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Abstract 
 

The goal of this study was to redesign a Radiological Physics Center (RPC) 

mailable remote audit tool used for stereotactic radiosurgery (SRS) single beam 

dosimetry.  A prototype phantom was designed and built housing nanoDot 

(Landauer Inc., Glenwood, IL) Al2O3:C optically stimulated luminescence 

dosimeters (OSLDs) whose visible active luminescent area has been masked.  The 

phantom has two measurement points with two OSLDs at each location and a film 

insert for localization purposes only.  The masked OSLDs were characterized 

accounting for various correction factors associated with OSLD dose calculations.  

The uncertainties for each correction factor were also investigated.  It was 

determined that the linearity, depletion, fading, and energy correction factors were 

identical to the RPC commissioning data for non-masked OSLDs.  The element 

correction factor (ECF) for masked OSLDs must be determined separately.  Two 

new correction factors were introduced to the OSL dose calculation formula, scatter 

and field size dependence factor.  The field size dependence factor was proven to 

be unity.  The minimum field size the masked OSLD system can accommodate as 

an audit tool was determined to be 10 mm diameter field for circular cones or 1 x 1 
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cm2 field sizes.  The overall system uncertainty was 3.72% (95% C.I.) for 

irradiations performed using a 1 x 1 cm2 field size.  The uncertainty was suitable in 

advocating a ±5% acceptance criterion for RPC remote audits.  Feasibility studies 

were performed at various locations on multiple SRS treatment configurations.  

CyberKnife, linac based cones, and MLC trial audits produced an average RPC 

OSLD measured to institution reported dose ratio of 0.982 with a standard deviation 

of 0.036.  
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1 Introduction 

1.1 Statement of the Problem 

Small photon fields have seen an increase use in modern radiotherapy 

techniques specifically in stereotactic procedures and large uniform and nonuniform 

fields composed of small fields. Technological advances in linear accelerator design 

such as the Brainlab m3 (Brainlab Inc., Feldkirchen, Germany) micro multileaf 

collimator (mMLC) with thin leaf sizes and stereotactic specific treatment units 

including the CyberKnife (Accuray Inc., Sunnyvale, CA) and Gamma Knife (Elekta 

Instrument, Stockholm, Sweden) have enabled small field delivery.  With small field 

sizes comes the potential for greater dosimetric errors due to the partial occlusion of 

the photon beam source, lack of lateral charged particle equilibrium, and volume 

averaging.  Stereotactic radiosurgery delivers large doses in small number of 

fractions to a target.  Dosimetric deviations can result in increased normal tissue 

toxicity and reduced local tumor control.  The need for a remote audit tool to verify 

planned dose delivered by an institution is essential in reducing errors and 

maintaining consistency between institutions participating in clinical trials. 

The Radiological Physics Center (RPC) ensures dosimetric accuracies at 

institutions participating in National Cancer Institute (NCI) funded clinical trials.  

They employ many audit tools to achieve this goal that includes mailed optically 

stimulated luminescence detectors (OSLD) for external beam output verification.  In 

addition to the reference beam OSLD audits, the RPC also currently has a small 

field size single beam photon phantom that uses thermoluminescence detectors 
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(TLD) instead of OSLD.  This small field size audit phantom features a 3 mm 

diameter TLD packet at two depths (1.5 and 7.5 cm) and the capability to include 

film.  However, since the RPC is currently transitioning from TLDs to OSLDs as their 

primary passive detector for use in small field dosimetry, the RPC is investigating 

the use of OSLD to verify small field size dosimetry.  

The use of TLDs by the medical physics community has an extensive history 

and was the passive detector of choice for decades.  TLD had a range of uses from 

in vivo dosimetry to a remote audit tool1 with good accuracy and precision2.  

However, there are many drawbacks to using TLDs including one time use, cost, 

long waiting periods before reading, and energy dependence.  OSLDs have 

addressed many of the problems associated with TLDs that make them a good 

replacement.  The equivalent accuracy and lower uncertainty, makes OSLD a 

dependable remote audit dosimeter3-5.  To date, there is a lack of published data on 

the use of OSLD in small field dosimetry.  This project looks to investigate the use 

of OSLD in small field dosimetry, particularly the novel idea of masking the OSLD’s 

active area, thereby allowing the RPC to measure and verify the output for even 

smaller field sizes as part of the RPC’s remote audit tool program. 

1.2 Background 

1.2.1 Stereotactic Radiosurgery 

Stereotactic radiosurgery (SRS) uses high energy ionizing radiation delivered 

using a single fraction with small field sizes to treat intracranial and certain spine 

lesions and provides a noninvasive treatment tool compared with using a surgical 

knife.  First developed by Lars Leksell in the 1940s, orthovoltage SRS was first 
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used to treat dysfunctional loci in the brain6.  In the following years, megavoltage 

(MV) beams were used in the first 3-D treatment of a brain lesion in 1948 and the 

first frame-based treatment occurred in 1956.  SRS is used for, but not limited to, 

treating single metastasis7, isolated primary brain tumors8, arteriovenous 

malformations9, and tumors such as pituitary adenoma and acoustic neuroma10.  

There are currently three modalities of SRS treatment: heavy charged particles, 

cobalt 60 gamma-rays, and megavoltage x-rays11 of which x-rays are the most 

commonly used and are investigated in this work.  Intracranial treatments start by 

immobilizing the patient’s head by using either a stereotactic frame mounted on the 

patient’s skull or frameless mask setup.  A computed tomography (CT) and/or 

magnetic resonance imaging (MRI) scan is taken where the tumor can be localized.  

These images are transferred to the treatment planning system which will calculate 

the correct dose distribution to the localized tumor while minimizing dose to the 

surrounding normal tissue. 

Dosimetric and spatial accuracy are key factors in SRS treatments.  Linear 

accelerator (linac) based SRS treatments use multiple noncoplanar beam arcs 

converging on the machine isocenter11.  The machine isocenter may not be a point 

but in reality it is a sphere due to the three rotational axes from the gantry, table, 

and collimator.  The size of the sphere needs to be as small as possible with the 

common value of 1mm diameter for SRS12.  The dose distribution can be tailored to 

the shape of the lesion using multiple arc angles and weights with multiple 

isocenters for cones or shaping the aperture dynamically with a MLC11 thus the 

need for accurate doses at the correct location.  Another important aspect in spatial 
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accuracy is patient positioning.  Patients are positioned by using the imaging 

device, lasers, and a floor stand with a set or bearings attached to the collimator 

system to account for any gantry rotation uncertainties12.  These three tools help to 

ensure the patient is setup correctly and aligned to the nominal isocenter.  

Small field sizes used in SRS treatments are shaped by either circular 

collimators or MLC each with their advantages and disadvantages.  Circular beams 

produce sharper beams with higher dose gradients for small fields.  Circular 

collimators tend to be closer to the patient, therefore reducing the penumbra of the 

beam11.  The sharp dose falloffs achieved by SRS treatments result in minimizing 

the dose to adjacent organs at risk.  Circular collimators come in various sizes 

ranging from 5 mm to 60 mm diameter and are typically comprised of tungsten 

alloy.  Mini or micro multileaf collimators (mMLC) are also used in SRS where the 

individual leaves have widths between 2 and 5 mm13.  Mini MLCs can conform to 

the shape of the lesion by moving its individual leaves.  The leaves can 

automatically shape the lesion as the gantry rotates.  

Brain metastases vary in size, and may be spherical or non-spherical in 

shape.  When treating spherical targets, isodose distributions and dose volume 

histograms for both mMLCs and circular collimators are typically similar14-15 with an 

advantage to circular collimators used to treat small symmetric lesions16.  Lesions 

smaller than 1cm are typically not treated with mMLCs due to the leaf widths 

producing jagged field edges13.  For larger lesions both mMLCs and circular 

collimators can be used.  However, mMLCs have been shown to accurately 

conform isodose distributions to non-spherical and large targets resulting in better 
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organ at risk sparing as compared to dose distributions delivered using circular 

collimators17.  mMLCs provide a more homogeneous dose distribution as compared 

to circular collimators when treating large lesions due to large dose inhomogeneities 

caused by field overlap within the target when using circular collimators.  Lethal 

dose to normal tissue and brain toxicity can occur with using circular collimators for 

treating non-spherical tumors12-13.  

1.2.2 Small Field Dosimetry  

Small radiation fields, defined as field sizes less than 3 cm x 3 cm18, have 

seen increased usage due to the advent of improved treatment techniques 

specifically used for SRS such as the Gamma Knife, CyberKnife, IMRT, etc.  

Therefore, radiation dose accuracy for these small fields is essential in treatment 

planning.  Multiple errors have been reported in SRS treatments throughout the 

years including: incorrect calibration of linacs, cranial localization errors, and backup 

jaws set incorrectly for cones16.  Das et al.19 saw a 12% difference in output factor 

at various institutions while Li et al.20 reported a 5% difference in percent depth 

dose (PDD) values for a 6 mm x 6 mm field size for the same linac at multiple 

institutions.  Based on these incidents alone, accurate small field dosimetry is 

essential to safely deliver radiotherapy to patients.  

Several dosimetry measurement challenges have been documented when 

dealing with small field sizes due to the lack of lateral charged particle equilibrium, 

partial blocking of the beam source, and volume averaging18.  Lateral charged 

particle disequilibrium occurs if the beam has high energy or in narrow fields where 

the maximum range of secondary electrons is greater than the width of the beam21.  
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Electrons scattered beyond the beam edges are not necessarily compensated for 

by electrons scattered back within the defined radiation field size.  In addition, 

smaller field sizes result in less of the flattening filter being seen by the point of 

measurement causing the number of primary photons reaching the measurement 

point to be reduced.  The partial occlusion of the beam limits the size of detectors 

that can be used to measure small fields.   Lack of charged particle equilibrium and 

source occlusion leads to a drop in dose along the central axis and overlapping 

penumbrae results in the full width at half maximum not equal to the collimator 

setting21.  In addition, the presence of the detector produces perturbation of charged 

particle fluence which is hard to quantify18,21.  Radiation detectors produce a signal 

averaged across its detector volume.  For large field sizes, these detectors measure 

a mostly homogeneous section of the beam avoiding the penumbra region and thus 

a constant signal across the detector.  However, with small field sizes, a chamber 

that is too large will measure a radiation field that is not constant across its 

detecting volume due to the penumbra and sharp fall off with these small fields.  

Penumbra width as defined by the distance between the 20% and 80% dose lines 

narrows dramatically as the collimator field size decreases21 therefore increasing 

the curvature at the peak of the dose profile22.  In small fields, measuring the 

penumbra can occur which leads to volume averaging and, in addition to the lack of 

lateral charged particle equilibrium and source occlusion, results in a drop in 

output21.   

There are many commercially available radiation detectors that have been 

manufactured specifically for use in small field dosimetry.  Micro-ionization 
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chambers, diodes, film, diamond detectors, MOSFETs, TLDs, and gel have the 

potential to measure small fields but choosing the correct dosimeter can be 

challenging.  Clinical practice has indicated that when multiple dosimeters are used, 

the detector with the highest measured value is used sometimes and at other times 

the average value for all the detectors is used23.  Many authors24-28 have also used 

Monte Carlo dose calculations to compare their simulations with measured data.  

Monte Carlo must be used with caution and should always be accompanied and 

benchmarked with experimental data to rule out any uncertainties with the particle 

transport characteristics, detector and radiation geometry modelling21,53.  

 A key component to accurate dosimetry measurements in small fields is the 

positioning of the dosimeter within the field.  Since there is a minimal or no dose 

plateau in the center of these small fields, it is very important that the sensitive 

volume of the small detector be placed as centered in the field as possible to locate 

the sensitive volume with the flattest part of the dose distribution.  Figure 1.1 shows 

a small field dose profile of a 5 mm diameter field.  Positioning should be checked at 

shallow and deep depths such that the detector does not deviate as it moves to 

different depths in a water phantom29. 
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Figure 1.1: Dose profile for a 5 mm diameter field defined by a circular collimator.  
The lack of a flat plateau can be seen in the dose profile. 

 

1.2.3 Radiological Physics Center 

The Radiological Physics Center’s (RPC) mission is to ensure consistency 

and dosimetric accuracy in radiation therapy from institutions participating in clinical 

trials.  Founded in 196830 and funded by the National Cancer Institute (NCI), the 

RPC’s objective is to assure NCI and the Cooperative Groups that these institutions 

across the United States and overseas are delivering clinically comparable and 

consistent radiation doses.  

The RPC’s mission is accomplished through a variety of ways that range 

from a mailed remote dosimetry program to an onsite visit to a participating 

institution by an RPC physicist. The remote dosimetry program initially started using 

thermoluminescent dosimeters (TLDs) in 1977 but in 2010 transitioned to optically 
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stimulated luminescent dosimeters (OSLDs)31.  The OSLD technology is beneficial 

to the mailed dosimetry program due to simpler readout procedures, nondestructive 

readout, minimal fading, and minimal energy dependence, and reuse of the 

dosimeter.   Examples of the mailable acrylic miniphantoms that contain the 

dosimeters are shown in Figure 1.2.  The RPC monitors approximately 14,000 

photon, electron, and proton beams per year at over 1,900 institutions through its 

remote beam audit program using OSLD30.  

 

Figure 1.2: Examples of two acrylic miniphantoms used by the RPC as a remote audit 
tool for external beam.  Miniphantoms for photons (A) and electrons (B) are shown.   

The RPC currently uses a full block phantom to remotely measure and verify 

small field dosimetry.  The current small field dosimetry TLD full phantom is shown 

in Figure 1.3.  The advantage with this system is that the backscatter factor is 

accounted for as opposed to the miniphantoms where the backscatter factor must 

be incorporated into the dose calculation.  However, the full phantom does have its 

disadvantages.  Its large size and various parts makes it non ideal for measuring 

different energies in a timely manner.  For quick and easy measurements for 

various energies, the RPC sends out the miniphantoms.  The full block phantom 

was intended to be used only for small field sizes.  The current system houses a 3 
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mm diameter TLD packet as seen in Figure 1.3.  With the growing use of small 

fields in radiation therapy, the RPC wants to transition to OSLDs as a remote audit 

tool for small photon beam fields.  

 

Figure 1.3: TLD full block phantom. Top – TLD cylindrical insert with base and lid. 
Bottom left – TLD cylindrical insert with TLD bucket in the center. Bottom right – 

Diameter of the TLD bucket. 

 

1.2.4 Optically Stimulated Luminescence Dosimeters (OSLDs) 

1.2.4.1 Introduction to OSLDs 

Optically stimulated luminescence dosimeters have seen an increase in 

popularity as personnel dosimeters in the past decade.  First proposed in the 

1950s32, OSLDs are now well established and are commercially available33.  OSL 
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has been used in archeology as a dating tool to estimate environmental dose from 

natural minerals that have been around for thousands of years34.  OSL is similar to 

thermoluminescence where ionizing radiation creates an electron hole pair in the 

material.  Charges migrate from the valence band to the conduction band and fall 

into energy traps that are energetically between these bands.  External stimulation 

leads to electron-hole recombination that releases photons in the optical range.  

The introduction of Al2O3:C (carbon doped aluminum oxide)35 provided a practical 

material for OSL to be used as a radiation dosimeter.  Carbon doped aluminum 

oxide was initially intended for use as a thermoluminescent material due to its high 

sensitivity.  The high sensitivity due to carbon doping and other attractive factors 

makes OSLDs favorable as a personnel dosimeter.  Carbon doped aluminum oxide 

OSLDs were first commercially available in 1998 and introduced by Landauer Inc. 

OSLDs are used in multiple ways today from in vivo dosimetry to personnel dose 

monitoring with film badges to verification of radiotherapy or diagnostic beam dose 

rates.  Landauer’s nanoDot OSLDs were initially designed for patient dosimetry but 

are now used as a point dose radiation detector throughout the medical physics 

community.   

1.2.4.2 Phenomenon of OSL 

Optically stimulated luminescence detectors are similar to thermoluminescent 

detectors in that they both share the same dosimetric mechanism.  OSL and TLD 

require ionizing radiation to create an electron hole pair in the material.  Charges 

migrate to the valence and conduction band and fall into energy traps.  External 

stimulation releases photons in the optical range.  Two energy bands, conduction 
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and valence, are separated by a forbidden band.  The forbidden band or band gap 

is essential in OSL and TL processes.  The crystal lattice structure is purposely 

produced with imperfections during fabrication, resulting in local energy bands, 

called traps, in the forbidden band36.  The traps act as luminescent centers where 

light is emitted when an electron and hole recombine37.  Ionizing radiation that 

interacts with the crystal excites an electron from the valence band causing the 

electron to move to the conduction band and leaving a hole in the valence band.  

This event, Process 1, is depicted in Figure 1.4.   

 

Figure 1.4: OSL process diagram. Ionizing radiation (sinuous arrow) excites an 
electron to the conduction band and a hole to the valence band indicated by Process 
1. The hole combines with an F-center in Process 2. Process 3 are the shallow traps. 

Process 4 are the dosimetric traps.  Process 5 are the deep traps. The 
photostimulated electron combines with a hole at the F+-center in Process 6 where it 

will relax and emit a measureable blue light shown in Process 7. 

The electrons that migrate to the conduction band are free to move in the 

crystal lattice but tend to either fall back to the valence band and recombine with a 

hole or fall into a trap caused by a defect in the crystal.  The trapped charge 

concentration at localized energy levels is proportional to the total absorbed dose.  



13 
 

Electrons in the conduction band can fall into the shallow traps depicted as 

Process 3 in Figure 1.4.  These shallow traps are localized energy levels close to 

the edge of the conduction band33.  The electron’s proximity to the conduction band 

allows it to jump back to it from the shallow traps promptly after irradiation.  The 

probability of electrons escaping these traps is high even at room temperature.  

Signal is consequently lost in the shallow traps due to a decrease in charge 

concentrations at these energy levels following irradiation.  Therefore, a delay on 

the order of days is necessary for the OSL signal to stabilize.  During the readout 

process, OSL signal is initially increased after optical stimulation.  The stimulated 

electrons from the dosimetric trap or medium traps are captured by the shallow 

traps.  The signal will eventually stabilize once the shallow traps have been filled 

and the number of electrons captured by the shallow traps equals the number of 

electrons leaving them33. 

Medium traps, the most important traps for dosimetry, are located between 

the shallow and deep traps.  The medium traps are depicted as Process 4 in Figure 

1.4.  The medium traps are also known as dosimetric traps because the levels are 

used in dosimetry.  Several trap layers are depicted because there is a spectrum 

light that can optically stimulate electrons out of the OSL trap layers38.  The 

energies at the dosimetric traps are stable at room temperature for extended period 

of time but are not so deep that charge cannot be released with visible light39. 

Deep traps, depicted as Process 5 in Figure 1.4, are the furthest from the 

conduction band.  The deep traps require a large amount of energy to release the 

electron from the trap back to the conduction band.  Normal readout procedures are 
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unlikely to release the electron from the trap due to the large energy gap.  

Sensitivity of the crystal can change as a result of deep traps being filled38.  Initially 

these traps are vacant, but over time and multiple irradiations, the deep traps are 

filled, making these traps less competitive.  The result is an increase in the number 

of electron recombination and an increase in sensitivity of the dosimeter.  Optically 

annealing the dosimeter can empty some deep traps, but not all40.  

1.2.4.3 Carbon Doped Aluminum Oxide (Al2O3:C) 

Aluminum oxide is the most widely used material in OSL dosimetry. There 

are a variety of ways to grow the Al2O3 crystal41.  The most common variant are 

crystals grown in the presence of carbon, which introduces oxygen vacancies in the 

lattice.  The high purity Al2O3 is initially melted at high temperatures and allowed to 

recrystallize where dopants are introduced causing oxygen vacancies.  F-centers, 

or recombination centers, are created by the oxygen vacancies in the Al2O3:C
42.  

The oxygen vacancies can be occupied by one electron creating an F+-center 

making the overall lattice positively charged or two electrons creating a neutral F-

center42.  Once a hole is created, the hole is free to move in the valence band and 

combine with an F-center to create a F+-center seen in Process 2 in Figure 1.4.  

The F and F+ centers are the recombination centers and emit light when 

stimulated42.  An optically stimulated electron is ejected out of a trap and moved to 

the conduction band where it can recombine with holes at a positively charged F+-

center. Process 6 depicts this event in Figure 1.4.  An excited F-center is produced 

where it will relax back to an F-center and emits a photon, Process 7 in Figure 1.4, 

around 410-420nm42 that can be observed and measured.   
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 OSL dosimeters have become a popular passive detector due to the 

favorable characteristics of Al2O3:C, ease of use, and overall accuracy.  Its linear 

response up to 50 Gy33 and high sensitivity, 40-60 times greater than LiF TLD-

10043, make it an excellent material for dosimetry.  One disadvantage to Al2O3 is the 

high effective atomic number of 11.2844.  This causes the crystal to have an over 

response to low energy x-rays35 in the kilovoltage range.   

 The readout process is much simpler and less time consuming with OSLDs 

as compared to TLDs.  OSLDs are optically stimulated while TLDs are stimulated 

using heat.  Stimulation times for OSLDs are on the order of seconds compared to 

minutes for TLDs. Due to the high sensitivity of Al2O3:C, only a small portion of the 

trapped charges are stimulated after each reading allowing the user to reread the 

dosimeter multiple times.  OSLDs are reusable where the signal is erased by 

optically bleaching the Al2O3:C up to an accumulated dose of 20 Gy37.  The 

dosimeters can be manufactured cheaply while having uniformity in sensitivity and 

other dosimetric properties33.  The numerous advantages of Al2O3:C used in OSLDs 

provide the community with an excellent tool for medical dosimetry.  

1.3 Hypothesis and Specific Aims 

1.3.1 Hypothesis 

The hypothesis for this study was: Optically stimulated luminescent 

dosimeters whose visible active luminescent area have been masked can be used 

as a remote audit tool to measure small photon fields down to a 7.5 mm diameter 

field size with an accuracy of ±5% as compared to existing dosimetry 

measurements and Monte Carlo calculations with an uncertainty of less than 2%. 



16 
 

1.3.2 Specific Aims 

The specific aims for this project were:  

- Determine the reproducibility of various mask sizes 

Masks of various apertures (1 mm, 2 mm, and 3 mm) were created and 

applied to the OSLDs.  The readings of each OSLD and masks must be 

reproducible and fall within a certain uncertainty criteria.  

- Develop and design a phantom that uses masked OSLD 

Phantom must be made of a durable material that can withstand the 

hardships of being mailed from institution to institution.  The material shall 

have properties similar to that of water.  The size and shape should 

incorporate full backscatter component of a small photon beam field.  The 

phantom will house OSLDs at specific depths and will also include a film 

holder for localization purposes.  As a remote audit tool, it should be easy to 

use by any physicist at an institution.   

- Characterization of the masked OSLD system 

There are many properties of the OSLD and phantom system determined 

before it can be used as a viable remote audit tool. The masked OSLD will 

be characterized by determining correction factors such as the dose linearity, 

depletion between readings, signal fading over time, element correction 

factor, the energy correction factor, phantom scatter correction factor, and 

field size dependence correction factor.  
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- Perform a feasibility study of the small field size remote audit tool 

Small field photon beam dose measurements of the system must be 

accurate and the uncertainty within the system must be known.  The system 

must be accurate and feasible when sent to institutions participating in 

clinical trials.  The acceptance criteria of ±5% will be used for the small field 

photon beam audit program currently implemented by the RPC’s external 

beam remote audit program.  
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2 Methods and Materials 

2.1 Phantom Design 

 The stereotactic radiosurgery phantom was designed as a remote audit tool 

used to verify the dose prescribed to a specific point within the phantom using a 

specific field size.  The RPC currently employs a single beam SRS phantom that 

houses TLDs as the passive detector seen in Figure 1.3.  This project altered the 

current design by replacing the TLDs with masked OSLDs.  Although the 

dimensions of the base and lid remained the same as the previous design, the 

cylindrical insert has been redesigned for OSLDs.  The phantom was designed such 

that full backscatter conditions were met, which was accounted for in the base of 

the phantom.   

 High Impact Polystyrene was chosen as the material for the SRS phantom.  

Solid phantoms are advantageous over water filled phantoms in that they are much 

easier to use and do not have complicated loading procedures.  In addition, OSLDs 

are not waterproof; therefore a separate compartment would have to be built inside 

the water phantom to house the OSLDs.  High Impact Polystyrene has a density of 

1.04 g/cm3 and an effective atomic number of 5.29, which are similar to that of 

water45.  The material used for the SRS phantom must be physically durable, 

relatively cheap to manufacture, and reproducibly machined to high accuracy.  High 

Impact Polystyrene addressed all those needs and was a suitable material for the 

SRS phantom.   
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 The cylindrical insert was designed to house two OSLD at each 

measurement point, 1.5 cm and 7.5 cm, and a film plate.  Two OSLDs were stacked 

at each measurement point where the physical depths are located at the center of 

the two stacked OSLDs.  The use of multiple OSLDs at each depth provided two 

independent measurements that can be averaged and compared to one another.  

The two inserts were carefully machined such that the masked OSLD’s active area 

was directly centered in the insert.  A film plate was added to the insert situated 

above the OSLDs located at a depth of 1.5 cm.  This film was not meant for dose 

measurements but only for localization purposes.  Its intended use was to verify if 

the institution correctly placed the phantom during irradiation.  Three pin prick holes, 

shown in Figure 2.1, were drilled at the top of the insert where a needle can be 

placed inside of each hole to mark predetermined distances from the center of the 

phantom.  The SRS phantom was designed not only to be easy to use by both the 

institution and the RPC, where the film and OSLDs can be easily loaded and 

unloaded. 

 

Figure 2.1: Cylindrical insert with pin prick holes used for film localization. 
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2.2 OSLD System 

2.2.1 Landauer nanoDot 

 The OSLDs used in this study were the Al2O3:C nanoDot manufactured by 

Landauer Inc. (Landauer Inc., Glenwood, IL).  The RPC has used the nanoDots for 

several years now and with great success in their remote audit program where 

measured uncertainty remained below 3%4.  Thousands of nanoDots coming from 

multiple batches are currently employed in the audit program. 

 Each nanoDot is comprised of a retractable disk with an active Al2O3:C 

material inside a light tight plastic casing and a unique barcode for easy 

identification.  The plastic casing measures 1 x 1 x 0.2 cm3 seen in Figure 2.2.  The 

casing has a density of 1.03 g/cm3.  The casing is to ensure that no signal depletion 

occurs due to outside light exposure.  The active Al2O3:C material is 5 mm in 

diameter and 0.2 mm thick.  Al2O3:C crystals are grown in batches where multiple 

batches are crushed into a powder and mixed together.  The powder is also mixed 

with a binding agent and imprinted on thin polyester tape where disks are punched 

out and used in the nanoDots46.  Mixing provides uniformity between all the 

dosimeters however the amount of powder in each nanoDot may vary, causing 

sensitivity differences between individual dosimeters in the batch.   

 

Figure 2.2: Opened nanoDot OSLD with exposed Al2O3:C. 
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2.2.1.1 Masked OSLDs  

For this study, different sized masks were used to cover the active area of 

the OSLD.  The mask aperture sizes investigated were 1 mm, 2 mm, and 3 mm in 

diameter shown in Figure 2.3.  Figure 2.4 compared the standard OSLD with the 

masked OSLD.  The idea behind placing masks on the Al2O3:C was that when the 

OSLDs are read, only signal from the active area defined by the mask aperture 

would be measured and all other light emitted by the OSLD would be absorbed by 

the mask. 

 

Figure 2.3: Masked OSLDs with 1mm (top), 2mm (middle), and 3mm (bottom) 
diameter masks. 

 

Figure 2.4: Comparing standard OSLD (left) to a 2mm masked OSLD (right) 

 Making masks required precision and accuracy in order to create 

reproducible and equivalent size masks.  Black label stickers were used for the 

masking material.  A special hole punching tool, shown in Figure 2.5, was carefully 
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machined such that the center hole punch was as close to the mask size desired 

and each mask punched out was identical to all other masks with the same aperture 

size.  Masks were made by hammering this tool into sticker.   

 

Figure 2.5: Hole punching tool used to create various sized masks. From left to right: 
1 mm, 2 mm, and 3 mm.  

The masks were carefully removed from the tool using tweezers avoiding any 

damage to the masks.  If any tears or uneven center holes were created, these 

masks were discarded and a new one was made.  Applying the mask onto the 

OSLD required careful attention not to damage the active layer with the tweezers. 

Overall, approximately one hundred masked OSLDs were created for this study. 

2.2.1.2 Reproducibility 

Once the masks had been applied to each nanoDot OSLD, a reproducibility 

study was needed to determine if the masked dots could provide consistent 

readings not only within each individual dot but also similar to dots irradiated to the 

same dose.  Four OSLDs were used for each mask and dose point.  The masked 

OSLDs were irradiated to 50 MU, 100 MU, 200 MU, and 300 MU using a Varian 

6EX unit (Varian Medical Systems, Palo Alto, CA) at M.D. Anderson Cancer Center.  
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Each masked OSLD was irradiated individually in a High Impact Polystyrene 

phantom, placed 2 cm from the top of the phantom.  An SSD of 100 cm and 10 x 10 

cm2 field size irradiation setup was used as depicted in Figure 2.6.  The corrected 

OSLD readings were read out and compared to one another using a coefficient of 

variation (CoV) analysis.  A CoV of less than 2% was desirable in this study.      

 
 

Figure 2.6: Reproducibility setup.  Each dot is placed in the removable grey insert.  
Irradiations are performed for each mask and at four different doses.   

2.2.2 OSLD Readout 

2.2.2.1 MicroStar Reader 

The microStar reader developed by Landauer, shown in Figure 2.7, is used 

by the RPC to read nanoDot OSLDs.  A single nanoDot was loaded onto the holder 
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and placed inside the pull out drawer.  A light tight environment was produced once 

the drawer was closed to ensure no light leakage into the reader that may perturb 

the readout or damage the photomultiplier tube (PMT).  Once inside the reader, the 

knob was turned causing the reader to push the nanoDot disc out of the cassette 

and in between the LED array and PMT.  Figure 2.8 shows the readout schematic 

where light emitted from the 36 LED array stimulates light emission from the 

dosimeter that was collected by the PMT.  This process of continuous illumination of 

the dosimeter while collecting the signal is known as continuous wave OSL (CW-

OSL)33.  The data obtained from the reader was recorded on a personal computer 

and can easily be exported for further analysis. 

 

Figure 2.7: Landauer’s microStar reader with holder. nanoDots are loaded into the 
holder and placed inside the black tray. The readout process commences once the 

knob is turned. 
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Figure 2.8: Schematic of OSL readout process. 

Filters, shown in Figure 2.8, are placed to remove unwanted stimulation light 

coming into the PMT.   The microStar reader uses two color glass band pass filters: 

Schott OG515 and Hoya B-370.  The Schott OG515 filters the light emitted by the 

LED and has a LED-filter combination peak emission of 540nm37.  The Hoya B-370 

is placed in front of the PMT and the PMT-filter combination has a peak emission at 

420nm37 which is the emission of the F-centers. 

2.2.2.2 Standards and Controls  

Each reading session begins and ends with the reading of standards.  

Standards were OSLDs irradiated under a very controlled setting to approximately 

100 cGy to the OSLD using a 60Co unit.  All standard OSLDs were placed in an 

acrylic miniphantom and irradiated on the Cobalt V2 unit at M.D. Anderson Cancer 

Center.  The two standards defined the dose to count ratio for each session. 

In addition to reading standard OSLDs, control OSLDs were read at the 

beginning, middle, and end of each session to monitor the consistency of the 
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reading session.  Controls were irradiated to approximately 90 cGy on the Cobalt C 

unit at M.D. Anderson Cancer Center.  The purpose of controls was to determine if 

the reader sensitivity has drifted throughout the OSLD reading session.  If a drift 

occurred in the control that differed from that of the standards by more than ±1.5%, 

then rereading the OSLD was recommended.  Irradiation of standard and control 

OSLDs were done separately in order to guarantee independence between these 

two dose references inside the OSLD reading process 

2.2.2.3 Readout Procedure 

The microStar required a warm up period of at least 30 minutes prior to 

reading any OSLDs.  Before the start of each session, a series of quality control 

tests were performed by turning the knob to three preset positions shown in Figure 

2.7.  The first position was DRK, which recorded the dark current or electronic noise 

in the system when the LED was turned off.  The second position was CAL, which 

recorded the number of counts when the PMT was exposed to a 14C source located 

inside the reader.  The last position was LED, which recorded the counts when the 

LED array was turned on for a set period of time.  Each of the quality control tests 

were performed five times before and after the session and compared to baseline 

values to verify that the reader has not deviated and was working correctly. 

The session started by reading one OSLD standard followed by one OSLD 

control, then OSLDs of interest.  The unique barcode assigned to each individual 

OSLD was scanned then inserted into the holder where it was placed inside the 

drawer of the reader.  Once the drawer was closed, the knob was turned from the 

home position (H/P) to the reading position (E1) which slides the dosimeter disk out 
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of the cassette and activated the LED array.  The LED array was turned on for 

seven seconds and the counts were collected by the PMT.  The software displayed 

and recorded the total counts collected by the PMT after seven seconds on the 

Landauer software.  Once the LED array was turned off, the knob was turned back 

to the home position, which also returned the dosimeter disk back into the cassette.  

This process was repeated three times for each dosimeter.  Once all of the OSLDs 

were read, the last step was to read one control and one standard followed by the 

quality control tests to finish the session. 

2.3 OSLD Irradiations 

2.3.1 Cobalt 60 

Two 60Co units were used in this study.  Dose was determined by the amount 

of time the beam was on.  With a half-life of 5.26 years for 60Co, dose can be 

calculated by using the following equation: 

                  
(

 
           

)
                   (2.1) 

Output is the calibrated machine output in cGy/min.  The variable “d” is the number 

of days from the calibration date to the irradiation date.  Time is the beam on time 

displayed on the console in minutes.  The end effect accounts for the time required 

for source transit.   

Standards were irradiated on the Cobalt V2 unit at M.D. Anderson Cancer 

Center.  The unit was calibrated on October 15, 2005 and produced an output of 

147.9 cGy/min at a distance of 79.25 cm SSD with an end effect of 0.01 minutes.  

The second cobalt unit used in the study was the Cobalt C unit at M.D. Anderson 
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Cancer Center.  Calibration occurred on October 15, 2005 with an output of 84.73 

cGy/min to the jig or 77.54 cGy/min at 80 cm SSD with an end effect of 0.01 

minutes. In order to determine the time needed for each unit to deliver a specific 

dose, time was obtained by back solving Equation 2.1.  

2.3.2 6 MV Photons  

All irradiations using a 6 MV beam were performed on either a Varian 6EX 

Clinac or Varian 21EX Clinac (Varian Medical Systems, Palo Alto, CA) linac at M. D. 

Anderson Cancer Center.  The Varian 6EX was used to determine reproducibility 

and linearity while all other measurements were irradiated using the Varian 21EX 

linac.  The linac was calibrated using TG-51 protocol prior to irradiation.  Dose can 

be calculated by the following formula: 

                       (2.2) 

MU is the monitor unit setting.  PDD is the percent depth dose. OF is the output 

factor for a specific field size.  Output is the dose to muscle at dmax for SSD = 100 

cm and a field size set to 10 x 10 cm2 at a reference depth determined by the TG-51 

protocol and given in cGy/MU. 

2.4 OSLD Characterization 

2.4.1 Dose Equation 

OSLD dose calculations were performed by applying the following equation: 

                                                  (2.3) 

where the average corrected reading is the average of the depletion corrected 

reading, ECF is the element correction factor unique to each individual OSLD, S is 



29 
 

the system sensitivity, KL is the linearity correction factor, KF is the fading correction 

factor, KE is the energy correction factor, KSc is the phantom scatter correction 

factor, and KFSD is the field size dependence correction factor.   

 The average corrected reading was obtained from three individual raw 

readings obtained from the reader.  The first reading was not depletion corrected 

however the second and third readings were corrected.  The coefficient of variation 

(COV) was calculated for the three depletion corrected readings.  The RPC required 

that the COV be less than 2% and any OSLDs with readings that cause the COV to 

exceed 2% were not used. 

2.4.2 Depletion Correction Factor 

One of the advantages of OSLDs is their ability to be read multiple times.  

Reading OSLDs multiple times is advantageous because it can improve statistics, 

allows rereading after suspicious reading sessions, or even to be read again at a 

later date.  With each subsequent reading, a small amount of the trapped charge is 

depleted and this depletion of signal must be corrected for using the following 

equation: 

Where n is the reading number starting at 0 for the first reading.  Equation 2.4 is 

specific for a reader with a seven second reading cycle.  Approximately 0.2% of the 

signal is reduced per reading.  In order to determine the depletion correction factor 

relationship, an OSLD was read 10 times consecutively compared to the RPC which 

normally reads an OSLD 20-50 times consecutively.  The counts were normalized 

    
 

                                  
             (2.4) 
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to the first reading and plotted versus reading number.  Five dosimeters were used 

to determine signal depletion for this study and the results were averaged and fitted 

to obtain a depletion correction factor.  The measured fit was compared to the 

RPC’s depletion correction fit obtained during commissioning of the batch within 10 

readings. The depletion correction factor was applied to the raw OSLD reading. 

2.4.3 Element Correction Factor 

The nanoDots are manufactured where the Al2O3:C crystals are mixed 

together to minimize variations within a batch.  However, some inherent differences 

in sensitivity of each nanoDot occur within the same batch such as heterogeneity in 

Al2O3:C deposited on the dosimeter.  In order to account for these differences in 

sensitivity, an element correction factor (ECF) was determined for each dosimeter.  

The ECF values used in this work were determined by irradiating 112 dosimeters to 

a known dose, 25 and 100cGy, in a 60Co beam.  The ratio of the average reading of 

the group to the dosimeter’s raw reading defined the ECF for that specific OSLD.  

This process was repeated for every OSLD.  The RPC required that individual 

sensitivities be within ±5% of the batch and those with greater ECF values were not 

used.  When an irradiated dosimeter was read, its unique ECF for that particular 

dosimeter was multiplied by the reading in order to correct for deviations in 

sensitivity within the batch. 

A separate ECF test was performed to compare the ECF values obtained 

with masked OSLDs to the RPC’s ECF for the same OSLD.  All 112 masked 

OSLDs were irradiated to a known dose using a 60Co unit.  The Co-C unit located in 

M.D. Anderson Cancer Center was used for irradiations.  Roughly 35 OSLDs were 
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place on a rotating jig at a time that rotated at 10 revolutions per minute.  The jig 

was situated 3.5 mm above a platform that was 80 cm SSD.  A 25 x 25 cm2 was 

used to irradiate the entire rotating jig.   

2.4.4 System Sensitivity 

The system sensitivity factor is used as calibration factor in the reading 

session.  This factor is able to correlate OSLD reading and dose.  Standard OSLDs 

were irradiated to a known dose in a 60Co unit and used to define the system 

sensitivity.  Standards were read at the beginning and end of each session with 

each being read three times and depletion corrected.  System sensitivity is 

calculated by the following formula: 

Expected dose to the OSLD standard is the actual dose delivered to the standards 

by the 60Co unit.  The Avg(Avg Corrected Rdgstd) is the average of the two depletion 

corrected readings at the beginning and end of each session.  KF,std is the fading 

correction factor for the standards and depends on the number of days that have 

passed since irradiation to the date of reading.  KL,std is the linearity correction 

factor.   

2.4.5 Linearity Correction Factor 

The nanoDot OSLD (Al2O3:C) readings show a supra-linear dependence with  

dose.  With increasing dose, more deep energy traps are filled resulting in more 

shallow traps getting filled also.  Since deep traps are rarely stimulated this changes 

the dose response to a specific dose.  The effect is more drastic at higher doses.  

   
                         

                                       
 (2.5) 
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However, since we are irradiating the OSLDs to 2 Gy, this dose does not modify the 

response by much.  The linearity correction factor accounts for this effect.   

Since the configuration of the OSLDs was modified by the masks, the 

previously determined linearity corrections were brought into question.  The linearity 

correction factor for the masked OSLD was obtained with three independent 

irradiations.  Each OSLD was placed one by one in a polystyrene phantom and 

irradiated using a 6 MV x-ray beam.  Four doses were chosen to determine the 

dose linearity response: 50 cGy, 100 cGy, 200 cGy, and 300 cGy.  For each trial of 

measurements, four OSLDs were irradiated at each dose.  This process was 

repeated for each of the different mask aperture sizes: 1 mm, 2 mm, and 3 mm. 

After reading each OSLD and applying its unique ECF value, an average 

number of counts were calculated for each dose and mask aperture.  The average 

counts were divided by the corresponding dose to obtain a relationship between 

counts and dose.  A dose response curve was generated by plotting the dose per 

count to each dose tested.  Another figure was generated to determine KL by 

normalizing each dose to count to that at 100 cGy for each mask size.  A linear fit 

was applied to each mask aperture size data and compared to the commissioning 

data for standard unmasked OSLDs that the RPC had already determined from the 

following equation.  The RPC KL value is given by the following equation. 

Raw dose is the known dose delivered by the 60Co unit.  The two constants were 

determined previously by the RPC upon commissioning the OSLD batch used in 

this study.  Normalizing the dose response to 100 cGy provides a KL value equal to 

                                    (2.6) 
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1 for OSLDs irradiated to 100 cGy.  For this study, institutions will be asked to 

irradiate the masked OSLDs to 200 cGy so the KL value will not be equal to one.  

Normalization at 200 cGy could be performed, however to be consistent with how 

the RPC commissioned the OSLD batch originally, the normalization to 100 cGy 

was maintained.  This allows the comparison of the masked OSLD factors to the 

unmasked OSLD correction factors.     

2.4.6 Fading Correction Factor  

OSLD reading fading occurs post irradiation and is the small signal loss due 

to electrons in shallow traps recombining shortly after irradiation.  Al2O3:C 

experiences a sharp signal drop within 15 minutes post irradiation37.  Over the 

course of the 5 days following that first 15 minutes, a signal drop of 2-3% can be 

observed47.   

      The fading correction factor for a batch was determined by irradiating 

OSLDs to an identical dose on different days ranging from 1 to 120 days to the read 

date.  Once all the dosimeters have been irradiated at their respective day intervals, 

all the OSLDs were read together.  The OSLD counts versus days post irradiation 

were plotted and the inverse of the relation between the two was given by the 

following equation as the correction factor: 

Where d is the number of days post irradiation.  This fading correction factor was 

applied to every OSLD that was read in this study.  In order to allow the OSLD to 

    
 

              
 (2.7) 
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reach a stable and relatively flat region of the fading curve, OSLDs were not read 

any earlier than 3 days post irradiation.  

2.4.7 Energy Correction Factor 

The energy correction factor accounts for the change in OSLD response due 

to the change in energy from irradiating OSLD standards in a 60Co beam to the 

experimental measurements performed using a 6 MV X-ray beam.  Standards and 

controls are irradiated in acrylic miniphantoms using a 60Co beam.  The standards 

are used to define the system sensitivity mentioned in Section 2.4.3.  The change in 

energy results in a decreased sensitivity of the OSL material and is accounted for in 

the energy correction factor.        

In order to determine the energy correction factor, six OSLDs in 

miniphantoms were irradiated to a known dose in 60Co and another six OSLDs with 

a 6 MV beam.  The correct time was determined for the 60Co unit and the correct 

monitor units (MU) were determined after performing TG-5148 in order to deliver 200 

cGy to dmax.  Irradiations performed on the 6 MV linac used an SSD of 100 cm while 

60Co setup required an SSD of 80 cm and both used a 10 x 10 cm2 field size setup. 

Once the dosimeters were irradiated and read, Equation 2.3 was rearranged to 

obtain the KE for a 6 MV beam as shown in equation 2.8:  

    
    

                                       
 (2.8) 

Notice that two terms were omitted from Equation 2.8, KSc and KFSD, and are not 

needed to determine KE.  The terms will be explained in more detail in the following 

sections.  Dose is the expected dose of approximately 200 cGy delivered to the 
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measurement point.  S is the system sensitivity defined by the miniphantom 

irradiated using 60Co, in which the readings have been corrected.  KL is the linearity 

correction factor seen in Equation 2.6 and accounts for the expected dose of 200 

cGy.  KF is the fading correction factor.  BSF is the back scatter factor applied to the 

miniphantom to calculate dose to a full phantom.  ISQ is the inverse square 

correction since OSLDs in the miniphantoms irradiated in the 6 MV were not 

positioned at dmax.   KE values were obtained for each OSLD and the set was 

averaged to provide an overall system KE. 

2.4.8 Phantom Scatter Factor 

Experimental irradiations are performed in a High Impact Polystyrene 

phantom using a 6 MV beam.  As stated previously, system sensitivity is defined 

using a miniphantom irradiated with a 60Co beam.  The phantom scatter factor 

accounts for the change in material densities of the miniphantom to the High Impact 

Polystyrene phantom, 1.18 g/cm3 to 1.04 g/cm3 respectively.  The phantom scatter 

factor was determined by irradiating both the miniphantom and the full phantom with 

a 6 MV beam.  A 10 x 10 cm2 field and 100 cm SSD setup was used.  The equation 

for KSc is given by the following formula: 

     
    

                               
 (2.9) 

Dose is the actual dose delivered to the full phantom using the 6 MV beam.  S is the 

system sensitivity defined by the 6 MV irradiated miniphantom that has been ECF, 

linearity, fading, inverse square, and backscatter corrected.  All other terms are 
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same as above.  A total of six KSc values were calculated and averaged to 

determine the system’s KSc value.  

2.4.9 Field Size Dependence Factor 

The advent of new radiotherapy technologies and dosimetric difficulties 

associated with small fields led Alfonso et al. to develop a new formalism to 

determine absorbed dose for small fields49.  The formalism introduces a machine 

specific reference field at a reference depth and compares it to a clinical field at the 

reference point.  The equation that relates the two quantities is given by: 

         

             

                

            (2.10) 

 

           

            
      

     

     

    
            

            

(2.11) 

Where 𝛺 converts absorbed dose to water for a machine specific reference field to 

absorbed dose to water in a clinical field.             

           
 corrects the two readings for 

the two fields and is a factor that accounts field size differences, phantom material, 

geometry, and beam quality of the reference and machine specific reference field49.  

Multiple studies have determined the            

           
correction factor for several 

detectors and several linacs using Monte Carlo simulations50-53.  This study 

renames the            

           
 correction factor and replaces it with the field size 

dependence factor, KFSD. 

Multiple detectors were used to determine the true dose at various small field 

sizes.  The Exradin A16 micro ion chamber (Standard Imaging Inc., Middleton, WI), 
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the Exradin D1H and D1V diode detectors (Standard Imaging Inc., Middleton, WI 

and personal communication), and Monte Carlo dose calculations were used to 

determine output factors for multiple small field sizes.   

The Exradin A16 has a collecting volume of 0.007 cm3 and an inner diameter 

collecting volume of 2.4 mm.  Ionization charge produced by the electrons liberated 

inside the air cavity within the collecting volume can be measured.  The detector 

can be related to an ion chamber that has been calibrated and is NIST traceable to 

determine true dose.  In this work, the dosimeter was used to measure the relative 

signal between the 10 x 10 cm2 reference field and the small field sizes.    

The Exradin D1V and D1H diodes are P-type silicon diodes with an internal 

circular active area of 1 mm2.  The advantages of diodes are their high sensitivities, 

rapid response, and small size11.  The depletion zone, the interface between the n 

and p-materials, develops an electric field.  Irradiating the diode creates electron 

hole pairs within the depletion zone that results in a radiation-induced current11 that 

can be measured by an electrometer.   

The Monte Carlo dose calculations were performed using MCNPX54,55 

(versions 2.5e, Los Alamos National Laboratory, Los Alamos, NM).  Both electron 

and photon energy depositions were tracked.  A previously benchmarked model of 

a Varian 2100 6 MV beam was used55.  Photon tallies were used at 1.5 and 7.5 cm 

depth with dimensions of 2 x 2 x 6 mm3 and 2 x 2 x 10 mm3 respectively.  Output 

factors were determined by calculating and relating the photon dose at each 

measurement point for various field sizes.   
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Output factors were measured for 0.6 x 0.6, 1 x 1, 1.5 x 1.5, 2 x 2, 3 x 3, 4 x 

4, 6 x 6, 10 x 10 cm2 fields using the three Exradin detectors while Monte Carlo 

calculations determined the output factors for all but the 0.6 x 0.6 cm2 field.  The 

output factor commissioning data measured with a cc04 chamber was used to 

compare the three Exradin detectors and Monte Carlo calculations for certain field 

sizes.  All irradiations were performed with a 6 MV beam at 100 cm SSD and 

measurements were made in the RPC water phantom at 1.5 cm and 7.5 cm depth 

for each field size.  The detector setup for the Exradin A16 is shown in Figure 2.9 

and the field size superimposed on the detector can be seen in Figure 2.10. 

 

Figure 2.9: Detector setup to determine output factor.  An Exradin A16 in the RPC 
water phantom at 1.5 cm depth.  



39 
 

 

Figure 2.10: Exradin A16 with two field sizes superimposed. Left – 0.6 x 0.6 cm2. 
Right – 1 x 1 cm2. 

 The Exradin D1V and D1H diodes used the same setup however the 

orientation of the two diodes were different.  The D1V was placed vertically while 

the D1H was positioned horizontally as shown in Figure 2.11.   
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Figure 2.11: Exradin D1H (top) and Exradin D1V (bottom) setup. 

 The field size dependence correction factor was determined by solving for 

KFSD in Equation 2.3 knowing all of the other correction factors.  KFSD is given by the 

following formula: 

      
    

                                      
 (2.12) 

KFSD is the ratio of the measured output factor to that measured by the phantom 

with masked OSLDs.  The measured output factor in the numerator is determined 

by using various dosimeters.  The measured output factor of the phantom can be 

determined by delivering a known dose to the OSLD and applying correction factors 

to the OSLD reading to obtain the correct measured output of the phantom seen in 

the denominator.  The MUs required to deliver a dose of 200 cGy for each field size 

was calculated by rearranging Equation 2.2 and solving for MUs where the PDD is 

equal to one at dmax = 1.5cm.  The output was determined by performing a TG-51 

calibration to obtain a cGy/MU relation for a reference 10 x 10 cm2 field size.  The 
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output factors were measured using the Exradin A16, Exradin D1V, Exradin D1H, 

and Monte Carlo.  Francescon et al. determined correction factors,            

           
, for 

the Exradin A1650 and Exradin diodes (personal communication) measuring various 

small field sizes which were used to correct the measured output factors.  The four 

output factors were averaged and used to determine the correct number of MUs to 

deliver for each field size to obtain a dose of 200 cGy.  Six OSLDs were used to 

determine KFSD for each of the small field sizes and the average determined the 

system’s KFSD correction factor for each field size.       

2.5 Film Measurements 

Radiochromic film is a widely used dosimetric tool in radiation therapy.  The 

film changes color after irradiation and does not require any post processing 

procedures.  The resultant image depicts the ratio of radiation impinged on the film 

to radiation transmission through it, optical density (OD), which can be measured.  

Advantages of radiochromic film include high spatial resolution, low spectral 

sensitivity, no angular dependence, and tissue equivalence (Z = 6.84)56.   

Gafchromic EBT film (ISP, Wayne, NJ) and Gafchromic EBT2 film (ISP, 

Wayne, NJ) were used in this study. When these two films were irradiated, the 

radiosensitive layer undergoes a partial polymerization causing a color change that 

darkens with increased dose56.  The films were designed to measure doses on the 

range from 1 cGy to 8 Gy for EBT and 1 cGy to 40 Gy for EBT2. Typical doses 

performed in this study range from 2-5 Gy.  The RPC uses EBT2 extensively, which 

has been characterized for each batch.  However, the EBT film used in this study 

has not been characterized yet.  EBT films were cut into 4 x 5 cm2 pieces and were 
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placed at dmax under a 6MV beam in a solid water phantom with adequate 

backscatter material and irradiated to different doses ranging from 25 cGy to 7 Gy 

with a setup of 100 cm SSD using a 35 x 35 cm2 field size.  Films were read and an 

optical density (OD) versus dose calibration curve was generated shown in Figure 

2.12. 

  

Figure 2.12: EBT calibration curve 

In this study, EBT films were used to measure profiles of multiple small field 

sizes, which were compared with the diameter of the masked OSLD active area.  

These comparisons provided an idea as to which field sizes the masked OSLD 

could measure correctly without any signal loss due to volume averaging across the 

dosimeter.  The profiles also provided an indication of the under response of the 

masked OSLD caused by any small shift in the phantom during irradiation.  The 

field sizes investigated included: 0.6 x 0.6, 1 x 1, 1.5 x 1.5, 2 x 2, and 3 x 3 cm2.  

Films were irradiated to 500 MUs in a water phantom at two depths 1.5 cm and 7.5 
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cm.  The center of the film was marked using the crosshairs from the linac.  Figure 

2.13 shows a setup of a film irradiation.  

 Films placed in the remote audit phantom were used only for localization 

purposes.  The center of the film was determined by using pin pricks with a known 

coordinate system in the phantom.  After irradiation, the films were placed in a black 

envelope in order to reduce light exposure and were read at least five days post 

irradiation.     

 
 

Figure 2.13: Film irradiation in the RPC water phantom using a customized film 
holder.  EBT2 film placed at 1.5 cm depth irradiated with 500 MU using a 3 x 3 cm2 

field.  Crosshairs were used to mark the film. 

The CCD Microdensitometer Model CCD100 (Photoelectron Corporation, 

Lexington, MA) was used to evaluate the OD for both EBT and EBT2 film.   A light 

tight box housed an LED light tray and a CCD camera.  The light tray emits light at a 
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wavelength around 600-700 nm, which matches closely to the optical absorption 

spectrum of the film.  The CCD camera mounted above the light tray detected light 

transmitted through the film.  The camera was placed 44 cm above the light tray 

and focused on an area approximately 150 mm by 150 mm.  The resolution of the 

CCD camera was 512 x 512 pixels with a pixel size of 0.3 mm.  Calibrating the 

system required imaging a blank film and setting the image as the “flat field” which 

was subtracted from measured films.  Variations within the system were accounted 

for by the flat field.  Spatial calibration was determined by using a grid with 10 mm 

spacing.  Images were saved and exported for further analysis.     

2.6 Optical Annealing 

One advantage of using OSLDs is that they are reusable.  Previous work has 

shown that OSLDs are stable with a dose accumulation up to 20 Gy37. For 

accumulated doses above 20 Gy, OSLD sensitivity changes are observed37.  The 

RPC uses a 10 Gy accumulated dose limit for each OSLD which was also applied in 

this study.  The OSL signal can be removed by either annealing or optically 

annealing (bleaching) the dosimeter.  Annealing requires high temperatures close to 

900˚C to remove most if not all of the filled traps57,58.  This is unreasonable since 

the plastic casing was not designed for such high temperatures. Optically annealing, 

or bleaching, depends on the wavelength and intensity of the light, which can 

determine the amount of time needed to anneal.  The RPC uses a custom built 

cabinet to anneal the OSLDs shown in Figure 2.14.  Two 54 watt fluorescent bulbs 

are at the top and bottom of the cabinet.  The lamps are equipped with a UV filter 

that filters out UV photons with wavelengths less than 395 nm that can cause 
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further ionizations during the annealing process.  Each OSLD that was used in this 

project was annealed for at least 24 hours to ensure adequate liberation of all 

energy traps.  

 
 

Figure 2.14: Optical annealing box at the RPC. 

2.7 Remote Audit Trials 

Once the masked OSLDs were characterized, the next step was to 

determine the feasibility of the system by sending the phantom to multiple 

institutions as a remote audit tool.  Physicists were asked if they were willing to 

participate in the audit free of charge to test their cones or MLC system.  Institutions 

were provided with instructions on the phantom setup, the phantom loaded with 

OSLDs and film, instructions on how to reload the phantom with new OSLDs and 

film, and irradiation forms.   

Once the phantom returned to the RPC, the OSLDs and films were read out.  

The two OSLDs in the phantom were averaged and the predetermined correction 

factors were applied generating the RPC measured dose.  The ratio of the RPC 

measured to the institution’s reported dose was calculated to determine agreement.  
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Film was used to verify correct positioning of the radiation beam/phantom and was 

used to account for any discrepancies in the dose comparison.  In addition to 

irradiating the SRS phantom, institutions were asked to perform the normal RPC 

output check using the miniphantoms as a precaution if any large deviations were 

seen in the measurements. 

2.7.1 Instructions 

Slight modifications were made to the already existing RPC instructions for 

single beam SRS phantom irradiations.  The instructions are shown in Appendix 

6.3.1.  The instructions provided the physicists with a step by step process on 

phantom setup and phantom loading.  Due to uncertainties in small fields, accurate 

phantom positioning was emphasized in the instructions.  Only one prototype was 

created for this study, but all of the audits required multiple irradiations hence the 

need for loading instructions.  Physicists were asked to deliver 200 cGy to the 1.5 

cm depth measurement point for a 6 MV beam.   

2.7.2 Irradiation Forms 

Irradiation forms were used to document the work performed by the physicist.  

The irradiation forms used in the audits are shown in Appendix 6.3.2.  The form 

asked for information pertaining to demographics, treatment unit, manufacturer of 

the cones or MLCs, and output of the beam.  Monitor unit settings, output factors, 

and PDD were documented for each cone or MLC designation.  
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3 Results  

3.1 Phantom Design  

The phantom prototype was made of High Impact Polystyrene (HIPS) and 

had dimensions of approximately 15 x 15 x 16 cm3.  The full phantom prototype 

shown in Figure 3.1 includes a lid, base, and cylindrical cone.  HIPS was chosen 

because it is easy to machine, robust, durable, and relatively inexpensive to 

manufacture.  HIPS is also roughly water equivalent with a density of 1.04 g/cm3 

and can approximate the dosimetric properties of water.  Due to large size of the 

phantom, full scatter conditions are met when irradiations were performed.  In 

addition, the RPC has a vast amount of experience using HIPS in other phantoms 

also used as remote audit tools such as anthropomorphic phantoms.   

 

Figure 3.1: Full phantom prototype. The phantom is comprised of a lid, base, and 
cylindrical cone and houses four OSLDs at two depths and a film insert.   
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The cylindrical insert is located at the center of the full phantom in Figure 3.1 

and houses two types of dosimeters: film and OSLDs.  Shown in Figure 3.2, the 

insert is comprised of multiple sections all connected by two large plastic screws.  

Two measurement points were chosen, one at 1.5 cm depth and the other at 7.5 cm 

depth.  Two OSLDs were placed at each depth for measurement purposes.  A film 

plate was added above the 1.5 cm measurement point and can hold a 55 mm 

diameter piece of film.  The film was not meant to be used for dosimetry but to verify 

user setup position accuracy.  The top section of the insert has three small holes 

indicated by the large black dots seen in Figure 3.2.  These holes help guide a 

sharp needle used to create pin pricks on the film.  The pin pricks help determine 

the relation of the image on the film to the center of the phantom.   

 

Figure 3.2: Cylindrical insert.  The insert is separated into multiple compartments: a 
film plate and two OSLDs at 1.5 cm and 7.5 cm depth each. 
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The physical dimensions of the insert are shown in a cross sectional view in 

Figure 3.3.  Going from top to bottom, the second two millimeters thick section is the 

film plate where a small 55 mm diameter grove was machined such that a piece of 

film can firmly be placed on.  The next section holds the two OSLDs.  A 1cm x 1 cm 

wide square with a depth of 4 mm was carefully drilled into the section.  Since the 

active area of the nanoDot is not directly at the center of the cassette, a 1mm shift 

in both x and y direction was accounted for in the design of the cylindrical insert.  

The cylindrical insert was designed such that the 1.5 cm depth and 7.5 cm depth 

are located in between the two OSLDs.  The average dose of the two OSLDs will 

represent the dose to the measurement depth.  Additional schematics of the 

phantom design can be seen in the Appendix 6.1 where Figures 6.1 details the lid 

and base dimensions, Figure 6.2 depicts the top view of the insert, and Figure 6.3 

shows the location of the pin pricks relative to the center of the phantom.           

 

Figure 3.3: Sagittal view of insert.  Multiple sections of the insert are seen where the 
2 mm insert holds film and each of the 10 mm sections holding 2 OSLDs represented 

by the blue and green rectangles. 
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3.2 Reproducibility 

Irradiations were performed on each of the three aperture size masked 

OSLDs at four different doses.  The depletion and ECF corrected readings were 

compared to one another at their respective dose and mask size.  Coefficient of 

variation analysis was used to determine the reproducibility of the masks at different 

doses. Table 3.1 illustrates the reproducibility study. 

Table 3.1: Coefficient of variation analysis of the three different aperture sizes.  Each 
aperture was irradiated using four different doses. 

Aperture  MU  CoV  

1 mm  50  4.96%  

1 mm  100  7.04%  

1 mm  200  5.18%  

1 mm  300  7.62%  

2 mm  50  1.21%  

2 mm  100  1.16%  

2 mm  200  0.82%  

2 mm  300  1.91%  

3 mm  50  1.62%  

3 mm  100  0.78% 

3 mm  200  1.07%  

3 mm  300  1.65%  

 

As depicted in Table 3.1, the 2 mm and 3 mm had a desirable CoV of less 

than 2% at each dose.  However, the 1 mm masked OSLDs had CoVs ranging from 

4.96%-7.62%.  The high CoV can be due to nonuniformity in the LED light 

distribution of the OSLD reader.  The OSLD reader uses a mechanical system to 

open each nanoDot; therefore positional accuracies play an even larger role in the 

number of counts recorded.  Due to the high CoV of the 1 mm masked OSLDs, it 

was decided that they would not be used for the remainder of the study.  Both the 2 
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mm and 3 mm apertures provided CoVs of less than 2% making either one a 

suitable candidate for the study.  Since the RPC already uses a 3 mm diameter TLD 

packet for SRS measurements, the 2 mm aperture was selected to be the best size 

and was used for the remainder of the study to measure smaller field sizes than the 

current TLD program.   

3.3 Element Correction Factor 

Due to the inherent heterogeneity of the Al2O3:C distribution on the OSL 

nanoDot, an element correction factor (ECF) was needed to correct each nanoDot 

relative to the average of the batch. Originally, the RPC defined ECF was used for 

the masked OSLD. 

The first test was to irradiate the OSLDs to 25 cGy each which is the 

standard procedure performed by the RPC during commissioning of a new batch.  A 

histogram of all of the ECF values is depicted in Figure 3.4. 
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Figure 3.4: Histogram of OSLD ECF values irradiated with 25 cGy.  Each OSLD was 
compared to the average of the batch to define an ECF for the individual OSLD.  

After analyzing the data in Figure 3.4 above, it was believed that 25 cGy was 

too low of a dose for ECF determination since the number of counts for each OSLD 

dosimeter was reduced greatly because of the masks.  The signal produced from a 

25 cGy irradiation had large coefficient of variation many above 2%.  This helps 

explain the large differences and spread in ECF values determined from the 25 cGy 

irradiation.  A repeat study was performed irradiating all the OSLDs to 100 cGy 

instead of the normal 25 cGy.  The results are shown in Figure 3.5.   
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Figure 3.5: Histogram of OSLD ECF values irradiated with 100 cGy.  Each OSLD was 

compared to the average of the batch to define an ECF for the individual OSLD.          

The histogram in Figure 3.5 shows a Gaussian distribution, which is 

expected for this type of measurements.  Overall the coefficients of variations for 

OSLDs irradiated to 100 cGy were much better than the 25 cGy with the majority 

being less than 2%.  Table 3.2 compares 10 out of 64 randomly sampled OSLDs 

irradiated to both 25 and 100 cGy with the RPC values. 
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Table 3.2: Measured ECF value comparison.  Randomly selected ECFs irradiated to 
25 and 100 cGy are compared to one another and to the RPC ECF values. 

OSLD RPC 25 cGy 100 cGy Diff (25 and 100) Diff (RPC and 100) 

1 1.014 1.006 0.999 0.70% -1.48% 

2 1.063 1.019 1.022 -0.30% -3.86% 

3 0.99 1.021 1.010 1.08% 2.02% 

4 1.032 0.998 0.992 0.60% -3.88% 

5 0.989 0.987 0.969 1.82% -2.02% 

6 0.965 0.958 0.943 1.57% -2.28% 

7 1.005 0.969 0.969 0.00% -3.58% 

8 1.001 0.982 0.976 -0.61% -2.50% 

9 1.066 1.034 1.036 0.19% -2.81% 

10 1.012 0.966 0.985 1.97% -2.67% 

 

There was a difference from -0.61% to 1.97% from irradiating the masked 

OSLDs with 25 cGy and 100 cGy and difference of -3.88% to 2.02% between the 

RPC ECF to the 100 cGy ECF.  Therefore, the ECF for the small field size audit 

masked OSLD system had to be determined by irradiating each OSLD to 100 cGy 

and determining new ECFs for the masked OSLD. 

3.4 System Sensitivity 

System sensitivity was typically derived from irradiating standards to 100 

cGy.  These standards defined the dose to count ratio for the session.  For this 

study, masked OSLDs were used as standards as opposed to the normal 

unmasked OLSDs typically used by the RPC.  Standards were irradiated before 

determining the energy correction factor and the field size dependence factor.  In 

addition, masked standards were used for each session of the remote audit trials.  

Table 3.3 lists some system sensitivity values determined in this study. 
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 Table 3.3: System sensitivity values.  Three independent standards were irradiated 
to 100 cGy.  The system sensitivity converted the OSLD counts to dose.  

OSLD Dose (cGy) per Count CoV (%) 

1 0.00089978  
0.26 

 
2 0.00090223 

3 0.00089760 

 

The three standards agreed well with one another and were highly reproducible with 

a coefficient of variation of 0.26%.   

3.5 Linearity Correction Factor 

Three separate irradiation trials were performed to determine the masked 

OSLD linearity correction factor.  A total of 48 OSLDs, 4 for each dose per trial, 

were irradiated. An example of an un-normalized dose response of an individual 

trial is show in Figure 3.6. 

 

Figure 3.6: Dose response versus dose for Trial 2.   
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All individual dose response values were normalized to the average dose 

response value at 100 cGy.  The results of all three separate trials are shown in 

Figure 3.7. 

 

Figure 3.7: Normalized dose response relative to the average dose response at 100 

cGy.   

An average KL value was calculated at each dose point for the three 

separate trials seen in Figure 3.7.  These averages were normalized to 100 cGy 

making KL = 1.0 at that dose.  Figure 3.8 shows the linearity curves for the three 

separate trials normalized to 100 cGy.      
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Figure 3.8: Linearity for each separate trial. 

The KL lines of trials 2 and 3 agreed to 1% at 50 cGy and 2% at 200 cGy with 

trial 1 falling between trials 2 and 3.  As dose is increased, a larger disagreement is 

seen specifically at 300 cGy where the differences between the KL lines of trials 2 

and 3 are 4%.       

The linearity correction factors of the three trials were combined to form one 

single KL linear fit.  The formula for linear fit is KL = (a x dose) +b where a = -0.0003 

and b = 1.0295 determined from the averages of the three trials. 

The four dose points were inserted into the formula where the fit was 

normalized to 1.0 at 100 cGy.  The final KL linearity correction factor was the 

normalized fit shown in Figure 3.9 with the 68% and 95% confidence intervals, 

which represent one and two standard deviations, respectively.   
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Figure 3.9: Normalized linearity correction factor based on the independent trials.  
The green and red dashed lines represent the 68% (1σ) and 95% (2σ) confidence 

intervals respectively. 

Figure 3.9 shows the 68% confidence interval of the KL linear fit for doses 

between 190 to 210 cGy to be approximately 1.1% or ±0.55%.  The remote audit 

program asks institutions to deliver 200 cGy to 1.5 cm depth measurement point, 

therefore σ = ±0.55% can be expected as the uncertainty for the linearity correction 

factor and was used in the final uncertainty calculation.   

3.6 Depletion Correction Factor 

Five randomly sampled OSLDs were read to determine the depletion 

correction factor for this study.  Each masked nanoDot was read ten times where 

the subsequent readings were normalized to the initial reading.  The average results 

along with standard deviations (1σ) are plotted in Figure 3.10. 
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Figure 3.10: Measured masked OSLD versus RPC unmasked commissioning 
depletion correction factor. Five nanoDots were read and normalized to obtain a 

quadratic fit.  

A quadratic fit was obtained from the data set and used to compare the 

measured masked OSLD equation with the RPC’s unmasked OSLD commissioning 

depletion correction equation in Equation 2.4.  The two fits agreed initially, but as 

more readings were performed, an apparent disagreement was seen.  The RPC 

uses one depletion correction factor for all of their readers, however each reader 

still undergoes a depletion test to verify using this technique. If the new quadratic fit 

was within 1% of RPC’s depletion correction quadratic fit than the old equation can 

be used.  The equation in Figure 3.10 compared with Equation 2.4 agreed to within 

1% within the first five readings.  In a typical session, each OSLD was read three 

times therefore using Equation 2.4 for the study was justified.   
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3.7 Energy Correction Factor 

The system sensitivity from masked OSLDs irradiated in a miniphantom 

using a 60Co source was used for the masked OSLDs irradiated with a 6 MV beam.  

Equation 2.8 was used to determine the energy correction factor and the results of 

four separate trials are shown in Table 3.4. 

Table 3.4: Energy correction factors of four trials. 
 

Trial KE 

1 1.014 

2 1.017 

3 1.016 

4 1.006 
 

The average of the four separate trials was 1.013 with a standard deviation 

(1σ) of 0.005.  This value was compared with the RPC’s KE commissioning data for 

unmasked OSLDS of 1.011.  The measured and commissioned data were similar 

and within a standard deviation therefore the RPC commissioned value for 

unmasked OSLDs of KE = 1.011 will be used for the masked OSLD system.  

3.8 Phantom Scatter Factor 

The system sensitivity defined by irradiating a miniphantom using a 6 MV 

beam was used for the irradiations performed on the full phantom using the same 6 

MV beam.  Six trials were performed using Equation 2.9 to calculate KSc for the 

system.  The results of the trials are shown in Table 3.5. 
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Table 3.5: Phantom scatter factor of six separate trials.  

Trial KSc 

1 1.004 

2 1.027 

3 1.001 

4 1.027 

5 1.018 

6 0.998 
 

The six trail results ranged from 0.998 to 1.027 with an average of 1.013 with 

a standard deviation (1σ) of 0.013.  The phantom scatter factor was a new factor 

introduced into OSLD dose equation and KSc = 1.015 was used for the remainder of 

the study.     

3.9 Field Size Dependence Factor 

The output factors used to determine the field size dependence factors were 

measured using the Exradin A16 micro ion chamber, Exradin D1V and D1H diodes, 

and Monte Carlo simulations.  The A1650 and D1V (personal communication) output 

factors were corrected using the average kQ for a Siemens and Elekta machine 

published by Francescon et al.  Figures 3.11 and 3.12 show the output factors of 

the various devices measured at 1.5 and 7.5 cm depth for multiple field sizes, 

respectively.  The CC04 data presented on each figure were from the M.D. 

Anderson commissioning data for the accelerator used to determine KFSD. 
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Figure 3.11: Output factors of the Exradin A16 micro ion chamber, Exradin D1V and 
D1H diodes, and Monte Carlo simulations measured at 1.5 cm depth.  The square 

field sizes measured ranged from 0.6 cm to 10 cm.   

 

Figure 3.12: Output factors of the Exradin A16 micro ion chamber, Exradin D1V and 
D1H diodes, and Monte Carlo simulations measured at 7.5 cm depth.  The square 

field sizes measured ranged from 0.6 cm to 10 cm.   
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The output factors from Figures 3.11 and 3.12 matched up well within each 

set for large field sizes however at small field sizes (≤ 1.5 cm) less agreement is 

seen.  Large differences were seen at 0.6 x 0.6 cm2 for the A16 due to volume 

averaging effects and possible positioning error.  In Figure 3.12, a 3% correction 

was applied to the Monte Carlo calculations and the results were normalized to the 

6 x 6 cm2 field.  This modification was justified due to the confidence in the ion 

chamber measurements at this field size and less confidence in the Monte Carlo 

calculations.   

The field size dependence factor was determined by using Equation 2.12 

where the output factors from Figures 3.11 and 3.12 were used to calculate dose.  

Six nanoDot OSLDs were used for each field size and the average KFSD with one 

standard deviation were plotted in Figure 3.13.  Table 3.6 shows an example of one 

data set from Figure 3.13.        

 

Figure 3.13: Field size dependence factor for various field sizes.  The average results 
plotted with standard deviations. A linear fit was applied to the results. The red line 

represents unity. 
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Table 3.6: Field size dependence factor for a 1 x 1 cm2 field.  
 

1x1 cm2 

n 6 

Mean 1.006 

Min-Max 0.994-1.024 

Standard Deviation 0.013 
 

The average KFSD ranged from 0.985 to 1.006.  A linear fit was applied to the 

data and compared to unity.  A linear regression statistical analysis showed that 

there was no statistically significant difference between the slope of the linear fit and 

unity (p = 0.443).  The same test proved that the intercept was statistically 

significantly different than 0 (p < 0.05).  The statistical analysis confirmed that KFSD 

= 1 for the masked OSLD system. To determine the uncertainty of KFSD, the 68% 

and 95% confidence intervals were plotted with a KFSD = 1 for each field size in 

Figure 3.14.    

 

Figure 3.14: Field size dependence factor, KFSD=1, for multiple field sizes. The green 

and red dashed lines represent the 68% (1σ) and 95% (2σ) confidence intervals 

respectively. 
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Figure 3.14 shows the 68% confidence interval of the KFSD for a 1 x 1 cm2 

field size to be 1% or ±0.5%.  The remote audit program asks institutions to use 

either a 1 x 1 cm2 or 10 mm field size, therefore σ = ±0.5% can be the expected 

uncertainty for the field size dependence factor at these field sizes.   

3.10 Film Profiles 

Once the masked OSLDs were characterized, a study was performed to 

determine the field size limitation for the system.  Film profiles were measured at 

0.6 x 0.6, 0.7 x 0.7, 1 x 1, 1.5 x 1.5, 2 x 2, and 3 x 3 cm2 field sizes at both 1.5 cm 

and 7.5 cm depth.  Figure 3.15 - 3.17 shows the results for 0.6 x 0.6, 0.7 x 0.7, and 

1 x 1 cm2 field sizes at 1.5 cm depth.  The remaining field sizes and depths are 

shown in Appendix 6.2, Figures 6.4 - 6.11.  Within each figure there are three sets 

of lines.  The black lines represent the 2 mm masked OSLD coverage on the profile.  

The red lines correspond to a 1 mm shift of the masked OSLD.  The green lines 

cover the full active area of an unmasked OSLD.         
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Figure 3.15: Film profiles of EBT and EBT2 for a 0.6 x 0.6 cm2 field size. 

 

Figure 3.16: Film profile of EBT2 for a 0.7 x 0.7 cm2 field size. 
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Figure 3.17: Film profiles of EBT and EBT2 for a 1 x 1 cm2 field size. 

For circular collimators, the equivalent square equation is given by the 

following equation. 

Where a is one side of a square field and r is the radius of the circular collimator.  

An example of circular field sizes compared with their equivalent square field sizes 

is shown in Table 3.7. 

Table 3.7: Circular collimator sizes converted to equivalent square field sizes. 

Cone Size (mm) Radius (mm) Equivalent Square (mm) 

7.5 3.75 6.65 

10 5 8.86 

12.5 6.25 11.08 

 

 The profiles from Figures 3.15 - 3.17 with the 2 mm masked OSLD overlay 

resulted in defining a minimum field size of 1 x 1 cm2 for MLC defined SRS systems 

and 10 mm diameter fields for CyberKnife and cone systems.  A 1 mm shift for 0.6 x 
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0.6 cm2 can cause roughly a 5% signal reduction due to volume averaging.  

Therefore the 0.6 x 0.6 cm2 and 0.7 x 0.7 cm2 field sizes were eliminated for this 

study.     

3.11 Remote Audit Trials 

Multiple remote audits were performed in this study using CyberKnife, linac-

based cones, and MLCs to define small fields at six different institutions.  Each 

institution was asked to deliver a dose to a measurement point as calculated by the 

treatment planning system.  The results of the audit are shown in Table 3.8 - 3.10 

for various treatment units and field sizes.   

Table 3.8: Result of two audits using a CyberKnife unit and various field sizes.   

Trial 
Cone Size 

(mm) 

Institution 
Reported Dose 

(cGy) 

RPC 
Calculated 
Dose (cGy) 

RPC/Institution 

1 7.5 199.5 184.6 0.925 

2 7.5 200.0 185.8 0.929 

1 10 199.6 192.3 0.964 

2 10 200.0 191.2 0.956 

1 12.5 200.1 194.0 0.970 

2 12.5 200.0 192.6 0.963 

 

Table 3.9: Result of three audits using a linac based cones for various field sizes and 
machines.  The Elekta Synergy machines used Elekta circular collimator stereotactic 
cones while the Varian TrueBeam used BrainLab cones. 

Trial Machine 
Cone 
Size 
(mm) 

Institution 
Reported 

Dose (cGy) 

RPC 
Calculated 
Dose (cGy) 

RPC/Institution 

4 Truebeam BL 7.5 200.0 201.8 1.009 

6 TrueBeam BL 7.5 200.0 185.5 0.927 

3 Elekta Synergy 10 200.0 199.3 0.996 

4 TrueBeam BL 10 200.0 197.7 0.988 

6 TrueBeam BL 10 200.0 188.8 0.950 

4 TrueBeam BL 12.5 199.0 200.9 1.004 

6 TrueBeam BL 12.5 200.0 197.0 0.985 

3 Elekta Synergy 15 200.0 197.0 0.985 

3 Elekta Synergy 20 200.0 200.5 1.003 
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Table 3.10: Result of two audit using MLCs for various field sizes. 

Trial Machine 
Field 
Size 
(cm2) 

Institution 
Reported 

Dose (cGy) 

RPC 
Calculated 
Dose (cGy) 

RPC/Institution 

5 Varian Novalis 1x1 200.0 205.5 1.027 

6 TrueBeam 1x1 200.0 197.0 0.985 

5 Varian Novalis 2x2 200.0 211.0 1.055 

6 TrueBeam 2x2 200.0 208.8 1.044 

 

The CyberKnife results from Table 3.8 under responded for all the field sizes 

with the measured to reported dose ratio improving with increasing field size.  The 

average RPC measured to institution reported dose ratio was 0.951±0.0176 for the 

CyberKnife system.   The linac-based cone trials overall performed well with an 

average ratio of 0.983±0.026.  The MLC trials had an average ratio of 1.006±0.021 

between the measured and reported dose for a 1 x 1 cm2 field and a ratio of 

1.050±0.006 for a 2 x 2 cm2 field. 

The dose profiles of the 7.5 mm and 10 mm cones used on the CyberKnife 

unit is shown in Figures 3.18 and 3.19.  Both profiles show a fairly centered setup 

with little volume averaging over the masked OSLD.  The profiles for the other 

institutions are shown in Appendix 6.4, Figures 6.12-6.21.  The majority of the 

profiles showed a correct phantom setup by the institution.   
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Figure 3.18: Trial 1 dose profile for a 7.5 mm diameter field. 

 

Figure 3.19: Trial 1 dose profile for a 10 mm diameter field. 
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4 Discussion 

4.1 System Sensitivity  

The system sensitivity defined for this study used masked OSLDs that were 

highly reproducible.  The RPC plans on using the regular unmasked OSLDs to 

define the system sensitivity of the masked system for their remote audits.  

Therefore a scaling factor is needed to convert the unmasked to masked OSLD 

system sensitivity.  This scaling factor was determined to be 3.9 from this study by 

taking the ratio of the average dose to count ratio of the unmasked to mask OSLDs 

irradiated under identical conditions on the same day.  Six masked and unmasked 

OSLDs were irradiated the same way normal standard OSLDs were irradiated 

described in Section 2.2.2.2.  This factor should be verified when new masked 

OSLDs are commissioned by the RPC.   

4.2 Linearity  

The resultant linearity correction factor from this work was compared with the 

RPC’s commissioning linearity correction factor for unmasked OSLDs.  The RPC’s 

linearity correction factor shown in Equation 2.6 for the same batch is displayed 

again here for reference. 

  The study’s linearity correction factor and the RPC’s linearity correction 

factor are compared in Figure 4.1.  The normalized average measured KL values 

are also plotted with standard deviation (1σ) error bars.   

                                        (2.6) 
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Figure 4.1: Linearity curves of measured and commissioning data.  The masked 
OSLD measured points are compared to the commissioning data of non-masked 

OSLDs determined by the RPC. 

The RPC wishes to use the already existing linearity correction factor for 

unmasked OSLDs determined during commissioning of the batch.  The average 

measured linearity correction factors line up directly over the commissioning curve 

in Figure 4.1.  The results from the study agree with the RPC’s commissioning.  It 

can be expected that the linearity correction factor of unmasked OSLDs obtained 

during commissioning of a batch can be used for masked OSLDs for the same 

batch. 

4.3 Fading 

Another study was performed that investigated the fading after two weeks to 

a month and showed a signal drop of 2%58.  Both of these results matched the data 

obtained by the RPC which showed a 2% drop in signal after the first five days and 

two to four weeks post irradiation31.   
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4.4 Energy and Phantom Scatter Correction Factor 

A separate test was performed by irradiating the full phantom using a 60Co 

beam and using the system sensitivity define by that test for a full phantom irradiate 

with a 6 MV beam.  This test determined the combined KE and KSc effect.  Table 4.1 

shows the results of six trials performed for this test.  

Table 4.1: Energy and phantom scatter correction factor      

Trial KE*KSc 

1 1.016 

2 1.010 

3 1.013 

4 1.040 

5 1.030 

6 1.040 

 

The average of the six trials was 1.025 with a standard deviation (1σ) of 

0.013.  Multiplying the average KE from section 3.7 and average KSc from section 

3.8, KE*KSc = 1.026.  The test above confirms the results of both KE and KSc 

measured independently in the previous sections.   

4.5 Field Size Dependence Factor 

The field size dependence factor was determined to be unity however the 

uncertainty associated with the correction factor must still be taken into account.  

Due to the complexities of small field dosimetry, the field size dependence factor 

accounts for differences in the field size, geometry, beam quality of the reference 

field and machine specific reference field18,23,59.  The uncertainty in the system must 

be accounted for in the uncertainty calculations to address the issues of small field 

dosimetry. 
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4.6 Remote Audit Trials 

The purpose of the remote audit trials were to compare the treatment 

planning system’s (TPS) calculations to the RPC’s OSLD measured results and 

determine if the TPS calculations were correct or not.  The results from the mailable 

remote audit trials showed that the phantom with masked OSLDs can accurately 

measure dose down to 10 mm diameter cone sizes and a 1 x 1 cm2 field size.  The 

Elekta and Varian measurements showed good agreement with the RPC calculated 

dose; however the CyberKnife data showed a larger disagreement.  Figure 4.2 

shows a dose profile comparison of a 10 mm diameter field for both the CyberKnife 

and linac based cone system.  The circular collimator has greater coverage over the 

masked OSLD compared to the CyberKnife profile.  Greater coverage results in less 

volume averaging.  CyberKnife units are a flattening filter free system, while 

TrueBeam units have a flattening filter or flattening filter free system, which can 

explain the profiles seen in Figure 4.2 and the lower dose calculations seen in Table 

3.8.  In addition to the profile, other CyberKnife disagreements such as the 

CyberKnife TPS calculation is more inaccurate and CyberKnife setup not having the 

same precision as a linac can result explain the ratio observed from the remote 

audit trial.  The MLC ratio increased from a 1 x 1 cm2 to 2 x 2 cm2 field.  There is 

field size dependence factor for MLC leakage due to increase in leaf scatter with 

increasing field size60. 
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Figure 4.2: Dose profile comparison of a 10 mm diameter field defined by a 

CyberKnife unit and a linac based cone system. 

 The RPC to institution dose ratio for CyberKnife units using 10 mm cones 

averaged to 0.96 while the 1 x 1 cm2 MLC defined field had an ratio of 1.006.  The 

linac based cones audits performed very well with an average ratio of 0.978 for the 

10 mm field noting that one institution showed a 5% under response while the other 

two had less than a 2% difference.  Although the 7.5 mm audits had good profile 

coverage over the masked OSLDs, the RPC has decided to limit the minimum field 

size for the SRS masked OSLD phantom to 10 mm and 1 x 1 cm2 to reduce any 

uncertainty in user position error. 
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4.7 Uncertainty Analysis 

Equation 2.3 depicts the dose equation for the masked OSLD system used in 

this study and is repeated again here. 

                                                  (2.3) 

System sensitivity, shown in Equation 2.5, combines multiple components 

that need to be analyzed individually to provide the final system sensitivity 

uncertainty.  Aguirre et al.4 has already determined the individual uncertainties for 

system sensitivity by adding them in quadrature.  

 

   √            
              

        
        

 

 √                                

      

(4.1) 

Where              the uncertainty of the dose is delivered to standards,              is 

the uncertainty in the averages of the two standards,        is the uncertainty in the 

fading correction factor, and        is the uncertainty in the linearity correction factor.  

The linearity uncertainty for the standard was determined by the 95% confidence 

interval in the linear fit while the other uncertainties are defined at one standard 

deviation.   

 Dose measurement uncertainty analysis can be applied to the dose equation 

by adding the individual term’s uncertainty in quadrature.  

       √             
      

    
     

     

     

      

       

  
(4.2) 

              is the percent uncertainty in the institution’s OSLD reading and does not 

include standards or controls.  The uncertainty in the institution’s reading is larger 

than the uncertainty in controls and standards because the irradiation conditions are 
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not as well defined.  Aguirre defined               = 0.57% and includes the 

uncertainty in ECF.  Therefore      = 0 in Equation 4.2.  The linearity correction 

uncertainty was given by the 68% confidence interval for doses between 190 to 210 

cGy.  The linearity uncertainty shown in Figure 3.9 was 0.55%.  The fading 

correction uncertainty was provided by Aguirre to be 0.15%4.  The energy 

correction and phantom scatter correction uncertainty were 0.5% and 1.3% 

respectively.  The field size dependence uncertainty was also determined by using 

the 68% confidence interval in Figure 3.14.  The field size dependence uncertainty 

was defined for a 1 x 1 cm2 field size and determined to be     = 0.5%.  Using 

Equation 4.2, the total dose uncertainty of the system can be calculated.   

 

      √                                           

                                             

                    

(4.3) 

If we assume that the OSLD dose measurements follow a normal distribution, 

approximately 95.4% of the measurements will fall within two standard deviations 

(2σ) of the mean.  The total dose uncertainty for the masked OSLD system is 3.72% 

at 2σ.  Kirby et al.2 performed an uncertainty analysis of the RPC mailed TLD 

program and established a ±5% acceptance criterion for institutional 

measurements.  This criterion was based on the TLD system calculated dose to be 

within 5% of ion chamber measurements 93% of the time.  A ±5% acceptance 

criterion represents four standard deviations.  With a dose uncertainty of 1.86%, 

greater than 95.4% of dose measurements will fall within four standard deviations of 

the mean.  Therefore using a ±5% acceptance criterion for this system was 

appropriate for SRS measurements. 
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 The dose uncertainty was analyzed experimentally by taking the ratio of the 

measured to expected doses from 73 separate dose measurements.  These 

measurements were taken from various parts of the study and also included the 

remote audits.  The measured doses were calculated from the OSLD readings 

using the dose equation from Equation 2.3 while the expected doses were 

calculated by using Equation 2.2 or provided by the institutions.  The results from all 

the measurements are shown in Figure 4.2. 

 

Figure 4.3: Histogram of the measured to expected dose ratios for 73 separate 

measurements. 

The average ratio for all 73 measurements was 1.005 with a standard 

deviation of 0.017.  A two standard deviation uncertainty of 3.4% of measured to 

expected dose ratio is within the 3.72% total system uncertainty determined 

previously.   
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5 Conclusion 

5.1 Conclusion 

The hypothesis for this study was: Optically stimulated luminescent 

dosimeters whose visible active luminescent area have been masked can be used 

as a remote audit tool to measure small photon fields down to a 7.5 mm diameter 

field size with an accuracy of ±5% as compared to existing dosimetry 

measurements and Monte Carlo calculations with an uncertainty of less than 2%. 

This study determined that a masked OSLD and phantom system can be 

used as an RPC mailed remote audit tool for small field dosimetry.  The phantom 

was made of High Impact Polystyrene, which provides a durable and cost efficient 

tool for the mailed dosimetry program.  The 2 mm masked OSLDs showed good 

reproducibility and were accurately characterized to measure small photon beams.  

The OSLD system will replace the existing TLD program, which will allow the RPC 

to measure field sizes down to a 10 mm cone compared to the 12.5 mm cone size 

for TLDs.  A 7.5mm diameter field size was achievable under controlled conditions; 

however the RPC will limit the system to the 10 mm diameter field to reduce any 

positioning uncertainty by the user.   Irradiations performed on the phantom should 

be simple and straightforward for institutions through the clear and concise 

instructions provided.   

The total dose uncertainty of the masked OSLD and phantom design was 

3.72%.  The accuracy of the system seen in this work was sufficient to establish a 

±5% acceptance criterion for comparing the OSLD dose measurements with the 
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institution’s reported dose.  Multiple remote audit trials have been performed with 

the majority of the RPC measured to institution reported dose ratios falling within 

the criteria.  

Initially, the project aimed at using the 1 mm diameter masked OSLDs 

throughout the study; however results showed that a 1 mm mask was not 

appropriate for the system.  Although measuring a 7.5 mm diameter field size with a 

total system uncertainty of 2% was not accomplished through this study, it has been 

shown that the masked OSLD and phantom system are capable of improving the 

existing SRS remote audit dosimetry program, allowing the RPC to measure smaller 

field sizes than before. 

5.2 Future Work 

Before this system becomes implemented into the RPC remote audit tool 

program, several steps will need to occur first.  OSLDs are batch specific and each 

batch will need to be recharacterized.  Most of the correction factors have been 

determined throughout this work and the RPC commissioning data for non-masked 

OSLDs can be used for the masked OSLD system.  A new set of masks need to be 

carefully cut and applied to each OSLD.  A new ECF value must be determined for 

each masked OSLD.  The RPC will be using the system sensitivity factor from non-

masked OSLDs for the masked OSLD system requiring a scaling factor to obtain 

the correct dose per count ratio.   

 Current instructions ask institutions to line up the phantom using the 

crosshairs.  However, crosshairs are not used clinically during patient setup.  A 
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further redesign of the phantom can incorporate laser markings on the phantom for 

irradiation setup.  

 A full Monte Carlo calculation can be performed where the SRS phantom can 

be modeled with masked OSLDs inside the phantom.  The calculations can be 

compared with the measured OSLD data.  
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6 Appendix  
 

6.1 Phantom Design 

 

 

Figure 6.1: Phantom dimensions of lid and base.  The cylindrical insert is placed in 

the center of the base followed by a lid which is screwed down to the base to reduce 

air gaps and lock the cone in place. 
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Figure 6.2: Top view of the insert.  Thin cross hairs are drilled into the top of the 

insert used to center the phantom with the field.  The square in the middle represents 

the shift in the OSLD due to the non-centered location of the Al2O3:C. 

 

 
Figure 6.3: Pin prick location.  The cone insert has three pin prick locations that 

relate the pin pricks to the center of the phantom.  
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6.2 Film Profiles 

 

Figure 6.4: Film profiles of EBT and EBT2 for a 0.6 x 0.6 cm2 field size at 7.5 cm 

depth. 

 

Figure 6.5: Film profiles of EBT and EBT2 for a 1 x 1 cm2 field size at 7.5 cm depth. 
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Figure 6.6: Film profiles of EBT and EBT2 for a 1.5 x 1.5 cm2 field size at 1.5 cm 

depth. 

 

Figure 6.7: Film profiles of EBT and EBT2 for a 1.5 x 1.5 cm2 field size at 7.5 cm 

depth. 
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Figure 6.8: Film profiles of EBT and EBT2 for a 2 x 2 cm2 field size at 1.5 cm depth. 

 

 

Figure 6.9: Film profiles of EBT and EBT2 for a 2 x 2 cm2 field size at 7.5 cm depth. 
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Figure 6.10: Film profiles of EBT and EBT2 for a 3 x 3 cm2 field size at 1.5 cm depth. 

 

 

Figure 6.11: Film profiles of EBT and EBT2 for a 3 x 3 cm2 field size at 7.5 cm depth. 
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6.3 Remote Audit Forms 

6.3.1 Instructions 

 

INSTRUCTIONS FOR USE OF SINGLE-BEAM 
         STEREOTACTIC RADIOSURGERY PHANTOM 

Version: July 2013 

 

If you have any questions, please contact: 
 
Christopher Pham Office: (713) 745-8989 Email: cpham1@mdanderson.org 
     Cell: (408) 421-6215 Personal: chrispham62@gmail.com 

 

Please find enclosed the “Single-Beam Stereotactic Radiosurgery” verification 
system (Fig. 1). This system is comprised of a phantom base, a top plate and, and a 
cylindrical dosimetry insert.  Each dosimetry insert contains 2 OSLD, located at a 
depth of 1.5 cm, and a film plate, located above the OSLDs.  The phantom base 
and top plate provide adequate scattering conditions.  

 
 

Figure 1: Single-Beam Stereotactic Radiosurgery verification system 
 

 

Base 

Dosimetry 

insert 

Top plate 
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Instructions for use: 

1. Verify the machine reference output. 
 

2. Place the phantom base block on the treatment couch, with the side labeled 
“G” towards the gantry.  Use a level to ensure that the block is level. Shim 
the phantom, or move it to a more level segment of your treatment couch, if 
necessary.  

 
3. Insert the cylindrical insert into the base if not already done so. The cylinder 

will fit into the phantom base in only one orientation, determined by the key in 
the block. 
 

4. Slide the top plate over the insert, with the gantry arrow pointing towards the 
gantry. The SRS Single-Beam verification system will look like the setup in 
Fig.2. 

 

   Figure 2: Assembled SRS Single-Beam verification system 

5. Set your SRS machine to 100cm SSD (if possible) to the surface of the 
cylindrical insert. 

6. Attach the SRS cone to be verified to your accelerator. (NOTE: The smallest 
cone diameter that can be used is 7.5 mm.) Use a spirit level to ensure 
that the cone and as such, the photon beam are vertical.  The level should be 
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placed on a machined surface; the attachment plate for the cone is generally 
a convenient place. 

7. Center the phantom in your treatment field. The cylindrical insert is marked 
with a 2 cm diameter circle as well as two perpendicular scribe marks 
intersecting at the center of the cone. The block should be set up based on 
the projection of the light field rather than lasers. (NOTE: The small field 
sizes, sharp dose gradients and dosimeter size associated with the 
SRS verification require lining up the SRS cone delivery system and 
SRS verification phantom dosimetry insert as accurately as possible in 
order to ensure an accurate measurement.) 

8.  Calculate the monitor unit setting to deliver approximately 200 cGy to a point 
at a 1.5 cm depth in water for 6MV beam, centered in the field (the location of 
the OSLD). 

9.  Irradiate the phantom to the monitor units calculated. 

10. Record the cone identification (7.5mm, 10mm, 12.5mm, etc.) or MLC field 
size (1x1cm), the monitor unit setting, and the calculated doses at 1.5 cm 
depth in a water phantom on the attached irradiation form. 

11. Remove the top plate and place it aside. 

12. Remove the irradiated dosimetry and store it outside the treatment room 
(more information on replacing the OSLDs in the cone is attached). 

13. Repeat steps 3 through 12 for any additional SRS cones you wish to verify. 

14. Ensure that the irradiation form has been completely filled out (the irradiation 
form has 2 pages). 

15. Place all of the SRS Single-Beam verification system materials in the original 
packaging and return using the prepaid enclosed shipping label.  Be sure to 
lock the case, using the lock provided. 
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INSTRUCTIONS FOR REPLACING THE OSLDs AND FILM  
IN THE SINGLE BEAM SRS PHANTOM 

 

1. Once irradiations are performed, remove entire phantom from current 
position on the table. (We want you to reposition the phantom every time) 
 

2. Remove top plate by first unscrewing the large screws located at the edges 
of the top plate followed by removing the cylindrical insert.  
 

3. Unscrew and remove one of the screws from the insert. Loosen the other 
screw enough such that the individual compartments of the cylinder can be 
rotated about the screw axis (Figure 1).  
 

 
Figure 1: Film and OSLD cylindrical insert 

 

4. Carefully remove the film with the gloves provided and place in the black 
envelope labeled “Institution Film”. 
 

5. Remove the OSLDs by tipping the insert sideways or lightly tapping on a 
surface. Place OSLDs in the corresponding field size bag.  

 
6. Replace the film with a new film from the black envelope labeled “Block 

Phantom Film New” using the gloves provided. Place the film with the 
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number facing up and the black dot pointing at the indent on the side of the 
plate.  
 

7. Place new OSLDs in the OSLD slot with the barcode facing up and pointed 
towards the “QRC” label (Figure 1).  
 

8. Record the last 3 digits of the OSLD located on the back (i.e. DN080 709 
57H) and the film number on the forms provided for the corresponding cone 
or MLC. 
 

9. Rotate the plates back to center (carefully rotate the film plate such that it 
does not shift out of the groove). Place the screw back into the insert and 
tighten both.   
 

10. Use the needle provided and place into the 3 black holes located at the top of 
the insert. Apply enough pressure such that you make an indent or hole in 
the film.  
 

11. Place insert back into the base and place the top on afterwards such that no 
air gaps are present.  (Note: you do not need to screw the large screws as 
long as the insert and top are firmly in place.)   
 

12. Repeat steps 1-11 for any additional SRS cones or MLCs you wish to verify. 
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6.3.2 Irradiation Forms 

SRS Single-Beam Phantom Verification System 
Irradiation Form 

 

Institution: __________________________________________________________  

Address: ____________________________________________________________  

 ___________________________________________________________________  

Person performing irradiation: ___________________________________________  

Person to receive report: _______________________________________________  

Person to call in case of questions: _______________________________________  

Phone number: ___________________ Fax Number: ________________________  

E-mail address:______________________________________________________ _  

Treatment Unit: ______________________________________________________  

Manufacturer:                                         Model                   ____ Photon Energy: _____        

In-house specification: Serial number _______________  

Stereotactic system:___________________________________________________  

Manufacturer: _______________________________ Model: __________________  

Date of Irradiation:___________________ 

SSD:   _____________ cm to top of insert. 

 

Cone/MLC 
Designation 

Monitor Unit 
Setting 

Dose (cGy) 
at 1.5 cm 

OSLD #1 OSLD #2 Film # 
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SRS Single-Beam Phantom Verification System 
Irradiation Form (cont’d) 

 
 

Output of the beam: _______________ cGy/MU    to:      Muscle    Water                    
 

   SAD    SSD     Reference field size:________________ 
depth:_________________ 
 
 
Please complete the following information for each cone designation: 
 

Cone/MLC 
Designation 

dmax 
(cm) 

Output factor 
at dmax 

PDD 
At 1.5 cm 
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6.4 Remote Audit Trial Film Profiles 

 

Figure 6.12: Trial 1 dose profile for a 12.5 mm diameter field. 

 

Figure 6.13: Trial 2 dose profile for a 7.5 mm diameter field. 
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Figure 6.14: Trial 2 dose profile for a 10 mm diameter field. 

 

Figure 6.15: Trial 2 dose profile for a 12.5 mm diameter field. 
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Figure 6.16: Trial 3 dose profile for a 10 mm diameter field. 

 

Figure 6.17: Trial 3 dose profile for a 15 mm diameter field. 
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Figure 6.18: Trial 3 dose profile for a 20 mm diameter field. 

 

Figure 6.19: Trial 5 dose profile for a 1 x 1 cm2 field size. 
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Figure 6.20: Trial 5 dose profile for a 2 x 2 cm2 field size. 

 

Figure 6.21: Trial 6 dose profile for a 12.5 mm diameter field. 

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

N
o

rm
a

li
z
e

d
 O

D
 

Distance (mm) 

Trial 5: 2 x 2 cm2 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

N
o

rm
a

li
z
e

d
 O

D
 

Distance (mm) 

Trial 6: 12.5 mm Cone  



100 
 

References 
 

1. T. H. Kirby, W. F. Hanson, R. J. Gastorf, C. H. Chu, and R. J. Shalek, 

“Mailable TLD system for photon and electron therapy beams,” Int. J. Rad. 

Onc. Bio. Phys 12, 261-265 (1986). 

2.  T. H. Kirby, W. F. Hanson, and D. A. Johnston, “Uncertainty analysis of 

absorbed dose calculations from thermoluminescence dosimeters,” Med. 

Phys. 19 (6), 1427-1433 (1992). 

3. J. Aguirre, P. Alvarez, C. Amador, A. Tailor, D. Followill and G. Ibbott, "WE-

D-BRB-08: Validation of the commissioning of an optically stimulated 

luminescence (OSL) system for remote dosimetry audits, " Med. Phys. 37, 

3428 (2010).  

4. J. Aguirre, P. Alvarez, G. Ibbott, and D. Followill, "SU-E-T-126: Analysis of 

uncertainties for the RPC remote dosimetry using optically stimulated light 

dosimetry (OSLD)," Med. Phys. 38, 3515 (2011).  

5. P. Alvarez, J. Aguirre, and D. Followill, "SU-E-T-86: Evaluation of the OSLD 

system for remote dosimetry audits implemented by the RPC," Med. Phys. 

38, 3505 (2011). 

6. AAPM Report 54, Stereotactic Radiosurgery Report of Task Group 42 

Radiation Therapy Committee. (American Institute of Physics, New York, NY, 

1995). 

7. V. Sturm, B. Kober, K. H. Höver, W. Schlegel, R. Boesecke, O. Pastyr, G. H. 

Harmann, K. Zum Winkel, and S. Kunze, “Stereotactic percutaneous single 

dose irradiation of brain metastases with a linear accelerator,” Int. J. Rad. 

Onc. Bio. Phys. 13 (2), 279-282 (1987).   



101 
 

 

8. B. Larson, P. H Gutin, and S. A. Leibel, “Stereotactic irradiation of brain 

tumors,” Cancer 65, 792-799 (1990).   

9. O. O. Betti, C. Munari, and R. Rosler, “Stereotactic radiosurgery with the 

linear accelerator: treatment of arteriovenous malformations,” Neurosurgery 

24 (3), 311-321 (1989).   

10. D. B. Kamerer, L. D. Lunsford, and M. Miller, “Gamma Knife: an alternative 

treatment for acoustic neuromas,” Ann. Otol. Rhinol. Laryngol. 97, 631-635 

(1988).  

11. F. M. Khan, The Physics of Radiation Therapy. 4th Edition. Lippincott 

Williams and Wilkins. 2010. 

12. S. Kim and J. Palta, “The Physics of Stereotactic Radiosurgery,” The 

Principles and Practice of Stereotactic Radiosurgery, L. S. Chin and W. F. 

Regine. Springer, 2008. 33-50. 

13. S. Kim and J. Palta, “Treatment Planning for Stereotactic Radiosurgery.” The 

Principles and Practice of Stereotactic Radiosurgery, D. M. Shepard, C. Yu, 

M. Murphy, M. R. Bussiere, and F. J. Bova, 2008. 69-90. 

14.  R. J. Hamilton, F. T. Kuchnir, P. Sweeney, S. J. Rubin, M. Dujovny, C. A. 

Pelizzari, and G. T. Chen, “Comparison of static conformal field with multiple 

noncoplanar arc techniques for stereotactic radiosurgery or stereotactic 

radiotherapy,” Int. J. Rad. Onc. Biol. Phys. 33 (5), 1221-1228 (1995). 

15. R. W. Laing, R. E. Bentley, A. E. Nahum, A. P. Warrington, and M. Brada, 

“Stereotactic radiotherapy of irregular targets: a comparison between static 

conformal beams and non-coplanar arcs,” Rad. Onc. 28 (3), 241-246 (1993). 



102 
 

 

16.  D. Schofield and G. Ramey, “The safe implementation of stereotactic 

radiosurgery in the community hospital setting,” 11 June, 2012.  

17.  A. S. Shiu, H. H. Kooy, J. R. Ewton, S. S. Tung, J. W. Wong, K. Antes, and 

M. H. Maor, “Comparison of miniature multileaf collimation (MMLC) with 

circular collimation for stereotactic treatment,”  Int. J. Rad. Onc. Biol. Phys. 

37 (3), 679-688 (1997). 

18. I. J. Das, P. Francescon, A. Ahnesjö, M. M. Aspradakis, C. W. Cheng, G. X. 

Ding, G. S. Ibbott, M. Oldham, M. S. Huq, C. S. Reft, and O. A. Sauer, Task 

Group Report 155: Small fields and non-equilibrium condition photon beam 

dosimetry v25, (2012). (Unpublished)   

19. I. J. Das, M. B. Downes, A. Kassaee, and Z. Tochner, “Choice of radiation 

detector in dosimetry of stereotactic radiosurgery-radiotherapy,” Journal of 

Radiosurgery 3 (4), 177-186 (2010).   

20.  S. Li, P. Medin, S. Pillai, and T. Solberg, “SU-EE-A1-02: Analysis of photon 

beam data from multiple institutions: an argument for reference data,” Med. 

Phys. 33 (6), 1991 (2006).  

21. M. M. Aspradakis, J. P. Byrne, H. Palmans, J. Conway, K. Rosser, J. 

Warrington, and S. Duane, Report Number 103: Small field MV photon 

dosimetry. (Institute of Physics and Engineering in Medicine, IPEM, York, 

England, 2010). 

22. F. Crop, N. Reynaert, G. Pittomvils, L. Paelinck, C. De Wagter, L. Vakaet, W. 

De Neve, and H. Thierens, “The influence of small field sizes, penumbra, 



103 
 

 

spot size and measurement depth on perturbation factors for microionization 

chambers,” Phys. Med. Biol. 54 (9), 2951-2969 (2009). 

23. I. J. Das, G. X. Ding, and A. Ahnesjö, “Small fields: Nonequilibrium radiation 

dosimetry,” Med. Phys. 35 (1), 206-215 (2008).  

24. G. X. Ding, D. M. Duggan, and C. W. Coffey, “A theoretical approach for non-

equilibrium radiation dosimetry,” Phys. Med. Biol. 53 (13), 3493-3499 (2008). 

25. F. Sánchez-Doblado, P. Andrea, R. Capote, A. Leal, M. Perucha, R. Arráns, 

L. Núñez, E. Mainegra, J. I. Lagares, and E. Carrasco, “Ionization chamber 

dosimetry of small photon fields: A Monte Carlo study on stopping-power 

ratios for radiosurgery and IMRT beams,” Phys. Med. Biol. 48 (14), 2081-

2099 (2003). 

26. F. Crop, N. Reynaert, G. Pittomvils, L. Paelinck, W. De Gersem, C. De 

Wagter, L. Vakaet, W. De Neve, and H. Thierens, “Monte Carlo modeling of 

ModuLeaf miniature MLC for small field dosimetry and quality assurance of 

the clinical treatment planning system,” Phys. Med. Biol. 52 (11), 3275-3290 

(2007). 

27 . F. Araki, “Monte Carlo study of a Cyberknife stereotactic radiosurgery 

system,” Med. Phys. 33 (8), 2955-2963 (2006). 

28. K. A. Paskalev, J. P. Seuntijens, H. J. Patrocinio, and E. B. Podgorsak, 

“Physical aspects of dynamic stereotactic radiosurgery with very small 

photon beams (1.5 and 3mm in diameter),” Med. Phys. 30 (2), 111-118 

(2003).  



104 
 

 

29. J. U. Wuerfel, “Dose measurements in small fields,” Med. Phys. Int. Jour. 1, 

81-90 (2013). 

30. G. S. Ibbott, "MO-A-BRA-01: Credentialing for Clinical Trials," Med. Phys. 37 

(6), 3334 (2010). 

31.  J. Homnick, G. Ibbott, A. Springer, and J. Aguirre, “TH-D-352-05: Optically 

stimulated luminescence (OSL) dosimeters can be used for remote 

dosimetry services,” Med. Phys. 35 (6), 2994 (2008). 

32. V. V. Antonov-Romanovskii, I. B. Keirum-Marcus, M. S. Poroshina and Z. A. 

Trapeznikova, Conference of the Academy of Sciences of the USSR on the 

Peaceful Uses of Atomic Energy, Moscow, 1955, USAEC Report AEC-tr-

2435. 

33. E. G. Yukihara and S. W. S. McKeever, “Optically stimulated luminescence 

(OSL) dosimetry in medicine,” Phys. Med. Biol. 53 (20), R351-R379 (2008). 

34. D. J. Huntley, D. I. Godfrey-Smith and M. L. W. Thewalt, “Optical dating of 

sediments,” Nature 313 (5998), 105-107 (1985). 

35. M. S. Akselrod, V. S. Kortov, D. J. Kravetsky and V. I. Gotlib, "Highly 

sensitive thermoluminescent anion-defect α-Al2O3:C single crystal detectors," 

Rad. Prot. Dosim. 33, 119-122 (1990). 

36. R. H. Bube, Photoconductivity of solids, New York: Wiley (1960).  

37. P. A. Jursinic, “Characterization of optically stimulated luminescent 

dosimeters, OSLDs, for clinical dosimetric measurements,” Med. Phys. 34 

(12), 4594-4604 (2007). 

http://rpc.mdanderson.org/RPC/Services/OSL_Services/AAPM%202009%20%20Poster-%20%20Francisco%20Aguirre.ppt
http://rpc.mdanderson.org/RPC/Services/OSL_Services/AAPM%202009%20%20Poster-%20%20Francisco%20Aguirre.ppt
http://rpc.mdanderson.org/RPC/Services/OSL_Services/AAPM%202009%20%20Poster-%20%20Francisco%20Aguirre.ppt


105 
 

 

38. E. G. Yukihara and S. W. S. McKeever, “Ionization density dependence of 

the optically and thermally stimulated luminescence from Al2O3:C,”Rad. Prot. 

Dosim. 119, 206-217 (2006a). 

39. B. G. Markey, S. W. S. McKeever, M. S. Akselrod, L. Bøtter-Jensen, N. 

Agersnap, and L. E. Colyott, “The temperature dependence of optically 

stimulated luminescence from  α-Al2O3 :C,” Rad. Prot. Dosim. 65, 185–189 

(1996). 

40. E. G. Yukihara, V. H. Whitley, J. C. Polf, D. M. Klein, S. W. S. McKeever, A. 

E. Akselrod, and M. S. Akselrod, “The effects of deep trap population on the 

thermoluminescence of Al2O3:C,” Rad. Meas. 37 (6), 627-638 (2003). 

41. M. S. Akselrod, "Fundamentals of materials, techniques, and instrumentation 

for OSL and FNTD dosimetry," AIP. Conf. Proc. 1345, 274-302 (2011). 

42. S. W. S. McKeever, M. S. Akselrod, L. E. Colyott, N. Agersnap-Larsen, J. C. 

Polf, and V. Whitley, “Characteristics of Al2O3 for use in thermally and 

optically stimulated dosimetry,” Rad. Prot. Dosim. 84, 163–168 (1999). 

43. L. Bøtter-Jensen, N. A. Larsen, B. G. Markey & S. W. S. McKeever, "Al2O3:C 

as a sensitive OSL dosimeter for rapid assessment of environmental photon 

dose rates." Rad. Meas. 27 (2), 295-298 (1997). 

44. A. J. J. Bos, "High sensitivity thermoluminescence dosimetry," Nucl. Instrum. 

Meth. B 184, 3-28 (2001). 

45. R. Hill, Z. Kuncic, and C. Baldock, "The water equivalence of solid phantoms 

for low energy photon beams," Med Phys 37 (8), 4355-4363 (2010). 



106 
 

 

46. C. A. Perks, C. Yahnke, and M. Million, “Medical dosimetry using Optically 

Stimulated Luminescence dots and microStar readers,” 12th International 

Congress of the International Radiation Protection Association, Buenos 

Aires, Argentina (2008).  

47. A. Viamonte, L. A. da Rosa, L. A. Buckley, A. Cherpak, and J. E. Cygler, 

“Radiotherapy dosimetry using a commercial OSL system,” Med. Phys. 35 

(4), 1261-1266 (2008). 

48. P. R. Almond, P. J. Biggs, B. M. Coursey, W. F. Hanson, M. S. Huq, R. Nath, 

and D. W. Rogers, “AAPM’s TG-51 protocol for clinical reference dosimetry 

of high-energy photon and electron beams,” Med. Phys. 26 (9), 1847-1870 

(1999). 

49. R. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjӓll, T. R. Mackie, 

H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich, and S. Vatnitsky, “A new 

formulism for reference dosimetry of small and nonstandard fields,” Med. 

Phys. 35 (11), 5179-5186 (2008).  

50. P. Francescon, S. Cora, and N. Satarioano, “Calculation of            

           
 for 

several small detectors and for two linear accelerators using Monte Carlo 

simulations,” Med. Phys. 38 (12), 6513-6527 (2011).     

51. P. Francescon, W. Kilby, N. Satariano, and S. Cora, “Monte Carlo simulated 

correction factors for machine specific reference field dose calibration and 

output factor measurement using fixed and iris collimators on the CyberKnife 

system,” Phys. Med. Biol. 57 (12), 3741-3758 (2012).   



107 
 

 

52. G. Cranmer-Sargison, S. Weston, J. A. Evans, N. P. Sidhu, and D. I. 

Thwaites, “Implementing a newly proposed Monte Carlo based small field 

dosimetry formalism for a comprehensive set of diode detectors,” Med. Phys. 

38 (12), 6592-6602 (2011).  

53. E. Pantelis, A. Moutsatsos, K. Zourari, L. Petrokokkinos, L Sakelliou, W. 

Kilby, C. Antypas, P. Papagiannis, P. Karaiskos, E. Georgiou, and I. 

Seimenis, “On the output factor measurements of the CyberKnife iris 

collimator small fields: Experimental determination of the            

           
correction 

factors for microchamber and diode detectors,” Med. Phys. 39 (8), 4875-

4885 (2012).  

54. F. Pönisch, U Titt, S. F. Kry, O. N. Vassiliev, and R. Mohan, “MCNPX 

simulation of a multileaf collimator,” Med. Phys. 33 (2), 402-404 (2006). 

55. S. F. Kry, U. Titt, F. Pönisch, D. Followill, O. N. Vassiliev, R. A. White, R. 

Mohan, and M. Salehpour, “A Monte Carlo model for calculating out-of-field 

dose from a Varian 6 MV beam,” Med. Phys. 33 (11), 4405-4413 (2006). 

56. A. Niroomand-Rad, C. R. Blackwell, B. M. Coursey, K. P. Gall, J. M. Galvin, 

W. L. McLaughlin, A. S. Meigooni, R. Nath, J. E. Rodgers, C. G. Soares, 

“Radiochromic film dosimetry: recommendations of AAPM radiation therapy 

committee task group 55,” Med. Phys. 25 (11), 2093-2115 (1998). 

57. M. S. Akselrod, V. S. Kortov, and E. A. Gorelova, “Preparation and properties 

of α-Al2O3:C,” Rad. Prot. Dos. 47, 159-164 (1993). 

58. L. Bøtter-Jensen, S. W. S. McKeever, and A. G. Wintle, Optically stimulated 

luminescence dosimetry, Elsevier, (2003).  



108 
 

 

59. C. Bassinet, C. Huet, S. Derreumaux, G. Brunet, M. Chéa, M. Baumann, T. 

Lacornerie, S. Gaudaire-Josset, F. Trompier, P. Roch, G. Boisserie, I. 

Clairand, “Small fields output factors measurements and correction factors 

determiniation for several detectors for a CyberKnife and linear accelerators 

equipped with microMLC and circular cones,” Med. Phys. 40 (7), 071725-1-

13 (2013).  

60. T. Kron, A Clivio, E. Vanetti, G. Nicolini, J. Cramb, P. Lonski, L. Cozzi, and A. 

Fogliata, “Small field segments surrounded by large areas only shielded by a 

multileaf collimator: Comparison of experiments and dose calculation,” Med. 

Phys. 39 (12), 7480-7489 (2012). 



109 
 

Vita 
 

Christopher Pham was born on March 8, 1988 in Fountain Valley, CA to Minh 

Pham and Helene Loi.  He graduated from the University of California, Berkeley in 

2010 with a Bachelor of Science degree in Nuclear Engineering.  In August 2011, 

he entered into the Specialized Master of Science in Medical Physics program at 

the University of Texas Health Science Center at Houston Graduate School of 

Biomedical Sciences and M. D. Anderson Cancer Center.   

 


	Texas Medical Center Library
	DigitalCommons@The Texas Medical Center
	12-2013

	CHARACTERIZATION OF OSLDS FOR USE IN SMALL FIELD PHOTON BEAM DOSIMETRY
	Christopher Pham
	Recommended Citation


	tmp.1381846420.pdf.s9mLl

