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Abstract 

Development of homology modeling methods will remain an area of active research. These 

methods aim to develop and model increasingly accurate three-dimensional structures of yet 

uncrystallized therapeutically relevant proteins e.g. Class A G-Protein Coupled Receptors. 

Incorporating protein flexibility is one way to achieve this goal. Here, I will discuss the 

enhancement and validation of the ligand-steered modeling, originally developed by Dr. 

Claudio Cavasotto, via cross modeling of the newly crystallized GPCR structures. This method 

uses known ligands and known experimental information to optimize relevant protein binding 

sites by incorporating protein flexibility. The ligand-steered models were able to model, 

reasonably reproduce binding sites and the co-crystallized native ligand poses of the β2 

adrenergic and Adenosine 2A receptors using a single template structure.  They also performed 

better than the choice of template, and crude models in a small scale high-throughput docking 

experiments and compound selectivity studies. Next, the application of this method to develop 

high-quality homology models of Cannabinoid Receptor 2, an emerging non-psychotic pain 

management target, is discussed. These models were validated by their ability to rationalize 

structure activity relationship data of two, inverse agonist and agonist, series of compounds. 

The method was also applied to improve the virtual screening performance of the β2 adrenergic 

crystal structure by optimizing the binding site using β2 specific compounds. These results 

show the feasibility of optimizing only the pharmacologically relevant protein binding sites and 

applicability to structure-based drug design projects. 
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Chapter 1: Drug Discovery Process.  

The drug discovery process may be defined as the discovery and design of chemical entities to 

favorably alter the activity of aberrant biological molecules e.g. proteins. This process can be 

broadly classified into six steps a: target identification and validation; b: hit identification; c: 

compound optimization d: animal model testing; e: multi-step human clinical trials and f: 

Federal Drug Administration (FDA) approval and subsequent marketing(1).  The biology 

oriented target identification stage involves identifying and associating biological targets e.g. a 

gene or a protein, to a disease under consideration. Subsequently using an array of experimental 

cellular and animal models the role of the target in controlling the disease is conclusively 

defined. Currently available therapeutics target a mere ~250 protein targets (207 of these are 

derived from the human genome)(2). This number pales in comparison to the ~25000 human 

genes sequenced by the National Human Genome Research Institute. Moreover greater than 

50% of these genes have unknown functions(3). It is clear that biology will continue to present 

validated drug targets and the drug discovery process will continue to need novel methods and 

technologies for discovering new therapeutics. Given a validated drug target millions of 

compounds are experimentally or computationally screened and tested using methods such as 

high-throughput screening (HTS) and virtual screening (VS).  Promising compounds (~ 5000 -

10000) from the HTS stage are subjected to an iterative cycle of medicinal chemistry and 

pharmacology methods to develop potent lead compounds for animal model testing. 

Computational structure-based methods that use crystallized or computationally modeled 

protein:compound complexes to elucidate protein:compound interactions are routinely used in 

the optimization process(1). Roughly 3% compounds from the optimization stage will pass the 

rigorous safety profiles and efficacy of animal model testing(4).Approximately 5 compounds 
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are then introduced in the three-stage human clinical trials. Only after determining a 

statistically significant safety, efficacy and therapeutic profile a drug candidate may be 

approved by the FDA for subsequent marketing. Despite the poor success rates and varied 

multi-dimensional challenges, ~1200 drugs targeting 266 human genome therapeutic targets 

have been approved by the FDA to date(2).  

Several studies have documented the time and costs required to market a drug as ~12 -15 years 

and upwards of one billion US Dollars(5). Approximately 50% of the time and scientific 

research coupled with 40% of the costs are associated with the preclinical discovery and 

development stages(6). Despite the development of newer models that aim to make clinical 

trials effective and cost-effective currently they still follow rigid protocols(7). Thus, the 

development of novel scientific and technological methods for all areas in the preclinical 

discovery and design phase is an important area of research. In this thesis I will present an 

enhanced protein modeling method that can accurately model protein structures and its 

applications to structure-based drug discovery problems: specifically elucidation and 

rationalization of the biological activities of compounds and improvement of virtual screening 

success rates. This chapter will first provide a literature review on the developments in the drug 

discovery process and a primer of computational drug discovery, specifically structure-based 

discovery. Subsequently one of the major problems of structure-based drug discovery i.e. 

modeling three-dimensional protein structures of proteins (homology modeling) will be 

discussed. Next, I will discuss Class-A G-Protein Coupled Receptors, an important class of 

therapeutic proteins with very few crystallized structures, and GPCR modeling methods. The 

next chapters will contain published work performed using the ligand-steered homology 

modeling method. 
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Experimental Drug Discovery Process and Methods:  

Serendipity played an important role in drug discovery during the early 20th century(8, 9). 

Insulin for diabetes, and penicillin an important antibiotic are some examples of serendipitously 

discovered drugs. This approach is impractical as it is unable to discover target-specific drugs 

and target-specific biological activity. With advances in chemistry (e.g. combinatorial 

chemistry)(10) and industrialization (e.g. robotics, hardware control and data processing 

software, sensitive detectors and automated liquid handling devices), pharmaceutical 

companies developed the high-throughput screening (HTS) platforms to experimentally and 

consistently test several thousands of compounds against specific target assays(11-14). HTS 

has four main stages a: assay development, b: compound library development and selection, c: 

screening technology and d: readouts and result analysis.  

High quality biological assays (e.g. cell-free or cell-based) are the primary requirement for 

generating robust and reproducible output off the screening exercise(15, 16). Historically HTS 

examined the effect of a single compound acting on a single target and at a single concentration 

to determine biological activity. Technical advancements in the last two decades, particularly 

miniaturization methods, have led to over four-fold improvement in number of assays / HTS 

plate (e.g. from 96 to 3456 wells / plate). Corresponding improvements in robotics and 

hardware increased screening rates, decreased usage of expensive reagents and made possible 

to obtain over 100,000 data points / day(1). Advanced screening methods e.g. fluorescence 

resonance energy transfer (FRET)(17), homogenous time-resolved fluorescence (HTRF)(18), 

biology-based high-content screening methods that permit multi-parameter readouts provide 

researchers with high-quality and reproducible data for biological targets under consideration. 

Improved data processing software have improved the ability to detect true actives, compare 
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diverse assay protocols and automate most of data analysis work. Unlike computational 

methods in HTS the protein / ligand flexibility is inherently considered and accuracy of 

experimental binding data is often better than computational scores.  

Corresponding developments in compound library creation and management e.g. combinatorial 

chemistry, a technology that systematically combines multiple chemical blocks to develop large 

and possibly diverse sets of compounds, now provide several millions of compounds for 

HTS(19). However in order to further improve screening success rates and avoid costs 

associated with screening random compounds, a combination of computational and empirical 

models have been developed to identify smaller compound libraries with wanted characteristics 

such as drug-like, lead like- target-focused and eliminate compounds with unwanted 

physiochemical / toxic properties(20). The underlying principle of focused libraries is that 

target specific compounds are restricted to finite chemical and pharmacological profiles. In 

addition focused libraries potentially reduce costs associated with synthesis, inventory 

management and screening without compromising on the chemical diversity of compounds 

presented for screening.  

HTS remains an important source of lead compounds and is the progenitor of over 100 

compounds currently under clinical trials(21, 22). Despite these improvements and historical 

results, the ratio of results to financial investments for HTS remains poor. Developing target-

based assays for all therapeutically relevant genes (e.g. ion channels) in high-throughput format 

is challenging and so is developing assays for over 25000 genes from the human genome 

project(23, 24). The nearly infinite chemical space (1060-10100) is impossible to cover and 

prohibitive costs associated with compound management result in a repetitive screening of 

finite and limited chemotype diversity compound libraries(25, 26). Considering the paucity of 
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new drugs entering the market, loss of revenues associated with patent expiration of 

blockbuster drugs (e.g. Lipitor® for high cholesterol, Effexor® for depression, Enbrel® for 

arthritis, and Topamax® for seizures), and failures associated with late-stage drug discovery 

(e.g. Avastan® for colon cancer, Vioxx® for osteoarthritis and Rolofylline® for heart 

conditions)(1), researchers are increasingly using complementary computational methods with 

the aim of improving the success rates, productivity and most importantly limiting costs 

associated with the complex drug discovery process. 

Computer-Aided Drug Discovery Process and Methods: 

Computer-aided (in silico) drug discovery consists of the development of computational 

methods based on established biophysical and chemistry knowledge and their application in the 

drug discovery process. Rapid advancement in cheaper, faster computational power and 

accessibility coupled with continual improvement in biophysical modeling algorithms are the 

primary reasons that in silico methods are now firmly established as complementary methods to 

experimental drug discovery(1). In silico methods are routinely applied to develop high-quality 

three dimensional protein models(27), identify hits using docking or virtual screening methods, 

optimize lead compounds, predict biological activities using compound-based modeling 

methods (e.g. Quantitative Structure Activity Relationship, QSAR methods)(28), predict 

Absorption Distribution Metabolizing Excretion and Toxicity (ADMET) profiles of 

compounds(29), manage and process in-house compound data, and design focused chemical 

libraries for experimental screening design(20). In silico methods primarily aim to rationalize, 

increase the efficiency, speed and cost-effectiveness of the drug discovery process. Some 

successful applications of in silico methods in drug discovery include identification of hits 

against variety of target families (e.g. G-Protein coupled receptors, protein kinase, nuclear 
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hormone receptors, and proteases)(30) elucidation structure-activity relationships of 

compounds(31, 32), and lead optimization(33-35).  In silico methods are classified as ligand or 

structure-based methods.  

Ligand-based in silico Methods:  

 

Figure 1: Ligand-based computational methods(1).  

The underlying principle for ligand-based in silico methods is that compounds with similar 

chemistry will have similar biological profiles(36, 37). These methods are chemistry aware, 

relatively easier to develop and aim to identify compounds based on a small set or even one 

single active compound. They are further classified into two or three-dimensional methods. 

Molecules are represented as graphs where nodes correspond to atoms and edges to bonds or in 

a linear notation such as SMILES. To identify similar compounds by in two dimensional space 
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graph theory methods e.g. subgraph isomerism may be used(38). Another efficient method is 

the fingerprint method where molecules are represented as a fixed-length vector of chemical 

substructure attributes. The similarity coefficient is calculated using metrics such as Jaccard 

coefficient, Euclidean or Manhattan distance etc.  

Jaccard Coefficient SAB = c / (a + b - c) 

Euclidean Distance DAB = [a + b - 2c]0.5 

Where a = number of bits on in molecule A, b = number of bits on in molecule B and c = 

number of bits on in both molecules. Fingerprint based methods are computationally efficient 

as compared to graph-based methods.  

Quantitative structure-activity relationship models aim to correlate compound structural 

features to its biological activity by a mathematical model. This relationship follows the general 

equation where v is the activity and p are molecular descriptors and f is the function.  

    v = f(p) + k 

A specific example is the original Hansch equation(39) that relates the biological activity of a 

compound to its electronic and hydrophobic characteristics. 

log(1/C) = k1logP – k2(logP)2 + k3σ + k4 

Where C is the concentration of the compound required to produce a standard response in a 

given time, logP is the logarithm of the partition coefficient of the compound between 1-

octanol and water, σ is the Hammett substituent parameter and k1-k4 are constants. 
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Three-dimensional methods such as pharmacophore-based approaches use a three-dimensional 

representation of a compound and relevant pharmacophoric features (required steric or 

electronic features for optimal protein:compound interaction and subsequent biological 

activity) to develop a computational model that specifies spatial relationships between the 

pharmacophoric features. Complementary features from the protein may also be incorporated in 

the model building process. However in case of pharmacophore models the conformational 

space of compounds must be determined and a biologically relevant conformation must be 

selected. All three approaches are illustrated in the figure 1. Ligand-based methods are easier to 

develop and implement, but fall short in the identification of novel compounds for drug 

discovery or rationalizing biomolecular interactions. The second type of computer-aided drug 

design i.e. structure-based drug design offers several methods to complement ligand-based 

computational methods.  

Structure-Based In Silico Methods:  

 

Figure 2: Percentage difference (2001 – 2008) in the annual citations of HTS (blue bars) and virtual 

screening (red bars) papers indexed in google scholar(1). 
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Structure-based drug design is a computational process in drug discovery that relies on the 

availability of three dimensional protein structures or models. Molecular docking or high 

throughput docking (HTD), the computational equivalent of high throughput screening, is one 

of the most important structure-based drug design method. Figure 2 represents the yearly 

change in number of citations of HTS (blue bars) and in silico or virtual screening (red bars) 

from 2001-2008 and shows the growth of HTD publications against HTS publications . Broadly 

this process consists of i) identifying potential binding sites where the small molecules may 

interact with the target; ii) virtual chemical library selection; iii) the docking process where 

compounds are positioned in the binding site and iv) scoring compounds that estimates the 

likelihood of binding to the target (scoring and ranking)(1). Figure 3 is a schematic for the 

high-throughput docking process. Molecular docking aims to prioritize a reduced set of 

compounds that have a higher probability of being active in subsequent experimental analysis. 

Molecular docking has been successfully applied in several drug discovery stages e.g. 

development of target-specific compound libraries, hit identification, and lead optimization. 

Docking applications(40) have been benefited by the continual development of docking 

algorithms(41), cheaper and faster computational resources and an increasing availability of 

high quality protein structures from Structural Genomics projects(42).  
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Figure 3: Schematic for a virtual screening / high-throughput docking protocol.  

However, molecular docking and in-turn structure-based drug design has two major problems.   

A: Three-dimensional crystal structures of many therapeutic proteins are currently 

unavailable(27).  

B: Receptor flexibility is poorly handled in docking algorithms(43). 

Need for Developing Protein Models. 

Three-dimensional structural information of biological macromolecules is available in the 

Protein Data Bank (http://www.pdb.org). As of January 2012, the PDB contained ~79000 

structures that can be grouped into ~3500 families consisting of over 1100 unique folds. In the 

past several years Structural Genomics projects have spurred the technical developments 
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associated with X-ray crystallography and NMR techniques(44-46) and have been fundamental 

in the growth of novel structures in the PDB (defined as <30% sequence identity). SG projects 

aim to solve at least one representative structure from protein families with no experimental 

crystal structures. Despite these developments the novelty of proteins deposited in the PDB 

(defined as <25% sequence identity between two structures) has remained constant since 

1992(47). Technical problems associated with structure elucidation e.g. protein purification; 

crystallization techniques limit the availability of protein structures. However the gap between 

the number of annotated protein sequences (~408000) and the available crystal structures i.e. 

~79000 including redundant proteins, is likely to remain in the near future.   

In the absence of experimental protein crystal structures of GPCRs and other therapeutic 

proteins, computational methods are used to develop three-dimensional protein models. 

Computationally modeled proteins may be considered reasonable substitutes until a 

corresponding protein structure is available. Protein models may provide structural and 

biochemical functional insights to biologists / experimentalists for various biomedical research 

problems. Several publicly available repositories e.g. The SWISS-MODEL 

(http://swissmodel.expasy.org/SWISS-MODEL), Protein Model Portal 

(http://proteinmodelportal.org) and Modbase (http://modbase.compbio.ucsf.edu) contain 

protein models generated using automated methods. However models developed by automated 

methods have limited accuracy and applicability for drug discovery projects. Thus the 

development of newer and more accurate protein modeling methods is an important problem 

and an area of active research in the drug discovery domain.  
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De novo Protein Modeling Methods. 

Protein modeling can be broadly divided into two categories, template free modeling and 

template-based modeling. In the former de novo methods using knowledge and/or physics 

based potentials are used to build protein models. Some examples include Rosetta, that uses 

knowledge-based potentials to build crude models and all-atom physics based methods to refine 

the crude models. Threading assembling and refinement (TASSER) by Wu et al. uses 

knowledge-based approaches for the entire modeling process(48).  De novo methods are 

independent of any pre-existing templates thus in principle can model novel folds of protein 

structures. Presently these methods have limited applicability in the drug discovery process as 

they can either reasonably model smaller proteins (~150 AA) or the models have poor 

resolution (> 2Å) to be useful(49).   

Homology based Protein Modeling Method: 

 

Figure 4: Outline of the homology modeling process(27).  
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An outline of the homology modeling method is depicted in Figure 4. The fundamental 

principle of homology modeling is that similar proteins will share similar three-dimensional 

structures. Homology modeling consists of four steps a: identification of a homologous (same 

family) protein preferably with a high-resolution protein crystal structure. This protein structure 

serves as the template, b: Sequence alignment stage: sequence alignment is primarily a bio 

informatics based method in which two or more protein sequences are rearranged such that 

similar motifs (regions) / protein residues are aligned in a columnar representation. Sequence 

alignment is particularly important as it serves as the input and basis of homology model 

building process. The degree of homology and quality of alignment often play an important 

role in the quality of the model structure. Generally, if the sequence identity between 

tempate:target exceeds 50% highest quality models are generated and if it is less than 25% such 

models are speculative at best(50). Next, the three-dimensional Cartesian coordinates of the 

template are transferred to the corresponding residues of the target sequence obtained from the 

sequence alignment stage. Then subject to restraints satisfaction a crude model is developed. 

Spatial restraints expressed as probability density functions (pdf) as used in the package 

MODELLER (used extensively to develop preliminary homology models in this thesis) were 

developed from extensive statistical analysis of protein families that quantify relationships 

between Cα-Cα distances between backbone residues and corresponding main chain dihedral 

angles(51). The probabilities are calculated from the range of distances and angles of a 

particular residue type, conformation and sequence similarities between proteins present in the 

protein families training set. The function itself is represented as p(Χ1 | a,b, ..,c) which can be 

used to predict Χ1  the side-chain dihedral angle from the variables residue_type, phi, and psi 

angles. The complete details are available from the original paper by Sali et al(51). Thus, better 
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the crystal structure quality and resolution, larger numbers of spatial features are specified for 

restraint determination. These individual spatial features are assumed to be independent and 

combined into a molecular pdf that is the product of all the feature pdf’s given by the equation: 

   P = Πi pF(fi).  

Crude models are built to maximize the molecular pdf given the sequence alignment between 

the target and template proteins. The crude model is then iteratively optimized to a low energy 

state to refine the positions of all heavy (non-hydrogen) atoms. Energy minimization using 

conjugate gradient method is used to refine the crude models(51). Finally, the models are 

assessed using the discrete optimized protein energy method(52). DOPE is a statistical potential 

empirically derived using observed residue-residue contact frequencies among proteins with 

known structures. They assign a probability or energy score to each possible pairwise 

interaction between protein amino acids and combine them into a single score for a given 

model. Typically, several models are built and ranked before selection for advanced refinement 

procedures or direct applications (provided very high-sequence identities between the template 

and the target proteins).  

Homology modeling has been successfully applied in various stages of the drug discovery 

process. Examples include, the application to elucidate biological function of BC0371 an 

enolase family member(53), M antigen homology model for function prediction in 

histoplamosis(54), RDH12 gene for Leber congenital amaurosis(55), and to elucidate Nod-like 

receptors role in immune response(56). Homology models have been applied to discover novel 

leads for MCHR-1 receptors for anti-obesity(57), alpha-glucosidase for diabetes(58), Cdc25 

phosphatase for anti-cancer therapeutics(59), CK1-delta for Alzheimer’s(60) amongst other. In 
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some other examples, homology models have been developed to investigate the role of certain 

residues in the biological function of the protein via mutagenesis experiments(61, 62). Models 

of Adenosine 2A(63), Alpha-1-A adrenoreceptor(64), Adenosine 3 receptor(65) were 

developed to elucidate and investigate compound:protein interactions and the models for Src 

kinase(66), PKC theta(67) and GPR109A(68) were developed to optimize lead compounds 

obtained from experimental screening exercises.   

Protein Target Application Ref. 

BC0371 (member of the 
enolase superfamily) 

 Study of protein function  53 

M Antigen Study of protein function 54 

RDH12 Assess the biological role of mutations in the binding 
site and their effect on in the function ofRDH12.  

55 

Nod-Like Receptors Understand the protein mechanism implicated in the 
immune response. 

56 

MCH-R1 Structure-based lead discovery for anti-obesity drugs. 25 

Cannabinoid Receptor 2, 
Human Adenosine A2A 
Receptor, Alpha-1-A-

adrenoreceptor, 
Adenosine 3 receptor 

Binding mode prediction and elucidation of 
ligand:protein interactions  

 

101,102,
63,64,65 

 

Peptide CGP38560 in 
complex with renin, Src 

Kinase, PKC theta, 
GPR109A 

Lead or compound optimization  

66,67,68 

Cdc25 phosphatases Structure-based virtual screening for anti-cancer lead  
discovery 

59 

CK1δ Structure-based virtual screening to identify inhibitors 
for Alzheimer’s disease 

60 

Table 1: Examples of applications of homology modeling in the drug discovery process. 
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Homology models by definition are an abstraction and hence are likely to contain errors. 

Generally models built with over 50% sequence identity are reasonably accurate and applicable 

for drug discovery applications. However high overall sequence identity may mask 

dissimilarities in crucial flexible loop regions (e.g. enzymes) and adversely affect model quality 

and applicability. Likewise errors from template-sequence alignments affect model quality. 

Overall each step of the modeling process, template identification, alignments and final 

refinement methods contribute to the errors in the final model. Depending on the degree of 

sequence identity and the quality of alignment their accuracy as compared to the crystal 

structure can be up to ~2Å Cα atom RMSD(69, 70). Errors of this magnitude, particularly in 

the binding site, can result in wrong side chain orientations thus misrepresenting 

receptor:ligand complementarity. This can potentially negate the applicability of the model in a 

drug discovery project. Thus it is important to develop and apply methods that incorporate 

receptor flexibility in the modeling process to generate accurate side-chain orientations to 

improve quality of protein models.  

Protein Flexibility. 

Here, I will introduce the second major challenge for structure-based drug discovery: the 

inadequate incorporation of protein flexibility.  

Proteins are flexible biomolecules. They retain a well-defined overall fold but are present in 

multiple low-energy conformations on a rugged energy landscape. These low energy states 

represent local energy minima and are separated by barriers surmountable by thermal 

activation. Their flexibility is likely to be related to the binding of a ligand. Holo / complexed 

proteins may exhibit structural disorder e.g. change in protein side-chain, conformational 
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changes in the ligand associated with binding, or a combination of protein backbone, side chain 

and ligand conformational change upon binding. Two phenomena are associated with these 

changes. A: Kinetic Regulation: Here, the energy barrier between two conformational states is 

transcended during the process of binding and B: Thermodynamic regulation: Free energy of 

the other protein conformation is lowered prior to binding and the ligand chooses the new low 

energy state(71). Unlike experimental HTS where protein flexibility is inherently incorporated, 

modeling protein flexibility remains a challenging and important problem in SBDD(1). The 

shortcomings of a rigid receptor approach in virtual screening / docking studies are well 

documented(72). However unlike ligands which have a tractable 6-12 degrees of freedom to 

model flexibility, modeling protein flexibility is a high-dimensional problem. A simple 

representation of only the protein binding site with < 20 side chain residues results in multiple 

dozens of torsion angles. Including backbone atoms of residues and the potential multiple 

changes associated with a flexible backbone can result in order of magnitude higher degrees of 

freedom. Compounding the problem is the energy-based receptor conformation selection as 

these functions are approximate and can result in incorrect conformation selection(73). Thus it 

is essential to have computationally tractable and time effective modeling methods to 

reasonably estimate protein or at least binding site flexibility of proteins for applications in 

structure-based drug discovery. 

Next, I will explain in brief some methods used to model protein flexibility with an emphasis 

on docking / virtual screening applications as these are the focus of my thesis. The assumption 

is that multiple receptor or ensemble based docking approaches offers a practical way to 

incorporate receptor flexibility in SBDD.  
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Soft-docking Approach: A larger tolerance for protein side chain and ligand atom clashes is the 

basis for soft scoring functions in docking(74, 75). This is an efficient method that uses a rigid 

receptor with variations only in the scoring function. However this approach does not account 

for backbone movements, structural rearrangement or larger side chain movement.  

Rotamer exploration: Rotamers are side-chain conformations generated by systematic 

conformational searches. Rotamer libraries are generated by altering each rotatable bond by a 

range of bond type specific dihedral angles and subsequent scoring to produce diverse 

conformations(76-78). These pre-determined rotamer libraries can mimic receptor side chain 

flexibility; however they are inadequate to simulate ligand-dependent changes in a receptor.  

Molecular Dynamics: MD methods are considered to be the most rigorous methods for 

generating receptor conformations. Using Newton’s second law of motion, a time dependent 

trajectory of differential atom positions of the receptor is generated. Depending on time scales, 

side chain variations or even small structural changes can be observed. However this method is 

computationally intensive and often unrealistically short time scales miss larger structural 

changes associated with proteins. Nevertheless this physics-based method has proved 

successful in applications such as exploring receptor flexibility before docking; simulating 

induced fit effects and refinement of docked structures for binding energy calculations(79-82).  

Normal mode analysis: NMA is a computationally tractable method to identify flexible regions 

in the protein. The frequency of normal modes together with the displacement of individual 

atoms is determined by the Eigen vectors of the Hessian matrix of the potential energy. Use of 

low frequency normal modes or normal modes associated with protein pockets has led to 
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reasonably accurate representations of protein flexibility and promising results in structure-

based drug discovery(83-85).  

Monte Carlo Sampling Methods: Monte Carlo simulations generate multiple conformations of 

a molecular system by randomly sampling positional changes of the constituents of the system. 

E.g. consider an atom represented in Cartesian coordinates x, y and z. A random number 

generator produces a random number ξ in the range 0-1. δ is the displacement and δrmax is the 

maximum displacement. Then from Leach(86).  

  Xnew = xold + (2ξ -1)δrmax 

  Ynew = yold + (2ξ -1)δrmax 

  Znew = zold + (2ξ -1)δrmax 

The energy of the new conformation is calculated. If the new energy is lower than the prior 

energy, this state is retained for the next iteration. If the new energy is higher than the prior 

then the Boltzmann factor, exp(- Δѵ (rN) / kBT), is compared to a random number between 0-1. 

If the Boltzmann factor is greater than the random number, the conformation is accepted and 

retained for next iteration. This can be represented as   

rand(0,1) <= exp(- Δѵ (rN) / kBT). 

In case of molecules their orientations and their positions need to be varied in a Monte Carlo 

simulation. Translations are handled by varying the center of mass of a molecule. For rotations, 

the molecule is rotated by a randomly chosen angle δw limited by the maximum variation 

δwmax.  
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However Monte Carlo simulations are difficult to perform successfully for flexible molecules. 

Small displacements in one region may result in large increase in another region accompanied 

by an unfavorable energy increase. This is likely in case of proteins, where changes introduced 

in the backbone regions may cause large movements down the chain / secondary structure. In 

these cases the hard degrees of freedom e.g. bond lengths and bond angles, particularly 

backbone atoms are held fixed.  

Monte Carlo simulations can be performed at exact temperatures and pressure unlike MD 

methods. The intrinsic nature to make non-physical moves may permit Monte Carlo methods to 

explore a larger phase space for biomolecules. This is unlike MD based methods that may find 

the high energy barriers present between two low energy conformational states of a given 

biomolecule difficult to transcend. Monte Carlo methods have been applied for a variety of 

cases in drug discovery applications and offer specific advantages for modeling G-Protein 

Coupled Receptors.  
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Chapter 2: Survey of GPCR Modeling Methods. 

Class A-G Protein Coupled Receptors. 

Class A G-Protein Coupled receptors (GPCRs) are an important class of membrane proteins for 

drug discovery.  There are ~1000 GPCRs that mediate nearly 80% of signal transduction 

processes across cellular boundaries(87, 88). GPCRs interact with diverse chemotype ligands to 

modulate downstream effectors (e.g. enzymes)(89) and subsequent physiological functions 

(e.g. cardiovascular, nervous, endocrine, and immune)(90).  It is estimated that roughly ~50% 

of currently available drugs target this class of proteins(91). However, this number is 

misleading as drug discovery programs target only ~3% known GPCR family members(92).  

Historically, these proteins were not amenable for crystallography methods due to isolation 

problems, their membrane-bound nature, and other technological problems(93). Recent 

advances in membrane-bound protein crystallization methods have resulted in the availability 

of several Class A GPCR crystal structures (e.g. β2 / β1 adrenergic(94, 95), Adenosine 2A(96), 

opsin(97), CXCR4 Chemokine(98), Dopamine 3(99), and Histamine 1 receptors(100)). 

However, crystal structures of over 90% of Class A-GPCRs remain unsolved. The availability 

of these recently solved crystal structures served as the motivation for the first part of this thesis 

i.e. enhancement, validation and benchmarking of the ligand-steered modeling method in Class 

A-GPCRs. The second part of this thesis is devoted to the development of high-quality 

homology models of Cannabinoid Receptor 2 (CB2), an important Class A-GPCR for non-

psychotic pain management therapeutic use(101, 102). These models were developed to mimic 

two biological states of CB2 receptors (inactive and active) and applied to rationalize the 

activities of two novel series of CB2-specific compounds.  
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Figure 5: General 3-D visualization of β2 adrenergic (pdb code: 2 rh1) receptor. Figure was prepared 

using Pymol (www.pymol.org). 

Class A-GPCRs are a special case of homology modeling as they possess low sequence 

identities (~20%). However this drawback is compensated by the conserved 7 transmembrane 

(TM) structural characteristic share by all Class A-GPCRs (Figure 5). Each of these 7 

transmembrane’s share specific structural signatures that can be exploited for model building as 

demonstrated by Ballesteros and Weinstein.  These include, the conserved Asn in TM1, 

LeuAlaXAlaAspLeu motif in TM2, AspArgTyr motif in TM3, Pro in TMs 4 and 5, 

CysTrpXPro in TM6 and AsnProXXTyr motif in TM7(103, 104). The most conserved residue 

is denoted as number X.50 (X denotes the TM number). Other residues in each membrane are 

serially numbered in increasing or decreasing order depending on the direction of the 
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membrane. In addition, the conserved disulfide bond present between two conserved Cysteine 

residues in the extracellular loop 2 is maintained for the model building process. GPCR 

sequences are aligned devoid of any gaps in the transmembrane regions. Sequence alignment of 

all GPCR models mentioned in this work is performed using this approach.  

GPCR Specific Homology Modeling Methods. 

GPCR modeling is an actively researched area. Highlighted below are some examples that have 

included receptor flexibility in the GPCR modeling process. 

Klebe and colleagues developed the MOBILE (modeling binding sites using ligand information 

explicitly) approach using the neurokinin-1 (NK1) class A GPCR, that incorporated ligand-

protein restraints obtained from docking methods to produce optimal geometries of the NK1 

binding sites(105, 106). Sequences of NK1 and bRho were aligned and 100 crude homology 

models were generated using MODELLER. For each of the 100 models, backbone coordinates 

are kept similar to the template structure, but side chains conformational space is exhaustively 

sampled to explore the variability of residues that do not match in the alignment phase. To 

optimize the binding site specifically for the known antagonist CP-96345, its bioactive 

conformation was used in a rigid-docking based protocol on all the 100 initial models. Post 

visual inspection, protein:ligand data from 4 models that reproduced known experimental data 

was used as restraints in the subsequent refinement stage. Using the newly derived restraints, 

400 homology models were regenerated, scored (DrugScore) based on the observed 

interactions with CP-96435 and the best individual solutions were assembled to generate a final 

model. This approach was successfully applied to discover novel inhibitors for NK1.  
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In another approach termed ligand-based modeling, Moro et al. developed a protocol to account 

for protein reorganization in Class A GPCRs(65). Here known ligands are docked to the crude 

model of the adenosine receptor to generate an ensemble of ligand poses. An approximate 

receptor definition was used i.e. the van der Waals radii of each atom was scaled down by 25% 

and an increased Coulomb-van der Waals cutoff was used to mimic receptor flexibility / 

alternate side chain positions with reduced computational overhead. The spatial information 

obtained from the ligand poses are subsequently used to generate alternate conformations of 

binding site residues using an approach based on rotamer exploration. Top scoring complexes 

are identified and are subjected to local energy minimization of the ligand and side chains. This 

method modeled significant steric changes within the binding pocket and explained the 

activities of diverse chemotype inhibitors of human Adenosine 3 receptor.  

In contrast to the semi-automatic approaches explained above researchers have used validated 

experimental protein:ligand information to manually optimize side-chain orientations. 

Radestock et al. manually optimized the side chains in the metabotropic glutamate receptor 

subtype 5 (mGluR5) to mimic experimental binding information(107). Costanzi S. altered the 

side chain conformation of Phe290 from trans to gauche+ state in the Beta 2 adrenergic 

receptor model and obtained near-native poses for the inverse agonist Carazolol(108). 

However, manual optimization approaches are tedious and generally impractical.  

Kimura et al. modeled and optimized the binding region of chemokine receptor-2 by using 

pressure-based steered molecular dynamics(109). Multiple small-radii Lennard-Jones particles 

were placed on the grid and tethered to four nearest atoms of the receptor via weak harmonic 

bonds. The backbone protein dihedral angles on the 7-transmembrane region are restrained to 

maintain the structural integrity of the model. The system is subjected to molecular dynamics 
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simulations wherein the radii of the Lennard-Jones particles are gradually increased to 

reproduce increased pressure. Models were validated by their ability to redock three known 

CCR2 antagonists and reproduce known binding information. This method does not use any 

ligand information, is potentially widely applicable but may result in higher false positives, as 

the binding regions are potentially unspecific.  

The ligand-steered homology modeling method developed by Cavasotto et al. used known 

ligands of the melanin concentrating hormone receptor 1 (MCHR1) to reshape and optimize the 

MCHR1 binding pocket by incorporating full receptor and ligand flexibility stochastic docking 

protocol in the internal coordinate space(57). Unlike other methods, the models of MCHR1 

were validated by their ability to discriminate native ligands in a small-scale high-throughput 

docking protocol. MCHR1 models developed using the LSHM methods were successfully 

applied in the discovery to novel chemistry anti-obesity inhibitors. In addition and further 

corroborating the premise of structure-based screening, the performance of the high-throughput 

docking was 10 fold better than the traditional HTS on the same target. This promising method 

was developed before the explosion the GPCR structure availability. Thus, the developer 

assessed the model quality via HTD simulations and the ability of the model to discover 

inhibitors in an actual drug discovery project. With the availability of high-resolution GPCR 

crystal structures, the first part of this work aims to enhance, benchmark and validate the 

modeling protocol using three GPCR structures (bovine rhodopsin, human β2 adrenergic and 

human adenosine 2A) and established structure-based drug discovery protocols and metrics.  
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Chapter 3: Benchmarking the Ligand-Steered Modeling Method. 

Motivation. The original ligand-steered modeling method was developed at a time when only 

one crystal structure of GPCR was available for modeling. Thus, it was impossible to 

investigate the quality of the generated models based on the established structure-based drug 

design metrics e.g. the ability to reproduce crystallographic pose of co-crystallized ligands. 

With the availability of multiple high-quality crystal structures (as of 2009) of Class A G-

Protein Coupled Receptors, it is now possible to cross-model these structures using other 

available structures. The goal of this project was to develop high-quality homology models of 

GPCRs using one crystal structure and by incorporating biomolecular flexibility in the 

modeling process. In addition, the applicability of these developed models in simulated real-

case scenario HTD process was assessed. To summarize, this part aims to enhance the ligand-

steered modeling method and answer the following questions related to the modeling process: 

A: Is the ligand-steered method capable to generate near-native models of known GPCR crystal 

structures by using one template and incorporating protein flexibility? 

Near-native models have low root mean square deviation between the modeled binding site and 

the modeled cocrystallized ligand when compared to the original crystal structure. 

B: Can the ligand-steered models deliver similar or better performances in HTD studies as 

compared to the crystal structure and unrefined / crude homology model?  

Comparable performances against crystal structures will support the application of optimized 

ligand-steered models in actual drug discovery process in the absence of crystal structures. 

Better performances than crude homology models will underline the importance of refining and 

incorporating receptor flexibility for Class A G-Protein Coupled Receptors. 
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C: Is there a correlation between the best models in terms of cocrystallized ligand rmsd and top 

models from the HTD experiment? 

The hypothesis is that models with low ligand and binding site rmsd will have a superior 

performance in HTD studies. 

D: Can optimized ligand-steered model discriminate receptor specific ligands from a set of 

decoy compounds?  

Compound selectivity is an important criterion in the drug discovery process. Highly selective 

homology models will be able to reduce the percentage of false positive compounds in virtual 

screening studies.  

Here, two class A GPCRs i.e. human β2 adrenergic (β2) and human adenosine 2A (A2A) 

receptor were cross-modeled in four case scenarios. The cases studied were bRho ->β2, A2A-

>β2, bRho -> A2A and β2->A2A are represented in Table 2. 

 Target Template (pdb code) 

Case 1 β2 bRho (1gzm) 

Case 2 β2 A2A (3eml) 

Case 3 A2A bRho (1gzm)  

Case 4 A2A β2 (2rh1) 

 

Table 2: 4 Cases for the ligand-steered modeling and benchmarking studies.  

Model qualities were assessed using native ligand and binding site rmsd. For each case, the top 

ranking models were used in a HTD experiment. The performance of these models was 

measured by their ability to discern receptor specific ligands at 2% (EF2%) of the screened 
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database and compared against the performance of the corresponding crystal and unrefined 

receptor structures. For selectivity studies, the ligands of each receptor were merged together 

with the decoy compound library. Selectivity was measured at 5% of the database screening 

size.  

Ligand-steered Modeling Method. 

The LSHM method is outlined in Figure 6.  

 

Figure 6: Flowchart of the ligand-steered modeling method.  

Crude models of both the targets are developed using template crystal structures indicated in 

Table 2 as described before in the GPCR homology modeling section. Disulfide bonds in the 

extracellular loop 2 in included in the crude model building stage. For each case, 

Modeler9v6(51) was used to generate the crude model and residues in the TM region were 
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numbered per the Ballesteros and Weinstein numbering scheme described earlier. The crude 

model is subjected to a restrained local energy minimization to relieve structural strain and 

prevent the collapse of the 7TM region. Cocrystallized ligand from each target case is seeded 

within the general binding pocket of Class A GPCRs that is surrounded by TMs 3,4,5,6 and 7. 

Experimentally validated protein:ligand interactions (Carazolol’s charged amine and D3.32 for 

cases 1 and 2, and the excocylic N15 atom of ZM241385 and the side chain carbonyl atom of 

N6.65 in Cases 3 and 4) were represented in the form of quadratic distance restraints. Next, an 

ensemble(110) of 1000 structures was generated by randomizing the three positional and 3 

rotational coordinates of the seeded ligand, followed by a multistep energy minimization where 

the van der Waals interaction is gradually turned from soft to full(57, 111). The entire system is 

described using the ECEPP/3 force field(112),charges for the ligand were obtained from the 

MMFF force field(113) and represented in ICM(114)The complexes are ranked using a crude 

binding energy calculation that included the van der Waals, electrostatic, hydrogen bonding and 

torsional energy terms. The solvation energy in the exposed binding site is accounted by atomic 

solvation parameters(115).Complexes in the top 10kcal window are clustered and variable 

number of cluster centers / case are subjected to a full flexible ligand: flexible receptor docking 

based on a Monte Carlo-based global energy minimization(116) as implemented in the ICM 

software platform(117-120). The minimization is performed in the torsional space. The binding 

site residues within 6Å of the ligand position are held flexible with the exception of their 

backbone. The six rigid coordinates and dihedral angles of the ligand are set free. Similar to 

stage 1, the complexes are scored and clustered. The two sets of cluster centers are thoroughly 

investigated for their ability to maintain crucial experimental mutagenesis data, to eliminate 

clearly wrong models (ligands moving away from the known pocket) and selected for the HTD 
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stage. In the case of drug discovery, only a small-set of models showing superior performance 

in HTD based validation may be used for actual compound screening exercises.  

Clustering protocol. 

The number of clusters was calculated using the data mining toolkit Rattle within the statistical 

package R (http://www.r-project.org). The binding energies of complexes in the top 10 kcal 

window were used as the input. The data set is partitioned into training and test sets, iterated 

through multiple clusters and calculates the within-cluster of sum squares. The number of 

clusters was chosen based on the plot where the minimum WCSS was observed. Using K-

means clustering and the number of clusters, the complexes were clustered within ICM(114). 

Each cluster center was chosen as the complex for subsequent calculations as described in the 

LSHM flowchart. 
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Results and Discussion: 

The overall results for the top 5 models of the ligand-steered cross modeling protocol are 

tabulated in table 3.  

Model 
Case 1 

bRho → β2 

Case 2 

A2A → β2 

Case 3 

bRho → A2A 

Case 4 

β2 → A2A  

 Liganda Binding 
siteb Liganda Binding 

siteb Liganda, c Binding 
siteb Liganda, c Binding 

siteb 

1 1.3 2.2 1.4 2.1 5.9 / 4.0 2.8 3.0 / 2.9 2.8 

2 1.4 2.2 1.3 2.5 6.0 / 4.6  1.7 2.9 / 2.8 2.8 

3 1.6 2.3 3.1 2.4 8.7 / 5.6  3.3 4.7 / 4.2 2.9 

4 3.2 2.2 1.0 1.9 3.1 / 3.0 2.9 2.9 / 2.9 2.8 

5 2.1 2.0 0.9 2.4 3.7 / 3.4 2.7 7.2 / 5.4 3.3 

 

Table 3: a Heavy atom rmsd (Å) between the ligand-steered modeled and native cocrystallized ligand 

(carazolol for β2 and ZM241385 for A2A). b Binding site rmsd (Å) between the ligand-steered models 

and the corresponding crystallographic structures (pdb codes 2rh1 for β2 and 3eml for A2A). c first value 

corresponds to the complete (heavy atoms) of ZM241385 and the second value ignores the high B-

factor phenoxy moiety of ZM241385. d ECL2 was not considered in this calculation. 

Case-wise modeling and results for question A: Is the ligand-steered method capable to 

generate near-native models of known GPCR crystal structures by using one template and 

incorporating protein flexibility 
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Case 1 Modeling Results. 

For case 1, the structure of β2 adrenergic receptor was developed using the bRho crystal 

structure as the template. The experimentally determined disulfide bond between C3.25 and 

Cys191 in the extracellular loop two and TM3 was retained in the modeling process. As the 

aim was to optimize the binding pocket of β2, its native co-crystallized ligand carazolol, was 

used for the ligand-steered optimization method. A distance restraint between the charged 

amine group of carazolol and D3.32 was used in the modeling process(121). 265 models from 

step 1 and another 314 models from the second stage were clustered to shortlist the final 5 

models. For this and case 2, the final models were selected based on the following criteria 

A: interaction between charged amine of carazolol and D3.32. 

B: the overall location of the ligand 

should be between TMs 3,5,6 and 7. 

Figure 7: Top ranked ligand-steered 

model of β2 using bRho as the template, 

superimposed with the β2 adrenergic 

crystal structure (pdb code 2rh1). Color 

code: green TMs and carbon atoms, 

ligand-steered model; magenta carbon 

atoms, modeled carazolol structure; 

white TMs and carbon atoms, crystal 

structure of β2 ; white carbon atoms, cocrystallized carazolol. Figure prepared using Pymol 

(www.pymol.org). 
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In four of the 5 models, the ligand-steered modeling method was able to identify near-native 

ligand poses (defined as rmsd < 2.5Å). The best model possessed an extremely accurate (1.3Å) 

rmsd of carazolol. All 5 models also possessed reasonable binding site residue accuracies and 

this performance was similar to other publicly available data(108, 122, 123). Accurate 

modeling of binding site residues is important for optimal performance in docking studies.  

Figure 7 represents the molecular representation for the best model of Case 1. The carbazol 

moiety is oriented towards the serines (5.42, 5.43 and 5.46) in TM5. The hydrogen-bond 

interaction between carazolol’s charged amine and the negatively charged carboxylate group of 

D3.32 is maintained in all 5 models. The ligand-steered method was able to model the correct 

orientation of the chi1 side chain of F6.52 that is essential for optimal ligand pose. However, 

these models were not selected in the top five due to our choice of minimal manual 

intervention, ligand interaction energy miscalculations due to choice of force fields and /or the 

clustering method.  

Comparison to other studies: We compared our results with modeling studies that used only 

one crystal structure for β2 modeling. Mobarec et al. obtained a near native rmsd of 2.55Å for 

carazolol(123). Costanzi developed a β2 model with a very low ligand rmsd of 1.7Å but he 

used manual optimization of the F6.52 residue to improve pose prediction(108).  
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Case 2 Modeling Results. 

Case 2: In this case, the β2 model was developed using human Adenosine 2A receptor. 

Disulfide bonds and the charged amine:D3.32 interaction was maintained in the modeling 

process. A total of 18 ligand-steered models were developed.  

 

 

Figure 8: Top ranked ligand-steered model of β2 (Green TMs and carbon atoms, modeled carazolol in 

magenta) using A2A crystal structure as a template superimposed with the β2 adrenergic crystal 

structure (White TMs and carbon atoms including carazolol) and the crude homology model (Yellow 

TMs and carbon atoms).  

The importance of the flexible ligand: flexible receptor Monte Carlo based modeling process is 

highlighted by the significant improvement in the optimized models as compared to the crude 
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models. From Figure 8 it is evident that a near native pose of carazolol in the crude model 

would be impossible to achieve due to the steric clashes caused by residues Y5.38, S5.42 and 

F193 from the extracellular loop 2 of β2. The incorrect orientation of the residues reduces the 

binding site volume. The LSHM optimized the orientation of these side chains, modeled the 

correct gauche+ orientation of F6.52 and F193 in the ECL2. The method increased the binding 

site volume encompassed by TMs 3,5,6 and 7. As a result highly accurate β2 models (native 

ligand rmds < 1.0Å) were developed. However, similar to other reported literature the top 

models failed to identify a correct orientation of W3.28 and Y5.38(108). The reason for the 

incorrect orientation of Y5.38 is the bulge in the corresponding A2A template that is inherently 

difficult to model due to limitation of the homology modeling process.  

Case 3 Modeling Results. 

Case 3. In this case, the tertiary structure of human A2A was modeled using bRho.  

This and case 4 are different as the rigid co-crystallized ligand of A2A, ZM241385, could not 

be accommodated perpendicular to the TMs of the models. First, a potential binding site 

located near and parallel to TMs 6 and 7 was identified in the crude model using the pocket 

finder algorithm implemented in the ICM platform(114). The overall geometry of the binding 

site supports the hypothesis of a parallel orientation of the ligand. To avoid any bias in the 

modeling process ZM241385 was seeded in two opposite orientations with the high B factor 

methoxy group facing the extracellular and intracellular regions of the TMs. The documented 

hydrogen bond interaction between the exocylic N15 atom of ZM241385 and the side chain 

carbonyl atom of N6.55 was used as a distance restraint(124). The ECL2 was modeled de novo 

with only the disulfide bond restraint (C3.25 and Cys166) to accommodate the size of 
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ZM241385. Twice (2000) as many initial conformations were generated to accommodate for 

the two starting positions for ZM241385. Post the two modeling stages, 13 ligand steered 

models were generated. Analogous to Case 1 here the hydrogen bond interaction that was used 

as the restraint and using experimental information that strongly suggested interactions with 

residues in TMs 6 and 7, 5 models were selected and ranked based on their calculated binding 

energies.  

The high Bfactor methoxy group was ignored in all ligand rmsd calculations as described in the 

recent A2A structure prediction studies published by in Nature(125). Two of the top 5 LSHM 

had ligand rmds of 3.1 and 3.7Å respectively. The best model by energy was slightly worse 

with 4Å rmsd of the native pose. In all 

cases the orientation of ZM241385 was 

correct with the methoxy group directed 

towards the extracellular region of the 

TMs. All 5 LSHM models returned a 

fairly reasonable binding site RMSD of 

4Å.  

 

 

Figure 9: Case 3 modeling study results. Ligand-steered model of A2A (green TMs and carbon atoms 

with ZM241385 represented in magenta carbon atoms) is superimposed with the A2A crystal structure 

(white TMs and carbon atoms including the native pose of ZM241385). 
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The results of Case 3 (Figure 9) in general are slightly worse than the first two cases. Upon 

further investigation it is evident that bRho is not a suitable template for A2A modeling. It 

lacks the characteristics of A2A i.e. rotation of TM5, variability in the ECL3 which plays an 

important role in the positioning of ZM241385 and the signature orientation of H264 in 

ECL3(125). Here, the ECL2 of bRho is probably ill-suited to model GPCRs with larger native 

ligands. This modeling protocol was not developed to model the ECL2, thus most of the 

models have incorrect tertiary structure for that region of the GPCR.  

Case 4 Modeling Results. 

Case 4: In this final case A2A was modeled using β2 as the template structure. Gaps in the TMs 

were avoided by introducing them in the ECL2 instead. As in case 3 the disulfide bond in 

ECL2 was maintained but unlike case 3, the ECL2 structure of β2 was used to build the ECL2.  

Similar to case 3, ZM241385 was oriented quasiparallel to the TMs 3,5,6 and 7 during the 

modeling stage. 16 LSHM were obtained and the top 5 were identified based on the strict visual 

inspection criteria outlined in Case 3 and binding energies.  

The best two models produced near-native ligand poses (2.9 and 2.8Å) of the co-crystallized 

ligand. The distance between the side chain carbonyl atom of N6.55 and the exocyclic atom 

N15 of the ligand was found to be 3.7Å, comparable to other published literature and the 

crystal structure(124, 125). Similar to the crystal structure the top LSHM reproduced the 

aromatic stacking interactions between F193 and the bicyclic triazolotriazine core of the ligand 

structure. All models reproduced the quasiparallel orientation of the ligand when compared 

with the TMs. However, similar to other published literature the modeling protocol failed to 

identify the extended bulge of TM5 and the inward orientation of M5.38 as observed in the 
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crystal structure. GPCRs in general have unique structural characteristics that may not be 

reproducible by modeling protocols.  

 

Figure 10: Case 4 modeling study results. Ligand-steered model of A2A (green TMs and carbon atoms 

with ZM241385 represented in magenta carbon atoms) is superimposed with the A2A crystal structure 

(white TMs and carbon atoms including the native pose of ZM241385). 

Performance of the Ligand-steered Models in the High Throughput Docking 

Experiments.  

Homology models have been successfully applied to discover novel inhibitors of various 

therapeutic targets via virtual screening studies(27, 49). The goal of any virtual screening 

process is identifying a higher percentage of true positives. The hypothesis is that optimizing 

the binding pocket will improve the performance of the ligand-steered models as compared to 

the crude models and be similar to the crystal structure. Thus, in order to assess the quality of 

 38 



the ligand-steered models their performance in a small-scale high throughput docking was 

compared against the respective crude homology model and the crystal structure.  

 

Compound Library Preparation for HTD and Selectivity Studies. 

29 β2 antagonists and 51 A2A antagonists were assembled for the HTD and selectivity studies. 

~3450 decoy compounds compatible with charged properties (+1 for β2 and 0 for A2A) were 

assembled from the publicly available ZINC database(126). The physiochemical properties for 

both sets of libraries are tabulated in table 4. All compounds were prepared  for HTD using the 

LigPrep module of the Schrodinger software suite. Preparation includes generating protonation 

states and tautomers at pH 7.0.  

Physiochemical 

Properties 

Beta 2 compounds Beta 2 decoy 

library 

A2A 

Compounds 

A2A decoy 

library 

Molecular Weight 318 ± 63 312 ± 27 300 ± 52 303 ± 32 

Rotatable Bonds 7.5 ± 2.1 5.1 ± 1.8 4.0 ± 1.9 4.5 ± 1.7 

Log P 2.4 ± 1.2 2.4 ± 1.2 1.5 ± 1.2 1.7 ± 0.6 

Hydrogen-bond 

Acceptors 

3.2 ± 1.1 2.7 ± 1.2 4.3 ± 1.2 3.9 ± 1.3 

Hydrogen-bond Donors 3.9 ± 0.9 2.6 ± 1.0 1.8 ± 1.1 1.3 ± 1.2 

 

Table 4: Physiochemical properties of compounds and decoys for β2 and A2A high-throughput docking 

studies. 
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High Throughput Docking Protocol: 

Glide, a commercially available docking program from Schrodinger was used for HTD. 

Proteins were prepared using the Maestro Suite (www.schrodinger.com). The program was 

used in the standard precision mode without any additional constraints. Grids for the docking 

program were designed to cover the GPCR binding pocket. A 20 x 20 x 20 Å3 grid was 

developed and was centered between W6.48 and V3.33 for Cases 1 and 2 and between W6.48 

and T3.36 for cases 3 and 4. The enrichment factor 2% was calculated as follows 

EF(2%) =  (hitssampled/Nsample)/(hitstotal/Ntotal) 

Hitssampled = number of known active compounds in the top 2% of the compound database 

Nsampled = subset of 2% of the compound database 

Hitstotal = total number of active compounds in the database 

Ntotal = total number of compounds in the database.  

EF2% was selected as the cutoff for performance calculation as typically in an experimental 

screening process the top 2% of compounds are selected for subsequent stages.  
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Results of HTD studies: 

Table 5: High-throughput docking enrichment for crystal structures, crude homology model 

and top 5 ligand-steered models for all 4 cases.  

 

 

 

 

 

 

HTD on the crystal structures of β2 and A2A: To validate the docking protocol native ligands 

of the two crystal structures were redocked using the Glide software in SP mode. For β2, the 

top ranked pose of carazolol had an rmsd of 0.6Å and for A2A the top ranked pose of 

ZM241385 was 1.6Å (excluding the high B factor methoxy group). RMSDs below 2Å are 

considered optimal for docking calculations. The EF(2) of β2 and A2A was 24.1 and 8.8 

respectively.  

High-Throughput Docking Results. 

Case 1: Contrary to our hypothesis, the ligand-steered models showed equal or marginally 

inferior performance in the HTD studies as illustrated in Table 5. However, these results were 

comparable to similar studies in the public domain. It should be noted that the ECL2 was not 

included in our model building stage and may have played an important role in identifying 

 

EF(2)a 

Case 1 (bRho → 
β2) 

EF(2)a 

Case 2 (A2A → 
β2) 

EF(2)a 

Case 3 (bRho → 
A2A) 

EF(2)a 

Case 4 (β2 → A2A) 

Crystal Structure 31.0 31.0 8.8 12.7 

Crude Model 22.4 1.7 2.0 4.9 

Model 1 20.6 24.1 0.0 7.8 

Model 2 17.2 18.9 0.9 3.9 

Model 3 20.6 22.4 3.9 4.9 

Model 4 18.9 18.9 0.0 5.8 

Model 5 17.2 18.9 0.9 6.8 
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higher false positives. The importance of modeling ECL2 is highlighted in the results of Case 

2. 

Case 2: Here, the crude model had an extremely low EF(2) at 1.7. The inaccuracies in the crude 

model i.e. steric hindrances caused due to incorrect modeling of the side chain residues of the 

binding pocket and smaller volume of the binding pocket. All 5 ligand-steered models showed 

improved performance in the HTD studies. The 2nd best ligand-steered model returned a 

marginally improved performance as compared to the top model (17.2 vs 15.5). However, none 

of the ligand-steered models were as accurate as the crystal structure of A2A. 

Case 3: Case 3 was one of the most challenging cases due to the lack of ECL2 in the modeling 

process. Both, the crude model and all 5 ligand-steered models performed poorly in the HTD 

studies. The results confirm to similar studies by other researchers(125, 127). The results of 

Case 3 undermine the future use of using bRho as a template for GPCR modeling.  

Case 4: Here, the ECL2 was modeled and included in the HTD calculations. Subsequently, 

three of the five ligand-steered models showed improved performance as compared to the crude 

A2A model. The top two models that reproduced good native ligand rmsds also had the best 

performance in HTD. In addition, the performance of model 2 was comparable to that of the 

A2A crystal structure. Other similar studies by McRobb et al. obtained EF(2) of β2 that is in the 

same range as our models(122).  

Performance of Ligand-Steered Models in Compound Selectivity Studies. 

The identification of highly selective compounds for a given protein target over other 

homologous proteins is important in a drug discovery process. This may reduce side effects, 

improved therapeutic effects and prevent costs associated with medicinal chemistry efforts and 
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experimental testing. This is highly relevant for compounds of Class A GPCRs as they share 

similar binding pockets, and critical residues for binding (e.g. Asp 3.32) and are thus likely to 

interact with multiple compounds.  Thus, in addition to the modeling and HTD performance the 

ability of ligand-steered models to identify selective compounds was tested. Our hypothesis 

was that the optimized ligand-steered models will be able to discriminate between target 

specific compounds. 

Methods. 

Both, β2 and A2A compounds were merged into the decoy database to generate a library size of 

3500 compounds. The fraction of β2 and A2A compounds returned at 5% of the database was 

calculated. Case 3 was excluded from selectivity calculations as it had a poor HTD 

performance. The docking grids are identical to those used in the HTD calculations. The 

ligand-steered model with the best performance in HTD studies was used for selectivity 

calculations.  

Results. Figures 11,12 and 13 depict the results of the selectivity studies on Cases 1,2 and 4. 

The red and gray bars indicate the percentage of β2 and A2A inhibitors recovered at 5% of the 

screening database. Crude model refers to the initial model as depicted in the ligand-steered 

modeling flowchart. Model 1 refers to the top-ranking ligand-steered model as illustrated in 

Table 3. 
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Figure 11: Case 1 selectivity study results.  

 

Figure 12: Case 2 selectivity results. 
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Figure 13: Case 4 selectivity results. 

In all the three cases the respective crystal structures outperformed the best ligand-steered and 

crude homology models. In Case 1, the best ligand-steered model recovered roughly similar 

percentage of β2 compounds as compared to the crude model (41 vs 43), but was able to reduce 

the percentage of A2A actives by 10. The biggest improvement was in Case 2, where the 

ligand-steered model identified ~35% more β2 compounds while showing an insignificant 

increase in identifying A2A compounds as compared to the crude model (8 vs 5%). In Case 4, 

the optimized ligand-steered model clearly inverted the poor selectivity profile of the crude 

model. It identified ~12% more A2A ligands and reduced the selection of β2 compounds by 

50%. In fact, the ligand-steered models performance for identifying A2A ligands was roughly 

similar to that of the crystal structure (32 vs 35%) though it identified 7% more β2 compounds. 

Thus overall the optimized ligand-steered models improved the selectivity profiles of native 

 45 



compounds as compared to the crude models but in their selectivity profiles were inferior to the 

crystal structure, which is line with the overall hypothesis of this study.  

Conclusions. 

A: Is the ligand-steered method capable to generate near-native models of known GPCR crystal 

structures by using one template and incorporating protein flexibility 

In all the four cases ligand-steered homology models reproduced near-native (low rmsd) poses 

of co-crystallized ligands. In cases 1 and 2 the poses may be classified as excellent (< 2Å 

rmsd). For cases 3 and 4 the results can be classified as acceptable (~3Å rmsd) and are 

comparable to other published studies. 

B: Can the ligand-steered models deliver similar or better performances in HTD studies as 

compared to the crystal structure and unrefined model?  

As expected the crystal structure outperformed all the crude and ligand-steered models. Except 

Case 3, the performance of the top ranked ligand-steered model in the HTD studies was 

satisfactory as compared to the respective crystal structures. The top ranked ligand-steered 

models of Case 1 and 3 showed similar or worse performance as compared to the crude 

homology model. I hypothesize that the non-inclusion of ECL2 may have played an important 

role in these cases. It is also likely that the crystal structure of bRho might be a poor template 

for modeling GPCRs, a conclusion corroborated by similar studies in the literature. However, 

in cases 2 and 4 where the ECL2 was included in the modeling studies, the top ranked ligand-

steered model performed better than the crude models and random selection. This improved 

performance may also suggest the applicability of the β2 crystal structure for modeling other 

Class A GPCRs.  
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C: Is there a correlation between the best models in terms of cocrystallized ligand rmsd’s and 

top models from the HTD experiment. 

In cases 1,2 and 4 the top ranked models from the HTD experiments possessed low native 

ligand rmsd’s as obtained from the modeling process. However this result is not generally 

applicable as models with higher native ligand rmsd from the modeling stages were found to be 

competitive in identifying native inhibitors in the HTD experiments.  

D: Can optimized ligand-steered model discriminate receptor specific ligands from a set of 

decoy compounds?  

The selectivity of the top-ranked ligand-steered models in Cases 1 and 2 was comparable to 

their respective crystal structures. The top-ranked ligand-steered model of Case 2 significantly 

improved the selectivity profile of β2 ligands. In Case 4, the ligand-steered model clearly 

improved the selectivity profile when compared with the crude model. 

Future Work. 

Here I point out three shortcomings. The mediocre results of Cases 1 and 3 clearly highlight the 

importance of accurately modeling the ECL2 in Class A GPCRs. The ECL2 region of β2 and 

A2A is 26 and 32AA long respectively. This loop has a well-documented role in small 

molecule binding(128) and is also the focus of modeling studies, particularly de novo methods. 

As the focus of this study was homology modeling and binding-site optimization using a full 

receptor and ligand flexibility, accurate ECL2 loop modeling was not considered. It is 

important to note that based on the fundamentals of homology modeling the accurate modeling 

of ECL2 remains extremely challenging. I hypothesize that a combination of homology 
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modeling and de novo loop modeling may offer an avenue to develop better quality homology 

models of Class A GPCRs.  

Second, incorporating experimental information (e.g. via restraints) to predict the correct fold 

of the 7TMs prior to building the crude model may offset errors associated with the choice of 

template. Modeling the unique folds on TM5 of A2A receptors proved to be challenging using 

standard homology modeling methods. This resulted in incorrect side-chain orientations and 

subsequently affected the quality of models. Incorporating structural characteristics from 

multiple templates offer another way to improve model quality as shown by Filizola et al(123). 

Multi-template homology modeling is included in the development of the active state models of 

Cannabinoid 2 later in this dissertation. In general, consideration of experimental and / or 

structural evidence from other homologous GPCRs may limit the inherent errors associated 

with any protein modeling process.  

Finally, modeling and energy calculations are dependent of the availability of the force field. 

Upon retrospection it was found that good quality models in Case 1 (defined as models with 

low ligand rmsd and with a correct gauche+ conformation of F6.52) were assigned poor 

energies thus precluding them from further calculations. The use of a force field specifically 

parameterized for proteins could eliminate such errors.  
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Chapter 4. Applications of Ligand-Steered Modeling to Drug Discovery Problems. 

In the previous chapter I presented the enhanced ligand-steered homology modeling method. 

This method incorporates experimental and ligand information to model the pharmacologically 

relevant binding sites in Class A GPCRs explicitly using receptor flexibility. The retrospective 

benchmarking studies on then currently available crystal structures of two Class A GPCRs 

proved its accuracy and potential applicability to drug discovery problems. In this chapter I will 

describe the application of the ligand-steered modeling method to a: the development of 

Cannabinoid 2 homology models, b: rationalize activities of Cannabinoid receptor 2 

compounds (agonists and inverse agonists) and propose their potential binding modes and c: to 

optimize the crystal structure of the β2 adrenergic receptor to improve its performance in virtual 

screening studies. 

The importance of superior quality three-dimensional protein structures in the modern drug 

discovery process cannot be overstated. Structure-based drug discovery programs routinely use 

such protein structures to probe structure-function relationships, assess target druggability and 

potential binding sites, identify hits via virtual screening, investigate the protein:ligand 

interactions at the molecular level and compound optimization(129, 130). Binding mode 

prediction serves as the basis to characterize protein:ligand interactions that in turn may be used 

for optimizing lead structures(130). Molecular docking, ligand-based methods like QSAR(28) 

and CoMFA(131) are routinely applied to predict protein:ligand interactions when either a: a 

high quality protein structure is available or b: a large set of binders is available and c: both, 

crystal structure and a set of binders is available. However scarce information about binding 

site side chain conformations, limited and / or the lack of receptor flexibility in docking 

programs often lead to inaccurate or inconclusive predictions. In addition when experimental 
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protein structures are unavailable inherent inaccuracies of homology models augment errors in 

prediction of protein:ligand interactions. Inclusion of validated experimental information and 

receptor flexibility in the docking process may reduce errors associated with protein:ligand 

binding pose modeling and characterization. The ligand-steered modeling protocol features 

concurrent optimization of both, the ligand and binding site side chain conformations to 

generate reasonably accurate binding modes and binding sites. Subsequent sections describe the 

binding mode prediction and validation through compound activity rationalization of two 

different classes of Cannabinoid Receptor 2 compounds by applying the ligand-steered 

modeling method. 

Cannabinoid Receptor 2 and its Therapeutic Relevance.  

The complex endogenous cannabinoid system consists of two Class A GPCR Cannabinoid 

Receptors (CB1 and CB2), 7 endocannabinoids and several proteins that regulate 

endocannabinoid metabolic pathways(101). This system regulates pain, emotion motivation 

and cognition by modulating neurotransmission at relevant inhibitory and excitatory synapses 

in the human brain(132). On a molecular level endocannabinoids are lipid-signaling molecules 

that interact with cannabinoind receptor subtypes(133). Thus their psychoactive 

pharmacological profile is similar to marijuana and Delta9-tetrahydroncannabinol(133). 

Endocannabinoids are implicated in several disease conditions e.g. obesity, pain management, 

immune response, inflammation, cardiac conditions and cancer amongst others(101, 102). 

Currently the cannabinoid system is considered as a promising therapeutic target and is under 

active investigation.  
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Cannabinoids activate two distinct Class A G Protein Coupled Receptors, Cannabinoid 

Receptor 1 and Cannabinoid Receptor 2. Overall these two receptor subtypes share 44% 

sequence similarity that increases to 68% in the 7 transmembrane region(133). Upon activation 

they inhibit adenylyl cyclase activity by attaching to the alpha subunit of the G protein of the 

Gi1,2 and 3 and Go 1 and 2 family(133). However differences exist in terms of localization and 

function. CB1 receptors are predominantly found in the central nervous system particularly in 

high density in the hippocampus, cerebellum, amygdala, basal ganglia, segments of the globus 

pallidus and striatum(101). CB1 receptor activation causes increased potassium and decreased 

calcium conductance that is associated with suppressed neuronal excitability and 

neurotransmitter release. CB1 distribution and function is linked to cognitive disorders and 

psychoactivity(101). Thus therapeutics developed against CB1 suffer from severe psychiatric 

side effects resulting in withdrawals and termination of CB1 specific drug discovery 

programs(134). 

CB2 receptors are expressed primarily in the immune system – spleen, tonsils, mast cells, B 

and T lymphocytes, microglial cells and monocytes(135, 136). Contradictory reports exist 

about its presence in the CNS(101, 102). Increased CB2 expression is observed in different 

inflammatory conditions e.g. rat bladder after acute / chronic inflammation, dorsal root ganglia 

and spinal cord of animals post spinal nerve ligation, in women post endometrial 

inflammation(101, 102). Moreover increased CB2 expression after injury or inflammation 

coupled with the absence of immunomodulation by cannabinoids in CB2 absent mice suggests 

the importance of CB2 as a therapeutic target for immunomodulation(137, 138). Potentional 

absence of CNS side-effects upon CB2 modulation differentiates it from the documented 

disadvantages of targeting CB1 receptor(139, 140).  
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Cannabinoid Receptor 2 Inactive State Modeling and Rationalization of  6-methoxy-N-

alkyl Isatin acylhydrazone Compound Activities. 

A novel series of 6-methoxy-N-alkyl isatin acylhydrazone derivative CB2 specific inverse 

agonists was developed by Diaz et al(101). This experimental study was unable to explain the 

diverse range of activities of those compounds and thus required molecular modeling studies to 

study a: the putative binding mode when complexed with CB2, b: identify protein:ligand 

interactions and c: subsequently rationalize compound activities. Here, I used the crystal 

structure of β2 adrenergic receptor as the template to construct the ligand-steered model of CB2 

in the inactive state. 

Method. 

 

Figure 14: Flowchart of the CB2 modeling protocol. 
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The CB2 and β2 sequences were aligned using the standard GPCR specific alignment methods 

i.e. using known conserved residue patters and eliminating any gaps in the transmembrane 

regions. The second highly conserved Tyrosine residue of TM5 was used for the alignment of 

the TM5 region as CB2 lacks the normally conserved proline residue. The N- and C-terminus 

residues (AA1-26 and AA316-360 respectively) of CB2 and the artificially introduced T4L 

residues connecting helices V and VI of β2 adrenergic receptor were ignored from the 

calculations as they are not pharmacologically relevant. This alignment was used as an input to 

Modeller9V4 to develop a crude model. A restraint based on experimental evidence was used 

to maintain a disulfide bond between Cysteines 174 and 179 in the extracellular loop 2 regions 

of the CB2 receptor. Subsequently, a restraint minimization was carried to relieve any 

structural strain caused by the non-conserved residues in the crude model building process.  

This model served as the input to the ligand-steered modeling protocol.  

Incorporating experimental information e.g. mutagenesis data is one way to improve the quality 

of homology models. The ligand-steered modeling method relies on using such information to 

shape and optimize binding pockets. At the time of this work limited CB2 modeling, structural 

information and experimental data was available in the public domain(141-145). The available 

data suggested the presence of a hydrophobic pocket surrounded by TMs 3,5,6 and 7. The 

dominant hydrophobic residues F3.36, W6.48 and W5.43 play an important role in ligand 

recognition. Gouldson et al. reported potential hydrogen-binding interactions of SR144528 with 

Ser161 and 165 in TM4 regions of CB2(145). Another study by Montero et al. used a flexible 

docking protocol to predict the binding mode of the same compound and obtained similar 

results(143). In both cases the CB2 model was developed using the crystal structure of bRho. I 

have already described the limitations of using bRho as a template for Class A GPCR modeling 
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in the previous chapter of this thesis. In addition considering the limited experimental data 

related to hydrogen bonding the ligand-steered protocol was modified such that the restraints 

restricted the position of the ligand within the 7TM binding pocket.  

 

Figure 15: Isatin acylhydrazone scaffold.  

Compound 18 was selected for the modeling process because it’s median activity. Using the 

experimental binding data I hypothesized that the sensitivity of EC50 values was dependent on 

the substitutions at the R1 position as shown in Figure 15. Also, as the extracellular part of 

GPCRs is solvent exposed it was assumed that the R1 group is positioned toward the dominant 

hydrophobic intracellular part of the TMs. Two initial seed poses were selected such that the 

R2 group occupied the pockets facing TMs 2,3 and TMs 3,4 and 5. This was done because 

mutagenesis data indicated possible hydrogen bond interactions with the serines in TM4 and 

lysine in TM3. Moreover the experimental data indicated lack of affinity of those isatin 

derivative compounds without the carbonyl group. The two opposite poses made the ligand-

steered modeling unbiased. The protocol involved generating an ensemble of 200 structures by 
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randomizing the position and orientation of the two initial seed positions and multi-step energy 

minimization where the van der Waals interaction was switched from soft to full interactions as 

described in the benchmarking study. The binding energy was estimated was the ligand-

receptor interaction energy where the van der Waals, electrostatic, hydrogen bonding and 

torsional terms were considered. Ten structures ranked by a crude binding energy estimation 

were subjected to a full flexible-ligand:flexible-receptor side chain Monte Carlo-based global 

energy optimization. Side chains within 6Å of the compounds were considered free, the 

backbone was kept fixed to maintain the structural integrity of the 7TM structure. Two 

representative complexes with best binding energy estimates were selected for visual 

inspection. The final complex was selected where a: the R1 group was oriented towards the 

hydrophobic binding core, b: putative hydrogen bond interaction of the R2 carbonyl group to a 

charged side chain residue.  

 

Figure 16: The proposed ligand-steered model of CB2 receptor complexed with compound #18 of the 

isatin series. Putative hydrogen bond with Lysine 3.28 (109) is represented with dashed orange lines. Π-
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Π stacking is observed with F2.64 (94)and F2.61(91). The backbone of CB2 receptor is colored red. 

Figure prepared with Pymol (www.pymol.org) 

Rationalization of CB2 Inverse Agonists Structure-Activity Data. 

I evaluated the accuracy of the representative model using the existing structure-activity data as 

at the time of development there was limited experimental data and no crystal structure for the 

cannabinoid receptor 2. In the representative model with compound 18 distances between the 

carbonyl group and the side chain polar hydrogen of K3.28 (109)and the methoxy group and 

Y5.39 (190) seem to favor potential hydrogen bonding interactions. The cyclohexyl moiety of 

compound 18 is ideally located to form van der Waals interactions in the deep hydrophobic 

pocket surrounded by residues W6.48(244), F3.36 (117) and W5.43(194). These observations 

suggest the orientation of the compounds. For rationalizing the structure-activity data we use 

respective substituents at R groups without changing the orientation of the scaffold (Please 

refer to Table 6). Based on the CB2 model and binding data it is clear that the optimal R1 

substituent moiety is a n-pentyl group. Compound 16 the R2 phenyl group is located in the 

overall lipophilic pocket surrounded by residues F2.57(87), F2.61(91), F2.64 (94)and F7.35 

(267) and is likely to form favorable aromatic stacking interactions with F2.61 and F2.64. The 

variation in the R1 group substituent lengths of compounds 15 and 17 may disrupt the aromatic 

stacking interactions of the R2 phenyl group explaining their reduced potency as compared to 

compound 16. Introduction of a polar oxygen atom in the R1 group substituent of compound 21 

is poorly tolerated in the dominant interior hydrophobic core. Introduction of an additional 

alkyl group between the cyclohexyl ring and the nitrogen atom at the R1 group in compound 20 

is suspected to cause steric clashes with W6.48 and F3.36 explaining the drastic loss of activity.  
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Compound R1 R2 EC50 (nM ± SEM) Emax% 

7   8.66 ± 1 100 

15 CH3(CH2)5 phenyl 88.2 ± 1.5 -92 

16 CH3(CH2)4 phenyl 5.8 ± 8.8 -108 

17 CH3(CH2)3 phenyl 85 ± 1.6 -95 

18 

 

phenyl 18 ± 1.2 -82 

19 benzyl phenyl 102 ± 1.5 -96 

20 2-cyclohexylethyl phenyl 540 ± 1.3 -104 

21 CH3O(CH2)2 phenyl 492 ± 1.2 -60 

22 CH3(CH2)4 cyclohexyl 28.7 ± 1.2 -105 

23 CH3(CH2)4 

 

14.7 ± 1.7 -99 

24 CH3(CH2)4  15.9 ± 1.3 -97 

25 CH3(CH2)4 

 

11.7 ± 1.4 -78 
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26 CH3(CH2)4 

 

43 ± 1.4 -88 

27 CH3(CH2)4 

 

13.3 ± 1.5 -80 

28 CH3(CH2)4 Tert-butyl 10 ± 1.1 -78 

29 

 

cyclohexyl 71.6 ± 1.4 -69 

 

Table 6: CB2 assay data. Compound 7 is the reference compound. Further details can be found here. 

The large lipophilic pocket surrounding the R2 group of compound 16 was used to explore 

various R2 substituents while maintaining the optimal n-pentyl group for R1. The cyclohexyl 

and methoxycyclohexyl moieties of compounds 22 and 26 respectively are unable to maintain 

the optimal aromatic stacking interactions of compound 16 resulting in lower CB2 functional 

activity. However, branched alkyl moieties in compounds 23-25 and 28 were better tolerated. 

For compound 27 the methylmorpholine R2 substituent resulted in 4-fold increase in CB2 

functional activity as compared to compound 26. It was hypothesized that due to the chair 

conformation of the morpholine ring its nitrogen atom may form a hydrogen bond with the 

hydrazoic moiety. In addition the additional CH2 group may solvent expose the morpholine 

ring increasing its tolerability. The reduced activity of compound 29 as compared to compound 

18 is attributed to the loss of stacking interactions of the cyclohexyl R2 group.  
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This was the first reported homology and molecular modeling study of the CB2 receptor that 

used the β2 adrenergic crystal structure as the template. The adapted ligand-steered homology 

method proposed the binding mode for Isatin derivatives and also successfully rationalized 

their structure-activity data. This study suggests that the lipophilic pocket surrounded by 

residues W6.48, F3.36, V6.51, W5.43 and W5.46 is likely to be involved in van der Waals 

interactions with the R1 group substituents of the Isatin derivatives. The molecular modeling 

studies also suggest that potent compounds in this series either form van der Waals or Π-Π 

stacking interactions with F2.57, F2.61 and F2.64 residues. In addition the proposed model 

suggests that residues K3.28 and Y5.39 may form hydrogen bond interaction with the carbonyl 

and methoxy groups of the compounds respectively.  

Cannabinoid Receptor 2 Active State Modeling. 

CB2 receptor is an emergent target for the treatment of neuropathic pain(133, 146). The 

development of CB2 specific agonist compounds is an area of active research as evident by the 

spurt in patents filed over the last three years(102). In this section of my thesis, I will explain 

the development of a multi-template based ligand-steered model of the CB2 receptor in its 

active state and its application to explain putative ligand:receptor interactions for the 

benzofuran derivatives CB2 agonist compounds. 

The quality and accuracy of homology models depends on the choice of the template 

structure(27). Usually one template structure is chosen for the modeling process but if the 

structure does not represent a physiologically relevant conformation the resultant model is 

likely to be inaccurate. One way of such errors is by incorporating two or more templates by a 

process known as multi-template modeling(147, 148). Multi template modeling has been 
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successfully applied to improve the accuracy of homology models in several cases(147, 148). 

In the case of Class A GPCRs including CB2 experimental / mutagenesis data indicates the 

characteristics of an active state GPCR include rotational movement of TM3 and / or TM6, 

translational movement of TM5 towards TM6 and breakage of the ionic lock between R3.50 

and D/E6.30 residues amongst other(102, 142). At the time of this work there was not a single 

crystal structure for the active state CB2 receptor and any other holo active state GPCR. 

However, the apo crystal structure of opsin captured the characteristics associated with TMs 5 

and 6 and the breakage of the ionic lock that is important for agonist binding(97, 149). The 

opsin structure however failed to characterize the movement of the ECL2, which plays an 

important role in capturing diffusible ligands by providing them access to the intracellular parts 

of the GPCR(150-152). As described in the earlier chapter ECL2 plays an important role in 

GPCR ligand binding highlighting the need to model it as accurately as possible. The last 

chapter also described the limitations of homology modeling to model major TM shifts that 

subsequently introduced errors in two of the four cases I investigated. This movement of the 

ECL2 is captured in the crystal structure of the β2 adrenergic receptor which in turn is 

complexed with an inverse agonist compound rendering it doubtful for active state GPCR 

modeling by itself. Considering both crystal structure were inadequate to model the active state 

structure of CB2, I incorporated specific features from both e.g. TMs 1-4 and ECL2 from the 

β2 adrenergic receptor and TMs 5-7 from the ligand-free opsin crystal structure to develop a 

putative active state model of the CB2 receptor. 
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Method. 

Sequence alignment: The sequences of β2 adrenergic 2RH1 and ligand-free opsin 3CAP were 

aligned using the conserved residue patterns as described before. This sequence was provided 

as the input for Modeller9v4(51). The N- and C-terminus residues (AA 1-26 and AA 316-360) 

of CB2, the T4L residues of β2 , TMs 5-7 of β2 and TMs1-4 of ligand-free opsin were 

disregarded in the crude model building process. The disulfide bond between Cys 174 and Cys 

179 was maintained in the ECL2(143, 145). After the crude model was developed and based on 

the validated experimental information related to TM 3 rotation, the helix 3 of CB2 was 

manually rotated counter clockwise (as seen from the extracellular side) by 60 degrees. The 

model was restrained minimized as described before in the CB2 inverse agonist modeling.  

Experimental information for initial ligand placement and ligand-steered modeling.  

Prior structure-activity relationship and mutagenesis data highlighted the importance of the 

aromatic pocket surrounded by residues Y5.39, F5.46, W5.43 and W6.48 and hydrogen bond 

interactions with residues S3.31, T3.35, Y5.39 and N7.45(141, 153-157). Compound 33 of the 

benzofuran series of CB2 specific agonists was seeded in two initial poses such that the R1 

group was oriented towards the hydrophobic pocket located in the interior of the 

transmembrane domain. The R2 group was oriented such that the carbonyl group could 

possibly form hydrogen bond interactions with S3.31 or Y5.39 per the available mutagenesis 

data(154). The ligand-steered modeling was performed as described before and the final model 

was chosen such that a: the R1 group was oriented towards the interior of the transmembrane 

regions and b: the carbonyl group was positioned to form an h-bond interaction.  
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Rationalization of CB2 Agonist Structure Activity Data. 

 

Figure 17: Proposed model of CB2 complexed with compound 33 of the agonist benzofuran series. The 

transmembrane regions are colored green, carbon atoms of side chains are colored white and carbon 

atoms of compound 33 are colored yellow. Putative hydrogen bond between Ser3.31 (83) and 

compound 33 is represented in red dashes. Figure was prepared using Pymol (www.pymol.org) 

The modeling results were validated by the ability to rationalize structure-activity binding data 

of the benzofuran series of compounds. The carbonyl group of compound 33 is located at 1.8Å 

from the side chain of S3.31 (83) replicating a putative hydrogen-bond interaction as suggested 

in other published work. The absence of this hydrogen-bond results in loss of affinity / activity 

of CB2 agonists. The phenyl substituent at the R1 position forms van der Waals interaction 

with the aromatic residues F5.36 (168) and W6.48 (218). 1-piperidyl substituent at the R2 

group is oriented towards the F7.35 of the 7th TM and this overall conformation suggests a 

putative binding mode for benzofuran derivatives CB2 agonist compounds. Next, I will explain 

the variation of activities associated with various substituents at the R1 group.  
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Figure 18: Benzofuran scaffold for CB2 agonist compounds. 

 

Compound R1 R2 R2 position EC50 

(nM ± SEM) 

Emax % 

13 phenyl N-(2-

iodophenyl) 

5 >10000 ND 

14 phenyl N-cyclohexyl 5 406 ± 1.4 47.1 

15 phenyl 1-piperidyl 5 >10000 ND 

16 phenyl N-(2-

iodophenyl) 

6 >10000 ND 

17 phenyl N-cyclohexyl 6 478 ± 1.3 57.3 

18 phenyl 1-piperidyl 6 128 ± 32 88.3 

33 S enantiomer (1) of 18 6 108.2  86 
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34 R enantiomer (2) of 18 6 960.89 43.3 

19 
 

1-piperidyl 6 48.9 ± 1.4 97.1 

20 
 

N-cyclohexyl 6 839 ± 5.5 105 

21 phenyl 

 

6 246 ± 1.3 48.7 

22 phenyl morpholine 6 5583 ± 4.4 93 

23 phenyl 

 

6 95.3 ± 1.8 91 

24 phenyl 

 

6 659 ± 1.4 49 

27 1-naphthyl N-cyclohexyl 6 >10000 ND 

28 1-naphthyl 1-piperidyl 6 >10000 ND 

29 2-naphthyl 1-piperidyl 6 875 ± 1.4 112 

30 4-chlorhenyl 1-piperidyl 6 56.2 ± 1.2 102 

31 4-

methoxyphenyl 

1-piperidyl 6 234.68 77.1 
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32 4-pyridine 1-piperidyl 6 2801.44 62.5 

 

Table 7: CB2 agonist compound assay data. Further details can be obtained here.  

Introduction of a chlorine (compound 30) as against the polar moieties methoxyophenyl 

(compound 31), 4-pyridine (compound 32) in the aromatic pocket increased CB2 functional 

activity. It is clear that polar moieties are not tolerated as R1 substituents. The bulky 1-napthyl 

group at R1 (compound 28) caused complete loss of activity as it potentially causes steric 

clashes with side chains in TM3. On the other hand, smaller alkenyl group (compound 19) is 

accommodated within the pocket with less optimal hydrophobic interactions. Similar to 

compound 28, the 2-napthyl group of compound 29 does not form the pi-stacking interactions 

with W6.48 resulting in less optimal affinity as compared to compound 18. Two potential 

causes, steric clashes of 1-napthyl and disruption of the crucial hydrogen-bond interaction with 

S3.31, explain the complete loss of functional activity of compound 27. For compound 33 the R 

enantiomer of compound 33 flips the benzofuran core decreasing its activity. This modeling 

study for benzofuran series of compounds indicated that only a phenyl or alkene groups may be 

tolerated in the interior aromatic pockets of CB2 receptors.  

Next, the effect of R2 group substituents is investigated with this CB2 agonist state model. 

Replacing the piperidine ring of compound 19 resulted in direct steric clashes with F7.35 

decreasing CB2 functional activity. Moving the carboxamide moiety to position 5 in 

compounds 13-15 resulted in loss of the important hydrogen-bond interaction with S3.31 that 

explained the significant loss of activity. This explanation hold true for compound 16 as well. 

Compounds 21 and 23 with neopentylamine and N-tert-butylmethylamine moieties respectively 
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were nearly equipotent with compound 18. The marginal loss may be attributed to the lower 

lipophilicity of the neopentylamine nitrogen as compared to the trisubsituted piperidine 

nitrogen of compound 18.  

In the previous chapter I highlighted few shortcomings of homology models. Choice of 

template/s is crucial to develop a better quality initial homology model. Homology modeling by 

principle is unable to model large structure movements e.g. the TM5 of Adenosine 2A receptor. 

Errors introduced by the wrong choice of template are generally impossible to correct. In the 

above two case studies of CB2 receptors I have shown that choosing a better quality template 

can potentially reduce some of the errors. As shown in previous chapter, the β2 adrenergic 

crystal structure is definitely a better template choice. The CB2 inverse agonist model is 

developed using the β2 adrenergic crystal structure as compared to the previous studies where 

the bRho template was used (primarily due to the unavailability of any other GPCR crystal 

structure). Multi-template modeling is another way to reduce errors associated with choice of a 

single template. Multi-template modeling often compensates for the structural deficiencies of 

one template. It is thus possible to include structural variability that would be extremely 

difficult to model otherwise. By using experimentally proven information and features within 

two templates that potentially corroborate those features, an agonist state model of CB2 was 

developed.  

Like all modeling methods, homology modeling is an abstraction and a majority of crude 

models need refinement prior to any meaningful drug discovery applications. Accurate 

characterization of at-least the binding sites, determining exact side chain conformations are 

particularly important as even minor inaccuracies may lead to incorrect results. The validation 

studies of other GPCR crystal structures using the ligand-steered modeling method proved that 
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it is possible to generate reasonable binding poses of co-crystallized ligands along with the 

reasonable characterization of the binding site side chains. Known experimental information 

and a full flexible-ligand: flexible-receptor approach was used to shape and optimize the 

binding pockets of both CB2 models. In either case unavailability of the actual crystal structure 

of the CB2 receptor precluded any retrospective validation. Thus, in both cases the large 

experimental structure-activity data of inverse agonists and agonist compounds was used to 

validate the models. The two models were successful in rationalizing the activities of all the 

compounds provided by our collaborators at the MD Anderson Cancer Center. The models may 

find potential applications in inhibitor discovery by virtual screening studies.  

In the benchmarking study, the crystal structures undoubtedly had the best performances in the 

small scale HTD experiments. The goal then was to check the retrieval rates of inhibitors. The 

results though good can potentially be improved as receptor flexibility was not considered. 

Moreover as shown in Case 2 of the CB2 modeling studies, agonist compounds too are useful 

for therapeutic applications. However, active state GPCR crystal structures did not exist at the 

time of this work. It was but natural to use known agonist compounds to optimize existing 

crystal structures and evaluate their performance in a virtual screening study. The next question 

attempted was to check if optimization of known GPCR crystal structures using both, inverse 

agonist and agonist compounds, will lead to better performances in structure-based virtual 

screening studies. The crystal structure of β2-adrenergic crystal structure was used as a case 

study. The underlying hypothesis is that ligand-steered modeling can optimize any type of 

protein structure by modeling side chain conformation variability thus increasing the retrieval 

rates in HTD studies.  
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Optimization of β2 Adrenergic Crystal Structure and Docking Studies. 

Background:  The crystal structures of GPCRs clearly outperformed the best ligand-steered 

homology models in the HTD of the ligand-steered benchmarking and another study by 

Costanzi et al(108). In my study the receptor flexibility of the crystal structures of both, the β2 

adrenergic and the Adenosine 2A receptors, was not considered. Thus, theoretically it is 

possible to improve the performance of the HTD experiments by incorporating receptor 

flexibility. This section describes a collaborative study (primarily conducted by Costanzi et al.) 

where a receptor-ensemble docking protocol was developed to account for receptor flexibility 

and applied to improve HTD performance of the β2-adrenergic crystal structure(158). I 

optimized the β2 adrenergic crystal structure by the ligand-steered modeling protocol in the 

presence of two beta-blockers, the co-crystallized carazolol and carvedilol, and one agonist 

ritodrine. Ritodrine was used to optimize β2 crystal structure as there is no agonist / active state 

β2-adrenergic crystal structure and one of the aims of this study was to investigate the agonist 

only retrieval performance of β2 when optimized with an agonist compound. 

Method.  

The details of compound selection, protein crystal structure preparation, and docking protocols 

is explained in the original paper. I chose carazolol and carvedilol for the inactive state ligand-

steered modeling stage because a: carazolol is the co-crystallized ligand and b: carvedilol 

ranked poorly in the benchmarking docking with the crystal structure. The structure of ritodrine 

was used for the active state ligand-steered modeling because it was one of the top ranked 

agonist compounds in the initial HTD study. The β2 crystal structure was optimized using the 

ligand-steered modeling method described earlier in this thesis. The initial conformations of 
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carvedilol and ritodrine were chosen such that they showed maximum overlap with the co-

crystallized carazolol conformation. A quadratic restraint was maintained between the charged 

amine of each compound and D3.32. In this study the three positional and three orientational 

coordinates of the each compound, torsional coordinates of the compounds and the side-chains 

within 6Å radius of the ligand position were considered free. The backbone kept was kept rigid 

in the modeling process. HTD results of the crystal structure, the top ranked ligand-steered 

optimized structure and a combination of the crystal and modeled structures were compared.  

Results and Discussion.  

For the carazolol optimized structure the enrichment rates (EF10) improved by 10% and 5% as 

compared to the crystal structure using the high-throughput virtual screening and standard 

precision scoring functions respectively(158). A combination of the carazolol optimized and 

crystal structure results showed similar improvement. In the case of carvedilol optimized β2 

adrenergic structure the performance was worse by 14% and marginally lower by 4% while 

using the HTVS and SP scoring functions. However a combination of carvedilol-optimized 

structure and the actual crystal structure returned comparable results in the HTVS case and 

~10% lower in the SP case. In the case of carvedilol the poor results are not unexpected. 

Carvedilol is a non-selective low efficacy β2 / β1 inhibitor. In addition the additional degrees of 

freedom inherent in carvedilol’s structure as compared to carazolol are likely to have had an 

adverse effect on the ligand-steered modeling. This may have resulted in incorrect side-chain 

orientations of the binding pocket residues causing subpar virtual screening results.  Moreover 

carvedilol was ranked as a poor binder in the HTD studies against the β2 adrenergic crystal 

structure. This case shows the importance of the choice of ligands to be selected for the ligand-

steered modeling.  
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Reversing the results of carvedilol optimized β2 structure, the ritodrine optimized putative 

agonist state β2 adrenergic structure performed comparably / better in the HTVS / SP docking 

protocols.  
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Chapter 5: Modeling Studies for p65 using Open Source Libraries. 

Protein modeling and incorporation of target flexibility is an important aspect of the structure-

based drug design methodology. Commercial software, often in a black-box mode, offer easy to 

use access to modeling algorithms and methods. However, in order to widely disseminate these 

methods in the scientific field it is imperative to port such methods into open source modules. 

The ligand-steered method was developed within the framework of commercial molecular 

modeling software. However for wider applicability I investigated the possibility of using the 

comprehensive open source libraries from the Rosetta suite of programs(159) and retaining the 

essence of the original method i.e. manipulating side chain conformations using ligand 

information. The method was applied to explain the possible lack of binding of p65, a subunit 

of the NF-ΚΒ heterotrimer and DNA in the presence of 3-formylchromone. This study aimed 

to elucidate the possible relation between 3-formylchromone, an anti-tumor agent and the NF-

ΚΒ pathway, which plays an important role in tumorigenesis and inflammation(160).  

Method. The Rosetta suite of programs offers a wide range of utilities to develop custom 

molecular modeling algorithms with Rosetta sampling and scoring algorithms(161). Recently 

the development of PyRosetta offers a python-based scripting interface for rapid prototyping 

and implementation(159). By using the functions available within PyRosetta and retaining 

some aspects of the ligand-steered modeling method, I developed a small custom platform for 

the p65 case study. The results suggest possible rearrangement of the flexible loop region at the 

interface of p65-DNA binding region that likely precluded the binding of these two biological 

entities. Mutation of a crucial Cysteine residue in the loop region to serine abolished this effect 

and the lack of any conformational change in subsequent modeling studies seemed to support 

the biological data.  
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To enable optimization of the binding pocket it is imperative that a starting protein:ligand 

complex either via crystallization or docking method or manual positioning of the ligand in the 

binding pocket is available. p65 (pdb code 1VKX) does not have a well-defined binding pocket 

as in the case of Class A GPCRs. In addition, the complexed structure of p65-3FC is 

unavailable. However, a literature survey implicated residues Arg33, Arg35, Tyr36, Glu39 and 

Arg187 in the binding with DNA(162). Thus in order to generate an unbiased initial position of 

3FC in complex with p65, a soft-docking study was carried out. The assumption here is that 

soft docking will compensate for limited receptor flexibility and permit docking poses that 

would be unrealistic with a rigid receptor approach. A docking grid was calculated using the 

above-mentioned residues and soft-docking studies were carried out using the Glide 

commercial docking software. The top-ranking pose was used as a starting point for the 

optimization process.  

Though the essence of the ligand-steered modeling method is retained, this method differs in 

some aspects. Here side chain flexibility is incorporated as repacking of side-chain low energy 

rotamers as compared to the full flexible approach described earlier. Rotamers offer a time-

effective method for modeling most likely side-chain conformations with the assumption that 

the low energy rotamers are correct. The Rosetta rotamer library is developed using high-

quality protein structures in the PDB and is used in this implementation using python 

bindings(159). Next, using the starting pose from Step 1, residues within 6.5Å were identified 

for side-chain rotamer and backbone packing. The backbone atoms of residues within a well-

defined secondary structure were kept fixed. An ensemble of 100 complexes was generated 

using a Monte-Carlo minimization method. For every iteration, the ligand 3FC was randomly 

rotated and translated (1.0Å and 1.5Å) from the starting pose obtained earlier. These limits 
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were determined such that the ligand remains roughly in the binding pocket. Here, no restraints 

were incorporated, as there was no evidence in the literature about any potential ligand receptor 

interactions. For each positional change of the ligand the receptor residues were optimized 

using low-energy side chain rotamers. The resulting complex was scored using the all-atom 

Rosetta ligand scoring function and retained-rejected based on the Metropolis criterion. The 

resultant complexes were ranked per their energy values, visual inspection (checked for clashes 

or movement of 3FC beyond the binding pocket) and the Ramachandran plot to discard 

complexes that have side-chain conformations located in theoretically unfavorable regions. 5 

top scoring complexes were selected for the final docking process. Here, the Glide software in 

the extra-precision mode (www.schrodinger.com) was used to re-dock 3FC to each of these 5 

complexes. The complex with the best-scored pose was retained for subsequent analysis. This 

method was repeated for the Cys38Ser mutation in p65.  

Biology. Dysregulated inflammatory pathways are the root of most chronic diseases including 

cancer. Molecular agents that can suppress pro-inflammatory pathways have potential 

applications as anti-cancer or chemopreventive therapeutics. NF-ΚΒ pathway has a critical role 

in inflammation and tumorigenesis(163). It is present in the cytoplasm as an inactive 

heterotrimer consisting of p50, p65 and IΚβα kinase (IKK) subunits. Upon activation by 

carcinogens, tumor promoters or pro-inflammatory agents, IKK is phosphorylated, 

ubiquitinated and degraded(164). The p50/p65 subunits are released and translocate to the 

nucleus. Here upon binding to specific DNA sequences results in activation of over 500 genes 

linked with inflammation, cellular transformation, tumor cell survival, proliferation, invasion, 

angiogenesis and metastasis(165). Most tumor cells express constitutive NF-ΚΒ and hence this 

pathway is likely to be important for cancer prevention and treatment studies.  
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3-formylchromone has been associated with anti-cancer potential via an unknown mechanism. 

In this study it was hypothesized that 3-FC may mediate its effects via the modulation of the 

critical NF-ΚΒ activation pathway(160). The study was designed to test this hypothesis using a 

series of biological assays on NF-KB regulated gene products. NF-KB activation was induced 

mostly by TNF-α per solid literature evidence. More details on the biological assays can be 

found here(160).  

Proposed Results of Modeling Studies.  

 

Figure 19: Possible binding mode of 3-FC with p65 DNA-binding region. The original crystal structure 

(Protein Data Bank code 1VKX) is superimposed with the modeled structures of the wild-type and 

C38S mutant proteins upon 3-FC binding. Gray, original crystal structure; purple, modeled wild-type 

structure upon 3-FC binding; green, modeled C38S mutant upon 3-FC binding. The final docked pose 

3FC 
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for 3-FC is depicted in purple and green sticks for the wild-type and C38S mutant structures, 

respectively. DNA is represented as yellow tubes. 

Extensive biological assay studies suggest that 3-FC a: directly interacted with p65 subunit of 

NF-ΚΒ and b: it likely suppressed TNF-α induced IKK activation. 3-FC targets IKK to 

suppress the TNF-α induced phosphorylation and degradation of IΚΒα that was concomitant 

with the inhibition of nuclear translocation and phosphorylation of p65. 3-FC down regulated 

the expression of NF-KB regulated gene products such as survinin, Bcl-xL, Bcl-2 and cIAP-1, 

all anti-apoptotic agents(160). Other inhibitory effects of NF-KB activation due to 

inflammatory stimuli or by tumor promoters suggest a common mode of action for 3FC. Prior 

studies indicate the critical role of IKK complex in NF-ΚΒ activation suggesting that inhibition 

of IKK activity is the common step for the inhibition of NF-ΚΒ by 3-FC. Further studies lead 

to the hypothesis that the reversal of effects of the 3-FC by a reducing agent is likely due to the 

modification of a Cysteine residue in p65. Cys38 was identified in the p65 subunit of NF-KB 

that is likely to play an important role in DNA binding. A mutagenesis experiment involving 

Cy38Ser mutation was also designed to investigate this hypothesis. This mutation failed to 

inhibit the DNA binding ability of p65 and thus validating the potential role of Cys38 in the 

p65-DNA binding process.  

Biological studies indicated that as 3FC inhibits the binding of reconstituted p65 to the DNA in 

vitro, p65 is the direct target of 3-FC. Furthermore, with the Cys38Ser mutation in p65, 3-FC 

failed to inhibit the DNA binding ability of p65. From the molecular modeling studies I 

observed that 3-FC docked just below the L1 DNA-binding loop region consisting of residues 

Arg33, Cys38 and Arg41. Post ligand-guided optimization the L1 loop region showed a minor 

conformational change and moved upward as compared to the crystal structure. As a result the 
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distance between the Cys38 and Cys120 changed from 7.7Å in the crystal structure to 10.2Å in 

the model. This loop movement altered the Chi1 angle of Tyr36 from 66.3 to -67.5. This change 

resulted in the positioning of the Tyr36 phenol moiety towards the DNA binding region. The 

modeling seems to suggest that the conformational change presents a steric hindrance to the 

DNA thus precluding its binding to p65. On the contrary changed introduced by the Cys38Ser 

mutation failed to elicit any significant conformational change thus possibly maintaining the 

DNA-p65 binding. The modeling study hypothesizes that loop movements and the 

corresponding side chain rearrangement may explain the biology behind of p65-DNA binding.  

Conclusions: The modeling protocol involved here represents an initial step of developing an 

open-source ligand-guided binding site optimization. It still relies heavily on the PyRosetta 

suite and does not explicitly model side chain flexibility. Though incorporating restraints is a 

possibility within the current libraries, it was not done for this case study. I envision a greater 

review of options to either develop such an open source protocol from the ground up or 

optimize any other publicly available resources to incorporate such a method.  
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Chapter 6: Research Projects Summary and Future Directions. 

Identifying potent therapeutics to manage and treat physiological disorders will remain an 

active area of research far into the future. Experimental methods such as high throughput 

screening have played and will continue to play an important role in the discovery phase of a 

drug development cycle. Despite rapid advances in technology and improvement in process 

efficiency it is likely that HTS may never fulfill the hypothesized success projections. The 

significant costs associated with HTS, doubts over the benefits associated with random 

screening of corporate compound collections, and recent spate of failures of candidate drug 

molecules underline the need to incorporate different methods in the drug discovery cycle. 

Computational methods have shown promise in improving the productivity and decreasing 

costs associated with HTS programs. In silico methods, both structure and ligand based have 

proved their success in identifying enriched and smaller subset of compounds for exhaustive 

experimental processes. Increasing availability of structural and experimental biological data, 

development of better algorithms and access to cheaper yet faster computational hardware 

resources have made in silico methods a complement of the experimental HTS. Several 

examples suggest that a combination of experimental and computational methods may help 

offset their inherent drawbacks and can be applied to navigate the complex problems associated 

with drug discovery. However, akin to HTS methods, in silico methods are not without any 

drawbacks e.g. unavailability of high quality three-dimensional protein structures of 

biologically relevant proteins, and inadequate consideration of protein flexibility for 

computational structure-based drug discovery(1). This work attempts to present solutions for 

the above-mentioned problems by enhancing, benchmarking and applying modeling methods to 

relevant drug discovery problems.  
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Despite rapid growth in protein structure determination projects e.g. structural genomics, the 

number of novel proteins deposited in the Protein Data Bank has remained constant for several 

years. It is also likely that the massive sequence to structure gap of the human genome will not 

be overcome in the near future. In this scenario homology modeling plays an important role in 

the computational structure-based drug discovery and design.  Homology modeling provides a 

cost-effective method to generate tertiary structures of proteins that may be applied to drug 

discovery problems. The literature is annotated with successful examples of homology 

modeling thus suggesting continual development and applications in the future. However, 

models by definition are an abstraction and will most likely contain errors. Of particular 

importance are those errors that occur in the pharmacologically relevant sites of a protein i.e. 

compound / ligand binding site which may negate the applicability of a protein model. It is thus 

imperative to develop protocols to minimize such modeling errors(27).  

In this thesis I have primarily concentrated on homology modeling of Class A GPCRs. This 7 

transmembrane serpentine family of proteins is the target of ~30 – 40% of drug discovery 

projects. Until 2008 there was only 1 high resolution crystal structure of Class A GPCR 

amongst a family of ~1000. Though novel technological breakthroughs during the time of this 

work (2007-2012) resulted in a spurt of several new crystal structures they still account for 

~2% of all Class A GPCRs. It is clear that modeling will help offset this discrepancy associated 

with three-dimensional structure availability of this important therapeutic protein class. In this 

thesis, I developed optimized models for Cannabinoid Receptor 2, β2 and Adenosine 2 A 

receptors and applied them to rationalize compound activities and in several case studies to 

highlight their improved performances in structure-based drug design methods such as 

molecular high-throughput docking(166). 
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As shown in the enhancement and benchmarking studies, the development of optimized Class 

A GPCR models using a single template 

and including receptor flexibility has a 

positive impact in compound pose 

prediction, high-throughput docking and 

compound selectivity studies. However 

like all protein ensemble docking studies, 

identifying the most relevant set of protein 

structures remains a challenging task. Our 

study indicates the shortcomings of energy 

functions to consistently rank models per 

their quality.  

Figure 20: This plot represents the RMSD vs estimated binding energy of Case 1 studies.  

From Figure 20 it is clear that models with good (i.e. lower RMSD) of co-crystallized ligands 

have been assigned poor energies. This shortcoming is likely due to force field limitations 

offered in the computational software used to develop the protocol. Further studies may be 

performed to investigate the effect of different force fields on the modeling protocol.  

Second, as shown in the studies modeling of the extracellular loop 2 (ECL2) is an important 

factor in determining the overall accuracy of Class A GPCR models. Homology modeling 

methods are limited in their ability to determine completely novel folds. Using de novo based 

methods to generate multiple loop conformations and then incorporating them into homology 
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based models is one way of potentially addressing this situation. If conclusive experimental 

information is available it may be included as restraints.  

Thirdly incorrect side chain conformations in the crude model may prevent the generation of 

optimal ligand conformations and thus binding pocket residues. Refining the crude model via 

molecular dynamics prior to ligand-based optimization may correct side chain conformation 

errors and also result in a larger binding pocket for initial ligand poses. This needs to be 

investigated in detail as GPCR’s are membrane bound and likely need long simulation time for 

meaningful results. At least the benchmarked method offers clues to optimize the binding site 

of GPCRs using a fully flexible ligand and receptor approach.  

In subsequent applications I developed protein models for Cannabinoid Receptor 2, a member 

of the Class A –GPCR family. CB2 receptors are investigated for their therapeutic use in non-

psychotic pain management. The CB2 models developed here, to the best of our knowledge, 

are the first models developed using β2 adrenergic receptor and a multi-template approach for 

an agonist state. Both the models were validated by their ability to rationalize the structure-

activity relationship data of two series of compounds, the isatin series of inverse agonists and 

the benzofuran series of agonist compounds. However, further validation studies are required. 

Validation of these models may be performed using the metrics of the benchmarking studies 

i.e. ability to discriminate CB2 specific binders from a decoy library and by their ability to 

identify inhibitors in a virtual screening study(101, 102). A small-scale study involving CB2 

agonist model is planned where molecular docking will be applied to rationally identify a small 

set of compounds for further experimental testing.  
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Data, Information and Knowledge. 

In line with the training at the School of Biomedical Informatics the homology modeling 

process can be explained in terms of data, information and knowledge. Protein sequence may 

be considered as data. A protein sequence by itself carries little or no information on its three-

dimensional structure or about how / why a bioactive compound would interact with this given 

protein. The next step in the modeling process is identifying a suitable template by means of 

sequence alignment. Once one or several homologous protein sequences are identified and 

sequences aligned a researcher now has information that can be used to build three-dimensional 

models. Here, the data now has meaning e.g. residues that may form well-defined tertiary 

structures are identified. In the cases explained in this thesis, information from experimental 

studies is incorporated in the modeling process to improve upon the accuracy of such crude 

models. This validated experimental information e.g. compound “x” interacts with protein “y” 

via residue “z” is included as e.g. restraints, to model the protein active site. Finally, the 

information is validated, and justified using means such as performance in high-throughput 

docking, rationalization of compound activities to provide knowledge about protein structure, 

functionality and its interaction with relevant biomolecules. 

Sharangdhar S. Phatak, M.S. 
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