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Radiogenic Second Cancer Risk Differences in Female 
Hodgkin Lymphoma Patients Treated with Proton versus 

Photon Radiotherapies 
Publication No.____________ 

Kenneth Lois Homann, M.S. 

     Hodgkin Lymphoma (HL) is the most common cancer diagnosis of young adults in the United 

States.  Advances in curative treatments for HL, including the use of photon radiation therapy (RT) 

techniques, have increased 10 year survival rates to approximately 90% among young patients. 

These RT treatments, however, contribute to an increased incidence of radiogenic second cancer 

(RSC) formation to the healthy tissue surrounding the tumor volume relative to the general 

population.  These RSCs are the leading cause of death among long-term HL survivors.   Proton 

therapy has been shown to reduce the therapeutic dose, and therefore, the risk of developing a RSC, 

to healthy tissue relative to HL photon therapy.   Current commercial treatment planning systems 

(TPS) do not account for stray radiation doses for these treatments, however.   The impact of these 

contributions on RSC incidence was previously unknown. 

     The relative risk (RR) of developing a RSC following treatment with proton therapy compared to 

the current standard of care, photon intensity modulate radiation therapy (IMRT), was determined for 

the breast, lung, and thyroid (OARs) of nine HL patients.  Treatment plans were developed and 

therapeutic doses were calculated with commercial TPSs.  Stray dose contributions were measured 

with thermoluminescent dosimeters (TLD) in anthropomorphic phantom for the IMRT treatments 

and simulated using Monte Carlo techniques that model a passive scattering treatment nozzle and 

each individual patient’s anatomy and treatment setup.  RSC risks were calculated using the 

Biological Effects of Ionizing Radiation VII (BEIR VII) and Radiation Risk Assessment Tool 

(RadRAT) risk models.  Sensitivity tests varied the dose response model, relative biological 

effectiveness (RBE) of neutrons for carcinogenesis, age of exposure, and attained age for each 

patient to characterize the uncertainty of the RSC RR results.   

      The risk analysis showed that the majority of comparisons indicated a lower RSC risk after 

proton therapy than photon IMRT, but were not statistically significant unless the values of all 

patients for a given OAR were averaged together.  Our findings, for the first time, revealed that it is 

important to include stray dose contributions and their uncertainties when comparing the RSC risks 

after different treatment techniques for HL. Furthermore, our findings clearly demonstrated the 

importance of personalized dose and risk calculations for modern radiotherapy for HL. 
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1. Introduction and Background                                                                              

     1.1. Hodgkin Lymphoma 
 

     Hodgkin lymphoma (HL) is a form of cancer originating from the white blood cells, or 

lymphocytes.  Over 9,000 people in the United States are diagnosed with HL each year (Howlader et 

al., 2013).  HL was first described by English physician Thomas Hodgkin in 1832 (Hodgkin, 1832) 

who suggested the first reference to the condition was made by Italian physician Marcello Malpighi 

in 1666.  It affects all ages of the population, but nearly 60% of new cases occur before the age of 44 

(Macmahon, 1957, Ries and SEER Program (National Cancer Institute (U.S.)), 2007, Howlader et 

al., 2013).  HL is the most common cancer diagnosis of young adult patients in the United States 

(Bleyer et al., 2006).   

     Until the 1940’s, a diagnosis of HL was generally considered fatal.  Due to advances in both 

radiological and systematic treatment technologies, however, it is now one of the most curable 

cancers (Cox and Ha, 1999, Armitage, 2010) and has a 10 year survival rate of ~90% for diagnosis 

during childhood and adolescents (Constine et al., 2008).  With these increased survival rates, 

however, come complications due to the treatments successfully used to treat HL, including 

radiogenic second cancers (RSC).   

     RSCs are defined as cancers that are at least partially brought about by the radiation dose 

administered during the treatment of the primary cancer (e.g. HL).  Recent epidemiological studies 

have shown nearly 1 in 6 new cancers in the United States are a second primary cancer (Wood et al., 

2012).  In the Childhood Cancer Survivorship Study (CCSS) the overall cumulative incidence of a 

second primary cancer (excluding nonmelanoma skin cancer) was 7.9% at 30 years follow up, and 

was twice as likely to occur in patients exposed to radiation as those who did not receive radiation 

(Friedman et al., 2010). 

     HL survivors have the highest risk of developing a RSC amongst young patients.  In the CCSS, 

HL survivors represented 13.4% of the cohort but 33.8% of all RSCs (Meadows et al., 2009).  After 

HL therapy, RSCs generally develop after a median latency period of 5-10 years with the increased 

risk prevalent for at least 30 years (Hodgson et al., 2007a).   The 30 year cumulative RSC incidence 

for HL survivors (excluding nonmelanoma skin cancer) was 10.9% for males and 26.1% for females 

with no indication that these rates will plateau beyond that time frame (Bhatia et al., 2003, Constine 

et al., 2008, Castellino et al., 2011).  In addition, RSCs are the leading cause of death for HL 

survivors (Ng et al., 2002, Aleman et al., 2003).   
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    The CCSS and young adult studies that many of these papers examined followed patients 

irradiated between the years 1970-1986.  They have advocated that the reduction in exposure from 

current treatment techniques, such as those examined in this work, will likely result in a decrease in 

RSC incidence (Friedman et al., 2010, Travis et al., 2012, Berrington de Gonzalez et al., 2013).  In 

light of this evidence, comparing new radiation treatments that can minimize dose to the normal 

tissue surrounding HL tumor volumes could prove beneficial in the long term health of HL 

survivors. 

     1.2. Photon Therapy for Hodgkin Lymphoma 

1.2.1. – History       
 In the first half of the 20th century, radiation alone was used to treat HL.  During the 1920’s 

Gilbert (1939) determined that radiation administered to non-clinically involved lymph nodes was 

important for improving outcomes.  The doses given during that era however, were low compared to 

the amounts delivered today, so HL was considered incurable.  Peters (1950) reported a curable 

effect due to radiation alone, but it wasn’t until with the introduction of the mantle field, also known 

as extended field radiation therapy (EFRT) in the early 1960’s that definitive studies helped bring 

about widespread use of radiation for curative purposes of HL EFRT includes not only the gross 

tumor volume (GTV) but also the surrounding lymphatic pathways that are judged to be at risk of 

harboring subclinical disease (Kaplan, 1962, Easson and Russell, 1963).  Further refinements of the 

radiation technique (Rosenberg and Kaplan, 1982) brought about the first ever decline in mortality 

rates of HL in the early 1970’s (Devesa et al., 1987). 

     Despite the improved survival rates, secondary morbidities, including RSCs, were high for HL 

patients.  The introduction of chemotherapy reagents, specifically for this work, the regimen 

consisting of adriamycin, bleomycin, vinblastine, and dacarbazine (known as ABVD) (Bonadonna et 

al., 1975), led to improved outcomes and a reduction in both radiation field size and dose delivered 

to achieve equal or better outcomes compared to radiation alone for early stage HL patients (Engert 

et al., 2007, Ferme et al., 2007).   

     These reduced-field-size treatments, called involved field radiation therapy (IFRT), were 

introduced by Cham et al. (1976).  They reduced the field size to only the known areas of 

involvement, relying on the chemotherapy regimens to assist in the control and eradication of the 

cancer cells in the surrounding lymphatics.  Comparison studies of EFRT to IFRT with ABVD 

regimens revealed similar outcomes with significantly less morbidities for IFRT compared to EFRT 

(Engert et al., 2003).  Clinical trials investigating the possibility of eliminating radiation therapy in 



3 
 

favor of chemotherapy treatments have proven less effective (Macdonald et al., 2007, Meyer et al., 

2012) further reinforcing the need for radiation treatments for HL patients. 

1.2.2. - Delivery Techniques 
There are two main ways of delivering IFRT treatments.  The first and older technique is three 

dimensional conformal radiation therapy (3DCRT).  For HL treatments, this technique is usually 

delivered in a two-field configuration with parallel opposed anterio-posterior (AP) fields.  The field 

shape, which conforms to the extended margins (i.e. of the Planning Tumor Volume (PTV)) of the 

intended tumor shape, is formed with an external cerrobend beam block (Powers et al., 1973), or 

more commonly today, with the use of a tungsten multi-leaf collimator (MLC) (Brahme, 1988).   

The emergence of intensity modulated radiation therapy (IMRT) (Kallman et al., 1988, Webb, 

1992, Bortfeld et al., 1994) , which is the second technique used to deliver the IFRT treatment, has 

replaced 3DCRT for many tumor sites.  IMRT is most frequently administered in a co-planar 5-9 

beam arrangement around the patient.   

IMRT modifies the beam intensities of the photon beam to better conform to the tumor volume 

by moving the leaves of the MLC in and out of the field.  Currently, this is the standard of care at our 

institution for photon HL treatments.  All of our patients, save one, had five beams delivered.  The 

other one was a six-field configuration.  Several studies compared the dose distributions of 3DCRT 

vs IMRT and showed IMRT to be comparable or better at delivering less dose to the normal tissue 

(Diez et al., 2007, Paumier et al., 2011, Koeck et al., 2012).  

IMRT has been shown to reduce the cumulative dose to OARs relative to 3DCRT.  However, 

due to the increased number of beams and monitor units (MU) needed to deliver the prescribed dose 

relative to 3DCRT and the increased volume of the OARs that the additional beams must traverse, 

IMRT treatment bathe a larger volume of healthy tissue with low dosages of radiation (Hall and 

Wuu, 2003, Bortfeld, 2006, Weber et al., 2011, Cella et al., 2013).  The effects of this difference in 

the dose distribution in the long term is currently unknown, but will be tracked closely as more 

patients reach later stages of their follow-ups, and is a main impetus for this work.   

      1.2.3. – Stray Radiation 
      Radiation outside of the intended treatment volume is defined as stray radiation.  Its presence 

delivers unwanted dose to healthy tissue in the body and is a source of concern with respect to RSC 

risks.  IMRT treatments typically deliver an increased amount of stray radiation relative to 3DCRT.  

There are three main components of stray radiation for photon IMRT treatments, two of which are 

relevant for this work.   
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     The first are leakage photons, which emanate from the shielding of the linear accelerator head.  

Leakage radiation dominates in distances far from the field edge (i.e. the 50% isodose line for IMRT 

plans).  Measurements have shown that these doses are usually less than or equal to 0.1% of the 

prescribed dose (Nath et al., 1994).   

     The second source of stray radiation is scatter dose.  This form dominates near the treatment field 

and originates both from within the patient and again from the treatment head.  Kase et al. (1983) 

found that a larger percentage of scatter dose came from the treatment head than within the patient. 

     The third source of radiation are photoneutrons which originate in the linear accelerator head, 

specifically from the flattening filter, primary collimator, electron target, and accelerator jaws.  

Photoneutron production is limited to photon energies that exceed 8 MeV.  Studies of high energy 

IMRT treatments have shown doses to healthy tissue of over 1% of the prescribed dose for OARs 

close to the treatment field (Followill et al., 1997, Kry et al., 2005, Howell et al., 2006a).   As this 

adds a significant amount of dose to the patient, IMRT treatments are usually treated with low 

energy photons below the photoneutron production threshold.  This was the case for this work.   

     Additionally, accounting for this stray radiation has been shown to be deficient in commercial 

treatment planning systems (TPS).  Howell et al. (2010a) and Joosten et al. (2011) showed that while 

TPSs generally do a good job of accounting for dose within the treatment field and in anatomical 

regions with dose down to 5% of the prescribed dose, beyond this point they can under-report doses 

by up to 60%.  This low dose region has minimal acute effect on the patient but can be of concern 

with respect to RSC, and was accounted for in this work. 

     1.3. Proton Therapy for Hodgkin Lymphoma 

1.3.1. – History       
Due to the known potential to reduce radiation exposure to surrounding normal tissue of 

mediastinal HL patients (De Laney and Kooy, 2008), proton treatments were examined.  Proton 

therapy was first explored for HL treatments in the 1970’s when Archambeau et al. (1974) found that 

proton therapy reduced the dose to the irradiated healthy tissue by half when compared to photon 

therapy.  Widespread clinical use of proton therapy was not economically feasible until the 1990’s, 

however, and has only gained a larger foothold in the radiotherapy community since the turn of the 

21st century (Levin et al., 2005).   

Proton therapy was originally used for intracranial (Kjellberg et al., 1962, Kjellberg et al., 1983) 

and ocular (Munzenrider et al., 1980, Gragoudas, 1986, Munzenrider, 1999) lesions.  The 

implementation of 3D Computed Tomography (CT) and as a consequence, 3D visualization of 

patient anatomy and dose distributions opened the door for treatments outside of the cranium.  For 



5 
 

Hodgkin’s treatments, an HL specific prospective phase II study showed that a comparison between 

3DCRT, IMRT, and proton therapy showed that proton treatments best spared dose to healthy OARs 

while maintaining tumor coverage (Hoppe et al., 2012). 

1.3.2. - Delivery Techniques 
There are two different methods for delivering proton beams to the patient, one which employs a 

passive delivery system (henceforth called PSPT) and one that delivers dose with a dynamic or spot 

scanning approach (which we will call IMPT).  At our institution, PSPT is currently the technique 

used to treat HL patients.   

PSPT was first developed for larger-field proton treatments by Koehler et al. (1977).  It uses a 

series of scatterers to systematically shape a uniform proton distribution to up to 30 cm in diameter.  

The details of the PSPT system are as follows: A proton pencil beam a few mm in diameter is 

extracted from a cyclotron or synchrotron system which produced the original proton beam.  The 

pencil beam then encounters a rotating range-modulation wheel (RMW) made of varying thicknesses 

of acrylic.  These various thicknesses degrade the initial energy of the proton beam, which varies the 

distance in the patient the proton beam will travel (called the range).   

By modulating the proton beam range, a spread out Bragg peak (SOBP), which is the 

combination of all unique Bragg peaks from the protons of various energy is formed.  This ensures 

coverage of the tumor in the beam direction.  The lateral borders of the proton beam are formed from 

a scattering foil placed downstream of the RMW which spreads out the original proton beam.  These 

lateral borders are further shaped to match the lateral extent of the intended treatment by collimators 

even further downstream.  At the end of the chain, one final beam modifier called the range 

compensator is used.  This device, of various thicknesses which is shaped as a function of the distal 

target border, takes the available protons of various energy produced by the RMW and degrades 

them further to match the off-axis depth of the target.  

IMPT is an actively scanning beam delivery system that removes the physical components of the 

modulation chain seen in PSPT.  To shape the beam to the target, the proton pencil beam is 

magnetically scanned across the region of interest.  To account for depth changes to the target, the 

beam is delivered in discrete iso-energy layers.  After completely covering the given target depth, the 

accelerating structure resets and produces a proton pencil beam of a different energy that 

corresponds to the new depth needed. 

Usually, the PSPT is considered more robust and less prone to changes in patient anatomy or 

positioning during treatment than IMPT.  IMPT deliveries are theoretically able to conform their 

dose distribution to both the deep and shallow extents of the target selecting the necessary proton 
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energies for each spot scanned.  PSPT is able to conform to the deep portion of the target, but not the 

shallow.   

     Some early follow up data has been reported to indicate a reduction in RSC for proton treatment 

vs photon therapy, but the median follow up time at the time of publication was less than 8 years 

(Chung et al., 2008) while multiple studies have indicated mean latency periods of 10 years or 

greater for the lung and breast (Travis et al., 2002, Travis et al., 2003) 

      1.3.3. – Stray Radiation 
     As in photon therapy, proton treatments also deliver a non-intended dose to healthy tissue inside 

and outside of the specified treatment area.  For protons, this stray component consists mainly of 

high energy neutrons.  In this work, the neutron dose is split into two components, named external 

and internal neutrons.  Polf and Newhauser (2005) showed that the main source of external neutrons 

for PSPT treatments was the RMW.  In addition, external neutron contributions increase with 

increased SOBP width, proton beam energy, un-collimated proton field size, and decreasing aperture 

size (Yan et al., 2002, Zheng et al., 2008, Taddei et al., 2008).   

     Since there is no RMW in IMPT, or any other component of the proton nozzle for that matter, the 

external neutron component is negligible in IMPT plans (Schneider et al., 2002) and was therefore 

not calculated for these plans.  Internal neutrons, which originate in the patient, are present in both 

the PSPT and IMPT plans. 

     Neutrons have large uncertainties associated with their relative biological effectiveness (RBE) 

relative to photons.   Whereas photon treatment assumes an RBE value of 1.0, Kellerer et al. (2006) 

have indicated that a recent analyses of atomic bomb survivors gives a 95% confidence interval for 

neutrons of 4-400.  While this encompasses the furthest extent of the possible neutron RBE values, 

other works have stated more likely values between 10 (Newhauser et al., 2009) and 30 (Brenner and 

Hall, 2008).  It is because of the large uncertainty, that this value will be varied for sensitivity tests in 

this work.   

     1.4. Risks from Radiation Exposure 

1.4.1. – Japanese Atomic Bomb Survivor Data and Risk Models     
Ionizing radiation has long been known to assist in the killing of cancer cells. A by-product of 

this therapeutic use, of course, is the exposure of healthy tissue to the damaging effects of radiation 

as well.  Despite the use of radiation to treat human maladies for over a century, data that provides 

accurate dosimetry and a statistically significant sample size that can predict long term effects from 

exposure are difficult to accrue. 
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The largest cohort with the longest follow-up time after initial exposure is the Life Span Study 

(LSS) cohort of survivors of the atomic bombings of Hiroshima and Nagasaki at the end of World 

War II in 1945 (Beebe et al., 1962, Preston et al., 2007, Ozasa et al., 2012).  Begun in 1950, the LSS 

follows the 120,000 survivors of the atomic bombings of Hiroshima and Nagasaki.  The LSS is 

generally considered the most complete, and more importantly, statistically significant, radiation 

exposed cohort on record due to its extended follow up period as well as the size of the cohort 

studied.   

While not exclusively used, the LSS data forms the backbone of all calculations used in the 

National Cancer Institute (NCI) Radiation Risk Assessment Tool (RadRAT) (Berrington de 

Gonzalez et al., 2012) and the  National Academy of Sciences Biological Effects of Ionizing 

Radiation (BEIR) VII – Phase 2 Report (National Research Council (U.S.). Committee to Assess 

Health Risks from Exposure to Low Level of Ionizing Radiation., 2006) RSC risk models, which 

were used in this work.   

The LSS cohort offers many advantages for being used to calculate RSC risk (National Research 

Council (U.S.). Committee to Assess Health Risks from Exposure to Low Level of Ionizing 

Radiation., 2006).  Due to the nature of the exposure, there is no bias in the selection of those 

exposed as both sexes and all ages at exposure are included.  The long follow-up times also provide 

significant amount of data to determine the change in RSC risks as a function of time since exposure.  

Additionally, dose measurements are well categorized and tracking of patients since exposure has 

been thorough, allowing for extensive analysis of potential confounders or effect modifications.   

While there are many advantages, there are some shortcomings with respect to transporting this 

exposure to a medically exposed population.  Exposures were less than 3 Sv for nearly the entire 

cohort, which is much less than would be expected in a therapeutic exposure.  The models were only 

designed to account for exposures up to these values, which introduced uncertainty at exposures 

above its threshold.  Finally, no dose fractionation occurred during exposure so any potential 

reduction of risk due to cellular repair or repopulation is not accounted for either.   

The subjects were also Japanese making transportation of the risk coefficients to other 

populations not straightforward.  The exposures from detonation were also whole body instead of 

localized to a specific OAR as with radiotherapy.  While this has benefits (all OARS receive the 

same dose so differences in radiosensivity can be differentiated), it is not the manner which patients 

are treated in most instances.  Even with these shortcomings, however, the LSS is the most complete 

and thorough radiation exposed cohort available and is the basis for the risk models used in this 

work. 
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1.4.2. - Linear Non Threshold Radiogenic Second Cancer Models 
The two risk models used in this work, BEIR VII and RadRAT, were derived from the LSS 

study group to quantitatively determine an individual’s risk of developing a RSC.  These models 

were derived from the same radiation epidemiology studies.  Relative to BEIR VII, the RadRAT 

study was released more recently and offered a significant amount of additional data that allowed us 

to benchmark our work to ensure our calculations were correct.  In addition, the RadRAT publication 

added several individual risk models for additional OARs that were not examined in BEIR VII which 

could be of use for future works.  Three OARs were examined using these two models: breast, lung, 

and thyroid.  Each have unique RSC risk values that can be calculated from the mean dose calculated 

to the OAR of interest, the exposed age of the patient (e), and the age the person lives to (attained 

age) (a).   

The BEIR VII/RadRAT lung model was developed for both the right and left components of the 

organ together and was derived from the LSS cohort.  The BEIR VII/RadRAT breast model was also 

calculated for the total breast and uses the LSS data but incorporated medically exposed populations 

from Preston et al. (2002) as well.  These two models were found to be largely interchangeable with 

the only difference being the modification of the risk coefficient (β) from the Japanese population to 

an American population.  The BEIR VII/RadRAT thyroid model used the LSS and other cohorts to 

determine the dose response shape.  The additional cohorts were taken largely from the work of Ron 

et al. (1995) which included medically exposed populations.   

These models all follow the dose response model called Linear Non Threshold (LNT) which 

states that as the dose increases, the risk of developing a RSC increases linearly.  The BEIR VII and 

RadRAT models both simulate these response shapes.   Multiple HL studies have further 

strengthened this approach to RSC risk for both the breast and lung.  Breast studies have found an 

approximately linear dose response relation for breast RSC risk with no evidence of a downturn at 

dose of greater than 30 Gy (Travis et al., 2003, Guibout et al., 2005, Inskip et al., 2009) for both 

children and young adults.  The lung also has shown an LNT response albeit in patients older than 

our patient cohort for this study.  Primary lung cancer studies of patients irradiated at 50 years of age 

showed a linear dose/risk response even at doses above 40 Gy (Travis et al., 2002, Gilbert et al., 

2003) 

The thyroid dose response, however, has been shown to vary from the LNT in medically 

exposed populations.  In two recent studies, a linear exponential model, which shows an increase in 

the risk similar to the LNT until doses exceed a certain threshold (20-30 Gy in this instance) where it 

then begins to decrease, fit the data best (de Vathaire et al., 1999, Bhatti et al., 2010).  The BEIR 

VII/RadRAT models indicate an LNT model for thyroid because their models are intended for doses 
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below the 30 Gy threshold (Giebeler et al., 2011).  It is this limitation which necessitated adjusting 

the LNT model to account for non-linear dose responses in this work.  

     1.5. Uncertainties Associated with Risk Calculations 

1.5.1. – Atomic Bomb Survivor Risk versus Medically Radiated Patient Risk       
As has been pointed out, there is substantial uncertainty associated with transporting the risk  

models from their intended population and intended dose range to that of a medically exposed 

cohort.  In general, medically exposed population’s RSC risk was less than the LSS cohort 

(Berrington de Gonzalez et al., 2013) for breast (Preston et al., 2002) and lung (Gilbert et al., 2003), 

sometimes by over an order of magnitude.  The thyroid BEIR VII/RadRAT models were closer to 

medically exposed patient cohort studies, but this was because the data used for that publication 

included fractionated dose exposure (Ron et al., 1995). 

Even the medical epidemiology studies covered in above sections which state that the LNT 

model fits RSC risks the best are subject to uncertainty.  Follow up times are still short for newer 

radiation techniques (< 20 years), and the range of possible values are statistically variable enough to 

introduce the possibility of another type of dose response.   Other risk studies incorporated models 

fitted to medically exposed populations with downturns at higher doses for the lung and breast as 

well (Schneider et al., 2011).   

Finally, the LSS risk models are designed for photon exposures.  Multiple researchers have 

preached a cautious approach to assuming certain RSC responses outside of the limitations places on 

the risk models examined (Hall, 2006, Newhauser and Durante, 2011, Berrington de Gonzalez et al., 

2012).  To account for these many different sources of uncertainty, sensitivity tests, which vary 

many of these factors, were used to determine a range of possible results.   

1.5.2. - Rationale for Relative Risk Comparisons 
In light of this uncertainty, we took a cautious approach to assessing RSC risk to different 

treatments.  The endpoint of our work is a metric we have termed the ratio of relative risks (RRR).  

The RRR compares two separate treatments by dividing their calculated risks by each other.  Doing 

this allows us to largely remove mutual confounders that are either currently disputed or unknown 

which could introduce additional uncertainty to the final risk analysis such as patient demographics 

or specific risk/Gy coefficients.   

Doing this also prohibits us from making definitive absolute risk statements, but we can use 

current epidemiology studies to inform our relative findings.  For example, secondary thyroid cancer 

is 6-7 times less common among HL survivors than the breast and lung and only represented 2.7% of 

solid tumors from the cohort (Hodgson et al., 2007a).  Calculating the RRR allows us to still draw 



10 
 

meaningful conclusions about two comparable treatment solutions while minimizing our 

uncertainties as much as possible.   

     1.6. Statement of the Problem 
 

     Proton therapy has been shown to reduce dose to healthy tissue in HL studies while maintaining 

equal dosimetric coverage of the tumor compared to photon treatments (Schneider et al., 2000, Chera 

et al., 2009, Andolino et al., 2011, Cella et al., 2013).  However, there are no studies which include 

both therapeutic and out-of-field dosimetry for contemporary proton and photon treatment plans.  

Without taking into account all sources of dose, risk comparisons are less reliable.   

     In addition, further uncertainties associated with dosimetric radiobiological uncertainties, such as 

the dose response model for each exposed organ of interest and the RBE of neutrons for 

carcinogenesis (neutron 𝑤𝑅����), can lead to even more significant decreases in confidence for 

comparisons of proton versus photon radiation treatments of HL, even when the dose is fully taken 

into account.   

     Our goal was to calculate the risk of developing a RSC after eliminating two major sources of 

uncertainty by: 1) including an accurate incorporation of all additional dose sources not predicted by 

commercial TPSs and 2) introducing a set of sensitivity tests that take into account the known 

radiobiological uncertainties associated with RSC risk calculations by varying their contribution 

across a known range of possible values.  By doing these tasks, further clarity and confidence 

regarding the various possible treatment configurations used to treat HL with respect to predicted 

RSC risk were achieved.   

     1.7. Hypothesis and Specific Aims 
 

     The hypothesis of this work is patients treated for supra-diaphragmatic HL will have a 

significantly lower predicted risk of developing a RSC (𝑹𝑹𝑹������ < 1, p ≤ 0.05) while maintaining 

the same dosimetric coverage of the tumor when treated with proton versus photon IMRT, 

which was tested by the following two specific aims: 

 

Specific Aim 1: Compare the predicted mean Ratio of Relative Risk (𝑹𝑹𝑹������) for proton versus 

photon IMRT of nine female HL patients. 

     The objective of this aim was to determine if proton therapy would reduce dose to healthy tissue 

in HL patients with supra-diaphragmatic tumors compared to the current standard of care at our 
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institution (photon IMRT), thus lowering the predicted RSC risk using reasonable assumptions for 

the dose response model and neutron 𝑤𝑅����.   

     We tested this specific aim by using the approach of conducting a paired data, in-silico study that 

calculates dose for both proton and photon plans on nine female HL patients. For this we used the 

combination of a commercial treatment planning system (TPS) to calculate the in-field or therapeutic 

dose, and an analytical model for the photon plan and Monte Carlo techniques for the proton plans to 

calculate the stray and neutron dose contribution, respectively.   

     The RSC risk was then calculated for the total breast, total lung, and thyroid using risk models 

from the literature (National Research Council (U.S.). Committee to Assess Health Risks from 

Exposure to Low Level of Ionizing Radiation., 2006, Berrington de Gonzalez et al., 2012) for both 

proton and photon plans.  The sign and student t-test was used to determine if one treatment 

technique provided a statistically significant reduction in predicted RSC risk.  

     The rationale for this aim is currently that clinicians have incomplete knowledge to make an 

informed, evidenced based decision that quantitatively takes into consideration RSC risk for the 

determination of the most appropriate standard of care for female HL patients.  It was our 

expectation that proton treatments would provide a significant reduction in dose, and therefore, 

predicted RSC risk, to the female total breast, total lung, and thyroid for supra-diaphragmatic HL 

tumors.  

     Such a finding would be of importance because comparisons of predicted RSC risk will provide a 

rationale for selecting a treatment technique, not just for their curative properties, but for their 

potential to prevent RSCs, as well.  

 

Specific Aim 2: Determine confidence intervals of predicted 𝑹𝑹𝑹������values                                                                        

     The objective of this aim is to determine if uncertainties, including varying neutron 𝑤𝑅���� and the 

dose response function of the BEIR VII and RadRAT LNT models, were large enough to affect the 

final conclusion of the predicted RSC risk outcomes found from the first aim.  We tested this specific 

aim by using the approach of sensitivity tests which vary both the shape of the dose response curve 

for each exposed organ at risk (OAR) as well as the value of the neutron 𝑤𝑅���� when calculating the 

mean equivalent dose (𝐻�) to a given OAR.  

     These sensitivity tests incorporated a reasonable range of uncertainties for each of these 

parameters.  Analysis of this interval of potential 𝑅𝑅𝑅������ values, in concert with a rigorous propagation 

of errors following the methods of Fontenot et al. (2010), showed whether or not these uncertainties 

changed the qualitative findings of the overall study from specific aim 1.  The sign and Student’s t-

test were again used to determine if one treatment technique provided a statistically significant 
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reduction in predicted RSC risk.  

     The rationale for this aim is that limited understanding of uncertainties in radiobiological 

parameters is an obstacle to confidently using predicted risk results in a clinical setting.  By varying 

the values associated with these radiobiological parameters, we determined within plausible 

confidence intervals if our 𝑅𝑅𝑅������ values were still statistically significant.  

     It was our expectation that these sensitivity tests, combined with rigorous uncertainty analysis, 

would show that while radiobiological uncertainties were large, they were sufficiently small to draw 

statistically significant conclusions. Such a finding would be of importance because it would allow 

increased confidence in the conclusions determined from specific aim 1. 
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2. Specific Aim 1: Ratio of Relative Risk (RRR) for proton 
versus photon therapies of nine female HL patients                                                                              
     2.1. Introduction 
 

      An analysis on the differences in the risk of developing a radiogenic second cancer (RSC) 

between various treatment plan types and techniques was conducted for a paired data, in-silico 

clinical trial for a population of Hodgkin lymphoma (HL) patients.  In particular, we (1) calculated 

dose for both proton and photon radiation therapy (RT) treatment plans for nine female patients, (2) 

calculated the RSC risk for several organs, and (3) used the sign test and Student’s t-test to determine 

if one treatment technique provided a statistically significant reduction in predicted RSC risk relative 

to the other treatment.  Section 2.2.1 describes the selection of the patients studied in this work. 

Section 2.2.2 describes the parameters used for the creation of the HL treatment parameters. Section 

2.2.3 details the calculation techniques and models used to account for the stray dose.  Section 2.2.4 

explains the rationale behind the selection of the various risk equations and endpoints selected for 

this work.  Section 2.2.5 describes the statistical tests used on our results.  Section 2.2.6 walks 

through the error analysis for our risk calculations, and 2.2.7 describes the different parameters 

studied to determine if there were any trends or correlations between these factors and their 

subsequent mean RRR values.    

     2.2. Methods and Materials 

2.2.1. – Patient Cohort       
  Patients were selected using the following inclusion criteria.  All patients received proton 

therapy at our institution between July 2007 and December 2011.  The consecutive sampling method 

was employed.  All patients were diagnosed with Stage II (eight of nine patients) or Stage IIIA (one 

patient – Patient #8) Classical Nodular Sclerosis Hodgkin Lymphoma.  The disease was also 

confined to the supra-diaphragmatic region of the torso, which accounts for roughly 90% of all Stage 

II disease (Krikorian et al., 1986).  Exclusion criteria included males since the male breast is at lower 

risk for RSC than female breast.  Patients treated with photon therapy were also excluded because 

their patient setup and apparati used for immobilization differ from proton therapy patients.      

Treatment plans and other pertinent data from nine female patients with an average age of 25.3 years 

old at the time of treatment (standard deviation of 9.89 years) were retrospectively collected under a 

protocol approved by the MD Anderson Cancer Center Institutional Review Board (IRB).  A 

preliminary sample size analysis was performed using data from two previous studies that conducted 

similar studies on HL patients (Chera et al., 2009, Andolino et al., 2011). This analysis showed that 



14 
 

nine patients would provide sufficient statistical power (>80% with an alpha level of 5%) to detect 

whether photon or proton treatments yielded a lower mean RSC risk.  Assuming a Ratio of Relative 

Risk (RRR) of approximately 0.5, which was the average RRR for the Chera et al and Andolino et al 

works (i.e., one treatment, either photon or proton, would decrease the risk of a RSC to a particular 

organ by a factor of ~2).   

2.2.2. - Hodgkin Lymphoma Treatment Plans 
Treatment records were extracted from the institution’s archives.  These records included 

computed tomography (CT) simulation with the patient in the supine position.  The CT image 

covered superiorly from the top of the head or chin to the base of the diaphragm (see Figure 2.1).  

The patients’ arms were placed either at their sides or over their heads.  Thermoplastic 

immobilization mask and head rests were used for all patients.   

 
Figure 2-1 – Differences in patient CT setups - Sagittal view of Patient a) #3 and b) #4.  These two images 
display the differences in the superior border in the CT images for the various patients.  Each has an 
immobilization mask and head rest while being in the supine treatment position.  Since the patients selected for 
this study have already been treated, clinical CT data sets were extracted from the data archive at our 
institution leading to minor differences in their respective images.  For example, some CT data sets include the 
entire head while others only extend superiorly to the chin. For all patients, regardless of which data set was 
used, all organs of interest (OAR) for this study were fully included in the scans. 

           

For each CT scan, tumor volumes and organs at risk (OAR) were delineated by either a board 

certified medical physicist or medical dosimetrist and then reviewed and approved by a board 

a b 
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certified radiation oncologist.  Of particular interest for our study were the Gross Tumor Volume 

(GTV), Clinical Tumor Volume (CTV), and Planning Tumor Volume (PTV) as defined by the 

International Commission on Radiation Units and Measurements Report (ICRU) 62 (Wambersie et 

al., 1999) (Figure 2.2a) and OARs including breast (both right and left), lung (both right and left), 

and thyroid (Figure 2.2b).  Both the right and left were contoured individually for the breast and lung 

and then combined using Boolean logic for the purposes of calculating the risk. 

 
Figure 2-2– Tumor volume and anatomy of interest - Images of Patient #9  a) Coronal view.  The GTV 
(yellow), CTV (blue), and PTV (red shaded area) are delineated.  Each patient’s tumor location was unique, 
but all patients in this study had supra-diaphragmatic HL tumor locations. b) 3D skin rendering (coronal view) 
showing OARs for patient shown in Figure 2.3.  Total breast (yellow), total lung (red), and thyroid (purple).   

 

Since the patient cohort was retrospectively selected and the treatment plans were designed by 

multiple dosimetrists, new photon and proton treatment plans were created for all nine patients to 

ensure consistent treatment field construction throughout and current standards of care at our 

institution.  There are a wide range of dose prescriptions that can be given for HL patients depending 

on their specific prognosis and use in concert with chemotherapy agents.  These values can range 

from 20-40 Gy (Hansen and Roach, 2010).  The total prescribed dose was 36.0 Gy relative biological 

effectiveness (RBE) (i.e., 32.7 Gy × 1.1 to reflect the biological effectiveness of protons relative to 

photons) and 36.0 Gy for the proton and photon treatment plans, respectively.  The use of the generic 

RBE factor of 1.1 for proton plans follows the recommendations on dose prescription and reporting 

a b 
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in International Commission on Radiation units and Measurements (ICRU) Report 78 (Wambersie et 

al., 2007) and is consistent with the clinical practice at our institution.   

2.2.2.i.  Photon treatment plans 
There are two main treatment techniques used for HL: the historical extended field radiation 

therapy treatment (EFRT) and the more current involved field radiation therapy treatment (IFRT).  

An IFRT technique was used for the photon treatment plans.  IFRT has largely replaced EFRT 

treatments (Kaplan, 1962), i.e., mantle field irradiation, and only includes the involved lymphatic 

regions (Cham et al., 1976, Connors et al., 1987) (Figure 2.3). IFRT can be treated using either 

conventional 3D conformal radiationtherapy (3DCRT) or intensity modulated radiation therapy 

(IMRT).  For our study, a 6 MV step and shoot IMRT treatment technique, consisting of either a five 

or six beam co-planar geometry was chosen.  This technique is currently the standard of care for HL 

patients treated with photon therapy at our institution.  Treatment plans were developed using a 

commercial treatment planning system (TPS) (Eclipse, Version 8.9.08, Varian Medical Systems, 

Palo Alto, CA).  Dose distributions were calculated using the Anisotropic Analytical Algorithm 

(AAA) (Eclipse, Version 8.9.08, Varian Medical Systems, Palo Alto, CA).  The optimization 

objective was to deliver the prescribed dose to 100% of the PTV.   

 
Figure 2-3 – Photon treatment field design - Images of Patient #3 a) Field size of a Hodgkin Lymphoma 
mantle field or extended field photon irradiation.  Mantle fields cover all lymphatic sites above the diaphragm, 
including the cervical, supraclavicular, infraclavicular, axillary, mediastinal, and hilar nodes while blocking the 
lungs, humoral heads, and thyroid.  b) 5 field IMRT setup and field size for a Hodgkin Lymphoma IFRT 
irradiation.  Note the difference in the area of exposed tissue for the EFRT treatment in Figure 2.4a versus the 
IFRT Figure in 2.4b.  The CTV is rendered in purple. 
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      Additionally, selected photon beam characteristics as well as the age of each individual patient 

are listed in Table 2.1. 

 
Table 2-1 – Photon therapy patient data - Selected host and treatment factors for HL photon treatments 

 

2.2.2.ii. Proton treatment plans 
For each patient, two separate proton treatment plans were examined, a passively-scattered 

proton therapy plan (PSPT) and an intensity modulated proton therapy plan (IMPT).  The differences 

between the two plans were in the inclusion or exclusion of various components of the stray neutron 

dose (which will be discussed in more detail in Section 2.2.3 below).  

      The PSPT plan was constructed following the prevailing standard of care in 2012 at our 

institution.  In accordance with ICRU recommendations (Wambersie et al., 2007), lateral, proximal, 

and distal margins were added on a field by field basis to account for the dose distribution 

uncertainties of the CTV.  For a given patient, the number of fields and their orientations for both the 

PSPT and IMPT treatment plans were the same (either a one or two field configuration) (Figure 2.4).  

All proton plans were developed using a commercial TPS (Eclipse, Version 8.9.08, Varian Medical 

Systems, Palo Alto, CA), and dose was calculated using the Proton Convolution Superposition 

Algorithm (Eclipse, Version 8.9.08, Varian Medical Systems, Palo Alto, CA) (Schaffner, 2008), 

which was previously validated (Newhauser et al., 2007a) 



18 
 

  
Figure 2-4 – Proton treatment field design - 3D skin rendering highlights aperture design for a one-field 

proton treatment.  The CTV (which the aperture is designed to cover) is rendered in purple. 

 

      Selected proton beam characteristics as well as the age of each individual patient are shown in 

Table 2.2. 
Table 2-2 – Proton therapy patient data - Selected host and treatment factors 

 

2.2.3. – Dose from Stray Radiation 
       There are two components of dose, the therapeutic dose, i.e., dose from the treatment field, and 

the stray dose, i.e., the dose outside the treatment field.  Contemporary TPS have been show to 

accurately calculate this therapeutic absorbed dose for photon and proton beams to within 2% of the 

measured value (Ramsey et al., 1999, Van Esch et al., 2006), which is acceptable for the endpoints of 

this study.   

       Despite this accuracy within the therapeutic 5% isodose line, the TPS did not accurately 

calculate or did not attempt to calculate stray absorbed dose below that value (Howell et al., 2010a, 

Joosten et al., 2011).  Thus, the therapeutic component of dose to individual OARs was directly 

taken from the TPS, but the stray dose component was determined using supplemental approaches.  
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In particular, stray radiation doses from photon therapy were determined using an analytical model, 

and stray radiation doses from proton therapy were calculated using Monte Carlo simulations.  

      For each OAR (denoted by the subscript, j), the therapeutic and stray doses were calculated for 

each photon and proton treatment plan.  Therapeutic and stray dose were added together to give the 

total absorbed dose for each treatment plan. The equivalent dose (Sv) was then found by multiplying 

the therapeutic and stray components of the total absorbed dose by their respective mean radiation 

weighting factors, 𝑤𝑅���� 

𝑯𝒋���� = �𝑫𝑻𝒉𝒆𝒓𝒋 ∗ 𝒘𝑹𝑻𝒉𝒆𝒓���������+ �𝑫𝑺𝒕𝒓𝒂𝒚𝒋 ∗ 𝒘𝑹𝑺𝒕𝒓𝒂𝒚����������                                                       (𝑬𝒒.𝟐.𝟏)  

where  𝐻𝚥��� is the mean equivalent dose (Sv) to the OAR, j;  𝐷𝑇ℎ𝑒𝑟𝑗 is the mean absorbed dose (Gy) to 

the OAR, j, from the therapeutic component of the beam; 𝐷𝑆𝑡𝑟𝑎𝑦𝑗 is the mean absorbed dose (Gy) to 

the OAR, j, from the stray component of the beam; 𝑤𝑅𝑇ℎ𝑒𝑟��������  is the mean radiation weighting factor 

from the therapeutic component of the beam; and 𝑤𝑅𝑆𝑡𝑟𝑎𝑦���������  is the mean radiation weighting factor 

from the stray component of the beam.  For this work the 𝑤𝑅𝑇ℎ𝑒𝑟�������� and  𝑤𝑅𝑆𝑡𝑟𝑎𝑦��������� are the same for a 

given particle.  They are listed for all particles of interest are listed below: 

• Photons  

o 𝑤𝑅����  = 1.0 which is the clinically used value at MD Anderson 

• Protons 

o 𝑤𝑅����  = 1.1 which is the clinically used value at MD Anderson 

• Neutrons 

o 𝑤𝑅����  = 20.0 was selected as a reasonable, median value as studies have suggested 

values between roughly 10 (Newhauser et al., 2009) and 30 (Brenner and Hall, 

2008) can be used with a fair amount of confidence.  The selection of this parameter 

is highly controversial (Kellerer et al., 2006, Brenner and Hall, 2008); therefore, the 

𝑤𝑅����  for neutrons value was varied in Aim 2 as part of our sensitivity tests.   

2.2.3.i. Stray dose for the photon treatment 
       For photon treatments, out-of-field stray photon dose calculations below 5% of the prescribed 

dose have been shown to under report dose by up to 60-70% (Howell et al., 2010a, Joosten et al., 

2011).  Commercial photon treatment planning systems also do not calculate neutron dose produced 

by the linear accelerator for high energy photon treatments using beam energies above ~10 MV. 

None of our studies included photons at or above 10 MV, so photoneutrons were not considered in 

this work.  

     The stray dose was calculated using an analytical absorbed dose calculation model designed 



20 
 

following the methodology from Howell et al (2010b). This methodology is reviewed below for the 

convenience of the reader.  A 6 MV HL treatment plan was designed for a commercial male 

dosimetry phantom (ATOM, CIRS, Inc., Norfolk, VA) on the commercial TPS (Figure 2.5).  4-5 

lithium fluoride thermoluminescent dosimeters (TLD-100) were placed inside the phantom at pre-

determined locations relative to the 50% isodose line from the treatment plan.  These locations were 

identified and transferred to the correct location inside the phantom as a result of it being cut into 

identifiable axial slices, both on the phantom itself as well as on its CT images on the TPS.   

     The closest distance a given slice was from the 50% isodose line (in cm) was measured using the 

TPS.  The TLD-100 dosimeters were placed in the particular slice which was a known distance from 

the 50% isodose line.  The treatment plan was delivered on a commercial medical linear accelerator 

(Varian 2100C, Varian Medical Systems, Palo Alto, CA) which is calibrated monthly for infield dose 

using the American Association of Physicists in Medicine Task Group 51 protocol (Almond et al., 

1999) at our institution and commissioned for clinical use. 

 
Figure 2-5 – Anthropomorphic phantom - Photograph of the anthropomorphic phantom used for the TLD 

measurements the prescribed dose. 

 

     Following irradiation, the TLDs were individually read at an established laboratory traceable to 

standards from a National protocol consistent with Accredited Dosimetry Calibration Laboratory 

(ADCL) procedures. The reading procedure accounted for energy response, linearity, and dosimeter 

fading.  The uncertainty for each TLD was < 3.0% (Kirby et al., 1986, Kirby et al., 1992). Each TLD 

dose reading was determined from a calibration coefficient derived from a set of reference TLDs 

taken from the same batch as the measurement TLDs.  The reference TLDs were irradiated by a 
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Cobalt-60 unit traceable to the ADCL and the National Institute of Standards and Technology 

(NIST).  The measured absorbed doses were normalized per absorbed dose delivered to the isocenter 

and were reported in centi-Sievert per delivered Gray to isocenter (cSv/Gyiso) (Eq. 2.2).      
𝑯𝑻𝑳𝑫
𝑫𝑰𝒔𝒐

= 𝑫𝑻𝑳𝑫∗𝒘𝑹����  
𝑫𝑰𝒔𝒐

                                                                                                          (𝑬𝒒.𝟐.𝟐) 

where  𝐻𝑇𝐿𝐷 is the equivalent dose delivered to the TLD (cSv), 𝐷𝐼𝑠𝑜 is dose delivered to isocenter 

(Gyiso), 𝐷𝑇𝐿𝐷 is the absorbed dose delivered to the TLD, and 𝑤𝑅���� is the mean radiation weighting 

factor for photons, which equals 1.0. 

      TLD doses were plotted vs distance from the 50% isodose line.  An analytical model was fit to 

the plot to describe this relationship between dose and distance from field edge (defined as the 50% 

prescribed isodose line) for the photon IMRT HL treatment.  The equation which best fit the data 

was a power function of the form: 

               𝑯𝑻𝑳𝑫
𝑫𝑰𝒔𝒐

= 𝟔𝟗.𝟑𝟏𝟏 ∗ 𝒙𝟓𝟎−𝟏.𝟓𝟎𝟑                                                                                      (𝑬𝒒.𝟐.𝟑) 

where  𝐻𝑇𝐿𝐷 is the equivalent dose delivered to the TLD (cSv), 𝐷𝐼𝑠𝑜 is dose delivered to isocenter 

(Gyiso), and 𝑥50 is the distance in cm the TLD is from the 50% isodose line. 

       Using the computer programming language Matlab® (Version R2012a (7.14.0.739), 

Mathworks®, Natick, MA), an algorithm was devised to incorporate the analytical model (Eq. 2.2) on 

a voxel by voxel basis to the portion of the OAR that fell below the coverage of the 5% isodose line.  

𝑥50 was found and then input into Eq. 2.3 and multiplied by the prescription dose of 36 Gy.  𝐻𝑇𝐿𝐷 

replaced the original TPS value.  This process was repeated for voxels in the breast, lungs, and 

thyroid of each patient.  Figure 2.6 describes the process. 
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Figure 2-6 – Photon low dose correction algorithm - For both images, the pink shaded area represents the 
breasts, the maroon shaded area represents the CTV, and the yellow outlined area represents the portion of the 
breast that is below the 5% isodose line. a) Axial slice of Patient #1.  The screenshot depicts a small sample of 
how the algorithm steps through each voxel located on the 50% isodose line to determine the shortest distance 
to a given voxel in the right breast outside of the 5% isodose line.  After checking each distance in all three 
dimensions, the minimum is determined (yellow box) and designated as 𝑥50. b) Sagittal slice of Patient #1 
displaying the same algorithm steps to find the closest distance to the 50% isodose line as a) but in a different 
dimension for a different voxel in the left breast.   



23 
 

2.2.3.ii. Stray dose for the proton treatment 
      Stray radiation in proton therapy is due to secondary neutron formation from proton-induced 

nuclear reactions in the treatment apparatus as well as within the patient (Agosteo et al., 1998, Yan et 

al., 2002, Jiang et al., 2005, Taddei et al., 2008, Zheng et al., 2008, Agosteo et al., 2008, Perez-

Andujar et al., 2009, Newhauser et al., 2009, Zhang et al., 2010).  These neutrons are designated as 

external and internal neutrons, respectively.  As noted above, for the proton treatment plans, the 

commercial TPS did not calculate neutron doses to the patient, which can exceed 1% of the 

prescribed dose to the patient in proton treatments (Taddei et al., 2009, Taddei et al., 2010a).  

      The neutron dose for the proton treatment plans was calculated using Monte Carlo methods. 

Monte Carlo uses statistical methods to estimate solutions for stochastic problems.  The Monte Carlo 

N-Particle eXtended (MCNPX) version 2.7c transport code, developed at Los Alamos National 

Laboratory was used.  The accuracy of MCNPX for simulation of a proton therapy nozzle treatment 

was validated both within our group and by others (Fontenot et al., 2005, Newhauser et al., 2005, 

Polf and Newhauser, 2005, Titt et al., 2006, Tayama et al., 2006, Moyers et al., 2008).  In order to 

use the patient-specific treatment information from the commercial TPS for each individual patient, 

parameters were imported into the MCNPX-based Monte Carlo Proton Treatment Planning System 

(MCPRTP) described by Zheng et al (2006) and Newhauser et al (2007b). 

     We followed the methods of Newhauser et al (2009) to estimate the H/D values for both PSPT 

and IMPT, which have also been used in several other studies (Taddei et al., 2009, Taddei et al., 

2010a, Rechner et al., 2012a).  Using these established methods allowed us to make clinically 

realistic simulations of both PSPT and IMPT with a single simulation model.  This was an important 

feature in avoiding the introduction of systematic bias when comparing internal versus external 

neutron exposures. 

2.2.4. - Risk Models 

2.2.4.i. RadRAT and BEIR VII        
       The National Cancer Institute (NCI) Radiation Risk Assessment Tool (RadRAT) (Berrington de 

Gonzalez et al., 2012) and the  National Academy of Sciences Biological Effects of Ionizing 

Radiation (BEIR) VII – Phase 2 Report (National Research Council (U.S.). Committee to Assess 

Health Risks from Exposure to Low Level of Ionizing Radiation., 2006) were used to quantify the 

RSC risk for our patient studies.  RadRAT is based largely on BEIR VII, which used the data from 

the Life Span Study (LSS) (Beebe et al., 1962, Preston et al., 2007, Ozasa et al., 2012) to derive RSC 

risk models.   

      BEIR VII calculates the Excess Relative Risk (𝐸𝑅𝑅) of RSCs on a per organ basis as a function 

of sex, organ irradiated, dose to organ, age at exposure, and attained age (age lived to).  The ERR is 
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defined as the ratio of RSC incidence of a radiation exposed population versus an unexposed 

population minus 1, or 

𝑬𝑹𝑹 =  𝑹𝑺𝑪 𝒊𝒏𝒄𝒊𝒅𝒆𝒏𝒄𝒆𝑬𝒙𝒑𝒐𝒔𝒆𝒅 𝑷𝒐𝒑𝒖𝒍𝒂𝒊𝒐𝒏

𝑹𝑺𝑪 𝒊𝒏𝒄𝒊𝒅𝒆𝒏𝒄𝒆𝑼𝒏𝒆𝒙𝒑𝒐𝒔𝒆𝒅 𝑷𝒐𝒑𝒖𝒍𝒂𝒊𝒐𝒏
− 𝟏                                                          (𝑬𝒒.𝟐.𝟒) 

       The BEIR VII risk model is based upon the linear non-threshold (LNT) model which states that 

as dose increases, the risk of developing a second cancer linearly increases as well.  While the 

thyroid has been shown to not follow the LNT model at higher doses (Sigurdson et al., 2005, 

Ronckers et al., 2006, Bhatti et al., 2010), the majority of studies of medically irradiated populations 

have reported that risk of developing RSCs in most organs increases linearly with dose (NCRP, 

2011, Berrington de Gonzalez et al., 2013).  

       With the exception of breast (for which RadRAT did not provide an equation for ERR 

calculations), RadRAT uses the same ERR equations and coefficients as BEIR VII, but also has risk 

models for several additional OARs compared to BEIR VII, such as esophagus, which can be used 

for future studies.  Since there was no ERR calculations for breast in RadRAT, the ERR was 

calculated using the BEIR VII equation for breast. 

2.2.4.ii. Relative Risk (RR) calculations     
       The doses discussed in Section 2.2.3 above were calculated on a voxelized grid of 4 mm spatial 

resolution in the x-, y-, and z- dimensions of a Cartesian coordinate system.  Each voxel was 

assigned an equivalent dose value (Hi).  These equivalent dose values were then input into an in-

house Matlab® program we developed to calculate ERR.  Risk calculations were performed on a 

voxelized grid of 5 mm spatial resolution (mean ERR differences between 4 and 5 mm resolutions 

were on average less than 0.5%). 

      The program calculated and displayed the ERR on a voxel by voxel basis in the same manner as 

the TPS calculated dose.  Previous works either calculated risk values based off of mean organ dose 

(Schneider et al., 2000, Newhauser et al., 2009, Fontenot et al., 2009, Taddei et al., 2010a, Taddei et 

al., 2010b) or the Dose Volume Histogram (DVH) data (Hodgson et al., 2007b, Andolino et al., 

2011, Rechner et al., 2012a, Cella et al., 2013).  Calculating voxel by voxel removed the loss of 

spatial risk information for visualization while maintaining the ability to tabulate the mean dose and 

risk information as needed.   

       Since BEIR VII and RadRAT had unique risk equations for each OAR (total breast using BEIR 

VII, total lung and thyroid using RadRAT) in the study, it was necessary to be able to determine 

which voxel were contained within the specified OARs.  To accomplish this task, the program was 

designed to automatically identify and catalog the affiliated OAR of each voxel based upon the OAR 
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contours drawn in the TPS.  Eq. 2.4-2.7 were used to calculate the ERR for each voxel for each 

OAR.   

For breast 

𝑬𝑹𝑹𝑳𝑵𝑻,𝒊 = 𝜷𝒋 ∗ 𝑯𝒋,𝒊 ∗ ( 𝒂
𝟔𝟎

)−𝟐                                                                          (𝑬𝒒.𝟐.𝟓) 

       where 𝐸𝑅𝑅𝐿𝑁𝑇,𝑖 is the ERR using the organ specific LNT risk model calculated to voxel i;  𝛽𝑗 is 

the ERR/Sv for exposure at exposed age (e) of 30+ at attained age (a) of 60; 𝐻𝑗,𝑖 is the Equivalent 

Dose (Sv) found using Eq. 2.1 to the voxel i of a given OAR, j; and 𝒂 is the attained age in years. 

 

For lung, 

 

at age of exposure less than 30 years old,  

𝑬𝑹𝑹𝑳𝑵𝑻,𝒊 = 𝜷𝒋 ∗ 𝑯𝒋,𝒊 ∗ 𝒆[𝜸𝒋∗(𝒆−𝟑𝟎)] ∗ ( 𝒂
𝟔𝟎

)𝜼𝒋                                                       (𝑬𝒒.𝟐.𝟔) 

       where  𝛾𝑗 is the per decade increase in age at exposure over the range 0-30 years (always 

negative) for a given OAR, j; 𝑒 is the age at exposure in years and 𝜂𝑗 is the exponent of attained age 

(always negative) for a given OAR, j. 

 

at age of exposure equal to or greater than 30 years old 

𝑬𝑹𝑹𝑳𝑵𝑻,𝒊 = 𝜷𝒋 ∗ 𝑯𝒋,𝒊 ∗ ( 𝒂
𝟔𝟎

)𝜼𝒋                                                                            (𝑬𝒒.𝟐.𝟕) 

 

For thyroid,  

𝑬𝑹𝑹𝑳𝑵𝑻,𝒊 = 𝜷𝒋 ∗ 𝑯𝒋,𝒊 ∗ 𝒆[𝜸𝒋∗(𝒆−𝟑𝟎)]                                                                (𝑬𝒒.𝟐.𝟖) 

       

      The 𝐸𝑅𝑅𝐿𝑁𝑇,𝑖 was then converted to Relative Risk (𝑅𝑅) (Kaplan and Garrick, 1981) for each 

voxel.  The definition of 𝑅𝑅 is  

𝑹𝑹 = 𝑹𝑺𝑪 𝒊𝒏𝒄𝒊𝒅𝒆𝒏𝒄𝒆𝑬𝒙𝒑𝒐𝒔𝒆𝒅 𝑷𝒐𝒑𝒖𝒍𝒂𝒊𝒐𝒏

𝑹𝑺𝑪 𝒊𝒏𝒄𝒊𝒅𝒆𝒏𝒄𝒆𝑼𝒏𝒆𝒙𝒑𝒐𝒔𝒆𝒅 𝑷𝒐𝒑𝒖𝒍𝒂𝒊𝒐𝒏
= 𝑬𝑹𝑹 + 𝟏                                              (𝑬𝒒.𝟐.𝟗) 

      The 𝑅𝑅 for a voxel (𝑅𝑅𝐿𝑁𝑇,𝑖) was calculated using 

𝑹𝑹𝑳𝑵𝑻,𝒊 = 𝑬𝑹𝑹𝑳𝑵𝑻,𝒊 + 𝟏                                                                                (𝑬𝒒.𝟐.𝟏𝟎) 

       where 𝐸𝑅𝑅𝐿𝑁𝑇,𝑖 was taken from Eq. 2.5, 2.6, 2.7, or 2.8.         

       After 𝑅𝑅𝐿𝑁𝑇,𝑖 in each voxel in the OAR was calculated for RR, the mean RR for that OAR was 

found using 

𝑹𝑹𝒋𝑳𝑵𝑻��������� = ∑ 𝑹𝑹𝑳𝑵𝑻,𝒊𝒊
𝒊

                                                                                          (𝑬𝒒.𝟐.𝟏𝟏) 
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       In this equation, 𝑅𝑅𝚥𝐿𝑁𝑇��������� is the mean RR for the jth OAR for a given treatment plan, 𝑅𝑅𝐿𝑁𝑇,𝑖 is 

the RR for an individual voxel contained within the jth OAR, and 𝑖 is the number of voxels contained 

within the jth OAR. 

2.2.4.iii. Ratio of Relative Risk (RRR)    
       The endpoint of this work, and the metric we used to determine which treatment plan provided 

the lowest risk of developing a RSC, was the Ratio of Relative Risk (𝑅𝑅𝑅).  RRR is calculated by 

dividing the RR for a given treatment plan by the RR of the IMRT photon treatment plan as shown in 

Eq. 2.12. 

𝑹𝑹𝑹 = 𝑹𝑹𝑻𝒓𝒆𝒂𝒕𝒎𝒆𝒏𝒕 𝑷𝒍𝒂𝒏
𝑹𝑹𝑰𝑴𝑹𝑻 𝑷𝒉𝒐𝒕𝒐𝒏 𝑷𝒍𝒂𝒏

                                                                                        (𝑬𝒒.𝟐.𝟏𝟐) 

       In Eq. 2.12, 𝑅𝑅𝑅 is the Ratio of Relative Risk, 𝑅𝑅𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑃𝑙𝑎𝑛 is the Relative Risk of a 

specified treatment plan (in this work it will be one of the proton treatment plans), and 

𝑅𝑅𝐼𝑀𝑅𝑇 𝑃ℎ𝑜𝑡𝑜𝑛 𝑃𝑙𝑎𝑛 is the Relative Risk of the IMRT photon treatment plan. 

        There were two endpoints examined using the RRR formula.   To assist in clarifying the 

differences between the various RRR calculations, the reader is directed to Table 2.3.  They are now 

examined in detail individually.   

 

1. Mean RRR for a given organ and a given patient (white squares in Table 2.3) 

 𝑹𝑹𝑹𝒋,𝒌��������� = 𝟏
𝑳𝒋,𝒌

∑ 𝑹𝑹𝑹𝒊,𝒋,𝒌
𝑳𝒋,𝒌
𝒊=𝟏                                                                                   (𝑬𝒒.𝟐.𝟏𝟑) 

where 𝑅𝑅𝑅𝚥,𝑘��������� is the mean RRR for all voxels, i, contained in a given OAR, j, and a given patient, k; 

𝐿𝑗,𝑘 is the total number of voxels, i, of the jth OAR of the kth patient; and 𝑅𝑅𝑅𝑖,𝑗,𝑘 is the calculated 

RRR for the ith voxel of the jth OAR of the kth patient. 

 

2. Mean RRR for a given OAR for all patients (green squares in Table 2.3) 

𝑹𝑹𝑹𝒋������� = 𝟏
𝑵𝒋
∑ 𝟏

𝑳𝒋,𝒌
∑ 𝑹𝑹𝑹𝒊,𝒋,𝒌
𝑳𝒋,𝒌
𝒊=𝟏

𝑵𝒋
𝒌=𝟏                                                                       (𝑬𝒒.𝟐.𝟏𝟒) 

where 𝑅𝑅𝑅𝚥������� is the mean RRR for all voxels, i, and all patients, k, for a given OAR, j; 𝑁𝑗 is the total 

number of patients for a given OAR, j;  𝐿𝑗,𝑘 is the total number of voxels, i, of the jth OAR of the kth 

patient; and 𝑅𝑅𝑅𝑖,𝑗,𝑘 is the calculated RRR for the ith voxel of the jth OAR of the kth patient. 
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Table 2-3 – Flow diagram of different mean RRR calculations - Depicts the different mean RRR endpoints examined for this work.  Start at Box 1 and follow 
the green arrows to follow the logical progression of the graph.  Box1 defines the variables used in the mean RRR equations. Box 2 states what the variables will 
be used to calculate.  Box 3 defines the 5 different RRR endpoints that were calculated.  Box 4 provides the visual representation of how those 2 RRR endpoints 
were calculated and how they relate to each other (via the red arrows). 
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When calculating the RSC risk to each organ, organs that have two distinct left and right portions 

(i.e., breast, lung) were calculated together rather than individually as this was the technique used in 

the risk models.  To explore the influence of exposed (e) and attained (a) ages, each patient had a full 

risk calculation done for exposed ages (e) of 10, 26, and 42.  These ages corresponded to the 

minimum, mean, and maximum age of our patient cohort, respectively.  Each of these exposed ages 

were calculated in combination with an attained age (a) of the given exposed age + 20 years and the 

given exposed age + 50 years.    

       To avoid inundating the text with data, a representative patient was used to display the data for 

Aim 1.  Three variables were held constant which included 

• Exposed Age of Patient - 26 (the mean age of our patient cohort) 

• Attained Age of Patient - 46 (= 26+20, which is roughly equivalent to the median time for a 

RSC to develop in an HL patient treated with radiation (Friedman et al., 2010)) 

• Neutron radiation weighting factor (neutron 𝑤𝑅����) = 20 

These variables will be varied in Aim 2 to determine any change in outcomes.  

2.2.5. – Statistical Tests for Significance 
       Two standard statistical tests were conducted to determine the statistical significance for 𝑅𝑅𝑅𝚥,𝑘��������� 

for each OAR of interest (i.e. breast, lung, thyroid):  the sign test and the Student’s t-test (Rosner, 

2011).  Since we are comparing 𝑅𝑅𝑅𝚥,𝑘��������� to 1 rather than another distribution, these tests were 

classified as a one sample inference.  In addition, both were two-sided tests of significance because, 

a priori, it was unclear if the 𝑅𝑅𝑅𝚥,𝑘��������� would always be > or < than 1.  

2.2.5.i. Sign test 
       The sign test is a non-parametric test (does not assume a Gaussian distribution of the data) that 

determines whether two samples are from the same distribution.  It is relatively insensitive to outliers 

as it disregards the magnitude of the difference between the comparisons.  𝑅𝑅𝑅𝚥,𝑘���������  had three possible 

outcomes: 

1.   𝑅𝑅𝑅𝚥,𝑘��������� = 1 – The photon and proton plan had equal RSC risks 

2.   𝑅𝑅𝑅𝚥,𝑘��������� > 1 – The photon plan had lower RSC risk  

3.   𝑅𝑅𝑅𝚥,𝑘��������� < 1 – The proton plan had lower RSC risk 

       𝑅𝑅𝑅𝚥,𝑘��������� was designated as (+) if it was greater than 1 and (-) if it was less than 1.  The null 

hypothesis was H0: P(+) = P(-) and the alternate hypothesis was H1: P(+) ≠ P(-), where P(±) is the 

probability of a + or –, respectively. To determine significance one can test how many patients 

showed a 𝑅𝑅𝑅𝚥,𝑘���������  > 1 or < 1 for each OAR.  Since this is a two tailed sign test, you can determine if 
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either the proton or photon plans show a significant difference in RSC risk as we will show below.  

For this work we chose to count the number of patients with a 𝑅𝑅𝑅𝚥,𝑘��������� < 1 for each OAR.   

       Equation 2.15 is the test parameter used to determine the number of patients per OAR (out of a 

total number of patients, n=9) that would need to have a 𝑅𝑅𝑅𝚥,𝑘��������� value of > 1 to conclude with an α = 

0.05 (where α is the significance level that denotes the probability of a type I statistical error which 

would reject H0 when H0 is actually true) that proton plans have a lower risk of RSC compared to 

their corresponding photon plans.  Note from Figure 2.7 and Eq. 2.15 that the number of patients 

with a 𝑅𝑅𝑅𝚥,𝑘��������� < 1, C, must be a number greater than C2. 

               𝑪 > 𝑪𝟐 = 𝒏
𝟐

+ 𝟏
𝟐

+ �𝒛�𝟏− 𝜶 𝟐� � ∗ �
𝒏
𝟒

 �                                                                       (𝑬𝒒.𝟐.𝟏𝟓) 

where C is the number of patients with a 𝑅𝑅𝑅𝚥,𝑘��������� < 1, C2 is the upper critical value which equals the 

number of patients out of the total number of patients examined (n, which for our purposes is 9) that 

must have a 𝑅𝑅𝑅𝚥,𝑘��������� < 1 to have statistical significance at the α = 0.05 level, and Z is the test statistic 

derived from the normal distribution (which for α = 0.05 is 𝑧(1− .025) = 1.96) (Rosner, 2011).  For 

our studies (where n = 9), C must be ≥ 8 patients in order to state that the proton plans administered 

to our patient population have a statistically significant lower 𝑅𝑅𝑅𝚥,𝑘��������� than our patient population’s 

corresponding photon plan. 

       Conversely, Equation 2.16 is the test parameter used to determine the number of patients (out of 

our total number of patients, n = 9) that would need to have a 𝑅𝑅𝑅𝚥,𝑘��������� value of less than 1 to conclude 

with an α = 0.05 (where α is the significance level that denotes the probability of a type I statistical 

error which would reject H0 when H0 is actually true) that photon plans have a lower risk of RSC 

compared to their corresponding proton plans.  Note from Figure 2.7 and Eq. 2.16 that the number of 

patients with a 𝑅𝑅𝑅𝚥,𝑘��������� < 1, C, must be a number less than C1.                   

𝑪 < 𝑪𝟏 = 𝒏
𝟐
− 𝟏

𝟐
− �𝒛�𝟏− 𝜶 𝟐� � ∗ �

𝒏
𝟒

 �                                                                      (𝑬𝒒.𝟐.𝟏𝟔)                             

where C is the number of patients with a 𝑅𝑅𝑅𝚥,𝑘��������� < 1, C1 is the lower critical value which is the 

number of patients out of the total number of patients examined (n, which for our purposes is 9) that 

must have a 𝑅𝑅𝑅𝚥,𝑘��������� < 1 to have statistical significance at the α = 0.05 level, and Z is the test statistic 

derived from the normal distribution (which for α = 0.05 is 𝑧(1− .025) = 1.96) (Rosner, 2011).  For 

our studies (where n = 9), C must be < 1 patient in order to state that the photon plans administered 
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to our patient population have a statistically significant lower 𝑅𝑅𝑅𝚥,𝑘��������� than our patient population’s 

corresponding proton plan. 

 

Figure 2-7 – Sign test parameters - Cartoon depicting the values of C needed to determine statistical 
significance of whether or not either proton or photon plans have a lower 𝑅𝑅𝑅𝚥,𝑘��������� compared to the other.  If C < 
C1 then the photon plans have a statistically significant lower 𝑅𝑅𝑅𝚥,𝑘���������.  If C > C2 then the proton plans have a 
statistically significant lower 𝑅𝑅𝑅𝚥,𝑘���������.  C1, C2, and n/2 are given numerical values that correlate to the number 
of patients required to obtain significance. 

 

2.2.5.ii. Student’s t-test 
       Student’s t-test is a parametric test that determines if the mean of a sample distribution is from 

the same distribution as the population mean. The parametric assumptions of the test may not be 

reasonable to assume given our small sample size.  For pedagogical reasons, however, it was thought 

appropriate to examine in this work.  As with the sign test, we can test if either the proton or photon 

plan have statistically significant 𝑅𝑅𝑅𝚥,𝑘��������� values relative to the other for each OAR.  The null 

hypothesis H0: 𝑅𝑅𝑅𝚥,𝑘��������� = 1 was compared to the alternate hypothesis: H1: 𝑅𝑅𝑅𝚥,𝑘��������� ≠ 1, with a two-

sided significance level (α) of 0.05, the test statistic 𝑡 was computed (Rosner, 2011) according to 

     𝒕 = 𝒙�−𝝁𝟎
𝒔
√𝒏�

                                                                                                             (𝑬𝒒.𝟐.𝟏𝟕) 

where 𝑥̅ is the sample mean, 𝜇0 is the expected or population mean (equal to 1 here), 𝑠 is the sample 

standard deviation, and 𝑛 is the sample size (equal to 9 here).   
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       This value was then compared to Eq. 2.17 and 2.19.  If t is less than or equal to the value 

calculated for Eq. 2.19 (𝐶1), then the proton plans have a lower mean RSC risk.  If the test statistic, t, 

is more than or equal to the value calculated in Eq. 2.19 (𝐶2), then the photon plans have a lower 

mean RSC risk. 

       𝒕 ≤ 𝑪𝟏 = 𝒕�𝒏−𝟏,( 𝜶𝟐 )�                                                                                         (𝑬𝒒.𝟐.𝟏𝟖) 

where 𝑪𝟏 is the lower critical value that indicates that a proton plan has a statistically significant 

lower mean RSC risk compared to its corresponding photon plan, 𝒏 is the sample size (equal to 9 

here), and 𝜶 is the significance level (equal to 0.05 here), Ho is rejected.  For our study (n=9), t  = -

2.306. 

      𝒕 > 𝑪𝟐 = 𝒕�𝒏−𝟏,(𝟏− 𝜶𝟐)�                                                                                      (𝑬𝒒.𝟐.𝟏𝟗) 

where 𝑪𝟐 is the upper critical value that indicates that a photon plan has a statistically significant 

lower mean RSC risk compared to its corresponding proton plan, 𝒏 is the sample size (equal to 9 

here), and 𝜶 is the significance level(equal to 0.05 here), Ho is rejected.  For our study (n=9), t  = 

2.306.  The acceptance and rejection regions are shown in Figure 2.8 below.   

 

Figure 2-8 – Student’s t-test parameters - Cartoon depicting the values of t needed to determine statistical 
significance of whether or not either proton or photon plans have a lower 𝑹𝑹𝑹𝒋,𝒌��������� compared to the other.  If t ≤ 
C1 then the proton plans have a statistically significant lower 𝑹𝑹𝑹𝒋,𝒌���������.  If t > C2 then the photon plans have a 
statistically significant lower 𝑹𝑹𝑹𝒋,𝒌���������.  C1 and C2, are given numerical values that correlate to the number of 
patients required to obtain significance. 
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2.2.6. – Propagation of Uncertainties 
        To account for uncertainty in the 𝑅𝑅𝑅������ calculations, error propagation was used.  We adapted 

the formula for the 𝑅𝑅𝑅������ uncertainty from Fontenot et al (2010) and Rechner et al (2012a).  Error 

propagation was calculated for each instance of Eq. 2.13:    𝑅𝑅𝑅𝚥,𝑘��������� = 1
𝐿𝑗,𝑘

∑ 𝑅𝑅𝑅𝑖,𝑗,𝑘
𝐿𝑗,𝑘
𝑖=1 .   

       Recall from Eq. 2.12 that 𝑅𝑅𝑅������  = 𝑅𝑅𝑃𝑟𝑜𝑡𝑜𝑛�������������
𝑅𝑅𝑃ℎ𝑜𝑡𝑜𝑛 𝐼𝑀𝑅𝑇���������������������, and can be reduced further from Eq. 2.9 to 

𝑅𝑅 = 𝐸𝑅𝑅 + 1.  To simplify the calculation, the ERR calculations (Eqs. 2.5-2.8) were simplified to 

the following general form (Eq. 2.20): 

  𝑬𝑹𝑹𝑻,𝑳𝑵𝑻𝒋,𝒌
��������������� = 𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑻𝒋.𝒌

������                                                                            (𝑬𝒒.𝟐.𝟐𝟎) 

Where 𝐸𝑅𝑅𝑇,𝐿𝑁𝑇𝚥,𝑘
��������������� is the mean ERR calculated for a given OAR, j, and for a given patient, k, of 

treatment plan, T; 𝛽𝑗 is the ERR/Sv for exposure at exposed age (e) of 30+ at attained age (a) of 60 

for a given OAR, j; 𝐶𝑗,𝑘 is a constant calculated for a given exposed age (e), attained age (a), per 

decade increase in age at exposure over the range 0-30 years (𝛾𝑗) for a given OAR, j, for a given 

exponent of attained age (𝜂𝑗) for a given patient, k ; and 𝐻𝑇𝚥.𝑘
������ is the mean equivalent dose (Sv) 

found using Eq. 2.1 for a given OAR, j, for a given patient, k, of treatment plan, T. 

       Combining the above equations gives the general form of the equation with which we 

propagated the uncertainties (Eq. 2.21): 

𝑹𝑹𝑹𝑳𝑵𝑻𝒋,𝒌������������� =
𝑹𝑹𝑷𝒓𝒐𝒕𝒐𝒏,𝑳𝑵𝑻������������������

𝒋,𝒌

𝑹𝑹𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻,𝑳𝑵𝑻𝒋,𝒌
����������������������������� =

𝑬𝑹𝑹𝑷𝒓𝒐𝒕𝒐𝒏,𝑳𝑵𝑻𝒋,𝒌
�����������������������+𝟏

𝑬𝑹𝑹𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻,𝑳𝑵𝑻𝒋,𝒌+𝟏
���������������������������������� =

�𝜷𝒋∗𝑪𝒋,𝒌∗𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
���������������+𝟏

�𝜷𝒋∗𝑪𝒋,𝒌∗𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
����������������������+𝟏

          (𝑬𝒒.𝟐.𝟐𝟏) 

Where 𝑅𝑅𝑅𝐿𝑁𝑇𝚥,𝑘
�������������  is the 𝑅𝑅𝑅������ using the LNT dose response model,  𝑅𝑅𝑃𝑟𝑜𝑡𝑜𝑛,𝐿𝑁𝑇����������������

𝑗,𝑘 is the mean RR 

for a given proton treatment plan using the LNT dose response model, 𝑅𝑅𝑃ℎ𝑜𝑡𝑜𝑛 𝐼𝑀𝑅𝑇,𝐿𝑁𝑇𝚥,𝑘
�������������������������� is the 

mean RR for a given photon IMRT treatment plan using the LNT dose response model, 

𝐸𝑅𝑅𝑃𝑟𝑜𝑡𝑜𝑛,𝐿𝑁𝑇𝚥,𝑘
��������������������� is the mean ERR for a given proton treatment plan using the LNT dose response 

model, 𝐸𝑅𝑅𝑃ℎ𝑜𝑡𝑜𝑛 𝐼𝑀𝑅𝑇,𝐿𝑁𝑇𝚥,𝑘
��������������������������� is the mean ERR for a given photon IMRT treatment plan using the 

LNT dose response model, 𝐻𝑃𝑟𝑜𝑡𝑜𝑛𝚥.𝑘
������������ is the total mean equivalent dose (Sv) for a given proton 

treatment plan, 𝐻𝑃ℎ𝑜𝑡𝑜𝑛 𝐼𝑀𝑅𝑇𝚥.𝑘
������������������� is the total mean equivalent dose (Sv) for a given photon IMRT 

treatment plan, and 𝛽𝑗 and 𝐶𝑗,𝑘 are the same quantities described in Eq. 2.20.  To avoid 
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receptiveness, it should be understood that all quantities of the form 𝑋𝑌𝚥,𝑘
������ indicate for a given OAR, 

j, and for a given patient, k. 

       To propagate errors, the derivative of each variable with respect to the quantity we wished to 

propagate was taken. Taking Eq. 2.21, the equation for the propagation of errors for the mean RRR, 

𝑅𝑅𝑅𝐿𝑁𝑇𝚥,𝑘
�������������, was as follows: 

𝜎𝑹𝑹𝑹𝑳𝑵𝑻𝒋,𝒌���������������
2 = �

𝜕𝑹𝑹𝑹𝑳𝑵𝑻𝒋,𝒌���������������

𝜕𝜷𝒋
�
2

𝜎𝜷𝒋
2 + �

𝜕𝑹𝑹𝑹𝑳𝑵𝑻𝒋,𝒌���������������

𝜕𝑪𝒋,𝒌 
�
2

𝜎𝑪𝒋,𝒌 
2 + �

𝜕𝑹𝑹𝑹𝑳𝑵𝑻𝒋,𝒌���������������

𝜕𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋,𝒌���������������
2

𝜎𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋,𝒌�������������� 
2 +

�
𝜕𝑹𝑹𝑹𝑳𝑵𝑻𝒋,𝒌���������������

𝜕𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋,𝒌
�����������������������

2

𝜎𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋,𝒌
���������������������� 
2                                                                                       (𝑬𝒒.𝟐.𝟐𝟐) 

Where 𝑅𝑅𝑅𝐿𝑁𝑇𝚥,𝑘
�������������, 𝐻𝑃𝑟𝑜𝑡𝑜𝑛𝚥.𝑘

������������, 𝐻𝑃ℎ𝑜𝑡𝑜𝑛 𝐼𝑀𝑅𝑇𝚥.𝑘
�������������������, 𝛽𝑗, 𝐶𝑗,𝑘 are the same quantities defined in Eq. 2.21, 

𝜎𝑅𝑅𝑅𝐿𝑁𝑇𝚥,𝑘
��������������� is the uncertainty in 𝑅𝑅𝑅𝐿𝑁𝑇𝚥,𝑘

�������������,  𝜎𝛽𝑗 is the known uncertainty in 𝛽𝑗, 𝜎𝐶𝑗,𝑘  is the 

known uncertainty in 𝐶𝑗,𝑘, 𝜎𝐻𝑃𝑟𝑜𝑡𝑜𝑛𝚥,𝑘
���������������  is the known uncertainty in 𝐻𝑃𝑟𝑜𝑡𝑜𝑛𝚥.𝑘

������������, and 

𝜎𝐻𝑃ℎ𝑜𝑡𝑜𝑛 𝐼𝑀𝑅𝑇𝚥,𝑘
�����������������������  is the known uncertainty in 𝐻𝑃ℎ𝑜𝑡𝑜𝑛 𝐼𝑀𝑅𝑇𝚥.𝑘

�������������������. 

       Table 2.4 defines the calculated derivatives and the known uncertainties of each variable for the 

LNT dose response model.  In Aim 2 there were unique equations calculated for the other dose 

response models examined.     
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Table 2-4 – LNT uncertainty terms and stated uncertainty for assigned variables 

Quantities Uncertainty Terms/Stated Uncertainty 

�
𝝏𝑹𝑹𝑹𝑳𝑵𝑻𝒋,𝒌�������������

𝝏𝜷𝒋
� 

��𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
������������������ + 𝟏� ∗ (𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌

������������)� − ��𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
������������ + 𝟏� ∗ (𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌

������������������)�

�𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
������������������ + 𝟏�

𝟐  

𝝈𝜷𝒋  Breast – 0.14 ERR/Sv Lung – 0.29 ERR/Sv Thyroid – 0.91 ERR/Sv 

�
𝝏𝑹𝑹𝑹𝑳𝑵𝑻𝒋,𝒌�������������

𝝏𝑪𝒋,𝒌 � 
��𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌

������������������� ∗ (𝜷𝒋 ∗ 𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
������������)� − ��𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌

������������� ∗ (𝜷𝒋 ∗ 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
������������������)�

�𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
������������������ + 𝟏�

𝟐  

𝝈𝑪𝒋,𝒌  0 

�
𝝏𝑹𝑹𝑹𝑳𝑵𝑻𝒋,𝒌�������������

𝝏𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋,𝒌
������������� 

𝟏

�𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
������������������ + 𝟏�

 

𝝈𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋,𝒌
��������������  5% of 𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌

������������ 

�
𝝏𝑹𝑹𝑹𝑳𝑵𝑻𝒋,𝒌�������������

𝝏𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋,𝒌
�������������������� 

�𝟏 − 𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
�������������

�𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
������������������ + 𝟏�

𝟐 

𝝈𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋,𝒌
��������������������  3% of 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌

������������������ 

        

       For this work, the uncertainty of 𝛽𝑗 was found by consulting both BEIR VII (for breast) and 

RadRAT (for lung and thyroid).  ±2σ is given for 𝛽𝑗. The values are not symmetric so ±σ was 

averaged and multiplied by 2 to give the value used for 𝝈𝜷𝒋 for each OAR.  𝐶𝑗,𝑘 was assumed to have 

no uncertainty associated with it.  The uncertainty in 𝛽𝑗 is considered large enough to encompass any 

necessary variation in 𝐶𝑗,𝑘 (Berrington de Gonzalez et al., 2012).  Using values from Fontenot et al 

(2010) and Rechner et al (2012a), σHProtonȷ,k��������������  and σHPhoton IMRTȷ,k
���������������������� were conservatively selected to be 

5% and 3% of their given mean total equivalent doses, respectively.   

2.2.7. – Patient Treatment Variation Effects on Risk Analysis 
       In addition to checking statistical differences, we also looked at possible correlations between 

the patient and/or tumor characteristics and the subsequent 𝑅𝑅𝑅������.  Treatment and host specific factors 

were accounted for each patient by comparing the specified factor to 𝑅𝑅𝑅𝚥,𝑘��������� and looking for any 

correlation with the Coefficient of Determination (R2), which is a linear regression model that 

accounts for the percentage of variance to the data accounted for by the model used to describe it.  

The coefficient of determination runs from 0 to 1.  The closer the value to 0, the less the regression 

model improves the prediction over the mean model (i.e. the data mean).  A value equal to 1 

indicates perfect prediction.  The CTV was used as the reference contour since it is the same for both 

photon and proton plans. 
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2.2.7.i. Host factors 
a. Age (Years) at exposure (e) 

b. Body Mass Index (BMI) (kg/m2) 

c. OAR volume (cc) 

d. Patient width at the CTV centroid location  

i. Lateral width (cm) 

ii. Anterio-Posterior (AP) width (cm) 

e. Percent of OAR volume contained within the Photon IMRT 50% isodose line (%) 

f. Anatomical location of OAR relative to CTV (See Figure 2.9) 
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2.2.7.ii. Treatment factors 
a. CTV volume (cc)

 
Figure 2-9 – Anatomical location of OAR relative to CTV –  a) Anterio-Posterior (AP) rendering of Patient 
#1 showing the CTV (red), breast (yellow), lungs (blue), and thyroid (gray).  The green box encapsulates the 
furthest extent of these OARs in the lateral and superior/inferior (SI) directions.  It is then divided into 9 boxes 
as shown by dividing the full width and height of the box by 3.  The location of the OARs and CTV is 
determined by the location of the center of mass of that particular contour.  b) Sagittal rendering of Patient #1.  
The figure continues to show the green box but this time in the AP direction.  As in Figure 2.9a, the green box 
covers the extent of the OARs, but this time in the AP and SI directions and is equally divided into 9 different 
boxes.  A stands for “Anterior”, M stands for “Medial”, and P stands for “Posterior”.  They are combined with 
the numbering lines to form a total of 27 boxes (9 boxes each in the “A”, “M”, and “P” designations).  As an 
example, the CTV centroid would be designated as “A5” while the thyroid centroid is located in “A2”.       
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 2.3. Results 

2.3.1. – Characteristics of Patient Cohort 
      The patient cohort consisted of 9 patients who each had unique characteristics for both their host 

and treatment factors.   

2.3.1.i. Host factors 
       Host factors, including each individual patient’s demographics (age, height, weight, BMI) and 

OAR (breasts, lungs, thyroid) characteristics are included in Tables 2.5-2.8.   

 
Table 2-5 – Host characteristics per patient – demographics - Compilation of various host factors for the 
HL cohort.  With the exception of the youngest patient (Patient #8) there was fairly similar height, weight, and 
BMI values across the cohort 
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Table 2-6 – Host characteristics per patient – breast - Breast characteristics of all 9 patients. The total 
volume in cubic centimeters (cc) was found for each breast as well as the two combined (Total Breast).  As a 
point of reference, the percentage of the total breast contained within the open field of the photon IMRT 
treatment (designated as the 50% isodose line) was found to determine any possible correlations between 
proximity of the specified OAR to the tumor volume and the mean RRR value.  The breast had the second 
largest average percentage of tissue contained within the 50% isodose line of the three examined OARs.  The 
location designated as the Left and Right Breast Centroid Region corresponds to the description in Figure 2.9.       

 
 
 
 

Table 2-7 – Host characteristics per patient – lung - Lung characteristics of all 9 patients. The total volume 
in cubic centimeters (cc) was found for each lung as well as the two combined (Total Lung).  As a point of 
reference, the percentage of the total lung contained within the open field of the photon IMRT treatment 
(designated as the 50% isodose line) was found to determine any possible correlations between proximity of 
the specified OAR to the tumor volume and the mean RRR value.  The lung had the largest average percentage 
of tissue contained within the 50% isodose line of the three examined OARs.  The location designated as the 
Left and Right Lung Centroid Region corresponds to the description in Figure 2.9.       
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Table 2-8 – Host characteristics per patient – thyroid -Thyroid characteristics for all 9 patients. Due to its 
small size, the thyroid was considered as a whole rather than with a right and left side.  The total volume in 
cubic centimeters (cc) was found.  As a point of reference, the percentage of the thyroid contained within the 
open field of the photon IMRT treatment (designated as the 50% isodose line) was found to determine any 
possible correlations between proximity of the specified OAR to the tumor volume and the mean RRR value.  
The location designated as Thyroid Centroid Region corresponds to the description in Figure 2.9.       

 

 
 

       The patient cohort gave a large variation in volume for the breasts and lungs while the thyroid, 

due to its small size and standard position in the body, was fairly uniform.  For all three OARs, the 

percentage of the volume within the 50% isodose line for the photon IMRT plan varied considerably. 

2.3.1.ii. Treatment factors 
       Treatment factors, which were dictated by the CTV volume and location for each patient, are 

listed in Table 2.9.  The CTV Centroid Region corresponds to the description in Figure 2.9.  The 

patient width at the centroid of the CTV was found both in the lateral and AP direction of the patient 

to establish how much tissue would be traversed when treating the tumor volume.   
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Table 2-9 – Treatment characteristics per patient – CTV - Characteristics of the CTV volume and location 
for all 9 patients.  CTV volumes varied substantially from patient to patient, but on average, the width of the 
patient at the centroid of the CTV in both the lateral and AP directions did not.  As was to be expected, the 
CTV was found in the middle third laterally and in the anterior two thirds for all patients.  However,  4 of the 9 
patients where in either the superior or inferior third of the patient box described in Figure 2.9 which could 
impact the RRR values later in the results for the various OARs.       

 

 
 
 
 
Table 2-10 – Treatment characteristics per patient – beam setup - Characteristics of treatment beam 
orientation and approach for all 9 patients.  The majority of the patients used the same number of beams for the 
photon IMRT (5) and the proton (2) treatments.  When possible, equivalent angles were used to reduce 
variation from patient to patient.  However, in order to obtain appropriate tumor volume coverage, adjustments 
were made when necessary.  It is important to note that the plans were designed to sufficiently cover the tumor 
volume with the prescribed dose and not to optimize risk reduction.   
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2.3.2. – Characteristics and Images of Patient Plans 
       Example dose distributions and values are shown for a representative patient (Patient #2) to 

highlight the differences between the various treatment techniques and dose sources. 

2.3.2.i. Photon treatment plan 
       As was expected, the photon dose distributions from the largely 5 field IMRT (Table 2.1) dose 

distributions deposited low doses to larger volumes of the normal tissue and OAR in order to 

adequately cover the CTV.   Efforts were made to remove extraneous dose from the OARs as long as 

it did not compromise the tumor volume dose prescription. 

 
Figure 2-10 – Photon IMRT dose distribution example - Colorwash of the dose distribution (100% = 36 Sv) 
for Patient #4.  The CTV (rendered in black), breast (rendered in magenta), lung (rendered in sky blue) and 
thyroid (rendered in yellow) are visible in the various orientations. a) Axial, b) Coronal, and c) Sagittal 
renderings showing a 5 field setup for the photon IMRT treatment plan.   

 

2.3.2.ii. Proton treatment plans 
       The proton treatment plans included the dose found only from the commercial TPS.  One can 

clearly see the reduction in the low level dose to tissue outside of the intended treatment volume.  

This portion does not cover the neutron dose contributions, however, which will be shown in the 

next section.   
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Figure 2-11 – Proton primary dose distribution example - Colorwash of the dose distribution (100% = 36 
Sv) for Patient #4.  The CTV (rendered in black), breast (rendered in magenta), lung (rendered in sky blue) and 
thyroid (rendered in yellow) are visible in the various orientations. a) Axial, b) Coronal, and c) Sagittal 
renderings showing a 2 field AP/PA setup for the proton PSPT treatment plan.  Note the reduced doses outside 
the treatment volume relative to the photon IMRT plan. 

 

2.3.3. – Characteristics and Images of Stray Dose Distributions 
      The addition of the stray dose not included in the commercial TPS is shown here.  Visualization 

of the photon stray dose calculation below the 5% isodose line of the commercial TPS is not 

included in this study, but the dose distributions of the neutron contributions, both external and 

internal, from the proton treatment plans are shown. 

 2.3.3.i. Stray dose for the photon treatment plan 
       The equation which best fit the data was a power function (Eq. 2.3) that correlated to the TLD 

measured data with an R2 value of 0.9879.  The following graph shows the fit of the TLD dose 

measurements to the equation used to replace the voxels below the 5% isodose threshold.  
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Figure 2-12 – Photon out-of-field analytical model - Comparison of TLD dose measurements in the 
anthropomorphic phantom as a distance from the 50% isodose line.  The power function shows a strong 
correlation of determination to the data.   

 
Table 2.11 shows the increase in the mean dose after the application of the analytical model to 
regions of the various OARS that fell below the 5% isodose line in the commercial TPS. 
 

Table 2-11 – Percent increase in mean dose to OARs after photon scatter dose model correction - Percent 
Increase (%) in the mean dose to each OAR averaged over all patients after the photon scatter dose model was 
implemented.  Since this model was only used on voxels which were below the 5% isodose value, only a small 
portion of the voxels received a modification. A significant enough adjustment in the mean dose to an OAR 
that results in a change in the mean RRR from > 1 (indicating the mean dose to the photon plan was less than 
the proton plan) to < 1 (indicating the opposite) is worth noting.  This occurred for the total breast and total 
lung.  For total breast one PSPT plan (Patient #5) decreased the mean RRR from > 1 to < 1 as a result of the 
increased dose.  For the IMPT plan, 3 patients (#1,4, and 5) decreased the mean RRR from >1 to < 1.  The 
average increase in mean dose for these three patients after the scatter correction was added was 15.3%.  For 
total lung, no changes were observed for the PSPT comparison and only Patient #8 changed when comparing 
IMPT.   
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2.3.3.ii. Stray dose for the proton treatment plans 
       The addition of the Monte Carlo calculated neutron dose is displayed below. The mean radiation 

weighting factors,𝑤𝑅����, applied to the neutron calculations was 20 (Eq. 2.1).  External neutron images 

are shown in Figure 2.13 and internal neutrons are shown in Figure 2.14. 

 

 
Figure 2-13 – Proton treatment external neutron dose distribution example - Colorwash of the external 
neutron dose (neutron 𝑤𝑅���� = 20) distribution (100% = 36 Sv) for Patient #4.  The CTV (rendered in black), 
breast (rendered in magenta), lung (rendered in sky blue) and thyroid (rendered in yellow) are visible in the 
various orientations. a) Axial, b) Coronal, and c) Sagittal renderings showing a 2 field AP/PA setup for the 
proton PSPT treatment plan.  Note that the dose distribution range shown is only up to 3.5% of the prescribed 
dose. The external neutron dose is fairly evenly distributed throughout the patient as was expected due to the 
formation occurring upstream in the treatment nozzle.   
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Figure 2-14 – Proton treatment internal neutron dose distribution example - Colorwash of the internal 
neutron dose (neutron 𝑤𝑅���� = 20) distribution (100% = 36 Sv) for Patient #4.  The CTV (rendered in black), 
breast (rendered in magenta), lung (rendered in sky blue) and thyroid (rendered in yellow) are visible in the 
various orientations. a) Axial, b) Coronal, and c) Sagittal renderings showing a 2 field AP/PA setup for the 
proton PSPT treatment plan.  Note that the dose distribution range shown is only up to 6.5% of the prescribed 
dose. The internal neutron dose is concentrated in the vicinity of the treatment volume since production mainly 
occurs inside the treatment field. 

        

      The mean equivalent dose for neutrons per prescribed Gray to the tumor volume (cSv/Gy) in the 

OARs are shown in Figure 2.15 assuming neutron 𝑤𝑅���� = 20.  To determine the total mean equivalend 

dose (cSv), multiple the value by the prescribed dose of 36 Gy.   
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Figure 2-15 – Mean equivalent neutron dose for protons per patient per prescribed Gy – neutron 𝑤𝑅���� = 20 
- Graph depicting the breakdown of neutron equivalent dose contributions per patient per Gy prescribed dose 
with neutron wr = 20.  Averaged over all patients, the mean total neutron equivalent dose contribution was 2.8 
cSv/Gy for total breast, 3.1 cSv/Gy for total lung, and 3.0 cSv/Gy for thyroid. 

 

2.3.4. – Total Dose and Relative Risk Calculations 
In order to ultimately determine the RRR, the equivalent dose (Sv) and relative risk (RR) for 

each treatment must be calculated.  Figure 2.16 shows the mean equivalent dose for each OAR for 

each treatment plan.  Recall that these values include the adjusted scatter dose beyond the 5% 

isodose line for the photon IMRT plan and the neutron dose for both proton plans.  Figure 2.17 

shows the RR for the same endpoints.   
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Figure 2-16 – Mean equivalent dose to OAR – neutron 𝒘𝑹���� = 20 - Graph showing the mean equivalent dose 
to each OAR for the various treatment plans for the prescribed 36 Gy treatment.  While there are several 
examples contrary to this trend, in general, IMPT < PSPT < IMRT with respect to the mean equivalent dose 
per organ.  PSPT  > IMPT slightly since the IMPT plans do not include external neutron dose. 
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Figure 2-17 – Mean relative risk to OAR (Sv) - neutron 𝒘𝑹���� = 20 - LNT dose response model - Graph 
showing the mean RR for each OAR for the various treatment plans for the prescribed 36 Gy treatment.  Since 
this is based off of the LNT dose response model, the same trends seen in Figure 2.14 are mirrored here.  
Unlike the dose, however, we see the differences in the risk models of different OARs for relatively similar 
dose values.  Note the dose for the breast and lung for the IMRT plan and then compare the ~ 3x increase in 
lung risk relative to the corresponding breast risk. 
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2.3.5. – Propagation of Uncertainties 
Since the values found using the derived propagation of uncertainty from Table 2.4 are used in 

all of the 𝑅𝑅𝑅������ data forthcoming, a small interlude is inserted here to elaborate on which factors 

contributed the most to the uncertainty.  The individual components of Eq. 2.22 were averaged per 

organ for the nine patients and calculated to determine which component contributed the greatest 

portion to the uncertainty values.  The Table 2.12 shows the breakdown. 
 
 

Table 2-12 – % contribution breakdown of propagation of uncertainty error for LNT dose response 
model - Shows the breakdown of which component is most responsible for the error in the Mean RRR 
calculations. Overwhelmingly the proton dose is the largest source of error for all three OARs.  This was 
largely due to the lack of dependence the proton and photon components have on β (see Table 2.4).  There was 
a wide variation within the OARs as to the source of the uncertainty as well.  This was a result of the 
uncertainty (σ) in β relative to the nominal β value of the particular OAR.  For example, lung has a much larger 
nominal β (1.40) relative to its σ (0.29) compared to thyroid, which has almost equivalent β and σ (1.05 and 
0.91, respectively). 
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       2.3.6. – Ratio of Relative Risk 
     After calculation of the mean RR for each treatment plan, the various 𝑅𝑅𝑅������ discussed in Table 

2.3 were calculated. Table 2.13 shows the PSPT 𝑅𝑅𝑅������s and their specific uncertainties (from for Eq. 

2.13).   

 

Table 2-13 𝑹𝑹𝑹������–for LNT dose response model, PSPT plan comparison - All mean RRRs (𝑅𝑅𝑅𝚥,𝑘���������, 𝑅𝑅𝑅𝚥�������) 
with their respective uncertainties are shown for the Proton PSPT plan vs the Photon IMRT plan.  The majority 
of  𝑅𝑅𝑅𝚥,𝑘��������� are < 1, but several patients for specific OARs showed 𝑅𝑅𝑅𝚥,𝑘��������� > 1 indicating the lack of a class 
solution for all patients or OARs.  All 𝑅𝑅𝑅𝚥������� were < 1, however. 
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       Figure 2.18 shows a graphical representation of each individual 𝑅𝑅𝑅𝚥,𝑘��������� in Table 2.13 
and their associated uncertainties. 
 

 
 

Figure 2-18 – 𝑹𝑹𝑹𝒋,𝒌���������, PSPT vs IMRT, LNT dose response model, exposed age (e) = 26, attained age (a) = 
46, neutron 𝒘𝑹���� = 20 - Each of the three OARs are shown for all 9 patients.  The red line is set at 1 and is used 
to indicate whether the specific OAR for each patient shows a decreased risk of RSC for the proton treatment 
(< 1) or the photon treatment (> 1).  18 out of the 27 individual OARs in the graph have values below 1 
(including error bars).  Of note, the patients with the lowest RRRȷ,k�������� (Patient #3 and #6) had only 1 field proton 
plans and patients with the highest RRRȷ,k�������� (Patients #7, #8, and #9) were significantly younger than the average 
age of the cohort. 
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       Table 2.14 and Figure 2.19 display the same information as Table 2.13 and Figure 2.18, 
respectively, but for the Proton IMPT plan vs the Photon IMRT plan rather than the Proton PSPT 
plan.   

 
 
 
Table 2-14 – 𝑹𝑹𝑹������ for LNT dose response model, IMPT plan comparison - All mean RRRs (𝑅𝑅𝑅𝚥,𝑘���������, 𝑅𝑅𝑅𝚥�������) 
with their respective uncertainties are shown for the Proton IMPT plan vs the Photon IMRT plan.  All mean 
RRRs are lower with the IMPT plan compared to the PSPT, which was expected due to the absence of the 
external neutron dose.  There are still several patients for specific OARs which showed 𝑅𝑅𝑅𝚥,𝑘��������� > 1 but that 
number is reduced.  As with PSPT all 𝑅𝑅𝑅𝚥������� were < 1. 
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Figure 2-19 – 𝑹𝑹𝑹𝒋,𝒌���������, IMPT vs IMRT, LNT dose response model, exposed age (e) = 26, attained age (a) = 
46, neutron 𝒘𝑹���� = 20 - Each of the three OARs are shown for all 9 patients.  The red line is set at 1 and is used 
to indicate whether the specific OAR shows a decreased risk of RSC for the proton treatment (< 1) or the 
photon treatment (> 1).  18 out of the 27 individual OARs in the graph have values below 1 (including error 
bars).  Again, the patients with the lowest RRRȷ,k��������  (Patient #3 and #6) had only 1 field proton plans and patients 
with the highest RRRȷ,k��������  (Patients #7, #8, and #9) were significantly younger than the average age of the 
cohort. 
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      Graph for 𝑅𝑅𝑅𝚥������� which compare the values for the Proton PSPT plan vs the Proton IMPT plan is 

shown in Figure 2.20. 

 

Figure 2-20 – 𝑹𝑹𝑹𝒋�������, proton plans vs IMRT, LNT dose response model, exposed age (e) = 26, attained age 
(a) = 46, neutron 𝒘𝑹���� = 20 - Again, the IMPT plan has a lower RRRȷ������� compared to the PSPT plan.  The red line 
is set at 1 and is used to indicate whether the specific bar graph shows a decreased risk of RSC for the proton 
treatment (< 1) or the photon treatment (> 1).  All iterations showed a lower risk of RSC for the proton plans 
compared to their respective photon plan.  

 

2.3.7. – Statistical Tests for Significance 
The Sign and Student’s T-test were calculated for each patient’s 𝑅𝑅𝑅𝚥,𝑘��������� and tabulated in the 

tables below.  Statistical significance was stated (if any was found) for both the Proton PSPT and 

IMPT plans and for all of the OARs.  In addition, the uncertainty of each 𝑅𝑅𝑅𝚥,𝑘��������� was taken into 

account by comparing the number of plans < 1 for the nominal 𝑅𝑅𝑅𝚥,𝑘��������� values, the nominal 𝑅𝑅𝑅𝚥,𝑘��������� 

plus the associated uncertainty, and the nominal 𝑅𝑅𝑅𝚥,𝑘��������� minus the associated uncertainty.   
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2.3.7.i. Sign Test 

      The sign test indicated that for the nine patients considered, the proton PSPT plan was not 

significantly different from the photon plans when comparing their values for each OAR (𝑅𝑅𝑅𝚥,𝑘���������). 

For the proton IMPT plan vs IMRT comparisons, results showed a significant reduction in RR for the 

IMPT plan for the nominal total breast and total lung.  Results are shown in Table 2.15.        

 

Table 2-15 – Sign test results, LNT dose response model, exposed age (e) = 26, attained age (a) = 46, 
neutron 𝒘𝑹���� = 20 - Graph showing the sign test results for each individual OAR tested (𝑅𝑅𝑅𝚥,𝑘���������).  In order to 
show significance for the proton plan, at least 8 of the 9 patients had to have a 𝑅𝑅𝑅𝚥,𝑘��������� value < 1.  For the 
photon plan to show significance, 1 or less of the 9 patients had to have a 𝑅𝑅𝑅𝚥,𝑘��������� value > 1.  Columns with just 
the OAR name (i.e. Breast, Lung, Thyroid) indicates the nominal 𝑅𝑅𝑅𝚥,𝑘��������� values. Columns with the OAR name 
plus the calculated uncertainty (i.e. Breast w/ + Error, etc.) indicates the nominal 𝑅𝑅𝑅𝚥,𝑘��������� plus its corresponding 
error, and columns with the OAR name minus the calculated uncertainty (i.e. Breast w/ - Error, etc.) indicates 
the nominal 𝑅𝑅𝑅𝚥,𝑘��������� minus the corresponding error.  Proton PSPT results are shown on top followed by the 
Proton IMPT results.  Yellow boxes indicate instances of no significance between the given proton plan vs the 
photon IMRT plan.  The PSPT plan showed no significant decrease in RSC risk compared to the IMRT plan.  
The IMPT plan showed a significant decrease in RSC risk compared to the IMRT plan for breast and lung. 

 

 

 

2.3.7.ii. Student’s T-Test 
      Student’s t-test, which unlike the sign test, takes accounts of the magnitude of the mean RRRs, 

showed a significant decrease in RSC cancer risk for the Proton PSPT plan compared to the Photon 

IMRT plan.  The thyroid was the only OAR that did not indicate a significant decrease in RSC 

cancer risk for the PSPT plan.  For the Proton IMPT plan, results showed also showed a significant 

decrease in RSC cancer risk for total breast and total lung compared to the photon plan.  Results are 

shown in Table 2.16.   
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Table 2-16 – Student’s t-test results, LNT dose response model, exposed age (e) = 26, attained age (a) = 
46, neutron 𝒘𝑹���� = 20 - Graph showing Student’s t-test results for each individual OAR tested (𝑅𝑅𝑅𝚥,𝑘���������).  Proton 
PSPT results are shown first followed by the Proton IMPT results.  Since the t-test does not count the number 
of patients above or below the 𝑅𝑅𝑅𝚥,𝑘��������� value of 1 to calculate significance (it does take into account the 
magnitude of the mean RRR, however) the table only displays whether one modality or the other showed 
significance.   The PSPT and IMPT plan showed a significant decrease in RSC risk compared to the IMRT 
plan for both the total breast and total lung.  No significance was found for either plan with respect to the 
thyroid, however, unless the uncertainty was subtracted.  Also of note, the IMRT plan showed no statistical 
significance in any iteration. 

 

       Statistical tests for this section show mixed results, depending on the test used and the OAR 

examined highlighting the need to analyze each patient and their subsequent unique treatment 

parameters in order to determine the correct plan to proceed with.  Generally, however, the proton 

plan more often than not showed a better mean RR outcome than IMRT, which never showed a 

significant improvement compared to either proton plans.  

     2.3.8. – Patient Treatment Variation Effects on mean RRR 
     Treatment and host specific factors were compared for each patient by comparing the specified 

factor to 𝑅𝑅𝑅𝚥,𝑘���������  looking for any correlation via the coefficient of determination (R2).   As there was 

no indication that another model was to be expected, a linear fit was used for all plots.  Correlations 

were examined between the mean RRR per patient and the following corresponding treatment and 

host specific characteristics (CTV was used as the reference contour since it is the same for both 

photon and proton plans): The different factors examined were CTV volume (cc), age (Years) at 

exposure (e), body mass index (BMI) (kg/m2), OAR volume (cc), patient width at the CTV centroid 

location both in the lateral and anterio-posterior directions, percent of OAR volume contained within 

the photon IMRT 50% isodose line (%), and anatomical location of OAR relative to CTV (See 

Figure 2.9a and 2.9b). 

     For the majority of parameters, minimal correlation was found.  In the interest of space, we show 

only the parameters that had a R2 value greater than 0.35 (on a scale of 0 to 1).  The minimal R2 

value required to confidently determine a robust coefficient of determination is not set in the field, 

but a value of 0.35 does not generally indicate a strong correlation.  However, a lower R2 also does 

not mean there are no possible trends either, so we display only the values that demonstrated our 
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highest correlation.  For this study a minimum correlation of at least 0.4 was found between the 

mean RRRs and the age (Years) at exposure (e) (thyroid only) and OAR volume (cc) (lung only). 

     The differences in the R2 values were minimal between the PSPT and IMPT plans, so the 

subsequent tests for correlation below will only track the PSPT plans.  The IMPT plans will be 

assumed to follow a similar outcome.   

     Figure 2.21 shows the coefficient of determination (R2) between the 𝑅𝑅𝑅𝚥,𝑘��������� and the age in years 

at exposure (e).  This was one of the few factors that a non-negligible correlation was found.  

 

Figure 2-21 – Correlation between 𝑹𝑹𝑹𝒋,𝒌���������and age at exposure (years) - The coefficient of determination 
(R2) between the 𝑅𝑅𝑅𝚥,𝑘��������� (for Total Breast (red), Total Lung (blue), and Thyroid (green)) against the patient age 
at exposure (e).  The points in the scatter plot represent the individual mean RRR values for each patient.  The 
lines correspond to the points of the same color’s trend line which was used to calculate R2.   Total Lung and 
Thyroid (which had the highest correlation) showed weak correlation with the linear model. 
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     Figure 2.22 shows the coefficient of determination (R2) between the 𝑅𝑅𝑅𝚥,𝑘��������� and the volume of the 

total lung, which was the only OAR to show a correlation.   

 

 

Figure 2-22 – Correlation between 𝑹𝑹𝑹𝒋,𝒌���������and volume of total lung (cc) - The coefficient of determination 
(R2) between the 𝑅𝑅𝑅𝚥,𝑘��������� (for Total Breast (red), Total Lung (blue), and Thyroid (green)) against the volume of 
the total lung (cc).  The points in the scatter plot represent the individual mean RRR values for each patient.  
The lines correspond to the points of the same color’s trend line which was used to calculate R2.   Minimal 
correlation was found for the Lung 𝑅𝑅𝑅𝚥,𝑘���������.  
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A summary of the findings from Aim 1 are presented in Table 2.17 including statistical tests. 

 

 

Table 2-17 – Summary of all major finding from Aim 1 – Breaks down the results by PSPT and IMPT tests compared to IMRT.  Note that the column labeled 
“Mean for All 9 Patients” averages all 9 of the respective 𝑅𝑅𝑅𝚥,𝑘���������  values together.  These values correspond to 𝑅𝑅𝑅𝚥�������.  A mark like this (*) indicates that the given 
proton plan significantly (p ≤ 0.05) reduced the risk of RSC compared to IMRT. 
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3.   Specific Aim 2: Confidence intervals of predicted mean 
RR values  

     3.1. Introduction 
        

       Specific Aim 1 was designed to limit patient variability when calculating the mean RRR.  In that 

aim, the patients were assumed to have received their treatments at the same age (e = 26), attained 

the same age in life (a = 46), had the same mean RBE of neutrons for carcinogenesis radiation 

weighting factor (𝑤𝑟���� = 20), and had the same dose response model when calculating their risk 

(LNT).   

       Although those results led to a certain level of confidence, their outcomes fail to account for the 

wide range of variation (i.e. the age of exposure and the attained age) or the uncertainty in the values 

and/or models assigned (i.e the neutron 𝑤𝑅���� and the dose response model).  These limitations can lead 

to reduced confidence in the results.  To address this issue, sensitivity tests, which varied these host 

and treatment factor parameters throughout their uncertainty intervals, were systematically 

conducted for each patient and compared.   

       Addressing and displaying every permutation for each variable would require an excessive 

amount of data.  To alleviate this dilemma, select configurations which emphasize the changes (if 

any) in the outcome were selected.  To further simplify the process and assist in easier comparisons 

to the previous results in this work, the patient parameters used in Aim 1 were also used in Aim 2 (e 

= 26, a = 46) for the majority of our analysis.  Ages are varied only when the extrema of the mean 

RRR results are examined. 

       Section 3.2.1 lists the parameters included in the sensitivity tests.  Section 3.2.2 details the 

rationale behind our sensitivity tests. Section 3.2.3 describes the impact of non-linear dose response 

models on the risk calculations from Aim 1.  Section 3.2.4 describes varying 𝑤�𝑅 for neutrons.  

Section 3.2.5 outlines the propagation of uncertainties for non-linear dose response models.  Section 

3.2.6 details our method of analyzing the results from the sensitivity tests.  Finally, Section 3.2.7 

describes a method to analyze extrema in our findings. 

     3.2. Methods and Materials 

3.2.1. – Adjusted Variables Used for the Sensitivity Tests 
       The parameters varied for the sensitivity tests in Aim 2 were (Note: Bold if value was used 

previously for Aim 1) 
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• Exposed Age of Patient (e)  

o 10 – minimum age of patients in cohort study 

o 26 – mean age of patients in cohort study 

o 42 – maximum age of patients in cohort study 

• Attained Age of Patient (a) 

o e+20 (30, 46, 62) 

o e+50 (60, 76, 92 

• Dose Response Model 

o Linear Non Threshold (LNT) 

o Linear Plateau (Lin Plat) 

o Linear Exponential (Lin Exp) 

• Dose Response Model Inflection Point (α) 

o 0.090 – corresponds to an inflection point at 10 Sv 

o 0.025 – corresponds to an inflection point at 40 Sv.  This parameter was not 

used for Aim 1 since α is not included in the LNT risk equation.  However, 

when the sensitivity tests are conducted, this value rather than 0.090 was used 

since it more closely reflects the LNT model when used with the Lin Plat and 

Lin Exp models.  

• Mean RBE of neutrons for carcinogenesis radiation weighting factor (neutron 𝑤𝑅����) 

o 5 

o 20 

o 35 

All combinations of these parameters were examined for each patient (#1-9), treatment plan (Proton 

– PSPT, Proton – IMPT, Photon – IMRT), and OAR’s (Total Breast, Total Lung, Thyroid) various 

mean RRR values.   

3.2.2. – Rationale for Sensitivity Tests 
BEIR VII and RadRAT risk models were intended for whole body/organ, low dose photon 

exposures of ~2-3 Sv.  BEIR VII and RadRAT also assume a linear non threshold (LNT) dose 

response model, which states that as dose increases; the risk of developing a second cancer linearly 

increases as well.  In this work, our patient population deviated from these criteria as follows: 

1. Low dose photon exposures 

a. Portions of patients’ OARs were exposed to high dose values (potentially in 

excess of the prescribed dose of 36 Gy) 
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b. Neutron doses and their possible radiobiological variations from photon 

exposures were not taken into account. 

2. Dose response model 

a. While current epidemiological studies of medically irradiated RSC formation 

indicates most organs appear to follow the LNT response (Berrington de 

Gonzalez et al., 2013), follow-ups to this point still require larger patient cohorts 

and longer follow-up times before definitive conclusions can be drawn.   

b. A small number of organs of interest, including the thyroid, have been shown to 

deviate from the linear RSC response of the LNT model at high dose exposures 

(Sigurdson et al., 2005, Ronckers et al., 2006, Bhatti et al., 2010).    

While error and uncertainty are inherent in all experimentation, the values associated with these 

parameters can be quite large.  While not always considered realistic or likely, they are still 

nonetheless worth examining.  The rationale was to show the range of values for the RSC risk values 

if one takes into account these intervals.  Doing so allowed us to quantify at what point, if any, a 

treatment technique (i.e. proton or photon) that was shown to be superior with respect to RSC risk 

for a given set of conditions no longer maintains that advantage.  

Additionally, to account for the non-homogenous dose distributions in each patient, each voxel 

contained within the OAR was calculated for risk individually (or the specific sensitivity tests 

included in this section) and then summed and averaged to determine the average risk to the OAR. 

3.2.3. - Non-linear Dose Response Models 
RadRAT and BEIR VII use the LNT model to determine the risk values for a given dose to a 

patient’s particular OAR.  Two alternative dose response models that introduce a reduction in RSC 

incidence at higher dose levels due to cell response saturation or cell sterilization, named linear-

plateau and linear-exponential, have been shown to be plausible solutions for RSC risk calculations 

(Lindsay et al., 2001, Hall, 2004, Dasu and Toma-Dasu, 2005, Schneider et al., 2005, Sigurdson et 

al., 2005, Ronckers et al., 2006, Bhatti et al., 2010). Using a format previously employed in our 

group (Fontenot et al., 2009, Rechner et al., 2012a), linear-plateau and linear-exponential models 

with inflection points at 10 Sv (𝜶 = 0.090) and 40 Sv (𝜶 = 0.025) were incorporated.  These values 

were selected because they covered the range seen in previous follow-up studies involving medically 

exposed patient populations (Schneider and Kaser-Hotz, 2005, Travis, 2006, Fontenot et al., 2009).  

For the non-linear dose response models above, in order to correctly calculate the RR and 

subsequently the RRR, the dose must be multiplied by the dose response model on a voxel by voxel 

basis due to the inhomogeneous dose distributions to the OAR following the same form as Eq. 2.9. 
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3.2.3.i.  Linear-plateau equation 
      The equation for the linear-plateau dose response model was:            

     𝑹𝑹𝑳𝒊𝒏 𝑷𝒍𝒂𝒕������������� =
∑
𝑹𝑹𝑳𝑵𝑻𝒊 
𝑯𝒊∗𝜶

∗�𝟏−𝒆−�𝜶∗𝑯𝒊��𝒊

𝒊
                                                                          (𝑬𝒒.𝟑.𝟏) 

       In this equations 𝑅𝑅𝐿𝚤𝑛 𝑃𝑙𝑎𝑡 ������������� is the modified mean RR using the linear-plateau dose response 

model, 𝑅𝑅𝐿𝑁𝑇𝑖 is the RR using the RadRAT or BEIR VII LNT risk model for an individual voxel, i, 

𝐻𝑖 is the Equivalent Dose (Sv) in voxel i, 𝜶 is the tissue specific parameter that accounts for cell 

response saturation or cell sterilization (Fontenot et al., 2009, Rechner et al., 2012a), and 𝑖 = 

individual voxel contained with the specified OAR. 

3.2.3.ii. Linear-exponential equation 
The equation for the linear-exponential dose response model is 

 𝑹𝑹𝑳𝒊𝒏 𝑬𝒙𝒑������������� = ∑ 𝑹𝑹𝑳𝑵𝑻𝒊∗𝒆
−�𝜶∗𝑯𝒊�𝒊

𝒊
                                                                                (𝑬𝒒.𝟑.𝟐) 

       In this equations 𝑅𝑅𝐿𝚤𝑛 𝐸𝑥𝑝 �������������is the modified mean RR using the linear-exponential dose response 

model, 𝑅𝑅𝐿𝑁𝑇𝑖 is the RR using the RadRAT LNT risk model for an individual voxel, i, 𝐻𝑖 is the 

Equivalent Dose (Sv) in voxel i, 𝛼 is the tissue specific parameter that accounts for cell response 

saturation or cell sterilization, and 𝑖 is the individual voxel contained with the specified OAR.  The 

various dose response models are shown in Figure 3.1.   
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Figure 3-1 – Risk calculation differences between dose response models used - Graph highlighting the 
differences in risk values for a given dose input to the various dose response models. For the LNT model in 
this rendering (which the other models are based upon), the risk value increases by one unit for every one unit 
of increase in dose. 

3.2.4. – RBE of Neutrons for Carcinogenesis 
       In addition to the dose response models, the mean RBE of neutrons for carcinogenesis radiation 

weighting factor (neutron 𝑤𝑅����) will be varied across the potential range of values.  For this work, 

neutron 𝑤𝑅���� is defined as the radiological protection term.  Since it is used for these purposes, the 

values could be considered conservative.  The neutron 𝑤𝑅���� is defined as 1 for photon treatments.  For 

neutrons the value has been stated to be as low as 4 and as high (although this is likely the very upper 

end of most conservative estimates) as 500 (Kellerer et al., 2006).  While these numbers represent 

the extreme range of possibilities, various studies have estimated more plausible values between 4 

and 35 (National Research Council (U.S.). Committee to Assess Health Risks from Exposure to Low 

Level of Ionizing Radiation., 2006, Brenner and Hall, 2008, Newhauser et al., 2009).  Using Eq. 2.1 

from earlier, the neutron 𝑤𝑅���� will be varied across the values of 5, 20, and 35 and analyzed for the 

various dose response models examined above. 

       3.2.5. – Propagation of Uncertainties for Non-Linear Dose Response Models 
       Similar to the LNT dose response model, error propagation was conducted on the equations of 

the Linear Plateau and Linear Exponential Dose Response Models.  In addition to the components 

which comprise Eq. 2.24, an additional term is added to account for the tissue specific parameter that 
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accounts for cell response saturation or cell sterilization, α.  For the Linear Plateau model, we used 

Eq. 3.3 

𝜎𝑹𝑹𝑹𝑳𝒊𝒏 𝑷𝒍𝒂𝒕𝒋,𝒌
�������������������
2 = �

𝜕𝑹𝑹𝑹𝑳𝒊𝒏 𝑷𝒍𝒂𝒕𝒋,𝒌
�������������������

𝜕𝜷𝒋
�
2

𝜎𝜷𝒋
2 + �

𝜕𝑹𝑹𝑹𝑳𝒊𝒏 𝑷𝒍𝒂𝒕𝒋,𝒌
�������������������

𝜕𝑪𝒋,𝒌 
�
2

𝜎𝑪𝒋,𝒌 
2 + �

𝜕𝑹𝑹𝑹𝑳𝒊𝒏 𝑷𝒍𝒂𝒕𝒋,𝒌
�������������������

𝜕𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋,𝒌�������������� �
2

𝜎𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋,𝒌�������������� 
2 +

�
𝜕𝑹𝑹𝑹𝑳𝒊𝒏 𝑷𝒍𝒂𝒕𝒋,𝒌
�������������������

𝜕𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋,𝒌
�����������������������

2

𝜎𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋,𝒌
����������������������
2 + �

𝜕𝑹𝑹𝑹𝑳𝒊𝒏 𝑷𝒍𝒂𝒕𝒋,𝒌
�������������������

𝜕𝜶
�
2

𝜎𝜶2                                                   (𝑬𝒒.𝟑.𝟑)                                                        

Where 𝐻𝑃𝑟𝑜𝑡𝑜𝑛𝚥.𝑘
������������, 𝐻𝑃ℎ𝑜𝑡𝑜𝑛 𝐼𝑀𝑅𝑇𝚥.𝑘

�������������������, 𝛽𝑗, 𝐶𝑗,𝑘 are the same quantities defined in Eq. 2.22, 𝑅𝑅𝑅𝐿𝚤𝑛 𝑃𝑙𝑎𝑡𝚥,𝑘
����������������� 

is the mean RRR using the Linear Plateau dose response model,   𝜎𝑅𝑅𝑅𝐿𝚤𝑛 𝑃𝑙𝑎𝑡𝚥,𝑘
�������������������� is the uncertainty 

in 𝑅𝑅𝑅𝐿𝚤𝑛 𝑃𝑙𝑎𝑡𝚥,𝑘
�����������������, 𝛼 is the tissue specific parameter that accounts for cell response saturation or cell 

sterilization (Fontenot et al., 2009, Rechner et al., 2012a),   𝜎𝛽𝑗 is the known uncertainty in 𝛽𝑗, 

𝜎𝐶𝑗,𝑘  is the known uncertainty in 𝐶𝑗,𝑘, 𝜎𝐻𝑃𝑟𝑜𝑡𝑜𝑛𝚥,𝑘
���������������  is the known uncertainty in 𝐻𝑃𝑟𝑜𝑡𝑜𝑛𝚥.𝑘

������������, 

𝜎𝐻𝑃ℎ𝑜𝑡𝑜𝑛 𝐼𝑀𝑅𝑇𝚥,𝑘
�����������������������  is the known uncertainty in 𝐻𝑃ℎ𝑜𝑡𝑜𝑛 𝐼𝑀𝑅𝑇𝚥.𝑘

�������������������, and 𝜎𝛼  is the known uncertainty in 

α. 
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Table 3-1 – Linear Plateau uncertainty terms and stated uncertainty for assigned variables 

Quantities Uncertainty Terms/Stated Uncertainty 

�
𝝏𝑹𝑹𝑹𝑳𝒊𝒏 𝑷𝒍𝒂𝒕𝒋,𝒌
�����������������

𝝏𝜷𝒋
� 

⎩
⎪
⎨

⎪
⎧

𝑪𝒋,𝒌�𝟏 − 𝒆
−𝜶𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌����������

�𝜷𝒋 ∗ 𝑪𝒋,𝒌 + � 𝟏
𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
�������������� �1 −  𝒆−𝜶𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌

���������������
⎭
⎪
⎬

⎪
⎫

⎩
⎪
⎨

⎪
⎧

1 −
�𝜷𝒋 ∗ 𝑪𝒋,𝒌 + � 𝟏

𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
������������

𝜷𝒋 ∗ 𝑪𝒋,𝒌 + � 𝟏
𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
�������������⎭

⎪
⎬

⎪
⎫

 

𝝈𝜷𝒋  Breast – 0.14 ERR/Sv Lung – 0.29 ERR/Sv Thyroid – 0.91 ERR/Sv 

�
𝝏𝑹𝑹𝑹𝑳𝒊𝒏 𝑷𝒍𝒂𝒕𝒋,𝒌
�����������������

𝝏𝑪𝒋,𝒌 � 

⎩
⎪
⎨

⎪
⎧

𝜷𝒋�𝟏 − 𝒆
−𝜶𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌����������

�𝜷𝒋 ∗ 𝑪𝒋,𝒌 + � 𝟏
𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
�������������� �1 −  𝒆−𝜶𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌

���������������
⎭
⎪
⎬

⎪
⎫

⎩
⎪
⎨

⎪
⎧

1 −
�𝜷𝒋 ∗ 𝑪𝒋,𝒌 + � 𝟏

𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
������������

𝜷𝒋 ∗ 𝑪𝒋,𝒌 + � 𝟏
𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
�������������⎭

⎪
⎬

⎪
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𝝈𝑪𝒋,𝒌  0 

�
𝝏𝑹𝑹𝑹𝑳𝒊𝒏 𝑷𝒍𝒂𝒕𝒋,𝒌
�����������������

𝝏𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋,𝒌
������������ � 

𝒆−𝜶𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
������������� ��𝜶 ∗ 𝜷𝒋 ∗ 𝑪𝒋,𝒌� + �

𝟏 + 𝜶𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
�����������

𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
�����������𝟐 �� − 𝟏

𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
�����������𝟐

�1−  𝒆−𝜶𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌���������������� �𝜷𝒋 ∗ 𝑪𝒋,𝒌 + � 𝟏
𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
���������������

 

𝝈𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋,𝒌
��������������  5% of 𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌

����������� 

�
𝝏𝑹𝑹𝑹𝑳𝒊𝒏 𝑷𝒍𝒂𝒕𝒋,𝒌
�����������������

𝝏𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋,𝒌
�������������������� −

⎩
⎪
⎨

⎪
⎧��𝜷𝒋 ∗ 𝑪𝒋,𝒌 + � 𝟏

𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
�������������� �𝟏 − 𝒆−𝜶𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌

��������������
�� � 𝟏

𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
������������������𝟐

�𝒆−𝜶𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
���������������������

�𝜶 ∗ 𝜷𝒋 ∗ 𝑪𝒋,𝒌 + �𝟏 − 𝜶𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
�������������������� − 𝟏��

��1 −  𝒆−𝜶𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
���������������������

� �𝜷𝒋 ∗ 𝑪𝒋,𝒌 + � 𝟏
𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
���������������������

2

⎭
⎪
⎬

⎪
⎫

 

𝝈𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋,𝒌
��������������������  3% of 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌

����������������� 

�
𝝏𝑹𝑹𝑹𝑳𝒊𝒏 𝑷𝒍𝒂𝒕𝒋,𝒌
�����������������

𝝏𝑯𝜶����
� 

⎩
⎪
⎨

⎪
⎧

𝟏

��𝜷𝒋 ∗ 𝑪𝒋,𝒌 + � 𝟏
𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
������������������ �1 −  𝒆−𝜶𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌

����������������������
��
⎭
⎪
⎬

⎪
⎫

⎩
⎪
⎨

⎪
⎧

�𝒆−𝜶𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
����������������

��𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
���������������+ 𝟏��

−

⎩
⎪
⎨

⎪
⎧�𝜷𝒋 ∗ 𝑪𝒋,𝒌�𝟏 − 𝒆−𝜶𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌

����������� + �� 𝟏
𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
���������� �𝟏 − 𝒆−𝜶𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌

������������� �𝒆−𝜶𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
����������������������

��𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
����������������������+ 𝟏��

��𝜷𝒋 ∗ 𝑪𝒋,𝒌 + � 𝟏
𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
������������������ �1 −  𝒆−𝜶𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌

����������������������
��

 

𝝈𝜶 0 
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For the Linear Exponential uncertainty, we used Eq. 3.4. 

 

𝜎𝑹𝑹𝑹𝑳𝒊𝒏 𝑬𝒙𝒑𝒋,𝒌
�������������������
2 = �

𝜕𝑹𝑹𝑹𝑳𝒊𝒏 𝑬𝒙𝒑𝒋,𝒌
�������������������

𝜕𝜷𝒋
�
2

𝜎𝜷𝒋
2 + �

𝜕𝑹𝑹𝑹𝑳𝒊𝒏 𝑬𝒙𝒑𝒋,𝒌
�������������������

𝜕𝑪𝒋,𝒌 
�
2

𝜎𝑪𝒋,𝒌 
2 + �

𝜕𝑹𝑹𝑹𝑳𝒊𝒏 𝑬𝒙𝒑𝒋,𝒌
�������������������

𝜕𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋,𝒌�������������� �
2

𝜎𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋,𝒌�������������� 
2 +

�
𝜕𝑹𝑹𝑹𝑳𝒊𝒏 𝑬𝒙𝒑𝒋,𝒌
�������������������

𝜕𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋,𝒌
�����������������������

2

𝜎𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋,𝒌
����������������������
2 + �

𝜕𝑹𝑹𝑹𝑳𝒊𝒏 𝑬𝒙𝒑𝒋,𝒌
�������������������

𝜕𝜶
�
2

𝜎𝜶2                                                   (𝑬𝒒.𝟑.𝟒)                                                        

Where 𝐻𝑃𝑟𝑜𝑡𝑜𝑛𝚥.𝑘
������������, 𝐻𝑃ℎ𝑜𝑡𝑜𝑛 𝐼𝑀𝑅𝑇𝚥.𝑘

�������������������, 𝛽𝑗, 𝐶𝑗,𝑘 are the same quantities defined in Eq. 2.22, 𝑅𝑅𝑅𝐿𝚤𝑛 𝐸𝑥𝑝𝚥,𝑘
���������������� 

is the mean RRR using the Linear Exponential dose response model,   𝜎𝑅𝑅𝑅𝐿𝚤𝑛 𝐸𝑥𝑝𝚥,𝑘
������������������� is the 

uncertainty in 𝑅𝑅𝑅𝐿𝚤𝑛 𝐸𝑥𝑝𝚥,𝑘
�����������������, 𝛼 is the tissue specific parameter that accounts for cell response 

saturation or cell sterilization (Fontenot et al., 2009, Rechner et al., 2012a),   𝜎𝛽𝑗 is the known 

uncertainty in 𝛽𝑗, 𝜎𝐶𝑗,𝑘  is the known uncertainty in 𝐶𝑗,𝑘, 𝜎𝐻𝑃𝑟𝑜𝑡𝑜𝑛𝚥,𝑘
���������������  is the known uncertainty 

in 𝐻𝑃𝑟𝑜𝑡𝑜𝑛𝚥.𝑘
������������, 𝜎𝐻𝑃ℎ𝑜𝑡𝑜𝑛 𝐼𝑀𝑅𝑇𝚥,𝑘

�����������������������  is the known uncertainty in 𝐻𝑃ℎ𝑜𝑡𝑜𝑛 𝐼𝑀𝑅𝑇𝚥.𝑘
�������������������, and 𝜎𝛼  is the known 

uncertainty in α. 
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Table 3-2 – Linear Exponential uncertainty terms and stated uncertainty for assigned variables 

Quantities Uncertainty Terms/Stated Uncertainty 

�
𝝏𝑹𝑹𝑹𝑳𝒊𝒏 𝑬𝒙𝒑𝒋,𝒌
�����������������

𝝏𝜷𝒋
� �

𝑪𝒋,𝒌𝒆
−𝜶𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌

��������������

𝒆−𝜶𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
����������������������

∗ (𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
������������������ + 𝟏)

��𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
������������ −

𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
������������������ �𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌

������������ + 𝟏�

𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
������������������ + 𝟏

� 

𝝈𝜷𝒋  Breast – 0.14 ERR/Sv Lung – 0.29 ERR/Sv Thyroid – 0.91 ERR/Sv 

�
𝝏𝑹𝑹𝑹𝑳𝒊𝒏 𝑬𝒙𝒑𝒋,𝒌
�����������������

𝝏𝑪𝒋,𝒌 � �
𝜷𝒋𝒆

−𝜶𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
��������������

𝒆−𝜶𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
����������������������

∗ (𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
������������������ + 𝟏)

��𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
������������ −

𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
������������������ �𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌

������������ + 𝟏�

𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
������������������ + 𝟏

� 

𝝈𝑪𝒋,𝒌  0 

�
𝝏𝑹𝑹𝑹𝑳𝒊𝒏 𝑬𝒙𝒑𝒋,𝒌
�����������������

𝝏𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋,𝒌
������������ � 

𝒆−𝜶𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
������������� �𝜷𝒋 ∗ 𝑪𝒋,𝒌 �𝟏 − 𝜶𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌

������������ − 𝜶�

𝒆−𝜶𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
�������������������� �𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌

����������������� + 𝟏�
 

𝝈𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋,𝒌
��������������  5% of 𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌

����������� 

�
𝝏𝑹𝑹𝑹𝑳𝒊𝒏 𝑬𝒙𝒑𝒋,𝒌
�����������������

𝝏𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋,𝒌
�������������������� 

𝒆−𝜶𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
������������� �𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌

����������� + 𝟏� �𝜷𝒋 ∗ 𝑪𝒋,𝒌 �𝟏 − 𝜶𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
������������������ − 𝜶�

𝒆−𝜶𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
�������������������� �𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌

����������������� + 𝟏�
𝟐  

𝝈𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋,𝒌
��������������������  3% of 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌

����������������� 

�
𝝏𝑹𝑹𝑹𝑳𝒊𝒏 𝑬𝒙𝒑𝒋,𝒌
�����������������

𝝏𝑯𝜶����
� 

𝒆−𝜶𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌
������������� �𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌

����������� + 𝟏�

𝒆−𝜶𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
�������������������� �𝜷𝒋 ∗ 𝑪𝒋,𝒌 ∗ 𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌

����������������� + 𝟏�
∗ �𝑯𝑷𝒉𝒐𝒕𝒐𝒏 𝑰𝑴𝑹𝑻𝒋.𝒌
����������������� − 𝑯𝑷𝒓𝒐𝒕𝒐𝒏𝒋.𝒌

������������ 

𝝈𝜶 0 

 

     For both of these alternative dose response models, the uncertainties (σ) were the same as for the 

LNT model.  There was no uncertainty for the additional uncertainty term, α, since this term was 

selected rather than measured.   

       3.2.6. – Sensitivity Analysis 
     The 8 different parameters described in 3.2.1 were varied for the sensitivity analysis to provide a 

comprehensive view of the possible mean RRR variations for our HL population, 19 figures which 

highlight different aspects of the sensitivity analysis were used to show the results. Due to this large 

number of permutations, Table 3.3 lists the differences between the various figures in this section in 

an effort to reduce confusion for the reader.  Each figure is broken down into its various groupings 

(i.e mean equivalent dose, mean RRR, etc.) and each of the 8 parameters are listed in a separate 

column.  Parameter values which varied were listed for each figure.  



 

 

69 

 

Table 3-3 – Breakdown of figures and tables described in section 3.2.6  
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3.2.7. – Mean RRR Extrema Comparisons 
       From the many possible configurations, the mean RRR was found for the iterations that 

delivered the minimum and maximum mean RRR values for our patient set.   This is not to say this 

occurred for every permutation.  Minor differences can be seen on a case by case basis, but in 

general, the criteria selected for the extrema highlight the extrema of our mean RRR calculations and 

should provide a mechanism to view the possible range we would expect to see for our cohort.   

       Rather than show each 𝑅𝑅𝑅𝚥,𝑘���������, the 𝑅𝑅𝑅𝚥�������  (mean RRR for each OAR for all patients) was 

selected to eliminate excessive amounts of data.  Also of note, the mean RBE of neutrons for 
carcinogenesis radiation weighting factor (neutron 𝑤𝑅����) chosen was again 20.  A neutron 𝑤𝑅���� of 35 
would have of course increased the value of the mean RRR, since that contribution is added only to 
the proton plans, but since the variation of the mean RRR with respect to neutron 𝑤𝑅���� was examined 
earlier, and to maintain consistency with patient parameters examined in Aim 1, neutron 𝑤𝑅���� = 20 
was selected.  To further the comparison, the patient parameters examined in Aim1 were also 
included in the extrema comparison.  While not technically the mean, those values were assumed to 
be a close approximation to the average mean RRR for all of the possible combinations of the 
parameters. 
      The combinations of the eight parameters described in 3.2.1 for the minimum extrema, maximum 

extrema, and the Aim 1 parameters are detailed in Table 3.4. 

 

Table 3-4 – Mean RRR extrema values for sensitivity parameters 

 
 

3.2. Results 

       3.3.1. – Sensitivity Test for Mean Neutron Dose  
      The mean neutron dose for each OAR was found.  The mean RBE of neutrons for carcinogenesis 

radiation weighting factor (neutron 𝑤𝑅����) was varied discretely to the values of 5, 20, and 35.  The 

mean neutron dose contribution averaged over all patients in cSv/Prescribed Gy is listed in Table 3.5, 

and the breakdown per patient for the various neutron 𝑤𝑅���� is shown per OAR in Figure 3.2-3.4.   
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Table 3-5 – Mean neutron dose contributions averaged over all patients (cSv/Prescribed Gy) - Mean 
neutron equivalent dose per prescribed Gy with varying neutron 𝑤𝑅���� for all OARs averaged over all patients.  
We see the expected increase in equivalent dose contribution as neutron 𝑤𝑅���� increases.  These numbers 
correspond well with published data for similar treatment configurations.  

 

 

 

 

 
Figure 3-2 – Mean equivalent neutron dose per prescribed Gy by varying neutron 𝒘𝑹���� – breast (cSv/Gy) - 
Mean neutron equivalent dose with varying 𝑤�𝑅 for the Total Breast.  We see the expected increase in 
equivalent dose contribution as 𝑤�𝑅 increases.  Patient 2 shows a substantial increase relative to the other 
patients.   This could be attributed to several factors including increased nozzle entrance proton energy, width 
of the SOBP and water equivalent thickness relative to other patients.  In addition, Patient 2 had over 3 times 
the amount of breast tissue in the open field relative to the average patient in the cohort.   
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Figure 3-3 – Mean equivalent neutron dose per prescribed Gy by varying neutron 𝒘𝑹���� – lung (cSv/Gy) - 
Mean neutron equivalent dose with varying 𝑤�𝑅 for the Total Lung.  We see the expected increase in equivalent 
dose contribution as 𝑤�𝑅 increases.  Patient 2, 4, and 8 show an increase in equivalent dose relative to the other 
patients.  Patients 2 and 4 again had a higher than average portion of lung tissue within the field and nozzle 
entrance proton energy.  Patient 8 did not, but was also a much smaller patient (she was the youngest in the 
cohort at 10 years old) and therefore had more lung tissue closer to the CTV, which increased exposure to 
neutron doses. 
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Figure 3-4 – Mean equivalent neutron dose per prescribed Gy by varying neutron 𝒘𝑹���� – thyroid (cSv/Gy) 
- Mean neutron equivalent dose with varying 𝑤�𝑅 for the Thyroid.  We see the expected increase in equivalent 
dose contribution as 𝑤𝑅���� increases.  Patient 2, 8 again show increased equivalent dose relative to other patients.  
Those increases could be attributed to points discussed previously.  Patient 9 shows a substantial increase 
relative to her lung and breast, however.   Unlike those two OARs, which she had below the average 
percentage of OAR tissue in the field, nearly 70% of her thyroid was in this field (over 3 times as high as the 
average).  This substantial increase due to the proximity to the CTV can be seen in the much higher percentage 
of internal neutron contribution (which is produced mainly in field) compared to the external neutrons. 

 

 

 

 

 

 

 

 

 

 

 



 

74 
 

3.3.2. – Sensitivity Test for Total Mean Equivalent Dose 
The mean equivalent dose is shown in Figure 3.5.  It delineates the dose by patient, treatment 

plan, OAR, and neutron 𝑤�𝑅. 

 
Figure 3-5 – Mean total equivalent dose to OAR by varying neutron 𝒘𝑹���� value (Sv) - Mean total equivalent 
dose with varying treatment plans and 𝑤�𝑅 for each OAR.  We again see the expected increase in equivalent 
dose contribution as 𝑤𝑅���� increases.  Patient 2 and 9 emphasize the clustering of dose in the vicinity of the tumor 
volume (CTV).  We see an increase in dose to the Total Breast and Lung and minimal dose to the Thyroid for 
Patient 2 while the opposite is true for Patient 9.  Patient 2’s tumor location is located squarely in the 
mediastinum while Patient 9’s is located in the upper supraclavicular region.   

 

 3.3.3. – Sensitivity Test for Mean Relative Risk (RR) 
       Figures 3.6 and 3.7 delineate the mean RR values for each patient, treatment plan, OAR, 

neutron 𝑤𝑅���� and dose response inflection point (α).  Age at exposure (e) and attained age (a) were 

kept constant.  Due to the large amounts of data displayed, Figure 3.6 showed only the α = 0.025 

calculations while Figure 3.7 showed the α = 0.090 set.  Recall, that the α value does not affect the 

LNT risk calculations since it is not used in the LNT equations.   

       Figure 3.7 in general showed a reduction in the RR relative to the corresponding data point in 

Figure 3.6 for the linear plateau and linear exponential risk models.  This is expected since the α = 

0.090 corresponds to a much earlier inflection point at 10 Sv (i.e. the RR starts to decrease) 

compared to the α = 0.025 which decrease at 40 Sv.
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Figure 3-6 – Mean relative risk to OAR For each dose response model and neutron 𝒘𝑹���� value - exposed age 26, attained age = 46, response inflection 
point (α) = 0.025 - As in Aim 1, the lung relative risk is substantial higher than the other OARs for similar mean doses to the organ.  As expected, the mean RR 
for LNT > Linear Plateau > Linear Exponential. 
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Figure 3-7 – Mean relative risk to OAR For each dose response model and neutron 𝒘𝑹���� value - exposed age 26, attained age = 46, response inflection 
point (α) = 0.090 - The mean RR again was LNT > Linear Plateau > Linear Exponential, but, relative to  α = 0.025, the decrease in the mean RR values for the 
non-linear models was larger. 
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      Figure 3.8 further explores the difference between the LNT and other dose response models.  The ratio of the mean RR averaged over all of 

the patients between the LNT and the Linear Plateau and Linear Exponential models was taken and displayed for each examined parameter in 

Figure 3.8.   

 
Figure 3-8 – % decrease in RR compared to LNT model RR – all patients averaged together - The % decrease in the Mean RR average over all patients of 
the non-linear dose response models vs the LNT model.  The models which used α = 0.025 are in blue and α = 0.090 are in red.  Again, the increased reduction 
was seen for the α = 0.090 model compared to the α = 0.025 model due to the earlier dose inflection point.  There was a fairly constant decrease between the 
LNT and the Lin Plat and Lin Exp across all treatments plans, OARs, and neutron 𝒘𝑹���� values, with the proton plans seeing a slightly higher drop relative to the 
LNT compared to the photon IMRT plan.  The lung, however, seems to decrease more than the other OARs.  This would imply a larger percentage of voxels 
which had a higher equivalent dose value.  Higher doses would benefit more from a decrease in the risk associated with the non-linear models.   
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3.3.4. – Sensitivity Test for the Propagation of Uncertainties 
       Similar to Aim 1, the percent contribution of each component of the propagation of uncertainty 

equations was shown, but this time for all 3 dose response models.  Similar trends were seen for the 

non-linear models as with the LNT.  The proton dose again was the majority of the component 

contribution to the uncertainty.   

 

Table 3-6 – % contribution breakdown of propagation of uncertainty error for dose response models - 
The mean % contribution of to the propagation of uncertainty average over all patients for each component 
used to calculate the value.  Values that specific a percentage of 0% (i.e. Total lung/LNT for the β contribute 
an amount, but that value rounded to 0.  Similarities between the three dose response models were seen with 
the proton dose dominating the source of error.   

 

 

3.3.5. – Sensitivity Test for Mean RRR 
      The endpoint metric tested in this work, the mean RRR, is shown in the following figures.  

Figure 3.9 and Figure 3.10 show the same data in two different ways and is intended to more simply 

focus on looking at differences between dose response models for each patient (Figure 3.9) and then 

differences between patients for each dose response model (Figure 3.10) while displaying the data 

for each OAR on each graph as well.   
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Figure 3-9 – 𝑹𝑹𝑹𝒋,𝒌��������� for all patients and OARs, PSPT vs IMRT, exposed age = 26, attained age (a) = 46, 
neutron 𝒘𝑹���� = 20, response inflection pt (α) = 0.025 – dose response model comparison - For the majority of 
cases, the mean RRR for the LNT > Lin Plat > Lin Exp.  There are some isolated instances where this is not 
the case (i.e. patient #1Thyroid).  Recall that the mean RRR is a measurement of the RR ratio between the 
proton and photon IMRT plans.  Higher doses will yield lower RR values with the non-linear response models 
relative to LNT, which could benefit higher dose yielding plans.  For all patients, none of the different dose 
response models fell outside of any of the other’s range of uncertainty.  28% of comparisons showed a mean 
RRR value over 1.   
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Figure 3-10 – 𝑹𝑹𝑹𝒋,𝒌��������� for all patients and OARs, PSPT vs IMRT, exposed age = 26, attained age (a) = 46, 
neutron 𝒘𝑹���� = 20, response inflection pt (α) = 0.025 – patient comparison - Emphasis is placed on how 
individual patients compared relative to each other.  Patients #7-9 show statistically significant increases in the 
thyroid relative to all other patients.  It is worth noting that these three patients were the youngest in the cohort 
(two 15 year olds (#7 and 9) and a 10 year old (#8).  The smaller body and geographical location likely 
contributed to increased scatter dose to these patients relative to the older members of the cohort.     
 

 

       Figures 3.9 and 3.10 focused on examining the differences between patients, OARs, and dose 

response models while keeping the treatment plan, neutron 𝑤𝑅����, and dose response model parameters 

fixed.  Figures 3.11-3.13 focuses on only one OAR apiece while showing the differences in the mean 

RRR when the treatment plan and dose response model parameters vary.  General trends for the three 

graphs showed the majority of mean RRR values below 1.0, including the statistical uncertainty, 

indicating improved risk control for the various proton plans compared to the photon IMRT plan.    
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Figure 3-11 –  𝑹𝑹𝑹𝒋,𝒌��������� – BREAST ONLY – proton plans vs IMRT, exposed age (e) = 26, attained age (a) = 46, neutron 𝒘𝑹���� = 20, All α - Since the LNT 
values are the same for each individual patient per treatment plan, in the graph there are 90 individual 𝑹𝑹𝑹𝒋,𝒌��������� values with their corresponding error bars.  Of the 
90, 15 (16.7%) showed a 𝑹𝑹𝑹𝒋,𝒌��������� > 1.  Of these 22, 11 were seen from the PSPT plan comparisons.  



 

 

82 

 
Figure 3-12 –  𝑹𝑹𝑹𝒋,𝒌��������� – LUNG ONLY – proton plans vs IMRT, exposed age (e) = 26, attained age (a) = 46, neutron 𝒘𝑹���� = 20, All α - Since the LNT values 
are the same for each individual patient per treatment plan, in the graph there are 90 individual 𝑅𝑅𝑅𝚥,𝑘��������� values with their corresponding error bars.  Of the 90, 7 
(7.8%) showed a 𝑅𝑅𝑅𝚥,𝑘��������� > 1.  The total lung gave the strongest indication for the use of a proton plan compared to the photon IMRT plan of the three OARs 
examined with respect to the reduction of RSCs. 
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Figure 3-13 –  𝑹𝑹𝑹𝒋,𝒌��������� – THYROID ONLY – proton plans vs IMRT, exposed age (e) = 26, attained age (a) = 46, neutron 𝒘𝒓���� = 20, All α - Since the LNT 
values are the same for each individual patient per treatment plan, in the graph there are 90 individual 𝑹𝑹𝑹𝒋,𝒌��������� values with their corresponding error bars.  Of the 
90, 28 (31.1%) showed a 𝑹𝑹𝑹𝒋,𝒌��������� > 1.  Of these 28, 14 were seen from the PSPT plan comparisons.  The thyroid, gave the strongest indication for the use of a 
photon plan compared to the proton plans of the three OARs examined with respect to the reduction of RSCs.  All 𝑹𝑹𝑹𝒋,𝒌��������� with a value over 1 where again seen 
in the last 3 patients, which were the youngest in the cohort.  
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       The sign (Figure 3.14) and Student’s t-test (Table 3.7) were done for the data shown 

in Figures 3.11-13.  The majority of the data points indicate a mean RRR < 1 although 

they thyroid showed a higher percentage of parameter configurations that showed no 

significance for either plan examined.  No configuration indicated significance for 

photon plans.   
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Figure 3-14 – Sign test of 𝑹𝑹𝑹𝒋,𝒌��������� for proton treatments vs IMRT, exposed age (e) = 26, attained age (a) = 46, neutron 𝒘𝑹���� = 20, all dose response models, 
all α - Sign Test for 𝑹𝑹𝑹𝒋,𝒌��������� for both proton plans vs the corresponding photon IMRT plan.  The blue square indicates the nominal 𝑹𝑹𝑹𝒋,𝒌��������� values.  The red 
triangles designate the nominal 𝑹𝑹𝑹𝒋,𝒌��������� plus its corresponding error, and the green diamonds are the nominal 𝑹𝑹𝑹𝒋,𝒌���������  minus the corresponding error.  All points 
at or below the Orange Line indicates the 𝑹𝑹𝑹𝒋,𝒌���������  is significantly > 1.  All points at or above the Red Line indicates the 𝑹𝑹𝑹𝒋,𝒌���������  is significantly < 1.  All points 
between the Red and Orange line indicate the 𝑹𝑹𝑹𝒋,𝒌���������  is not significantly different than 1. Since the LNT values are identical values for each individual patient 
per unique treatment plan, there were 90 unique 𝑹𝑹𝑹𝒋,𝒌���������  values in the figure.  Of the 90, 60 (66.7%), indicated the 𝑹𝑹𝑹𝒋,𝒌���������  was significantly < 1, 30 (33.3%) 
showed no significance, and 0 (0%) indicated the 𝑹𝑹𝑹𝒋,𝒌��������� was significantly > 1.
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Table 3-7 – Student’s t-test of 𝑹𝑹𝑹𝒋,𝒌���������  for proton treatments vs IMRT, exposed age (e) = 26, attained age (a) = 46, neutron 𝒘𝑹���� = 20, all dose response 
models, all α - Values show any potential statistical significance for a given treatment plan if the uncertainty is subtracted from the nominal  𝑅𝑅𝑅𝚥,𝑘��������� (- Error), the 
uncertainty is added to the nominal 𝑅𝑅𝑅𝚥,𝑘���������value (+ Error), and with just the nominal 𝑅𝑅𝑅𝚥,𝑘��������� value (OAR name only).  Since the LNT values are identical values 
for each individual patient per unique treatment plan, there were 90 unique 𝑅𝑅𝑅𝚥,𝑘��������� values in the figure.  Of the 90, 71 (78.9%), indicated the 𝑅𝑅𝑅𝚥,𝑘��������� was 
significantly < 1, 19 (21.1%) showed no significance, and 0 (0%) indicated the 𝑅𝑅𝑅𝚥,𝑘��������� was significantly > 1.   
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The 𝑅𝑅𝑅𝚥������� for the same parameter configuration as Figures 3.11-3.13 were examined in 

Figure 3.15.  Results were decidedly in favor of the two proton treatments relative to the photon 

IMRT plan.  All reported values showed a 𝑅𝑅𝑅𝚥������� < 1 for all OARs varied over both proton plans 

for all dose response models and inflection points.  As has been the case throughout the results in 

this chapter thus far, the Age of Exposure (e) = 26, the Attained Age (a) = 46, and the neutron 

𝑤𝑅���� = 20. 

 

Figure 3-15 –  𝑹𝑹𝑹𝒋������� for a given OAR for all patients, proton plans vs IMRT, exposed age (e) = 26, 
attained age (a) = 46, neutron 𝒘𝑹���� = 20, all dose response models, all α - All iterations showed a 𝑅𝑅𝑅𝚥������� value 
of below 1, including error bars.  As has been seen throughout, generally, the LNT values show the highest 
𝑅𝑅𝑅𝚥������� values, α = 0.090 has a lower mean RRR, and the total lung has the lowest 𝑅𝑅𝑅𝚥������� of the OARs. 

 

       Figure 3.16 depart from the data shown up to this point by focusing on the 𝑅𝑅𝑅𝚥������� when the 

neutron 𝑤𝑅���� value is varied.  Recall that all data up to this point kept the neutron 𝑤𝑅���� constant at 
20.  For this graph, both proton plans were compared to the photon IMRT plan.  The age of 
exposure (e) is still 26, the attained age (a) is still 46, and α = 0.025. 
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Figure 3-16 – 𝑹𝑹𝑹𝒋������� for a given OAR for all patients, PSPT vs IMRT, exposed age (e) = 26, attained age 
(a) = 46, neutron 𝒘𝑹����, all α - Mean RRR ( 𝑅𝑅𝑅𝚥�������) for all patients and both proton plans as the neutron 𝑤𝑅���� is 
varied.  Including the error bars, none of the 𝑅𝑅𝑅𝚥������� values in the figure were > 1.  While the LNT values will 
stay the same when α = 0.090, the 𝑅𝑅𝑅𝚥������� values decrease on average for the non-linear dose response models. 

 

3.3.6. – Mean RRR Extrema Comparisons 

𝑅𝑅𝑅𝚥������� was examined in the case of its extrema for the Proton PSPT plan vs the Photon IMRT 

plan in Figure 3.17.  Each OAR was tested over each dose response model.  The oldest age of 
exposure (e) and attained age (a) combined with the dose response inflection point (α) = 0.025 gave 
the largest mean RRR values.  The youngest (e) and (a) values in concert with α = 0.090 gave the 
smallest 𝑅𝑅𝑅𝚥�������.  To compare, the average patient tested in Aim 1 (e = 26, a = 46, α = 0.025) is 

displayed as well.   
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Figure 3-17 – Extrema 𝑹𝑹𝑹𝒋������� for PSPT vs IMRT, exposed age (e), attained age (a), α, and neutron 𝒘𝑹����  = 
20 - Of note, the display is not a standard box and whisker graph, but rather a way of displaying the extrema in 
one image concisely.  See legend to the right of the figure.  Including the error bars, none of the 𝑅𝑅𝑅𝚥������� values in 
the figure had a mean RRR value > 1.  The average patient tested in Aim 1 (e = 26, a = 46, α = 0.025) is the 
interface between the yellow and purple portions of the graph.  Including error bars, the range of outcomes for 
this figure show a 𝑅𝑅𝑅𝚥������� value between 0.55 and 0.94. 

 
The sign (Figure 3.17) and Student’s t-test (Table 3.8) were applied to the data shown in Figures 

3.17.  Outcomes where similar to those figures with the majority of the data points indicating a mean 

RRR < 1.  Again, the thyroid showed a higher percentage of parameter configurations that showed 

no significance.  No configuration indicated significance for photon plans.   
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Figure 3-18 – Sign test of  𝑹𝑹𝑹𝒋,𝒌��������� extrema for PSPT vs IMRT, exposed age (e), attained age (a), neutron 𝒘𝑹����  = 20, all dose response models, and α - The 
blue square indicates the nominal 𝑅𝑅𝑅𝚥,𝑘��������� values.  The red triangles designate the nominal 𝑅𝑅𝑅𝚥,𝑘��������� plus its corresponding error, and the green diamonds are the 
nominal 𝑅𝑅𝑅𝚥,𝑘��������� minus the corresponding error.  All points at or below the Orange Line indicates the 𝑅𝑅𝑅𝚥,𝑘��������� is significantly > 1.  All points at or above the Red 
Line indicates the 𝑅𝑅𝑅𝚥,𝑘��������� is significantly < 1.  All points between the Red and Orange line indicate the 𝑅𝑅𝑅𝚥,𝑘��������� is not significantly different than 1. There are 81 
unique 𝑅𝑅𝑅𝚥,𝑘��������� values in the figure.  Of the 81, 40 (49.4%), indicated the 𝑅𝑅𝑅𝚥,𝑘��������� was not significantly different than 1.  22 of the 40 points that indicated no 
significance were for the thyroid.   



 

 

91 

 

 

Table 3-8 – Student’s t-test of 𝑹𝑹𝑹𝒋,𝒌��������� extrema for PSPT vs IMRT, exposed age (e), attained age (a), neutron 𝒘𝑹���� = 20, all dose response models, and α - 
Values show any potential statistical significance for a given treatment plan if the uncertainty is subtracted from the nominal 𝑅𝑅𝑅𝚥,𝑘��������� (- Error), the uncertainty is 
added to the nominal 𝑅𝑅𝑅𝚥,𝑘��������� value (+ Error), and with just the nominal 𝑅𝑅𝑅𝚥,𝑘��������� value (OAR name only).  Of the 81, 25 (30.9%), indicated the 𝑅𝑅𝑅𝚥,𝑘��������� was not 
significantly different than 1.  16 of the 25 points that indicated no significance were for the thyroid.   
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     As in Aim 1, tables summarizing the finding of Aim 2 are now listed.  Due to the amount of data 

they have been broken into three separate tables.  Table 3.9 compares the differences between the 

dose response models to the Aim 1 data.  Table 3.10 shows the variation in the results as the neutron 

𝑤𝑅���� varies, and Table 3.11 displays the extrema comparisons.   
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Table 3-9 – Summary of all major finding from Aim 2 - comparisons to Aim 1 – Breaks down the results by PSPT and IMPT tests compared to IMRT.  Note 
that the column labeled “Mean for All 9 Patients” averages all 9 of the respective 𝑅𝑅𝑅𝚥,𝑘��������� values together.  These values correspond to 𝑅𝑅𝑅𝚥�������.  A mark like this (*) 
indicates that the given proton plan significantly (p ≤ 0.05) reduced the risk of RSC compared to IMRT. 
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Table 3-10 – Summary of all major finding from Aim 2  - neutron 𝒘𝑹���� variation – Breaks down the results 
by PSPT and IMPT tests compared to IMRT.  Note that the column labeled “Mean for All 9 Patients” averages 
all 9 of the respective 𝑅𝑅𝑅𝚥,𝑘��������� values together.  These values correspond to 𝑅𝑅𝑅𝚥�������.  A mark like this (*) indicates 
that the given proton plan significantly (p ≤ 0.05) reduced the risk of RSC compared to IMRT. 
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Table 3-11 – Summary of all major finding from Aim 2  - extrema comparison – Breaks down the results 
for PSPT compared to IMRT only.  Note that the column labeled “Mean for All 9 Patients” averages all 9 of 
the respective 𝑅𝑅𝑅𝚥,𝑘��������� values together.  These values correspond to 𝑅𝑅𝑅𝚥�������.  A mark like this (*) indicates that the 
given proton plan significantly (p ≤ 0.05) reduced the risk of RSC compared to IMRT. 
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4.    Discussion                                                          

     4.1. Outcome of Specific Aim 1 
 

The goal of Specific Aim 1 was to determine baseline 𝑅𝑅𝑅������ values calculated between proton 

PSPT and IMPT treatment plans vs the corresponding photon IMRT plan for the total breast, total 

lung, and thyroid of 9 patients using a representative patient exposed at the age of 26 years and 

attaining the age of 46 years.  The neutron 𝑤�𝑅 value equaled 20 and the LNT dose response model 

was used to calculate the 𝑅𝑅𝑅������.   

Several 𝑅𝑅𝑅������ endpoints were used (See Table 2.3).  With respect to significant difference, each 

gave variable answers.  While the majority of parameter permutations for each patient indicated a 

mean RRR value < 1, a statistically significant difference from a value of 1 was not always found.  

Two statistical tests were used, the sign test and the Student’s t-test.  Analysis was conducted for 

both the PSPT/IMRT and IMPT/IMRT comparison.   

The sign test for PSPT/IMRT comparison showed no significant difference from a value of 1 (p 

≤ 0.05) for 𝑅𝑅𝑅𝚥,𝑘��������� for any of the OARs considered.  The IMPT plan increased the differences 

compared to the IMRT plan by demonstrating a mean RRR < 1 for the total breast and total lung.   

Student’s t-test (which takes the magnitude of the mean RRR value into account) gave the same 

qualitative results as the sign test for the IMPT/IMRT comparison.  The PSPT/IMRT comparison 

again showed a statistically significant reduction relative to the IMRT plan when all 3 OARs were 

averaged together, but also showed a statistically significant reduction for the total breast and total 

lung as well.  Thyroid showed no difference for either comparison again. 

  Note that these results are for the nominal mean RRR values.  If the error bars were taken into 

account, the answers either gave a more favorable view of the photon IMRT plan (by adding the 

error to the nominal mean RRR) or to the proton plans (by subtracting the error).  Regardless of the 

permutation, though, statistically significant reduction in the 𝑅𝑅𝑅������’s, if any, only favored the proton 

plans.   

Additionally, the other mean RRR endpoint examined (𝑅𝑅𝑅𝚥�������) also showed a reduction 

(including error bars) in the RSC risk relative to the IMRT plan for all endpoints.  For the 

PSPT/IMRT comparison, the 𝑅𝑅𝑅𝚥������� for total breast was 0.84, for total lung, 0.77, and for thyroid, 

0.84.  For the IMPT/IMRT comparison the 𝑅𝑅𝑅𝚥������� for total breast was 0.77, for total lung, 0.73, and 

for thyroid, 0.75.   

Tests of the correlation of any host or treatment factors to mean RRR values showed minimal or 

negligible correlation for all OARS save the thyroid, which showed moderate correlation as a 
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function of the patient’s exposed age (decreases as patients get older) and the mean RRR values of 

all OARs except thyroid (increases as the other mean RRR values of other OARs increase). 

     4.2. Outcome of Specific Aim 2 
 

The goal of Specific Aim 2 was to determine the uncertainty associated with the baseline mean 

RRR values found in Specific Aim 1 by varying the parameters that affect the mean RR calculations 

used to compare the treatment plans.   

When varying the dose response models for the representative patient in Aim 1 (with a fixed 

neutron 𝑤𝑅���� of 20) , the greatest range of mean RRR for any combination of dose response model, 

dose response inflection point, and OAR (𝑅𝑅𝑅𝚥�������) was between 0.60-0.84 for PSPT/IMRT and 0.53-

0.77 for IMPT/IMRT.  The non-linear dose response model generally decreased the mean RRR 

relative to the LNT model, and the IMPT plan lowered the mean RRR value on average by an 

additional 12% compared to the PSPT plan.   

Mean RRR values varied by a slightly larger amount as a function of neutron 𝑤𝑅����.  Once again 

using the representative patient from Aim 1 as a baseline, the greatest range of the nominal mean 

RRR for any combination of dose response model, dose response inflection point, and OAR (𝑅𝑅𝑅𝚥�������) 

was between 0.51-0.93 for PSPT/IMRT and 0.49-0.82 for IMPT/IMRT.    

The smaller range for the IMPT is expected due to the lack of external neutrons and therefore 

reduced total neutron dose added to the dose distribution relative to IMRT.  While a neutron 𝑤𝑅���� of 

20 is a very plausible value to use for calculations, values closer to 10 have been reported in the 

literature for other radiotherapy sites (Newhauser et al., 2009), so this value could be considered 

conservative.  

       Extrema variations from OAR to OAR (Figure 3.20), were much less diverse.  Including dose 

response model variation, the 𝑅𝑅𝑅𝚥������� for total breast ranged from 0.64-0.93 for a variation of ~ ± 17% 

from the mean, total lung ranged from 0.55-0.82  for a variation of ~ ± 18% from the mean, and 

thyroid ranged from 0.72-0.90. 

       With respect to statistical significance for the extrema, the sign test showed no significant 

differences between the PSPT and IMRT treatments when the LNT model was used.  Use of non-

linear dose response models led to significance for some additional configurations of the total breast 

and total lung, but the thyroid never did.   

       Compared to the sign test results, the Student’s t-test increased the number of PSPT 

configurations where PSPT significantly reduced the RSC risk versus IMRT.  Significance was seen 

in the total breast, total lung, and all 3 OARs averaged together. There were no 𝑅𝑅𝑅������ configurations 
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throughout this entire work that indicated the photon plan would be statistically significantly better 

than either proton plan at reducing RSC risk.                     

      Evidently, the majority of patients tend to favor the proton treatments compared to the photon 

IMRT treatment with respect to RSC risk for the lungs and breast.  The thyroid, however, showed no 

significant reduction in RSC risk for the proton plans, even when non-linear dose response models 

were used.  Overall, with the exception of thyroid, our data indicated that patients exposed at 

younger ages saw reduced RSC risk using the proton plans compared to the photon IMRT than older 

patients did.   

       Despite the majority of patients indicating RSC risk reduction by using proton therapy, one 

patient, #7, almost exclusively displayed 𝑅𝑅𝑅������ > 1, even showing values that exceeded the range of 

uncertainty of all other patients.  Patient #7 showed no great deviation from the mean for most host 

factors, such as height, weight, etc.  She was, however, one of the three youngest in the cohort (15 

years at the time of exposure) which, for thyroid, indicated a small tendency to increase 𝑅𝑅𝑅������.  She 

also had larger than average OAR volumes, which provided more tissue used in the calculation of 

OAR RSC risk to be exposed to radiation.  In addition, her proton beam orientation was not an 

AP/PA setup as was done for the majority of the patients, but an AP/Lateral configuration.   

       Only one other patient (#1) had this field arrangement.  Their mean RRR value was higher than 

the average for the total breast, which is attributed to the lateral beam traversing the left breast in 

order to treat the tumor volume.  While these two share similarities with respect to the total breast, 

the mean RRR for the thyroid of Patient #7 is substantially higher than Patient #1.  This is attributed 

to the CTV being much more superior in the patient body for #7 compared to #1.   Figure 4.1 

compares the photon IMRT dose distribution for two axial slices compared to the proton PSPT plan 

(therapeutic dose only) for Patient #7.  
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Figure 4-1 – Axial slices of Patient #7 highlighting increased dose from the IMRT plan vs the PSPT plan 
- a) IMRT plan highlighting the reduction in dose to the breast (pink) compared to the PSPT plan in b), which 
is the same axial slice as a).  c) IMRT plan highlighting the significant reduction to the thyroid (green) 
compared to the PSPT plan in d), which is also the same axial slice as c).   The lateral beam appears to 
significantly increase the dose incident of these two OARs, which have mean RRR values > 1. 

 

       In general, proton plans lowered the 𝑅𝑅𝑅������ compared to photon IMRT for all OARs except the  

thyroid, for which no significant deviation from a mean RRR value of 1 was observed.   

     4.3. Coherence with Existing Literature 
 
With respect to the major endpoints of the work, the mean RRR, the work which most closely 

resembles ours was that of Cella et al. (2013).  In it, they benchmarked a similar calculation to the 

RRR (they called it the risk ratio) using dose volume histograms (DVH) bins rather than voxel by 

voxel calculations to account for dose heterogeneity.  They also only calculated for an IMPT 

configuration, which excludes an external neutron component.  Other differences included, they only 

used one representative patient with artificially drawn CTVs, applied a model based internal neutron 

component within the primary (i.e. open) field only and used a neutron 𝑤𝑅���� = 7 instead of using direct 
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calculation in and out of field, and they included cell kill, repopulation, and fractionation variations 

in their risk calculations using methods from Schneider (2009). 

In their work, they used three CTV/PTV volumes to compare their version of the RRR.  Our 

patients spanned the spectrum of these volumes, and we selected patients that most closely 

resembled theirs. Several aspects of their representative patient differed from ours; however, a 

comparison of their results and ours is shown in Figure 4.2.   

 
Figure 4-2 – Comparison of Cella et al, 2013 mean RRR values to this work – Comparison between our 
configuration that most closely mirrored the work by Cella et al (IMPT treatment, linear plateau dose response 
model, neutron 𝑤𝑅����) . The various PTV designations (1,2,3) indicate the varying size of the contoured PTV in 
the Cella et al paper.  The mean of the OARs for each of the three PTV sizes is shown in the fourth column 
designated as “Average of all 3 PTVs”.  Their results indicate a reduction in 𝑅𝑅𝑅𝚥,𝑘��������� values relative to our 
study.  In addition, each PTV examined shows increasing 𝑅𝑅𝑅𝚥,𝑘��������� values (from lowest to highest) to the total 
breast, total lung, and thyroid.  This differs from our results and is likely caused by tumor location. 

 

Their results favored the IMPT plans compared to our findings especially for the total breast. 

While they also found the mean RRR to be < 1, their data indicated a more significant reduction 

compared to our results.  There are several possible reasons for this.   

1) The proton beam energies they used ranged from 62-180 MeV.  Ours were much higher (often 

above 200 MeV and up to 250 MeV) which would have increased the neutron dose, which they only 

accounted for in field.  Additionally, they prescribed a dose of 30 Gy instead of 36 Gy as we did, 
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which would reduce risk values slightly as well due to a reduction in neutron contributions.  2) The 

PTV was constructed to largely be symmetrical bi-laterally in the patient both laterally and in the 

superior/inferior direction.  This is a fairly idealized setup for treatments, and was often not seen in 

our patients, including the patients in this comparison.  Patient #4 (used to compare PTV2 above) 

was a close approximation to this geometry and is the closest replication to the results from Cella et 

al.  3) Their IMRT treatment used seven fields and ours were five field setups.  A reduction in the 

number of fields and therefore, volume of healthy tissue irradiated, will lower the patient’s risk of 

RSC using IMRT (De Bruin et al., 2009, Ng et al., 2010, Weber et al., 2011, Paganetti et al., 2012).  

4) Their study only included one patient which eliminates the variations seen in patient anatomy and 

tumor location across a cohort. 

Despite these differences, the overall results generally agree.  Several other studies have also 

indicated a clear advantage for proton plans versus photon plans for HL, either dosimetrically (Chera 

et al., 2009, Andolino et al., 2011) or with risk calculations included (Schneider et al., 2000, Cella et 

al., 2013).  Additionally, both Schneider et al and Cella et al found that there was minimal 

improvement in the thyroid when comparing the photon and proton therapies.  This agreed with our 

findings, further strengthening this result.   

While our overall results are generally consistent with the previous works, the advantage for the 

proton treatments is not as significant as their studies suggested.  Possible reasons for this include: 1) 

Some previous studies conducted measurements on only one representative patient. 2) No previous 

studies included neutron exposures, either forgoing them completely or introducing static in-field 

neutron estimations from Schneider et al. (2002).  3) As stated previously, certain aspects of their 

treatment parameters for both the proton and photon fields tend to provide a best case scenario for 

the proton setup. 

Comparisons to other published data similar to our studies also matched up fairly well.  Our 

adjustment of the photon dose to voxels beyond the 5% isodose line led to an average increase in our 

OAR mean dose by 14.5% in total breast, 2.6% in total lung, 4.6% for the thyroid.  Papers by Howell 

et al. (2010a) and Joosten et al. (2011) reported an under dosage by the commercial TPS to voxels 

which fell below the 5% isodose line by 40 - 60%.  Since voxels with values greater than the 5% 

isodose line where unchanged, and the majority of OARs for the 9 patients had larger portions of 

their volume above the 5% isodose line, our adjustments were lower than the value reported by 

Howell et al and Joosten et al. 

While the average increases in mean doses were the values reported above, there were a few 

instances where individual patients registered an increase in dose above the 60% threshold.  This was 

attributed to the use of an IMRT fields compared to the open fields used in the previously cited 



 

102 
 

works.   The many small fields used by the IMRT plan causes the peripheral dose profile to be 

largely comprised of scatter from the linear accelerator treatment head.  Multiple studies, including 

Howell et al. (2006b)  and Ruben et al. (2011) showed in a comparison between IMRT and three 

dimensional conformal therapy (3DCRT) that head scatter and leakage was significantly higher for 

IMRT compared to 3DCRT since it was proportional to the number of monitor units (MU) delivered.   

The neutron calculations for our proton plans also match up well with previous studies.  Taddei 

et al. (2010a) is the closest comparison to our work, most closely corresponding to Patient #2 from 

our work. They treated a tumor located in the liver with 2 proton fields using the same proton 

energies (225 and 250 MeV) and have similar spread out Bragg peak widths (SOBP).   

If one adjusts Taddei’s work to equate the neutron 𝑤𝑅���� value to 20 and to deliver the same 

prescribed dose, the mean cSv/Gy for his work to the liver is 3.8 cSv/Gy.   The mean H/D value for 

the total breast and total lung together (which is as close to a similar OAR location as we had) in our 

work was 5.7 cSv/Gy.  The increased value of our calculations compared to Taddei et al can be 

partially explained by their use of an intermediate snout size (corresponding to an 18x18 cm2 open 

field) in their work while we used a larger snout configuration (25x25 cm2).  Stray neutron exposures 

have been shown to be sensitive to the position of the snout (Mesoloras et al., 2006, Zheng et al., 

2007).  In addition, Zheng et al. (2008) have shown that a change from the intermediate snout to the 

larger size for a 250 MeV beam can lead to an increase in neutron equivalent dose by more than 

25%.  Adjusting the values to account for this brings the values closely in line.   

It is important to point out that Patient #2 was the patient with the maximum neutron dose 

contributions compared to other patients.  Averaging all OARs together for all patients, the mean 

neutron dose was 2.97 cSv/Gy. 

Our work also saw an increase in neutron dose as a function of proton beam energy, which 

corresponds to other works (Zheng et al., 2007, Zheng et al., 2008, Fontenot et al., 2008).  With the 

exception of Patient #8, patients with the largest neutron dose contribution came from the plans with 

the highest proton beam energies.  Patient #8, recall, was our youngest patient (and also one of our 

smaller ones as well) and had larger portions of her anatomy exposed to scatter dose.   

The increase in the contribution of neutrons to the OARs followed closely with that of 

Newhauser et al. (2009).  Their work showed that internal neutron and external neutron spectra 

deliver roughly the same amount of dose when accounted for.  Our work showed a slight increase of 

internal neutron dose compared to the external neutrons.  Our fields were also much larger relative to 

their study which would account for the increased internal neutron dose production in the patient.  Of 

note, the total neutron contribution is no more than 20% of the total risk contribution for neutron 𝑤𝑟���� = 
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20 for PSPT, and can be as little as 3% when the neutron 𝑤𝑅���� = 5.  The coherence with these previous 

works provides further confidence of out of field scatter dose contributions values in our study. 

Our findings demonstrate an advantage for proton treatments relative to photon IMRT treatments 

for HL patients with respect to RSC risk, which is in qualitative agreement with previous studies.  

However, our studies suggest the need for taking into account neutron exposures and individualized 

treatment planning in performing risk assessment. 

     4.4. Implications and Significance of Findings 
 

From a public health perspective, the high cure rates and long survival times after HL treatment 

make plausible reductions of RSC risks an important and relevant study.  Since the turn of the 

millennium, many epidemiological and radiation exposure studies have examined this topic.  Unlike 

other studies which have shown clear advantages of protons vs photon treatments (Schneider et al., 

2000, Newhauser et al., 2009, Fontenot et al., 2009, Chera et al., 2009, Taddei et al., 2010b, Taddei 

et al., 2010a, Paganetti et al., 2012, Rechner et al., 2012a, Cella et al., 2013), our work has a more 

nuanced conclusion.   

In the majority of patients considered, the proton plans offered a lower predicted mean RR to the 

OARs of interest.  This was not the case for all patients, however, and can be attributed to several 

unique contributions of this work.   

To the best of our knowledge, this study is the first to conduct a full neutron dose calculation for 

a HL proton plan.  The significance of this increase in mean dose to the OAR is, of course, highly 

dependent on the neutron 𝑤𝑅���� value.  For a neutron 𝑤𝑅���� of 5, the increase in mean dose to the OARs is 

around 5%.  For a neutron 𝑤𝑅���� of 20, however, the OAR mean doses increased between 16-20% for 

PSPT plans, which for a LNT dose response would increase the risk by a corresponding percentage.  

This is a non-negligible amount that needs to be incorporated before making definitive statements 

about the RSC risk comparisons between plans.   

Our plans also had one of the higher prescribed doses (36 Gy) in the spectrum for HL treatments.  

Many other similar works used 20-30 Gy and can even go as low as 20 Gy.  Reducing the dose 

would lower the proton treatment’s mean RRR at a faster rate than the IMRT plan because of the 

additional reduction of the neutron dose component.   

Additionally, to the best of our knowledge, this is the first study to make corrections to the 

under-dosed areas calculated for the IMRT photon plan by the commercial TPS with direct field 

measurements made in phantom.  The increase in the mean dose for organs which are far away from 



 

104 
 

the tumor, such as a superiorly placed HL tumor that largely spares the breast (which increased the 

mean dose by 10-15%) could also change the qualitative outcome of modality comparisons. 

This is also the first study that included RSC risk sensitivity analysis for an HL cohort.  

Dosimetric studies have been conducted on more than one patient, but other recent risk analysis have 

been done on one representative patient (Cella et al., 2013).  The extrema testing conducted in this 

work attempts to bracket the range of uncertainties associated with this patient set.  While there are 

still questions as to the exact biological mechanisms involved in the development of RSCs, the 

insensitivity of the qualitative findings to the choice of risk models should greatly increase 

confidence in the results.   

When examining proton vs photons, the majority of RSC risk studies in the literature only looked 

at IMPT plans (Schneider et al., 2000, Cella et al., 2013).  While our studies showed that IMPT 

would reduce the risk compared to PSPT, on average this reduction for the LNT dose response 

model was 8% for total breast, 5% for total lung, and 12% for thyroid and never exceeded the error 

bars for PSPT. This is important for several reasons, but emphasis is focused on the fact that none of 

our studies take into account breathing motion, instead assuming the tumor volumes found from the 

CT scan represent the average CT position of the tumor and subsequent OARs.   

Since supra-diaphragmatic HL tumors are located in the thorax, motion should be examined.  

Studies have shown that for lung tumors, assumed dose to the tumor (and lack thereof to healthy 

tissue) is not delivered as intended due to geographic misses of the tumor as a result of respiratory 

motion (Engelsman et al., 2006, Starkschall et al., 2009).   

The nature of the IMPT beam delivery compared to the more stable PSPT could cause hot and 

cold spots due to dosimetric misses of the tumor as a result of the interplay between the organ and 

tumor motion and the beam (Grozinger et al., 2006, Newhauser et al., 2009).  Recent studies have 

discussed the uses and need for 4D imaging of HL patients to better improve treatment outcomes as 

well (Stromberg et al., 2000, Claude et al., 2007, Specht et al., 2013, Eley et al., 2013). 

Finally, the findings revealed that large inter-patient variations necessitate population based 

studies.  Furthermore, clinical care decisions made from the sole perspective of RSC risk seem to, in 

general, favor the various proton plans over photon IMRT, but personalized RSC predictions are 

needed. 

     4.5. Strengths of the Study 
 

This study was unique from several different aspects.  The full dosimetric analysis due to the 

inclusion of the secondary dose contributions of both the proton and photon treatment plans 

increases the confidence of our risk analysis, which has been noted by the authors of other studies as 
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a shortcoming of their results (Schneider et al., 2000, Chera et al., 2009, Weber et al., 2011, Cella et 

al., 2013).   

  The sensitivity analysis of Specific Aim 2 addressed several of the most important sources of 

uncertainty associated with the calculation of the RSC risk.  Rather than make a single assumption, a 

range of possibilities were calculated via brute force calculation to assist in drawing more 

meaningful and confident choices regarding treatment selection of HL patients with respect to RSC 

risk. 

Another strength, as pointed out earlier, was the inclusion of multiple patients in the dosimetric 

analysis of this study.  Incorporating multiple patients allowed us to observe and account for the 

variation found between each patient, both in their anatomy and in their tumor characteristics.  

Importantly, clinically significant differences were seen which would not have been observed had a 

phantom of a single representative patient been used.   

      One final strength was the calculation of the risk on a voxel by voxel basis.  While these voxels 

were averaged together for each OAR and then reported as the mean RR in this work, there is 

potential to use the voxel based calculations to visualize the risk calculations as commercial TPSs’ 

visualize dose as seen in Figure 4.3.  Other works used similar techniques to account for the 

heterogeneity but used data from a DVH, which allocates the dose appropriately, but loses the spatial 

location of that dose in the process (Rechner et al., 2012a, Cella et al., 2013). 

     There are many unanswered questions in personalized RSC, such as is it appropriate to use risk 

models based off of mean dose to calculate on a per voxel basis (Berrington de Gonzalez et al., 

2013).  If these questions are answered in the future, these techniques can be used to determine 

where the risk is most prevalent (not a straightforward answer if the dose response is non-linear) or 

to optimize plans based off of risk in addition to dose. 
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Figure 4-3 – Example of risk visualization tools – Images from Patient #2. The CTV and OARs in the image 
are pointed out in c).  a) equivalent dose distribution from PSPT plan b) equivalent dose distribution for IMRT 
plan c) relative risk (RR) from same slice of PSPT plan d) RR from same slice of IMRT plan.  Several 
questions remain regarding the appropriate value of risk on voxel by voxel basis, but calculating risk in the 
future can be used to visualize locations of higher or lower risk between treatment plans. 

     4.6. Limitations of the Study 
 

       Our study also had several limitations.  As stated previously, the lack of 4D CT data sets or 4D 

planning when calculating dose could lead to discrepancies between the dose, and subsequently the 

RSC risk, calculated compared to what is actually delivered.   

      Another shortcoming is the lack of risk calculations for other potential OARs in the field of 

treatment, such as the esophagus and heart.  All of the studies mentioned previously focus on the 

breast, lung, and thyroid, and for good reason.  Breast and lung cancer are the most prevalent among 

young adults (Ng et al., 2010) after undergoing HL treatment, even compared to the thyroid which is 

up to 7 times less common as a RSC for HL patients.  However, a more comprehensive review of 

OARs potentially affected would provide a more complete picture of possible issues when making 

clinical determinations.   

     Our study was an in-silico trial as opposed to an in-vivo trial.  This is a common issue in radiation 

dosimetry/risk analysis and is difficult to overcome due to the amount of time required to acquire 

statistically meaningful results before the treatment technique is rendered technologically obsolete. 



 

107 
 

     On a similar note, while the 9 patients in our study was the largest of HL risk analysis involving 

proton therapy to our knowledge, additional patients will be required to attain the necessary 

statistical power to draw definitive conclusions.  In the short term, similar analysis of more patients 

in a similar manner will increase confidence in the result going forward. 

       While we feel our sensitivity tests cover a substantial amount of uncertainty associated with 

these risk calculations, there are still several unknowns regarding RSC outcomes for medically 

irradiated populations, not only compared to the LSS cohort we used from RadRAT and BEIR VII, 

but also from variations in techniques for medically exposed populations over the last 40 years, 

which were largely treated with EFRT (mantle fields).   

       Most institutions have moved from EFRT to IFRT over the last decade, however.  These smaller 

field sizes which reduce the dose to healthy tissue combined with the heterogeneity of the dose 

distribution relative to EFRT have led many epidemiologists to caution against use of these risk 

models (Little, 2001, Dores et al., 2002, Suit et al., 2007, Koh et al., 2007, De Bruin et al., 2009, Ng 

et al., 2010, Berrington de Gonzalez et al., 2013).  By taking the ratio of two plans against each 

other, many of these confounders have been removed, but when calculating absolute risk as opposed 

to relative risk as we have, care should be taken.   

       In the same vein, for photon treatments, 3DCRT has been compared to IMRT in other HL 

studies.  While there are several advantages for IMRT treatments, including higher dose conformity 

and reduced hot spots to healthy tissue compare to 3DCRT, which may reduce acute side effects of 

radiation treatment, IMRT delivers low dose irradiations to larger volumes of healthy tissue.  With 

the use of current models, this characteristic has led to lower dose or risk values for the organ at 

large compared for 3DCRT compared to IMRT (Chera et al., 2009, Andolino et al., 2011, Cella et 

al., 2013).   

       Additionally, both photon and proton treatments, there has been substantial interest in moving to 

even smaller fields than IFRT.  These fields, called Involved Node Radiation Therapy (INRT) 

(Girinsky et al., 2006) are gaining in popularity and have been shown to irradiate less healthy tissue 

than IFRT (Weber et al., 2011).  To further validate our results, a more comprehensive study of all 

available treatment techniques could be explored in the future.   

      Despite the above limitations, we feel our study is the most comprehensive for a HL patient 

cohort comparing photon treatments vs proton therapy to date and will only be strengthened by 

further studies in the future.   
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     4.7. Future Work 
 

       Several different steps which have been highlighted in the above sections can be taken in the 

short term to further advance the topic of HL RSC risk.  Several other treatment techniques, 

including the aforementioned INRT field setups in conjunction with the treatment setups from this 

work as well  as the more recently used volumetric modulated arc therapy (VMAT) for both photon 

and proton modalities can be explored.  VMAT risk values have been looked at in the prostate 

(Rechner et al., 2012a, Rechner et al., 2012b) and have shown similar results as IMRT in HL patients 

(Weber et al., 2011).   

       Extensive work has also been done on the implementation of Monte Carlo based calculations for 

photon IMRT treatments in our research group.  Incorporating this into future studies would be the 

first validation of a complete photon IMRT treatment plan using deterministic methods and would 

provide a more comprehensive dosimetric evaluation than the analytical model employed here. 

       Finally, the risk visualization analysis previewed in Figure 4.3 can be further refined by 

streamlining the in house code written to prototype its function.  More important, however, will be 

the validation of a model from epidemiological studies regarding the incidence of RSC for 

heterogeneous dose distributions in the treated HL population.  With this information, the 

visualization becomes more than just a tool for comparisons of likely locations of dose and therefore 

potential risk.  It can instead be used to help optimize treatment plans to not only reduce dose to 

healthy tissue, but risk as well.  

     4.8. Conclusion 
  

     Individualized PSPT and IMPT proton treatment plans which included a comprehensive dose 

calculation were compared for RSC risk to a corresponding photon IMRT plans for 9 patients.  

Evaluation of the range of possible mean RRR values with the sign test showed that while the 

majority of patient’s individual OARs displayed decreased RSC risk for each proton plan compared 

to the IMRT plan, significant reductions were only seen when the average of all nine patients for 

each OAR (𝑅𝑅𝑅𝚥�������) were compared.  Inclusion of out of field and secondary doses were shown to be 

important to accurately calculate risk as its absence for both the proton and photon plans would have 

resulted in a mean RRR value to incorrectly being greater than or lesser than 1.  Due to the high 

variability of each patient with respect to patient anatomy and tumor location, individualized analysis 

is paramount to ensuring the best possible prediction of RSCs.   
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