA copy number, and 15.7% of tumors with elevated PIK3CA copy number, also 
had elevated MET copy number (Figure 4). Patients with tumors harboring either MET 
or PI3KCA high copy number tended to have more aggressive prognostic features 
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including larger tumor size, higher tumor grade, and negative hormone receptors.  
There were no significant differences on adjuvant chemotherapy or radiation therapy 
However, more patients with normal/low copy number in either MET or PIK3CA 
received adjuvant endocrine therapy (P=0.003 and <0.000, respectively). Elevated 
MET or PIK3CA copy number were more likely to occur in triple negative disease 
(P=0.019 and <0.001, respectively).  
 

 

Figure 4. Distribution of MET and catalytic subunit of PIK3CA copy number shown by breast 
cancer subtype 
HER2 indicates human epidermal growth factor receptor 2; HR, hormone receptor.(2)  
Reprinted with permission. © (2012) American Cancer Society. The Material shall at all times 
remain the exclusive property of John Wiley & Sons, Inc. 
 

At a median follow-up of 7.5 years (range 0-21.1 years), there were 252 
recurrences.  Table 6 summarizes the 5-year RFS by MET and PIK3CA copy number 
and by other patient and tumor characteristics.  Five-year RFS was 63.5%, and 83.1% 
for MET high copy number and MET normal/low copy number respectively, (P=0.06); 
and 73.1%, and 82.3% for PIK3CA high copy number and PIK3CA normal/low copy 
number respectively, (P=0.15) (Figures 5A and 5B). To evaluate the interaction of 
coordinate gene copy elevations in MET and PIK3CA, patients were classified into four 
groups: normal/low both PIK3CA and MET copy number, high both PIK3CA and MET 
copy number, MET high copy number and PIK3CA high copy number. No statistically 
significant difference in 5-year RFS estimates was found (P=0.137) (Figure 5C). 
The Kaplan-Meier survival curves by MET and PIK3CA gene copy number and breast 
cancer subtype are presented in Figure 6.  When looking at MET copy number, 
patients with HR-positive and high MET copy number breast cancer had a significant 
lower 5-year RFS compared with patients with HR-positive and normal/low MET copy 
number breast cancer (76.4% vs. 85.4%, P=0.034). There was a trend to worse 5-year 
RFS in patients with HER2-positive and high MET copy number breast cancer 
compared with patients with HER2-positive and normal/low MET copy number breast 
cancer (64.3% vs. 77.2%, P=0.061). No difference was seen in triple receptor-negative 
disease (P=0.80). When looking at PIK3CA copy number, there were no differences in 
5-year RFS estimates by breast cancer subtype.  Exploratory survival analysis to 
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evaluate the interaction of high gene copy number in both MET and PIK3CA by breast 
cancer subtypes showed no statistically significant difference in 5-year RFS estimates 
(data not shown). 
 

 

Table 6.Five-year relapse-free survival estimates 
Five-year relapse-free survival estimates by copy number and patient and tumor 
characteristics(2)  
Reprinted with permission. © (2012) American Cancer Society. The Material shall at all times 
remain the exclusive property of John Wiley & Sons, Inc. 
 

Table 7 summarizes the multivariate models MET, PIK3CA, copy number and 
their interaction. The results were consistent with the RFS univariate analysis. Overall, 
patients with tumors harboring high MET copy number tended to be at higher risk to 
develop a recurrence compared to patients with tumors with normal/low MET copy 
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number (HR:1.53, 95% CI:0.98-2.38, P=0.06).  High PIK3CA copy number was not an 
independent predictor risk for recurrence (HR:1.3, 95% CI:0.91-1.86, P=0.147), nor 
was the interaction of both MET and PIK3CA high copy number (HR:0.7, 95% CI:0.28-
1.77, P=0.458).  When looking at patients with hormone receptor-positive breast 
cancer, patients with tumors with high MET copy number were more likely to develop 
recurrences (HR:1.86, 95% CI:1.07-3.25, P=0.029). In multivariate models including 
patient and tumor characteristics, MET or PIK3CA high copy number were not 
independent predictors of RFS after adjustment for age, stage, nodal status, tumor size 
and breast cancer subtype (HR:1.21, 95% CI:0.8-1.82, P=0.357, and HR:1.29, 95% 
CI:0.85-1.94, P=0.229). 

  

Figure 5.Kaplan-Meier recurrence-free survival curves 
 Kaplan-Meier recurrence-free survival curves for all patients are shown for (A) MET copy 
number, (B) PIK3CA copy number, and (C) MET and PIK3CA copy number (2)  
Reprinted with permission. © (2012) American Cancer Society. The Material shall at all times 
remain the exclusive property of John Wiley & Sons, Inc. 
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Figure 6. Kaplan-Meier recurrence-free survival curves 
Kaplan-Meier recurrence-free survival curves for all patients are shown by breast cancer 
subtype and MET or PIK3CA copy number.(2)  
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Reprinted with permission. © (2012) American Cancer Society. The Material shall at all times 
remain the exclusive property of John Wiley & Sons, Inc. 
 

DISCUSSION 
The purpose of this study was to determine the frequency of MET and PIK3CA copy 

number in breast cancer, and their associations with patient outcome. We found that elevated 

MET or PIK3CA copy number was found in 82 (8.44%) and 134 (13.8%) of the tumors 

respectively, and 25.6% of the tumors had high copy numbers of both PIK3CA and MET. We 

also observed that high copy number of MET or PIK3CA was associated with poorer 

prognostic features and the triple negative disease. Additionally, tumors harboring elevated 

MET copy number tended to have a worse 5-year RFS, (P=0.06). A high copy number for 

either gene was not an independent predictor of RFS.  

 

Germline SNPs, somatic mutations, gene amplification, protein overexpression, and 

autocrine circuits driven by HGF lead to the deregulation of MET receptor activity.(27) In 

breast cancer patients, there is limited data which is restricted to the assessment of the 

overexpressed MET receptor and its ligand HGF in tumor tissues.(40-42, 105, 119) The rate of 

MET protein overexpression is estimated to be 20% to 30%,(105, 119) and, as in several other 

tumor types, the increased expression of MET receptor or its ligand HGF in breast cancer is 

correlated with increased aggressiveness of disease and an overall poorer prognosis.(42, 105, 

120)  Immunoreactive (ir)-HGF concentrations were assessed in tumor extracts of 258 primary 

human breast cancers, using an enzyme-linked immunoadsorbent assay, and this initial study 

demonstrated that the ir-HGF level correlated with large tumor size (P= .05). High ir-HGF 

concentration also correlated with significantly shorter RFS (P=0.001) and OS (P=0.001) rates, 

and the ir-HGF level was found to be an independent predictor of RFS (P = .041) and overall 

survival (P = .036).(42) In a smaller cohort of 91 tumors, immunofluorescence was used to 

demonstrate high levels of MET expression, in patients with positive and negative lymph 

nodes, which correlated with a lower 5-year survival rate (P = .008 and P = .006, 

respectively).(119) A small study of 40 primary breast cancers in which MET and HGF were 

detected by immunofluorescence and immunohistochemistry indicated that MET levels did not 

correlate with established poor prognostic factors, wherein, overexpression of MET correlated 

with disease progression (P = .037). This study also demonstrated that, irrespective of HER2 

positivity, MET overexpression identified a subset of patients with adverse outcomes.(105) 

 
To our knowledge, ours is the first study to assess MET gene copy number in breast 

cancer, its distribution by tumor subtype, and its correlation with patient outcome. We 
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observed that patients with high MET copy number and negative hormone receptor status had 

larger and higher grade tumors. Two interesting findings highlight this study: the correlation of 

this aberration with the triple negative breast cancer disease and the prognostic significance of 

copy number in hormone-receptor positive breast cancer patients. This has opened new 

avenues in the field of breast cancer drug development as these therapeutic targets could 

activate signaling in triple negative breast cancer patients. This study reflects that MET 

signaling investigation is paramount in our search for the mechanisms governing endocrine 

therapy resistance. Finally, we need to define the frequency of MET protein overexpression 

and its correlation with other aberrations such as gene amplification and activating mutations. 

Currently, comprehensive work is ongoing in our institution, in this regard.  

 

 

Table 7. Multivariate Cox proportional hazard model 
Multivariate Cox proportional hazard model including MET and PIK3CA copy numbers, and their 
interaction(2)  
Reprinted with permission. © (2012) American Cancer Society. The Material shall at all times 
remain the exclusive property of John Wiley & Sons, Inc. 
 
Some of the PI3K pathway aberrations that are reported in breast cancer include, and 

are limited to, detection of activating mutations, loss of tumor suppressors, and PIK3CA gene 
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amplification.(20, 21, 26) In a series of 92 primary breast cancers, investigators used 

quantitative real-time PCR to measure gene copy number and reported that 8.7% (8 of 92) of 

the tumors harbored a gain of PIK3CA gene copy number suggesting that gene amplification 

is not the main molecular mechanism in activating the PI3K-driven tumorigenesis pathway in 

breast cancer.(121) In a second cohort of breast cancers, researchers reported that 10 of 161 

tumors had PIK3CA gene amplification, and 50% of which also had an activation mutation in 

the gene, suggesting that an additive effect of point mutation and copy number gain can 

contribute to oncogenesis.(122) We too have demonstrated that 13.8% of all breast cancers 

have elevated PIK3CA copy number, using a large cohort of early breast cancers. 28% of 

triple negative breast cancers had a high PIK3CA copy number, therefore PI3K pathway 

activation in this subtype could be attributed to gene amplification accompanied by loss of 

PTEN and INPP4B. Since basal breast cancers have a greater frequency of copy number 

aberrations, it is pertinent to determine whether PIK3CA (or MET) amplification is the tumor 

“driver”. In what to our knowledge was the largest tumor set published to date, which PIK3CA 

amplification was assessed, 292 invasive breast cancers were examined, of which 209 were 

tested and 28 were found to be amplified (13.4%).(123) Other than PIK3CA amplification, 

these investigators also assessed other PI3K pathway aberrations and correlated them with 

breast cancer molecular subtype and outcome. Only one cancer was found to encompass 

both mutation and copy number gain of the PIK3CA gene, suggesting that mutations and copy 

number gains were almost exclusive events. Additionally, neither mutations nor copy number 

gain were associated with clinicopathological parameters, breast cancer molecular subtype or 

outcome.(123)  

 

Our results indicate that co-aberrations in the PI3K and MET pathways occur at a 

sufficient frequency that could contribute to patient outcomes, as 26% of MET-amplified 

tumors are accompanied by PIK3CA amplification, which clearly is a higher frequency than 

that predicted by chance. Further studies are on-going in our group, including the 

comprehensive analysis of large cohorts of breast cancers (i.e. TCGA- The Cancer Genome 

Atlas), to determine frequencies of mutations, copy number, methylation as well as 

translational changes in PI3K pathway-related genes and MET alone and in combination to 

determine the frequency of co-aberrations in the pathways across multiple modalities.  
 

The next step would be to model the MET and PIK3CA co-aberrations in order to 

understand their oncogenic effects, and to test the potential activity of combinatorial therapy 

using MET and PI3K pathway inhibitors against breast cancer. The MET 
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amplification/mutation needs to be modeled with and without PIK3CA amplification/mutation, in 

order to elucidate the interactive effects of the MET and PI3K pathway. The following chapter 

aims to address this.  
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CHAPTER 4: IN VITRO EFFECTS OF MET AND PIK3CA CO-ABERRATIONS IN BREAST CANCER 
 
INTRODUCTION 

The PI3K signaling axis is vital for cell metabolism, proliferation, survival, and 

motility.(124) Class I PI3Ks phosphorylate phosphatidylinositol-4,5-bisphosphate and generate 

phosphatidylinositol-3,4,5-trisphosphate downstream of growth factor receptors and G protein-

coupled receptors.(12) This leads to the activation of several kinases, including protein kinase 

B (PKB/AKT), mammalian target of rapamycin (mTOR), and p70 ribosomal protein S6 kinase 

(S6K).(124) More than 25% of breast cancers harbor somatic mutations in the PIK3CA-

encoded p110α catalytic subunit of PI3K.(125-128) These mutations usually occur in the 

helical region (E545K and E542K) or the kinase domain (H1047R) of p110α; H1047R is the 

most common mutation (>50% of cases).(129) The E545K and E542K mutations are highly 

enriched within luminal A tumors.(57) Several experimental models have demonstrated that 

these tumor-associated PIK3CA mutations lead to constitutive p110α activation and oncogenic 

transformation,(129-133) making the PIK3CA oncogene a target for cancer therapy. Multiple 

drugs targeting the PI3K pathway are being tested in early clinical trials for breast cancer. As 

tumors invariably acquire resistance to single agent treatments, the ability to anticipate PI3K 

inhibitor resistance has enormous clinical value.(134) Genetic and adaptive resistances are 

major obstacles in translating therapeutic efficacy into curative cancer therapy due to the 

evolutionary nature of cancer and the unstable genome of some cancers. A thorough 

understanding of the ‘‘wiring diagram’’ of breast cancer cells and the mechanisms of 

resistance to PI3K targeted therapy is of paramount importance for designing multidrug 

combinations.(135, 136) 

 

Using a mouse model of breast cancer that conditionally expresses human 

PIK3CAH1047R in the presence of doxycycline, it has been demonstrated that 64% of the 

PIK3CAH1047R- driven mammary tumors recurred after the removal of doxycycline.(129) 

Analysis of the recurrent tumors identified a tumor with an amplification region encompassing 

MET and, elevated MET mRNA and protein expression.(129) These results suggest that MET 

elevation is a mechanism underlying the growth of recurrent tumors that have escaped 

oncogenic PIK3CA addiction but remain dependent on the PI3K pathway.  

 

MET is a receptor tyrosine kinase that activates the PI3K pathway via ERBB3 and 

GAB1.(43) The binding of active HGF to functionally established MET leads to receptor 
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dimerization/multimerization, phosphorylation of multiple tyrosine residues in the intracellular 

region, catalytic activation, and downstream signaling through the docking of a number of 

substrates leading to the transduction of multiple biological activities such as motility, 

proliferation, survival, and morphogenesis.(66, 67) MET over-expression, with or without gene 

amplification, has been reported in a variety of human cancers including breast, lung, and GI 

malignancies.(36-38) Further, high levels of HGF and/or MET correlate with poor prognosis in 

several tumor types, including breast, ovarian, cervical, gastric, head and neck, NSCLC.(38-

42) 

 

Transgenic expression of the MET receptor in mammary epithelium was sufficient to 

induce tumors with features of basal breast cancer.(59) Ponzo and colleagues have illustrated 

that MMTV-driven-MET mutant mouse models produce tumors resembling human basal 

breast cancer. Their study used mice that were transgenic for oncogenic variants of the MET 

receptor- M1248T, Y1003F/M1248T. They have demonstrated that these MetMutants induce 

mammary tumors with diverse histology, which, based on immunohistochemistry and 

expression profiling, includes tumors with basal and luminal characteristics. Our study 

investigates the role of the SNP MET T1010I and the somatic MET mutation Y1253D in the 

pathogenesis of Breast Cancer.  Lee et al., screened 30 breast cancer samples and found one 

tumor with the T1010I missense mutation in the intracellular juxtamembrane domain of the 

MET receptor.(53) This mutation was also present in the DNA from a tumor cell-negative 

lymph node of the same individual, suggesting that T1010I could be a germline mutation.(53) 

The T1010I mutation was shown to be more active than the wild-type MET in the athymic nude 

mice tumorigenesis assay, suggesting that it may have effects on tumorigenesis.(53) The 

juxtamembrane domain regulates ligand-dependent MET internalization by Y1003 

phosphorylation in response to HGF binding, leading to MET ubiquitination and 

degradation(33). When a mutation/SNP occurs in this region, it could result in MET 

accumulation at the cell surface and persistent HGF-stimulation, leading to tumorigenesis.(46) 

Overall, MET mutations occur at a lower frequency than other mechanisms of pathway 

activation, however, they provide strong evidence of the axis oncogenic potential and may 

identify patients that can either benefit from MET-directed therapies, or those in which some of 

these therapies may not work.(47) 

 

As indicated in our published study, a high copy number of MET or PIK3CA was found 

to be associated with poorer prognostic features and the triple receptor-negative disease.(2) 

16% of breast cancers with activating PIK3CA mutations (22% of all breast cancers) exhibited 
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co-mutations in MET suggesting concurrent selection of PI3K and MET pathway aberrations. 

Thus, 4-5% of breast cancer patients (8,000-10,000 new patients a year in the US) are likely to 

demonstrate concurrent mutations.  

 

Studies suggest that overexpression of HGF and MET contributes to resistance, both 

inherent and treatment-acquired, to endocrine therapy and to trastuzumab treatment.(13, 14) 

The anti-apoptotic prosurvival effect of the HGF/MET signaling pathway makes MET inhibition 

a potential therapeutic target for breast cancer that are resistant and refractory to conventional 

therapies.(1)  

 

Since MET participates in the acquisition of resistance, and MET overexpression was 

selected in PI3K driven mammary tumors that were resistant to PI3K inhibition,(60) it is 

pertinent to investigate the synergistic effects of PI3K and MET inhibitors on tumorigenesis.  

 

Literature review and previous studies have raised the following questions- Do MET/ 

PIK3CA co-aberrations mediate resistance to single targeted therapies directed to PI3K or 

MET in Breast Cancer?; which leads to the next question -  Can combination therapy targeting 

both PI3K and MET pathways improve treatment efficacy and overcome the resistance from 

single targeted therapy ? In order to answer these questions, we addressed the following 

objective- 

 

To determine the effect of co-mutations/SNPs in MET and MET overexpression, found in 

breast cancers, on the activity of the two most common breast cancer PIK3CA mutations 

(E545K and H1047R) in vitro  

a) Using parental (Wild Type), single mutant (PIK3CA or MET) and co-mutant (PIK3CA 

and MET) immortalized Breast Epithelial Cells to: 

• Analyze the effects of the aberrations on their cell growth, proliferation, colony 

formation, cell morphology, anchorage independent proliferation, cell invasion and 

cell signaling. 

• Analyze their sensitivity to selective PI3K pathway inhibitors (alone), MET receptor    

inhibitors (alone), and their combination. 

b) Using parental (Wild Type), single mutant (PIK3CA or MET) and co-mutant (PIK3CA 

and MET) immortalized Breast Cancer Cells to: 
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• Analyze the effects of the aberrations on their cell growth, proliferation, colony 

formation, cell morphology, anchorage independent proliferation, cell invasion and 

cell signaling. 

• Analyze their sensitivity to selective PI3K pathway inhibitors (alone), MET receptor 

inhibitors (alone), and their combination. 

 

MATERIALS AND METHODS 
 

 Rationale for construct selection: Parallel construction of recombinant lentiviruses 

expressing aberrant PIK3CA and MET was completed. PI3KCA-WT was used to mimic gene 

amplification, its mutants (PI3KCA-E545K, PI3KCA-H1047R) were chosen as they are the 

most frequent PIK3CA mutations reported in breast cancer. cMET-WT was selected to 

represent the overexpression found in breast cancer (more common than mutations), cMET-

T1010T was selected to determine if this SNP/mutation alters cell biology and could be related 

to patient outcomes, and cMET-Y1253D was selected since it is an somatic activating mutation 

in the tyrosine kinase domain of the MET receptor. 

 

Construction of recombinant lentiviruses expressing wild type and mutant 
PIK3CA: The lentiviral constructs (pLenti6/V5-DEST/PIK3CA-WT, pLenti6/V5-DEST 

PIK3CA- E545K, pLenti6/V5-DEST PIK3CA- H1047R and the control pLenti6/V5-DEST/Lac 

Z) were gifts from Dr. G. Wu (Karmanos Cancer Institute, Detroit, MI, USA).(137) Virus 

preps were performed after the sequences were verified. To generate the lentiviruses 

expressing wild type HA-PIK3CA and its mutants, ViraPower Lentiviral Expression System 

(Invitrogen) was used. The pLenti-HA-PIK3CAs or control constructs were co- transfected 

into the 293FT producer cells with 3 µg pLenti expression plasmid DNA and 9 µg of 

ViraPower packaging mix using the Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, 

USA).  Lentivirus-containing supernatants were collected after 48 h, filtered with 0.45 µm 

PVDF filters (Millipore) and then used to infect MCF-10A cells. Selection began 48 hours 

after infection in growth medium with 10 µg/ml Blasticidin (Invitrogen, San Diego, CA).(137)  

The stable cell lines expressing PI3KCA-WT, its mutants (PI3KCA-E545K, PI3KCA-H1047R), 

or Lac Z control were further used to establish PIK3CA/cMET double mutant cells. 

 

Construction of recombinant lentiviruses expressing wild type and mutant cMET: 
GeneART synthesized constructs expressing human wild type (WT) or mutant cMETs (cMET-
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WT-Flag, cMET -T1010I-Flag, and cMET-Y1253D-Flag) designed by us. pMA vector 2 was 

used as the backbone in these plasmids. The constructs were sequenced to ensure the validity 

of the sequence and the orientation. Then the human full-length cDNAs for wild type cMET and 

the two mutants, with Kozak sequence before ATG and Flag-tag after cMET, were sub-cloned 

into pLVX-tdTomato-N1 vectors (Clontech, Mountain View, CA) (Fig. 8A) with XhoI/Xmal 

enzymes. The constructs (pLVX-cMET - WT-tdTomato, pLVX-cMET-T1010T-tdTomato, pLVX-

cMET-Y1253D and the empty vector pLVX-tdTomato-N1) were sequenced by GeneART to 

confirm the sequence. We confirmed that the orientation of the constructs was correct with 

restriction enzymes (data not shown).   
 

Generation of Lentiviruese expressing wild type and mutant cMETs: To generate 

the lentiviruses expressing wild type cMET and its mutants, we used two expression 

systems. One of them was the ViraPower Lentiviral Expression System (Invitrogen) that we 

used for expressing PIK3CA, as described previously. In addition, we used the Lenti-X
TM 

Lentiviral Expression System (Clontech). A total amount of 7 µg of pLVX-tdTomato-N1 vector, 

pLVX-cMET WT-tdTomato, pLVX-cMET T1010T- tdTomato, or pLVX-cMET-Y1253D-

tdTomato were co-transfected into the Lenti-X 293T cells, with 36 µg of the Lenti-X HTX 

packaging Mix, using 7.5 µl Xfect Polymer (Clontech, CA, USA). Lentiviruses containing 

supernatants were collected after 48 h, followed by a brief centrifugation (500 g for 10 

minutes) to remove cellular debris. Then they were used to infect the breast cancer cell 

line HCC-1954 or mammary epithelial cells, MCF-10A, that expressed PIK3CA-WT, PIK3CA-

E545K, PIK3CA-H1047R, or Lac Z as control. Selection began 48 hours after infection in 

growth medium with 1 µg/ml puromycin for two weeks. Both lentiviral expression systems 

allowed similar specific expression levels. 

 

Cell culture: MCF-10A, non-transformed mammary epithelial cell line, and HCC1954, 

human breast cancer cell line, were obtained from Characterized Cell Line Core, UT MD 

Anderson Cancer Center and grown at 37
o
C in humidified 5% CO2. The MCF-10A cells 

were maintained in DMEM/F12 (Thermo Scientific, South Logan, Utah) supplemented with 

5% horse serum (Invitrogen), 20 ng/ml EGF (Peprotech), 10 µg/ml insulin (Sigma), 100 ng/ml 

cholera toxin (Sigma), 0.5 µg/ml hydrocortisone (Sigma), 100 units/ml penicillin and 100 

µg/ml streptomycin. HCC1954 cells were maintained in RPMI supplemented with 10% FBS, 

100 units /ml penicillin and 100 µg/ml streptomycin. Cells were frozen at early passages and 

used for less than 4 weeks in continuous culture. 
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Drugs: Onartuzumab (Met-MAb
TM

), a monovalent, humanized, monoclonal antibody 

that binds to the receptor tyrosine kinase cMET (Genentech Inc), was used as per 

manufacturer’s instructions. GDC 941 (Genentech) and GDC 980 (Genentech) were dissolved 

in DMSO (Sigma-Aldrich) to a concentration of 2 mM, stored at -20
o
C, and further diluted to 

an appropriate final concentration in serum-free medium upon use. EMD-1214063 (Merck) 

was dissolved in DMSO (Sigma-Aldrich) to a concentration of 5 mM, stored at -20
o
C, and 

further diluted to an appropriate final concentration in serum-free medium at the time of use. 

DMSO in the final solution was 0.1% (v/v). To verify drug effects, we performed preliminary 

studies and confirmed their inhibitory function on cell signaling (Figure 20). 

 

Cell growth curves: For cell proliferation assay and EGF independent growth, 

MCF-10A cells expressing wild type or mutant cMET and/or expressing PIK3CA mutation 

were seeded in triplicates, at the density of 2 x10
4 cells per well in 12-well plates in low 

serum medium (2.5% horse serum) lacking EGF and insulin, for 3 days. For HCC1954 cells 

expressing wild type or mutant cMETs, cells were seeded at the density of 2 x10
4 cells per 

well in 12-well plates in low serum medium (2.5% FBS) for 4 days. Cells were trypsinized 

and counted on each day with an automated cell counter and cell analyzer, Cellometer Vision 

(Nexcelom). 

 

Cell Growth Inhibition Assays: Cells were seeded in 96-well plates (2,000 cells per 

well) in complete growth medium and were allowed to attach for 24 hours. The medium was 

changed to low serum medium (2.5% horse serum for MCF-10A cells; 2% FBS for HCC1954 

cells). Cells were incubated overnight at 37
o
C, followed by the addition of serial dilutions of 

drugs with variable combinations for 72 hours. For testing Onartuzumab or combinations with 

Onartuzumab, 50 ng/ml HGF was supplemented. Growth inhibition was determined using the 

CellTiter-Blue viability assay according to the manufacturer’s protocol (Promega) and 

incubated at 37
o
C for 3 hours and fluorescence was recorded at 560 Ex/590 Em. Each 

experiment was repeated at least three times. Cell viability results were calculated on the 

basis of percentage change versus vehicle-treated control. 

 

Morphogenesis Assay: Three-dimensional culture of cells was carried out on a 

matrigel basement membrane.(138) Briefly, 4 x10
3 cells were resuspended in a modified 
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growth medium, containing 2% growth factor-reduced matrigel (BD Biosciences) with drugs 

of variable combinations as designed, and subsequently seeded onto the Matrigel matrix in 

8-well chamber slides (BD Bioscience). Medium with drugs was replaced every 3 days. 

Photographs of representative fields were taken as indicated. Acini were photographed and 

counted in 10 randomly chosen fields and expressed as means of triplicates, 

representative of three independent experiments. 

 

In vitro Invasion Assay: Cell in vitro invasion was analyzed with 24-well Biocoat 

Matrigel invasion chambers with 8 µm polycarbonated filters (Becton Dickinson). Cells were 

starved for 20 hours in serum-free DMEM F12 lacking EGF. After washing with serum-free 

DMEM F12, 1x10
5 cells in 0.6 ml DMEM F12 were inoculated into the upper chamber, and 

0.75 ml DMEM F12 containing fibronectin (5 µg g/ml) was added to the lower chamber. For 

invasion- inhibition assay, drugs (GDC941, GDC980, Onartuzumab or EMD-1214063) or 

vehicle was added to both the upper and lower chambers. For testing the effect of 

Onartuzumab or its combinations, HGF (50 ng/ml) was added. The cells were allowed to 

pass through the matrigel at 37°C, 5% CO2, for 22 hours. Non-invasive cells on the upper 

surface of the filter were removed by wiping with a cotton swab. The cells that penetrated 

through the pores of the Matrigel to the underside of the filter were stained with 0.25% 

crystal violet in 20% methanol for 30 min. Invasive cells were photographed and counted in 

10 random fields. 

 

Clonogenic Assay: For clonogenic assays, 1,000 cells were seeded in a 60 mm 

dish, in growth medium, for 11 days. For inhibitory assay, after attaching on the dish, cells 

were treated for 2 days with drugs in variable combinations as designed. Then the drugs 

were washed away and cells were allowed to grow in growth media for 11 days. The cells 

were rinsed with PBS, followed by staining with 0.25% crystal violet / 20% ethanol. 

Quantitative analysis of the total number and size of clones was performed with 

AlphaVIEW SA software (Cell Biosciences). 

 

Soft Agar Assay: Cells were suspended in complete growth medium containing 0.3% 

soft agar, and seeded in triplicates in 35-mm dishes pre-coated with 0.6% agar in growth 

medium, and incubated at 37°C, 5% CO2. After 12 days, colonies were photographed and 

counted in 10 randomly chosen fields and expressed as means of triplicates, representative of 

three independent experiments. 
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Tumor Xenografts studies: Human HGF transgenic mice on a severe combined 

immunodeficiency (SCID) background, named hHGF Tg SCID females(139), at 6 weeks of 

age and housed in sterile filter-capped cages, were used. All animal studies were carried out 

under ACUF-approved protocols. Exponentially growing HCC1954/cMET-WT, HCC1954/ 

cMET-T1010I, HCC1954/ cMET-Y1253D, and HCC1954/Td Tomato control cells were 

harvested. After being washed and resuspended in PBS, 1x10
7 cells were injected into the 

mammary fat pads of mice. Animals were monitored on a daily basis. Each group consisted 

of 5 mice. Tumor sizes were determined by measuring the length (l) and the width (w) with 

calipers twice weekly. Tumor volume was calculated with the formula (V = lw
2
/2). Differences 

in tumor volume among groups at each time point were analyzed using ANOVA. At the end of 

the experiment, mice were sacrificed. Tumors were harvested, followed by measurement of 

tumor size. Tumors were cut and flash-frozen in liquid nitrogen for Western blot or fixed in 

10% neutral-buffered formalin for paraffin- embedding. Xenograft tumors and all the organs, 

of each mouse, were subjected to double-blind histopathological analysis by a Veterinary 

pathologist. 

 

Antibody Source 
AKT 
AKT pS473 
b-Actin 
c-Jun pS73 
cMet pY1234/1235 
cMet 
ERK2 
Flag M2 
GSK-3a/b pS21/9 
MAPK (T202/Y204) 
mTor 
mTOR pS2448 
PI3K p110a 
S6 pS240/244 
Src pY416 
Stat3 pY705 
Stat3 pY727 
V5 

Cell Signaling1 

Cell Signaling1 

Sigma2 
Cell Signaling1 

Cell Signaling1 

Cell Signaling1 

Santa Cruz3 

Sigma2 
Cell Signaling1 

Cell Signaling1 

Cell Signaling1 

Cell Signaling1 

Epitomics4 

Cell Signaling1 

Cell Signaling1 

Cell Signaling1 

Epitomics4 

Invitrogen5 
 
Table 8 
Antibodies used for Western blot 1Beverly, MA; 2Sigma, St Louis, MO; 3Santa Cruz, CA; 
4Epitomics, Burlingame, CA; 5Invitrogen, Carlsbad, CA 

 

Immunoblotting and immunoprecipitation: Cells were washed twice with cold 

phosphate-buffered saline and lysed in ice-cold lysis buffer [1% Triton X-100, 50mM 

HEPES, pH 7.4, 150mM NaCl, 1.5mM MgCl2, 1mM EGTA, 100mM NaF, 10mM Na 
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pyrophosphate, 1mM Na3VO4, 10% glycerol, protease inhibitor cocktail (Roche Applied 

Science), and phosphatase inhibitors, PhosSTOP (Roche Applied Science)]. Cell lysates 

were collected after centrifugation at 13,000 rpm for 10 minutes. The cellular protein 

concentration was determined by BCA reaction with reagents from Pierce (Rockford, IL). 

For immunoprecipitation, cell lysates were immunoprecipitated with anti-V5 (Invitrogen). 

Immunocomplexes were collected on Protein A/G plus-conjugated agarose beads (Santa 

Cruz Biotechnology). Immunocomplexes or cell lysates were separated by SDS-PAGE and 

transferred to polyvinylidene difluoride (PVDF) membranes. The membranes were blocked 

with 4% fat free-milk in TBS-T (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% Tween 20) for 

one hour at room temperature, and then incubated overnight with antibodies diluted in 5% 

BSA in TBS-T (Table 8). The membranes were washed in TBS-T and incubated with 

HRP-conjugated goat anti-rabbit secondary antibody (1:2500 dilution) or HRP- conjugated 

goat anti-mouse secondary antibody (1:2500 dilution) for one hour at room temperature. 

The membranes were washed with TBS-T, and the proteins were visualized using ECL from 

Amersham Bioscences (Piscataway, NJ). 

 
Statistical Analyses: Statistical analysis was carried out using the ANOVA test (for 

multiple groups) and the Student t test (for two groups). Differences with P values < 0.05 were 

considered statistically significant. 

RESULTS 
 

Establishment of stable cells expressing mutant PIK3CA (E545K, H1047R) or 
overexpressing wild type PIK3CA genes: In order to study the effects of the cancer-

associated PIK3CA mutations or PIK3CA/cMET double mutations in breast cancer, we first 

generated different lentiviruses expressing breast cancer-associated mutant PIK3CAs 

(E545K, H1047R) or wild type PIK3CA genes or Lac Z constructs, using lentiviral constructs 

from Dr. G. Wu (Karmanos Cancer Institute, Detroit, MI).(137) E545K mutation is located in 

the helical domain and H1047R mutation in the kinase domain of PIK3CA (Figure 7 A). 

These viruses were used to infect mammary epithelial cells, MCF10A. After 48 hours, 

blasticidin was used for selection. The specific expression in these cell lines were verified with 

immunoprecipitation and Western blot (Fig. 7B). 
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Figure 7. Establishment of stable cells 
Establishment of stable cells expressing breast cancer-associated mutant PIK3CA genes in the 
mammary epithelial cell line, MCF-10A cells:  A. The location of breast cancer-associated E545K and 
H1047R mutations in the PIK3CA molecule. B. Immunoprecipitation (IP) and Western blot analysis 
confirmed the expression of PIK3CA in MCF10A cells. To detect the expression of PIK3CA-V5, V5 
antibody was used for IP and anti-PI3K P110α antibody was used for immunoblot (7B). 
 

Generation of wild type or mutant cMET lentiviral constructs and establishment 
of stable cells expressing different cMET genes: To determine whether deregulated 

expression of cMET or its mutation could play a role in progression of breast cancer, we 

generated wild type or mutant cMETs lentiviral constructs with wild type (WT), full-length 

human cMET, or mutant cMETs (T1010I, Y1253D) using Flag epitope-tagged cDNA 

based on pLVX-tdTomato-N1 (Clontech, Mountain View, CA). We named the constructs 

as pLVX-tdTomato/cMET WT-Flag, pLVX-tdTomato/cMET-E545K-Flag and pLVX-

tdTomato/cMET-Y1253D-Flag. pLVX- TdTomato vector was used as control (Figure 8A). The 

sequence and orientation of the inserted cDNAs were confirmed (data not shown). T1010I is 

located in the Juxtamembrane (JM) domain, while Y1253D is in the kinase domain (Figure 

8B). Using the lentiviral constructs, we generated different lentiviruses and used the viruses to 

infect MCF10A mammary epithelial cells. To establish stable cells expressing PIK3CA/cMET 

double genes, the stable cells expressing the PIK3CA genes were further infected with 

lentivirus expressing variable cMETs. Pooled stable cells expressing wild type or mutant 

cMET genes were generated after puromycin selection. The specific expression of infected 

genes was detected by the Td Tomato fluorescence in 293FT packaging cells (Figure 

8C). We generated 20 stable cell lines based on MCF-10A using the viruses. Here we present 

representative cell lines to show their expression levels and patterns (Figure 8 D). Control 

cells infected with the viruses expressing Td Tomato alone showed specific expression in 

the whole cell (Figure 8C, D). The expression of cMET-Flag-Td Tomato in different cMET-
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Flag-Td Tomato cell lines was observed on the cell membrane and in the cytoplasm (Figure 

8C, D), in levels lower than the control cells. We further confirmed the cMET-Flag 

expression in the 20 stable cell lines with Western blot using anti-Flag M2 antibody. As 

expected, control cells did not show cMET-Flag expression (Figure 8E). It is important to note 

that, in this study, cMET WT and PIK3CA WT represent overexpression of cMET and PIK3CA 

wild type, respectively.  
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Figure 8. Development of Lentiviral Constructs 
Development of lentiviral constructs for human wild type c-MET and its mutants: A. Human cMET 
genes, including wild type and two mutants (T1010I and Y1253D), were synthesized by GeneART 
following our design. The backbone of the plasmids is pMA vector 2. The fragments of Kozak-cMETs-
Flag were excised from pMA vector 2 with Xhol/Xmal and inserted into pLVX-tdTomatoN1, a lentiviral 
vector (Clontech, Mountain View, CA). B. The location of cMET -T1010I and cMET-Y1253D in MET. C. 
Specific protein expressions in 293FT packaging cells. D. Specific protein expression in drug-selected 
colonies of MCF-10A infected with Lenti-virus expressing cMET-FLAG-Td Tomato. E. Western blot 
analysis to confirm the expression of cMET-flag-Td Tomato in MCF10A cells. Anti-Flag M2 antibody was 
used to detect the specific expression. 
 

cMET overexpression and its cancer-associated mutations cooperate with 
PIK3CA mutations to promote cell proliferation: MCF-10A cells are non-tumorigenic 

mammary epithelial cells. The components of growth medium for the non-transformed cells 

are much more complex than that for tumor cells. The supplements including 5% horse 
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serum, EGF, insulin, cholera toxin, and hydrocortisone are required for growth. EGF 

requirement can be overcome by the exogenous expression of mutant PI3KCA E545K and 

H1047R(131), which is one of the important molecular effects of the oncogenes.(140) To 

investigate whether the PIK3CA/cMET double mutation affects cell proliferation, we cultured 

the cells in a less optimal environment, including low serum (2.5% horse serum) medium, 

and withdrawal of EGF and other supplements for 3 days. We found that MCF10A cells 

expressing both mutant PIK3CAs and aberrant cMETs showed a significant higher 

proliferation than cells with mutant PIK3CA alone (P < 0.05-0.001) o r  a b e r r a n t  

c M E T  a l o n e  ( #, P < 0.05, ## P < 0.01, ### P < 0.001 vs cMETs alone. ANOVA) (Figure 

9A,B). Interestingly, overexpression of wild type cMET, i n  PIK3CA mutant  ce l ls ,  had a 

similar effect on cell proliferation, on monolayer, as mutant cMET. However, among these 

cell lines, PIK3CA mutant/cMET-Y1253D cells exhibited the highest growth ability suggesting 

a differential effect from wild type cMET (Fig. 9A, B). There could be a possible interaction 

between aberrant PIK3CA and cMET, since the co-aberrant cells exhibit higher proliferation 

when compared to the corresponding PIK3CA or cMET only aberrant cells. 

 
Figure 9. Effect of wild type or mutant PIK3CA/cMETS on Cell Growth 
Effect of wild type or mutant PIK3CA/cMETs on growth factor-independent cell growth: MCF-10A 
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derived cell lines were seeded in 12-well plates at 2x104 cells per well in 2.5% horse serum lacking EGF 
and insulin for 3 days. Cell numbers were counted for each day indicated. Each experiment was done 
with triplicate wells. The data are mean ± standard errors of triplicates, representative of two 
independent experiments A. Cells expressing PIK3CA-E545K alone, cMET alone (WT or mutants 
T1010I, Y1253D) or co-expressing PIK3CA (E545K) and cMET aberrations. (** P<0.01, *** P < 0.001 vs 
Tdv; #, P < 0.05, ## P < 0.01 vs cMETs alone. ANOVA) B. Cells expressing PIK3CA-H1047R alone, 
cMET alone (WT or mutants T1010I, Y1253D) or co-expressing PIK3CA (H1047R) and cMET 
aberrations. (** P<0.01, *** P < 0.001 vs Tdv; ##, P < 0.01, ### P < 0.001  vs cMETs alone. ANOVA) 

 
cMET overexpression and its cancer-associated mutations act coordinately with 

PIK3CA mutations to increase cell survival: To detect whether combination of cMET 

mutation or overexpression of cMET with PIK3CA mutations affects cell survival, we 

performed clonogenic assay. Our data showed that, both overexpression of cMET and 

expression of mutant cMET, in PIK3CA-mutant cells, increased colony formation (P < 

0.001, respectively). I n  t h e s e  PIK3CA-mutant cells,  t he effect of Y1253D was the 

strongest, while the T1010I mutation and overexpression of wild type cMET had similar 

effects (P > 0.05) (Figure 10 A, B). Cells expressing only aberrant cMET (wild type or mutants- 

T1010I, Y1253D) showed smaller and fewer colonies (Figure 10 C) when compared to the 

PIK3CA, cMET co-aberrant cells. This assay too suggests a possible interaction between 

aberrant PIK3CA and cMET, since the co-aberrant cells exhibit increased survival.  
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Figure 10. The Effects of PIK3CA/cMET mutations on Colony Formation 
The effects of PIK3CA/cMET mutations on colony formation assay: MCF-10A derived cell lines were 
seeded in triplicate with a density of 1000 cell/60 mm-petri dish. Cells were cultured in 2.5% horse 
serum, lacking EGF and insulin, supplemented with 40 ng/ml HGF. A. PIK3CA-E545K cells expressing 
wild type cMET or mutant cMETs (T1010I, Y1253D) B. PIK3CA-H1047R cells expressing wild type or 
mutant cMETs (T1010I, Y1253D). C. Cells expressing only wild type cMET or mutant cMETs (T1010I, 
Y1253D). (a) Photos were taken at day 11. (b) The data are mean ± standard errors of triplicates, 
representative of two independent experiments (***, P < 0.001 vs control cells; ###, P < 0.001 vs WT or 
T1010I cells; #, P < 0.05, ##, P < 0.01 vs Y1253D. ANOVA). 

 

cMET-T1010I mutation or cMET overexpression, but not cMET-Y1253D, promotes 
cell proliferation and invasion in matrigel: Previous  studies  reported  that  mutant  
PIK3CA-E545K  and  PIK3CA-H1047R  altered three-dimensional acinar 
morphogenesis.(131, 137) Here we assessed the effect of cMET overexpression and its 
mutations on morphogenesis in MCF-10A cells using the three dimensional matrigel 
system.(138) MCF-10A cells expressing PIK3CA mutants were used as control. Consistent 
with the previous reports, MCF10A cell lines expressing PIK3CA E545K or PIK3CA 
H1047R mutations displayed morphological changes with highly proliferative and mildly 
abnormal structures, when compared to PIK3CA WT cell line or the parental MCF10A cells 
(Figure 11A, and data not shown).(131, 137) Intriguingly, MCF10A cells expressing cMET-
T1010I formed larger acini that invaded into the surrounding matrix (Figure 11B). The 
MCF10A cells over-expressing wild type cMET showed similar morphological alterations, 
but milder than cMET-T1010I cells (Figure 11B).  In contrast, cells expressing cMET-Y1253D 
did not show invasion (Figure 11B). 



47 
 

 
Figure 11.The Effects of cMET or PIK3CA aberrations on Mammary Acinar Morphogenesis 
The effects of cMET or PIK3CA aberrations on mammary acinar morphogenesis: MCF10A derived cell 
lines were cultured on matrigel as described in Materials and Methods. Briefly, 4x103 MCF-10A derived 
cells were resuspended in modified growth medium containing 2% matrigel (BD Biosciences), 
decreased serum and EGF (2% horse serum, and 5 ng/mL EGF), supplemented with HGF 40 ng/ml. 
Medium was exchanged every 3 days. Representative bright field images of acini were taken on day 8; 
original magnification, X40. A. MCF-10A derived cells expressing PIK3CAs. B. MCF-10A derived cells 
expressing cMETs. C. MCF-10A derived cells expressing wild type PIK3CA/cMET or double mutants. 
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Co-aberrations in cMET /PIK3CA (wild type overexpression and double 

mutations) act in concert to induce alterations in mammary acinar morphogenesis: We 

further evaluated the effect of cMET/PIK3CA wild type overexpression and double mutations 

on mammary acinar morphogenesis. As expected, marked abnormal structures were 

observed in MCF-10A cells expressing PIK3CA-E545K and cMET T1010I (PIK3CA-

E545K/cMET-T1010I), or cMET-Y1253D (PIK3CA-E545K/cMET-Y1253D) (Figure 11C). 

Similar results were detected in PIK3CA-H1047R/cMET-T1010I and PIK3CA-H1047R/cMET-

Y1253D cells (Figure 11C). The overexpression of wild type cMET and PIK3CA in MCF-10A 

cells had a similar but milder effect when compared to the double mutants.  

The effects of different cMET or PIK3CA mutations on cell invasion: To evaluate 

whether cancer-associated cMET mutants or overexpression of wild type cMET, and 

different PIK3CA mutations, contribute to cell invasion, we performed a systematic 

invasion assay by seeding different MCF10A-derived cell lines using invasion chambers, as 

described in the Methods. We observed that c-MET mutations (T1010I and Y1253D) 

significantly increased cell invasion ability (P < 0.001), with the T1010I mutant higher than 

Y1253D (P < 0.001). PIK3CA mutations (E545K, H1047R) mildly enhanced cell invasion. 

Intriguingly, the c-MET T1010I mutation combined with the PIK3CA mutation significantly 

increased the cell invasion ability, when compared to the other MCF-10A cell lines used in 

this study (P < 0.001) (Figure 12). The parental MCF10A cells did not display cell 

invasiveness, nor did the MCF10A cells with the wild type cMET and wild type PIK3CA. 

(Figure 12A, B). 
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Figure 12. The Effects of cMET and/or PIK3CA overexpression or mutations on Cell Invasion 
The effects of cMET and/or PIK3CA overexpression or mutations on cell invasion: A. Cell invasion in 
vitro was analyzed as indicated in Materials and Methods. MCF-10A derived cells invaded through 
matrigel. The cells were photographed at X100 magnification. B. The data are mean ± standard errors 
of triplicates, representative of two independent experiments (***, vs parent-vector, P < 0.0001; ‡‡‡, P < 
0.0001 vs PIK3CA WT-vector; †††, P < 0.0001 vs PIK3CA E545K-vector; ΔΔΔ, P < 0.0001 vs PIK3CA 
H1047R-vector). 
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Effect of cMET/PIK3CA mutations on cell signaling: To evaluate the effects of 

cMET and/or PIK3CA mutations on cell signaling, we tested the expression level and/or 

phosphorylation levels of cMET and PI3Kp110 and their downstream targets, including AKT, 

S6, MAPK and Stat3 with Western blotting. As expected, levels of phosphorylated AKT and S6 

were much higher in cells expressing mutant PIK3CA-E545K or PIK3CA-H1047R, compared 

to parental MCF-10A cells and the wild type PIK3CA cell line (Figure 13). Incubation with HGF 

did not substantively alter AKT phosphorylation in any of the lines.  

 

Also as expected, endogenous cMET expression in each cell line and exogenous 

cMET-Flag expression in cMET-transfected cell lines were observed in the absence of HGF. 

However, Y1253D cMET was expressed at lower levels in all lines. The reason for the 

decreased levels of Y1253D is not known. Strikingly, levels of exogenous cMET were 

markedly lower in cells expressing either of the activated PIK3CA constructs. This was 

associated with high levels of phosphorylation of exogenous and wild type cMET. This is an 

unexpected observation that suggests that the activated PIK3CAs increase cMET 

phosphorylation through an as yet unknown mechanism and lead to degradation of cMET. 

 

40 minutes of incubation with HGF increased phosphorylation of endogenous cMET 

under all conditions. Further in the presence of PIK3CA WT or mutants, phosphorylation of 

endogenous cMET was increased in the Y1253D construct. Surprisingly, HGF did not increase 

phosphorylation of exogenous cMET except for wild type cMET in the presence of mutant 

PIK3CA. Intriguingly, this was associated with an increase in endogenous cMET. 

Unexpectedly, in the presence of HGF in cells expressing exogenous cMETT1010I, neither 

exogenous nor endogenous cMET was phosphorylated. Indeed, this was associated with a 

lack of pMAPK in cells expressing cMET T1010I. The results with MAPK phosphorylation were 

difficult to explain. It appears that under basal conditions that wild type and T1010I MET result 

in a decrease in pMAPK in parent cells and in the presence of WT PIK3CA. This is not seen in 

the presence of mutant PIK3CA potentially due to the increase pcMET noted above. In the 

presence of HGF pMAPK and pMET with endogenous or endogenous were similar. This 

suggests that the pMET signal is transmitted successfully to pMAPK.  

 

Together the data is not as expected and suggests complex interactions between 

PIK3CA and MET that warrant extensive further investigation.   
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Figure 13. The Effect of mutant and wild type cMET and /or PIK3CA on Cell Signaling 
The effect of mutant and wild type cMET and /or PIK3CA on cell signaling:  MCF-10A derived cells 
expressing PIK3CA wild type (WT) or mutants (E545K, H1047R), with or without expression of wild type 
cMET or mutants (T1010I, Y1253D), were starved over-night, followed by stimulation with HGF, FBS or 
EGF at indicated doses and time, respectively. And then cell lysates were collected and loaded for 
Western blot with antibodies, as indicated. β-actin was used as a loading control. A. Without stimulation 
(left panel); stimulated with HGF (right panel).  
 

MODELS 
Cell Proliferation Assay 
Effects 

MCF-10A-LacZ Vector 
 MCF-10A-PIK3CA WT 
 MCF-10A- PIK3CA E545K 
 MCF-10A- PIK3CA H1047R 
 MCF-10A- Tomato Vector Control 

MCF-10A- MET WT High; significant increase P<0.001 vs control 
MCF-10A- MET T1010I High; significant increase P<0.001 vs control 
MCF-10A- MET Y1253D Highest; significant increase P<0.001 vs control 
LacZ vector-Tomato Vector 

 LacZ vector-MET WT 
 LacZ vector-MET T1010I 
 LacZ vector-MET Y1253D 
 PIK3CA WT- Tomato Vector 
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PIK3CA WT- MET WT 
 PIK3CA WT- MET T1010I 
 PIK3CA WT- MET Y1253D 
 PIK3CA E545K- Tomato 

Vector Control (Expression of PIK3CA-E545K only) 

PIK3CA E545K- MET WT 
High; significant increase P<0.001 vs control; P<0.01 vs 
MET WT alone 

PIK3CA E545K- MET T1010I High; significant increase P<0.001 vs control 

PIK3CA E545K- MET Y1253D 
Highest; significant increase P<0.001 vs control; P<0.01 vs 
MET Y1253D alone 

PIK3CA H1047R- Tomato 
Vector Control 

PIK3CA H1047R- MET WT 
High; significant increase P<0.001 vs control; P<0.001 vs 
MET WT alone 

PIK3CA H1047R- MET T1010I 
High; significant increase P<0.001 vs control; P<0.001 vs 
MET T1010I alone 

PIK3CA H1047R- MET 
TY1253D 

Highest; significant increase P<0.001 vs control; P<0.001 vs 
MET Y1253D alone 

Conclusion 

There could be a possible interaction between aberrant 
PIK3CA and MET since co-aberrations exhibit increased 
proliferation 

MODELS 
Colony Formation Assay 
Effects 

MCF-10A-LacZ Vector 
 MCF-10A-PIK3CA WT 
 MCF-10A- PIK3CA E545K 
 MCF-10A- PIK3CA H1047R 
 MCF-10A- Tomato Vector Control 

MCF-10A- MET WT 
High; significant increase  P<0.001 vs control; P<0.05 vs 
cMET Y1253D only 

MCF-10A- MET T1010I 
Moderate; significant increase  P<0.001 vs control; P<0.01 
vs cMET Y1253D only 

MCF-10A- MET Y1253D Highest; significant increase  P<0.001 vs control 
LacZ vector-Tomato Vector 

 LacZ vector-MET WT 
 LacZ vector-MET T1010I 
 LacZ vector-MET Y1253D 
 PIK3CA WT- Tomato Vector 
 PIK3CA WT- MET WT 
 PIK3CA WT- MET T1010I 
 PIK3CA WT- MET Y1253D 
 PIK3CA E545K- Tomato 

Vector Control Group 
PIK3CA E545K- MET WT High; significant increase  P<0.001 vs control 
PIK3CA E545K- MET T1010I High; significant increase  P<0.001 vs control 

PIK3CA E545K- MET Y1253D 
Highest;  significant increase P<0.001 vs control, P<0.001 
vs WT or T1010I 

PIK3CA H1047R- Tomato Control Group 



53 
 

Vector 

PIK3CA H1047R- MET WT High; significant increase  P<0.001 vs control 
PIK3CA H1047R- MET T1010I High; significant increase  P<0.001 vs control 

PIK3CA H1047R- MET 
TY1253D 

Highest; significant increase P<0.001 vs control, P<0.001 vs 
WT or T1010I 

Conclusion 

There could be a possible interaction between aberrant 
PIK3CA and MET since co-aberrant cells exhibit increased 
cell survival 

MODELS 
Mammary Acinar Morphogenesis 
Effects 

MCF-10A-LacZ Vector Control Group 
MCF-10A-PIK3CA WT No Effect 

MCF-10A- PIK3CA E545K 
Displayed Highly proliferative and mildly abnormal 
structures 

MCF-10A- PIK3CA H1047R 
Displayed Highly proliferative and mildly abnormal 
structures 

MCF-10A- Tomato Vector control Group 
MCF-10A- MET WT Effect milder than MCF-10A- MET T1010I 

MCF-10A- MET T1010I Formed largest acini that invaded into surrounding matrix 
MCF-10A- MET Y1253D Didn't show invasion 
LacZ vector-Tomato Vector 

 LacZ vector-MET WT 
 LacZ vector-MET T1010I 
 LacZ vector-MET Y1253D 
 PIK3CA WT- Tomato Vector 
 

PIK3CA WT- MET WT 
Abnormal structures were formed; milder than PIK3CA/MET 
double mutant cells 

PIK3CA WT- MET T1010I 
 PIK3CA WT- MET Y1253D 
 PIK3CA E545K- Tomato 

Vector Control Group 
PIK3CA E545K- MET WT 

 PIK3CA E545K- MET T1010I Marked abnormal structures were formed 
PIK3CA E545K- MET Y1253D Marked abnormal structures were formed 
PIK3CA H1047R- Tomato 
Vector Control Group 
PIK3CA H1047R- MET WT 

 PIK3CA H1047R- MET T1010I Marked abnormal structures were formed 
PIK3CA H1047R- MET 
TY1253D Marked abnormal structures were formed 

Conclusion 

There could be a possible interaction between aberrant 
PIK3CA and MET, since co-aberrant cells exhibit markedly 
abnormal structures   

MODELS 
Cell Invasion 
Effects 
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MCF-10A-LacZ Vector Control Group 
MCF-10A-PIK3CA WT 

 MCF-10A- PIK3CA E545K 
 MCF-10A- PIK3CA H1047R 
 MCF-10A- Tomato Vector Control Group 

MCF-10A- MET WT No Effect 
MCF-10A- MET T1010I High; significant increase  P<0.0001 vs control 
MCF-10A- MET Y1253D Mild; significant increase  P<0.0001 vs control 
LacZ vector-Tomato Vector 

 LacZ vector-MET WT 
 LacZ vector-MET T1010I 
 LacZ vector-MET Y1253D 
 PIK3CA WT- Tomato Vector Insignificant Effect 

PIK3CA WT- MET WT Insignificant Effect 

PIK3CA WT- MET T1010I 
High; significant increase P<0.0001 vs PIK3CA WT-Tomato 
Vector  

PIK3CA WT- MET Y1253D 
Mild; significant increase P<0.0001 vs PIK3CA WT-Tomato 
Vector  

PIK3CA E545K- Tomato 
Vector Mild; significant increase P<0.0001 vs control 

PIK3CA E545K- MET WT 
Mild; significant increase P<0.0001 vs PIK3CA E545K-
Tomato Vector 

PIK3CA E545K- MET T1010I 
Highest; significant increase P<0.0001 vs PIK3CA E545K-
Tomato Vector 

PIK3CA E545K- MET Y1253D 
Mild; significant increase P<0.0001 vs PIK3CA E545K-
Tomato Vector 

PIK3CA H1047R- Tomato 
Vector Mild; significant increase P<0.0001 vs control 
PIK3CA H1047R- MET WT Mild; significant increase P<0.0001 vs control 

PIK3CA H1047R- MET T1010I 
Highest; significant increase P<0.0001 vs PIK3CA H1047R-
Tomato Vector 

PIK3CA H1047R- MET 
TY1253D 

Mild; significant increase P<0.0001 vs PIK3CA H1047R-
Tomato Vector 

Conclusion 

There could be a possible interaction between MET-
Y1253D and PIK3CA-mutant, since the double mutants 
exhibit increased invasion when compared to cells 
expressing MET-Y1253D alone or PIK3CA-mutant alone. 

 
Table 9. Summarizing the Effects of PIK3CA and MET aberrations on mammary epithelial cells 
Summarizing the effects of PIK3CA and MET aberrations on mammary epithelial cells. MET WT 
and PIK3CA WT represent overexpression of Wild Type MET and Wild Type PIK3CA, respectively. 
 

Taken together, our data suggested that cMET overexpression or cancer-associated 

mutations (T1010I, Y1253D) can act as oncogenes to promote cell growth, focus formation 

(Y1253D stronger than T1010I), anchorage-independent survival/proliferation and invasion 

(T1010I stronger than Y1253D). cMET overexpression or mutation, and PIK3CA mutation, 
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act in concert to transform mammary epithelial cells (Table 9). 

 

cMET mutation or overexpression increases cell proliferation in the PIK3CA- 
mutated breast cancer cell line: To further verify our findings, as described in the Methods, 

we established four stable cell lines that expressed mutant cMETs (T1010I, Y1253D), wild 

type cMET or Td Tomato in HCC1954 cells, a breast cancer cell line with mutant PIK3CA at 

H1047R. The specific expression of infected genes was observed (Figure 14A). To detect 

the effect of the cMET mutations or the overexpression of the wild type cMET, on cell 

proliferation, we cultured the cells in low serum medium as indicated. HCC1954 cells, 

expressing the cMET mutants (T1010I, Y1253D), exhibited significantly higher proliferation 

ability than the control cells (P < 0.001). Interestingly, the HCC1954 cells overexpressing 

wild type cMET also significantly increased proliferation, even higher than the ones 

expressing cMET-T1010I. Among these cell lines, the HCC1954 cells expressing the 

cMET-Y1253D mutation exhibited the highest growth rate (Figure 14B). 
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Figure 14. Effects of mutant and wild type cMET on cell proliferation in PIK3CA-mutated breast cancer 
cells 
Effects of mutant and wild type cMET on cell proliferation in PIK3CA-mutated breast cancer cells: We 
established stable cell lines expressing wild type or mutant cMETs (T1010I, Y1253D) based on the 
PIK3CA-mutated breast cancer cell line, HCC1954, using the same method that was used to establish 
MCF-10A derived cells. A. Specific protein expressions B. Effect of overexpression of wild type cMET or 
expression of mutant cMETs on cell growth. HCC1954 derived cells were seeded in 12-well plates at 
2x104 cells per well, in 5% FBS (a) or 2.5% FBS (b) for 4 days. Cell numbers were counted for each day 
indicated. Each experiment was done with triplicate wells. The data are mean ± standard errors of 
triplicates, representative of two independent experiments (*, P < 0.05; **, P < 0 .01; ***, P < 0.001 vs 
control cells, ANOVA). C. Effect of overexpression of wild type cMET or expression of mutant cMETs on 
cell growth in matrigel; original magnification, X40. 
 

cMET mutations or overexpression of wild type cMET induces alteration of 
mammary acinar morphogenesis in the PIK3CA-mutated breast cancer cell line: We 

further detected if cMET mutation or overexpression affect cell growth of HCC1954 cells in 

matrigel. Our data indicated that both expression of mutant cMET (T1010I, Y1253D) and 

overexpression of wild type cMET induced morphological changes with high proliferation 

and abnormal structures (Figure 14C). 

 

cMET mutation or overexpression enhances cell survival in the PIK3CA-mutated 
breast cancer cell line, in basic culture and soft agar: To verify if the combination of cMET 

overexpression or mutations with PIK3CA mutations contributed to cell survival, we performed 

clonogenic assay and soft agar assay using HCC1954 cells expressing wild type or mutant 

cMET-T1010I and cMET-Y1253D. We found that both overexpression of wild type cMET and 

expression of mutant cMET T1010I or Y1253D significantly increased colony formation when 
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compared to the control cells (P < 0.001, respectively). The effect of Y1253D was the 

strongest, while the T1010I mutation and overexpression of wild type cMET showed 

similar effects (P > 0.05) (Figure 15A). We further tested the ability of anchorage-

independent growth in these cell lines. The control cells did not form colonies under this 

condition. However, cells expressing mutant cMETs (T1010I, Y1253D) or overexpressing 

wild type cMET formed colonies in soft agar (Figure 15B). There were significant 

differences in the effects when compared to the control cells (P < 0.0001, respectively). 

Among these cell lines, the cells expressing cMET-T1010I exhibited higher survival than the 

ones with cMET-Y1253D (P < 0.01) or wild type cMET (P < 0.05), in soft agar. 

 

 
Figure 15. Effects of mutant and wild type cMET on cell survival and anchorage-independent 
proliferation in PIK3CA-mutated breast cancer cells 
Effects of mutant and wild type cMET on cell survival and anchorage-independent proliferation in 
PIK3CA-mutated breast cancer cells: A. Clonogenic assay was analyzed as explained in Material and 
Methods. HCC1954 derived cells were seeded in triplicates with a density of 1000 cells/60 mm-petri 
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dish. Cells were cultured in 5% FBS. A. Photos were taken at day 10 (a). The data are mean ± standard 
errors of triplicates, representative of two independent experiments (***, P < 0.001 vs control cells; ‡‡, P 
< 0.01, ‡‡‡, P < 0.001 vs Y1253D cells, ANOVA) (b). B. Soft agar assay was analyzed as explained in 
Material and Methods.  2x104 HCC1954 derived cells were suspended in complete growth medium 
containing 0.3% soft agar and seeded in triplicates on 60-mm dishes precoated with 0.6% agar, in 5% 
FBS growth medium and incubated at 37°C, 5% CO2. After 8 days, colonies were photographed and 
counted in 10 randomly chosen fields and expressed as means of triplicates, representative of three 
independent experiments (a). The data are mean ± standard errors of triplicates, representative of two 
independent experiments (***, P < 0.001 vs control cells; ‡, P < 0.05, ‡‡, P < 0.01 vs T1010I cells, 
ANOVA) (b). C. In vitro cell invasion assay was analyzed as explained in the Materials and Methods. 
HCC1954 derived cells invaded through the matrigel. The cells were photographed at X100 
magnification (a). The data are mean ± standard errors of triplicates, representative of two independent 
experiments (**, P < 0.01; ***, P < 0.0001 vs parent-vector; ‡‡‡, P < 0.0001 vs T1010I cells; ###, P < 
0.0001 vs cMET-WT). 
 

Cancer-associated mutant cMETs induce invasion of the PIK3CA-mutated breast 
cancer cells: To evaluate whether cancer-associated cMET mutants or overexpression of 

wild type cMET in PIK3CA mutant HCC1954 cells contributed to cell invasion, we performed 

an invasion assay. Consistent with the finding in MCF10A cells, c-MET mutations (T1010I and 

Y1253D) significantly increased cell invasion (P < 0.001), with HCC1954/cMET- T1010I 

cells displaying higher invasion than the HCC1954/cMET-Y1253D cells (P < 0.001). 

Overexpression of wild type cMET mildly induced cell invasion (P < 0.01) (Figure 15 C). 

 
Effects of expression of mutant cMETs or overexpression of wild type cMET in 

PIK3CA-mutated breast cancer cells, on tumor progression in hHGF transgenic mice: 
Our in vitro studies demonstrated that the expression of cancer-associated cMET mutants 

(T1010I, Y1253D) or overexpression of wild type cMET induced aggressive phenotypes (with 

higher proliferation, survival, invasion) in breast cancer cells with PIK3CA-H1047R mutation. 

To detect the properties induced by cMETs in vivo, we established tumor xenograft models 

in human HGF transgenic mice ( a gift from Dr. G. F. Vande Woude, Van Andel Research 

Institute, Grand Rapids, MI)(139) using HCC1954/cMET-WT,  HCC1954/cMET-T1010I, 

HCC1954/cMET-Y1253D, and HCC1954/Td Tomato vector control cells, (see Methods for 

details). After cell injection, the latent period is 9 days in the cMET-T1010I group, while 

the cMET-Y1253D and cMET-WT groups had longer latent periods (12 days). Control group 

showed the longest latent period (Figure 16A). The tumor size in cMET-T1010I and cMET-

Y1253D groups was larger than that in the cMET-WT and control groups (P < 0.05, 

respectively). Tumor size of the cMET-WT group was mildly larger than that of the control 

group (Figure 16A). On day 14, the mice were sacrificed. Xenograft tumors and all organs of 

each mouse were subjected to double-blind histopathological analysis by a veterinary 

pathologist. Tumor invasion and metastasis were assessed by H&E staining. All tumors from 
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the cMET-T1010I group showed invasion to adjacent tissues; 2/5 of the tumors from the 

Y1253D group showed mild invasion that was similar to the control group. Intriguingly, 3/5 

of the tumors from cMET-WT group exhibited marked invasion (Figure 16B), although tumor 

size was smaller than those of the cMET-Y1253D group. 

 
Figure 16. Effects of wild type cMET or its mutants on tumor xenograft formation and progression in 
hHGF transgenic mice 
Effects of wild type cMET or its mutants on tumor xenograft formation and progression in hHGF 
transgenic mice: A total of 1x107 HCC1954 derived cells were injected into the mammary fat pads of 
hHGF/ SCID transgenic females. Each group consisted of 5 mice. Tumor volume was calculated with 
the formula (V = lw2/2). Differences in tumor volume among groups at each time point were analyzed 
using ANOVA (A). On day 14, the mice were sacrificed.  Xenograft tumors and all the organs of each 
mouse were subjected to histopathological analysis by a veterinary pathologist. Tumor invasion to 
adjacent structures (black arrows) (B). 
 

Effect of the expression of cMET mutations or overexpression of wild type cMET 
on cell signaling in PIK3CA-mutated breast cancer cells: To evaluate the effects of cMET 

aberrations on cell signaling in breast cancer cells with the PIK3CA-H1047R mutation, we 

determined the expression and/or phosphorylation level of multiple molecules of the cMET 

and PI3K pathways with Western blotting (Figure 17).  

 

As expected, we observed the exogenous cMET expression in each cell line, except 

control cells. The expression level of exogenous wild type cMET was much higher than the 

levels of cMET-T1010I or cMET-Y1253D, with cMET-T1010I b e i n g  lower than cMET-

Y1253D. This is surprising given data from others that argues that T1010I stabilizes cMET. 

Unexpectedly, for as yet unknown reasons, the endogenous cMET level in 

HCC1954/cMET-Y1253D cells was very low. It is important to note that endogenous cMET 

levels are near the level of detection and that the apparent decrease may not be significant.  

 

Consistent with the findings in t h e  MCF-10A cell lines, the expression of cMET-

T1010I significantly increased phosphorylation of Stat3 with or without stimulation, suggesting 
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that Stat3 is constitutively active in T1010I cells. Interestingly Src also showed this pattern.  

Although the overexpression of wild type cMET in HCC1954 cells constitutively increased 

the phosphorylation of exogenous cMET, elevation of Stat3 phosphorylation was not 

constitutive, and was inducible with HGF instead. Further pSTAT3 was not detectable in the 

presence or absence of ligand in cells expressing Y1253D. Interesting, in HCC1954 cells 

expression of WT cMET did not significantly alter signal transduction to pMAPK. However, 

cMET T1010I appeared to increase the sensitivity of cells to FBS at least as indicated by 

pMAPK. Consistent with the unexpected lack fo phosphorylation of Y1253D in cells, basal and 

ligand induced pMAPK was markedly decreased in cells expressing Y1253D cMET. In 

contrast, expression of w i ld  t ype or  mutant  cMET did not significantly affect the 

PI3K/AKT pathway in HCC1954 cells. 

 

MODELS 
Cell Proliferation Assay 
Effects 

HCC1954/Tomato 
Vector Control 
HCC1954/cMET-WT High; significant increase P<0.001 vs Control 
HCC1954/cMET-T1010I Effect lower than cMET-WT  P<0.001 vs Control 
HCC1954/cMET-
Y1253D Highest; significant increase P<0.001 vs Control 

MODELS 
Mammary Acinar Morphogenesis 
Effects 

HCC1954/Tomato 
Vector Control 
HCC1954/cMET-WT Induced marked abnormal structures 
HCC1954/cMET-T1010I Effect similar to cMET-WT 
HCC1954/cMET-
Y1253D Effect similar to cMET-WT 

MODELS 
Clonogenic Assay to test Cell Survival 
Effects 

HCC1954/Tomato 
Vector Control 

HCC1954/cMET-WT Significant increase in colony formation; P<0.001 vs Control 
HCC1954/cMET-T1010I Effect similar to cMET-WT; P<0.001 vs Control 

HCC1954/cMET-
Y1253D 

Highest effect (more than cMET T1010I); P<0.001 vs cMET 
T1010I 

MODELS 
Cell Anchorage Independent Growth 
Effects 

HCC1954/Tomato 
Vector Control 

HCC1954/cMET-WT Significant increase in colony formation; P<0.0001 vs Control 
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HCC1954/cMET-T1010I Highest effect; P<0.0001 vs Control 

HCC1954/cMET-
Y1253D Significant increase in colony formation; P<0.0001 vs Control 

MODELS 
Cell Invasion 
Effects 

HCC1954/Tomato 
Vector Control 

HCC1954/cMET-WT Mildly increased cell invasion; P<0.01 vs Control and T1010I 
HCC1954/cMET-T1010I Highest effect; P<0.001 vs Control  

HCC1954/cMET-
Y1253D 

Significantly increased cell invasion; P<0.001 vs Control, T1010I 
and WT 

MODELS 
Tumor progression in hHGF transgenic mice 
Latent Period of tumor formation 

HCC1954/Tomato 
Vector longest latent period  
HCC1954/cMET-WT long latent period (12 days) 
HCC1954/cMET-T1010I shortest latent period (9days) 
HCC1954/cMET-
Y1253D long latent period (12 days) 
MODELS Tumor size 
HCC1954/Tomato 
Vector Control 
HCC1954/cMET-WT Mildly larger than Control; Insignificant 
HCC1954/cMET-T1010I Significantly larger than Control and cMET WT; P<0.05 
HCC1954/cMET-
Y1253D Significantly larger than Control and cMET WT; P<0.05 

MODELS Tumor Invasion 
HCC1954/Tomato 
Vector Control 
HCC1954/cMET-WT Marked invasion by 3/5th of tumors 
HCC1954/cMET-T1010I All tumors showed invasion 
HCC1954/cMET-
Y1253D Mild invasion by 2/5th tumors; insignificant 

 

Table 10. Summarizing the Effects of MET aberrations on PIK3CA mutant-HCC1954 cells 
Summarizing the effects of MET aberrations on PIK3CA mutant-HCC1954 cells, and tumor xenograft 
formation and progression in hHGF transgenic mice.  MET WT represents overexpression of Wild 
Type MET. 

 

Taken together, our data from both mammary epithelial cells and PIK3CA mutant 

breast cancer cells, in vitro and in vivo, suggested that cancer-associated cMET mutations or 

cMET overexpression alone, or acting coordinately with breast cancer associated PI3KCA 

mutations, promoted cell growth, survival and invasion similar to what would be expected of 
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oncogenes (Table 10). These findings led us to investigate if deregulation or mutations of 

cMET affect the response of PIK3CA mutant cells to PI3K-targeting drugs. 

 
Figure 17. Effect of wild type or mutant cMET on Cell Signaling in PIK3CA-mutated breast cancer cells 
The effect of wild type or mutant cMET on cell signaling in PIK3CA-mutated breast cancer cells: 
HCC1954 derived cells as indicated were starved overnight, followed by stimulation with HGF or FBS at 
indicated doses and time, respectively. Thereafter, the cell lysates were collected and loaded for 
Western blot with antibodies as indicated. GAPDH was used as a loading control. 
 

Expression of mutant cMET decreases sensitivity to PI3K inhibitor in PIK3CA-
mutated breast cancer cell: We determined whether HCC1954 cells expressing cMET 

mutants were more resistant to PI3K inhibitor than control or cMET-WT cells. After 72 hours 

of exposure to varying concentrations of GDC941 or GDC980 in low serum medium (2% 

FBS), cells expressing the cMET mutants (T1010I or Y1253D) had higher viability 

compared to controls, showing decreased sensitivity to GDC941 (GI50: 0.75 µM and 
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0.375µM respectively) (Figure 18A) and GDC980 (GI50: 0.375 µM and 0.125 µM, 

respectively (Figure 18B). 

 
Figure 18. Effects of wild type or mutant cMETs on cell response to PI3K inhibitors in PIK3CA-mutated 
breast cancer cells 
Effects of wild type or mutant cMETs on cell response to PI3K inhibitors in PIK3CA-mutated breast 
cancer cells: HCC1954 derived cells were seeded in 96-well plates (2,000 cells per well) in complete 
growth medium and were allowed to attach for 24 hours. The medium was changed to low serum 
medium (2% FBS). Cells were incubated overnight at 37oC, followed by the addition of serial dilutions of 
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drugs with variable combinations for 72 hours. Growth inhibition was determined using the CellTiter-
Blue and fluorescence was recorded at 560 Ex/590 Em. Each experiment was repeated at least three 
times. Results of cell viability were calculated on the basis of percentage change versus vehicle-treated 
control. A. The inhibition effect of GDC941 on HCC1954 derived cells (*, P < 0.05; **, P < 0.01; ***, P < 
0.001 vs vehicle) (a-d). B. The inhibition effect of GDC980 on HCC1954 derived cells breast cancer 
cells (*, P < 0.05; **, P < 0.01; ***, P < 0.001 vs vehicle) (a-d). 
 

Effects of targeting PIK3CA and c-MET on cell signaling: First we examined the 

specificity of targeting compounds. We treated HCC1954/cMET-T1010I, the most aggressive 

cell line among the cell lines used, with GDC941 (PI3K inhibitor), GDC980 (PI3K/mTor 

inhibitor), Onartuzumab (cMET monoclonal antibody) and ARQ 197 (a small-molecule 

inhibitor of cMET as a control of the cMET antibody), followed by stimulation with or without 

10% FBS or HGF. Phosphorylation and expression of molecules of cMET and PI3K 

pathways were evaluated with Western blot (Figure 19). Our data showed that Onartuzumab 

and ARQ197 inhibited phosphorylation of cMET specifically. GDC941 and GDC980 

inhibited the PI3K pathway, as indicated by decreased phosphorylation of AKT, mTOR and 

S6. Unexpectedly, GDC941 and GDC980 also decreased phosphorylation of cMET. We 

also noticed that FBS could be used as an inducer for the phosphorylation of the cMET 

pathway as well as the PI3K pathway, although HGF was more effective than FBS for 

inducing the phosphorylation of cMET. 

 

 
Figure 19. Effects of targeting cMET or PI3K on cell signaling in PIK3CA-mutated breast  cancer cell 
The effects of targeting cMET or PI3K on cell signaling in PIK3CA-mutated breast  cancer cells: 
Expressing mutant cMET-T1010I conferred HCC1954 cells with the highest survival and invasion ability 
among the cMET expression cells used in this study. We used this cell line to test the specificity and 
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activity of inhibitors of cMET or PI3K.  HCC1954/cMET-T1010I cells were starved overnight, followed by 
treatment with drugs as indicated for 6 hours and then stimulated with 10% FBS or HGF (40ng/ml) or 
left unstimulated (NS) respectively. And then cell lysates were collected and loaded for Western blot 
with antibodies, as indicated. GAPDH was used as a loading control.  
 

Combination of targeting cMET and PI3K, inhibits cell proliferation in three-
dimensional culture in cMET/PIK3CA double mutant mammary epithelial cells: To  

determine  whether  targeting  cMET  and/or  PI3K  could  reverse  cell  proliferation induced 

by cMET/PIK3CA double mutants, we treated MCF10A expressing cMET/PIK3CA double 

mutant cells with Onartuzumab and/or GDC941 and GDC980 using a three-dimensional 

culture system. The results exhibited that PI3K inhibitor (GDC941) (Figure 20 A-D) or 

PI3K/mTOR inhibitor (GDC980) (Figure 20 E-H) dose- dependently inhibited the cell growth 

in 3D culture. Onartuzumab (1 uM) alone mildly inhibited cell growth in 3D culture. 

Moreover, combination of Onartuzumab and GDC941 or GDC980 significantly increased the 

inhibitory effects (P< 0.05-0.001, respectively as indicated) (Figure 20). 
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Figure 20. Effects of combinations of PI3K inhibitors with cMET antibody, onartuzumab, or cMET 
inhibitor, EMD1214063, on Cell Proliferation 
Effects of combinations of PI3K inhibitors with cMET antibody, Onartuzumab, or cMET inhibitor, 
EMD1214063, on cell proliferation in matrigel: MCF10A derived cell lines were cultured on matrigel as 
described in Materials and Methods. Briefly, 4 x103 cells were resuspended in modified growth medium 
lacking EGF, supplemented with hHGF 40 ng/ml, 2.5 % horse serum, 2% growth factor decreased 
matrigel and variable drugs as indicated. Medium was exchanged every 3 days. E545K/T1010I, 
E545/Y1253D, H1047R/T1010I and H1047R/Y1253D double mutant cells were treated with GDC941, 
Onartuzumab, EMD1214063 or variable combinations (A-D), or they were treated with GDC980, 
Onartuzumab, EMD1214063 or variable combinations (E-H). Photographs (X40) of representative fields 
were taken on day 7 (a). The data are mean ± standard errors of triplicates, representative of two 
independent experiments (b) (***, P < 0.0001 vs vehicle; #, P < 0.05; ##, P < 0.01; ###, P < 0.001; ‡, P 
< 0.05; ‡‡, P < 0.01; ‡‡‡, P < 0.001, vs without Onartuzumab addition; †, P < 0.05; ††, P < 0.01; †††, P 
< 0.001 vs without EMD1214063 addition. 
 

Combination of targeting cMET and PI3K reverses the cell invasion ability 
induced by cMET/PIK3CA double mutant in mammary epithelial cells: Our data showed 

that the that the cMET/PIK3CA double mutation enhanced cell invasion compared to the 

PIK3CA mutation alone, especially the cMET T1010I mutation markedly induced cell 

invasion (Figure 12). To determine whether targeting PI3K using selective inhibitors 

(GDC941 and GDC980) and blocking cMET with a specific antibody (Onartuzumab) could 

reverse the phenotype, we treated the cMET-T1010I/PIK3CA-E545K expressing mammary 

epithelial cells (Figure 21) with PI3K inhibitor (GDC941) or PI3K/mTOR inhibitor (GDC980), 

which inhibited the cell invasion in a dose dependent manner in both cell lines. Treatment 

with Onartuzumab (1.5 µM) alone, mildly inhibited cell invasion. However, combination with 

GDC941 or GDC980 significantly increased the inhibitory effects (P<0.01-0.001, respectively 

as indicated) (Figure 21 A-B). We further verified the findings in HCC1954 cells expressing 

cMET-T1010I with the same methods, and the results were consistent (Figure 22 A-D). 
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Figure 21. Effects of combinations of PI3K inhibitors with cMET antibody, onartuzumab, or cmet 
inhibitor, EMD1214063, on Cell Invasion 
Effects of combinations of PI3K inhibitors with cMET antibody, Onartuzumab, or cMET inhibitor, 
EMD1214063, on cell invasion: Cell invasion was analyzed as explained in Materials and Methods. 
Stating briefly, MCF-10A derived E545K/T1010I cells were starved for 20 hours in serum-free DMEM 
F12 lacking EGF. A total of 1x105 cells were inoculated into the upper chamber, with fibronectin as 
inducer. Onartuzumab (1.5 µM) or EMD-1214063 (2.5 µM), alone or combined, with GDC941 (A) or 
GDC980 (B) was added to both the upper and lower chambers. To test the effect of Onartuzumab or its 
combinations, HGF (50 ng/ml) was also added. Invasive cells were photographed and counted in 10 
random fields (a). The data are mean ± standard errors of triplicates, representative of two independent 
experiments (***, P < 0.001 vs vehicle; ###, P<0.001; ‡, P < 0.05; ‡‡, P < 0.01; ‡‡‡, P < 0.001, vs 
without Onartuzumab addition; †, P<0.05; ††, P<0.01; †††, P < 0.001 vs without EMD1214063 addition. 
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Combination of the cMET inhibitor, EMD 1214063, with PI3K inhibitors, 
reverses the phenotype induced by cMET/PIK3CA double mutation: To further verify the 

findings that targeting cMET and PI3K synergistically inhibited cell growth on 3D or cell 

invasion, we used EMD 1214063, a cMET inhibitor, instead of the cMET antibody. We 

found that EMD 1214063 (2.5 µM) alone mildly inhibited cell growth on 3D culture. 

However, combination with GDC941 or GDC980 significantly enhanced this inhibitory effect 

(P < 0.05-0.001, respectively as indicated) (Figure 21A- B). Consistently, EMD 1214063 

(2.5 µM) alone mildly inhibited the cell invasion of PIK3CA-mutated breast cancer cells 

expressing cMET mutants, while combination with GDC941 or GDC980 significantly inhibited 

the cell invasion (P < 0.05-0.001, respectively as indicated) (Figure 22A-D). 
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Figure 22. Effects of combinations of PI3K inhibitors with cMET antibody, onartuzumab, or cMET 
inhibitor, EMD1214063, on Cell Invasion of HCC1954 cells 
Effects of combinations of PI3K inhibitors with cMET antibody, Onartuzumab, or cMET inhibitor, 
EMD1214063, on cell invasion of PIK3CA-mutated breast cancer cells expressing cMET mutants: 
HCC1954 derived cells expressing mutant cMETs were used to verify the effect of Onartuzumab or 
EMD-1214063, alone or in combination with PI3K inhibitors, on cell invasion using the same method 
that was used in Figure 16.  HCC1954/T1010I or HCC1954/Y1253D cells treated with GDC941 and 
variable combinations (A, B). HCC1954/T1010I or HCC1954/Y1253D cells treated with GDC980 and 
variable combinations (C, D). Invasive cells were photographed and counted in 10 random fields (a). 
The data are mean ± standard errors of triplicates, representative of two independent experiments  (***, 
P < 0.001 vs vehicle; ###, P < 0.001; ‡, P < 0.05; ‡‡, P < 0.01; ‡‡‡, P < 0.001, vs without Onartuzumab 
addition; †, P < 0.05; ††, P< 0.01; †††, P < 0.001 vs without EMD1214063 addition. 
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MODELS 
Sensitivity to 
GDC941 

Sensitiivity to 
GDC980 

 

HCC1954/Tomato 
Vector 

sensitivite to 0.5μM ; 
P<0.001 vs vehicle 

sensitivite to 
0.125μM ; P<0.001 
vs vehicle 

HCC1954/cMET-WT 
sensitivite to 0.5μM ; 
P<0.001 vs vehicle 

sensitivite to 
0.125μM ; P<0.001 
vs vehicle 

HCC1954/cMET-
T1010I 

decreased sensitivity 
(GI50: 0.75μM) 

decreased sensitivity 
(GI50: 0.375μM) 

HCC1954/cMET-
Y1253D 

decreased sensitivity 
(GI50: 0.375μM) 

decreased sensitivity 
(GI50: 0.125μM) 

Models Drug Classification Drug 

Effect of the drugs on the 
cell invasion of 
HCC1954/T1010I cell line 

HCC1954/T1010I 

Control Vehicle Control 

MET Inhibitor 
Onartuzumab 
(1.5μM)  reduced invasiveness *** 

PI3K Inhibitor GDC941 (0.25 μM) reduced invasiveness *** 

PI3K/mTOR Inhibitor GDC980 (0.125 μM)  reduced invasiveness *** 

MET Inhibitor 
EMD1214063 (2.5 
μM) reduced invasiveness *** 

PI3K Inhibitor + MET 
Inhibitor 

GDC941 (0.25 μM) 
and Onartuzumab 
(1.5μM) 

More effective compared to 
single agent treatment ### 

PI3K Inhibitor + MET 
Inhibitor 

GDC941 (0.25 μM)  
and EMD  (2.5 μM) 

More effective compared to 
single agent treatment ### 

PI3K Inhibitor + MET 
Inhibitor 

GDC980 (0.125 μM) 
and Onartuzumab 
(1.5μM) 

More effective compared to 
single agent treatment ### 

PI3K Inhibitor + MET 
Inhibitor 

GDC980 (0.125 μM) 
and EMD  (2.5 μM) 

More effective compared to 
single agent treatment; # 

Models Drug Classification Drug 

Effect of the drugs on the 
cell invasion of 
HCC1954/Y1253D cell line 

HCC1954/Y1253D 

Control Vehicle Control 

MET Inhibitor 
Onartuzumab 
(1.5μM)  reduced invasiveness *** 

PI3K Inhibitor GDC941 (0.25 μM) reduced invasiveness *** 

PI3K/mTOR Inhibitor GDC980 (0.125 μM)  reduced invasiveness *** 

MET  Inhibitor 
EMD1214063 (2.5 
μM) reduced invasiveness *** 

PI3K Inhibitor + MET 
Inhibitor 

GDC941 (0.25 μM) 
and Onartuzumab 
(1.5μM) 

More effective compared to 
single agent treatment ### 

PI3K Inhibitor + MET 
Inhibitor 

GDC941 (0.25 μM)  
and EMD  (2.5 μM) 

More effective compared to 
single agent treatment ### 

PI3K Inhibitor + MET 
Inhibitor 

GDC980 (0.125 μM) 
and Onartuzumab 

More effective compared to 
single agent treatment ### 
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(1.5μM) 

PI3K Inhibitor + MET 
Inhibitor 

GDC980 (0.125 μM) 
and EMD  (2.5 μM) 

More effective compared to 
single agent treatment ### 

*** P<0.001 vs vehicle 
### P<0.001 vs single agent 
# P<0.001 vs without GDC941; P<0.05 vs without EMD 

 

Table 11. Summarizing the Effects of selective PI3K pathway inhibitors and MET inhibitors on MET 
aberrant HCC1954 cells 
Summarizing the effects of selective PI3K pathway inhibitors and MET inhibitors on MET aberrant 
HCC1954 cells. MET WT represents overexpression of Wild Type MET. 

 

Models  Drug Classification  Drug  

Effect of drugs on the 
cell invasion ability of 
MCF10A cells with 
E545K/T1010I 

E545K/T1010I 

Control Vehicle Control 

MET Inhibitor Onartuzumab (1.5 μM) 
mildly inhibited cell 
invasion ** 

PI3K Inhibitor GDC941 (0.25 μM) 
mildly inhibited cell 
invasion ** 

PI3K/mTOR Inhibitor GDC980 (0.125 μM) 
mildly inhibited cell 
invasion ** 

MET  Inhibitor EMD1214063 (2.5 μM) 
mildly inhibited cell 
invasion ** 

PI3K Inhibitor + MET 
Inhibitor 

GDC941 (0.25 μM) and 
Onartuzumab (1.5 μM) 

increased inhibition 
compared to single agent 
### 

PI3K Inhibitor + MET 
Inhibitor 

GDC941 (0.25 μM)  and 
EMD  (2.5 μM) 

increased inhibition 
compared to single agent 
### 

PI3K Inhibitor + MET 
Inhibitor 

GDC980 (0.125 μM) and 
Onartuzumab (1.5 μM) 

increased inhibition 
compared to single agent 
# 

PI3K Inhibitor + MET 
Inhibitor 

GDC980 (0.125 μM) and 
EMD  (2.5 μM) 

increased inhibition 
compared to single agent 
### 

 ** P<0.001 vs vehicle 
### P<0.001 vs single agent 
# P<0.001 vs Onartuzumab, P<0.05 vs GDC980 

Models Drug Classification Drug 

Growth inhibitory effect 
of the drugs on 
MCF10A models grown 
in a 3D culture 

E545K/T1010I 
Control Vehicle Control 
MET Inhibitor Onartuzumab (1 μM) inhibited cell growth *** 
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PI3K Inhibitor GDC941 (0.25 μM) inhibited cell growth *** 
PI3K/mTOR Inhibitor GDC980 (0.125 μM) inhibited cell growth *** 
MET  Inhibitor EMD1214063 (5 μM) inhibited cell growth *** 

PI3K Inhibitor + MET 
Inhibitor 

GDC941 (0.25 μM) and 
Onartuzumab (1 μM) 

More effective compared 
to single agent treatment 
### 

PI3K Inhibitor + MET 
Inhibitor 

GDC941 (0.25 μM)  and 
EMD  (5 μM) 

More effective compared 
to single agent treatment 
### 

PI3K Inhibitor + MET 
Inhibitor 

GDC980 (0.125 μM) and 
Onartuzumab (1 μM) 

More effective compared 
to single agent treatment 
### 

PI3K Inhibitor + MET 
Inhibitor 

GDC980 (0.125 μM) and 
EMD  (5 μM) 

More effective compared 
to single agent treatment 
### 

E545K/Y1253D 

Control Vehicle Control 
MET Inhibitor Onartuzumab (1 μM) inhibited cell growth *** 
PI3K Inhibitor GDC941 (0.5 μM) inhibited cell growth *** 
PI3K/mTOR Inhibitor GDC980 (0.125 μM) inhibited cell growth *** 
MET  Inhibitor EMD1214063 (5 μM) inhibited cell growth *** 

PI3K Inhibitor + MET 
Inhibitor 

GDC941 (0.25 μM) and 
Onartuzumab (1 μM) 

More effective compared 
to single agent treatment 
### 

PI3K Inhibitor + MET 
Inhibitor 

GDC941 (0.25 μM)  and 
EMD  (5 μM) 

More effective compared 
to single agent treatment 
### 

PI3K Inhibitor + MET 
Inhibitor 

GDC980 (0.125 μM) and 
Onartuzumab (1 μM) 

More effective compared 
to single agent treatment 
### 

PI3K Inhibitor + MET 
Inhibitor 

GDC980 (0.125 μM) and 
EMD  (5 μM) 

More effective compared 
to single agent treatment 
### 

H1047R/T1010I 

Control Vehicle Control 
MET Inhibitor Onartuzumab (1 μM) inhibited cell growth *** 
PI3K Inhibitor GDC941 (0.5 μM) inhibited cell growth *** 
PI3K/mTOR Inhibitor GDC980 (0.125 μM) inhibited cell growth *** 
MET  Inhibitor EMD1214063 (5 μM) inhibited cell growth *** 

PI3K Inhibitor + MET 
Inhibitor 

GDC941 (0.25 μM) and 
Onartuzumab (1 μM) 

More effective compared 
to single agent treatment 
### 

PI3K Inhibitor + MET 
Inhibitor 

GDC941 (0.25 μM)  and 
EMD  (5 μM) 

More effective compared 
to single agent treatment 
### 

PI3K Inhibitor + MET 
Inhibitor 

GDC980 (0.125 μM) and 
Onartuzumab (1 μM) 

More effective compared 
to single agent treatment 
### 

PI3K Inhibitor + MET 
Inhibitor 

GDC980 (0.125 μM) and 
EMD  (5 μM) 

More effective compared 
to single agent treatment 
# 

H1047R/Y1253D 
Control Vehicle Control 
MET Inhibitor Onartuzumab (1 μM) inhibited cell growth *** 
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PI3K Inhibitor GDC941 (0.25 μM) inhibited cell growth *** 
PI3K/mTOR Inhibitor GDC980 (0.125 μM) inhibited cell growth *** 
MET  Inhibitor EMD1214063 (5 μM) inhibited cell growth *** 

PI3K Inhibitor + MET 
Inhibitor 

GDC941 (0.25 μM) and 
Onartuzumab (1 μM) 

More effective compared 
to single agent treatment 
### 

PI3K Inhibitor + MET 
Inhibitor 

GDC941 (0.25 μM)  and 
EMD  (5 μM) 

More effective compared 
to single agent treatment 
## 

PI3K Inhibitor + MET 
Inhibitor 

GDC980 (0.125 μM) and 
Onartuzumab (1 μM) 

More effective compared 
to single agent treatment 
### 

PI3K Inhibitor + MET 
Inhibitor 

GDC980 (0.125 μM) and 
EMD  (5 μM) 

More effective compared 
to single agent treatment 
### 

*** P<0.0001 vs vehicle 
### P<0.001 vs single agent  
# P<0.05 vs only EMD; P<0.001 vs only GDC 980 
## P<0.01 vs only EMD; P<0.001 vs only GDC 941 

 

Table 12. Summarizing the Effects of selective PI3K pathway inhibitors and MET inhibitors on MET 
and/or  PIK3CA  aberrant MCF -10Acells 
Summarizing the effects of selective PI3K pathway inhibitors and MET inhibitors on MET and/or  
PIK3CA  aberrant MCF -10Acells.  

 

DISCUSSION 
 

More than 25% of breast cancers harbor somatic mutations in the PIK3CA-encoded 

p110α catalytic subunit of PI3K.(125-128) There are several reports of high frequency PIK3CA 

missense mutations observed at the amino acid residues E545K and H1047R. These 

mutations occur in the helical region (E545K and E542K) or the kinase domain (H1047R) of 

p110α; H1047R is the most common mutation (>50% of cases).(129) Several experimental 

models have demonstrated that these tumor-associated PIK3CA mutations lead to constitutive 

p110α activation and oncogenic transformation,(129-133) making the PIK3CA oncogene a 

target for cancer therapy.  Zhao and colleagues have reported that the helical and kinase 

domain mutations in PIK3CA trigger gain of function through different mechanisms.(141) They 

carried out a genetic and biochemical analysis of the hot-spot mutations E545K and H1047R, 

and have shown that gain of function induced by E545K is independent of binding to p85 but 

requires interaction with RAS-GTP.(141) In contrast, the kinase domain mutation H1047R is 

active in the absence of RAS-GTP binding but is highly dependent on the interaction with p85. 

Additionally, their data and conclusions are in broad agreement with the crystal structure 
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publication of the p110α–p85 complex.(142) Considering the fact that helical and kinase 

domain mutations of PIK3CA alter function through different mechanisms, we decided to 

evaluate both E545K as well as H1047R in our study.  

 

High levels of HGF and/or MET correlate with poor prognosis in breast cancers, and 

MET activation is caused by the presence of activating mutations. Missense germ-line 

mutations in the tyrosine kinase (TK) were initially described in patients with hereditary 

papillary renal carcinoma.(44) Sporadic and germline mutations have been detected in 

multiple solid tumors. However, only some of these mutant alleles have been proven to cause 

malignant transformation as a result of constitutive receptor activation posing a potential for 

therapeutic targeting or altering response to therapy targeting other molecules.(45) Oncogenic 

somatic and germline mutations have been found to be predominantly located in the non-

kinase domain, mainly in regions encoding the extracellular semaphorin domain (E168D, 

L229F, S323G, and N375S) and the intracellular juxtamembrane domain (R988C, T1010I, 

S1058P, and exon-14 deletions).(45) The juxtamembrane domain regulates ligand-dependent 

MET internalization by Y1003 phosphorylation in response to HGF binding leading to MET 

ubiquitination and degradation(33) and when a mutation/SNP occurs, it can result in MET 

accumulation at the cell surface and persistent HGF-stimulation leading to tumorigenesis.(46) 

Transgenic expression of the MET receptor in mammary epithelium was sufficient to induce 

tumors with features of basal breast cancer,(59) and this study investigates the malignant 

transforming role of MET T1010I and Y1253D, and MET amplification in breast cancers.  

 
Multiplexed mutational analysis of over 1000 primary untreated breast cancers 

completed at our institution demonstrated that 16% of breast cancers with activated PIK3CA 

mutations (22% of all breast cancers) exhibited co-mutations/SNPs in MET suggesting 

concurrent selection of PI3K and MET pathway aberrations. Thus, 4-5% of breast cancer 

patients (8,000-10,000 new patients a year in the US) are likely to demonstrate concurrent 

mutations. However, when PI3K pathway aberrations (PIK3CA and AKT 

mutation/amplification, PTEN and INPP4B loss) and MET aberrations (MET protein and RNA 

overexpression, and gene amplification) were assessed, our analysis indicated that at least 

10% of breast cancers (20,000 cases per year) exhibit concurrent aberrations. Further, our 

data suggests that the incidence of PI3K and MET pathway aberrations, and particularly 

concurrent aberrations, varies by breast cancer subtype. MET amplification or mutation may 

be selected by PI3K pathway targeted therapy or vice versa. The frequency of MET 

aberrations and PI3K pathway aberrations in patients entering trials (i.e., patients with 
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metastatic disease that have PI3K pathway or MET receptor aberrations) is unknown. It is thus 

critical to ascertain the biological role of concurrent aberrations in PIK3CA and MET and their 

response to selected therapeutics targeting each pathway in breast cancer.  

 

The purpose of this study was to determine the effect of MET mutations/SNPs (T1010I 

and Y1253D) and MET overexpression, on the activity of PIK3CA mutations (E545K and 

H1047R) in mammary epithelial cells (MCF 10A) and breast cancer cells (HCC1954).  

 

As summarized on table 9, we found that cell proliferation and cell survival was 

enhanced in MCF 10AE545K or MCF 10AH1047R cells that overexpressed WT (wild type) MET or 

expressed MET T1010I or MET Y1253D, when compared to the MCF 10AE545K or MCF 

10AH1047R cells that lacked exogenous MET expression (P< 0.001).  Assays determining the 

effect of these co-aberrations on the morphology of mammary epithelial cells showed that, 

MCF 10AE545K & Y1253D, MCF 10AE545K & T1010I, and MCF 10AH1047R & T1010I cells formed markedly 

abnormal structures at an early stage. The cell proliferation assay, colony formation assay and 

the morphogenesis assay suggest a possible interaction between aberrant PIK3CA and MET, 

as the co-aberrant cells exhibit increased proliferation, cell survival and form markedly 

abnormal structures, respectively. We also performed in vitro invasion assays using MCF 10A 

cells and showed that the PIK3CA mutations (E545K, H1047R) enhanced cell invasion. 

However, MET T1010I along with the PIK3CA mutations significantly increased cell 

invasiveness (P< 0.001). The presence of MET Y1253D also increased cell invasiveness, 

albeit with lesser intensity when compared to MET T1010I (P<0.001).  The two MET 

aberrations, Y1253D and T1010I, seem to be having different effects on breast epithelial cells, 

wherein, the overexpression of MET wild type alone did not influence cell invasion. We 

speculate that the T1010I and Y1253D aberrations, located on different exons, could be 

displaying their effects through different mechanisms. We also note here that the effects of 

MET-T1010I do not require the presence of a PIK3CA mutant. However, there seems to be 

some interaction between MET-Y1253D and the PIK3CA mutants, as the presence of both 

these aberrations leads to significantly increased cell invasion.  

 

A recent study by Meyer and colleagues revealed that expression of the PIK3CA-

H1047R mutant in mammary epithelial cells is sufficient to induce tumor formation in 

transgenic mice.(143, 144) The authors postulate that PIK3CA-H1047R may (a) transform 

multi-potent progenitor cells to allow both luminal and basal differentiation, (b) induce de-

differentiation of luminal cells to multi-potent progenitors, which then give rise to both lineages, 
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or (c) do both.(143, 144)  Isakoff et al. have reported the ability of the two PIK3CA mutations, 

E545K and H1047R, to transform the MCF-10A cells by inducing anchorage-independent 

proliferation in soft agar, growth factor-independent proliferation on monolayer cell culture and 

abnormal mammary acinar morphogenesis in three-dimensional basement membrane 

cultures.(131) Our study is unique for showing that, co-existence of the MET aberrations (WT 

overexpression or the expression of the mutations T1010I/Y1253D) with the PIK3CA 

mutations enhances the oncogenic effects of the PIK3CA mutations in the MCF 10A cells. 

Given the high frequency of overlapping aberrations in cancers, it is pertinent to evaluate the 

effects of co-aberrations in breast cancers. Studies have drawn an association between 

ERBB2 overexpression and PIK3CA mutation in human breast tumors.(145) However, this is 

the first study to report the effects of PIK3CA and MET co-aberrations in breast 

epithelial/cancer cells. An MMTV-driven, PIK3CA-H1047R transgenic mouse model by Liu et 

al., reports MET amplification in recurrent mammary tumors (after PIK3CA inactivation)(60). 

We have gone further to establish and understand the synergistic effects of the MET and 

PIK3CA co-aberrations in breast epithelial as well as breast cancer cells. Our results suggest 

that MET aberrations act in concert with PIK3CA mutations to render enhanced tumorigenic 

properties in mammary epithelial cells. 

 

HCC1954 is a breast cancer cell line with the PIK3CAH1047R mutation. Overexpression 

of WT MET or expression of the MET mutants (T1010I/ Y1253D) in these cells significantly 

increased (P<0.001; control cells: HCC1954 empty vector) cell proliferation and colony formation, 

in addition to inducing abnormal morphological structures. The presence of these MET 

aberrations in HCC1954 cells also lead to colony formation in soft agar (P<0.0001). The 

inability of the control cells (HCC1954 empty vector) to form colonies under similar conditions 

reflects that, the introduction of MET aberrations in these cells helps in their anchorage-

independent growth. The HCC1954T1010I and HCC1954Y1253D cells also demonstrated marked 

invasiveness, much like the MCF 10A cells, where T1010I induced maximum cell invasiveness 

(Table 10).   

 

In the past years, a number of studies have reported MET-receptor overexpression in 

breast cancer cells(146), a BRCA1-p53 breast cancer mouse model,(147) and tumor tissue 

from breast cancer patients.(37, 104, 105, 148, 149) We have contributed novel information by 

reporting the oncogenic role of MET overexpression in breast cancer cells, in cooperation with 

the PIK3CA-H1047R aberration. Ponzo and colleagues have illustrated that MMTV-driven-

MET mutant mouse models produce tumors resembling human basal breast cancer.(59) Their 
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study used mice that were transgenic for oncogenic variants of the MET receptor- M1248T, 

Y1003F/M1248T. Graveel et al. showed that MET M1248T, D1226N, and Y1228C knock-in 

lines, in the FVB/N background, developed a high incidence of mammary carcinomas with 

diverse histopathologies suggesting that activation of MET is able to initiate neoplasia in 

multiple mammary cell types and that MET mutations may uniquely influence cellular 

differentiation in the mammary gland during tumorigenic growth.(150) Thus, they advocate the 

need to assess other MET mutations. We here have assessed the oncogenic role of MET-

T1010I and MET-Y1253D. 

 

The T1010I SNP has been reported in hereditary renal papillary cancer, large-cell lung 

cancer cell line Hop-92 and in a patient with breast cancer.(53, 55, 151) Though previous 

reports suggest that T1010I might be a germline mutation and could have oncogenic 

properties, views on these findings are not consistent. Schmidt et al. showed that the T1010I 

mutation is a SNP and lacks the ability to transform NH3T3 cells.(55) Contrary to these results, 

our study demonstrates that T1010I has marked functional consequences in concert with the 

PIK3CA mutations to render or enhance oncogenic properties in mammary epithelial cells and 

breast cancer cells. Interestingly, our data showed a difference between the effects of the 

somatic MET mutation, Y1253D, and the possible SNP, T1010I, in both these cell lines. 

Y1253D had a significantly increased influence on cell proliferation and cell survival, when 

compared to wild type MET and MET-T1010I. On the other hand, the T1010I SNP induced 

maximum invasiveness in these cells when compared to wild type MET and Y1253D. We 

speculate that these aberrations (T1010I and Y1253D) located on different exons could be 

displaying their effects through different mechanisms. However, further experimentation is 

needed in order to elucidate this phenomenon.  

 

Having confirmed the role of these co-aberrations in transforming the mammary-

epithelial cells, we analyzed their effect on cell signaling. Many of the results were unexpected 

and suggest a much more complex interaction between the PI3K pathway and the MET 

pathway than previously described. Further the interactions with the mutant PIK3CA and the 

mutant MET constructs in each of the model systems studied could not be predicted from prior 

knowledge. Thus these models of coexpression of PIK3CA and MET mutants have the 

potential to provide new information on these important signaling pathways. 

 Intriguingly, overexpression of WT MET or T1010I in MCF 10AE545K or MCF 10AH1047R 

cells constitutively enhanced MET phosphorylation even without exogenous stimulation. It is 

pertinent to note that HGF stimulation abolished this phosphorylation of MET in MCF 10AE545K 
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or MCF 10AH1047R cells that expressed T1010I. This is completely unexpected and warrants 

further exploration.  Our cell signaling data consistently shows that the level of endogenous 

MET or exogenous MET-Flag decreases with increase in phosphorylated MET. In fact, it was 

difficult to detect total MET or MET-Flag in the presence of markedly increased 

phosphorylated MET. These findings are in sync with reports that have shown that MET is 

degraded after phosphorylation.(152) On HGF/SF stimulation, phosphorylated MET is able to 

recruit the E3 ubiquitin ligase casitas B-lineage lymphoma (CBL), promoting receptor 

ubiquitination.(152) This could also explain what happens in the cells expressing T1010I. We 

speculate that if exogenous MET isn’t being actively degraded, then this may free the 

machinery to degrade the wild type MET.   

 

Although, elevated MET and phospho-MET protein levels have been associated with 

poor outcome in human breast cancer, the role of the MET receptor tyrosine kinase in the 

induction and development of breast cancer is poorly understood.(144) Deregulation of the 

HGF-MET signaling axis has been reported in a number of human cancers, inclusive of breast 

cancers.(47) Several transgenic mouse models have highlighted the susceptibility of the 

mammary epithelium to be transformed by an enhanced MET/HGF signal.(59) Our findings 

show that coexistence of the PIK3CA mutations with MET-T1010I, in MCF 10A cells, 

constitutively enhances MET phosphorylation even without stimulation; and HGF is capable of 

abolishing this phosphorylation. Though we do not have an explanation as yet to this 

phenomenon, we think it would be worthwhile to explore it further and understand its 

significance in transforming the mammary epithelial cells.  

 

Meyer and colleagues demonstrated that WAP/MMTV driven PIK3CA-H1047R 

transgenic mouse models developed tumors that showed very low rates of apoptosis and 

higher levels of phosphorylated AKT than mammary tumors from another model (MMTV-

NeuNT), suggesting that PIK3CA-H1047R prevents cell death by increased PI3K/AKT 

pathway activation.(143) In another study, Liu et al., developed an MMTV driven PIK3CA-

H1047R transgenic mouse model and showed that transgene activation led to MET 

amplification and increased phospho-AKT levels in the mammary epithelial cells of these mice 

and formed mammary tumors of varying histologic subtypes.(60) We are the first to report that 

the presence of the T1010I mutation enhanced the levels of phospho-AKT induced by 

PIK3CA-E545K/H1047R in MCF 10AE545K or MCF 10AH1047R cells. Conceivably, T1010I could 

be enhancing the tumorigenic properties of the PIK3CA-mutant MCF 10A cells by increasing 

PI3K/AKT pathway activation.  
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Multiple reports have suggested that constitutively active Stat3 is an important aspect 

of a diverse group of malignancies.(153) Stat3 is constitutively activated in more than 50% of 

primary breast tumors and tumor-derived cell lines.(154) Numerous reports of p-Stat3 

overexpressing tumors and potent evidences of Stat3 targeted studies have provided a strong 

rationale for the development of selective Stat3 inhibitors.(155)  Consistent with these findings, 

the expression of MET-T1010I in HCC1954 cells significantly increased phosphorylation of 

Stat3 with or without stimulation, suggesting that Stat3 is constitutively active in these cells. 

However, in HCC1954WT MET cells, elevation of phospho-Stat3 was not constitutive, and was 

induced by HGF. This phenomenom can be explained by Src-dependent phosphorylation 

regulated by PI3K signaling.  Previous studies of EGFR activation by G protein-coupled 

receptors demonstrated that the TNF-alpha converting enzyme (TACE), a disintegrin and 

metalloproteinse-17, undergoes a Src-dependent phosphorylation that regulates the release of 

the EGFR ligand amphiregulin. Further investigation showed the PI3K as the intermediate 

between c-Src and TACE. (156)  

 

To summarize (Table 10), the presence of aberrations in PIK3CA and/or MET 

promotes cell proliferation, cell survival, cell invasiveness, and abnormal morphological 

structures in MCF 10A cells and HCC1954 cells. In some assays, the co-aberrations 

significantly increased the oncogenic properties in these cell lines, while in others a single 

aberration alone was enough to contribute to the observed effects. These findings led us to 

investigate the sensitivity of the breast epithelial/cancer cells (with PIK3CA and MET 

aberrations) to selective PI3K pathway and MET receptor inhibitors, when given alone or in 

combination. We used the following drugs to generate our in vitro pathway targeting data: 

GDC941 (PI3K inhibitor), GDC980 (PI3K/mTOR inhibitor), onartuzumab (Met-MAbTM) 

(monoclonal antibody), and EMD1214063 (MET tyrosine kinase inhibitor).  

 

Amplified MET signaling promotes cancer cell survival by activating both the 

PI3K/Akt/mTORC1 and the Ras/MEK/ERK pathways.(157) In a recent report by Donev et al., 

an HGF-stimulated, gefitinib (EGFR inhibitor) resistant, xenograft model for lung cancer was 

shown to be resistant to PI103 (a dual inhibitor of class I PI3K and mTORC1) alone but was 

highly sensitive to combined treatment with PI103 and gefitinib.(62) Their results suggest that 

enhanced MET receptor signaling, following HGF treatment, in lung cancer cells results in 

resistance to the inhibition of the PI3K/Akt/mTORC1 pathway by PI103.(62) Yuen et al. have 

shown that MET amplification in HCC827-GR5 cells (lung cancer cell line) generates a 
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negative-feedback loop from the PI3K/Akt/mTORC1 pathway to the Ras/MEK/ERK pathway, 

and that combined inhibition of these pathways, by PI103 and PD184352 (a specific MEK1/2 

inhibitor), synergistically induces the apoptotic pathway in these cells.(158) Their results 

suggest that, MET amplification and signaling may be a biomarker for determining the 

sensitivity of lung cancers to PI3K/Akt/mTORC1 inhibitors, and that a combinatorial inhibition 

of these pathways will be more effective in lung cancers with MET amplification. As a corollary, 

we investigated the effect of MET co-aberrations on the response of PIK3CA mutant-breast 

epithelial/cancer cells to the PI3K inhibitors.  

 

We tested the growth inhibitory effect of the PI3K and MET targeting drugs on MCF 

10A cells (with co-aberrations in PIK3CA and MET), grown in a 3D culture. Cells treated with 

onartuzumab (1 µM) showed slight growth inhibition in 3D culture. However, the addition of a 

PI3K inhibitor [GDC941 (0.25 µM) or GDC980 (0.125 µM)], to the onartuzumab treatment, 

significantly increased the growth inhibitory effect in these cells (Figure 14 A-H; P< 0.05-0.001, 

respectively). To prove the converse, we treated these double mutant MCF 10A cells with the 

PI3K inhibitors alone [GDC941 (0.25 µM) or GDC980 (0.125 µM)], and found that the growth 

inhibition significantly increased with the addition of the MET inhibitor EMD1214063 (2.5 µM), 

[PI3K inhibitor vs. (PI3K inhibitor with MET inhibitor); P<0.0001]. These drugs had similar 

inhibitory effects on the invasiveness of MCF 10A E545K & T1010I, HCC 1954 T1010I and HCC 1954 

Y1253D cells. 1.5 µM of onartuzumab slightly reduced the invasiveness of the above mentioned 

cells. However, the addition of a PI3K inhibitor [GDC941 (0.25 µM) or GDC980 (0.125 µM)], to 

the onartuzumab treatment, significantly reduced the invasiveness of these cells [onartuzumab 

vs (onartuzumab with PI3K inhibitor) P< 0.001]. To prove the converse, we treated these cells 

with the PI3K inhibitor alone [GDC941 (0.25 µM) or GDC980 (0.125 µM)], and found that the 

cell invasiveness significantly reduced with the addition of the MET inhibitor EMD1214063 (2.5 

µM), [PI3K inhibitor vs. (PI3K inhibitor with MET inhibitor); P<0.0001] (Tables 11 and 12). 

 

Our results suggest that concurrent aberrations in PIK3CA and MET render mammary 

epithelial cells and breast cancer cells resistant to therapies targeting each individual pathway 

(PI3K and MET signaling pathway), and that combination therapy targeting both these 

pathways provides evidence for improved treatment efficacy. Unexpectedly, our cell signaling 

data showed that HCC 1954T1010I cells (the most aggressive cells among our cell lines) treated 

with GDC941 or GDC980 led to decreased phosphorylation of MET. This suggests that there 

could be a cross-talk between the PI3K and the MET pathway. This crosstalk is supported by 

evidence presented by Maulik and colleagues, who have reported that HGF-stimulated 



83 
 

activation of the MET pathway targets the PI3K pathway via GAB2 in small cell lung cancer 

cells lines (SCLC).(159)  

 

Gene amplification and protein over-expression of MET contribute towards EGFR 

inhibitor resistance, both in NSCLC cell lines and in patients.(43) Engelman et al. have found 

that MET amplification causes gefitinib resistance by driving ERBB3 (HER3)–dependent 

activation of PI3K, a pathway thought to be specific to EGFR/ERBB family receptors.(43) 

Thus, they propose that MET amplification may promote drug resistance in other ERBB-driven 

cancers as well.(43) We here have shown that the presence of MET amplification or MET 

mutations in PIK3CA mutant breast epithelial/cancer cells contributes to PI3K inhibitor 

resistance, and that therapy targeting both these pathways helps circumvent this resistance.  

 

Muellner et al. identified a novel mechanism of resistance to PI3K inhibitors in breast 

cancer cell lines by activating NOTCH signaling and induction of c-MYC.(134) In other words, 

activated Notch signaling overrode the dependency of cells on PI3K pathway for 

proliferation.(134) Preliminary data presented on a public peer-reviewed grant application 

claims that the authors have demonstrated the ability of the HGF-MET signaling to preserve 

Notch expression/activation in breast cancer cells, which protects the cells from GSI (Gamma 

secretase inhibitors, blocks Notch activation)-induced death.(160) They postulate a new 

signaling mechanism linking HGF/c-Met and Notch with respect to cell survival.(160) In 

addition, they have shown that HGF promotes the expression of Notch ligands on breast 

cancer cells that activate Notch on adjacent endothelial cells, to promote angiogenesis.(160) 

The Muellner et al. report and the preliminary studies reported in the application, together, help 

us to postulate that the HGF-MET signaling preserves Notch activation, which in turn 

contributes to PI3K inhibitor resistance in breast cancer cells.  

 

Additionally, Yuen et al. have shown that MET amplification in a lung cancer cell line 

generates a negative-feedback loop from the PI3K/Akt/mTORC1 pathway to the 

Ras/MEK/ERK pathway, resulting in PI3K inhibitor resistance.(158) It is conceivable that the 

Ras/MEK/ERK pathway could mediate the crosstalk between the MET and the PI3K pathway 

in MET/PIK3CA co-aberrant breast cancer cells, however, this phenomenon remains to be 

studied.  

 

Our cell signaling data on the mammary epithelial cells and the breast cancer cells 

provide us clues to the mechanisms associated with the effects of the PIK3CA and MET co-



84 
 

aberrations, but it is pertinent to perform experiments that provide a holistic picture. In order to 

tease apart the signaling pathways involved, and to assist establishing mechanistic 

explanations, we are currently performing an RPPA analysis. Recent data from our laboratory 

has demonstrated significant correlations between RPPA and IHC in snap frozen primary 

breast tumors and has established reliability of RPPA in functional proteomic “fingerprinting”. 

Compared to IHC or ELISA, RPPA is more sensitive, reduces variability and avoids observer 

dependency(106). Using RPPA, we wish to comprehensively analyze the signals induced 

during the crosstalk between the MET and PI3K pathway. As mentioned above, we suspect 

the role of other pathways such as Notch and Ras/MEK/ERK to mediate this crosstalk. An 

RPPA analysis would assist elucidating these aspects.  

 

In order to study the effects of these co-aberrations in an in vivo environment, we 

carried out the initial experiments by establishing tumor xenograft models in transgenic mice, 

hHGF Tg SCID females,(139) using HCC954WT MET, HCC954T1010I, HCC954Y1253D, and 

HCC954Td vector cells (Figure 16). Cells with the T1010I and Y1253D mutations displayed 

enlarged tumors compared to the controls; moreover, all the tumors from the T1010I group 

were markedly invasive. These initial results corroborate with our in vitro findings and help 

strengthen our hypothesis. 

 

Currently, we are in the process of developing a tetracycline dependent transgenic 

mouse model with concurrent aberrations in PIK3CA and MET. With the help of this model, in 

an in vivo environment, we intend to understand the effects of the co-aberrations in the 

pathogenesis of breast cancer and also assess the effectiveness of the proposed MET/PI3K 

combinatorial therapy.  

 

Most deaths due to breast cancer are attributable to drug resistance, where curative 

therapies cannot be identified. As tumors invariably acquire resistance to single agent 

treatments, the ability to anticipate PI3K inhibitor resistance has enormous clinical value.(134) 

Genetic and adaptive resistances are major obstacles in translating therapeutic efficacy into 

curative cancer therapy due to the evolutionary nature of cancer and the instable genome of 

some cancers. Hence, in order to improve cancer therapy, designing multidrug combinations 

to circumvent resistance, is of paramount importance. A thorough understanding of the ‘‘wiring 

diagram’’ of breast cancer cells and the mechanisms of resistance to PI3K targeted therapy, 

has the potential to benefit a significant number of patients with breast cancer. 
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We have proposed that tumors with concurrent aberrations in MET and PIK3CA could 

be more aggressive, and resistant to therapies targeting each pathway, and that combinatorial 

therapy could circumvent this resistance.  
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CHAPTER 5: DISCUSSION  
 

The PI3K/Akt/mTOR pathway is mutationally activated in more tumors than any other 

pathway making it a highly attractive therapeutic target. Indeed, more drugs are in or about to 

enter clinical trials targeting this pathway than any other. We and others have demonstrated 

that the PI3K pathway aberrations correlate with resistance to receptor targeted therapies.(23-

26) Thus, it is critically important to identify mechanisms of resistance to the PI3K pathway 

inhibitors.  

 

In vitro studies have shown that the HGF/MET signaling pathway can confer resistance 

against induction of apoptosis by various DNA damaging-agents (radiation and cytotoxic 

agents such as anthracyclines and taxanes).(113) Moreover, the pathway is also involved in 

promoting cell survival by enhancing DNA repair.(114)  Studies also suggest that 

overexpression of HGF and MET contributes to resistance, both inherent and treatment-

acquired, to endocrine therapy and to trastuzumab treatment.(13, 14) The anti-apoptotic 

prosurvival effect of the HGF/MET signaling pathway makes MET inhibition a potential 

therapeutic approach for breast cancers that are resistant and refractory to conventional 

therapies. Since MET participates in the acquisition of resistance, a subset of breast cancers 

may benefit from the combination of MET inhibitors as a first line therapy with traditional 

treatments. However, approaches to identify these patients are not available. Additionally, pre-

clinical data suggests that MET inhibition impairs tumor cell proliferation, survival, motility, and 

invasion as well as angiogenesis.(116, 117) Several small molecule MET kinase inhibitors 

and, antibodies against HGF and MET are in various stages of development as potential 

cancer therapies.(15-17) 

 

 In lung cancer cells, HGF induces EGFR-TKI resistance by activating MET with 

restoration of downstream MAPK-ERK1/2 and PI3K signaling. Indeed, transient blockade of 

the PI3K pathway with PI-103 (PI3K inhibitor) and gefitinib overcame HGF-mediated 

resistance to EGFR-TKIs by inducing apoptosis in EGFR mutant lung cancer cell lines.(62) 

The effects may be bidirectional, as in collaborative studies, we have shown that MET 

amplification can induce resistance to PI3K pathway inhibition in breast cancer murine model 

systems.(60) Thus, crosstalk between MET and the PI3K pathway may mediate cross-

resistance to targeted therapies.   
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In this thesis we tested the hypothesis that concurrent aberrations in PI3K and MET will 

render breast cancers resistant to therapies targeting each pathway, and that combination 

therapy targeting the PI3K and MET pathway will optimize therapy-effect by preventing the 

acquisition of resistance.  

 

In order to test this hypothesis, we first studied protein expression levels of total cMET 

and p-cMET by breast cancer subtype, and their correlation with patient outcome.(1) Both 

HGF expression and cMET expression have been shown to correlate with poor prognosis in 

breast cancer. These clinical outcomes are a consequence of multiple phenotypic properties 

that are imparted to tumor cells by HGF/cMET activation.  HGF/cMET signaling enhances the 

transition from pre-invasive DCIS to invasive carcinoma(37). The pathway also promotes cell 

motility and angiogenesis(109, 110). Hence, it was pertinent to analyze cMET and phospho-

cMET protein levels in breast cancer samples. Our RPPA analysis of 257 breast cancer 

samples demonstrated elevated levels of total cMET and p-cMET in nearly 70% and 50% of 

breast cancers, respectively. This finding is in line with previous reports that suggest the role 

of MET activation in the pathogenesis of cancer. Our results show that elevated levels of total 

cMET and p-cMET are seen across breast cancer subtypes. Survival analysis revealed that 

total cMET and p-cMET levels are significant prognostic factors for both RFS and OS. Analysis 

of survival outcomes among various tumor subtypes showed that high cMET levels is an 

indication of a poor prognosis for hormone receptor-positive breast cancer and high p-cMET 

levels correlate with poor prognosis for HER2-positive breast cancers.  HGF/cMET receptor 

signals synergize with HER2 and promote the breakdown of cell-cell junctions and enhance 

cell invasiveness (112). This cross talk is possibly responsible for the poor prognosis seen in 

HER2-positive breast cancers with high levels of p-cMET (RFS: P = 0.019 and OS: P = 0.014). 

To the best of our knowledge, this is the first study to investigate the significance of differential 

expression of cMET and p-cMET across breast cancer subtypes (HR-positive, HER2-positive 

and TNBC), and to report p-cMET levels as a prognostic factor in breast cancer.(1)  

 

We then looked at the frequency of MET and PIK3CA copy number abnormalities in 

breast cancer tumors, and their associations with patient outcome.(2) The hypothesis of this 

thesis is that concurrent aberrations in PI3K and MET alter the behavior of tumors and could 

change the response to therapy in breast cancer. Therefore, before analyzing the effect of the 

aberrations on tumorigenesis and targeted therapy, we evaluated patient tumor samples to 

determine the frequency of MET and PIK3CA copy number aberrations in breast cancer 

patients, and their associations with patient outcome. Molecular inversion probe arrays on 971 
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early breast cancer tumors suggested that 82 (8.44%) and 134 (13.8%) tumors had increased 

MET or PIK3CA copy number, respectively, and 25.6% of the tumors with a MET copy number 

elevation had a concurrent PIK3CA copy number elevation. Upon assessing breast cancer 

subtypes, 28% of triple receptor-negative breast cancers had a high PIK3CA copy number, 

suggesting that gene amplification in conjunction with loss of PTEN and INPP4B may 

contribute to the PI3K pathway activation observed in this subtype. This result is in line with a 

previous study, which reported that, of the 209 invasive breast tumors tested, 28 had PIK3CA 

amplification (13.4%).(123) As indicated above, 26% of the MET-amplified tumors also had 

PIK3CA amplification, which is a higher frequency than predicted by chance, thereby 

indicating that co-aberrations in the PI3K and MET pathways occur at a sufficient frequency to 

warrant extensive preclinical and mechanistic evaluation and to potentially warrant altered 

management approaches for patients. These findings were published prior to the recent TCGA 

publication(57) on human breast tumors. Our findings differ from the TCGA results, possibly 

due to the elimination of dbSNPs in their report. 

 

We also found that patients with either a MET or PIK3CA high copy number tended to 

have clinical features associated with a poor prognosis (larger tumor size, higher tumor grade, 

and hormone receptor negativity). Both MET and PIK3CA high copy numbers were more likely 

to occur in patients with triple negative disease (P=0.019 and <0.001, respectively). At a 

median follow-up of 7.4 years, there were 252 cases of disease recurrence. The 5-year RFS 

rates were 63.5%, and 83.1% for MET high copy number and MET normal/low copy number, 

respectively (P=0.06) and 73.1%, and 82.3% for PIK3CA high copy number and PIK3CA 

normal/low copy number, respectively (P=0.15). Patients with elevation in btoh MET and 

PIK3CA copy numbers had worse RFS than any other group (Refer Figure 5C).  

 

Our study concludes that co-amplification is frequent, and a high copy number of MET 

or PIK3CA is associated with poorer prognostic features and the triple receptor-negative 

disease. Two interesting findings need to be highlighted: the higher proportion of triple-

negative disease with this aberration, and the prognostic value of copy number in breast 

cancer, especially in patients with hormone receptor-positive disease. This is important as we 

continue to need new therapeutic targets in triple receptor-negative breast cancer.  In this 

population, MET receptor inhibition could prevent cell proliferation, survival and invasion. 

Conversely, in our search for mechanisms of resistance to endocrine therapy, MET signaling 

should also be investigated. MET amplification or mutation may be selected by PI3K pathway 

targeted therapy or vice versa. However, the frequency of MET mutations and PI3K pathway 
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aberrations in patients entering trials (i.e., patients with metastatic disease that have PI3K 

pathway or MET receptor aberrations) remains to be investigated. Thus, it is critical to 

ascertain the role of concurrent mutations in PIK3CA and MET, in the response of breast 

cancer cells to select therapeutics targeting the PI3K and MET pathway.  

 

Lastly, we studied the effects of co-mutations/SNPs in MET and MET overexpression 

found in breast cancers, on the activity of the two most common breast cancer PIK3CA 

mutations (E545K and H1047R) in vitro. The purpose of this section of our study is to 

determine the effect of MET SNPs/mutations (T1010I and Y1253D) and MET overexpression, 

on the activity of PIK3CA mutations (E545K and H1047R) in mammary epithelial cells (MCF 

10A) and breast cancer cells (HCC1954).  

 

We found that MET aberrations (T1010I or Y1253D) and/or PIK3CA mutations (E545K 

or H1047R) promote cell proliferation, cell survival, cell invasiveness, and abnormal 

morphological structures in MCF 10A cells and HCC1954 cells (Table 9 and Table 10). 

Several studies have shown the oncogenic effects of the PIK3CA mutations in breast epithelial 

and cancer cells. However, we are the first to show that the presence of MET aberrations 

enhances the tumorigenic effects induced by the PIK3CA mutations in breast epithelial and 

breast cancer cells.  

 

Interestingly, our data demonstrated a difference between the effects of the somatic 

MET mutation- Y1253D, and the possible germline MET mutation- T1010I, in both these cell 

lines. While Y1253D had the highest influence on cell proliferation and cell survival, the T1010I 

mutation induced maximum invasiveness in these cells. Though previous reports suggest that 

T1010I might be a germline mutation and could have oncogenic properties, views on these 

findings are not consistent. Schmidt et al. suggest that the T1010I is a SNP and showed that it 

lacks the ability to transform NH3T3 cells.(55) Contrary to these results, our study 

demonstrates this sequence change has differential effects from the WT construct particularly 

in concert with PIK3CA mutations to render or enhance oncogenic properties in mammary 

epithelial cells and breast cancer cells. 

 

After analyzing the effect of these co-aberrations on cell signaling in mammary 

epithelial/cancer cells, our results suggest that phosphorylation of: MET, Akt, Stat-3, cJun and 

Src, could play an important role in the oncogenic effects of the co-aberrations. Our findings 

show that coexistence of the PIK3CA mutations with MET-T1010I, in MCF 10A cells, 
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constitutively enhances MET phosphorylation even without addition of exogenous growth 

factors; and HGF is capable of abolishing this phosphorylation. Though we do not have an 

explanation as yet for the reason why HGF decreases phosphorylation, we think it would be 

worthwhile to explore it further and understand its role in transforming the mammary epithelial 

cells. It is possible that phosphorylation results in receptor degradation resulting in an apparent 

decrease in phosphorylated receptor. Previous reports have shown that PIK3CA-H1047R 

prevents cell death in mammary tumors by increased PI3K/AKT pathway activation, indicated 

by higher levels of phosphorylated AKT.(60, 143) Our study is unique in showing that the 

presence of the T1010I mutation enhanced the levels of phospho-AKT induced by PIK3CA-

E545K/H1047R in MCF10AE545K or MCF10AH1047R cells. Conceivably, T1010I could be 

enhancing the tumorigenic properties of the PIK3CA-mutant MCF10A cells by increasing 

PI3K/AKT pathway activation.  

 

Consistent with previous studies that have found constitutively active Stat3 in more 

than 50% of primary breast tumors and tumor-derived cell lines,(154) the expression of MET-

T1010I in HCC1954 cells significantly increased the phosphorylation of Stat3 with or without 

exogenous ligand, suggesting that Stat3 is constitutively activate in these cells. 

 

In a recent report, Donev and colleagues demonstrated that, enhanced MET receptor 

signaling following HGF treatment in lung cancer cells results in resistance to the inhibition of 

the PI3K/Akt/mTORC1 pathway by PI103 (a dual inhibitor of class I PI3K and mTORC1), and 

that combined treatment with PI103 and gefitinib (EGFR inhibitor) overcame this 

resistance.(62) Since enhanced HGF-MET signaling is associated with the resistance of lung 

cancer cells to PI3K inhibitors, we investigated the effect of MET co-aberrations on the 

response of PIK3CA mutant-breast epithelial/cancer cells to the PI3K inhibitors.  

 

We tested the interaction of PI3K (GDC941 or GDC 980) and MET (onartuzumab or 

EMD 1214063) targeting drugs on MCF-10A and HCC1954 cells having concurrent 

aberrations in MET and PIK3CA. Our results suggest that combinatorial therapy with MET and 

PI3K inhibitors had a significantly higher inhibitory effect on the tumorigenicity of MCF-10A and 

HCC1954 cells that had concurrent aberrations in MET and PIK3CA.  Thus we propose that 

tumors with concurrent aberrations in MET and PIK3CA could be more aggressive, and 

resistant to therapies targeting each pathway, and that combinatorial therapy could circumvent 

this resistance.  
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FUTURE DIRECTIONS: Our data demonstrated a difference between the effects of 

the somatic MET mutation- Y1253D, and the possible germline MET mutation, T1010I, in the 

MCF 10A and HCC1954 cells. While Y1253D had the highest influence on cell proliferation 

and cell survival, the T1010I mutation induced maximum invasiveness in both these cell lines. 

The T1010I mutation was previously identified in a tumor biopsy of hereditary renal papillary 

cancer and a papillary renal cancer cell line, ACHN.(44) Schmidt et al. proposed T1010I to be 

a SNP and showed that it lacks the ability to transform NH3T3 cells.(55)  However, Lee et al. 

showed that this mutation was more active than the wild-type MET in an athymic nude mice 

tumorigenesis assay, suggesting that it may contribute to tumorigenesis.(53) They screened 

30 breast cancer samples and found one tumor with the T1010I missense mutation in the 

intracellular juxtamembrane domain of the MET receptor.(53) In fact, this mutation was shown 

to be present in the DNA from a tumor cell-negative lymph node of the same individual, 

suggesting that T1010I could be a germline mutation.(53) Though some reports suggest that 

T1010I might be a germline mutation and could have oncogenic properties, views on these 

findings are not consistent. Contrary to the previous studies that have reported that T1010I 

lacks the ability to induce tumorigenicity, our study demonstrates that it works in concert with 

the PIK3CA mutations to render or enhance oncogenic properties in mammary epithelial cells 

and breast cancer cells. However, it remains to be explored if T1010I is indeed a germline 

mutation. We intend to analyze the frequency and origin of this mutation in a large cohort of 

breast cancer patients. If T1010I is closely associated with the pathogenesis of breast cancer 

and turns out to be germline, it has the potential to be used as a predictive marker for 

screening, much like BRCA1 and BRCA2.  

 

Further studies including comprehensive analysis of large cohorts of breast cancers 

(i.e. TCGA- The Cancer Genome Atlas) are on-going in our group for analyzing the 

frequencies of mutations, copy number, and methylation, as well as, translational changes in 

PI3K pathway-related genes and MET (alone and in combination) to determine the frequency 

of co-aberrations in the pathways across multiple modalities.(2)  

 

In order to study the effects of these co-aberrations in an in vivo environment, we 

carried out a preliminary experiment by establishing tumor xenograft models in transgenic 

mice, named hHGF Tg SCID females,(139) using HCC954WT MET, HCC954T1010I, HCC954Y1253D, 

and HCC954Td vector cells (Figure 16). Consistent with our in vitro results, the presence of the 

T1010I and Y1253D mutations displayed enlarged tumors compared to the controls, 

moreover, all the tumors from the T1010I group were markedly invasive.  
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The generation of transgenic animals is essential for the in vivo study of gene function 

during development, organogenesis and aging.(161) It also permits the evaluation of 

therapeutic strategies in models of human disease, as well as the investigation of disease 

progression in a manner not possible in human subjects.(161) Currently, we are in the process 

of developing a tetracycline dependent transgenic mouse model with concurrent aberrations in 

PIK3CA and MET. With the help of this model, in an in vivo environment, we intend to 

understand the effects of the co-mutations in the pathogenesis of breast cancer and also 

assess the effectiveness of the proposed MET/PI3K combinatorial therapy. The tetracycline 

dependency of this model will help us achieve an off/off transition of the transgenes, which will 

help us comprehensively analyze the signals induced during the crosstalk between MET and 

PI3K. Moreover, as indicated in Chapter 4, we suspect the role of other pathways such as 

Notch and Ras/MEK/ERK to mediate this crosstalk between PI3K and MET. An RPPA 

analysis would enlighten our knowledge on these aspects.  

 

We propose that tumors with concurrent aberrations in MET and PIK3CA could be 

more aggressive, and resistant to therapies targeting each pathway, and that combinatorial 

therapy could circumvent this resistance. In order to test the synergistic effect of PI3K and 

MET inhibitors on breast cancer patients with concurrent aberrations in PIK3CA and MET, we 

are in the process of acquiring an IND (Investigational New Drug application) approval for the 

clinical trial, the protocol for which has been written and approved by Genentech.  

 

RPPA analysis, animal studies and clinical trials, together with the in vitro data 

generated in this study, would elucidate the oncogenic signals induced by the MET/PIK3CA 

co-aberrations during breast cancer pathogenesis, and help us assess the efficacy/feasibility 

of our proposed combinatorial treatment.  
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APPENDIX 1 
 

 
 
Appendix 1.(99) a Akt and b Aktp473 antibody validation for reverse phase protein 
array (RPPA).MDAMB468 (red), ZR75-1 (black) and T47D (blue) cells were left 
untreated followed by no stimulation (control) or by stimulation with epidermal growth 
factor (EGF) or were treated with LY294002 (phosphatidylinositol-3-kinase (PI3K) 
inhibitor), perifosine (Akt inhibitor), rapamycin (mTOR inhibitor), or ultraviolet (UV) 
irradiation and then stimulated with epidermal growth factor (EGF) in the case of 
treatment with the three inhibitors. Lysates were then probed with antibody to total Akt 
(a) or to phosphorylated Akt at serine 473 (Aktp473, b) by RPPA in triplicate (panels 
A–C) and by western blotting (panel D) and the derived signals for total Akt and for 
Aktp473 were quantified and correlated (panel E in a and b). For RPPA, each lysate 
was arrayed in five serial 2-fold dilutions on nitrocellulose slides (with increasing 
dilution from left to right on each slide for each lysate as shown in panel B). A control 
spot (a mixed cell line lysate) was placed at the end of each sample lysate’s five serial 
2-fold dilution series to give six spots. Four samples are arrayed in this fashion in each 
grid of 24 spots on the nitrocellulose slides shown. The correlation coefficients between 
signals derived using RPPA and western blotting for Akt and Aktp473 were 0.897 and 
0.93, respectively (panel E in a and b). These correlation coefficients were based on 
18 data points as shown and indicate valid antibodies for RPPA. Panel A in a and b 
demonstrates the process of curve fitting for RPPA that is applied by the R package 
SuperCurve (version 1.01). In the upper left of panel A, estimated protein concentration 
(xaxis) is plotted against signal intensity (y-axis). In the upper right of panel A, residuals 
from model fitting (y-axis) are plotted against estimated protein concentration (x-axis). 
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Ideally, the residuals should be symmetrical about the horizontal 0 line and should not 
increase with increasing concentration. In the lower left of panel A is an image plot of 
squared residuals from model fitting. This plot shows that the squared residuals are 
largely homogeneous. In the lower right of panel A, the intensity differences of adjacent 
dilution steps are plotted (yaxis) against the averaged intensities of adjacent dilution 
steps (x-axis). If this curve is flat and close to the horizontal line, the dilutions were 
unsuccessful and the data are not reliable. 
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APPENDIX 2 
 

 

 

 
Appendix 2. The Method described in Appendix 1 was used to validate (A) primary MET and 
(B) p-MET antibodies (Cell Signalling Technology, Danvers, MA) for use in RPPA. The following 
values were obtained after the validation-: MET    r= 0.84;  p-MET  r= 0.80  
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