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ABSTRACT 

RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND 

METHYLATOR PHENOTYPE IDENTIFICATION 

Publication No.________ 

Guoshuai Cai, M.S. 

Supervisory Professor: Shoudan Liang, Ph.D. 

 

      My dissertation focuses on two aspects of RNA sequencing technology. The first is the 

methodology for modeling the overdispersion inherent in RNA-seq data for differential expression 

analysis. This aspect is addressed in three sections: (1) Investigation of the relationship between 

overdispersion and sequencing depth on the gene level and modeling for differential expression 

analysis. (2) Investigation of the relationship between overdispersion and sequencing depth on the 

position level and modeling for differential expression analysis.  (3) Investigation of the hidden bias 

on the measurement of spike-in transcripts and modeling to correct this bias. The second aspect of 

sequencing technology is the application of RNA-seq data to identify the CpG island methylator 

phenotype (CIMP) by integrating datasets of mRNA expression level and DNA methylation status.   

      Section 1: The cost of DNA sequencing has reduced dramatically in the past decade. 

Consequently, genomic research increasingly depends on sequencing technology. To measure gene 

expression, RNA-seq, sequencing mRNA-converted cDNA, is becoming a widely used method. As 

it remains elusive how the sequencing capacity influences the accuracy of mRNA expression 

measurement,  an investigation of that relationship is required. First, we empirically calculate the 

accuracy of the RNA-seq measurement from repeated experiments and identify the source of error to 

be mainly library preparation procedures. Second, we observe that accuracy improves along with the 

increasing sequencing depth. However, compared with the accuracy predicted from the binomial 

distribution, the rate of improvement as a function of sequence reads is globally slower, which 

indicates that overdispersion exists and is related to sequencing depth. To model the overdispersion, 
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we therefore use the beta-binomial distribution with a new parameter indicating the dependency 

between overdispersion and sequencing depth. Our modified beta-binomial model performs better 

than the binomial or the pure beta-binomial model with a lower false discovery rate.  

Section 2: Although a number of methods have been proposed to handle these biases and 

spurious effects in order to accurately analyze differential RNA expression on the gene level, 

modeling on the base pair level is required to precisely estimate the mean and variance by taking the 

non-uniformity of RNA-seq into account. We show in Chapter 1 that the overdispersion rate 

decreases as the sequencing depth increases on the gene level. Here, we find that the overdispersion 

rate decreases as the sequencing depth increases on the base pair level, in agreement with what we 

previously reported for the gene level. Investigating the impact of the sequencing depth and local 

primer sequence on the overdispersion rate, we observe that the local primer sequence no longer 

significantly influences the overdispersion rate after stratification by the sequencing depth. Also, we 

propose four models and compare them with each other and with the DESeq model based on the 

likelihood value, Akaike information criterion, goodness-of-fit    test, false discovery rate and the 

area under the curve. As expected, our beta binomial model with a dynamic overdispersion rate is 

shown to be superior. Furthermore, this model has many advantages that make it more desirable than 

DESeq.  

      Section 3: We investigate biases in RNA-seq by exploring the measurement of the external 

control, spike-in RNA. This study is based on two datasets with spike-in controls obtained from a 

recent study. In the ENCODE dataset, 51 replicates of human samples were measured, and in the 

modENCODE dataset, 6 fly samples from difference scenarios were sequenced.  By comparing the 

patterns of the reads and correlations among samples, we observe an undiscovered bias in the 

measurement of the spike-in transcripts that arises from the influence of the sample transcripts in 

RNA-seq. Also, we find that this influence is related to the local sequence of the random hexamer 

that is used in priming. We suggest a model of the inequality between samples and to correct this 

type of bias. After corrections, the Pearson correlation coefficient increases by 0.1.  
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Section 4: The expression of a gene can be turned off when its promoter is highly methylated. 

Several studies have reported that a clear threshold effect exists in gene silencing that is mediated by 

DNA methylation. As the transcriptional regulatory system is complicated and has many 

components, it is reasonable to assume the thresholds are specific for each gene. It is also intriguing 

to investigate genes that are largely controlled by DNA methylation, as their methylation possibly 

plays an important role in cancer oncogenesis by significantly inhibiting transcription. These genes 

are called  “L-shaped” genes because they form an “L” shape when plotting mRNA expression level 

against DNA methylation status. We develop a method to determine the DNA methylation threshold 

using 997 samples across 7 cancer types from TCGA datasets. Then, from 285 tumor samples and 21 

normal samples of breast tissue, we select 128 “L-shaped” genes according to our criteria and 

identify the CIMP using biclustering and hierarchical clustering. We identify a new CIMP of BRCA 

with 11 markers and observe significant correlation between the CIMP+ subtype and the wild-type 

TP53 mutation, ER+/PR+ status, higher age at initial pathologic diagnosis, better treatment response 

and the possibility of a longer survival time. The 11 CIMP markers are shown to be associated with 

TP53 directly or indirectly, and enriched in cancer and other disease networks. Also, we find that 7 

epigenetic genes are strongly correlated with both the new CIMP and TP53 mutation. Based on our 

findings, we propose a model of the TP53-mediated regulatory network with two components: 

“guidance” genes and “ustainer” genes.  

In conclusion,  we provide a detailed understanding of the relationship between the 

overdispersion rate and sequencing depth, which will aid in the analysis of RNA-seq data for 

detecting and exploring biological problems. Additionally, we demonstrate a novel property of 

overdispersion in that it improves with sequencing depth. We propose a beta-binomial model with 

dynamic overdispersion on the position level. We demonstrate that our model provides a better fit for 

the data. We reveal a new bias in RNA-seq and provide a detailed understanding of the relationship 

between this new bias and the local sequence, which will aid in understanding RNA-seq technology 

and in correcting for this bias in the analysis of RNA-seq data. We develop a powerful method to 
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dichotomize methylation status and consequently we identify a new CIMP of breast cancer with a 

distinct classification of molecular characteristics and clinical features. Our results suggest that 

methylation may play an important role in resisting tumor development and that “guidance” genes 

and genetic modifiers BMI1, IDH1 and TET1 are potential new therapeutic targets.  
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CHAPTER 1 

Introduction 

 

1.1 Biases and Spurious Effects in RNA-seq Technology 

RNA-seq is becoming a common technique for surveying RNA expression.  Because the cost of 

next-generation sequencing is dropping dramatically, RNA-seq may soon replace microarray 

analysis in genome-wide surveys of gene expression [1]. Because of the complexity of RNA-seq 

technology, many inherent biases and unwanted effects exist that make it difficult to develop 

accurate methods for analyzing RNA-seq data. The various biases and effects that have been 

identified include a base calling bias, GC content bias, hexamer priming bias, length bias, library 

effect, and batch effect [2,3,4,5,6,7,8].  

Base calling has been reported to be biased. The errors in base calling have been found to 

increase from the start to the end of the reads. It is known that we can compensate for this error rate 

by increasing the sequencing depth. Dohm et al. showed that the error rate will shrink to close to 0 

when the sequencing depth reaches 20X [9]. Bravo and Irizarry demonstrated that the error rate 

varies for different nucleotide compositions [7].  

The GC content bias arises from the generation of a greater number of reads in regions that are 

enriched in G-C bases.  Thus, sequencing reads have been reported to be differently distributed, 

over-representing genes with more GC-enriched regions [7,9]. Also hexamer priming introduces bias 

according to its local sequence by PCR amplification. Li et al. showed non-uniformity in RNA-seq 

data [4], demonstrating that the number of sequencing reads per nucleotide can vary by 100-fold 

across the same gene. However, the patterns of reads are highly conserved across tissues. Local 

sequencing bias has been reported to be a major source of bias in the hybridization step for both 

microarray and sequencing technologies [3,4,10,11]. On microarrays, probe signals depend on the 

probe sequence. Li et.al investigated this influence and developed a model of binding interactions 

that improves the measurement of gene expression. Furthermore, probes may cross-hybridize to off-
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target transcripts that have sequences similar to those of the target transcripts. Many studies have 

been reported on detecting and modeling cross-hybridization events [10,12,13]. The use of a random 

hexamer primer has been shown to cause bias because of the specific hybridization affinity of its 

sequence. Both Hansen et al. and Li et al. confirmed that random hexamer priming causes biases in 

the nucleotide composition at the beginning of the transcriptome sequencing reads [3,4]. 

Length bias occurs in differential expression analysis of RNA-seq data. For genes with similar 

expressions, the total sequencing reads on them would correlate with their length such that more 

reads are observed on longer genes, and more power would be obtained in statistical testing in the 

differential expression analysis. Oshlack et al. validated that more differential expressions were 

detected on longer genes using several widely used statistical methods [14]. 

Furthermore, the sequencing measurement has been found to be influenced systematically by 

external factors such as the time when the measurement is made, the specific technician performing 

the measurements, and the specific library preparation procedure.  Leek et.al showed a distinct 

pattern produced by the batch effect on DNA sequencing measurements from the 1000 Genome 

project [15]. Because of the extra noise introduced by biases or spurious effects, measurements on 

the same gene often show a level of dispersion that is larger than that given by a Poisson distribution. 

A comparison of different samples often shows a dispersion that is larger than that given by a 

binomial distribution. This phenomenon has been termed overdispersion [4]. 

 

1.2 Current Methods to Correct Biases and Spurious Effects 

These biases and spurious effects have been investigated in several studies and researchers have 

suggested methods to control or correct them. Several methods have been developed to reduce the 

error rate of base calling and control the quality of the reads.  The use of spike-in transcripts has been 

suggested as a means of providing quality control and as a standard for normalization.  In addition, 

many statistical methods have been developed to correct for the biases and undesirable effects and to 

take them into account in the downstream analysis. 
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1.2.1 Reads Quality Control 

Because higher error rates have been found at the end of sequencing reads, some studies have 

suggested cutting several base pairs from the end of sequencing reads. Ensuring a high sequencing 

depth is one way to efficiently reduce the error rate. Alternative base calling methods have been 

developed to decrease the error rate of sequencing reads [16,17,18], and other methods have been 

developed to enhance the quality of sequencing reads after base calling [19,20,21,22]. 

 

1.2.2 Spike-in Transcripts 

In order to achieve quality control of measurements, the use of spike-in transcripts was first 

designed for microarray technology. Spike-in external controls are RNA strands synthesized in vitro 

that are designed to be fairly different from the genome being studied.  Several spike-in sets have 

been developed, including the GeneChip eukaryotic poly(A) RNA control kit, External RNA 

Controls Consortium (ERCC) spike-in controls, Agilent Technologies spike-in set  and others. The 

ERCC aims to establish 100 platform-independent controls for evaluating the quality of 

measurements [23]. Recently, Jiang et al. synthesized ERCC RNAs as a standard for next-generation 

sequencing as well. The ERCC RNA was synthesized from DNA derived from the deep-sea vent 

microbe M. jannaschii or the B. subtilis genome or by in vitro transcription of de novo DNA 

sequences [24]. The researchers used ERCC RNA to measure the biases produced by the GC content 

bias, transcript length bias, and measurements correlated with the local sequence of the priming 

hexamer. The measurement of spike-in controls can be used to measure the performance of data 

normalization and approaches to differential expression analysis [23,25]. 

 

1.2.3 Statistical Methods 

Several statistical methods have been suggested to correct for the biases and spurious effects of 

RNA-seq technology. In order to correct for the uniformity of measurement on the same gene, Li et 
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al. proposed a statistical method that is based on a linear model with the nucleotide composition at 

the beginning of the transcriptome sequencing reads as the predicative factor [4]. Li et al. were able 

to explain more than 50% of the variations and observed better estimations of gene expression on 

data from both Illumina and Applied Biosystems. Also, Zheng et al. proposed a generalized linear 

model based on the principal components transformed from dinucleotide compositions and gene 

length. Their method corrected for the biases on the gene level and could be used for meta-analysis 

on multiplatform data in terms of gene expression levels [8].  

Aiming to take overdispersion into account, the analysis of large datasets produced by RNA-seq 

requires compatible models and methods. Among those analyses, differential expression (DE) testing 

is foremost as an essential step [26]. Several methods for DE testing have been proposed, including 

reads per kilobase of gene length per million mapped reads (RPKM), a 2-stage Poisson model [27], a 

Bayesian method for calling DE [28], edgeR [29], DESeq [30], and others [26]. Compared with the 

methods based on Poisson and binomial models, methods based on a quasi-Poisson model and 

negative binomial model perform better by taking overdispersion into account. Auer and Doerge 

proposed the 2-stage Poisson model (TSPM) for differential expression analysis. TSPM first tests 

whether the gene is overdispersed and chooses the Poisson model or quasi-Poisson model 

automatically for the analysis of genes that are not overdispersed and which are overdispersed, 

respectively [27]. Further, the generalized linear model could be used to estimate parameters 

efficiently based on log transformation of the Poisson or quasi-Poisson model. The methods edgeR, 

DESeq and baySeq were based on a negative binomial model. The method edgeR estimates the 

variance for each gene specifically by borrowing information from all genes. An empirical Bayes-

like approach was used to achieve this aim [29]. Also, DESeq estimates specific dispersions from the 

local regression from the dispersions and means [30]. Using the negative binomial distribution as the 

priority distribution, baySeq employs an empirical Bayes method to estimate the specific posterior 

probability of a DE model for each gene. In addition, methods based on a Bayesian hierarchical 
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model have been proposed for DE analysis [28]. Oshlack et al. provided a critical review of the 

methods commonly used for DE analysis [31]. 

To correct for length bias, Oshlack suggested performing the DE analysis within a fixed-length 

window on all genes. However, much information would be lost using that approach. Later, Gao et.al 

proposed two methods to adjust for the length bias in DE analysis based on a Poisson model [2]. 

The best way to deal with batch effects is to avoid them by using a careful research protocol. A 

surrogate variable analysis can also be used to correct for batch effects through coefficient estimation 

in a linear model [32]. Also, methods such as fRMA have been developed to capture batch-to-batch 

variations for multiarray analysis [33,34]. 

 

1.3 Sequencing Analysis is Still Young and Our Research Hypothesis 

RNA-seq analysis methods are relatively new, and the biases and spurious effects inherent to 

RNA-seq technology are still not known clearly. Although many studies have investigated these 

biases and spurious effects and several statistical methods have been suggested for correcting or 

modeling them [4,27,29,35], the overdispersion properties of this technology remain elusive. 

Investigations of the properties of overdispersion will benefit the understanding of sequencing 

technology and the accuracy of downstream analyses. 

 

1.3.1 The Dependence of Overdispersion and Sequencing Depth 

As discussed above, by accounting for overdispersion, the negative binomial and quasi-Poisson 

models showed much better performance than the former models based on binomial or Poisson 

distributions. And models with dynamic overdispersion rates were superior to models with constant 

overdispersion rates [27,29,35]. The constant overdispersion rate is good for describing a genetic 

difference. However, for genes with no genetic variations, a constant overdispersion rate is 

inappropriate, based on the intuition that along with increasing sequencing depth the accuracy of the 

measurement should improve. Therefore, knowing the properties of overdispersion will be crucial 
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for accurate down streaming analysis, especially for DE analysis. Because the relationship between 

overdispersion and sequencing depth had not been illustrated, to our knowledge, in this study we first 

investigated this intuitive notion of dependency. 

 

1.3.2 Modeling on Base Pairs Rather than Genes 

Two important and related findings on RNA-seq have been reported. First, Li et al. showed 

non-uniformity in RNA-seq data [4], including that the number of sequencing reads per nucleotide 

can vary by 100-fold across the same gene. However, they found that the patterns of reads are highly 

conserved across tissues. Second, both Hansen et al. and Li et al. confirmed that random hexamer 

priming causes biases in the nucleotide composition at the beginning of transcriptome sequencing 

reads [3,4]. These findings indicate that the measurement on each base pair of a gene has a specific 

mean and variance. Therefore, it is more reasonable to model the measurement based on a base pair 

rather than a gene. Also, in Chapter 1.3.1, we assumed that the main source of the variance is in the 

library preparation steps prior to DNA sequencing and showed that the overdispersion rate decreases 

as the sequencing depth increases on the gene level from the above hypothesis. On the basis of these 

findings, we developed three corresponding hypotheses. (1) Where there is no difference between 

two samples, the ratio of the measurements of each base pair on a gene from two samples is a 

constant across the whole gene. With this assumption, the beta-binomial model is appropriate for 

comparing samples in two conditions, as modeling on proportion will transform the distribution of 

reads mapped to base pairs from non-uniformity to uniformity. (2) The overdispersion rate is 

influenced by random hexamer priming.  (3) On the base pair level, as we found on the gene level, 

the overdispersion rate decreases as the sequencing depth increases. To test these hypotheses, we 

developed two beta-binomial models. One was a full model based on all three hypotheses, and the 

other was a reduced model based on hypotheses 1 and 3. 

 

1.3.3 Study of Biases from Spike-in Transcripts 



 

 

7 

 

As reviewed above, the local sequence has been reported to influence the measurement from 

RNA-seq for both microarray and sequencing technologies. Measurement signals in microarrays can 

be influenced by the affinity of the probe sequence with the target transcript. And cross-hybridization 

is a well-known cause of bias in microarray technology; therefore,  probes could target spike-in 

transcripts through cross-hybridization [13].  In RNA-seq, the interaction between spike-in and target 

transcripts remains elusive, although the spike-in transcripts were designed to be quite different from 

the target transcripts. Also, as a stable quantitative source, spike-in transcripts will offer new insights 

in understanding biases in RNA-seq. 

In this study, aiming to identify potential sources of bias in RNA-seq and develop statistic 

models to correct for such bias, we investigated the potential biases from the measurement of spike-

in transcripts. 

 

1.4 Beta-binomial Distribution and Overdispersion 

For RNA-seq analysis, a fundamental question is the relationship between the accuracy of the 

measurement and the increasing depth of sequencing [36]. The sequencing depth was represented by 

the total number of mapped reads for each position of a gene, which can be accumulated from 

multiple lanes for the same sample. Aiming to compare mRNA expression from two samples, we 

usually assume a binomial distribution. In the binomial model, the uncertainty is 
 

√ 
, where   is the 

number of mapped reads on the gene and the uncertainty will shrink to 0 when   is large. It has been 

shown that the ratio of read counts from two samples follows a binomial distribution [35,37]. 

However, as discussed above, biological differences and biases introduce extra noise. A distribution 

with a larger dispersion than that observed from the binomial distribution has been shown by 

comparing the measurements of different samples [3,4]. A beta-binomial distribution can be used to 

capture this overdispersion appropriately.  Beta-binomial distributions have been used for differential 
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expression analysis on SAGE data [38], and on peptide counts from label-free tandem mass 

spectrometry-based proteomics [39]. The probability mass function of a beta-binomial distribution is 

 ( |     )  (
 
 
)

 (         )

 (   )
. 

This is the probability of obtaining   observations from   sample pools. Parameters    and   were 

inherited from the beta distribution, followed by the probability of the observation. After 

reparameterization by  
 

   
 ,   

 

   
, the variance from the beta-binomial distribution can 

expressed  as 

   ( )   (   ) 
 

 
 

  
 

 
 

 
  

 . 

Form the equation, the dispersion contains two parts: the first part is from the binomial distribution, 

which shrinks to 0 when   is large, and when n is large, the second part is a constant. Although using 

a constant for all genes is appropriate to capture the genetic variant; it may not be correct for genes 

without genetic variations.  

 

1.5 DNA Methylation and Its Significance in Cancer 

It has been shown that DNA methylation is related to cancer through the hypermethylation of 

cancer suppression genes and hypomethylation of oncogenes. This research on DNA methylation has 

focused on the methylation status of CpG island promoters. The reason for this focus is that CpG 

island promoter methylation has been demonstrated to silence genes permanently in mammalian 

cells. Recent studies have shown that global epigenomic alterations cause silencing in cancer with 

the altered pathways involved in stem cell growth and differentiation [40]. 

 

1.5.1 DNA Methylation and Cancer 
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It is known that a gene may gain or lose its function through mutation, amplification, or 

deletion of the genomic neighborhood of the gene. It is also increasingly appreciated that, in cancer, 

a gene may also lose its function through epigenetic changes—particularly by DNA methylation of 

its promoter [41,42]. Since DNA methylation as a “silencing” epigenetic change was proposed in 

1975, many of its properties have been identified. About 80% of CpG pairs in the human genome are 

chemically modified by the attachment of a methyl group to the cytosine ring. CpG methylation 

represses transcription and is thought to be a mechanism to control the transposable elements. The 

only location where CpG pairs tend not to be methylated is near the transcription start sites, in CpG-

rich regions called CpG islands. CpG methylation is epigenetic, i.e., the methylation pattern is 

preserved mitotically. A genome-wide survey of DNA methylation has shown that the pattern of 

DNA methylation changes drastically in cancer: there is massive hypomethylation genome-wide, but 

hypermethylation in CpG island promoters. The hypermethylation of CpG island promoters results in 

the silencing of a large number of genes. By some estimate, the number of genes silenced by DNA 

methylation is about ten times the number of mutated genes [43,44], therefore the number of genes 

silenced by DNA methylation is much larger than the number of mutations. 

 

1.5.2 CpG Island Methylator Phenotype (CIMP) 

CIMP was first discovered in colorectal cancer [45] as tumor-specific CpG island 

hypermethylation of a subset of genes in a subset of tumors. This was confirmed later [46] and has 

also been found recently in glioma [47]. Previously, several aberrant methylations of genes were 

reported in breast cancer [48,49,50,51,52,53], and DNA methylation patterns have been claimed to 

be associated with histological tumor grade [49,54], tumor growth [55,56,57], hormone receptor 

status, Her2 expression [56,58,59,60], and breast cancer subtypes  [61,62,63]. Only a few studies 

have claimed CIMP with hypermethylated genes for breast cancer [64]. Others have argued that 

more studies are required in order to confidently state that CIMP exists for breast cancer [51]. 

However, very recently, TCGA identified methylation clusters that significantly correlate with 
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mRNA subtypes, and mutations of TP53, PIK3CA, MAP3K1 and MAP2K4 [65]. In order to 

investigate CIMPs with the new insight of dichotomizing methylation status, the present study 

focused on breast cancer. 

 

1.5.3 DNA Methylation and mRNA Expression 

      The expression of a gene can be turned off when its promoter is highly methylated. The exact 

amount of methylation that will trigger gene silencing depends on the gene as well as the relative 

position of the CpG site to the transcription start site (TSS). Several studies have reported that a clear 

threshold effect exists in the gene silencing mediated by DNA methylation, and that significant 

transcription inhibition occurs only when the methylated CpG islands reach a certain level [66,67]. 

We also verified this threshold effect genome-wide in this study. The transcription regulatory system 

is well known as an extremely complicated system with many components, including gene-gene 

interaction, microRNA regulation, and DNA methylation. Also, the hybridization properties of the 

probe affect the signal strength for C/T nucleotides and introduce an additional variable from the 

measured beta value to the gene expression status. Therefore, the threshold of DNA methylation 

should be gene-specific. To determine whether a gene is turned off by DNA methylation, we 

therefore must determine a probe-specific threshold in order to dichotomize the methylation status. 

As we have discussed, the DNA methylation threshold is a stable indicator of whether a gene has lost 

function. There are several potential benefits, including a better definition of the CIMP. A good way 

to find the CIMP is by biclustering, in which we search for a sub-cluster of genes and tumors that 

have the same methylation status. Dichotomizing methylation makes the task of biclustering easier 

[68,69]. The measurement of DNA methylation can be represented by a   value for each tag, which 

is the proportion of methylated signals among all signals. 

   
  

     
, 

where for the  -th tag,      is the methylation signal and    is the unmethylation signal. 
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1.6 Reduced Representation Bisulfite Sequencing (RRBS) 

      DNA methylation can be determined genome-wide using reduced representation bisulfite 

sequencing (RRBS). Bisulfite treatment of DNA converts cytosine to uracil but leaves methylated C 

unchanged. DNA sequencing of the whole genome and comparing the sequence at CG with the 

reference therefore allows the methylation status to be determined genome-wide [70,71]. Whole-

genome sequencing is expensive. RRBS is cheaper but it is difficult to control the coverage. Most of 

the genome-wide data on cancer are obtained by reading C/T polymorphism using well-established 

SNP arrays. Illumina Infinium is an assay specially designed to measure methylation in the 

promoters of annotated genes. It has on average four probes per gene and therefore measures the 

methylation of four CpG sites per gene. This is far less expensive and is at present the most cost-

effective method of measuring methylation systematically.  

 

1.7 Challenges and Our Hypothesis on DNA Methylation 

Many studies have been developed on DNA methylation and many findings have been reported. 

Several properties of CpG island (CGI) methylation have been classified from studies [72]. We list 

six such properties here:  (1) at a transcription start site (TSS), most CpG islands are hypo 

methylated; (2) long-term silencing is associated with CGI methylation; (3) sometimes a tissue-

specific pattern can be identified in CGIs in gene bodies; (4) compared with that of CGIs, the 

methylation status of non-CGIs is more tissue-specific and more dynamic; (5) rather than elongation, 

methylation blocks the start of transcription; and (6) cancer-causing mutations can be the 

consequence of methylation in gene bodies. However, it is still a big challenge to clarify the 

mechanisms underlying DNA methylation and its function regarding RNA expression. We sought to 

investigate genes that are largely regulated by DNA methylation.  

Aiming to identify the genes of interest and determine the DNA methylation threshold for the 

inhibition of mRNA expression as discussed above, in this study we took advantage of computing 

conditional mutual information scores, which will be robust in determining the methylation threshold 
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specific to one site on a particular gene. The novelty of this new method is that it relates gene 

silencing by DNA methylation of promoter CpG islands to gene expression in several tissues, and 

increases the accuracy of the determination of mRNA methylation status and expression status. 

Fortunately, some consortia such as TCGA have made efforts to profile a large collection of patients’ 

samples for mRNA expression, miRNA expression, DNA copy number, and methylation status, 

which makes our study feasible. Based on the genes identified to have large contributions from DNA 

methylation on transcription regulation, we intended to find a new CIMP of breast cancer in this 

study. 

 

RNA sequencing technology is complicated and is characterized by many inherent biases and 

spurious effects. Statistical methods are still limited for accurately estimating overdispersion in DE 

analysis. Studies have shown that the sequencing reads are not uniformly distributed on genes and 

are correlated with the nucleotide composition of the hexamer primer local sequence. Also, with the 

intuition that added increments of sequencing depth will improve the accuracy of the measurement, 

we investigated the relationship of the overdispersion rate and sequencing depth. We suggested 

methods based on a beta-binomial model to estimate the overdispersion rate for DE analysis on both 

the gene level and the position level. Also, inspired by the cross-hybridization issue inherent in 

microarray technology, we investigated the measurement of spike-in transcripts from RNA-seq, 

aiming to identify hidden biases. In addition, in order to identify cancer-related genes in terms of 

methylation status, we developed a method to identify genes for which expression was highly 

regulated by DNA methylation.  From these genes, we identified a new CIMP with correlations 

between the molecular signature and clinical features. 
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CHAPTER 2 

Accuracy of RNA-seq and Its Dependence on Sequencing Depth 

 

In the past decade, the cost of DNA sequencing has been rapidly and dramatically decreasing.  

Consequently, sequencing technologies are widely used for genomic research today. Many 

sequencing platforms have been developed for specific aims, among those, RNA-seq is a key 

technique to measure gene expression. Sequencing technology is complicated, and many of its 

properties remain elusive even though numerous studies have been devoted to it. Based on the 

intuition that increasing the sequencing depth could improve the accuracy of the measurement, we 

sought to investigate this relationship in order to benefit downstream analyses such as differential 

expression analysis. 

Toward this aim, we empirically evaluated the variance in three RNA-seq datasets.  Based on 

our observation, we concluded that the error of RNA-seq measurements was mainly from the library 

preparation steps prior to sequencing. And we observed that increasing the sequencing depth indeed 

improves accuracy. However, in general, with an incremental increase in the depth of the sequencing 

reads, the overall dispersion decreases more slowly than predicted by the binomial distribution. This 

indicates that overdispersion exists and decreases along with increments in the sequencing depth. 

Applying this property, we developed a method based on the beta-binomial distribution with a new 

parameter to model the relationship between overdispersion and the sequencing depth. We borrowed 

the information from all genes of replicates to capture this relationship. Then, we estimated the mean 

and dispersion of each gene specifically according to this relationship. By indicating the specific 

overdispersion for each gene, our method showed a better performance than the methods based 

directly on binomial and pure beta-binomial distributions.  

We demonstrated a novel property of overdispersion in that it improves with increments in the 

sequencing depth. Also, we proposed a new form of overdispersion in the beta-binomial model to 
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borrow the information from all genes to estimate specific parameters for each individual gene. We 

demonstrated that this new form fits the data better. 

 

2.1 Methods 

2.1.1 Peak of Histogram of Proportion Normalization 

      The normalization procedure using the peak of the histogram of proportion assumes that 

most genes remain unchanged in the two conditions being compared. In this normalization 

procedure, we fit the highest peak in the histogram of proportion to a beta function. The 

maximum of the beta function determines the normalization proportion   . 

In RPKM normalization, we first count the total number of tags mapped to any gene in 

the RNA-seq experiment. The number of tags mapped to a particular gene is divided by the 

total number of tags sequenced (the unit is millions of tags), and then divided by the number 

of nucleotides in the gene (the unit is thousands). [73] 

 

2.1.2 Datasets Used 

The three datasets we used are listed in Table 2.1. 

 

Table 2.1 Three datasets [73] 

Data Sets A B 

Caltech Normal Blood Embryonic Stem Cells 

 Rep1Gm12878CellLongpolyaBow0981x32 PairedRep1H1hescCellPapErng32aR2x75 

 Rep2Gm12878CellLongpolyaBow0981x32 PairedRep2H1hescCellPapErng32aR2x75 

 PairedRep1Gm12878CellLongpolyaBb12x75 PairedRep3H1hescCellPapErng32aR2x75 

 PairedRep2Gm12878CellLongpolyaBb12x75 PairedRep4H1hescCellPapErng32aR2x75 

Chiang Knock-out of TDP-43 Wild Type 

 GSM546932 A sorted GSM546935 B sorted 

 GSM546933 D sorted GSM546936 C sorted 

 GSM546934 E sorted  

Bullard Brain UHR library A UHR library B 

 SRR037457 SRR037466 SRR037470 

 SRR037458 SRR037467 SRR037471 

  SRR037468 SRR037472 

  SRR037469  
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The Chiang dataset consisted of five independent libraries of the deleted TDP-43 gene 

in the mouse. The data were derived from three independent clones of TDP-43 knockout 

embryonic stem (ES) cells and two independent clones of control ES cells. Raw reads were 

mapped to the University of California Santa Cruz mm9 genome library by efficient large-

scale alignment of nucleotide databases. One gene deletion is an ideal case for testing 

normalization procedures with the assumption that most genes do not change. 

The Caltech dataset consisted of two cells lines: GM12878 (normal blood) and H1hESC 

(embryonic stem cells), each with four libraries made independently from the same 

biological sample. The process involved raw Illumina reads on 2x75 datasets (RawData files 

on the download page, fasta format), which were run through Bowtie, version 0.9.8.1, with 

up to 2 mismatches. The resulting mappings were stored (RawData2 files, Bowtie format) 

for up to ten matches per read to the genome, spiked controls and UCSC knownGene splice 

junctions. 

The Bullard dataset consisted of human brain reference RNA and human universal 

reference RNA as two library preparations. We used Bowtie, version 0.12.7, to align the 

reads to the genome (H. sapiens, NCBI 37.1 assembly). The Bowtie command we used to 

implement this mapping strategy was ./bowtie -a -v 2 -t -m 1 --best -strata  

h\_sapiens\_37\_asm. [73] 

 

 

2.1.3 Maximum-likelihood Estimation (MLE) 

      Let     and     be the tags mapped to the  -th gene and  -pair of experiment and 

control, respectively. The likelihood function according to the beta-binomial distribution is 

    (
       

   
)

∏ (     )
     

   
∏ (     )

     

   

∏ (         )
         

   

, 

where     and     are two parameters of the beta-binomial distribution. This is equivalent to 

using instead the parameters     
   

       
and     

 

       
. It can be shown analytically 

that the proportion that maximizes the likelihood function is given by      
   

       
. We 

will further assume that     is independent of   ; we reparameterize    in terms of 

parameters    and  :     
  

(       ) 
. The parameters were determined by maximizing the 

likelihood 

     ∑              ( ) [73] 

       

2.1.4 Likelihood Ratio Test 

      According to the likelihood ratio test,    (
 (  )

 (  )
) follows a    distribution, where    is 

the proportion for gene   and    is the normalized proportion corresponding to no change in 

gene expression. This is the most convenient way to compute the  -value. [73] 

 

2.1.5 FDR and ROC 

      To determine the false discovery rate (FDR), we assumed that any gene deemed to be 

significantly differentially expressed at a given  -value was false when comparing two 

replicates sequenced from the same biological sample. We computed the FDR by dividing 
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the number of falsely discovered genes at a given   -value by the number of significantly 

differentially expressed genes, and comparing the sample to the control at the same   -value.  

To determine the receiver operating characteristic (ROC), we first established a gold 

standard. Approximately 1,000 genes in the Bullard dataset were previously assayed by RT-

PCR in four independent experiments [74]. Differentially expressed genes were determined 

by t-test by Bullard et al. [37]. We used their results   to draw an ROC curve when 

comparing the binomial and beta-binomial distributions for the Bullard dataset. For the 

Caltech and Chiang datasets, we assumed that the t-test provided a gold standard. In order to 

reduce errors for small tag counts, we required a gene to have more than 20 mapped tags. 

For the Caltech data, the Benjamini & Hochberg adjustment was applied to the   -value 

calculated by the t-test, using a cutoff of 0.05 [75]. We could not use the FDR   -value 

adjustment on the Bullard dataset, as much fewer genes had differential expression levels 

detected from the wild/knockout samples. Therefore, we applied a cutoff of 0.05 to the   -

value from the t-test and required a fold change larger than two. [73] 

 

2.1.6 Computing the Fold Change 

      We related the fold change in the gene expression level     to the optimized ratio    and 

obtained, by definition,     
  

    
. This ratio has to be calibrated against the normalization 

of the entire experiment. We defined    as no change. Therefore,     (   )      (
  

  
)  

    (
    

    
), where    is the normalized ratio as determined over the entire dataset. Infinite 

values of     can be avoided by adding a pseudo-count to    and    so that       . [73] 

 

2.2 Results 

2.2.1 Normalization by Proportion 

The use of a proportion is a convenient way to compare two samples. Let    and    be 

the number of tags mapped to gene  . The proportion is defined as    
  

     
. It is 

convenient to use a proportion because differences in proportion give rise to  -values using 

established statistics such as binomial and beta-binomial distributions. A proportion is also a 

convenient component of a normalization procedure. 

In order to detect differential expression in two samples, we must determine the ratio of 

the counts in the two samples that corresponds to the same expression. One method, adapted 

in calculating the RPKM, assumes that the total number of tags sequenced, and equivalently 

the total amount of RNA, is a constant. The problem with RPKM normalization is that the 

number is dominated by a few genes that receive the highest number of sequence reads. 

These genes may or may not remain constant under the two experimental conditions. One 

could also use housekeeping genes such as POLR2A (polymerase II) or GAPDH in a 

normalization procedure. The problem with relying on a housekeeping gene is that the 

normalization depends on the choice of genes. Since the number of housekeeping genes is 

small, this normalization procedure is subject to fluctuation due to relatively small tag counts 

on these genes. Bullard et al. have shown good results with an upper-quartile normalization 

method [37]. 

The most conservative normalization procedure assumes that the maximum number of 

genes remains unchanged in the two experimental conditions. This corresponds to the 

maximum in the histogram ratio of tag counts  
  

  
. The tag count proportion    is more 
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convenient to use. The maximum in a histogram of    that corresponds to the neutral ratio 

  , where the expression levels are assumed to be equal in the two samples. This maximum 

can be determined from fitting a Gaussian (or beta function) to the peak of the histogram 

(Figure 2.1). In this formulation, the RPKM normalization corresponds to choosing     
 

   
, where   and   are the total number of tags to genes in the experiment and control.  

This peak of histogram normalization is expected to be the most reasonable procedure 

for the Chiang dataset [76], which consists of the wild-type and knockout versions of the 

TDP-43 gene (see Data and Methods for details). For this dataset, we expect the perturbation 

to the global gene expressions to be smaller than when comparing two different types of 

cells. Indeed, our peak for the histogram normalization procedure resulted in a median of  

base-2 logarithm of expression difference ratio between the wild-type and knockout gene of 

0.014, which is to be compared to 0.025 for the median under the RPKM normalization 

procedure. This showed that peak normalization was comparable to and perhaps slightly 

better than RPKM normalization. 

Normalization is performed according to the assumption that most of the genes do not 

change expression in the two experimental conditions. Although this convenient assumption 

is probably true in most cases, it has no ironclad biological justification. [73] 

 

 
Figure 2.1 Histogram of proportions and peak of histogram of proportion normalization. The 

peak in the histogram corresponds to the largest density of genes. To determine the peak 

maximum, the histogram was fitted to a beta function. The blue curve shows the best fit with 
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the maximum at         . This is to be compared to the proportion corresponding to 

RPKM normalization,      . [73] 

 

2.2.2 Binomial Distribution Fits the Variance from the Same Library but not from Different 

Libraries 

      We empirically studied errors in RNA-seq experiments by examining the variance from 

replicated measurements. We first examined the fluctuation in reads mapped to a gene from 

duplicate experiments based on the same biological sample. The  -values of the differences 

were computed according to a binomial distribution by comparing to a neutral ratio    as 

determined by peak normalization. For the same sample and the same library preparation 

sequenced in different lanes of the Illumina sequencer, the histogram of the  -values is flat 

(Figure 2.2 a). This indicates that the errors in different lanes containing samples from the 

same library are consistent with the binomial distribution. In contrast, the histogram of  -

values according to the binomial distribution for two independent library preparations 

showed clear overabundance of small p-values (Figure 2.2 b). This demonstrated that the 

binomial distribution does not adequately describe the data---the dispersion of the random 

fluctuation is stronger than that given by the binomial distribution. We use the term library 

preparation to refer to an independent extraction of RNA, conversion to DNA and PCR 

amplification of DNA. Since the experiment and the control must be in separate library 

preparations, it is important to capture this overdispersion. The overabundance of small  -

values for different libraries was also true when we used Fisher's exact test (data not shown). 

When we used the beta-binomial distribution to compute the  -values for the different 

libraries, the histogram was flat. This shows that the overdispersion is accounted for by the 

beta-binomial distribution. A Q-Q plot against either a binomial or beta-binomial 

distribution (data not shown) also indicated that the beta-binomial distribution better fit the 

data. [73] 
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Figure 2.2 Histogram of  -values of gene expression differences from duplicate experiments 

on the same biological sample. (a) Duplicate experiments were from the same DNA library 

sequenced in different lanes. The  -values were calculated from the binomial distribution. 

(Two datasets compared: Bullard SRR037457 vs SRR037458.) (b) When the binomial 

distribution is applied to the same biological sample prepared in two different libraries, more 

genes than expected had small probability, which erroneously predicted the existence of 

significantly differentially expressed genes when there should not be any. (Two datasets 

compared: Bullard SRR037467 vs SRR037471.)  (c) When the same two libraries are 

compared using the beta-binomial distribution, there is no longer a high density at small  -

values. Peak of proportion normalization was used in these calculations.  These histograms 

were drawn using R package Bum-class. [77] [73] 
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2.2.3 Errors Decreased with Sequencing Depth 

      We first addressed the uncertainty in the RNA-seq measurement and how uncertainty 

was related to the sequencing depth empirically from repeated measurements. Specifically, 

from replicates of the biological sample, we calculated the standard deviation of the 

proportion. If the proportion satisfied the binomial distribution, we expected (     )  
  (    )

(     )
, where    and    are tags mapped to gene   in two duplicate experiments of the 

sample (possibly from different libraries),    
  

     
 and    is the normalization proportion. 

Figure 2.3 shows a plot of  
(     ) 

  (    )
, averaged over pairs of duplicate experiments (Table 

2.1), as a function of the mean       for the three sets of experimental data. These figures 

show that the variance of the proportion continued to decrease at large       and there 

was no sign of saturation.  However, the rates of decrease with the tag counts depended on 

the dataset and were slower than that given by the binomial distribution. [73] 
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Figure 2.3 The variance of proportion versus the mean tag counts in base-10 log scale. The 

variances of proportion were computed from replicates of the same biological samples. (a) 

Caltech dataset; (b) Chiang dataset; (c) Bullard dataset. Each point represents a gene 

averaged over replicates (see Table 2.1 for the number of replicates for each dataset). The 

red line has a slope of -1. The black line is fit to the data for a mean (x-axis) larger than 2 

(count greater than 100). [73] 
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2.2.4 Modified Beta Binomial Distribution 

      We used a beta-binomial distribution to describe the overdispersion in the data, as shown 

in Figure 2.2 b. However, in the beta-binomial distribution, the standard error approaches a 

constant as the mean tag counts become very large, whereas empirically, the standard error 

follows a decreasing trend at large tag counts (Figure 2.3). We therefore made the following 

assumption about the form of the   parameter in the beta-binomial distribution (see Method 

for details). Let    and    be the number of tags mapped to gene  . We make    depend 

explicitly on the tag counts. 

   
  

(     )
 
   ( ) 

Under this assumption, for      , the asymptotic form of the variance of the proportion 

at large tag count          according to the beta-binomial distribution is   
  

. 

Therefore the variance of the proportion of the modified beta-binomial distribution does 

approach zero at large  , but at a slower rate than in the binomial distribution. [73] 

 

2.2.5 Determining the Parameters   and    

      Although   can be estimated from the slope and intercept, in the log scale of variance 

versus the mean tag count (Figure 2.3), it required multiple experiments and had low 

accuracy due to data scattering.  For a better estimation of the parameters $\gamma$ and    

in Eq.2, we used maximum-likelihood estimation (MLE). In this approach, the likelihood 

was derived from the beta-binomial distribution of tag counts    and    for gene  , and 

summed over all the genes and over all the pairs of duplicate experiments. The 

overdispersion parameters    were given by Eq.2 and the parameter   and parameters    for 

each gene were chosen to maximize the likelihood. The plots in (Figure 2.4) were obtained 

by performing a full optimization of likelihood Eq.1 (see Methods) with respect to    for 

each  , and plotting the optimized likelihood values  against  . Table 2.2 compares the   

from two estimates. The estimated   depended on the data. We computed   for three sets of 

data. The values ranged from 0.2 to 1.0 (Figure 2.4). These estimates were consistent with 

those from the standard error (Figure 2.3). [73] 
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Figure 2.4 Beta-binomial likelihood as a function of the parameter   (a) Caltech dataset; (b) 

Chiang dataset; (c) Bullard dataset. The vertical lines marked the position of maximum. [73] 

 

Table 2.2 Two estimations of    from three datasets [73] 

Data Set Pairs of Experiments 

used in calculation 

Standard Error
1
 MLE

2
 

Caltech 6
a
 0.26 0.2 

Chiang 3
b
 0.40 0.2 

Bullard 12
c
 0.76 1.0 

1obtained from slope in Figure 2.4 
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2 from maximizing likelihood Eq.(1) 

a from four libraries of same biological sample 

b from three knockout replicates and two wild type replicates 

c by comparing two di_erent libraries having four and three replicates 

 

 

2.2.6 Comparison of Beta-binomial and Binomial Distributions 

      Figure 2.5 shows a comparison of the false discovery rates (FDRs) [75] and receiver 

operating characteristics (ROCs) [78] for genes deemed to be differentially expressed by the 

binomial and beta-binomial distributions. For the Bullard dataset, the results were 

comparable for the two distributions. For the Caltech and Chiang datasets, the beta-binomial 

distribution was superior (for dataset details, see Methods). 

We took the top 300 genes deemed most significantly differentially expressed by a t-test, 

and by binomial and beta-binomial distributions, and overlaid them in a plot of the fold 

change versus the average tag counts (see Figure 2.6 and Figure 2.7). We note that the genes 

identified as significantly differentially expressed by the binomial distribution tended to have 

large tag counts; whereas many genes identified as significantly differentially expressed 

from the t-test had small tag counts. Some genes identified as significantly differentially 

expressed by the binomial distribution (marked by a triangle only) were not identified as 

significantly differentially expressed by the beta-binomial distribution, even though they had 

higher fold changes than other genes at similar tag counts. The large fluctuations in the 

assessment of these genes are evident because they were also not called significantly 

differentially expressed by the t-test. [73] 
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Figure 2.5 False discovery rate (FDR) and receiver operating characteristic (ROC) for three 

datasets. (a) and (b) Caltech dataset; (c) and (d) Chiang dataset; (e) and (f) Bullard dataset. 

Three panels on the left indicate the FDR. FDR (on y-axis) is plotted against the number of 

most significantly differentially expressed genes (on x-axis). Three panels on the right 

indicate the ROC. Bi denotes binomial distribution; BB denotes beta-binomial distribution. 

The line for BB     was obtained by setting     and optimizing   . It corresponds to 

the normal beta-binomial distribution. In (b), the line for BB     overlaps with the line for 

BB    .3. [73] 
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Figure 2.6 Gene expression fold change in the TDP-43 deletion vs wild-type genes (Chiang 

dataset). Gene expression fold change is plotted against the average tag counts (x-axis in 

base-10 log; y-axis in base-2 log). The 300 most significantly differentially expressed genes 

by  -values are depicted by squares (t-test), diamonds (beta-binomial distribution), and 

triangles (binomial distribution). Black circles represent genes not among the top 300 in any 

methods. The green and purple boxes and lines indicate the median for RPKM and peak of 

proportional normalization. The data were from the average of three deletion and two wild-

type experiments. [73] 
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Figure 2.7 Venn diagram comparison. The overlap of top 300 genes identified by beta-

binomial (bb) binomial (bi), and the t-test (t) is shown. The number in the lower right of the 

rectangle indicates the total number of transcripts detected. [73] 

 

2.3 Discussion 

In this study, we investigated the error of the gene expression measurement from replicated 

RNA-seq experiments. We observed that a binomial distribution fit the comparison of the 

sequencing reads from different sequencing lanes of the same sample, but not from the different 

preparations of the same biological sample. This observation indicated that a binomial or Poisson 

distribution fit the nature of the sequencing technology but larger variations could be introduced by 

the library preparation steps prior to obtaining replicates of the same biological sample. Also we 

observed that the accuracy of measurement from RNA-seq improved along with increments in 

sequencing depth. However, compared with the overdispersion predicated by the binomial 

distribution, the calculated dispersion decreased more slowly along with the increment of the 

sequencing reads, and many false discoveries were observed from the testing based on the binomial 

distribution. This indicated that overdispersion exists and is introduced by library preparation, and 

that it decreases roughly linearly along with the increment in sequencing depth on a log scale. We 

developed a method based on the beta-binomial distribution with a new parameter to model the 

relationship between overdispersion and the sequencing depth. We borrowed the information from 

all genes by introducing the overdispersion parameters in a function of the number of reads to 

estimate the specific means and dispersion of each gene. We used the maximum likelihood method 

to determine the parameters. And by comparing the false discovery rate (FDR) and receiver operator 
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characteristics (ROCs), we showed that our modified beta-binomial model was superior to the 

binomial model without an overdispersion parameter and to the beta-binomial model with an 

overdispersion parameter that is constant for all genes.  

The advantages of modeling the proportion of measurement counts to detect the differential 

expression drove us to adapt the beta-binomial distribution rather than the Poisson model. Many 

studies have reported highly non-uniformly  distributed patterns of measurements from RNA-seq on 

genes [4], and that this non-uniformity is correlated with the local sequence around a random 

hexamer primer [3,4]. In this situation, the Poisson rate could fluctuate by even a hundred-fold at 

different positions of the some gene. However, the non-uniform distribution was similar between 

replicates of the same sample or even among measurements of samples from different tissues [4]. 

Therefore, we could avoid estimating the highly fluctuating Poisson rate on the same genes by 

comparing the proportion of measurement of two samples.  By modeling the proportion, the non-

uniformity was estimated indirectly only through the dispersion. Avoiding estimating the highly 

fluctuating Poisson rates is therefore advantageous for modeling the proportion of measurements 

based on the beta-binomial distribution. 

In our model, parameter    in Eq.2 describes the decreasing rate of overdispersion along with the 

increasing sequencing depth. Our model will reverse back to the pure beta-binomial distribution 

when the parameter   goes to 0. Interestingly, we observed that the estimated   values were 

dissimilar across the different datasets. This phenomenon is commonly found in measurements from 

different experiments; for example, the GC count bias in sequencing data has been reported to vary 

between experiments [9]. Therefore, the experimental protocol might influence parameter    which 

indicates the decreasing rate of overdispersion along with an increasing sequencing depth. Because 

of the non-uniformity of measurements on genes, it is interesting to investigate the property of 

overdispersion on each position and it will be more accurate to model measurements on the position 

level. We carried on the study and proposed another parameterization of overdispersion based on the 

position, which we describe in the next chapter. 
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CHAPTER 3 

Modeling the Non-uniformity of Measurement from RNA-seq for 

Differential Expression Analysis 

       

Many biases and spurious effects are inherent in RNA-seq technology. A number of methods 

have been proposed to handle these biases and undesirable effects in order to accurately analyze 

differential RNA expression at the gene level. However, modeling at the base pair level is required to 

precisely estimate the mean and variance of the measurement, because the sequencing reads are non-

uniformly distributed on one gene. As a consequence, each position on one gene has a specific mean 

and variance. It has been reported that priming with a random hexamer contributes to the non-

uniformity, which is related to the local sequence around the priming site.  In Chapter 2, we showed 

that the overdispersion rate decreased as the sequencing depth increased on the gene level.  On the 

basis of these findings, we developed three corresponding hypotheses. (1) In comparison of the gene 

expression of two samples, the null hypothesis is that there is no difference between two samples, 

even on each position of a gene. Therefore, the proportion of the measurement on each position will 

be a constant. With this assumption, modeling on the proportion of the measurement based on a beta-

binomial distribution will be appropriate, with the advantage that the non-uniformity of the 

measurement is transformed to a constant mean. (2) On the position level, random hexamer priming 

influences the overdispersion rate through the local sequence around hexamer primers. (3) Similar 

with what we observed on the gene level, the overdispersion rate decreases along with the increasing 

sequencing depth on the position level as well. Based on these hypotheses, we developed two beta-

binomial models. One was a full model based on all three hypotheses, and the other was a reduced 

model based on hypotheses 1 and 3.  

        First, we investigated the impact of the sequencing depth and local primer sequence on the 

overdispersion rate. Second, we inspected the impact of different sequencing protocols on the 
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overdispersion rate. Third, we proposed four models and compared them with each other and DESeq 

regarding the likelihood value, AIC, goodness-of-fit    test, and the testing error indicators FDR and 

AUC.  

      Similar to our observations on the gene level in Chapter 2, we demonstrated that the 

overdispersion rate decreased along with the increasing sequencing depth on the position level. Also, 

the influence of priming with a random hexamer on the overdispersion was validated and relates to 

the local sequence around the hexamer primer. However, after stratification by sequencing depth, the 

influence was no longer significant. In addition, our beta-binomial model with a dynamic 

overdispersion rate on the position level was superior to the other models we proposed in this study. 

Furthermore, as expected, our proposed model was more desirable than DESeq, which was based on 

a negative binomial distribution, with many advantages in differential expression analysis for the 

same biological samples. 

The current study provides a thorough understanding of the property of the overdispersion rate 

on the position level, especially the relationship between the overdispersion rate and sequencing 

depth. We also clarified that random hexamer priming could influence the overdispersion rate by 

affecting the sequencing depth of each position. These properties will aid in the quality control and 

development of statistical methods for downstream analysis. Based on those properties, we 

suggested a more desirable method to model the non-uniformity measurement. Our method was 

based on a beta-binomial model with a dynamic overdispersion rate, and a better estimation was 

obtained from it on each position when compared with the other models, assuming the 

overdispersion rate is a constant for all points of one gene.  

 

3.1 Methods 

3.1.1 Datasets Used 

Two datasets were used, the Lichun dataset with spike-in data [24] and the Bullard dataset with 

the gold standard data [37] (Table 3.1).  
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Lichun dataset with spike-in data.   The Lichun dataset consists of several libraries with 

different RNA sources (whole cell, cytosol, and nucleolus) and identifications (longPolyA and 

longNonPolyA). Synthetic spike-in standards from the External RNA Control Consortium (ERCC) 

were sequenced along with human samples. These libraries were prepared using the dUTP protocol: 

(1) First-strand synthesis is performed using a random hexamer primer. (2) Second-strand synthesis 

is performed by RNAse H and DNA polymerase 1. (3) cDNAs are fragmented by sonication, and 

adapters are ligated to both end of cDNAs. (4) The second strand is eliminated through UNG 

digestion. (5) Fragments are selected with sizes at 200 base pairs. (6) Paired-end sequencing is 

performed. The human libraries are mapped to the human genome (hg19) using STAR software, and 

the ERCC libraries are mapped to the ERCC reference using Bowtie, version 0.11.3 with parameters 

–v2 –m1. In the present study, we analyzed only libraries from whole cells and longNonPolyA. 

Because we assumed that the number of reads would influence the overdispersion rate, we selected 

samples (shown in red in Table 3.1) with approximately the same total counts as the training set to 

eliminate noise. To avoid the transcription initiation bias in the sequencing [79], we truncated 50 

nucleotides on both ends. 

Bullard dataset with gold standard data.   Two distinct biological samples, brain and UHR, 

were examined in the Bullard dataset. The UHR samples were from three library preparations, UHR 

libraries A, B, and C, and the brain samples were from one library preparation. RNA was first 

fragmented and then converted into cDNA using random hexamer priming. The cDNA was 

sequenced using the standard Illumina protocol, including adapter ligation, polymerase chain 

reaction (PCR), size selection, and injection into flow-cells. We used Bowtie, version 0.12.7, to align 

reads to the genome (H. sapiens, NCBI 37.1 assembly). The Bowtie command for implementing this 

mapping strategy was ./bowtie –a –v –t –m 1 –best –stratah_sapiens_37_asm.  Additionally, about 

1000 genes have previously been assayed by real-time PCR; thus, these genes can be applied as a 

gold standard. All 3 sampled UHR libraries had almost the same yield and thus could be used as the 
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training set to estimate parameters. Three of them were left for the test set (shown in blue in Table 

3.1). Also, 50 nucleotides were truncated on both ends to avoid the transcription initiation bias. 

 

Table 3.1 Two datasets used 

 

Dataset  

Lichun ERCC GSM758567 GSM758572 GSM758573 GSM758577 GSM765389 

GSM765391 GSM765396 GSM765398 GSM767845 GSM767847 

GSM767851 GSM767854 GSM767855 GSM767856 

Human GSM767847 GSM758577 

Bullard Brain UHR library A UHR library B UHR library C 

 SRR037455 

SRR037456 

SRR037457 

SRR037458 

SRR037466 

SRR037467 

SRR037468 

SRR037469 

SRR037470 

SRR037471 

SRR037472 

 

SRR037473 

SRR037474 

SRR037475 

SRR037476 

 

 

3.1.2 Normalization 

RPKM normalization was applied. RPKM was computed as the number of reads that mapped 

per kilobase per million mapped reads for each gene, for each sample. 

 

3.1.3 Calculation of Overdispersion Rate     per Base Pair 

        Let     and     be the tags mapped to the  -th nucleotide of the  -th gene for the experimental 

sample and control, respectively. The probability mass function according to the beta-binomial 

distribution is 

 (   |       )  (
       

   
)

 (               )

 (       )
, 

where     and     are two parameters of the beta-binomial model. It is equivalent to using the 

following parameters:    
   

       
 for all   and     

 

       
. Analytically,     is the expected value 

of the proportion, which can be estimated in the binomial model as 
∑    

 
   

∑    
 
    ∑    

 
   

. 

The proportion   ̂ of each gene should equal the proportion of all the reads of all genes, that is, 

http://mdarisadm01/bioinformatics/mRNA-seq/Lichun/Wig_HUM/GSM767847_wgEncodeCshlLongRnaSeqHelas3CellLongnonpolyaPlusRawSigRep2.Wig
http://mdarisadm01/bioinformatics/mRNA-seq/Lichun/Wig_HUM/GSM758577_wgEncodeCshlLongRnaSeqK562CellLongnonpolyaMinusRawSigRep1.Wig
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The variance of the proportion can be obtained as 
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Therefore,     can be derived as 
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where   denotes the  -th particular pair among R total pairs of replicates. 

We developed a 2-step strategy to calculate     . In the first step, the variance of proportion per 

base pair was estimated per pair of replicates separately. Then we calculated     according to 

formula (2). 

 

3.1.4 Base Pair-Based Model 

After the reparameterization, the log likelihood of the beta-binomial distribution was derived as 

  ∑∑[ ∑     (        )

     

   

 ∑     (          )

     

   

 ∑     (       )

         

   

]

 

   

 

   

   ( ) 

Full model.  On the basis of all of our assumptions, a full model was suggested, in which     is 

related to the local sequence around the primer: 

    
   ∑ ∑     (      )          

 
   

(       )
 

                  ( ) 

In this model,   is the length of the probe around the  -th nucleotide of the  -th gene. We set 

     as suggested in a previous study [73]. Also,  (      ) is 1 when the  -th base pair is letter 
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h, which is A, T, or C exclusively, and 0 otherwise. The parameters we want to estimate are    and  

   , and ε is Gaussian noise. 

There are 3 x 80 = 240 parameters on the local sequence in this model, which makes it quite 

difficult to use the usual ways of estimation, such as maximum-likelihood estimation. We took the 

log of Eq. 4 and obtained another formula that can facilitate model fitting: 

   (   )     ( )  ∑ ∑     (      ) 

         

 

   

     (       )      ( ) 

This linear model of      made the estimation fast and robust. The number of parameters, 240, is a 

really small number compared to the sum of all the positions in all the genes. 

Reduced model.  On the basis of our third hypothesis, that the overdispersion rate of RNA-seq 

reads decreases as the sequencing depth increases, we proposed a reduced beta-binomial model for 

the comparison of two replicates, in which 

    
 

(       )
 
              ( ) 

where   is for all nucleotides of any genes and   represents the decreasing slope of the 

overdispersion rate plotted against the number of reads. 

Counts-excluded model.  In order to determine the dependency of the overdispersion rate on the 

local primer sequence, we excluded the count term from the full model: 

   (   )     ( )  ∑ ∑     (      ) 

         

 

   

          ( ) 

 

3.1.5 Fitting the Beta-binomial Models 

The parameter     was determined by maximizing the log likelihood (Eq. 3) of the reduced 

model and the full model, respectively. We used the following strategy to fit our models: 

1. Initialize   ̂ as Eq. 1 in the training set. 
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2. Set   ̂ as a known parameter and fit the beta-binomial model to obtain   and   . Apply the 

least-squares estimation method based on the linear model (Eq. 5). 

3. Set     according to Eq. 6 and Eq. 4 as a known parameter in the reduced model and the full 

model, respectively, to update   . 

4. Jump to step 2 unless the deviance decreases less than 1%. 

The above procedure maximizes the likelihood by iteratively optimizing     in step 2 and    in 

step 3. 

 

3.1.6 Estimating Cross-validation    

We used the leave-one-out cross-validation strategy to estimate   . The training set was 

randomly split into five groups of equal size. In each round, we fit our model using four of these five 

groups, and then calculated    on the remaining subset by the regression sum of squares divided by 

the total sum of squares. The final cross-validation    was determined as the mean. 

 

3.1.7 Likelihood Ratio Test 

According to the likelihood ratio test,      (   )      (   ) follows the    distribution, 

where    is the proportion for gene   and    is the normalized proportion corresponding to no change 

in gene expression. In multiple-samples testing, we summed over their pairwise    scores and 

obtained p-values with a summation of degree of freedom. 

 

3.1.8 Methods for Model Comparison 

Goodness of fit was examined for 4 models: the binomial model, the beta-binomial model with 

a constant overdispersion rate of    , the reduced model with     as in Eq. 6,  and the full model with 

    as in Eq. 4. 
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Likelihood-value goodness of fit.   Proportion    was estimated and fixed for all four models. 

Sequentially, the other parameters were determined by the maximum-likelihood estimation method 

or the least-squares method, and the likelihood value was calculated by pairwise comparison of the 

replicate data. The    test was performed on       (     )     (            ), where       and 

             denote the likelihood for the null model and alternative model, respectively. 

      Akaike information criterion (AIC) is a measure of the relative goodness of fit of a 

statistical model. The      is calculated by definition as           ( ), where   is the number 

of parameters and   is the maximum-likelihood value. The final     is determined by the mean of all 

     from pairwise replicates. 

FDR and AUC.  The false discovery rate (FDR) and the area under the receiver operating 

characteristic curve (AUC) were determined by the method described in our previous study [73]. For 

the Lichun dataset, which lacked gold standard data, the AUC was not determined. 

 

3.2 Results 

3.2.1 Overdispersion Rate on Base Pairs Decreased with Sequencing Depth 

        In order to test our third hypothesis, we empirically investigated the impact of sequencing depth 

on the measurement of the overdispersion rate per base pair. Analyzing the spike-in data, we 

calculated the variance of the proportion of the reads mapped to the  -th base pair of the  -th gene 

from two replicates of the same sample, then determined the overdispersion rate     (Methods, part 

C). In Figure 3.1, we plot the estimated     against the number of counts on the corresponding 

nucleotide position. The results show that the overdispersion rate was strongly inversely correlated 

with sequencing depth—that is, the overdispersion rate kept decreasing as the sequencing depth 

increased and without a sign of saturation. This density plot shows that most of the points are 

concentrated on a line.  Examination of the points corresponding to the local sequence, starting with 

GGGG and AAAA (blue and red points, respectively), also shows that most of the points are on or 

http://en.wikipedia.org/wiki/Goodness_of_fit
http://en.wikipedia.org/wiki/Statistical_model
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close to the line of concentration. However, at positions with large read numbers, the estimated     

seemed to depart from the decreasing trend, suggesting that statistical noise may exist and have a 

greater effect on overdispersion than the library preparation effect at positions with large sequencing 

depth. 

 

Figure 3.1 The overdispersion of proportion     on base pairs versus the mean tag counts in base 10 

log scale. The     values were computed from replicates from the Lichun spike-in training dataset. 

The blue and red points are for the positions with a local sequence starting with GGGG and AAAA, 

respectively. 

 

3.2.2 Sequencing Procedure Introduced Extra Noise 

Elements of the sequencing procedure (e.g., fragmentation methods, random hexamer priming, 

etc.) usually introduce bias to RNA-seq measurements.  We examined the overdispersion rate 

estimated from two datasets (Figure 3.2). Interestingly, in the Lichun dataset, the overdispersion rate 

was significantly larger at the tail of the gene (less than about 200 base pairs). However, no such 

difference was observed in the Bullard dataset. The same results were obtained in the calculation of 

the variance (Supplementary Figure S3.1). 
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To explain these findings, we inspected the Lichun and Bullard protocols. We found three 

major differences between them. First, Lichun et al. applied the dUTP protocol to obtain strand-

specific sequencing, while Bullard et al. used a regular non-strand-specific sequencing protocol. 

Second, Lichun et al. performed paired-end sequencing, while Bullard et al. tried to obtain single-

end sequencing data.  Third, fragmentation was carried out before PCR in creating the Lichun 

dataset; while PCR was performed first in creating the Bullard dataset. The first two differences were 

ruled out as potential causes for the extra noise on the gene tails in the Lichun dataset, because those 

differences would not influence the measurement of only part of the gene. However, the third 

difference can explain the extra noise.  In the Lichun dataset, the fact that fragment selection was 

performed after fragmentation might lead to the loss of many fragments located at the gene tails, 

thereby introducing an extra error. By contrast, according to the protocol used by Bullard et al., 

fragmentation was carried out before cDNA PCR and size selection. Thus, it was more like a random 

process across the whole gene, and thus no difference would be observed. 
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Figure 3.2 The overdispersion rate estimated on any position in 10 equal categories according to the 

distance of that position from the last nucleotide of the gene. (a) Lichun spike-in dataset. (b) Bullard 

dataset. Lichun reads start to appear at 76 nt away from the end of the gene because only mate2 on 

the antisense strand was investigated and the last sequencing reads were mapped to 76nt before the 

ending.  However, Bullard reads start from 50 nt away from the end of the gene because we 

truncated the genes by 50 nt from the gene head and tail separately. 

 

3.2.3 Models of the Overdispersion Rate 

We proposed three models to examine the relationship between the local primer sequence and 

the overdispersion rate, including the full model, the reduced model, and the counts-excluded model.  

Using the linear formula transformation (Eq. 5), 240 coefficients of 80 positions around the primer 

were estimated efficiently. By modeling on the Bullard data, we plotted those coefficients estimated 

against their corresponding positions (Figure 3.3). We observed a pattern in our counts-excluded 

model that was similar to the pattern reported in the papers by Hansen et al. and Li et al. [3,4] 

(Figure 3.3 a,c). However, no such pattern was observed with our full model (Figure 3.3 b,d). 

Observations were similar for the Lichun spike-in data (Figure 3.4). Both Hansen et al. and Li et al. 

demonstrated a relationship between hexamer primers and measurement count number. Plus, from 

Figure 3.1, we conclude that the overdispersion rate on base pairs decreases with increasing 

sequencing depth. It is reasonable to infer that using a hexamer primer might influence the 
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overdispersion rate by affecting the count number; thus, upon stratification by counts, the 

relationship between the use of a hexamer primer and the overdispersion rate would no longer be 

significant. In addition, we calculated    using the cross-validation method (Methods 3.1.5).    

values of 0.481 and 0.488 were obtained for the reduced model and the full model, respectively, with 

the Bullard data; while values of 0.270 and 0.273, respectively, were obtained with the Lichun spike-

in data. About half of the variance was explained for the Bullard dataset, while the relatively lower 

   was obtained for the Lichun dataset because of its small sample size (only 100 ERCC genes). As 

expected, compared with the full model, the reduced model achieved a rather similar   .  

We investigated the influence of primers corresponding to the reads mapped to the antisense 

and sense strands, respectively. We observed from the Bullard dataset that reads mapped to the 

antisense and sense strands showed quite similar patterns (Figure 3.3 a,c), which was consistent with 

the finding of Hansen et al. [3]. However, according to sequencing protocols, the sense strand reads 

should not have a bias caused by the use of a hexamer primer as the second strand is synthesized by 

RNAse H niche technology. The explanation of Hansen et al. [3], that the hexamer primer is not 

completely digested, is quite reasonable. In contrast, different patterns on the sense and antisense 

strands were observed in the Lichun spike-in dataset (Figure 3.4 a,c).  The reason for that is still 

unknown; one or multiple processes in their strand-specific protocol might impact differently on the 

paired-end reads. As suggested by the above observations, we estimated coefficients separately for 

each strand in the present study. 
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Figure 3.3 Coefficients estimated from linear models from the Bullard dataset. Plotted on the x-axis 

are the positions around the 5’ end of mapped reads, labeled 0. Coefficients were calculated by 2 

models. (a) Counts-excluded model on antisense strand. (b) Full model on antisense strand. (c) 

Counts-excluded model on sense strand. (d) Full model on sense strand. 
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Figure 3.4 Coefficients estimated from linear models from the Lichun dataset. Plotted on the x-axis 

are the positions around the 5’ end of mapped reads, labeled 0. Coefficients were calculated by 2 

models. (a) Counts-excluded model on antisense strand. (b) Full model on antisense strand. (c) 

Counts-excluded model on sense strand. (d) Full model on sense strand. 

 

3.2.4 Comparison of Four Models 

Likelihood-value goodness of fit.  Comparing maximum likelihood values is a straightforward 

way to select models. We calculated the likelihood values from four models: the binomial model, 

beta-binomial model with a constant overdispersion rate of    , reduced beta-binomial model with 

    as in Eq. 6, and full beta-binomial model with     as in Eq. 4. Then, the percentage of change in 

a 

d 

b 

c 
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the likelihood value of each model was measured compared with the next neighbor model that 

preceded it (Figure 3.5 a,b). As expected, models with more parameters had higher maximum 

likelihood values. The beta-binomial model with a constant overdispersion rate of     made a huge 

jump from the binomial model (30% to 90%). And the parameter   in dynamic     (Eq. 6) also 

improved the fit by roughly 15%. However, the full model we proposed showed almost the same 

maximum likelihood value as our reduced model. Further, the goodness-of-fit    test showed that the 

beta-binomial model with a constant overdispersion rate of     and the reduced beta-binomial model 

with     as in Eq. 6 (p-value = 0) improved the fit significantly more than the full beta-binomial 

model with     as in Eq. 4 (p-value = 1). Additionally,      measured for the four models showed 

that the reduced model had the least score and there was an increase for the full model (Figure 3.5 c). 

The above results were observed in both the training and the test datasets and suggested that a 

dynamic overdispersion rate significantly improves the model fit and that our reduced model is a 

better choice than the other three models. Although we observed the same pattern with the Bullard 

dataset (Figure 3.5 b,d),  no such significant improvement was shown, even for the second model. 

This is due to the small experimental library effect in the Bullard dataset, which was reported in our 

previous study [73]. Consistent with our earlier conclusion, we found that overdispersion rates vary 

dramatically in different studies. 
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Figure 3.5 Goodness-of-fit examination. (a,c) Lichun dataset. (b,d) Bullard dataset. (a,b) The 

percentage of change in the likelihood value comparing neighboring models.  (c,d)     measured for 

4 models. bi denotes binomial model, bb+D denotes beta-binomial model with constant 

overdispersion rate, bb+D+g denotes reduced beta-binomial model, and bb+D+g+coe denotes full 

beta-binomial model. 

 

FDR and AUC.  Further, we compared the FDR and AUC for genes deemed to be differentially 

expressed by these four models. Bullard UHR sample data showed that our reduced model as well as 

the full model had the lowest FDRs and largest AUCs (Figure 3.6 c,d). Again, as a result of the small 

library effect, no big difference was observed between the four models for the Bullard dataset, which 

agrees with our previous results [73]. Also, our proposed reduced models showed a good 
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performance for the Lichun spike-in data, though the binomial model with a constant overdispersion 

rate seemed superior (Figure 3.6 a). Using the same overdispersion rate parameters, our analysis 

showed a similar result when testing the human samples from the Lichun dataset (Figure 3.6 b). Our 

FDR and AUC results indicate that among these four models, the binomial model had the worst 

performance and the beta-binomial models with a dynamic overdispersion rate were preferable, 

although the beta-binomial model with a constant overdispersion rate had the lowest FDR caused by 

overfitting. Testing the same sample and different library preparations sequenced by the Illumina 

sequencer, the beta-binomial model with a constant overdispersion rate shows insufficient small p-

values (Figure 3.7 a), and the binomial model has an overabundance of small p-values (Figure 3.7 b). 

In contrast, the histogram of the p-values is flat for the beta-binomial models with a dynamic 

overdispersion rate (Figure 3.7 c,d). This indicates that the errors between samples from different 

library preparations are consistent with the beta-binomial distribution with a dynamic overdispersion 

rate. 
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Figure 3.6 FDR and ROC curves for 2 datasets. (a) FDR for Lichun spike-in dataset. (b) FDR for 

Lichun human dataset. (c) FDR for Bullard dataset.  (d) ROC curve for Bullard dataset. About 1000 

genes previously assayed by real-time PCR are used as a gold standard to evaluate our test method.   

In FDR plots, the FDR on the y-axis is plotted against the  -values in log10 scale on the x-axis. bi 

denotes binomial model, bb+D denotes beta-binomial model with constant overdispersion rate, 

bb+D+g denotes reduced beta-binomial model, and bb+D+g+coe denotes full beta-binomial model. 

 

a 

d c 

b 



 

 

47 

 

 

Figure 3.7 Histograms of p-values from replicates of the Bullard dataset. P-values were calculated by 

(a) binomial model, (b) beta-binomial model with constant    , (c) the reduced beta-binomial model 

and  (d) the full beta-binomial model.  In histogram plots, the blue line indicates estimated uniform 

distributions; green line indicates the mixture distribution of beta distribution and uniform 

distribution [77]. 

 

3.2.5 Comparison of Our Model with DESeq 

Compared with our method, DESeq performed slightly better on the AUC (Figure 3.6 d). This 

is reasonable because DESeq estimated variance by local regression, which is more flexible than our 

parametric method.  Both DEseq and our reduced model were better than the binomial model and 

significantly superior to the student t-test (Figure 3.6 d). The weak performance of the t-test might be 

because of the small sample size. 

 

3.3. Discussion 

In this study, we found that the overdispersion rate decreases as the sequencing depth increases 

on the base-pair level, in agreement with what we previously reported on the gene level [73]. Also, 



 

 

48 

 

we found that the influence of random hexamer priming on the overdispersion rate is not significant 

after stratification by sequencing depth. Finally, compared with our other proposed models, we 

found our beta-binomial model with a dynamic overdispersion rate to be superior. Furthermore, as 

expected, this model was more desirable than DESeq in a comparison of samples without biological 

variance. 

The property of overdispersion in our model.  In this study, we demonstrated that, comparing the 

reads mapped on specific base pairs, the overdispersion rate decreases as the RNA-seq depth 

increases. This discovery is consistent with the findings of our previous study at the gene level 

(described in Chapter 2). First, we observed a strong linear association between the calculated 

overdispersion rate and the count number. Second, compared with models that ignore the 

overdispersion rate or which have a constant overdispersion rate, our model that accounts for a 

dynamic overdispersion rate fit the RNA-seq counts best, demonstrating superior performance based 

on the likelihood value, AIC, goodness-of-fit    test, and the testing error indicators FDR and AUC. 

Rather than considering that the total experimental dataset has a constant variance parameter, other 

testing methods had been developed as well, including DESeq. DESeq assumes that genes with 

similar expression levels have the same variance. DESeq performed better than both the models that 

ignore the overdispersion rate and those with a constant overdispersion parameter [30]. 

Experimental protocols affect variance.  We concluded that experimental protocols have 

different impacts on the variance of the RNA-seq reads and that even the order of the steps in the 

protocol matters. We observed extra noise on the tails of genes when fragmentation was performed 

before PCR. Therefore, we suggest removing the reads on the last 200 base pairs when data from this 

kind of protocol are analyzed. Because RNA-seq technology involves complex experimental 

protocols, many biases have been found in library generation, read mapping, and coverage. 

Systematic errors have been found in differential RNA-seq protocols and platforms [80,81]. Our new 

finding that conducting fragmentation before PCR introduces extra noise will allow us to develop 

specific strategies to avoid these biases in our analyses. 
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Effect of spike-in data on overdispersion rate estimation.  Cost issues may prompt consideration 

of performing experiments without replicates. As measured along with samples that do not have 

replicates, spike-in samples can be considered as replicates. Our model has only three parameters 

(Eq. 3 and Eq. 6); therefore, it is quite sufficient to estimate them from roughly 100*1000 counts 

based on base pairs. Consequently, when testing samples without replicates, one still can borrow the 

overdispersion rate from the spike-in data. DESeq also tries to handle experiments without replicates 

by assuming that most genes do not change in expression [30]. However, based on the analysis of 

samples from a single cell line, our observations indicate that the variance of replicates between two 

libraries is smaller than the variance between two conditions (Supplementary Figure S3.2). The extra 

variance caused by gene expression changes would lead to the loss of test power.  

Selection of variables.  We observed that the overdispersion rate is related to both the local 

sequence and the sequencing depth. Therefore, we proposed a full model with both variables and a 

reduced model with only the count number as a variable. The results showed that with the covariate 

count number, the local sequence has little influence on the overdispersion rate. That is reasonable as 

the local sequence and count number are dependent, as reported by two groups [3,4]. Consequently, 

it is preferable to use a model with only the count number as a variable for estimating the 

overdispersion rate. And we concluded that the reduced model was a better choice for modeling the 

overdispersion rate and was reasonably economical in terms of time and computing power. 

Our model vs DESeq in application.  DESeq is widely used in DE testing on RNA-seq. That 

model performed well when estimating the variance of the counts, including the biological variance. 

Our model has four main advantages: (1) Modeling based on the proportion in a base-pair unit and 

modeling the non-uniformity of measurement across the gene. As for the uniformity of measurement, 

the measurement on each base pair has a specific mean and variance. When considering the total 

counts as the indicator of the expression level, the estimated expression of one particular gene might 

be determined by several positions with high counts. Therefore, modeling on the proportion is more 

desirable because it avoids modeling the highly fluctuating Poisson rate. (2) Tags from strongly 



 

 

50 

 

fluctuating positions are down-weighted. Gene expression is no longer the sum over tags from all 

positions, but is weighted by the overdispersion rate. (3) Our model is based on base pairs with much 

higher resolution. (4) Spike-in data can be utilized as replicates when estimating the overdispersion 

rate. (5) With the information from the spike-in data, more accurate estimations can be obtained on 

samples without replicates, as discussed above. Our model and DESeq are compared in Table 3.2. 

DESeq testing is performed on the gene expression level, with the hypothesis that the normalized 

reads on one gene are equal for two samples. In contrast, our model tests on the base pair level with 

the hypothesis that the normalized reads on each base pair are equal for two samples.  Consequently, 

it depends more on the hypothesis whether there is no difference in the pattern of expression across 

one specific gene. To reject the null hypothesis that measurements on each base pair are equal, our 

model is desirable for identifying differential expression on partial genes, but to reject the null 

hypothesis that measurements on one gene are equal, our model is more suitable for samples with 

library preparation variance than for samples with biological variance. Also, in this study, we 

investigated the relationship between  overdispersion and the sequencing depth using replicates from 

the same biological samples. This relationship for different biological samples remains elusive. In 

other words, our model is desirable for experiments involving samples from a single cell line or the 

same animal, such as experiments involving one knockout gene from a single cell line. We suggest 

applying our model to experiments involving samples without biological variance; otherwise, DESeq 

is more appropriate.  In a future study, we will investigate the properties of overdispersion 

introduced by biological variance.  

 

Table 3.2 Comparison of our model with DESeq 

 

 Our Model DESeq 

Main overdispersion source Library effect Library effect + biological variance 

Hypothesis measurement on each base pair are measurement on each gene are equal 

http://www.iciba.com/consequently
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equal 

Experiments suitable for analysis All, especially for single cell line All 

Nonuniformity modeling Yes No 

Borrow information from spike-in data Can Can not 

Parameter estimation Maximum likelihood estimation Local regression (depends on local 

structure) 

Unit for modeling Base pair Gene 

Expression estimation Tags were weighted by overdispersion 

rate 

Sum over tags 

Replicates required No, but require hypothesis that most of 

genes do not change between samples 

within two conditions, which is 

inaccurate. Also our method can use 

spike-in data 

No, but require hypothesis that most of 

genes do not change between samples 

within two conditions, which is 

inaccurate. 

 

Many models have been reported to test DE from RNA-seq data. However, it would make 

much better sense to model the non-uniform measurements of this technology. We modeled the 

proportion of counts toward this aim, but encountered a limitation of our approach, which is that it 

may not handle biological variance precisely. Therefore, our model is most appropriate for 

experiments involving samples from a single cell line or the same animal. The current study provides 

a detailed understanding of the relationship between the overdispersion rate and sequencing depth, 

which will aid in the analysis of RNA-seq data for detecting and exploring biological problems. 

Additionally, we suggest a more desirable beta-binomial model with a dynamic overdispersion rate 

to cancel the non-uniformity bias and estimate the overdispersion rate more accurately. 
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CHAPTER 4 

A New Type of Bias in RNA-seq 

       

RNA-seq has been widely used in genomic research. However, many studies have reported that 

inherent biases and spurious effects exist in sequencing technology because of the complexity of the 

protocol and mechanisms studied. We aim to investigate biases in RNA-seq by exploring the 

measurement of an external control, spike-in RNA. Tag hybridization has been reported to be the 

major process through which bias is introduced into microarray analysis.  Signals from spike-in 

transcripts could be influenced by cross-hybridization with tags designed for detecting target 

transcripts. However, the relationship between spike-in transcripts and sample transcripts has not 

been fully studied yet. Apart from a concern with cross-hybridization in sequencing technology, it is 

easy to overlook other possible factors that influence the sequencing measurements. Therefore, this 

study is important and could aid our understanding of sequencing technology and benefit 

downstream analysis.  

This study is based on two datasets with spike-in controls. The Encode dataset contains 

measurements from 51 replicates of human samples, and the modENCODE dataset contains 

sequences from 6 fly samples under difference scenarios.  Detailed investigations and correlation 

analyses were performed among the samples. Also, the alteration of measurements between two 

samples was modeled with the local sequence as a factor.  Furthermore, correction was performed 

based on the modeling. 

We found that an undiscovered bias exists within the measurement of spike-in transcripts, and 

that it is influenced by the sample transcripts in RNA-seq. Also, we found that this influence is 

related to the local sequence of the random hexamer used for priming. We suggested modeling the 

inequality between samples and correcting for this type of bias. After this correction, the Pearson 

correlation coefficient increased by 0.1. Thus, we revealed a new bias that may be introduced by 
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resource competition. The current study provides a detailed understanding of the relationship 

between this new bias and the local sequence, which will aid in our understanding of RNA-seq 

technology and allow us to correct this bias in the analysis of RNA-seq data. 

 

4.1 Methods 

4.1.1 Datasets Used 

Two datasets from Lichun et al. [24], ENCODE and modENCODE, containing synthetic spike-

in standards from the External RNA Control Consortium (ERCC) were used (Table 4.1). 

ENCODE.   ENCODE datasets consist of several libraries with different human RNA sources 

(whole cell, cytosol, and nucleolus) and identifications (longPolyA and longNonPolyA). These data 

were sequenced along with human samples. The libraries had been prepared using the dUTP protocol 

for measuring strand-specific transcripts, as described by Lichun et al. [24]. From Illumina GAIIx, 

2x76 bp sequencing reads were obtained. The reads were mapped to the human genome (hg19) using 

STAR software, and the ERCC libraries were mapped using Bowtie, version 0.11.3, with parameters 

–v2 –m1. To avoid the transcription initiation bias in the sequencing [79], we truncated 50 

nucleotides on both ends. 

modENCODE .  The D. melanogaster S2 cell line was used to prepare poly-A+ mRNA. As 

shown in Table 4.1, modENCODE datasets were obtained from two batches, and each sample was 

made from a specific library preparation. In batch 1, samples were from four different sample RNA 

pools, but the sample RNA was from the same pool.  The ratio of ERCC and the total RNAs are 

shown in Table 4.1. Four experiments in batch 1 have ERCC concentrations of 5%, 2.5%, 1% and 

100%, which means that only pure ERCC was sequenced. Experiments in batch 2 have the same 

ERCC concentration of 2.5%. The cDNA was fragmented and the first-strand cDNA was 

synthesized with random hexamer primers, then the second-strand DNA was synthesized, followed 

by end repair, poly A addition and adapter ligation. Two methods were used in the preparation. In 

method A, size selection preceded PCR amplification. This was reversed in method B. The Illumina 
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GA II platform yielded 36-bp reads. Bowtie version v0.10.0 with parameters -m 1 -v 2 was used to 

align the reads to the Drosophila genome sequence (BDGP release 5, dm3) and ERCC reference 

sequence. Also, 50 nucleotides were truncated on both ends. 

 

Table 4.1 Two datasets used 

 

 

Samples 

ENCODE 

(51 replicates) 

GSM758559 GSM758560 GSM758561 GSM758562 GSM758563 GSM758564 

GSM758566 GSM758567 GSM758568 GSM758572 GSM758573 GSM758575 

GSM758576 GSM758577 GSM758578 GSM765386 GSM765387 GSM765388 

GSM765389 GSM765391 GSM765394 GSM765395 GSM765396 GSM765398 

GSM765401 GSM765402 GSM765403 GSM765404 GSM765405 GSM767840 

GSM767844 GSM767845 GSM767847 GSM767848 GSM767849 GSM767850 

GSM767851 GSM767852 GSM767853 GSM767854 GSM767855 GSM767856 

GSM758565 GSM758569 GSM765390 GSM765392 GSM765393 GSM765399 

GSM765400 GSM767846 GSM767857 

 Library Samples Batch 

Sample RNA 

pool 

ERCC 

% 

Method 

modENCODE 

1 GSM517059 1 1 5 A 

2 GSM517060 1 2 2.5 A 

3 GSM517061 1 3 1 A 

4 GSM517062 1 4 100 A 

5 GSM516588 2 5 2.5 A 

6 GSM516589 2 5 2.5 B 

 

 

4.1.2 Correlation Analysis of Multiple Samples 

To assess the correlation of multiple samples, we calculated the Pearson correlation coefficients 

on both the gene level and the base level. We sum over the measurement reads on each gene to 

evaluate the correlation on the gene level and use data on 96 spike-in genes. In comparison, we 

assess the correlation from the measurement reads on each base pair and use a total of 86,329 reads 

counts. Hierarchical clustering was performed on the calculated Pearson correlation coefficients to 

investigate the correlations across multiple samples. 
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4.1.3 Local Sequence Modeling on Measurement Difference across Samples 

In order to model the influence of the local sequence on the measurement difference across 

samples, we developed a linear model with different sequences on each position as variables.  As the 

outcome variable we used the fold change, which was widely used for measuring change in the 

expression level of a gene. A log transformation of the fold change would be required in the 

following linear models. 

         ∑ ∑     (     ) 

         

 

   

      ( ) 

In this model, we linked all genes head to tail into one gene. Here,   denotes the  -th position on 

the imaginary gene;     denotes the fold change of reads across two samples on the  -th position by 

   
   

   
, where     and     are the measurements on the  -th position of two samples,   and  .    is 

the length of the probe around the  -th nucleotide of the imaginary gene. We set      as 

suggested in a previous study [4]. Also,  (     ) is 1 when the  -th base pair is letter  , which is 

A, T, or C exclusively, and 0 otherwise. The parameters we want to estimate are   and     , and   is 

Gaussian noise. 

Li et al. used a similar model to predicate measurement reads from RNA-seq [4]. This linear 

model made the estimation fast and robust. A total of 3 x 80 = 240 parameters on the local sequence 

were estimated, which is rather a small number compared to the sum of all the positions in all the 

genes. For the spike-in transcripts, we used reads on all ERCC genes. However, we only used reads 

on the top 1000 highly expressed genes for the sample transcripts. In order to avoid noise introduced 

by the low number of reads, we discarded all data points with reads less than 30 mapped to the 

mRNA transcripts and 5 mapped to ERCC. 

 

4.1.4 Estimating Cross-validation    
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We used the leave-one-out cross validation strategy to estimate   . Data points used in 

modeling were randomly split into five groups of equal size. In each round, we fit our model using 

four of these five groups, and then calculated    on the remaining subset by the regression sum of 

squares divided by the total sum of squares. The final cross-validation    was determined as the 

mean. 

 

4.1.5 Bias Correction 

Once the parameters   and     in Eq 1 were estimated, we performed the bias correction based 

on our model according to Eq 2. We randomly split the data points into five parts and used four of 

them as the training data and left one out to serve as test data for evaluating the correction. 

   
               ( ) 

In this equation,    
  denotes the corrected measurement on the  -th position of the imaginary 

gene of sample   according to the coefficients on the local sequence of the probe calculated from 

the fold change of reads across two samples. 

 

4.2 Results 

4.2.1 Pattern of Reads on Spike-in Transcripts 

In order to investigate the sequencing reads on each position of the spike-in transcripts, we 

plotted the read counts mapped on the spike-in transcripts. Figure 4.1 shows an example of ERCC-

00002, one of the genes with the highest yield of reads. We observed that the pattern of reads of the 

spike-in transcripts were divergent between samples, although they were consistent between 

replicates from the ENCODE datasets. And from the modENCODE datasets, we observed that the 

patterns of the reads differed between batches, but the influence of the different libraries was small. 

And we noticed a dissimilar pattern in experiments with both ERCC and a sample pool when 

compared with experiments that used only pure ERCC transcripts. However, no significant 
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difference was found for the different order of size selection and PCR amplification in sample 

preparation. We validated our finding statistically by comparing correlations of the sequencing reads 

from pairwise samples (described in Methods, 4.1.2). From the heatmap of hierarchical clustering 

based on correlations of counts on each position across samples (Figure 4.2) and pairwise correlation 

plotting of modERCC datasets (Figure 4.3), we observe that replicates are clustered together for the 

ENCODE samples and samples in the batch are clustered together, except the samples from 

sequencing pure ERCC transcripts. Without sample mRNA, the dissimilar of correlation between 

batches was reduced but increased when other samples were sequenced along with the sample 

transcripts in the same batch. Also, we concluded that compared with the correlation of the total 

counts on each gene, the correlation of the counts on each position was more precise (Figure 4.2). 

The same patterns of correlation across samples were also observed on target transcripts (Figure 4.2 

E, F). The top 1000 highly expressed genes were used to calculate the correlation. Distinct patterns 

were observed on both the base level and the gene level, which might indicate that the discrepancy 

originated in the sample transcripts. 
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Figure 4.1 Distributions of sequencing reads on ERCC-00002 of different samples. The positions of 

ERCC-00002 are plotted on the x-axis and the number of sequencing reads are plotted as bars. The 

distribution of sequencing reads on ERCC-00002 samples from (A) ENCODE datasets and (B) 

modENCODE. The same label denotes the replicates. 

 

A 

B 
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Figure 4.2 Heatmaps of hierarchical clustering on samples. The clustering was based on correlations 

of (A) counts on each position of spike-in transcripts across samples of ENCODE datasets, (B) 

counts on each gene of spike-in transcripts across samples of ENCODE datasets, (C) counts on each 

position of spike-in transcripts across samples of modENCODE datasets, (D) counts on each gene of 

spike-in transcripts across samples of modENCODE datasets, (E) counts on each position of the top 

1000 highly expressed sample transcripts across samples of modENCODE datasets, (F) counts on 

each gene of the top 1000 highly expressed sample transcripts across samples of modENCODE 

datasets. 

A 

D C 

B 

E F 
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Figure 4.3 Pairwise comparison matrix of the measurement on each base pair of ERCC transcripts 

from modENCODE dataset. Pairwise plots of sequencing reads mapped on each base pair on the 

log10 scale are shown in the bottom panel, and calculations of pairwise Pearson coefficients are 

shown in the top panel. 

 

4.2.2 Modeling on the Local Sequence 

We modeled the influence of the local sequence. Using the linear model, we estimated 240 

coefficients of 80 positions around the primer from modENCODE mRNA and spike-in reads 

separately. We plot those estimated coefficients against their corresponding positions in Figure 4.4. 

We observe that significant coefficients were estimated from the difference between two samples 

from two batches, as well as separately from the comparison of two samples with and without target 

transcripts. The significant coefficients expanded to a range from -20 to 15 around the start site of 

the primer.  As expected, no significant coefficients were found by comparing samples with different 
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ERCC concentrations in the same batch. And interestingly, the order of the size selection and PCR 

amplification only affected the measurements through the first 2 nt of the hexamer primer. 

Consistent with our above findings, the patterns of the coefficients were concordant between mRNA 

and ERCC. Cross-validated    were calculated from the sample mRNA transcripts as shown in Table 

4.2, indicating our model could explain around 40% of the differences in two samples.  

 

 

Figure 4.4 Coefficients estimated by the linear model, Eq.1, from the modENCODE dataset. Plotted 

on the x-axis are the positions around the 5’ end of the mapped reads, labeled 0. Coefficients were 

calculated on ERCC spike-in transcripts (left panel) and mod mRNA transcripts (right panel). 

Comparing GSM517059 vs GSM517062 captures the discrepancy from ERCC with and without 

mRNA transcripts. Comparing GSM517060 vs GSM517061 captures the discrepancy from the 

ERCC ratio (2.5% vs 1%). Comparing GSM517088 vs GSM517089 captures the discrepancy from 

GSM517059 vs 
GSM517062 

GSM517060 vs 
GSM517061 

GSM517088 vs 
GSM517089 

GSM517088 vs 
GSM517059 

ERCC mod mRNA 
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the order of the sample preparation (size selection preceding PCR amplification vs the reverse order). 

Comparing GSM517088 vs GSM517059 captures the discrepancy from different batches. 

 

Table 4.2 Cross-validated    Calculated 

 GSM516588 GSM516589 GSM516590 GSM517059 GSM517060 GSM517061 

GSM516588 - 0.257 0.274 0.299 0.313 0.260 

GSM516589 - - 0.035 0.382 0.371 0.329 

GSM516590 - - - 0.408 0.390 0.348 

GSM517059 - - - - 0.138 0.172 

GSM517060 - - - - - 0.163 

GSM517061 - - - - - - 

 

4.2.3 Correction of bias 

We estimated the coefficients of the local sequence by comparing the training set randomly 

selected from two samples. According to our model and estimated coefficients, we performed a 

correction on the test set. As a result, our correction increased the Pearson correlation from 0.48 to 

0.58 (Figure 4.5). 

 

Figure 4.5 Pairwise comparison matrix of the original and corrected measurements on each base pair 

of mRNA transcripts. Pairwise plots of sequencing reads mapped on each base pair on the log10 

scale are shown in the bottom panel; calculations of the pairwise Pearson coefficients are shown in 

the top panel. 
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4.3 Discussion 

In this study, we found that an unreported bias in the measurement of spike-in transcripts exists, 

and that it is influenced by sample transcripts in RNA-seq. Also, we found that this influence is 

related to the local sequence of the random hexamer used for priming. We proposed to model the 

inequality between samples and suggested a method to correct this bias based on this model.  

A new Bias in RNA-seq.  In our study, when comparing the reads mapped on specific base pairs, 

we found similar patterns in replicates but not across different samples. Although many factors could 

contribute to this discrepancy, we failed to observe a significant difference from the preparation 

methods and library preparations. This indicates that inconsistency in the library preparation did not 

contribute to this bias. Interestingly, a rather significant difference was observed on the measurement 

of the spike-in transcripts sequenced along with different sample transcripts. And diverse sample 

sources or batches could result in the difference in the sample transcripts. Cross-hybridization has 

been reported as an inherently problematic issue in microarrays. Unspecific tags could hybridize 

with other sequences besides the target and introduce a bias in measurements [10,11]. The 

measurement of spike-in transcripts could be influenced by incorrect interactions with probes 

designed for target transcripts [13]. Similar to cross-hybridization in microarrays, a mechanism may 

exist that affects the measurement of spike-in transcripts by sample transcripts. This mechanism may 

be from the competition of sequencing resources, such as dNTP and the hexamer primer. The source 

of this bias needs to be studied further  for clarification.. 

In this study, we proposed a statistical method to model the influence of the local sequence on 

this new bias.  And we observed significant coefficients ranging from -20 to +15 around the 

beginning of the hexamer primer. This range of coefficients has been reported in the study of non-

uniformity by Li et al. [4] and in our study of overdispersion in Chapter 3. This finding may indicate 

that the bias from hexamer priming affects more than one property. Besides affinity abilities, 

resource competition involving the hexamer primer may play a role in introducing bias. Our model 
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can be used to correct this type of bias, and, indeed, the Pearson correlation coefficient increased by 

0.1 after we made this correction.  

Novelty and strength of our study.  First, we discovered a new type of bias that may be generated 

from resource competition and which is related to the local sequence, as described above. We 

suggested a statistical model to model the bias and perform the correction. Our findings will 

contribute to understanding RNA-seq technology, exploring inherent biases and estimating true 

measurements for downstream analysis. 

Second, for the first time, to our knowledge, we found that the order of size selection and PCR 

amplification could influence the measurement through the first 2 nt of the hexamer primer in RNA-

seq. One possible explanation is that PRC amplification is influenced by the first 2nt of the reads and 

causes the bias, together with the size selection by the imprecise isolation of agarose gel 

electrophoresis. 

Third, we demonstrated that a comparison of measurements on each position is more precise 

than a comparison based on the gene. In this study, we observed much more precise correlations of 

measurements between replicates with higher resolution compared with correlations on genes. 

Therefore, we suggest utilizing all information from all base pairs in analyzing sequencing data. 

However, more exhaustive research on sequencing bias and sophisticated methods were required in 

this analysis. We have suggested a powerful method to estimate the overdispersion rate based on 

base pairs (Chapter 2). 

Fourth, rather than modeling based on measurements of one sample, we modeled the fold change 

between two samples. Benefiting from this effort, we discovered the new bias and were able to offer 

a method of correction. 

Many biases have been reported in RNA-seq data and several methods have been proposed for 

bias correction. However, the research on RNA-seq technology is still in its infancy. Here, we 

revealed a new bias that may be introduced by resource competition. Our study provides a detailed 
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understanding of the relationship between this new bias and the local sequence, which will aid in 

understanding RNA-seq technology and in correcting for this bias in the analysis of RNA-seq data. 
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CHAPTER 5 

New CpG Island Methylator Phenotype (CIMP) and Biomarker 

Identification by Integrating Methylation and mRNA Expression 

       

The expression of a gene can be turned off when its promoter is highly methylated. Several 

studies have reported that a clear threshold effect exists in the gene silencing that is mediated by 

DNA methylation. It is reasonable to assume that a specific DNA methylation threshold exists for 

each gene because of the complicated transcription regulatory system. Therefore, we must determine 

that threshold in order to predicate whether the gene was inhibited by DNA methylation. According 

to the estimated thresholds, DNA methylation status could be dichotomized and makes the task of 

biclustering easier, which is a good way to identify CIMP. We aimed to develop a method to 

determine the DNA methylation threshold and investigate whether CIMP exists in breast cancer. 

Only limited research has claimed the identification of CIMP with hypermethylated genes in breast 

cancer. 

We developed a method to determine the DNA methylation threshold from 997 samples across 7 

cancer types from TCGA datasets obtained from Illumina Infinium Hman DNA Methylation27 

arrays and Illumina GA II and HiSeq platforms. Then, from 285 tumor samples and 21 normal 

samples of breast tissue, we selected 128 “L-shaped” genes according to our criteria and identified 

CIMP by biclustering and hierarchical clustering. Gene-set enrichment analysis and correlation 

analysis on expression, mutation and clinical features were performed. 

We suggested a method based on mutual information calculation to determine the threshold of 

DNA methylation and distinguish the genes for which the expression levels were significantly 

regulated by DNA methylation.  Based on the dichotomized methylation status predicated on 128 

“L-shaped” genes, we identified a new CIMP of BRCA with 11 markers. We observed significant 

correlations of CIMP+ with wild-type TP53 mutation, ER+/PR+ positive status, higher age at initial 
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pathologic diagnosis, better treatment response and perhaps a longer survival time. The 11 CIMP 

markers were shown to be associated with TP53 directly or indirectly, and were enriched in cancer 

and other disease networks. Also, we found that 7 epigenetic genes were correlated strongly with 

both the new CIMP and TP53 mutation. Based on our findings, we proposed a model of a TP53-

mediated regulatory network with two components: “Guidance” and “Sustainer.” 

We developed a powerful method to dichotomize the methylation status and identify a CIMP of 

breast cancer with a distinct classification of molecular characteristics and clinical features. Our 

results suggest that methylation may play an important role in resisting tumor development. The 

regulatory component of “Guidance” which we defined, and genetic modifiers BMI1, IDH1 and 

TET1 might be potential targets for new treatments. 

 

5.1 Methods 

5.1.1 Datasets Used 

Methylation datasets.   We obtained methylation datasets from TCGA generated by the 

Illumina Infinium Human DNA Methylation27 array for 3382 samples across 12 cancer types (Table 

5.1). For breast cancer, 318 tumor and 29 normal samples were measured. Level 3 preprocessed data 

were available for beta values, which is the ratio of the methylated probes among all probes for each 

detected site. 

mRNA expression datasets.   Also from TCGA, we downloaded mRNA expression datasets 

generated by the Illumina GA II and HiSeq platforms. Data for 2271 samples across 9 cancer types 

were available as of February 25, 2012 (Table 5.1).  For breast cancer, 775 tumor and 102 normal 

samples were measured. In each sample, RPKM for 20532 genes were calculated as level 3 data. In 

order to avoid the 0 value, we replaced them with the minimum non-zero value of the same gene 

among all samples. And we took log2 scale of the RPKM value. 
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Overlapping datasets used in mutual information (MI) calculation.   A total of 997 samples 

across 7 cancer types had both methylation status and mRNA expression data (Table 5.1). Among 

these 997 samples, 285 tumor and 21 normal samples were measured for breast cancer. 

 

Table 5.1 Datasets used 

  BRCA COAD GBM KIRC KIRP READ LAML LUSC LUAD OV STAD UCEC LIHC HNSC 

DNA Methylation 

(3382) 

Tumor 318 168 296 438 16 70 384 134 128 576 82 117   

Normal 29 45 6 410 6 11 0 32 27 25 61 3   

mRNA Expression 

(2271) 

Tumor 775 192  468 16 71  221    306 17 18 

Normal 102 0  68 0 0  17    3 8 0 

Overlapped 

(997) 

Tumor 285 161  207 16 67  126    113   

Normal 21 0  0 0 0  0    0   

 

 

5.1.2 Determining Methylation Threshold 

Mutual information computation.  Mutual information computation of the density of the 

distribution can be improved by taking into account the natural measurement of uncertainty. At low 

ranges of gene expression, especially for the log-transformed RNA-seq data, the large difference is 

not real, but is due to the randomness of the measurement. This can introduce noise into the mutual 

information calculation, especially when the number of samples is small. To solve this problem, a 

pair of methylation-expression measurements is not assigned to its bin, instead, it is represented by a 

smeared density function centered at the methylation-expression values. The uncertainties in both 

directions are taken from the estimated measurement errors.  

Measurement values were assumed to be distributed as normal distributions. Their uncertainties 

were calculated from 6 replicates. Subsequently, we calculated the probability of expression and the 

methylation value for each patient by summing up the probabilities from all patients. We can write 

the joint and marginal probabilities as 
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where    
 is the marginal probability of the  -th pseudo patient’s expression level of one 

particular gene. Similarly,    
 is the marginal probability of the methylation   value. In Eq.(3),      

 

is the joint probability of the mRNA expression level and methylation   value.   denotes the total 

number of patients and   pseudo and   indicate the  -th and  -th patients, respectively. The expression 

is denoted by   and the methylation values are denoted by    In addition,    
  and    

  are the 

uncertainties in both directions for the  -th patient.  

In order to determine the methylation threshold, we slide the cutoff point from the minimum to 

the maximum methylation values. Mutual information values are calculated for two parts besides the 

cutoff, and the sum is taken as Eq.(4). In the same way, we can calculate expression mutual 

information. Using Eq.(5), we calculated the “2-way” mutual information integrating mRNA 

expression and DNA methylation. 

      ∫ ∫      ̃
   (

     ̃

   ̃
   ̃

)   
   

  

 

    

    

     ∫ ∫     ̃
   (

     ̃

   ̃
   ̃

)   
   

 

  

    

    

 



 

 

70 

 

      ∫ ∫     ̃
   (

     ̃

   ̃
   ̃

)   
   

 

 

  

    

     ∫ ∫     ̃
   (

     ̃

   ̃
   ̃

)   
   

 

 

    

  

 

                      (                         (          

                                

           ∑     ̃
   (

     ̃

   ̃
   ̃

)

 

   

         ∑      ̃
   (

     ̃

   ̃
   ̃

)

   

     

      ∑     
   (

     ̃

   ̃
   ̃

)

 

   

     ∑      
   (

     ̃

   ̃
   ̃

)

   

     

  ( ) 

         ∑     

 

   

          ∑      

   

   

 

       ∫ ∫      ̃
   (

     ̃

   ̃
   ̃

)   
   

  

 

  

    

    ∫ ∫      ̃
   (

     ̃

   ̃
   ̃

)   
   

  

 

    

  

    ∫ ∫     ̃
   (

     ̃

   ̃
   ̃

)   
   

 

  

  

    

    ∫ ∫     ̃
   (

     ̃

   ̃
   ̃

)   
   

 

  

    

  

     ∑     
   (

     ̃

   ̃
   ̃

)

  

   

     ∑     
   (

     ̃

   ̃
   ̃

)

  

   

     ∑     
   (

     ̃

   ̃
   ̃

)

  

   

     ∑     
   (

     ̃

   ̃
   ̃

)

  

   

  ( ) 

                      (                         (          

                   

Criteria.  Aiming to identify “L-shaped” genes, we applied the following three criteria:  (1) the 

range of mutual information is no less than 0.3, (2) samples are split into 4 quadrants by the 

thresholds of mRNA expression and DNA methylation, with at least 200 samples located in each of 

the first and fourth quadrants, (3) no fewer than 600 samples are in the first and the fourth quadrants. 

http://www.iciba.com/quadrant
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Binary coding.  Once we obtained the threshold of the DNA methylation beta value, each gene 

was assigned to 1 or 0, where 1 means the methylation status of a gene changed compared to that of 

normal samples. 

 

5.1.3 Gene Set Enrichment Analysis 

MsigDB.  MsigDB (http://www.broadinstitute.org/gsea/msigdb/index.jsp) has more than 6000 

integrated datasets and a comprehensive analysis platform. It covers positional gene sets, curated 

gene sets, motif gene sets, computational gene sets and GO gene sets. 

BioProfiling.de . BioProfiling.de (http://www.bioprofiling.de/index.html) is another online tool 

we used for comprehensive analysis of gene sets. It provides a handful of types of analysis, including 

GO gene function, IntAct protein interaction and KEGG pathway relationships, cancer relationships 

and miRNA regulatory predication. 

Ingenuity Pathway Analysis (IPA).  We used IPA software to obtain gene sets of enriched signal 

pathways and found potential upstream regulators. 

 

5.1.4 CIMP Identification 

Biclustering.  Finding contiguous blocks with changed methylation status is of interest and we 

used the biclustering algorithm BicBin to handle our binary and sparse data matrices. 

Hierarchical clustering.  For the block found by Bicbin, we applied hierarchical clustering to 

find biomarker genes of the CIMP. We used R package hclust and OOMPA, applying the “ward” 

agglomeration method and the “binary” distance measure. 

 

5.1.5 Clinical Correlation Analysis 

We downloaded from TCGA a clinical dataset for breast cancer that contained 919 patient 

samples,  316 of which overlapped with both the methylation and mRNA expression datasets. We 

applied a generalized linear model to investigate the correlation of the methylation status with 

http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://www.bioprofiling.de/home.html
http://www.bioprofiling.de/index.html
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clinical features, including "pretreatment_history," "ajcc_cancer_metastasis_stage_code," 

"prior_diagnosis," "ajcc_neoplasm_disease_stage," "ajcc_tumor_stage_code,"  "gender," 

"age_at_initial_pathologic_diagnosis," "days_to_death," 

"breast_carcinoma_progesterone_receptor_status," "breast_carcinoma_estrogen_receptor_status," 

and "lab_proc_her2_neu_immunohistochemistry_receptor_status." 

 

5.1.6 Survival Analysis 

From the “days_to_death” values in the above clinical dataset, we applied the Cox model for 

right-censored survival analysis using the R library “survival.”  Also, we examined survival analysis 

from BioProfiling.de based on texting mining information. 

 

5.1.7 Mutation Analysis 

We downloaded a genetic mutation pre-processed dataset from TCGA that contained 507 

samples, 301 of which overlapped with both the methylation and mRNA expression datasets. Again, 

we used a generalized linear model to inspect the correlation with methylation status and mRNA 

expression. 

 

5.1.8 Identifying TP53-Mediated “Rescue” Genes 

“Guardian.”  In this study, we identified the “guardian” genes of the TP53 system according to 

the following criteria: (1) a significant different value exists for CIMP+ compared with normal 

samples and CIMP-, with the same trend; and (2) no significant difference exists between CIMP- and 

normal samples. 

“Sustainer.”  We identified the “sustainer” genes of the TP53 system according to the 

following criteria:  a significant different value exists for CIMP- compared with normal samples and 

CIMP+, with the same trend. 

 

http://www.bioprofiling.de/home.html
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5.2 Results 

5.2.1 Determining Methylation Threshold 

For each gene, we calculated the mutual information score (MI score) on both the methylation 

and mRNA expression dimensions according to Eq (5). As shown in Figure 5.1, along with the 

increments in the measurement value on each dimension, the MI score decreased and then increased. 

The point with the lowest MI score indicated the optimal threshold. A plot of mRNA expression 

against DNA methylation would exhibit an “L” shape for a gene that could be turned off by DNA 

methylation. As an example, the ESR1 gene is a typical “L-shaped” gene that encodes an estrogen 

receptor that is an important breast cancer biomarker. From our analysis, 271 among 285 breast 

cancer samples and all 21 paired normal samples showed ESR1 hypomethylation status and high 

mRNA expression level (Figure 5.1 A). Compared with ESR1, HOXA9 showed a reverse “L” shape, 

as the threshold of methylation was much higher and it was hypomethylated in breast cancer samples 

but was hypermethylated in normal samples (Figure 5.1 B).  The 3-D MI score of HOXA9 is shown 

in Figure 5.2. Also, the results show that mRNA expression levels are dissimilar across cancer types 

(Figure 5.1).  

In Figure 5.3, for all genes, histograms of the thresholds identified show that they were enriched 

in small methylation values and large mRNA expression levels. However, for genes with MI 

differences larger than 0.3, the thresholds estimated were highly gene-specific, and they were 

enriched in small mRNA expression levels, which is expected as the character of “L-shaped” genes. 

Also, a small peak that is seen on the right tail of the histogram for mRNA expression might have 

been formed by a reverse “L-shaped” gene, such as HOXA9 (Figure 5.3 D). 

As expected, the MI scores of the “L-shaped” genes show a deep “U” shape (Figure 5.1). And 

the depth of this kind of “U” shape shows the difference in the maturity of the  information before 

and after being split apart by the threshold cutoff. Therefore, the depth of this “U” shape is a good 

indicator of “L-shaped”  genes. The histogram of the depth,  displayed in Figure 5.4, shows that 449 

genes reached our criteria depth of 0.3. We performed a differential analysis between breast cancer 
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and normal samples for both DNA methylation and mRNA expression. After adjusting for the FDR, 

we plotted the p-values of differential methylation against that of mRNA expression. Using the 

normal samples as the baseline, a minus score means the measurement of tumor samples is lower 

than that of the normal samples. We observe in Figure 5.4 that genes with a deep “U” shape are 

enriched in the lower-right and upper-left quadrants, which indicates that they tend to have correlated 

methylation status and mRNA expression, in the way that high expression correlates with low 

methylation status or low expression correlates with high methylation status. However, we also 

observed reverse correlations of methylation status and mRNA expression for many genes. And, 

based on depths larger than 0.3 as one of our criteria (see Methods), most genes were filtered out 

because of moderate changes in MI scores. 

In order to validate the hypothesis that beta value thresholds are tailored to each microarray 

probe, we examined the MI scores of 29 genes as epigenetic prognostic signatures from the colon 

cancer study by Yi et al [82]. As the dichotomized methylation status will more accurately reflect the 

on-off state of a gene due to DNA methylation, we found that 16 of 25 overlapping genes have a 

depth of MI score larger than 0.1 (compared with 2,363 genes among 12,783; chi squared test, p-

value 9.397e-05) (Table S5.1) and exhibit “L” shapes when the methylation value is plotted against 

the mRNA expression value (data not shown). 
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Figure 5.1 Threshold determination from integrating mRNA expression and DNA methylation 

datasets. A) ESR1 gene; B) HOXA9 gene. Threshold determination of ESR1 genes and pattern of 

mRNA expression against DNA methylation status is investigated for 997 patient samples across 7 

cancer types (top left); red points are from BRCA samples; green points are from normal samples; 

and blue points are from other cancer types. Mutual information score is calculated for DNA 

methylation (top right) and mRNA expression (bottom left) by sliding the cutoff point. Thresholds 

are determined with the minimal mutual information score (bottom right). B exhibits results in the 

same way for the HOXA9 gene.  

 

A B 
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Figure 5.2 3-D plotting of mutual information score calculated for HOXA9 genes.  

 

 

Figure 5.3 Histogram of thresholds estimated. A, B are for all genes; C, D are for differences in MI 

larger than 0.3; A, C are for DNA methylation status; and C, D are for mRNA expression level. 

A C 

B D 
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Figure 5.4 Comparison of transcriptome versus epigenetic differences between BRCA and normal 

samples. Starburst plot is shown for comparison of DNA methylation and mRNA expression data for 

12,783 unique genes. Log10 (FDR-adjusted p-value) is plotted for DNA methylation (x-axis) and 

gene expression (y-axis) for each gene. If a mean DNA methylation β-value or mean gene expression 

value is higher (greater than zero) in the BRCA samples, −1 is multiplied to log10 (FDR-adjusted p-

value), providing positive values. The dashed black lines indicate FDR-adjusted p-value at 0.05. 

Data points in grey indicate no significance in the comparison. Data points in purple indicate mutual 

information scores larger than 0.05; points larger than 0.1 are denoted by blue, and points larger than 

0.3 are denoted by yellow. Points in red indicate genes identified to be differentially methylated 

when comparing BRCA with normal samples by biclustering. A histogram of the marginal mutual 

information score before and after data splitting is shown (bottom right). 

 

5.2.2 Identification of “L-shaped” Genes 

Aiming to investigate genes for which DNA methylation plays a large regulatory role, we 

identified “L-shaped” genes according to the following three criteria on MI scores and a plotting 
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pattern: (1) the range of mutual information scores is not less than 0.3; (2) samples are split into 4 

quadrants by the thresholds of mRNA expression and DNA methylation, and at least 200 samples  

are located in each of the first and fourth quadrants; and (3) no fewer than 600 samples are in the 

first and the fourth quadrants. As shown in Figure 5.1, both oESR1 and HOXA9 are selected as “L-

shaped” genes, which satisfy our criteria. With our criteria, a total of 128 “L-shaped” genes out of 

12,783 genes were selected and expected to be selected with high specificity. Table S5.2 shows the 

details of the genes sets, including the gene names, thresholds, MI scores and depths. Among these 

128 “L-shaped” genes, 17 are transcription factors (chi squared test, p-value=0. 27), including 7 

homeobox genes (chi squared test, p-value=2.02e-06) CDX1, HNF1A, HNF1B, HOXA9, PAX8, 

POU3F3 and POU4F1. Table S5.3 shows the top curated gene sets, GO gene sets and oncogene 

signature enriched sets, which is from MsigDB gene enrichment analysis. From the results, we found 

that these 128 enriched genes were associated with multiple cancer types. And 10 genes were 

reported to be hypermethylated in lung cancer samples (p-value=6.53e-05).  The top results of IPA 

associated network functions and biofunctions are shown in Table S5.4, which indicates that these 

128 “L-shaped”  genes are tightly associated with cancer, cellular disorder and disease development.   

 

5.2.3 A New CIMP 

5.2.3.1 CIMP Identification  

In this study, we focus on CIMP identification for BRCA. The values of DNA methylation 

status were binary coded based on the estimated methylation threshold. Aiming to identify the most 

differentially methylated genes in the tumor samples compared with normal samples, we performed 

biclustering and identified 25 out of 128 genes by discriminating a block of 1 in breast cancer 

samples and 0 in normal samples (Figure 5.5; Table 5.2). Most of the selected genes had significant 

differences in DNA methylation status and mRNA expression levels between cancer and normal 

samples (Figure 5.4). These included CFI, HOXA9, HSPB2, COL17A1, AQP1, POU3F3, PLD5, 

IL1A, POU4F1, CRYAB, LAMB3, TRIM29, SLC10A4, SCTR, MEP1A, IL20RA, SLC44A4, TFF1, 

http://www.iciba.com/quadrant
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C1orf64, C10orf81, ZG16B, SPDEF, RERG, PTK6, and BNIPL. Among these 25 “L-shaped” genes, 

4 were transcription factors (chi squared test, p-value=0. 53), including 3 homeodomain proteins (chi 

squared test, p-value=6.916e-06), HOXA9, POU3F3 and POU4F1. Table S5.5 shows the top curated 

gene sets, GO gene sets and oncogene signature enriched sets, which indicate that these 25 genes are 

associated intensively with breast cancer. The top results of IPA of associated network functions and 

biofunctions are shown in Table S5.6, which indicates that these 25 genes are tightly associated with 

cancer, cellular disorder and disease development, as expected, and are also associated with the cell 

cycle, cellular movement and cell death. 

 

Figure 5.5 Coordinated analysis of breast cancer CIMP defined from dichotomized methylation 

status. CIMPs are identified by biclustering and a sequential supervised hierarchical clustering on the 

128 “L-shaped” genes. The green and red heat map displays the sample and gene consensus. For 

each breast cancer sample, genes with unchanged methylation status compared with that of the 

normal samples are denoted in green; and genes with changed relative methylation status are denoted 

in red.  The vertical and bottom horizontal black lines indicate the boundary of the bi-clusters. The 

other two black lines indicate empirically identified CIMP markers. The methylation status of CIMP 
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biomarkers is shown in the left panel; associations with molecular and clinical features are shown in 

the top panel. 

 

Table 5.2 Demographics of CIMP subtypes in this study. 

  CIMP1 + CIMP1 - Normal P-value 

TP53 Mutated 31 81 10 2.38e-11 

Wild 130 61 17 

ER + 164 76 21 2.20e-16 

- 6 65 6 

PR + 137 66 19 1.00e-09 

- 33 75 8 

HER2 + 37 34 7 0.660 

- 95 74 16 

PAM50 subtypes 

Luminal A 68 43 0 0.209 

Luminal B 57 11 0 9.068e-06 

HER2-enriched 13 28 0 0.012 

Basal 1 49 0 2.586e-11 

Normal-like 2 1 0 1 

 

A supervised hierarchical clustering analysis of the binary DNA methylation data was 

performed on the 25 genes selected from biclustering, and 3 clusters were identified (Figure 5.5). 

Cluster 1 contains 11 genes (SLC44A4, IL20RA, LAMB3, IL1A, TFF1, CRYAB, C1orf64, MEP1A, 

SLC10A4, POU3F3, and POU4F1) while cluster 2 contains 3 genes (TRIM29, PLD5, and SCTR) and 

cluster 3 contains the remaining 11 genes. Based on clusters 1 and 2, we defined two CIMPs. We 

allowed for 10% measurement error tolerance, which means that for each patient in the CIMP+ 

group, at least 10 out of 11 genes as biomarkers had methylation status that changed compared with 

that of the normal group. Among all 286 BRCA tumor samples, we defined 149 CIMP 1+ and 136 

CIMP 2+ samples. As there were more CIMP1 markers than CIMP2, we focused on CIMP 1 in this 

study. Most of the identified CIMP 1 markers have the most significant difference in DNA 

methylation and mRNA expression levels between CIMP + and CIMP – samples and are 

significantly down- or up-regulated and hyper- or hypomethylated (Figure 5.6, lower-right and 

upper-left quadrants). A histogram of the methylation frequency distribution for the set of CIMP1 

biomarkers shown in Figure 5.6 indicates that the distribution of the CIMP1 markers creates a good 
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bimodal distribution, with two methylation frequency peaks at 0.2 and 0.9. Compared with the 

normal samples, 5 (MEP1A, IL20RA, SLC44A4, TFF1, and C1orf64) out of 11 were 

hypomethylated and 6 (POU3F3, IL1A, POU4F1, CRYAB, LAMB3, and SLC10A4) were 

hypermethylated (Figure 5.5).  

 

Figure 5.6 Comparison of transcriptome versus epigenetic differences between BRCA CIMP+ and 

CIMP- samples. Starburst plot is shown for comparison of DNA methylation and mRNA expression 

data for 12,783 unique genes. The x-axis and y-axis are defined in the same way as in Figure 5.4, as 

well as the black lines and grey data points. Points in red indicate CIMP markers identified; points in 

blue indicate significant up- and down-regulation in the gene expression levels and significant hyper- 

or hypomethylation in BRCA CIMP+ tumors compared to CIMP- tumors. A histogram of the 

methylation frequency of CIMP markers is shown (top right). 
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5.2.3.2 CIMP Markers Enrichment Analysis 

Among 11 CIMP markers, POU3F3 and POU4F1 are transcription factors (chi squared test, 

p-value=0. 93) and both are homeodomain proteins (chi squared test, p-value=0. 01). From GSEA of 

MsigDB, all significant enriched GO terms and oncogenic signatures are displayed in Table S5.7. 

Our 11 CIMP markers are enriched in the gene sets with the following characteristics: (1) 

differentially expressed between carcinoma and normal cells and between luminal-like breast cancer 

cell lines and the basal-like cell lines (LAMB3, TRIM29, IL20RA, CRYAB and IL1A); (2) part of the 

validated nuclear estrogen receptor alpha network (TFF1 and POU4F1); (3) discriminate between 

ESR1+ and ESR1 tumors (TRIM29, TFF1 and SLC44A4); (4) respond to bystander irradiation 

(LAMB3 and IL1A); (5) targets of polycomb gene EED, SUZ12 and BMI1 (IL20RA, SLC44A4, 

SCTR, SLC10A4, IL1A and LAMB3); (6) down-regulated in metastases from malignant melanoma 

compared to the primary tumors (LAMB3 and TRIM29); and (7) related to anti-apoptosis and 

negative regulation of development (CRYAB and IL1A). Only two significantly associated network 

functions were found by IPA. Interestingly, all 11 markers were shown to be associated with TP53 

directly or indirectly. Seven of them are involved in the network “cancer, hematological disease, 

immunological disease” and the other three are involved in “amino acid metabolism, cellular 

compromise, cellular movement” (Figure 5.7).  
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Figure 5.7 CIMP markers involved in networks. A. Network “cancer, hematological disease, 

immunological disease.” B. Network “amino acid metabolism, cellular compromise, cellular 

movement.” Genes in color (except TP53) indicate CIMP markers; red indicates hypermethylation in 

CIMP+ samples and green indicates hypomethylation. TP53 in red indicates the wild-type TP53 

gene and overexpression of TP53 as well. 

 

5.2.3.3 Correlation with TP53 Mutation and Subtypes 

  We performed logistic regression analysis to investigate the correlation of our defined CIMP 

subtype with the classic breast cancer markers estrogen receptor, progesterone receptor, HER2 

receptor, status of TP53 mutation and TCGA defined CIMP PAM50 subtypes (Figure 5.5) [65].  

Consistent with the strong correlation of CIMP and BRCA basal subtypes, our defined CIMP was 

found to strongly correlate with TP53 mutation, estrogen receptor status, and progesterone receptor 

status, but not with HER2 receptor status. No association was observed between CIMP and BRCA1 

or BRCA2 mutations (data not shown). We further investigated the correlation to BRCA subtypes and 

found a very strong correlation between CIMP1 and basal and luminal B subtypes. We observed a 

mild correlation with  the HER2-enriched subtype. Next, we performed genome-wide correlation 

analysis, and found that TP53 was the only one gene that has significant correlation with the CIMP 

in terms of its mutation status (Figure 5.8). We also checked the correlation of CIMP+ with mRNA 

A B 
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expression of TP53 and other TP53-related genes, including two TP53 binding proteins  (TP53BP1 

and TP53BP2), four TP53-induced proteins (TP53I11, TP53I3, TP53INP1, TP53INP2), two TP53 

target genes (TP53TG1 and TP53TG5) and one TP53 regulating kinase (TP53RK). Interestingly, 

moderately significant correlations were found between CIMP and mRNA expression of TP53, 

TP53BP1, TP53I3 and TP53TG5, and strong correlations existed with TP53BP2, TP3I11, TP53INP1 

and TP53TG1 (Table 5.3). Also, we found significantly negative associations between TP53 

mutation and expressions of TP53BP1 (p-value= 1.29e-07), TP53I11 (p-value= 1.28e-05), 

TP53INP1 (p-value= 2.07e-12), TP53TG1 (p-value= 2. 93e-09) and TP53TG5 (p-value= 6.10e-04) 

.We found the expression of TP53BP2 to be significantly and positively correlated with TP53 

mutation (p-value= 1.64e-06). 

 

Figure 5.8 Comparison of transcriptome versus mutation differences between BRCA CIMP+ and 

CIMP- samples. Starburst plot is shown for comparison of mutation status and mRNA expression 

data for 12,783 unique genes. The x-axis and y-axis are defined in the same way as in Figure 5.4, as 

well as the black lines and grey data points. Data points in red indicate TP53 genes and several 

TP53-related genes.  
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Table 5.3 Association study of CIMP subtype with molecular and clinical features. 

Object Term Odd ratio 

Lower 

boundary 

Higher 

Boundary 

P-value 

estrogen receptor positive 23.39 9.67 56.60 2.73e-12 

progesterone 

receptor 

positive 4.78 2.87 7.97 1.78e-09 

HER2 receptor positive 0.80 0.45 1.41 0.44 

TP53 mutation 0.18 0.11 0.30 5.87e-11 

TP53 mRNA expression 1.32 1.13 1.54 4.48e-04 

TP53BP1 mRNA expression 1.25 1.12 1.39 2.91e-05 

TP53BP2 mRNA expression 0.62 0.54 0.71 2.46e-11 

TP53I11 mRNA expression 1.40 1.24 1.59 1.05e-07 

TP53I3 mRNA expression 0.75 0.66 0.86 2.78e-05 

TP53INP1 mRNA expression 1.87 1.59 2.19 2.38-13 

TP53INP2 mRNA expression 0.96 0.82 1.11 0.55 

TP53RK mRNA expression 1.08 1.00 1.18 0.04 

TP53TG1 mRNA expression 1.38 1.19 1.61 2.68e-05 

TP53TG5 mRNA expression 1.51 1.30 1.77 6.81e-07 

pretreatment history Yes Inf 1.23 Inf 0.017 

prior diagnosis Yes 13.59 1.77 104.66 0.012 

ajcc cancer 

metastasis stage 

Higher stage 3.02 0.61 14.98 0.18 

ajcc neoplasm 

disease stage 

Higher stage 1.29 0.82 2.037 0.27 

ajcc tumor stage Higher stage 1.19 0.77 1.86 0.43 

gender Male Inf 0.35 Inf 0.25 

age at initial 

diagnosis 

Older 55.62 2.96 1044.40 0.0076 
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5.2.3.4 Clinical Correlation Analysis  

Clinical correlation analysis was performed on 7 clinical features, including pretreatment 

history, prior diagnosis, American Joint Committee on Cancer (AJCC) cancer metastasis stage, 

AJCC neoplasm disease stage, AJCC tumor stage, gender and age at initial pathologic diagnosis 

(Table 5.3). The contingency table is shown in Table 5.4. Significant correlation was found between 

CIMP and age at initial pathologic diagnosis (p-value 0.0076), the mean age for patients with 

CIMP+ tumors was 62 years, while it was 55 for patients with CIMP- tumors (Figure 5.9). Stratified 

by age at initial pathologic diagnosis, prior diagnosis showed significant correlation with CIMP (p-

value 0.012). Because of the small sample sizes of patients in particular categories, we applied 

Fisher’s exact test on the pretreatment history and gender, and found significant correlations between 

CIMP and pretreatment (p-value 0.017). 

 

 

Figure 5.9 Association study between age and CIMP subtypes. Category 0 indicates CIMP- subtype 

and 1 indicates CIMP+ subtype.  
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Table 5.4 Demographics of CIMP subtype according to clinical features 

 
Methylation status 

0 1 

Pretreatment history 
NO 143 164 

Yes 0 7 

prior diagnosis 
No 142 154 

Yes 1 17 

ajcc cancer metastasis 

stage 

M0 140 151 

M1 2 7 

ajcc neoplasm disease 

stage 

0 0 1 

I 27 30 

II 90 94 

III 19 32 

IV 2 7 

ajcc tumor stage 

T1 37 46 

T2 93 93 

T3 11 17 

T4 2 14 

gender 
Male 0 3 

Female 143 168 

 

 

5.2.3.5 Survival Analysis 

Stratified by age at initial pathologic diagnosis, relative risk of methylation status was 

estimated using a Cox model on survival data.  Compared to patients with CIMP- tumors, those with 

CIMP+ tumors tend to have longer survival times (odds ratio=1.29); although this difference is not 

significant (p-value 0.457). We also investigated the survival analyses of each CIMP marker based 

on curated datasets using GENESURV tools in bioprofiling.de. We found that 5 (SLC44A4, 
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IL20RA, TFF1, C1orf64, and POU4F1) of 6 markers that show significant survival difference for 

patients with breast cancer agreed with our finding that patients with tumors in which the 

methylation status change have longer survival time. The last gene, which was the only gene that did 

not agree with our finding, showed the least significant correlation, with a p-value of 0.0257 (Table 

S5.8). 

Clustering of correlations.  We performed hierarchical clustering analysis on p-values from the 

correlation analysis of each biomarker (Fig 5.10). All CIMP markers are clustered in one block with 

9 features, including TP53 mutation status, TP53BP2 mRNA expression, age at initial diagnosis, 

TP53BP1 mRNA expression, TP53I11 mRNA expression, TP53TG5 mRNA expression, TP53TG5 

mRNA expression, TP53INP1 mRNA expression, estrogen receptor status, and progesterone 

receptor status. This result coincided with the above correlation analysis, indicating a strong 

relationship between our identified CIMP and several factors,  including TP53 mutation, estrogen 

receptor status, progesterone receptor status, age at initial pathologic diagnosis, and the expression of 

TP53-related genes such as TP53BP1, TP53BP2, TP53I11, TP53TG1, TP53TG5, TP53INP1 and 

TP53RK. 



 

 

89 

 

 

Figure 5.10 Consensus clustering analysis of association study for each marker. Unsupervised 

hierarchical clustering was performed on 25 genes identified by biclustering. The green and red heat 

map displays association significance and gene consensus. Red indicates a positive correlation 

between methylation status and molecular or clinical features and blue indicates a negative 

correlation.  The methylation status of CIMP biomarkers is shown in the left panel, and CIMP 

identified in Figure 5.5 is shown in the top panel. 

 

5.2.3.6 Epigenetic Modifiers 

  GSEA has shown that 11 CIMP+ markers were enriched in polycomb target gene sets. We 

investigated the mRNA expression level of 12 epigenetic modifiers from ploycomb repressive 

complex 2 (PRC2) (BMI1), PRC1 (EED, SUZ12 and EZH2), DNA methyltransferases (DNMT1, 

DNMT3A and DNMT3B), H3K4 histone methyltransferase (MLL), isocitrate dehydrogenases 

(IDH1 and IDH2) and tet methylcytosine dioxygenases (TET1 and TET2). The mRNA expression 

levels were compared among CIMP+ samples, CIMP- samples and normal samples pairwise, and 



 

 

90 

 

their correlations with TP53 mutations were calculated as well (Table 5.5). Our results show that (1) 

BMI1, IDH1 and TET1 have significant differential expression between CIMP+ samples and both of 

the other two groups;  (2) DNMTA, DNMT3B, EZH1 and IDH2 have significant differential 

expression between CIMP- samples and both of the other two groups; and (3) all  7 genes are 

significantly correlated with TP53 mutation (Table 5.5;  Figure 5.11). Unfortunately, the mRNA 

expression value of SUZ12 was missing. Unexpectedly, EED does not shown significant differential 

expression between  the CIMP+ subtype and the other two groups because of large variance (Figure 

5.10 D). These findings indicate that (1) many epigenetic modifiers are tightly associated with TP53; 

(2) eleven CIMP+ markers may be regulated by BMI1, IDH1 and TET1; (3) the expression of a large 

proportion of these 12 epigenetic modifiers belongs to two distinct patterns; and (4) at least 2 types 

of epigenetic modifiers that are functional in the TP53 system exist.  

Table 5.5 Association study of epigenetic modifiers with CIMP subtype and TP53 mutation 

 

CIMP+ vs CIMP- CIMP+ vs Normal CIMP- vs Normal TP53 mutation 

OR P-value OR P-value OR P-value OR P-value 

PRC1 BMI1 1.28 2.19E-04 1.36 1.40E-02 1.06 6.30E-01 0.75 7.00E-05 

PRC2 

EED 0.85 1.41E-03 0.91 3.28E-01 1.07 4.53E-01 1.21 3.84E-04 

SUZ12 NA NA NA NA NA NA NA NA 

EZH2 0.76 4.49E-04 3.11 1.61E-16 4.09 1.85E-06 1.82 2.88E-14 

DNA 

methyltransferases 

DNMT1 0.91 8.65E-02 1.64 1.06E-07 1.80 7.62E-07 1.28 8.88E-06 

DNMT3A 0.82 1.36E-04 1.47 2.49E-05 1.79 5.95E-08 1.27 1.12E-05 

DNMT3B 0.69 8.19E-05 1.66 1.44E-03 2.41 9.40E-06 2.16 7.14E-15 

histone 

methyltransferase 

MLL 0.98 7.42E-01 0.46 1.71E-14 0.46 2.02E-12 0.93 1.77E-01 

isocitrate 

dehydrogenase 

IDH1 0.87 4.32E-02 0.70 4.78E-03 0.80 9.59E-02 1.21 8.22E-03 

IDH2 0.73 2.55E-05 2.07 3.15E-07 2.85 4.21E-13 1.62 1.36E-10 

Tet methylcytosine 

dioxygenase 

TET1 0.71 4.03E-05 0.57 1.54E-05 0.80 2.05E-02 1.57 1.40E-07 

TET2 1.01 8.79E-01 0.70 5.00E-04 0.70 1.12E-02 0.95 3.57E-01 

 



 

 

91 

 

 

Figure 5.11 Boxplot of expression of epigenetic modifiers in BRCA CIMP subtype and normal 

samples. (A-D) BMI1, IDH1, TET1 and EED. (E-H) EZH2, IDH2, DNMT3A and DNMT3B. 

Category N indicates normal samples; - indicates CIMP- subtype; + indicates CIMP+ subtype. Data 

points in red indicate samples with TP53 mutation. 
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5.3 Discussion 

In this study, we proposed a method to discriminate genes for which the mRNA expression 

levels are affected by the DNA methylation level, and to determine the threshold of DNA 

methylation as an indicator of whether one gene is expressed or depressed.  Based on the estimated 

dichotomized methylation status, we identified a new CIMP of BRCA with 11 markers. Interestingly, 

the new CIMP+ samples we identified were correlated significantly with negative TP53 mutation 

status, estrogen receptor-positive status, progesterone receptor-positive status, higher age at initial 

pathologic diagnosis, pretreatment history and a possibly longer survival time. The 11 CIMP markers 

were shown to be associated with TP53 directly or indirectly, and enriched in cancer and diseases 

networks. Also, we found that 7 among 12 epigenetic genes were correlated strongly with both the 

new CIMP and TP53 mutation. Based on our findings, we proposed a model in which there are at 

least two groups of members in the TP53 regulatory network, which are named “guidance” and 

“sustainer.” 

Method for determining methylation threshold.  In this paper, we estimated the methylation 

threshold based on the calculation of the conditional mutual information score. DNA methylation is 

considered to suppress gene expression and is often described as a binary measurement 

(hypermethylation or hypomethylation) [83].  Intuitively, the genes with expression regulated 

significantly by methylation will exhibit an “L” or reverse “L” shape when DNA methylation values 

are plotted against mRNA expression values (and the data split by the threshold cutoffs should be 

independent).  ESR1 and HOXA9 are two examples of  “L-shaped” genes, which also exhibit 

dramatic changes in methylation patterns in different cancers. This finding is consistent with that of 

Qiu et al. [83]. ESR1 encodes an estrogen receptor that has well-known involvement in pathological 

processes of breast cancer and has been shown to have hypermethylation status [84]. Also, HOXA9 

genes have been characterized under epigenetic silencing in tumors [85]. Our method was validated 

by the observation that most of the 29-gene set from the colon cancer study has a large difference in 

the values of the mutual information score measured  before and after determining the methylation 



 

 

93 

 

threshold [82]. Compared with the method that naively determines the methylation threshold by 

searching for the turning point in the mRNA expression [86], our method is more precise and 

flexible and has two advantages. First, we determined the threshold through measuring the 

dependence between DNA methylation and mRNA expression data; therefore, our method used 

more information than the naïve method that was based on only the change in mRNA expression. 

Second, we estimated the smeared densities of both DNA methylation and mRNA expression for 

each patient, which allows for a much smoother and more precise calculation. 

For all genes, the estimated thresholds tend to be small for methylation but large for mRNA 

expression. This observation is consistent with previous findings that most genes in the genome are 

hypomethylated [87,88].  However, we found that for genes with MI score differences larger than 

0.3, the thresholds of methylation corresponding to gene expression regulation are gene-specific, 

which is concordant with our assumption. Also, it is reasonable as we found small thresholds for 

mRNA expression levels for the gene sets enriched with “L-shaped”genes.   

Identification of “L-shaped”  genes.  “L-shaped” genes were selected according to three criteria 

(see Methods) from two aspects. First, “L-shaped” genes should have large differences in the mutual 

information score as methylation value and expression value would be much more independent after 

being split by threshold cutoffs. Second, for each “L-shaped” gene, both samples with  

hypomethylation and high expression levels and samples with hypermethylation and low expression 

levels should occupy considerable portions. 

A total of 128 “L-shaped” genes were identified. These genes are tightly associated with cancer 

and disease and are enriched in curated gene sets associated with multiple cancer types. These results 

are reasonable because these “L-shaped” genes were selected from TCGA data of multiple cancer 

types. As expected, 10 hyper-methylated genes are significantly related to lung cancer, which 

supports our intention to investigate the relationship between DNA methylation, mRNA expression 

and cancer.  Interestingly, 7 of the 128 “L-shaped” genes were homeobox genes (p-value=2.02e-06), 
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which is consistent with reports that homeobox genes are associated with tumorigenesis and are 

epigenetically regulated by the polycomb complex [89,90]. 

Identification of a new CIMP.  We identified 25 markers differentially methylated in tumor 

samples compared with normal samples. In this study, we focused on one CIMP with 11 markers, 

including SLC44A4, IL20RA, LAMB3, IL1A, TFF1, CRYAB, C1orf64, MEP1A, SLC10A4, 

POU3F3, and POU4F1. By integrating gene expression and DNA methylation data, we found that 

selected markers had rather significant DNA hypermethylation and down-regulated gene expression 

or hypomethylation and up-regulated gene expression when comparing either tumor to normal 

samples or CIMP+ to CIMP- samples. Also, using the strategy of integrating gene expression and 

DNA methylation data, Noushmehr et al. identified 300 genes with significant hypermethylation and 

gene expression changes for a CIMP of glioma [47]. However, those genes may not be “L-shaped.”  

Most of our new CIMP markers have been reported to have significant associations between 

their methylation status and various cancers.  IL20RA has been reported to be hypermethylated in 

lung cancer cell lines [91]. TFF1 has been validated as  hypomethylated and overexpressed in breast 

carcinoma [48,92]. Mahapatra et al. identified hypermethylated POU3F3 as a biomarker for systemic 

progression of prostate cancer [93]. POU4F1 has been demonstrated to have lower methylation 

frequency in leukemia cell lines compared to primary acute lymphoblastic leukemia samples, but 

higher methylation levels in low-grade breast cancer compared to normal samples [49,94]. 

Methylation of the CRYAB gene promoter was reported to occur in distinct anaplastic thyroid 

carcinomas [95].  The frequent up-regulation of LAMB3 by promoter demethylation has been 

reported in breast cancer, gastric cancer and bladder cancer,  but the opposite has been reported in 

prostate cancer [53,96,97,98]. 

Among the 11 CIMP biomarkers we identified, we found 5 (MEP1A, IL20RA, SLC44A4, TFF1, 

and C1orf64) to be hypermethylated and 6 (POU3F3, IL1A, POU4F1, CRYAB, LAMB3, and 

SLC10A4) to be hypomethylated. Although most CIMP samples that have been identified have been 

accompanied by  hypermethylation markers, which were named CIMP-high samples (widespread 
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promoter methylation) in some studies, the identification of CIMP-low samples (with less 

widespread promoter methylation) is ongoing [99,100,101,102]. Also, a previous breast cancer study 

revealed that hypomethylation at many CpG islands was significantly associated with epithelia to 

mesenchymal transition [103]. In this study, we proposed a new CIMP — “CIMP-M” (“CIMP-

mixture”) because of the mixture of epigenetic markers with hypo- and hyper methylation status. 

Although only a few studies have claimed CIMP with hypermethylated genes for breast cancer 

[63,64,65], consistent with a study by Fang et al. and TCGA group, this study suggests clearly that 

CIMP exists with a bimodal distribution and is significantly associated with certain molecular 

markers and clinical features. 

Consistent with the conclusion of Tommasi et al. that the methylation of homeobox genes 

frequently occurs in breast cancer [104], the new CIMP biomarkers are enriched in homeodomain 

proteins.  Also, they were found to be enriched in gene sets corresponding to metastasis, anti-

apoptosis and negative regulation of development. And they were enriched in the TP53 and estrogen 

receptor alpha signal pathway networks. In addition, they were significantly involved in networks 

associated with cancer and disease, amino acid metabolism, cellular compromise and cellular 

movement. These finding indicate that the new CIMP biomarkers play important roles in cancer. 

In this study, we demonstrated that the new CIMP identified was significantly correlated with 

TP53 mutation, estrogen receptor status and progesterone receptor status. Excitingly, we found that 

CIMP+ was significantly associated with the luminal B breast cancer subtype, and CIMP- was 

significantly associated with the basal breast cancer subtype. These findings were also exhibited by 

GSEA of 11 CIMP biomarkers that were enriched in the TP53 network, ER1 network, gene sets for 

anti-apoptosis and genes discriminating between the luminal-like and basal-like breast cancer cell 

lines. Ronneberg et al. reported 3 clusters associated with luminal tumors and basal-like tumors and 

found them to be significantly different in association with estrogen receptor status, and TP53 

mutation [62]. However, only 1 gene, TFF1, among our 11 CIMP biomarkers overlapped with the 
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findings from the study by Ronneberg et al.  A possible reason for this discrepancy is poor 

correlations between methylation status and mRNA expression levels for many genes because of the 

complexity of the regulatory system. For this newly identified CIMP, we observed only a mild 

association with the HER2-enriched subtype and no significant associations with BRCA1 or BRCA2 

mutations. Associations with the HER2-enriched subtype and BRCA1 and BRCA2 mutations and 

methylation clusters were found by Holm et al. [61].  

TP53 was the only gene for which mutation was found to be associated with CIMP. And 

consistent with previous studies [62,105], we found a strong correlation between TP53 mutation and 

ER negativity. Several studies have been developed to investigate the relationship of TP53 and ER 

expression. Estrogen receptor α has been reported to bind to TP53 and inhibit its transcription, 

resulting in the inhibition of p53-mediated cell death. Therefore, benefits from a reactivated TP53 

pathway, good prognosis and treatment response from anti-estrogens such as tamoxifen have been 

reported [106,107,108]. In our study, we observed an older age at initial pathologic diagnosis, prior 

diagnosis, pretreatment history and longer survival time in patients with the CIMP+ subtype with 

wild-type TP53, which indicates that patients with the CIMP+ subtype are at risk later in life and are 

more susceptible to treatment. Shirley et al. stated that p53 regulates ER expression through 

transcriptional control of the ER promoter [105], which may be the reason most TP53 mutations 

were found in patients with ER- tumors. Taken together, we observe that a feedback loop exists 

between TP53 and ER expression; however, this complicated regulatory system remains elusive. We 

also investigated 9 TP53-related genes and found 8 of them (TP53, TP53BP1, TP53BP2, TP53I3, 

TP3I11, TP53INP1, TP53TG1 and TP53TG5) to be significantly associated with CIMP subtypes and 

5 of them (TP53BP1, TP53I11, TP53INP1, TP53TG1 and TP53TG5) to be significantly negatively 

associated with TP53 mutation. We found a positive association with TP53 mutation  for one gene, 

TP53BP2. It is known that TP53BP1 and TP53BP2 bind to TP53 and enhance TP53-mediated 

transcriptional activation. The association we found between their expression and TP53 indicated 

that feedback relationships might exist between TP53 and its binding proteins. And the opposite 

http://www.ncbi.nlm.nih.gov/pubmed?term=Shirley%20SH%5BAuthor%5D&cauthor=true&cauthor_uid=19351845
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associations of TP53BP1 and TP53BP2 with TP53 mutation indicate that different feedback 

mechanisms are involved. In summary, significant associations were found between both TP53 

mutation and CIMP subtypes and TP53 binding proteins, induced proteins and target proteins. 

Whether these TP53-related genes are involved in maintaining the specific methylation pattern of 

CIMP will be of interest in future research.   

Regulation through epigenetic modifiers.  In this study, we investigated the expression of 12 

epigenetic modifiers in samples of CIMP+ and CIMP- subtypes and normal samples. We found that 

aberrant expressions of BMI1, IDH1 and TET1 exist when comparing the CIMP+ subtype to the 

other two groups, and DNMT3A, DNMT3B, EZH2 and IDH2 were expressed differently in the 

CIMP- subtype compared to the other two groups. All 7 genes were significantly correlated with 

TP53 mutation. These findings are in accordance with the findings of Pietersen et al., that EZH2 and 

BMI1 are inversely correlated with TP53 mutation and prognosis in breast cancer. They claimed that 

tumors with high expression levels of BMI1 are associated with a good prognosis [109]. In contrast, 

Guo et al. claimed that BMI1 promotes invasion and metastasis [110]. In our study, we observed that 

higher expression of BMI1 correlated well with ER+/PR+ cancer subtypes, CIMP+ subtype and 

wild-type TP53 and with older age at diagnosis, good response to treatment and longer survival time. 

TET1 has been reported to suppress the invasion ability of breast tumors through demethylation 

[111]. EZH2 has been found commonly overexpressed in breast cancer and has been reported to 

repress DNA repair, leading to tumor progression [76,112]. A significant association has been found 

for DNMT3B with breast cancer subtypes discriminated by methylation profiling [63]. All these 

findings suggest that the 11 CIMP biomarkers we identified might be regulated by BMI1, IDH1 and 

TET1, and that there is another group of epigenetic modifiers functional in the CIMP- subtype 

specifically that includes DNMT3A, DNMT3B, EZH2 and IDH2. Other studies have reported that 

EZH2 is functional in stem cell maintenance [113] and basal-like tumors are more like stem cells 

compared with other subtypes [114,115]. As expected, 6 of 11 CIMP biomarkers are curated targets 

of polycomb genes EED, SUZ12 and BMI1. Squazzo et al. found that a common set of promoters 
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occupied by SUZ12 exist in MCF3 tumor cells and embryonic tumors [116]. However, we cannot 

determine whether that gene is differently expressed between the CIMP+ and CIMP- groups because 

of missing data. 

 

Model of TP53-mediated regulatory system.  In this study, biomarkers exhibited a different 

methylation status in the CIMP+ group compared with the CIMP- and normal groups. We observed 

that patients with the CIMP+ subtype were older at the time of the initial pathologic diagnosis, and 

had a longer survival time compared with patients in the CIMP- subtype. It seems a paradox that the 

methylation status of the CIMP- subtype was similar to that of the normal samples (Figure 5.5). 

Patients with the CIMP+ subtype were older at the clinical onset of the disease, had a better 

treatment response, and had the potential to survive longer. Also, the CIMP- subtype was found to be 

tightly related to TP53 mutation.  As TP53 is well known to be associated with response to genotoxic 

and non-genotoxic stresses [117,118], we infer that aberrant CIMP+ methylation status results from 

the response of TP53 to  cellular stresses from a tumor. 

Here, we infer that there is an in emergency rescue system in which a group of genes play an 

important role along with TP53. We call this group of genes “guidance” genes because they react 

when the cell is at risk and contain the 11 CIMP+ markers we found. We call another group of genes 

that functional in the TP53 system the “skeleton” genes. “Sustainer” genes will not function when 

TP53 mutation occurs. We suggest a model of the TP53 regulatory network that contains two 

components, the “guidance” and “sustainer” genes, as shown in Figure 5.12.  “Guidance” genes play 

an emergency rescue role in the response to stresses, while “sustainer” genes act as the maintenance 

department, taking responsibility for the operation of the TP53-mediated regulatory system.  

Interestingly, as the “guidance” genes, the 11 CIMP biomarkers were found to be enriched in 

response to bystander irradiation. For the CIMP+ group, enrichment of the estrogen and progesterone 

receptors might be the stress signal from breast cancer that induces the response of the wild-type 

TP53 gene acting in a “guidance” capacity. For the CIMP- group, the TP53-mediated regulatory 
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system was silenced by the mutation of TP53, and the “sustainer” genes lost their function. We 

predicated 1594 “guidance” genes and 2016 “sustainer” genes in terms of the mRNA expression 

levels and 1591 “guidance” genes and 557 “sustainer” genes in term of the DNA methylation status.  

Both “guidance” and “sustainer” genes were enriched in important processes of disease resistance 

and metabolism. However, the “guidance” genes were enriched in the immune system process for 

rescue action, while the “sustainer” genes were found to be enriched in gene sets responding to 

changes in the cytoskeleton. We predicated “guidance” and “sustainer” genes according to our 

criteria (see Method I). We identified 1594 “guidance” and 2106 “sustainer” genes in terms of the 

mRNA expression level and 1591 “guidance” and 557 “sustainers” in terms of the DNA methylation 

status. The 11 CIMP markers were significantly selected as “guidance” genes (Figure 5.13). IPA 

showed that “guidance” genes were enriched in cell signaling, molecular transport, nucleic acid 

metabolism, and development disorders, while “sustainer” genes were enriched in the cell cycle, cell 

assembly and organization, cellular growth and proliferation and tumor morphology. MsigDB GSEA  

showed that “guidance” and “sustainer” genes were very significantly enriched in chemical 

reactions, response to stress, signal transduction, transport, transcription and cellular metabolic 

processes. As expected, GSEA showed that “guidance” genes were enriched in the immune system 

process for rescue action. And “sustainer” genes were found to be enriched in gene sets responding 

to changes in the cytoskeleton, which is consistent with the findings from IPA that “sustainer” genes 

play a role in cell assembly and organization and are responsible for tumor morphology. In addition, 

“guidance” genes are found to be enriched as the targets of EED and SUZ12. Interestingly, the LET-7 

family was found to regulate “guidance” genes and the MIR-506, MIR-30, and MIR-17 families and 

MIR-124A were found to regulate both “guidance” and “sustainer” genes. 
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Figure 5.12 Predicated model of TP53-mediated regulatory system. We proposed a model of the 

TP53-mediated regulatory system with two components: “guidance” and “sustainer” genes. 

“Sustainer” genes serve as the “skeleton” of the system and “guidance” genes serve as an emergency 

rescue team. When cells are under stress, “guidance” genes will respond to resist the stress. 

However, when TP53 is mutated, “sustainer” genes will lose their function and “guidance” genes 

will not work under stress. 

 

Figure 5.13 Comparison of transcriptome, epigenetic and mutation differences between BRCA CIMP 

subtypes. A. Comparison of transcriptome and mutation differences. B. Comparison of epigenetic 

and mutation differences. For both A and B, the x-axis and y-axis are defined in the same way as in 

Figure 5.4, as are the black lines and grey data points. Data points in red indicate the identified CIMP 

markers. Data points in blue denote predicated “guidance” genes and green denote “sustainer” genes. 

 

A B 
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We also observed two distinct patterns of the expression of epigenetic modifiers, which were in 

concordance. Therefore, we inferred that TP53 acts through at least two epigenetic mediation 

systems, one for “guidance” genes, containing EED, SUZ12 and BMI1, and another for “sustainer” 

genes, containing DNMT3A, DNMT3B, EZH2 and IDH2.  Therefore, for patients with the CIMP- 

subtype, DNMT3A, DNMT3B, EZH2 and IDH2 might be potential targets of treatment for restoring 

the TP53 regulatory system, and EED, SUZ12 and BMI1 might be targets for resisting tumor 

development. The EZH2 inhibitor DZNep has been reported to induce robust apoptosis in breast 

cancer cells [119]. Nevertheless, more research is needed to validate this TP53-mediated regulatory 

model and predicate the “guidance” and “sustainer” genes.  

In summary, we have presented a method based on the calculation of mutual information scores 

to determine the threshold of DNA methylation and distinguish the genes for which the levels of 

expression are significantly regulated by DNA methylation. We have identified a CpG island 

phenotype (CIMP) of breast cancer with strong correlation with the wild-type TP53 mutation, 

ER+/PR+ subtypes, higher age at the time of disease diagnosis, better treatment response and 

possibly a longer survival time. Both hypermethylation and hypomethylation status were shown on 

biomarkers of the CIMP+ group. In addition, we have suggested a model of the TP53-mediated 

regulatory system in which TP53 might regulate “guidance” and “sustainer” genes through two 

epigenetic mediation systems. 
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CONCLUSIONS 

 

      To investigate the properties of overdispersion in RNA-seq data, we empirically calculated the 

variance from replicated experiments. We observed a dependency relationship between 

overdispersion and sequencing depth on both the gene and position levels, which is consistent with 

the intuition that increments in sequencing depth will improve the sequencing accuracy. Based on 

this property, we developed a function for estimating the overdispersion rate by borrowing 

information from all genes. The Poisson distribution is usually applied to model discrete counts, but 

it is not appropriate for modeling the RNA-seq data as the Poisson rate on each position fluctuates in 

a large range because of the uniformity of mapped reads. Therefore, compared with the Poisson 

model, a model based on the proportion of the sequencing counts between two samples has the 

advantage of avoiding the estimation of the fluctuating measurement by converting non-uniform 

measurements into a constant ratio for one gene. We adopted the beta-binomial distribution to model 

the ratio of two measurements and the overdispersion. In the first study, we developed a statistical 

model on the gene level for differential expression analysis by utilizing the property of 

overdispersion. Our model obtained a better performance than models that did not incorporate the 

overdispersion rate or which used a constant overdispersion rate. Next, aiming to more accurately 

model the measurement, we modeled on the position level with a specific dispersion rate for each 

position. We also investigated the influence of random hexamer priming on overdispersion and 

found that the use of a random hexamer primer influenced the overdispersion mainly by affecting the 

sequencing depth. Therefore, it is desirable to estimate overdispersion utilizing its dependency upon 

sequencing depth. And, consistent with our model on the gene level, our model on the position level 

was superior to the models that did not incorporate the overdispersion rate or which used a constant 

overdispersion rate. Compared with DESeq which is a widely used method based on a negative 

binomial model on the gene level, our model is technically more desirable because it avoids 

modeling the highly fluctuating Poisson rate. 
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Inspired by the cross-hybridization issue inherent in microarrays, we investigated the 

measurement of spike-in transcripts sequenced along with different sample transcripts. Interestingly, 

we observed that the measurement of spike-in transcripts was influenced by the sample transcripts. 

Although the precise mechanism is still unknown, we developed an efficient statistical method to 

correct for this bias introduced by sample transcripts, and obtained an increase of 0.1 in the Pearson 

correlation coefficient after correction. The new type of bias observed in this study will aid the 

understanding of sequencing technology and contribute to better accuracy in downstream analysis. 

      Aiming to identify “L-shaped” genes that were largely regulated by DNA methylation on 

transcription, we developed a statistical approach for determining the DNA methylation threshold on 

the inhibition of mRNA expression. We used a mutual information technique to determine the 

threshold from 997 samples across 7 cancer types in TCGA datasets, and identified a total of 128 “L-

shaped” genes. We performed biclustering and hierarchical clustering on BRCA samples and 

identified a new CIMP with 11 biomarkers. We found a strong correlation between this new CIMP+ 

subtype in breast cancer and TP53 mutation, ER+ status, PR+ status, basal subtype, higher age at 

initial diagnosis, prior treatment history and the possibility of a longer survival time. We also found a 

strong correlation between 7 epigenetic genes and both of the new CIMP subtypes and TP53 

mutation. Based on our findings in this study, we predicated a model of the TP53-mediated 

regulatory network with two components: “guidance” genes that serve in an emergency capacity and 

“sustainer” genes that serve in a supporting capacity.    

We developed new methods for RNA-seq data analysis for differential expression analysis, bias 

correction and integration of mRNA expression levels and DNA methylation status. We believe that 

the new methods will be useful in furthering  the accuracy of differential expression analyses,  in 

understanding the biases and spurious effects inherent in sequencing technology, and in CIMP 

identification and biomarker discovery related to DNA methylation. 

Next, we will extend our method to handle biological samples in differential expression 

analysis. For the new bias identified in RNA-seq technology, which is introduced by using different 
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sample transcripts, we will explore the underlying mechanism and develop a more powerful method 

for correcting this bias. For the method to identify “L-shaped” genes, we plan to apply our method to 

other cancer types. Also, we will work on integrating more datasets, with the aim of obtaining a 

comprehensive analysis. 
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APPENDIX 

Appendix 1: Supplementary Figures 

 

Figure S3.1 The variance estimated on any position in 10 equal categories according to the distance 

of that position from the last nucleotide of the gene. (a) Lichun spike-in dataset. (b) Bullard dataset. 

Lichun reads start to appear at 76 nt away from the end of the gene because only mate2 on the 

antisense strand were investigated and the last sequencing reads were mapped to 76 nt before the 

ending.  However, the Bullard reads start from 50 nt away from the end of the gene because we 

truncated the genes by 50 nt from the gene head and tail separately. 

 

 
  

b a 
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Figure S3.2 Histogram comparing the sequencing reads from two samples.  The fold change for 

each gene was calculated as the log scale of the ratio of the reads counts of two samples. (a) 

SRR037456 is a brain sample and SRR037472 is a UHR sample. (b) SRR03469 and SRR037476 

were two UHR samples with different library preparations. Apparently, the variance between two 

different samples is much larger than that between library preparations. 

 

  

a b 
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Appendix 2: Supplementary Tables 

 

 

Table S5.1 The mutual information scores calculated on 25 genes selected from the study by Yi et al 

[82]. The column headings are defined as follows: “Gene” is the gene symbol, “Probe” is the probe 

id from Illumina Infinium Human DNA Methylation27 array, MI_max is the maximum mutual 

information score, MI_min_methy is the minimum mutual information score on data split by the 

threshold on methylation, MI_diff_methy is the difference between the maximum and minimum 

mutual information scores on methylation.Threshold_methy_1way is the threshold predicated 

methylation by the 1-way mutual information method. MI_min_exp is the minimum mutual 

information score on data split by the threshold on expression, MI_diff_exp is the difference between 

the maximum and minimum mutual information scores on expression.Threshold_exp_1way is the 

threshold predicated on expression by the 1-way mutual information method, MI_min_12 is the 

minimum mutual information score calculated by the 2-way mutual information method, and 

MI_diff_12 is the difference between the maximum and minimum mutual information calculated by 

the 2-way mutual information method. 

 

Gene Probe MI_max 
MI_min_ 

methy 
MI_diff_ 
methy 

Threshold_ 
methy_1way 

MI_min_ 
exp 

MI_diff_ 
exp 

Threshold
_exp_1wa

y 

MI_min_1
2 

MI_diff_ 
12 

APC2 cg18133957 0.918801 0.714133 0.204668 0.64 0.841674 0.077128 -3.11018 0.718529 0.200272 

CD109 cg23442323 0.317559 0.170615 0.146944 0.15 0.185321 0.132239 0.903185 0.29325 0.024309 

CHD5 cg00282347 0.672821 0.43322 0.239601 0.15 0.604483 0.068338 -2.39189 0.532149 0.140672 

EVL cg17813891 0.242147 0.200957 0.04119 0.77 0.212001 0.030146 3.887943 0.207849 0.034298 

EYA4 cg01805282 0.698954 0.364727 0.334227 0.56 0.648932 0.050022 -1.73657 0.356336 0.342618 

EYA4 cg07327468 0.499959 0.258202 0.241757 0.3 0.407461 0.092498 -1.64256 0.327041 0.172918 

FBN2 cg25084878 0.203767 0.109825 0.093943 0.44 0.161119 0.042649 0.983988 0.112375 0.091393 

FLNC cg25664034 0.180049 0.121759 0.058291 0.22 0.155523 0.024526 -1.1728 0.11843 0.061619 

GPNMB cg17274742 0.239358 0.209117 0.030241 0.27 0.222848 0.01651 4.917683 0.215993 0.023365 

GUCY1A2 cg23984434 0.433081 0.304618 0.128464 0.52 0.364053 0.069029 -1.45504 0.285112 0.14797 

HAPLN1 cg09893305 0.485798 0.361431 0.124367 0.67 0.451865 0.033933 -2.10028 0.363029 0.122769 

ICAM5 cg11373429 0.330354 0.229248 0.101107 0.29 0.277045 0.05331 -2.49657 0.22655 0.103805 

IGFBP3 cg22083798 0.270092 0.114852 0.15524 0.19 0.129001 0.141091 4.244468 0.162303 0.107789 

LAMA1 cg07846220 0.344199 0.14664 0.197558 0.48 0.169132 0.175067 0.448955 0.116187 0.228012 

MMP2 cg12317456 0.23921 0.195411 0.0438 0.18 0.202031 0.037179 3.006276 0.201968 0.037242 

NRCAM cg17885062 0.467722 0.31834 0.149382 0.25 0.366087 0.101635 -0.87651 0.309591 0.158131 

NTNG1 cg02361557 0.370772 0.289216 0.081555 0.1 0.319383 0.051389 -2.71286 0.279319 0.091453 

PPM1E cg19141563 0.771768 0.454593 0.317175 0.11 0.571661 0.200108 -3.55218 0.445726 0.326043 

PRKD1 cg21794225 0.354138 0.239484 0.114654 0.34 0.269377 0.084761 0.505021 0.269189 0.084949 

RET cg05621401 0.355159 0.222573 0.132586 0.39 0.307011 0.048148 -1.59387 0.203522 0.151637 

SH3TC1 cg07816074 0.314486 0.136964 0.177522 0.54 0.167381 0.147105 1.117468 0.114844 0.199642 

STARD8 cg20832009 0.214374 0.149339 0.065034 0.09 0.166904 0.04747 1.090363 0.192478 0.021896 

SYNE1 cg26620959 0.384867 0.245108 0.139759 0.37 0.263686 0.121181 1.276008 0.212871 0.171995 

TCERG1L cg10175795 0.78407 0.516304 0.267766 0.29 0.64614 0.13793 -3.2857 0.491611 0.292459 

ZNF569 cg03884783 0.378155 0.200037 0.178118 0.14 0.228017 0.150139 -1.15158 0.198254 0.179902 
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Table S5.2 The mutual information scores calculated on128 selected “L-shaped” genes. The column 

headings are defined as follows: “Gene” is the gene symbol, “Probe” is the probe id from Illumina 

Infinium Human DNA Methylation27 array, MI_max is the maximum mutual information score, 

MI_min_methy is the minimum mutual information score on data split by the threshold on 

methylation, MI_diff_methy is the difference between the maximum and minimum mutual 

information scores on methylation.Threshold_methy_1way is the threshold predicated methylation 

by the 1-way mutual information method. MI_min_exp is the minimum mutual information score on 

data split by the threshold on expression, MI_diff_exp is the difference between the maximum and 

minimum mutual information scores on expression.Threshold_exp_1way is the threshold predicated 

on expression by the 1-way mutual information method, MI_min_12 is the minimum mutual 

information score calculated by the 2-way mutual information method, and MI_diff_12 is the 

difference between the maximum and minimum mutual information calculated by the 2-way mutual 

information method. 

 

gene probe MI_max 
MI_min_ 

methy 
MI_diff_ 
methy 

threshold_ 
methy_1way 

MI_min_ 
exp 

MI_diff_ 
exp 

threshold_
exp_1way 

MI_min_1
2 

MI_diff_ 
12 

ELF5 cg01473816 0.735515 0.365517 0.369998 0.65 0.403495 0.332021 -0.56323 0.433501 0.302014 

ZNF660 cg22598028 0.810154 0.529791 0.280363 0.56 0.645475 0.164679 -3.13433 0.507875 0.302279 

BNC1 cg10398682 0.7974 0.530258 0.267142 0.34 0.694086 0.103314 -3.43322 0.494801 0.3026 

AQP1 cg04551925 0.488725 0.216458 0.272267 0.65 0.226185 0.26254 4.347634 0.186021 0.302704 

HNF1B cg12788467 0.706421 0.242299 0.464122 0.21 0.283626 0.422795 1.065114 0.401953 0.304468 

SCTR cg15250797 0.899921 0.592828 0.307093 0.34 0.766125 0.133797 -1.54074 0.594811 0.305111 

RIMS4 cg19332710 0.967803 0.675715 0.292088 0.09 0.831937 0.135866 -4.23222 0.662516 0.305287 

ZNF750 cg27285599 1.081205 0.554931 0.526274 0.71 0.584408 0.496797 -1.27621 0.769256 0.311949 

MKRN3 cg23234999 0.569254 0.233338 0.335915 0.69 0.225356 0.343898 -0.60685 0.256656 0.312598 

ZDHHC15 cg11272332 0.458103 0.162324 0.295779 0.61 0.175179 0.282924 -1.63846 0.144598 0.313506 

AR cg07780118 1.410697 1.139401 0.271296 0.55 1.185463 0.225234 -2.3349 1.096967 0.31373 

AJAP1 cg17525406 0.749099 0.441601 0.307498 0.24 0.573167 0.175931 -1.48321 0.434429 0.31467 

COL17A1 cg13448625 0.688208 0.377329 0.310878 0.73 0.408947 0.279261 2.316326 0.373186 0.315021 

CDH8 cg27444994 0.785918 0.512933 0.272985 0.21 0.616816 0.169102 -2.44332 0.468805 0.317113 

EYA4 cg01401376 0.628242 0.320893 0.307349 0.19 0.532458 0.095784 -4.83861 0.310776 0.317466 

SLC2A2 cg17142134 1.391408 0.929798 0.46161 0.77 0.961738 0.42967 -2.60575 1.073395 0.318013 

BNIPL cg11584936 0.377669 0.112681 0.264988 0.48 0.090151 0.287518 1.390571 0.059333 0.318337 

ABCC2 cg17044311 0.615384 0.29788 0.317505 0.61 0.353671 0.261714 -0.77229 0.29691 0.318475 

IL17RE cg15095327 0.47712 0.19049 0.28663 0.41 0.212958 0.264162 0.697661 0.158556 0.318564 

CSF3 cg21432842 0.921367 0.583928 0.337439 0.44 0.675398 0.245969 -1.53257 0.602621 0.318746 

PLA2G12
B 

cg02044879 0.700094 0.391152 0.308942 0.67 0.461068 0.239025 -0.61664 0.381121 0.318972 

GFRA1 cg23898073 0.812224 0.507971 0.304252 0.38 0.604805 0.207418 -1.24464 0.491249 0.320975 

PTK6 cg21484834 0.495062 0.200641 0.294421 0.59 0.204655 0.290407 1.509966 0.172645 0.322417 

GRIK3 cg06722633 0.800611 0.447245 0.353366 0.38 0.600492 0.200119 -0.159 0.477079 0.323532 

SLC10A4 cg08209133 0.975948 0.7216 0.254348 0.24 0.829085 0.146864 -3.69717 0.651721 0.324227 

MIOX cg24867501 0.596044 0.269926 0.326118 0.53 0.305587 0.290457 -1.49346 0.27115 0.324894 

FUT2 cg19025034 0.689034 0.421987 0.267047 0.64 0.412492 0.276541 1.776775 0.36339 0.325644 



 

 

109 

 

C1orf64 cg08887581 0.753526 0.45742 0.296106 0.55 0.510592 0.242934 -1.15974 0.427017 0.326509 

CTNND2 cg25302419 0.946794 0.591773 0.355021 0.15 0.74347 0.203324 -2.34925 0.619508 0.327286 

ZFP82 cg25886284 0.556009 0.189931 0.366078 0.44 0.230526 0.325483 -0.45555 0.226114 0.329895 

TFF1 cg02643667 0.765564 0.390236 0.375328 0.7 0.412194 0.35337 1.537345 0.435639 0.329925 

SCNN1A cg18738906 0.812605 0.399356 0.413249 0.84 0.422281 0.390324 2.530125 0.480903 0.331702 

RERG cg19205533 0.535646 0.258539 0.277107 0.52 0.266642 0.269004 1.029177 0.203494 0.332152 

GJB5 cg01333788 0.684365 0.366705 0.317661 0.59 0.438701 0.245664 -0.46991 0.351345 0.33302 

SLC27A6 cg07103493 0.921344 0.626766 0.294578 0.19 0.720875 0.200468 -2.0485 0.587686 0.333657 

KLF8 cg06655100 0.414627 0.128344 0.286283 0.47 0.13434 0.280287 -0.44184 0.079397 0.33523 

HSPB2 cg12598198 0.528822 0.181982 0.34684 0.73 0.187582 0.34124 1.587704 0.192111 0.336712 

SPDEF cg07705908 0.4796 0.188741 0.29086 0.48 0.215167 0.264433 0.329094 0.142267 0.337334 

MYO3A cg23771603 0.744835 0.396946 0.347889 0.3 0.523339 0.221497 -2.12864 0.406577 0.338258 

ZNF280B cg16184943 0.740464 0.410234 0.33023 0.32 0.541364 0.1991 -2.0221 0.402119 0.338345 

SYT9 cg08185661 0.771767 0.496032 0.275735 0.36 0.57061 0.201157 -2.83131 0.433329 0.338438 

ACSS3 cg01283289 0.512383 0.196294 0.316089 0.32 0.242489 0.269895 -0.74502 0.171965 0.340418 

ZNF300 cg19014419 0.674167 0.3365 0.337667 0.45 0.343022 0.331146 -1.06142 0.333666 0.340502 

SDCBP2 cg16173067 0.793389 0.496307 0.297082 0.54 0.507857 0.285532 1.690591 0.451909 0.34148 

ESR1 cg11251858 0.556531 0.237457 0.319074 0.23 0.276133 0.280398 -1.95442 0.214283 0.342248 

PCDHAC1 cg12629325 1.245624 0.917178 0.328446 0.7 1.004481 0.241143 -2.72548 0.900754 0.34487 

QRFPR cg00015770 0.775014 0.455846 0.319168 0.26 0.546744 0.22827 -2.1042 0.429645 0.345368 

RNF186 cg09195271 0.488165 0.175055 0.31311 0.49 0.226956 0.261209 0.434018 0.139986 0.34818 

NLRP6 cg09205751 1.032516 0.739321 0.293196 0.58 0.837747 0.194769 -1.31783 0.683545 0.348971 

TRIM29 cg13625403 0.698953 0.38551 0.313444 0.72 0.410654 0.288299 3.132584 0.349665 0.349289 

C19orf46 cg18542098 0.561077 0.229331 0.331746 0.58 0.21359 0.347488 1.251329 0.209131 0.351946 

FUT6 cg00579402 0.48988 0.19361 0.29627 0.55 0.200781 0.289098 1.244701 0.135357 0.354523 

FRMD1 cg00350478 0.915153 0.57194 0.343213 0.46 0.764102 0.15105 -1.17138 0.559785 0.355368 

TRIM31 cg00679556 1.196369 0.776016 0.420353 0.32 0.78661 0.409759 1.542483 0.838973 0.357396 

PKLR cg02280309 0.566715 0.229336 0.337379 0.54 0.272666 0.294049 -0.56814 0.203941 0.362775 

LAMB3 cg01580568 0.673686 0.347255 0.326431 0.64 0.379195 0.294491 2.501904 0.309883 0.363803 

PTPRH cg11261264 0.71989 0.383755 0.336135 0.49 0.438244 0.281647 0.992225 0.355374 0.364516 

SLC5A8 cg10141715 0.832332 0.497111 0.335221 0.45 0.602577 0.229755 -3.29278 0.466493 0.365839 

OPRK1 cg25990647 0.957108 0.526838 0.43027 0.5 0.618263 0.338845 -2.99389 0.590702 0.366406 

CRYAB cg15227610 0.502165 0.162421 0.339744 0.49 0.152555 0.34961 4.876306 0.135562 0.366604 

GGT6 cg04511534 0.628586 0.312934 0.315651 0.62 0.30334 0.325246 1.38697 0.261784 0.366801 

TSPYL5 cg15747595 0.607299 0.260296 0.347003 0.62 0.287044 0.320255 0.134197 0.240189 0.36711 

C1orf51 cg09563216 0.479246 0.12577 0.353476 0.42 0.150387 0.328859 -0.03753 0.107255 0.371991 

PDZD3 cg09799714 0.99307 0.633584 0.359486 0.61 0.737601 0.255468 -1.66304 0.620425 0.372645 

POU4F1 cg08097882 0.570379 0.201465 0.368913 0.28 0.435486 0.134893 -4.37757 0.195556 0.374823 

SLC44A4 cg07363637 0.531739 0.200281 0.331459 0.52 0.212227 0.319512 3.354669 0.156722 0.375017 

IL1A cg00839584 1.219214 0.862595 0.356618 0.45 1.002302 0.216912 -2.47846 0.842711 0.376503 

ARSE cg11964613 0.867826 0.469613 0.398213 0.43 0.493215 0.374611 1.468561 0.48941 0.378415 

PROM2 cg20775254 0.646546 0.227767 0.418779 0.6 0.251476 0.39507 1.43697 0.267849 0.378697 

MST1R cg08687163 0.799316 0.34714 0.452176 0.74 0.358414 0.440902 1.225448 0.419 0.380316 
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HOXA9 cg27009703 0.776843 0.435609 0.341234 0.59 0.448497 0.328346 0.966311 0.395496 0.381347 

EFHA2 cg26831415 0.895025 0.546818 0.348207 0.41 0.618256 0.276769 -1.42114 0.51238 0.382645 

C9orf167 cg07717632 0.464618 0.09617 0.368449 0.24 0.102045 0.362573 1.68074 0.081905 0.382714 

ZNF625 cg17892556 0.51436 0.173167 0.341193 0.5 0.192065 0.322295 -1.0213 0.128129 0.38623 

ZNF154 cg21790626 0.844424 0.502406 0.342019 0.55 0.537558 0.306867 -0.68034 0.45538 0.389044 

IL20RA cg22487322 0.527202 0.173394 0.353807 0.67 0.204838 0.322364 0.408141 0.136437 0.390765 

ZG16B cg26259865 0.699068 0.335499 0.363568 0.58 0.342143 0.356925 0.91889 0.305258 0.39381 

MAP9 cg03616357 0.569406 0.215317 0.354089 0.5 0.228202 0.341203 0.202835 0.174758 0.394648 

SPESP1 cg09886641 0.700947 0.30479 0.396157 0.7 0.373778 0.327169 0.327288 0.301781 0.399167 

MUC13 cg09081544 0.60281 0.203562 0.399248 0.53 0.23206 0.37075 3.883348 0.199972 0.402839 

C10orf81 cg10368842 0.56222 0.217218 0.345001 0.46 0.221419 0.340801 0.027331 0.159156 0.403064 

AMT cg20191453 0.529286 0.183579 0.345707 0.66 0.177 0.352287 1.208175 0.125002 0.404284 

TRIM55 cg23322523 0.786631 0.400507 0.386124 0.53 0.472923 0.313708 -1.9437 0.380077 0.406554 

C17orf73 cg03016571 0.538502 0.15689 0.381612 0.5 0.148801 0.389701 0.568318 0.128526 0.409976 

ADHFE1 cg08090772 0.567394 0.196004 0.371391 0.46 0.22613 0.341264 -0.59164 0.155751 0.411644 

FXYD3 cg02633817 0.525605 0.140403 0.385202 0.62 0.15792 0.367685 2.933435 0.109581 0.416024 

S100P cg22266967 0.555592 0.176513 0.379079 0.51 0.199093 0.356499 3.061998 0.139353 0.41624 

PPP1R14
D 

cg04968426 0.562222 0.178981 0.383241 0.58 0.186838 0.375385 2.089626 0.144708 0.417514 

CFTR cg25509184 1.091757 0.682676 0.409081 0.3 0.753909 0.337847 0.894448 0.671309 0.420448 

WDR17 cg18443378 0.917938 0.545883 0.372055 0.21 0.613637 0.304301 -2.11554 0.496885 0.421053 

ZNF542 cg26309134 0.564676 0.200377 0.364298 0.44 0.22219 0.342485 0.185751 0.143361 0.421315 

PLD5 cg12613383 1.105161 0.714951 0.39021 0.33 0.95884 0.146322 -3.91296 0.683786 0.421375 

GRIN2A cg01722994 0.865231 0.521814 0.343417 0.28 0.69796 0.167271 -3.80076 0.442957 0.422274 

ADH6 cg06518271 0.763355 0.295122 0.468233 0.64 0.34885 0.414505 -1.51351 0.338687 0.424668 

FERMT1 cg09539538 0.80119 0.39755 0.40364 0.42 0.393227 0.407963 1.802201 0.374811 0.42638 

CFI cg12243271 0.556621 0.192373 0.364248 0.59 0.190559 0.366061 2.738497 0.125797 0.430824 

SGK2 cg17463527 0.683206 0.285248 0.397958 0.57 0.309921 0.373285 0.40685 0.24935 0.433856 

POU3F3 cg20291049 0.83464 0.422907 0.411733 0.23 0.446055 0.388585 0.173539 0.39827 0.43637 

HKDC1 cg11762346 0.792341 0.397796 0.394545 0.5 0.476037 0.316304 -0.82915 0.354975 0.437366 

ZNF135 cg16638540 0.656561 0.266618 0.389943 0.61 0.282597 0.373965 -0.8111 0.214471 0.442091 

RBP5 cg24441911 0.609581 0.193144 0.416438 0.67 0.204222 0.40536 2.562149 0.162078 0.447504 

FUT9 cg01837719 1.514984 1.10021 0.414775 0.23 1.290737 0.224247 -4.87768 1.064773 0.450211 

ELOVL2 cg13562911 1.006106 0.576278 0.429828 0.3 0.691245 0.314861 -1.94761 0.55532 0.450786 

MEP1A cg20980592 0.691537 0.309015 0.382523 0.65 0.509764 0.181773 0.561969 0.239937 0.4516 

GPA33 cg06665322 0.683287 0.276509 0.406778 0.47 0.290014 0.393273 2.688244 0.229175 0.454112 

CCL15 cg23743114 0.572053 0.135469 0.436584 0.46 0.170003 0.402049 -0.16002 0.11699 0.455063 

SPINK1 cg04577715 0.571031 0.259503 0.311528 0.65 0.175335 0.395696 2.964529 0.112849 0.458182 

KRT20 cg25124433 0.597884 0.172336 0.425548 0.73 0.179377 0.418507 1.989879 0.13845 0.459434 

LGALS4 cg06394229 0.71857 0.301996 0.416574 0.45 0.339338 0.379232 3.4325 0.258952 0.459618 

GUCY2C cg18754342 0.639586 0.17 0.469586 0.5 0.193055 0.446531 1.373467 0.162648 0.476939 

RXFP4 cg08403419 0.978926 0.572869 0.406057 0.32 0.657796 0.32113 -2.15265 0.494636 0.48429 

RIC3 cg08383315 1.306606 0.949637 0.356969 0.34 1.082187 0.22442 -2.97625 0.82194 0.484666 

MYO1A cg09541248 1.331314 0.910194 0.421119 0.38 0.975095 0.356219 0.692855 0.842628 0.488686 
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FAM3D cg02194211 0.703317 0.230127 0.47319 0.67 0.286637 0.41668 3.942016 0.202327 0.50099 

EPS8L3 cg00491404 1.112369 0.662543 0.449826 0.51 0.692608 0.419762 2.764433 0.603092 0.509278 

SOX11 cg08432727 1.557355 1.177898 0.379457 0.46 1.333619 0.223737 -2.77406 1.041207 0.516148 

HNF1A cg16175725 0.692391 0.152521 0.53987 0.63 0.172907 0.519485 0.840162 0.169552 0.522839 

CDX1 cg15452204 0.852634 0.411413 0.441222 0.51 0.41054 0.442094 1.512887 0.328988 0.523647 

CDH16 cg14221831 1.104623 0.658576 0.446046 0.62 0.684173 0.42045 1.071852 0.578087 0.526536 

DQX1 cg02034222 0.784156 0.318513 0.465643 0.66 0.330438 0.453718 -0.31324 0.256062 0.528094 

ARL14 cg24147596 0.999617 0.536725 0.462892 0.51 0.55707 0.442547 -0.89091 0.463837 0.535779 

CLRN3 cg23817637 0.79768 0.346046 0.451633 0.47 0.366644 0.431036 1.132192 0.244632 0.553048 

KCNQ5 cg15717808 1.032089 0.486842 0.545247 0.31 0.583496 0.448593 -2.60956 0.463127 0.568962 

SLC39A5 cg00668685 0.961775 0.476375 0.4854 0.61 0.505763 0.456012 1.003672 0.391803 0.569973 

ST6GALN
AC1 

cg13015534 1.16578 0.660012 0.505768 0.39 0.6851 0.48068 -1.12498 0.582409 0.583371 

PAX8 cg07403255 0.80501 0.221437 0.583574 0.54 0.222126 0.582885 1.642063 0.193171 0.611839 

GPX2 cg09643186 1.091144 0.529561 0.561583 0.64 0.561502 0.529642 3.109897 0.472359 0.618785 

CDH17 cg12038710 0.958454 0.432057 0.526397 0.59 0.43411 0.524344 2.838026 0.314921 0.643533 
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Table S5.3 Gene set enrichment analysis (GSEA) on 128 identified “L-shaped” genes from MsigDB.  

Top 50 significant gene set enrichments, with p-value < 0.05, are shown in three categories: curated 

gene sets, GO gene set and oncogene signatures. 

 

Curated gene sets 

Gene Set Name 

# 
Genes 

in Gene 
Set (K) 

Description 
# Genes 

in Overlap 
(k) 

k/K p value 

DOANE_BREAST_CANCE
R_ESR1_UP 

112 
Genes up-regulated in breast cancer samples positive 

for ESR1 [GeneID=2099] compared to the ESR1 negative 
tumors. 

8 0.0714 2.11E-07 

DODD_NASOPHARYNGE
AL_CARCINOMA_UP 

1821 
Genes up-regulated in nasopharyngeal carcinoma (NPC) 

compared to the normal tissue. 
30 0.0154 5.55E-07 

SERVITJA_ISLET_HNF1A_
TARGETS_DN 

109 
Genes down-regulated in pancreatic islets upon 

knockout of HNF1A [GeneID=6927]. 
7 0.0642 2.56E-06 

TURASHVILI_BREAST_LO
BULAR_CARCINOMA_VS
_DUCTAL_NORMAL_DN 

91 
Genes down-regulated in lobular carcinoma vs normal 

ductal breast cells. 
6 0.0659 1.18E-05 

HUPER_BREAST_BASAL_
VS_LUMINAL_UP 

54 
Genes up-regulated in basal mammary epithelial cells 

compared to the luminal ones. 
5 0.0926 1.24E-05 

JAEGER_METASTASIS_D
N 

258 
Genes down-regulated in metastases from malignant 

melanoma compared to the primary tumors. 
9 0.0349 1.42E-05 

TURASHVILI_BREAST_DU
CTAL_CARCINOMA_VS_D

UCTAL_NORMAL_DN 
198 

Genes down-regulated in ductal carcinoma vs normal 
ductal breast cells. 

9 0.0404 1.51E-05 

ONDER_CDH1_TARGETS
_2_DN 

464 
Genes down-regulated in HMLE cells (immortalized 

nontransformed mammary epithelium) after E-
cadhedrin (CDH1) [GeneID=999] knockdown by RNAi. 

11 0.0237 5.65E-05 

CERVERA_SDHB_TARGET
S_1_DN 

38 
Genes turned off in Hep3B cells (hepatocellular 

carcinoma, HCC) upon knockdown of SDHB 
[GeneID=6390] by RNAi. 

4 0.1053 5.79E-05 

HATADA_METHYLATED_I
N_LUNG_CANCER_UP 

390 
Genes with hypermethylated DNA in lung cancer 

samples. 
10 0.0256 6.53E-05 

LEE_LIVER_CANCER_SUR
VIVAL_UP 

185 
Genes highly expressed in hepatocellular carcinoma 

with good survival. 
7 0.0378 7.95E-05 

GOZGIT_ESR1_TARGETS_
DN 

781 
Genes down-regulated in TMX2-28 cells (breast cancer) 
which do not express ESR1 [GeneID=2099]) compared 

to the parental MCF7 cells which do. 
15 0.0179 1.12E-04 

SMID_BREAST_CANCER_
RELAPSE_IN_BRAIN_DN 

85 
Genes down-regulated in brain relapse of breast 

cancer. 
5 0.0588 1.12E-04 

VECCHI_GASTRIC_CANCE
R_ADVANCED_VS_EARLY

_DN 
138 

Down-regulated genes distinguishing between two 
subtypes of gastric cancer: advanced (AGC) and early 

(EGC). 
6 0.0435 1.23E-04 

PID_A6B1_A6B4_INTEGR
IN_PATHWAY 

46 a6b1 and a6b4 Integrin signaling 4 0.087 1.24E-04 

MIKKELSEN_ES_LCP_WIT
H_H3K4ME3 

142 
Genes with low-CpG-density promoters (LCP) bearing 
histone H3 trimethylation mark at K4 (H3K4me3) in 

embryonic stem cells (ES). 
7 0.0423 1.44E-04 

SENGUPTA_NASOPHARY
NGEAL_CARCINOMA_DN 

349 
Genes down-regulated in nsopharyngeal carcinoma 

relative to the normal tissue. 
9 0.0258 1.47E-04 

SMID_BREAST_CANCER_
RELAPSE_IN_BONE_UP 

97 Genes up-regulated in bone relapse of breast cancer. 5 0.0515 2.09E-04 

YOSHIMURA_MAPK8_TA
RGETS_UP 

1305 
Genes up-regulated in vascular smooth muscle cells 

(VSMC) by MAPK8 (JNK1) [GeneID=5599]. 
18 0.0138 3.10E-04 
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WAGNER_APO2_SENSITI
VITY 

25 
Genes whose expression most significantly correlated 

with cancer cell line sensitivity to the proapoptotic 
ligand APO2 [GeneID=8797]. 

3 0.12 3.52E-04 

KEGG_GLYCOSPHINGOLI
PID_BIOSYNTHESIS_LACT
O_AND_NEOLACTO_SERI

ES 

26 
Glycosphingolipid biosynthesis - lacto and neolacto 

series 
3 0.1154 3.97E-04 

FEVR_CTNNB1_TARGETS
_UP 

682 
Genes up-regulated in intestinal crypt cells upon 

deletion of CTNNB1 [GeneID=1499]. 
12 0.0176 4.19E-04 

MIKKELSEN_IPS_LCP_WI
TH_H3K4ME3 

174 
Table 2S. Genes in MEF, MCV6, MCV8.1 and ES cells by  

epigenetic mark of their promoter 
7 0.0345 4.29E-04 

LIEN_BREAST_CARCINO
MA_METAPLASTIC_VS_D

UCTAL_DN 
114 

Genes down-regulated between two breast carcinoma 
subtypes: metaplastic (MCB) and ductal (DCB). 

5 0.0439 4.42E-04 

HOEGERKORP_CD44_TA
RGETS_DIRECT_UP 

27 
Genes directly up-regulated by CD44 [GeneID=960] 

stimulation of B lymphocytes. 
3 0.1111 4.44E-04 

LIM_MAMMARY_LUMIN
AL_MATURE_UP 

116 
Genes consistently up-regulated in mature mammary 

luminal cells both in mouse and human species. 
5 0.0431 4.78E-04 

FARMER_BREAST_CANCE
R_BASAL_VS_LULMINAL 

330 

Genes which best discriminated between two groups of 
breast cancer according to the status of ESR1 and AR 

[GeneID=2099;367]: basal (ESR1- AR-) and luminal 
(ESR1+ AR+). 

8 0.0242 5.21E-04 

CHARAFE_BREAST_CANC
ER_BASAL_VS_MESENCH

YMAL_UP 
121 

Genes up-regulated in basal-like breast cancer cell lines 
as compared to the mesenchymal-like ones. 

5 0.0413 5.80E-04 

LI_PROSTATE_CANCER_E
PIGENETIC 

30 
Genes affected by epigenetic aberrations in prostate 

cancer. 
3 0.1 6.09E-04 

CREIGHTON_ENDOCRINE
_THERAPY_RESISTANCE_

3 
720 

The 'group 3 set' of genes associated with acquired 
endocrine therapy resistance in breast tumors 

expressing ESR1 and ERBB2 [GeneID=2099;2064]. 
13 0.0167 6.76E-04 

KIM_RESPONSE_TO_TSA
_AND_DECITABINE_UP 

129 
Genes up-regulated in glioma cell lines treated with 

both decitabine [PubChem=451668] and TSA 
[PubChem=5562]. 

5 0.0388 7.75E-04 

POOLA_INVASIVE_BREAS
T_CANCER_DN 

134 
Genes down-regulated in atypical ductal hyperplastic 

tissues from patients with (ADHC) breast cancer vs 
those without the cancer (ADH). 

5 0.0373 9.20E-04 

CHARAFE_BREAST_CANC
ER_LUMINAL_VS_MESEN

CHYMAL_UP 
450 

Genes up-regulated in luminal-like breast cancer cell 
lines compared to the mesenchymal-like ones. 

10 0.02 9.29E-04 

SMID_BREAST_CANCER_
BASAL_UP 

648 
Genes up-regulated in basal subtype of breast cancer 

samles. 
11 0.017 9.81E-04 

LIU_CDX2_TARGETS_UP 36 
Genes up-regulated in HET1A cells (esophagus 
epithelium) engineered to stably express CDX2 

[GeneID=1045]. 
3 0.0833 1.05E-03 

YANG_BREAST_CANCER_
ESR1_UP 

36 
Genes up-regulated in early primary breast tumors 

expressing ESR1 [GeneID=2099] vs the ESR1 negative 
ones. 

3 0.0833 1.05E-03 

WATANABE_COLON_CA
NCER_MSI_VS_MSS_DN 

81 
Down-regulated genes discriminating between MSI 
(microsatellite instability) and MSS (microsatellite 

stability) colon cancers. 
4 0.0494 1.09E-03 

SMID_BREAST_CANCER_
LUMINAL_B_DN 

564 
Genes down-regulated in the luminal B subtype of 

breast cancer. 
10 0.0177 1.21E-03 

BENPORATH_ES_WITH_
H3K27ME3 

1118 
Set 'H3K27 bound': genes posessing the trimethylated 
H3K27 (H3K27me3) mark in their promoters in human 

embryonic stem cells, as identified by ChIP on chip. 
16 0.0134 1.35E-03 

SCHAEFFER_PROSTATE_
DEVELOPMENT_48HR_U

487 
Genes up-regulated in the urogenital sinus (UGS) of day 

E16 females exposed to the androgen 
9 0.0185 1.61E-03 
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P dihydrotestosterone [PubChem=10635] for 48 h. 

ACEVEDO_FGFR1_TARGE
TS_IN_PROSTATE_CANCE

R_MODEL_DN 
308 

Genes down-regulated during prostate cancer 
progression in the JOCK1 model due to inducible 

activation of FGFR1 [GeneID=2260] gene in prostate. 
7 0.0227 1.69E-03 

MIKKELSEN_MEF_HCP_
WITH_H3K27ME3 

590 
Genes with high-CpG-density promoters (HCP) bearing 
histone H3 trimethylation mark at K27 (H3K27me3) in 

MEF cells (embryonic fibroblast). 
10 0.0169 1.69E-03 

SMID_BREAST_CANCER_
BASAL_DN 

701 
Genes down-regulated in basal subtype of breast 

cancer samles. 
11 0.0157 1.83E-03 

PID_HNF3APATHWAY 44 FOXA1 transcription factor network 3 0.0682 1.88E-03 

TURASHVILI_BREAST_LO
BULAR_CARCINOMA_VS
_LOBULAR_NORMAL_UP 

94 
Genes up-regulated in lobular carcinoma vs normal 

lobular breast cells. 
4 0.0426 1.88E-03 

JI_CARCINOGENESIS_BY_
KRAS_AND_STK11_UP 

12 

Cluster A: genes up-regulated in primary lung tumors 
driven by KRAS [GeneID=3845] activation and loss of 
STK11 [GeneID=6794]; also up-regulated in human 
squamous cell carcinoma (SCC) vs adenocarcinoma 

subtype of NSCLC (non-small cell lung cancer). 

2 0.1667 1.95E-03 

MIKKELSEN_MCV6_LCP_
WITH_H3K4ME3 

162 

Genes with low-CpG-density promoters (LCP) bearing 
the tri-methylation mark at H3K4 (H3K4me3) in MCV6 
cells (embryonic fibroblasts trapped in a differentiated 

state). 

6 0.0309 2.13E-03 

MADAN_DPPA4_TARGET
S 

46 
Genes differentially expressed in ES cells with DPPA4 

[GeneID=55211] knockout. 
3 0.0652 2.14E-03 

REACTOME_TRANSMEM
BRANE_TRANSPORT_OF_

SMALL_MOLECULES 
413 

Genes involved in Transmembrane transport of small 
molecules 

8 0.0194 2.18E-03 

RAY_ALZHEIMERS_DISEA
SE 

13 
A biomarker of plasma signaling proteins that predicts 

clinical Alzheimer's diagnosis. 
2 0.1538 2.30E-03 

GO gene sets 

FUCOSYLTRANSFERASE_
ACTIVITY 

10 

Genes annotated by the GO term GO:0008417. 
Catalysis of the transfer of a fucosyl group to an 

acceptor molecule, typically another carbohydrate or a 
lipid. 

3 0.3 3.07E-04 

IONOTROPIC_GLUTAMAT
E_RECEPTOR_ACTIVITY 

10 
Genes annotated by the GO term GO:0004970. 

Combining with glutamate to initiate a change in cell 
activity through the regulation of ion channels. 

2 0.2 8.28E-03 

EXCRETION 36 

Genes annotated by the GO term GO:0007588. The 
elimination by an organism of the waste products that 
arise as a result of metabolic activity. These products 
include water, carbon dioxide (CO2), and nitrogenous 

compounds. 

3 0.0833 1.40E-02 

EPIDERMIS_DEVELOPME
NT 

71 

Genes annotated by the GO term GO:0008544. The 
process whose specific outcome is the progression of 

the epidermis over time, from its formation to the 
mature structure. The epidermis is the outer epithelial 
layer of a plant or animal, it may be a single layer that 
produces an extracellular material (e.g. the cuticle of 

arthropods) or a complex stratified squamous 
epithelium, as in the case of many vertebrate species. 

4 0.0563 1.78E-02 

APICAL_PART_OF_CELL 17 
Genes annotated by the GO term GO:0045177. The 

apical region of a cell. 
2 0.1176 2.35E-02 

GLUTAMATE_SIGNALING
_PATHWAY 

17 
Genes annotated by the GO term GO:0007215. The 

series of molecular signals generated as a consequence 
of glutamate binding to a cell surface receptor. 

2 0.1176 2.35E-02 

ACTIN_FILAMENT 18 
Genes annotated by the GO term GO:0005884. A 

filamentous structure formed of a two-stranded helical 
2 0.1111 2.61E-02 
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polymer of the protein actin and associated proteins. 
Actin filaments are a major component of the 

contractile apparatus of skeletal muscle and the 
microfilaments of the cytoskeleton of eukaryotic cells. 
The filaments, comprising polymerized globular actin 

molecules, appear as flexible structures with a diameter 
of 5-9 nm. They are organized into a variety of linear 

bundles, two-dimensional networks, and three 
dimensional gels. In the cytoskeleton they are most 

highly concentrated in the cortex of the cell just 
beneath the plasma membrane. 

ECTODERM_DEVELOPME
NT 

80 

Genes annotated by the GO term GO:0007398. The 
process whose specific outcome is the progression of 

the ectoderm over time, from its formation to the 
mature structure. In animal embryos, the ectoderm is 

the outer germ layer of the embryo, formed during 
gastrulation. 

4 0.05 2.63E-02 

CHLORIDE_CHANNEL_AC
TIVITY 

19 

Genes annotated by the GO term GO:0005254. 
Catalysis of facilitated diffusion of an chloride (by an 

energy-independent process) involving passage through 
a transmembrane aqueous pore or channel without 

evidence for a carrier-mediated mechanism. 

2 0.1053 2.90E-02 

ANION_CHANNEL_ACTIVI
TY 

20 
Genes annotated by the GO term GO:0005253. 

Catalysis of the energy-independent passage of anions 
across a lipid bilayer down a concentration gradient. 

2 0.1 3.19E-02 

GLUTAMATE_RECEPTOR
_ACTIVITY 

20 
Genes annotated by the GO term GO:0008066. 

Combining with glutamate to initiate a change in cell 
activity. 

2 0.1 3.19E-02 

NEGATIVE_REGULATION
_OF_TRANSPORT 

20 

Genes annotated by the GO term GO:0051051. Any 
process that stops, prevents or reduces the frequency, 
rate or extent of the directed movement of substances 
(such as macromolecules, small molecules, ions) into, 

out of, within or between cells. 

2 0.1 3.19E-02 

CHANNEL_REGULATOR_
ACTIVITY 

24 Genes annotated by the GO term GO:0016247. 2 0.0833 4.47E-02 

Oncogene signatures 

LEF1_UP.V1_DN 190 
Genes down-regulated in DLD1 cells (colon carcinoma) 

over-expressing LEF1 [Gene ID=51176]. 
6 0.0316 1.43E-02 

RELA_DN.V1_DN 141 
Genes down-regulated in HEK293 cells (kidney 

fibroblasts) upon knockdown of RELA [Gene ID=5970] 
gene by RNAi. 

5 0.0355 1.58E-02 

ESC_J1_UP_LATE.V1_UP 191 
Genes up-regulated during late stages of differentiation 

of embryoid bodies from J1 embryonic stem cells. 
5 0.0262 4.90E-02 

P53_DN.V1_DN 192 
Genes down-regulated in NCI-60 panel of cell lines with 

mutated TP53 [Gene ID=7157]. 
5 0.026 4.99E-02 
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Table S5.4 Associated network functions and biofunctions analysis on 128 identified “L-shaped” 

genes by IPA. 

 

Top Networks 

ID Associated Network Functions Score 

1 Gastrointestinal Disease, Hepatic System Disease, Liver Cholestasis 49 

2 Endocrine System Disorders, Gastrointestinal Disease, Hereditary Disorder 38 

3 Cellular Compromise, Neurological Disease, Organismal Injury and Abnormalities 36 

4 Cell-To-Cell Signaling and Interaction, Hair and Skin Development and Function, 
Tissue Development 

27 

5 Hereditary Disorder, Metabolic Disease, Renal and Urological Disease 24 

 

Diseases and Disorders 

Name p-value #Molecules 

Cancer 5.55E-08 - 1.36E-02 54 

Gastrointestinal Disease 3.94E-05 - 1.36E-02 37 

Inflammatory Response 4.91E-05 - 1.36E-02 10 

Organismal Injury and 
Abnormalities 1.00E-04 - 1.36E-02 21 

Developmental Disorder 2.75E-04 - 1.36E-02 23 
 

 

Molecular and Cellular Functions 

Name p-value #Molecules 

Lipid Metabolism 4.62E-05 4.62E-05 - 1.15E-02 12 

Molecular Transport 4.62E-
05 4.62E-05 - 8.10E-03 13 

Small Molecule Biochemistry 4.62E-05 -1.26E-02 20 

Cell Death and Survival 4.91E-05 - 1.36E-02 15 

Gene Expression 1.02E-04 - 1.06E-02 6 
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Table S5.5 Gene set enrichment analysis (GSEA) on 25 genes from MsigDB. These 25 genes were 

identified to have the most differential methylation when comparing tumor samples with normal 

samples. Top 50 significant gene set enrichments, with p-value < 0.05, are shown in three categories: 

curated gene sets, GO gene set and oncogene signatures. 

 

Curated gene sets 

Gene Set Name 
 

Description 
# Genes 

in Overlap 
(k) 

k/K p value 

TURASHVILI_BREAST_DU
CTAL_CARCINOMA_VS_D
UCTAL_NORMAL_DN 198 

Genes down-regulated in ductal carcinoma vs normal 
ductal breast cells. 7 0.0303 7.51E-08 

SMID_BREAST_CANCER_
LUMINAL_B_DN 564 

Genes down-regulated in the luminal B subtype of 
breast cancer. 7 0.0124 2.23E-06 

HOEGERKORP_CD44_TA
RGETS_DIRECT_UP 27 

Genes directly up-regulated by CD44 [GeneID=960] 
stimulation of B lymphocytes. 3 0.1111 3.74E-06 

SMID_BREAST_CANCER_
NORMAL_LIKE_UP 476 

Genes up-regulated in the normal-like subtype of breast 
cancer. 6 0.0126 1.23E-05 

PID_A6B1_A6B4_INTEGR
IN_PATHWAY 46 a6b1 and a6b4 Integrin signaling 3 0.0652 1.92E-05 

BIOCARTA_HSP27_PATH
WAY 15 Stress Induction of HSP Regulation 2 0.1333 1.30E-04 

CHARAFE_BREAST_CANC
ER_LUMINAL_VS_BASAL
_DN 455 

Genes down-regulated in luminal-like breast cancer cell 
lines compared to the basal-like ones. 5 0.011 1.40E-04 

TURASHVILI_BREAST_LO
BULAR_CARCINOMA_VS
_DUCTAL_NORMAL_DN 91 

Genes down-regulated in lobular carcinoma vs normal 
ductal breast cells. 3 0.033 1.48E-04 

TURASHVILI_BREAST_LO
BULAR_CARCINOMA_VS
_LOBULAR_NORMAL_UP 94 

Genes up-regulated in lobular carcinoma vs normal 
lobular breast cells. 3 0.0319 1.63E-04 

SMID_BREAST_CANCER_
RELAPSE_IN_BONE_UP 97 Genes up-regulated in bone relapse of breast cancer. 3 0.0309 1.79E-04 

LIM_MAMMARY_STEM_
CELL_UP 489 

Genes consistently up-regulated in mammary stem cells 
both in mouse and human species. 5 0.0102 1.96E-04 

DOANE_BREAST_CANCE
R_ESR1_UP 112 

Genes up-regulated in breast cancer samples positive 
for ESR1 [GeneID=2099] compared to the ESR1 negative 
tumors. 3 0.0268 2.74E-04 

FARMER_BREAST_CANCE
R_BASAL_VS_LULMINAL 330 

Genes which best discriminated between two groups of 
breast cancer according to the status of ESR1 and AR 
[GeneID=2099;367]: basal (ESR1- AR-) and luminal 
(ESR1+ AR+). 4 0.0121 4.92E-04 

SMID_BREAST_CANCER_
BASAL_UP 648 

Genes up-regulated in basal subtype of breast cancer 
samles. 5 0.0077 7.12E-04 

SMID_BREAST_CANCER_
RELAPSE_IN_BRAIN_UP 39 Genes up-regulated in brain relapse of breast cancer. 2 0.0513 9.00E-04 

HAN_SATB1_TARGETS_U
P 395 

Genes up-regulated in MDA-MB-231 cells (breast 
cancer) after knockdown of SATB1 [GeneID=6304] by 
RNAi. 4 0.0101 9.64E-04 

SMID_BREAST_CANCER_
BASAL_DN 701 

Genes down-regulated in basal subtype of breast 
cancer samles. 5 0.0071 1.01E-03 

COWLING_MYCN_TARGE
TS 43 

Genes down-regulated by MYCN [GeneID=4613] but 
not by its transactivation-defficient, trunkated form N-
Myc-delta-73. 2 0.0465 1.09E-03 

BECKER_TAMOXIFEN_RE 50 Genes up-regulated in a breast cancer cell line resistant 2 0.04 1.48E-03 
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SISTANCE_UP to tamoxifen [PubChem=5376] compared to the 
parental line sensitive to the drug. 

HALMOS_CEBPA_TARGE
TS_UP 52 

Genes up-regulated in H358 cells (lung cancer) by 
inducible expression of CEBPA [GeneID=1050] off 
plasmid vector. 2 0.0385 1.60E-03 

EBAUER_TARGETS_OF_P
AX3_FOXO1_FUSION_UP 207 

Genes up-regulated in Rh4 cells (alveolar 
rhabdomyosarcoma, ARMS) after knockdown of the 
PAX3-FOXO1 [GeneiD=5077;2308] fusion protein by 
RNAi for 72 hr. 3 0.0145 1.63E-03 

HUPER_BREAST_BASAL_
VS_LUMINAL_UP 54 

Genes up-regulated in basal mammary epithelial cells 
compared to the luminal ones. 2 0.037 1.72E-03 

SU_PANCREAS 54 Genes up-regulated specifically in human pancreas. 2 0.037 1.72E-03 

ONDER_CDH1_TARGETS
_2_DN 464 

Genes down-regulated in HMLE cells (immortalized 
nontransformed mammary epithelium) after E-
cadhedrin (CDH1) [GeneID=999] knockdown by RNAi. 4 0.0086 1.75E-03 

ISSAEVA_MLL2_TARGETS 62 
Genes down-regulated in HeLa cells upon knockdown of 
MLL2 [GeneID=8085] by RNAi. 2 0.0323 2.26E-03 

PID_ERA_GENOMIC_PAT
HWAY 65 Validated nuclear estrogen receptor alpha network 2 0.0308 2.48E-03 

JAEGER_METASTASIS_D
N 258 

Genes down-regulated in metastases from malignant 
melanoma compared to the primary tumors. 3 0.0116 3.05E-03 

REACTOME_CELL_JUNCTI
ON_ORGANIZATION 78 Genes involved in Cell junction organization 2 0.0256 3.55E-03 

CHIANG_LIVER_CANCER_
SUBCLASS_POLYSOMY7_
UP 79 

Marker genes up-regulated in the 'chromosome 7 
polysomy' subclass of hepatocellular carcinoma (HCC); 
characterized by polysomy of chromosome 7 and by a 
lack of gains of chromosome 8q. 2 0.0253 3.64E-03 

CROMER_METASTASIS_D
N 81 

Metastatic propensity markers of head and neck 
squamous cell carcinoma (HNSCC): down-regulated in 
metastatic vs non-metastatic tumors. 2 0.0247 3.82E-03 

SMID_BREAST_CANCER_
RELAPSE_IN_BRAIN_DN 85 

Genes down-regulated in brain relapse of breast 
cancer. 2 0.0235 4.20E-03 

GHANDHI_BYSTANDER_I
RRADIATION_UP 86 

Genes significantly (FDR < 10%) up-regulated in IMR-90 
cells (fibroblast) in response to bystander irradiation. 2 0.0233 4.30E-03 

BILANGES_SERUM_SENSI
TIVE_GENES 90 

Genes translationally regulated in MEF cells (embryonic 
fibroblasts) in response to serum starvation but not by 
rapamycin (sirolimus) [PubChemID=6610346]. 2 0.0222 4.70E-03 

CADWELL_ATG16L1_TAR
GETS_UP 93 

Genes up-regulated in Paneth cell (part of intestiinal 
epithelium) of mice with hypomorphic (reduced 
function) form of ATG16L1 [GeneID=55054]. 2 0.0215 5.00E-03 

SMID_BREAST_CANCER_
RELAPSE_IN_BONE_DN 315 Genes down-regulated in bone relapse of breast cancer. 3 0.0095 5.32E-03 

LEI_MYB_TARGETS 318 

Myb-regulated genes in MCF7 (breast cancer) and lung 
epithelial cell lines overexpressing MYBL2, MYBL1 or 
MYB [GeneID=4605;4603;4602]. 3 0.0094 5.47E-03 

BENPORATH_EED_TARG
ETS 1062 

Set 'Eed targets': genes identified by ChIP on chip as 
targets of the Polycomb protein EED [GeneID=8726] in 
human embryonic stem cells. 5 0.0047 6.17E-03 

GHANDHI_DIRECT_IRRA
DIATION_UP 110 

Genes significantly (FDR < 10%) up-regulated in IMR-90 
cells (fibroblast) in response to direct irradiation. 2 0.0182 6.93E-03 

SENGUPTA_NASOPHARY
NGEAL_CARCINOMA_DN 349 

Genes down-regulated in nsopharyngeal carcinoma 
relative to the normal tissue. 3 0.0086 7.07E-03 

LIEN_BREAST_CARCINO
MA_METAPLASTIC_VS_D
UCTAL_DN 114 

Genes down-regulated between two breast carcinoma 
subtypes: metaplastic (MCB) and ductal (DCB). 2 0.0175 7.43E-03 

LIM_MAMMARY_LUMIN
AL_MATURE_UP 116 

Genes consistently up-regulated in mature mammary 
luminal cells both in mouse and human species. 2 0.0172 7.68E-03 
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CERVERA_SDHB_TARGET
S_1_UP 118 

Genes turned on in Hep3B cells (hepatocellular 
carcinoma, HCC) upon knockdown of SDHB 
[GeneID=6390] by RNAi. 2 0.0169 7.94E-03 

REACTOME_CELL_CELL_C
OMMUNICATION 120 Genes involved in Cell-Cell communication 2 0.0167 8.20E-03 

CHARAFE_BREAST_CANC
ER_LUMINAL_VS_BASAL
_UP 380 

Genes up-regulated in luminal-like breast cancer cell 
lines compared to the basal-like ones. 3 0.0079 8.92E-03 

YEGNASUBRAMANIAN_P
ROSTATE_CANCER 128 

Genes expressed in at least one prostate cancer cell line 
but not in normal prostate epithelial cells or stromal 
cells 2 0.0156 9.28E-03 

SENESE_HDAC2_TARGET
S_DN 133 

Genes down-regulated in U2OS cells (osteosarcoma) 
upon knockdown of HDAC2 [GeneID=3066] by RNAi. 2 0.015 9.99E-03 

LIM_MAMMARY_STEM_
CELL_DN 428 

Genes consistently down-regulated in mammary stem 
cells both in mouse and human species. 3 0.007 1.23E-02 

RIGGI_EWING_SARCOM
A_PROGENITOR_UP 430 

Genes up-regulated in mesenchymal stem cells (MSC) 
engineered to express EWS-FLI1 [GeneID=2130;2321] 
fusion protein. 3 0.007 1.25E-02 

CHARAFE_BREAST_CANC
ER_LUMINAL_VS_MESEN
CHYMAL_UP 450 

Genes up-regulated in luminal-like breast cancer cell 
lines compared to the mesenchymal-like ones. 3 0.0067 1.41E-02 

DODD_NASOPHARYNGE
AL_CARCINOMA_UP 1821 

Genes up-regulated in nasopharyngeal carcinoma (NPC) 
compared to the normal tissue. 7 0.0033 1.44E-02 

GO gene sets 

EXCRETION 36 

Genes annotated by the GO term GO:0007588. The 
elimination by an organism of the waste products that 
arise as a result of metabolic activity. These products 
include water, carbon dioxide (CO2), and nitrogenous 
compounds. 2 0.0556 4.78E-03 

DIGESTION 44 

Genes annotated by the GO term GO:0007586. The 
whole of the physical, chemical, and biochemical 
processes carried out by multicellular organisms to 
break down ingested nutrients into components that 
may be easily absorbed and directed into metabolism. 2 0.0455 7.08E-03 

NEGATIVE_REGULATION
_OF_CELL_PROLIFERATIO
N 156 

Genes annotated by the GO term GO:0008285. Any 
process that stops, prevents or reduces the rate or 
extent of cell proliferation. 3 0.0192 9.94E-03 

REGULATION_OF_GROW
TH 58 

Genes annotated by the GO term GO:0040008. Any 
process that modulates the frequency, rate or extent of 
the growth of all or part of an organism so that it occurs 
at its proper speed, either globally or in a specific part 
of the organism's development. 2 0.0345 1.21E-02 

EPIDERMIS_DEVELOPME
NT 71 

Genes annotated by the GO term GO:0008544. The 
process whose specific outcome is the progression of 
the epidermis over time, from its formation to the 
mature structure. The epidermis is the outer epithelial 
layer of a plant or animal, it may be a single layer that 
produces an extracellular material (e.g. the cuticle of 
arthropods) or a complex stratified squamous 
epithelium, as in the case of many vertebrate species. 2 0.0282 1.77E-02 

GROWTH 77 

Genes annotated by the GO term GO:0040007. The 
increase in size or mass of an entire organism, a part of 
an organism or a cell. 2 0.026 2.07E-02 

CYTOSOL 205 

Genes annotated by the GO term GO:0005829. That 
part of the cytoplasm that does not contain 
membranous or particulate subcellular components. 3 0.0146 2.07E-02 

ECTODERM_DEVELOPME 80 Genes annotated by the GO term GO:0007398. The 2 0.025 2.22E-02 
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NT process whose specific outcome is the progression of 
the ectoderm over time, from its formation to the 
mature structure. In animal embryos, the ectoderm is 
the outer germ layer of the embryo, formed during 
gastrulation. 

ENDOPEPTIDASE_ACTIVI
TY 117 

Genes annotated by the GO term GO:0004175. 
Catalysis of the hydrolysis of nonterminal peptide 
linkages in oligopeptides or polypeptides, and 
comprising any enzyme of sub-subclasses EC:3.4.21-99. 
They are classfied according to the presence of 
essential catalytic residues or ions at their active sites. 2 0.0171 4.47E-02 

ANTI_APOPTOSIS 118 

Genes annotated by the GO term GO:0006916. A 
process which directly inhibits any of the steps required 
for cell death by apoptosis. 2 0.0169 4.53E-02 

Oncogene signatures 

LEF1_UP.V1_DN 190 
Genes down-regulated in DLD1 cells (colon carcinoma) 
over-expressing LEF1 [Gene ID=51176]. 3 0.0158 7.39E-03 

BMI1_DN_MEL18_DN.V1
_UP 145 

Genes up-regulated in DAOY cells (medulloblastoma) 
upon knockdown of BMI1 and PCGF2 [Gene ID=648, 
7703] genes by RNAi. 2 0.0138 3.78E-02 
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Table S5.6 Associated network functions and biofunctions analysis on 25 genes from IPA. These 25 

genes were identified to have the most differential methylation when comparing tumor samples with 

normal samples. 

 

Top Networks 

ID Associated Network Functions Score 

1 Molecular Transport, Nucleic Acid Metabolism, Small Molecule Biochemistry 29 

2 
Cellular Movement, Reproductive System Development and Function, Cell 
Morphology 23 

3 
Cell-To-Cell Signaling and Interaction, Cellular Assembly and Organization, Tissue 
Development 3 

 

Diseases and Disorders 

Name p-value #Molecules 

Cancer 6.29E-06 - 7.39E-03 14 

Connective Tissue Disorders 2.09E-05 - 6.49E-03 9 

Dermatological Diseases and 
Conditions 2.09E-05 - 5.32E-03 4 

Developmental Disorder 2.09E-05 - 6.49E-03 7 

Hereditary Disorder 2.09E-05 - 5.91E-03 5 
 

 

Molecular and Cellular Functions 

Name p-value #Molecules 

Cell Cycle 6.29E-06 - 7.39E-03 3 

Cellular Movement 1.09E-05 - 5.91E-03 12 

Cell Death and Survival 6.78E-05 - 7.39E-03 16 

Cellular Development 9.38E-05 - 7.39E-03 7 

Cellular Growth and 
Proliferation 1.28E-04 - 7.39E-03 13 
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Table S5.7 Gene set enrichment analysis (GSEA) on 128 identified “L-shaped” genes from MsigDB.  

Significant gene set enrichments, with p-value < 0.05,  are shown in three categories: curated gene 

sets, GO gene set and oncogene signatures. 

 

Curated gene sets 

Gene Set Name 

# 
Genes 

in Gene 
Set (K) 

Description 
# Genes 

in Overlap 
(k) 

k/K p value 

TURASHVILI_BREAST_LO
BULAR_CARCINOMA_VS
_DUCTAL_NORMAL_DN 91 

Genes down-regulated in lobular carcinoma vs normal 
ductal breast cells. 3 0.033 2.75E-05 

TURASHVILI_BREAST_LO
BULAR_CARCINOMA_VS
_LOBULAR_NORMAL_UP 94 

Genes up-regulated in lobular carcinoma vs normal 
lobular breast cells. 3 0.0319 3.03E-05 

CHARAFE_BREAST_CANC
ER_LUMINAL_VS_BASAL
_DN 455 

Genes down-regulated in luminal-like breast cancer cell 
lines compared to the basal-like ones. 4 0.0088 1.82E-04 

TURASHVILI_BREAST_DU
CTAL_CARCINOMA_VS_D
UCTAL_NORMAL_DN 198 

Genes down-regulated in ductal carcinoma vs normal 
ductal breast cells. 3 0.0152 2.77E-04 

PID_A6B1_A6B4_INTEGR
IN_PATHWAY 46 a6b1 and a6b4 Integrin signaling 2 0.0435 4.18E-04 

HUPER_BREAST_BASAL_
VS_LUMINAL_UP 54 

Genes up-regulated in basal mammary epithelial cells 
compared to the luminal ones. 2 0.037 5.77E-04 

ISSAEVA_MLL2_TARGETS 62 
Genes down-regulated in HeLa cells upon knockdown of 
MLL2 [GeneID=8085] by RNAi. 2 0.0323 7.60E-04 

PID_ERA_GENOMIC_PAT
HWAY 65 Validated nuclear estrogen receptor alpha network 2 0.0308 8.34E-04 

FARMER_BREAST_CANCE
R_BASAL_VS_LULMINAL 330 

Genes which best discriminated between two groups of 
breast cancer according to the status of ESR1 and AR 
[GeneID=2099;367]: basal (ESR1- AR-) and luminal 
(ESR1+ AR+). 3 0.0091 1.22E-03 

GHANDHI_BYSTANDER_I
RRADIATION_UP 86 

Genes significantly (FDR < 10%) up-regulated in IMR-90 
cells (fibroblast) in response to bystander irradiation. 2 0.0233 1.45E-03 

SMID_BREAST_CANCER_
RELAPSE_IN_BONE_UP 97 Genes up-regulated in bone relapse of breast cancer. 2 0.0206 1.85E-03 

GHANDHI_DIRECT_IRRA
DIATION_UP 110 

Genes significantly (FDR < 10%) up-regulated in IMR-90 
cells (fibroblast) in response to direct irradiation. 2 0.0182 2.36E-03 

DOANE_BREAST_CANCE
R_ESR1_UP 112 

Genes up-regulated in breast cancer samples positive 
for ESR1 [GeneID=2099] compared to the ESR1 negative 
tumors. 2 0.0179 2.45E-03 

ONDER_CDH1_TARGETS
_2_DN 464 

Genes down-regulated in HMLE cells (immortalized 
nontransformed mammary epithelium) after E-
cadhedrin (CDH1) [GeneID=999] knockdown by RNAi. 3 0.0065 3.23E-03 

LIU_PROSTATE_CANCER_
DN 481 Genes down-regulated in prostate cancer samples. 3 0.0062 3.58E-03 

LIM_MAMMARY_STEM_
CELL_UP 489 

Genes consistently up-regulated in mammary stem cells 
both in mouse and human species. 3 0.0061 3.75E-03 

BENPORATH_EED_TARG
ETS 1062 

Set 'Eed targets': genes identified by ChIP on chip as 
targets of the Polycomb protein EED [GeneID=8726] in 
human embryonic stem cells. 4 0.0038 4.30E-03 

SMID_BREAST_CANCER_
LUMINAL_B_DN 564 

Genes down-regulated in the luminal B subtype of 
breast cancer. 3 0.0053 5.59E-03 

MIKKELSEN_MEF_HCP_
WITH_H3K27ME3 590 

Genes with high-CpG-density promoters (HCP) bearing 
histone H3 trimethylation mark at K27 (H3K27me3) in 
MEF cells (embryonic fibroblast). 3 0.0051 6.33E-03 
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WU_CELL_MIGRATION 184 
Genes associated with migration rate of 40 human 
bladder cancer cells. 2 0.0109 6.46E-03 

SMID_BREAST_CANCER_
BASAL_UP 648 

Genes up-regulated in basal subtype of breast cancer 
samles. 3 0.0046 8.21E-03 

BENPORATH_PRC2_TAR
GETS 652 

Set 'PRC2 targets': Polycomb Repression Complex 2 
(PRC) targets; identified by ChIP on chip on human 
embryonic stem cells as genes that: posess the 
trimethylated H3K27 mark in their promoters and are 
bound by SUZ12 [GeneID=23512] and EED 
[GeneID=8726] Polycomb proteins. 3 0.0046 8.35E-03 

ZHANG_RESPONSE_TO_I
KK_INHIBITOR_AND_TNF
_UP 223 

Genes up-regulated in BxPC3 cells (pancreatic cancer) 
after treatment with TNF [GeneID=7124] or IKI-1, an 
inhibitor of IkappaB kinase (IKK). 2 0.009 9.35E-03 

OSWALD_HEMATOPOIET
IC_STEM_CELL_IN_COLL
AGEN_GEL_UP 233 

Genes up-regulated in hematopoietic stem cells (HSC, 
CD34+ [GeneID=947]) cultured in a three-dimentional 
collagen gel compared to the cells grown in suspension. 2 0.0086 1.02E-02 

SMID_BREAST_CANCER_
BASAL_DN 701 

Genes down-regulated in basal subtype of breast 
cancer samles. 3 0.0043 1.02E-02 

JAEGER_METASTASIS_D
N 258 

Genes down-regulated in metastases from malignant 
melanoma compared to the primary tumors. 2 0.0078 1.24E-02 

KEGG_CYTOKINE_CYTOKI
NE_RECEPTOR_INTERAC
TION 267 Cytokine-cytokine receptor interaction 2 0.0075 1.32E-02 

HADDAD_B_LYMPHOCYT
E_PROGENITOR 293 

Genes up-regulated in hematopoietic progenitor cells 
(HPC) of B lymphocyte lineage CD34+CD45RA+CD10+ 
[GeneID=947;5788;4311]. 2 0.0068 1.57E-02 

ZHANG_TLX_TARGETS_6
0HR_UP 293 

Genes up-regulated in neural stem cells (NSC) at 60 h 
after cre-lox knockout of TLX (NR2E1) [GeneID=7101]. 2 0.0068 1.57E-02 

MARTENS_TRETINOIN_R
ESPONSE_UP 857 

Genes up-regulated in NB4 cells (acute promyelocytic 
leukemia, APL) in response to tretinoin 
[PubChem=5538]; based on Chip-seq data. 3 0.0035 1.75E-02 

SMID_BREAST_CANCER_
RELAPSE_IN_BONE_DN 315 Genes down-regulated in bone relapse of breast cancer. 2 0.0063 1.80E-02 

LEI_MYB_TARGETS 318 

Myb-regulated genes in MCF7 (breast cancer) and lung 
epithelial cell lines overexpressing MYBL2, MYBL1 or 
MYB [GeneID=4605;4603;4602]. 2 0.0063 1.84E-02 

SENGUPTA_NASOPHARY
NGEAL_CARCINOMA_DN 349 

Genes down-regulated in nsopharyngeal carcinoma 
relative to the normal tissue. 2 0.0057 2.19E-02 

GRUETZMANN_PANCREA
TIC_CANCER_UP 358 

Genes up-regulated in pancreatic ductal 
adenocarcinoma (PDAC) identified in a meta analysis 
across four independent studies. 2 0.0056 2.29E-02 

CHARAFE_BREAST_CANC
ER_LUMINAL_VS_BASAL
_UP 380 

Genes up-regulated in luminal-like breast cancer cell 
lines compared to the basal-like ones. 2 0.0053 2.56E-02 

CHEMNITZ_RESPONSE_T
O_PROSTAGLANDIN_E2_
DN 391 

Genes down-regulated in CD4+ [GeneID=920] T 
lymphocytes after stimulation with prostaglandin E2 
[PubChem=5280360]. 2 0.0051 2.70E-02 

HAN_SATB1_TARGETS_U
P 395 

Genes up-regulated in MDA-MB-231 cells (breast 
cancer) after knockdown of SATB1 [GeneID=6304] by 
RNAi. 2 0.0051 2.75E-02 

BENPORATH_SUZ12_TAR
GETS 1038 

Set 'Suz12 targets': genes identified by ChIP on chip as 
targets of the Polycomb protein SUZ12 [GeneID=23512] 
in human embryonic stem cells. 3 0.0029 2.90E-02 

RIGGI_EWING_SARCOM
A_PROGENITOR_UP 430 

Genes up-regulated in mesenchymal stem cells (MSC) 
engineered to express EWS-FLI1 [GeneID=2130;2321] 
fusion protein. 2 0.0047 3.22E-02 

MIKKELSEN_MCV6_HCP_ 435 Genes with high-CpG-density promoters (HCP) bearing 2 0.0046 3.29E-02 
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WITH_H3K27ME3 the tri-methylation mark at H3K27 (H3K27me3) in 
MCV6 cells (embryonic fibroblasts trapped in a 
differentiated state). 

DELYS_THYROID_CANCE
R_UP 443 

Genes up-regulated in papillary thyroid carcinoma (PTC) 
compared to normal tissue. 2 0.0045 3.40E-02 

BENPORATH_ES_WITH_
H3K27ME3 1118 

Set 'H3K27 bound': genes posessing the trimethylated 
H3K27 (H3K27me3) mark in their promoters in human 
embryonic stem cells, as identified by ChIP on chip. 3 0.0027 3.51E-02 

SENESE_HDAC1_TARGET
S_UP 457 

Genes up-regulated in U2OS cells (osteosarcoma) upon 
knockdown of HDAC1 [GeneID=3065] by RNAi. 2 0.0044 3.60E-02 

ZHOU_INFLAMMATORY_
RESPONSE_LIVE_UP 485 Genes up-regulated in macrophage by live P.gingivalis. 2 0.0041 4.02E-02 

ENK_UV_RESPONSE_KER
ATINOCYTE_UP 530 

Genes up-regulated in NHEK cells (normal epidermal 
keratinocytes) after UVB irradiation. 2 0.0038 4.72E-02 

GO gene sets 

DIGESTION 44 

Genes annotated by the GO term GO:0007586. The 
whole of the physical, chemical, and biochemical 
processes carried out by multicellular organisms to 
break down ingested nutrients into components that 
may be easily absorbed and directed into metabolism. 2 0.0455 2.41E-03 

ANTI_APOPTOSIS 118 

Genes annotated by the GO term GO:0006916. A 
process which directly inhibits any of the steps required 
for cell death by apoptosis. 2 0.0169 1.64E-02 

TRANSCRIPTION_FACTOR
_ACTIVITY 354 

Genes annotated by the GO term GO:0003700. The 
function of binding to a specific DNA sequence in order 
to modulate transcription. The transcription factor may 
or may not also interact selectively with a protein or 
macromolecular complex. 3 0.0085 1.99E-02 

NEGATIVE_REGULATION
_OF_APOPTOSIS 150 

Genes annotated by the GO term GO:0043066. Any 
process that stops, prevents or reduces the frequency, 
rate or extent of cell death by apoptosis. 2 0.0133 2.57E-02 

NEGATIVE_REGULATION
_OF_PROGRAMMED_CEL
L_DEATH 151 

Genes annotated by the GO term GO:0043069. Any 
process that stops, prevents or reduces the frequency, 
rate or extent of programmed cell death, cell death 
resulting from activation of endogenous cellular 
processes. 2 0.0132 2.61E-02 

NEGATIVE_REGULATION
_OF_DEVELOPMENTAL_P
ROCESS 197 

Genes annotated by the GO term GO:0051093. Any 
process that stops, prevents or reduces the rate or 
extent of development, the biological process whose 
specific outcome is the progression of an organism over 
time from an initial condition (e.g. a zygote, or a young 
adult) to a later condition (e.g. a multicellular animal or 
an aged adult). 2 0.0102 4.25E-02 

Oncogene signatures 

LEF1_UP.V1_DN 190 
Genes down-regulated in DLD1 cells (colon carcinoma) 
over-expressing LEF1 [Gene ID=51176]. 3 0.0158 1.50E-03 

BMI1_DN_MEL18_DN.V1
_UP 145 

Genes up-regulated in DAOY cells (medulloblastoma) 
upon knockdown of BMI1 and PCGF2 [Gene ID=648, 
7703] genes by RNAi. 2 0.0138 1.36E-02 
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Table S5.8 Significance of biomarkers in term of methylation status in survival analysis by 

GENESURV tools in bioprofiling.de.  The methylation status determined by our method is shown in 

columns under the headings of Methylation_CIMP+ and Methylation_CIMP-. 

 

gene 
Methylat
ion_CIMP

+ 

methylati
on_CIMP

- 

GENESURV
_survival 

longer_exp
ression 

GENESUR
V_p-
value 

GENESURV_link 

SLC44A4 hypo hyper high 9.77E-05 

http://www.bioprofiling.de/cgi-
bin/GEO/GENESURV/display_survival_details.GENE.pl?I
D=GSE30682&affy=ILMN_1730977&ncbi=80736&gene

A=SLC44A4&tmp_dir=dir_10084_1355434594 

IL20RA hypo hyper high 7.83E-05 

http://www.bioprofiling.de/cgi-
bin/GEO/GENESURV/display_survival_details.GENE.pl?I
D=GSE22220&affy=3390504&ncbi=53832&geneA=IL20

RA&tmp_dir=dir_10084_1355434594 

TFF1 hypo hyper high 0.00154 

http://www.bioprofiling.de/cgi-
bin/GEO/GENESURV/display_survival_details.GENE.pl?I
D=GSE30682&affy=ILMN_1722489&ncbi=7031&geneA

=TFF1&tmp_dir=dir_10084_1355434594 

C1orf64 hypo hyper high 0.00637 

http://www.bioprofiling.de/cgi-
bin/GEO/GENESURV/display_survival_details.GENE.pl?I
D=GSE22226&affy=39434&ncbi=149563&geneA=C1OR

F64&tmp_dir=dir_10084_1355434594 

MEP1A hypo hyper low 0.0257 

http://www.bioprofiling.de/cgi-
bin/GEO/GENESURV/display_survival_details.GENE.pl?I
D=GSE30682&affy=ILMN_1659984&ncbi=4224&geneA

=MEP1A&tmp_dir=dir_10084_1355434594 

POU4F1 hyper hypo low 1.99E-05 

http://www.bioprofiling.de/cgi-
bin/GEO/GENESURV/display_survival_details.GENE.pl?I
D=GSE30682&affy=ILMN_1738691&ncbi=5457&geneA

=POU4F1&tmp_dir=dir_10084_1355434594 
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