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Development of HIF-1α/HIF-1β heterodimerization inhibitors using a novel 

bioluminescence reporter assay system for in vitro high throughput screening 

and in vivo imaging 

Publication No.___________ 

Yun-Chen Chiang, M.S., B.S. 

Supervisory Professor: Juri Gelovani, M.D., Ph.D. 

Abstract 

Tumor growth often outpaces its vascularization, leading to development of a hypoxic 

tumor microenvironment. In response, an intracellular hypoxia survival pathway is initiated 

by heterodimerization of hypoxia-inducible factor (HIF)-1α and HIF-1β, which subsequently 

upregulates the expression of several hypoxia-inducible genes, promotes cell survival and 

stimulates angiogenesis in the oxygen-deprived environment. Hypoxic tumor regions are 

often associated with resistance to various classes of radio- or chemotherapeutic agents. 

Therefore, development of HIF-1α/β heterodimerization inhibitors may provide a novel 

approach to anti-cancer therapy. To this end, a novel approach for imaging HIF-1α/β 

heterodimerization in vitro and in vivo was developed in this study. Using this screening 

platform, we identified a promising lead candidate and further chemically derivatized the 

lead candidate to assess the structure-activity relationship (SAR). The most effective first 

generation drug inhibitors were selected and their pharmacodynamics and anti-tumor 

efficacy in vivo were verified by bioluminescence imaging (BLI) of HIF-1α/β 

heterodimerization in the xenograft tumor model. Furthermore, the first generation drug 

inhibitors, M-TMCP and D-TMCP, demonstrated efficacy as monotherapies, resulting in 

tumor growth inhibition via disruption of HIF-1 signaling-mediated tumor stromal 

neoangiogenesis.  
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Chapter 1: Introduction 

1.1 Oxygen and oxygen-dependent metabolism 

Oxygen, a gas that plays a vital role in all life on earth, controls respiration and 

metabolic processes of aerobic organisms. Under normal physiological condition, a resting 

adult consumes approximately 3.5 ml of oxygen per kilogram of body mass every minute. In 

the human body, the delivery of oxygen is accomplished by an elaborate arterial and venous 

circulatory network, where oxygen diffuses from areas of higher oxygen partial pressure to 

areas of lower oxygen partial pressure. De-oxygenated blood is circulated via venous 

network to the lungs while it is oxygenated again. Oxygenated blood then distributes to the 

body where needed. However, due to the limitations in diffusion, oxygen can only be 

transported to cells within 100–200 µm from the capillary (Rouwkema et al., 2008) (Fig.1). 

When oxygen supply is ample, living cells preferentially produce energy through 

aerobic respiration to convert nutrients, such as glucose, into adenosine triphosphate (ATP) 

(Fig.2). Aerobic respiration composed a set of metabolic reactions, including glycolysis, 

oxidative decarboxylation of pyruvate, citric acid cycle and oxidative phosphorylation. During 

aerobic respiration, exogenous oxygen is used in the final step of oxidative phosphorylation. 

In the inner mitochondrial membrane, the high-energy electrons released from coenzyme 

NADH produced from the citric acid cycle pass through a set of enzymes called the electron 

transport chain (ETC), and release the energy to pump protons across the inner membrane 

of mitochondria, which generates a proton gradient (chemiosmosis potential) across the 

intermembrane space. This proton gradient drives protons to flow back across the 

membrane through the ATP synthase. The flow of proton forces the rotation of a part of the 

enzyme, generating ATP by phosphorylation of adenosine diphosphate (ADP). Finally, the 

low-energy electrons passing through the electron transport chain are transferred to oxygen, 
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a strong oxidizing agent to accept the low-energy electrons. Oxygen then combines with a 

pair of electrons and two protons to form water (Lehninger et al., 2013). 

In one complete cycle of aerobic respiration, a total of 38 ATP molecules are 

generated per each oxidized glucose molecule; whereas in the absence of oxygen, the cells 

are forced to switch to anaerobic respiration and use electron acceptors other than oxygen. 

Importantly, the anaerobic respiration is much less efficient and yields only 2 ATP molecules 

per each glucose molecule. Both aerobic and anaerobic respiration share the initial pathway 

of glycolysis to produce pyruvate, but only aerobic metabolism continues with the citric acid 

cycle and oxidative phosphorylation. In anaerobic respiration, cells have pyruvate oxidized 

with NADH, ending with the final production of ethanol or lactic acid (Fig.2B).  

  



 

 

Figure 1. A diagram of human circulatory system and gas exchange in capillary
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Figure 2. A diagram of cellular respiration including glycolysis, citric acid cycle, and 
oxidative phosphorylation in the electron transport chain. The process of glycolysis 
begins with phosphorylation of glucose by hexokinase (I, II, and III) to form glucose 6-
phosphate. Subsequently, fructose 1,6-disphosphate is formed by 6-phosphofructo 1-kinase 
at the cost of two ATP molecules. Next, the cleavage of fructose 1,6-disphosphate into two 
pyruvate molecules by the aldolase produces 4 ATP and 2 NADH. As a result, the entire 
process of glycolysis generates a net gain of 2 ATP molecules and 2 NADH. Glucose + 2 
NAD+ + 2 Pi + 2 ADP → 2 pyruvate + 2 NADH + 2 ATP + 2 H+ + 2 H2O + heat. A) In 
anaerobic respiration, to convert NADH back to replenish the limited supply of NAD+, most 
cells have pyruvate oxidized with NADH, ending with the final production of ethanol or lactic 
acids. B) In aerobic respiration, cells can further utilize pyruvate and NADH + H+ from 
glycolysis to produce additional 34 ATP molecules in the citrate acid cycle and oxidative 
phosphorylation pathway. First, pyruvate is oxidized to acetyl-CoA and CO2 by pyruvate 
dehydrogenase complex before entering to citric acid cycle within the mitochondrial matrix. 
Next, acetyl-CoA (2 carbons) continues to oxidize with oxaloacetate (4 carbons) to form 
citrate (6 carbons), which later modifies to become α-ketoglutarate (5 carbons) and CO2. 
When α-ketoglutarate is oxidized to succinyl-CoA (4 carbons), another CO2 is released. 
Following production of succinate, fumarate, malate, and back to oxaloacetate, the net 
energy produced by one cycle is 3 NADH, 1 FADH2, and 1 GTP. Since two acetyl-CoA are 
generated from each glucose molecule, a total of 6 NADH, 2 FADH2, and 2 GTP are 
produced for one fully oxidized glucose during the citric acid cycle. The next oxidative 
phosphorylation occurs in the inner mitochondrial membrane, which generates the high 
transfer potential electrons. When released from coenzyme NADH, the high transfer 
potential electrons pass through a set of enzymes called the electron transport chain and 
release the energy to pump protons across the inner membrane of the mitochondria. The 
established proton gradient (chemiosmosis potential) across the intermembrane space then 
drives protons to flow back across the membrane via a large enzyme called ATP synthase. 
The flow of proton forces the rotation of a part of the enzyme, generating ATP from the 
phosphorylation of ADP. Finally, the low-energy electrons passing through the electron 
transport chain are transferred to oxygen, a strong oxidizing agent to accept the low-energy 
electrons. Oxygen then combines with a pair of electrons and two protons to form water. 
The figure was adapted from RegisFrey, [CC-BY-SA-3.0 (http:// creativecommons.org 
/licenses/by-sa/3.0) (2011). 

  



 

  

5 

 



6 

 

1.2 Hypoxia and malignancy 

When oxygen consumption in the body is elevated in events such as exercise, the 

body can quickly adapt to the need for increased oxygen by accelerating cardiac output and 

increasing respiration rate to elevate blood oxygenation. However, if these adjustments are 

insufficient to deliver adequate supply of oxygen to the tissues, compensatory changes in 

oxygen delivery and utilization are initiated by adjusting arterial compliance to allow more 

blood flow to reach vital organs. At some point, this compensation may still fail to supply 

adequate oxygen, which will result in a state of reduced oxygen availability, known as 

hypoxia. Normally, the partial pressure of oxygen (PO2) in dry air at sea level is 159 mm Hg, 

the PO2 in arterial blood is about 100 mm Hg, the PO2 in mean capillary is about 50 mm Hg, 

and the PO2 in trans-capillary tissues is between 20 and 40 mm Hg. Hypoxia in tissues is 

defined as the PO2 below 10 mm Hg (Nunn, 1993, Loiacono and Shapiro, 2010).  

During hypoxia, the activation of the hypoxia-adaptive responses triggers the 

production of pro-survival factors and decreases metabolic consumption via post-

translational modification of existing proteins or even changes in gene transcription and 

protein synthesis. Nevertheless, most cells fail to survive long under chronic hypoxia, 

especially the oxygen-sensitive cells in the brain and heart.  

A hypoxia environment has been shown to induce genome instability in cells. When 

genetic errors exceed the cells’ capacity to repair, genetic changes and mutations would 

follow (Liu et al., 2012, Sung et al., 2011). Some cells may acquire resistance to hypoxia. 

These mutated cells with a selective growth advantage often expand much more rapidly in 

hypoxic environment. If overcoming restricted growth checkpoints and regulatory pathways, 

they may eventually manifest as malignant cells and transform into cancer (Hanahan and 

Weinberg, 2000, Vanderkooi et al., 1991). 
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1.3 Hypoxia and cancer 

The classic hallmarks of cancer proposed by Hanahan and Weinberg listed six 

biological characteristics acquired during the multi-step development of human cancer, 

which include sustained cell proliferative signaling, evasion of growth suppressors, cell 

death resistance, immortal replication, induction of angiogenesis and activation of 

metastasis and invasion, with three emerging hallmarks added to this list: reprogramed 

energy metabolism, tumor-promoting inflammation and evasion of destructive immunity 

(Hanahan and Weinberg, 2011, Hanahan and Weinberg, 2000).  

During tumor progression, rapid cellular proliferation and highly abnormal 

vascularization often induces inadequate oxygen supply within tumor sites. Although some 

of the effects of hypoxia may negatively impact cancer cell viability, in most cases hypoxia 

facilitates tumor growth in selective tumor microenvironment niches. The mechanisms of 

increased tumorigenic potential of cells exposed to hypoxia have not been fully understood, 

but studies have suggested a hypoxic microenvironment may provide a driving force for 

genomic instability, which results in resistance to apoptosis and increased invasive capacity 

(Bristow and Hill, 2008, Pires et al., 2010). In addition, hypoxia-driven adaptive responses 

trigger tumor proliferation and even resistance to anticancer therapy. 

Over 55 years ago, Tomlinson and Gray first observed histological patterns of hypoxic 

cells residing at the edge of the oxygen diffusion limit from functional blood vessels (no more 

than 180 µm diameter away) and further postulated oxygen diffusion as a major factor 

influencing effectiveness of radiation therapy (Thomlinson and Gray, 1955). Their finding 

has led to intense research on radiobiology in cancer treatment. At present, it is well-known 

that the intratumoral oxygen level is arguably the most important determinant of tumor 

response to radiation therapy. This is because radiation therapy works by causing DNA 
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damage in tumors through free hydroxyl radicals forming from the ionization of water. 

Oxygen, as a potent radiosensitizer, reacts with these free radicals and mediates radiation-

induced cytotoxicity (Fig. 3). Therefore, a hypoxic environment decreases radiosensitivity of 

tumor cells and results in increased resistance to radiation damage in hypoxic tumor cells 

than those in normoxia (Harrison et al., 2002, Jordan and Sonveaux, 2012). Not only does 

oxygen level affect radiation therapy, the presence of oxygen is also associated with the 

efficacy of chemotherapy. Poorly developed blood vessels in intratumoral hypoxic areas limit 

the delivery of circulating chemotherapeutic agents to tumors. Therefore, control of tumor 

hypoxia by increasing the oxygenation or decreasing hypoxic fraction of tumors has great 

clinical implications in cancer therapeutics. One potential strategy is to target Hypoxia 

Inducible Factor (HIF-1), a key regulator responsible for cellular adaptation to hypoxia.  

  



 

 

Figure 3. The role of oxygen in radiation
have been found to be very resistant to radiation damage and 
outcome of radiotherapy. Oxygen is involved in the stabilization of the DNA damage caused 
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. The role of oxygen in radiation-induced cytotoxicity. Hypoxic tumor area
been found to be very resistant to radiation damage and largely influence therapeutic 

outcome of radiotherapy. Oxygen is involved in the stabilization of the DNA damage caused 
by ionizing radiations. A) Irradiation induces water ionization and destabilization, leading to 
the formation of reactive free radicals. B) These reactive radical species further interact with 
other molecules within the body and form new reactive oxygen species (ROS). C,D) Among 
ROS, hydroxyl radicals are the most potent mutagens to mediate DNA damage with 
oligonucleotide strand breaks. The initial DNA damage is readily reversible. However, the 
present of oxygen can stabilize DNA damage through oxidative reaction and form 
peroxides, which require intensive repair mechanism. This figure was

e F. Jordan and Pierre Sonveaux, Front. Pharmacol.,
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1.4 Hypoxia Inducible Factor - 1 (HIF-1) 

The oxygen homeostasis is regulated by the transcription factor HIF-1, which was first 

described by Semenza and co-workers in 1992. The HIF-1 was first discovered by its 

induction of erythropoietin (EPO) upon hypoxia which stimulates erythrocyte proliferation 

and increases the O2 carrying capacity of the blood (Goldberg et al., 1988, Semenza et al., 

1991). Currently, there are six known members in the human HIF family, which consists of 

three α subunits (HIF-1α, HIF-2α and HIF-3α) and three β subunits in (HIF-1β, HIF-2β and 

HIF-3β) (Fig. 4). The structures of α subunits share some feature domains: basic helix-loop-

helix (bHLH), two internal homology Per-Arnt-Sim (PAS) domains, a von Hippel-Lindau 

(pVHL) oxygen dependent degradation domain (ODD), and N-terminal and C-terminal 

transactivation domain (N-TAD and C-TAD; except HIF-3α that lacks C-TAD). In contrast, 

HIF’s β subunits contain bHLH and PAS domains, but no ODD, N-TAD or C-TAD. The bHLH 

domain is important for mediating DNA binding and HIF-α/β heterodimerization, while two 

PAS domains act as secondary interfaces for HIF-α/β recognition, dimerization and 

stabilization (Kenneth and Rocha, 2008). Therefore, bHLH-PAS region serves as a 

potential and selective target for development of small molecular disruptors of HIF-

α/β heterodimerization.  

All three HIF α isoforms can dimerize with HIF-1β, but have more limited ability to bind 

with HIF-2β. When HIF α and β subunits dimerize, the HIF-α/β complex becomes a 

functional transcriptional factor. At present, the specific roles of HIF-α/β heterodimers have 

not been fully understood (Drutel et al., 1996, Maltepe et al., 2000, Powell and Hahn, 2002) 

but extensive studies have been conducted to understand the HIF-1α/β heterodimer. These 

studies have demonstrated that HIF-1α/β is a master transcription factor responsible for 

cellular adaptation to hypoxia and regulates the expression of several genes involved in 

tumor development, such as angiogenesis and glycolysis (Bardos and Ashcroft, 2005, Ziello 
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et al., 2007, Semenza, 2007b). Therefore, disruption of HIF-1α/β dimerization could be an 

effective approach to block hypoxia-induced tumorigenesis and prevent resistance to 

anticancer therapies. To these ends, in this dissertation, we specifically focus on developing 

HIF-1α/β heterodimerization inhibitors that may be utilized as anti-cancer drugs.  

HIF-1α is a 120 kDa bHLH-PAS protein. The stability and activity of HIFα are tightly 

regulated by oxygen-dependent degradation through its post-translational modifications 

such as hydroxylation, ubiquitination, acetylation, and phosphorylation. Under normoxic 

conditions, HIF-1α is hydroxylated at conserved proline residues (Pro-402 and Pro-564) by 

prolyl hydroxylase, which rapidly leads to its recognition by pVHL/Elongin B and C/Cul2 

ubiquitin E3 ligase for ubiquitination and further degradation by proteasome within minutes 

(9-11). Under hypoxic conditions, the lack of oxygen inhibits prolyl hydroxylase activity and 

prevents HIF-1α degradation. The expression of HIF-1α can usually be detected after 30 

minutes of exposure to hypoxia (1-2% O2) and peaks between 4-8h under hypoxic 

conditions. Stabilized HIF-1α then translocates into the nucleus and forms a heterodimeric 

transcriptional factor with HIF-1β (Fig. 5). HIF-1β is constitutively expressed and found 

abundantly in the nucleus regardless of oxygen tension. The now functional HIF-1α/β 

transcription factor binds to 50-base pair cis-acting hypoxia-response elements (HREs; 5’-

RCGTG- 3’) in cellular genome and activates the HIF-1 driven gene transcription in hypoxic 

cancer cells (15).  

 

 

 

   



 

 

 

Figure 4. Human HIF family HIF
isoforms share four domains: basic helix
Sim (PAS) domains, a von Hippel
domain (ODD), and N-terminal and C
except HIF-3α without C-TAD). HIF
translocation signal (NLS) for transferring into nucleus. Meanwhile, HIF
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from Kenneth and S. Rocha, Biochem. J. (2008) 414, 19
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Human HIF family HIF-1α, HIF-2α, HIF-3α and HIF-1β. The structure of HIF
isoforms share four domains: basic helix-loop-helix (bHLH), two internal homology Per
Sim (PAS) domains, a von Hippel-Lindau (pVHL) targeted oxygen dependent degradation 

terminal and C-terminal transactivation domain (N-TAD and C
TAD). HIF-1α and HIF-2α also each contains a nucleus 

translocation signal (NLS) for transferring into nucleus. Meanwhile, HIF-β
ains, but no ODD, N-TAD and C-TAD. The figure was modified and adapted 

from Kenneth and S. Rocha, Biochem. J. (2008) 414, 19–29.  
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Figure 5. Regulation of HIF
(Pro-402 and Pro-564) by HIF prolyl
the pVHL/Elongin B and C/Cul2 ubiquitin E3 ligase and leading HIF
by the proteasome. Under hypoxic condit
hydroxylated and reduces the degradation process. In response, stabilized HIF
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Ashcroft, Expert Reviews in Mol
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. Regulation of HIF-1α. In normoxia, HIF-1α is hydroxylated at proline residues 
564) by HIF prolyl-hydroxylases, allowing recognition and ubiquitination by 

the pVHL/Elongin B and C/Cul2 ubiquitin E3 ligase and leading HIF-1α to rapid degradation 
by the proteasome. Under hypoxic conditions, the lack of oxygen prevents HIF
hydroxylated and reduces the degradation process. In response, stabilized HIF
translocates into the nucleus and forms a heterodimeric with HIF-1β. HIF-1α
then served as a transcriptional activator binding to HIF-responsive elements (HREs) and 
regulating the expression of multiple genes involved in tumor metabolism and 

was modified and adapted from Veronica A. Carroll and Margaret 
Ashcroft, Expert Reviews in Molecular Medicine, (2005) Vol.7, Issue 6. 
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1.5 Hypoxia related pathways  

In response to hypoxia, HIF-1α/β serves as a master transcriptional factor, which 

interconnects with several essential pathways with varying functions to maintain oxygen 

homeostasis. Hundreds of genes are transcriptionally regulated by HIF-1α/β via binding to 

the HRE consensus site in their promoter regions (Semenza et al., 1991, Elvidge et al., 

2006). However, HIF-1α/β binding is detected only in genes with increased expression. HIF-

1-dependent decrease in transcription occurs via indirect mechanisms, which include HIF-1-

dependent expression of transcriptional repressors and microRNAs (Yun et al., 2002, 

Kulshreshtha et al., 2007).  

Using a comprehensive DNA microarrays analysis, it has recently been found that at 

least 2.6% of human genes (total 22283 genes studied) are regulated by hypoxia in a HIF-

1α/β dependent manner in arterial endothelial cells, directly or indirectly (Manalo et al., 

2005). Moreover, this study also demonstrated a large group of genes regulated by hypoxia 

involved in cell growth/proliferation, signal transduction, oxidoreduction, mitochondrial and 

ribosomal biogenesis, RNA binding/metabolism, protein ubiquitination/proteasomal 

degradation and transcription activation (Fig. 6). 

 

1.6 HIF-1α/β related pathway in cancer 

HIF-1α/β is a major regulator of critical processes in malignancy such as angiogenesis, 

apoptosis, proliferation, invasion and metabolism. Many studies have suggested that an 

increased HIF-1α/β level is highly associated with cancer progression and metastasis 

(Sumiyoshi et al., 2006, Volm and Koomagi, 2000, Zhong et al., 1999).  
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For instance, stabilized HIF-1α/β stimulates the production of vascular endothelial 

growth factor (VEGF) and other hypoxia-induced angiogenic cytokines (such as FGF, and 

TGF), that promote endothelial cell proliferation, increase vascular permeability and cell 

migration. The formation of new blood vessels, known as neovascularization or 

angiogenesis, is a critical step in the multistage process of tumor metastasis (Olenyuk et al., 

2004).  

HIF-1α/β is also a key mediator in many metabolism pathways, and is responsible for 

the upregulation of glycolytic enzymes to increase energy consumption. Expressions of 

glucose transporter 1 (GLUT-1), hexokinase 2 (HK2) and other glycolytic enzymes are 

elevated by active HIF-1α/β to promote glucose use in cancer cells during hypoxia (Song et 

al., 2009, Wood et al., 1998, Denko, 2008).  

Moreover, HIF-1α/β is important for hypoxic stimulated epithelium-mesenchyme 

transition (EMT) in tumor invasion by suppressing E-cadherin expression and enhancing 

matrix metalloproteinase-2 (MMP2) and collagen I (Krishnamachary et al., 2006, Higgins et 

al., 2007, Jing et al., 2013). Many HIF-1α/β target genes, such as insulin-like growth factor 2, 

IGF-binding protein 1, 2 and 3, have pro-survival effects by stimulating cell proliferation 

under reduced oxygen availability (Vaupel, 2004). Although most of HIF-1α/β targeting 

genes promote cell survival, apoptosis can also be initiated by HIF-1 in certain situations like 

prolonged chronic hypoxia (Carmeliet et al., 1998). The HIF-1α/β regulated pro-apoptotic 

gene BNIP3 is found to be overexpressed in perinecrotic regions of the human tumors 

(Koop et al., 2009). HIF-1α/β has also been shown to induce cell cycle arrest to decrease 

cell proliferation rates in hypoxia, which allows cells in stressful microenvironment to slow 

their growth and conserve energy for survival (Koshiji et al., 2004, Goda et al., 2003). 
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With these essential involvements of HIF-1α/β in tumor vascularization and 

metabolism, HIF-1α/β has become an important target for the development of anti-cancer 

drugs. In fact, many researchers have suggested that inhibitors of HIF-1α/β may pose better 

potential to limit cancer progression than using inhibitors of its downstream gene products 

such as VEGF (Semenza, 2007a, Melillo, 2006, Welsh and Powis, 2003).  



 

 

Figure 6. HIF-1-regulated genes play essential roles in adaptive mechanisms to 
hypoxia. This figure was modified and adapted from 
Cancer  3, 721-732 (October 
Publishing Group. 
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1.7 Imaging of Hypoxia  

Measuring hypoxia is critical in determining the aggressiveness of tumor and 

assessing the effectiveness of anti-cancer treatments. As a result, numerous invasive and 

noninvasive approaches have been developed to measure hypoxic regions in tumors, 

including polarographic electrodes, magnetic resonance imaging (MRI), positron emission 

tomography (PET), single-photon emission computed tomography (SPECT) and optical 

imaging (fluorescence and bioluminescence) (Tatum et al., 2006, Sun et al., 2011).  

The most promising imaging method to measure hypoxia would be using a 

radiolabeled probe that competes directly with intracellular O2. PET imaging with 15O2 

inhalation can provide accurate measurements of oxygen tension in tissues (Krohn et al., 

2008, Serganova et al., 2006). However, the short half-life of 15O2 (about 2 minutes) and 

high cost hinder this approach in the clinical setting. The first clinical study to image hypoxia 

in PET was using 2-nitroimidazole, which is a bioreductive compound that undergoes a 

reduction reaction by hypoxia-induced nitroreductase and is then trapped in hypoxic tissues 

(Chapman, 1984, Lee and Scott, 2007). The covalent binding of a 2-nitroimidazole-protein 

adduct can be detected with specific antibodies or imaged by labeling PET radionuclides, 

such as 18F and 124I, or with single-photon emitters, such as 123I and 99mTc for SPECT. The 

commonly used nitroimidazoles derivatives are EF5, pimonidazole and misonidazole 

(Grunbaum et al., 1987, Martin et al., 1992). So far, 18F-FMISO is the most robust and 

common radiopharmaceutical to quantify hypoxia in clinic. The other alternative PET 

bioreductive agent for measuring hypoxia is radioactive copper (60Cu, 61Cu, 62Cu or 64Cu) 

with diacetyl-bis(-methylthiosemicarbazone) (Cu-ATSM). It has been demonstrated that 

64Cu-ATSM accumulates more rapidly than 18F-FMISO and has a greater hypoxic to 

normoxic ratio (O'Donoghue et al., 2005).  
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Other radiation free approaches utilize MRI to measure hypoxia. However, MRI without 

exogenous contrast, such as blood oxygen level dependent (BOLD) MRI or MRS for lactate 

or NADH/NADPH imaging, are measuring a downstream consequence of hypoxia and often 

cause a time delay in re-oxygenation. Some oxygen-sensitive MR reporter agents, generally 

based on perfluorocarbons (PFCs), have also been developed for 19F MR oximetry. These 

agents showed great potential with sequential measurements over time and provided robust 

detection with nanomolar (nM) sensitivities (Lemaire et al., 2013, Stoll et al., 2012, Mason et 

al., 2010). These MR hypoxia imaging techniques are currently developed in animal studies, 

but starting to be established in human tumor research. 

The bioluminescent and fluorescent imaging technologies possess several strong 

advantages for exploring the detailed molecular mechanisms of hypoxia. Although 

bioluminescent and fluorescent imaging technologies are not practiced in the clinic yet, they 

serve as great tools for preclinical studies. In this dissertation, we utilized bioluminescence 

imaging as the molecular imaging modality of choice. Therefore, greater detail and more 

background of bioluminescence imaging will be covered in the following subsection. 

1.7.1 Bioluminescent imaging in hypoxia  

Bioluminescence is characterized as a process of light emission from a living 

organism. Bioluminescence can also be utilized for noninvasive imaging studies to observe 

ongoing biological processes in small laboratory animals. The light-producing chemical 

reaction is catalyzed by the luciferase enzymes in certain insects, marine species and 

bacteria (Photorhabdus luminescens and Vibrio fischeri) (de Wet et al., 1987). The most 

commonly used luciferases in research are derived from the North American firefly (Photinus 

pyralis) and the sea pansy (Renilla reniformis). The luciferase enzymes start their catalytic 

competence immediately after being released from the ribosome, without further post-
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translational processing, thus providing instantaneously enzymatic activity. Using firefly 

luciferase employed in this dissertation as an example, firefly luciferase catalyzes the 

chemical reaction through two steps:  

• D-luciferin + ATP → luciferyl adenylate + pyrophosphate 

• luciferyl adenylate + O2 → oxyluciferin + AMP + light 

The wavelengths of light emitted through firefly luciferase reaction are typically in 

green (λmax = 550 nm) to yellow (λmax = 570) part of the spectrum, depending on the  

luciferase structure or its microenviroment (DeLuca and McElroy, 1974, Viviani et al., 2005). 

Researchers have utilized these luminescent proteins in genetic engineering for numerous 

purposes. Luciferase genes can be transfered into cells or even experimental laboratory 

animals and are widely used as reporters to assess transgene expression activity in vitro 

and in vivo. To be used as a genetic reporter, the luciferase gene is regulated by the 

promoter sequence of a gene of interest. Thus, the level of that gene transcription is 

proportional to the light intensity produced by the luciferase. 

So far, a few bioluminescent imaging methods have been developed to image 

hypoxia via measuring HIF-1 transcriptional activity. Payen et al. first proposed the idea 

using HRE sequences coupled with reporter genes, such as luciferase or GFP, to enable 

imaging HIF-1 transcriptional activity (Payen et al., 2001). In 2004, Serganov et al. 

demonstrated in vivo small animal imaging of HIF-1 transcriptional activity using GFP/tk 

reporter under control of 8×HREs (Serganova et al., 2004).  

 

1.8 HIF-1 inhibitors in cancer 
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Hypoxia has been recognized as an essential player in tumor microenviroment and a 

prognosis marker to anti-cancer treatment. Since HIF-1α is a master regulator in response 

to hypoxia, the development of HIF-1 inhibitors has become the focus of several research 

groups. In the following, the current discovery and characterization of small molecule 

inhibitors for targeting HIF-1 pathway will be covered. 

To date, considerable efforts have been devoted to the development of HIF-1 inhibitors 

that reduce HIF-1α mRNA or protein levels, HIF-1 DNA binding, or HIF-1 activation of 

transcription (Table. 1). Among them, agents that decrease HIF-1α protein levels can be 

further classified by their ability in inhibiting the rate of HIF-1α translation or promoting the 

rate of HIF-1α degradation. 

A. Small molecular inhibitors of HIF-1α protein levels 

The PI3K/Akt/mTOR signaling pathway, which promotes cell proliferation and reduces 

apoptosis by regulating protein synthesis, is often overactive in many cancers. This 

prototypic survival pathway also plays a major role in upregulation of HIF-1α protein 

synthesis in most human cancer cell lines. With the use of PI3K specific inhibitors: 

wortmannin and LY294002, they could downregulate insulin- and epidermal growth factor- 

induced expression of HIF-1α in prostate carcinoma cell lines PC-3 and DU145 (Jiang et al., 

2001). A clinically used mTOR inhibitor, rapamycin, has been proven to decrease HIF-1α 

protein expression in cells (Hudson et al., 2002). Its chemical derivative inhibitor, RAD-001, 

also demonstrated attenuation of most HIF-1 target gene expressions in the prostates of 

AKT1 expressing mice (Majumder et al., 2004). The other mTOR inhibitor, CCI-779, showed 

inhibition of cell proliferation and HIF-1α translation in VHL-mediated renal cell carcinoma 

(Thomas et al., 2006). EZN-2968 is an RNA antagonist which specifically binds to HIF-1 
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mRNA and inhibits the expression of HIF-1α mRNA in DU-145 human prostate and 

glioblastoma cells (Greenberger et al., 2008). 

The chaperone HSP90 interacts with HIF-1α and is required for HIF-1α protein stability. 

Inhibitors of HSP90, such as geldanamycin (GA) and its derivatives 17-allylamino-17-

demethoxygeldanamycin (17-AAG) and 17-dimethylaminomethylamino-17- 

demethoxygeldanamycin (17-DMAG), are naturally occurring benzoquinone ansamycin 

antibiotics. These compounds have been demonstrated to interfere with Hsp90 function by 

competing with its ATP binding site, and inducing ubiquitination and proteasomal 

degradation of HIF-1α in VHL-independent renal and prostate cancer cells (Isaacs et al., 

2002, Mabjeesh et al., 2002, Porter et al., 2009, Drysdale et al., 2006). Of note, both 17-

AAG and 17- DMAG are currently being tested in clinical trials. Other epigenetic studies 

have demonstracted that inhibitors of histone deacetylases (HDACi) can suppress HIF-1α 

protein expression via increasing its acetylation-dependent degradation. The Sirtuin 1 

(SIRT1) deacetylase inactivates HIF-1α by blocking HIF-1α-p300/HIF-α-CBP and 

consequently inhibited HIF-1 transactivation of downstream target genes (Chen and Sang, 

2011). Other novel inhibitors, such as YC-1 and PX-478, have also been identified to inhibit 

HIF-1α protein accumulation and hypoxic induced HIF-1 transcriptional activity in a variety of 

cancer cell lines (Semenza, 2006, Schwartz et al., 2009, Schwartz et al., 2011). 

Using an engineered U251 human glioma cell-based high-throughput screen system 

(U251-HRE), a large chemical library was explored for the identification of agents that inhibit 

HIF-1 activity, three of which were closely related to camptothecin analogues and DNA 

topoisomerase I inhibitors (Rapisarda et al., 2002). Topotecan was one of the camptothecin 

analogues which showed inhibition of hypoxia induced HIF-1α accumulation and HIF-1-

dependent gene expression at a low nanomolar concentration in U251 cells. Although 

mechanisms of camptothecin analogues in suppressing HIF-1 protein expression have not 
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been fully delineated, two other camptothecin analogues, topotecan and irinotecan, have 

gone through clinical trials and are currently used in cancer therapy.  

RNA interference approaches using small interfering RNA (siRNA) or short hairpin 

RNA (shRNA) targeting HIF-1α have been developed recently. These RNA oligos were 

designed using the coding sequence of HIF-1α for specific targeting motifs. Several studies 

have demonstrated that the siRNAs can effectively suppress HIF-1α expression, inhibit HIF-

1 related signal transduction, increase cell apoptosis, and enhance sensitivity to 

chemotherapeutic drug (Hanze et al., 2003, Kessler et al., 2010, Yu et al., 2004).The 

application of siRNA in vivo studies also showed potential anti-tumor efficacy in vivo mouse 

models (Liao et al., 2012, Jiang et al., 2007) Noteworthy, treatment with siRNA or antisense 

oligonucleotides suppressed both HIF-1α expression at both mRNA and protein levels 

(Zhang et al., 2004). 

B. Small molecular inhibitors of HIF-1 DNA binding 

In this category, these inhibitors prevent HIF-1 binding to HREs and suppress 

transactivation of HIF-1 target genes. For example, Echinomycin binds to DNA of the HIF-1 

recognition sequence 5’-CGTG-3’ and inhibits HRE-mediated transcriptional activity in U251 

glioma cells (Van Dyke and Dervan, 1984, Kong et al., 2005). Other inhibitors of HIF-1 DNA 

binding include polyamides (Olenyuk et al., 2004), and DJ12 (Jones and Harris, 2006). 

C. Small molecular inhibitors of HIF-1 transcriptional activity 

Another mechanism of HIF-1 inhibition is at the level of transactivation. Bortezomib 

was the first therapeutic proteasome inhibitor to be tested in humans. It elevates HIF-1α 

protein levels by blocking its degradation and specifically inhibits HIF-1α C-TAD despite the 

activation of HIF-1α coactivators p300 (Kaluz et al., 2006). In addition, the antifungal drug 
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amphotericin B was found to inhibit HIF-1 transcriptional activity by promoting interaction of 

HIF-1α C-TAD with FIH-1 (Yeo et al., 2006). 

D. Small molecular inhibitors of HIF-1 dimerization 

HIF-1α/ β dimerization is mediated by the bHLH and PAS domains in N-terminal end of 

HIF-1α and HIF-1β (Semenza et al., 1997). Although the structural and functional map of 

HIF-1 has been known since 1997, the development of specific small molecular inhibitors 

targeting this mechanism has long been attractive, yet elusive. Recently, through the 

screening from a FDA approved clinical trials drug library using a cell-based split-luciferase 

screening assay, acriflavine (ACF) was found to act directly on the HIF-1α/β dimerization 

(Lee et al., 2009). ACF, a commonly used antimicrobial agent discovered almost 100 years 

ago, is a mixture of 3,6-diamino-10-methylacridinium chloride (trypaflavin) and 3,6-

diaminoacridine (proflavine). The study showed that ACF interacts with PAS-B subdomain of 

HIF-1α or HIF-2α, thus blocking the binding with HIF-1β. In addition, ACF treatment 

suppressed HIF-1 transcriptional activity and led to inhibition of tumor growth and 

vascularization in mice bearing prostate cancer xenografts. However, other studies also 

indicated ACF works as a topoisomerase I and II inhibitor to trigger permanent DNA damage 

and cell death in several cancer models (Hassan et al., 2011, Salerno et al., 2010). The 

finding that ACF also works as a topoisomerase I and II inhibitor seems in line with its HIF-

1α inhibition. Topoisomerase I inhibitors, such as camptothecin mentioned above, limit DNA 

transcription and have strong suppressive effect on hypoxia induced HIF-1α accumulation in 

cancer cells (Xia et al., 2012, Rapisarda et al., 2002). The study conducted by Semenza’s 

group, however, did not observe decreased HIF-1α level by ACF at the concentration used 

to inhibit HIF-1 dimerization. Overall, in previous preclinical models, ACF showed short 

pharmacokinetic half-life and reached peak plasma concentrations well above the IC50 

values for anti-cancer activity (Song et al., 2005, Kim et al., 1997). With this background, 
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further clinical development of ACF as an anti-cancer drug seems promising for its dual 

inhibition of HIF-1 dimerization and HIF-1α expression. Nevertheless, the mechanisms of 

action of ACF remain to be fully elucidated. 

In conclusion, none of the presently available inhibitors appears to disrupt the HIF-1 

pathway as an exclusive target. The design of more specific HIF-1 targeting agents is likely 

to become the future research priority (Semenza, 2007a, Mooring et al., 2011, Yewalkar et 

al., 2010, Narita et al., 2009, Tan et al., 2005, Park et al., 2006b). Blocking the dimerization 

domain of HIF-1α/HIF-1β disables its ability to form HIF-1α/β heterodimers and negates HIF-

1 activated adaptive reactions involved in tumor development. Since the dimerization is 

essential for a fully functional HIF-1 transcriptional factor, we proposed to explore novel 

inhibitors of HIF-1α/β heterodimerization as the major goal of this work.  
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Table 1: HIF-1 inhibitors and their mechanism of action  

 

  

Mechanism and Target of HIF-1 inhibition Agent 

I. Decreased HIF-1α mRNA levels:  GL331, siRNA, shRNA 

II. Decreased HIF-1α protein levels  

A. PI3K-AKT-mTOR  Wortmannin, LY294002, CCI-779, 

rapamycin, RAD-001, EZN-2968 

B. HSP90 GA, 17-AAG, 17-DMAG, apigenin 

C. Histone deacetylases SIRT1, LAQ824, FK228 

D. Topoisomerases Topoisomerase I : topotecan, irinotecan 

E. Cyclin-dependent kinases flavopiridol 

F. Microtubule targeting agents 2-methoxyestradiol, epothilone B, 

taxotere 

G. Unknown targets YC-1, PX-478, berberine, pseudolaric 

acid B, bisphenol A, manassantin B1, 

manassantin A, 4-O-methylsaucerneol, 

laurenditerpenol, 103D5R 

III. Decreased binding of HIF-1 to DNA  echinomycin, polyamides,DJ12 

IV. Decreased HIF-1-mediated transactivation  

A. Proteasome:  bortezomib 

B. Histone deacetylases:  SAHA/vorinostat, trichostatin A 

C. P300:  chetomin 

D. Unknown:  amphotericin B 

V. Decreased HIF-1α and HIF-1 β dimerization acriflavine  
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1.9 Specific aims of the project 

To initiate hypoxia adaptive responses in cancer, HIF-1α and HIF-1β heterodimerize 

and serve as a transcriptional activator to hundreds of target genes involved in tumor 

metabolism and vascularization. In an attempt to improve hypoxia-selective cytotoxicity, 

disruption of HIF-1α/β dimerization using small molecules is considered to be a promising 

therapeutic strategy. Our ultimate goal for this dissertation was to discover selective and 

effective inhibitor for HIF-1 dimerization. The long-term goal of the study would be to 

translate our therapeutic agents into clinic and benefit cancer patients. 

To achieve these goals, the following specific aims were proposed: 

Aim 1: To Develop and Optimize a Reporter System for Bioluminescence Imaging of 

HIF-1α/HIF1β Heterodimerization 

Aim 2: To Conduct High-Content Screening of Inhibitors of HIF-1α/HIF1β Dimerization 

in Cellulo and to Explore Structure-Activity Relationships 

Aim 3: To Access Selected Agents as Inhibitors of HIF-1-mediated Transcriptional 

Activity 

Aim 4: To Evaluate Therapeutic Efficacy of Selected Inhibitors in Tumor Xenograft 

Bearing Mice  
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Chapter 2: Materials and Methods 

Cell Culture 

HEK293T and U87 glioma cells (American Type Culture Collection, Manassas, VA) 

were maintained in Dulbecco’s modified Eagle’s medium/F-12 medium supplemented with 

10% fetal calf serum (Gibco, Carlsbad, CA) and 100 µg/mL normaxin (InvivoGen, San Diego, 

CA). Cells grew in a 37°C incubator with 5% CO2. 

 

Construction of HIF-1 Heterodimerization Imaging lentiviral Vectors  

DNA sequences of the human bHLH-PAS domain of HIF-1α (residues 12-396) and 

HIF-1β (residues 11-510), and the N-terminus (NL; residues 1-437) and C-terminus (CL; 

residues 438-554) of firefly luciferase were prepared using PCR.  These DNA sequences 

were then inserted into donor vectors (pDONR222 or pDONR222) via a Gateway BP 

reaction (Invitrogen, Carlsbad, CA). Following a Gateway LR reaction, we obtained two 

different orientations of HIF-1α12-396 linking with N- terminal halves of luciferase in pLVDL301 

vector (pLVDL 301-NL-HIF-1α12-396 and pLVDL 301-HIF-1α12-396-NL), and two different 

orientations of HIF-1β11-510 linking with C- terminal halves of luciferase in pLVDL312 vector 

(pLVDL 312- CL-HIF-1β11-510 and pLVDL 312 -HIF-1β11-510- CL) (Fig. 7). The gateway 

recombination cloning technique was based on bacteriophage lambda site-specific 

recombination system which facilitates the integration of lambda into the E. coli chromosome 

and the switch between the lytic and lysogenic pathways (Arkin et al., 1998). The method 

prevents traditional restriction enzyme based cloning limitations, accurately shuttles target 

DNA inserts to our vectors, and highly facilitates the creation of our DNA vectors. Vector 

pLVDL301 was specifically designed to contain two gateway cassettes, attR1 and attR2 
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sites, with downstream IRES to control eGFP gene expression. Whereas, Vector pLVDL312 

also contains two gateway cassettes with IRES controlled mKate expression. We decided to 

use pLVDL301 as the destination vector (eGFP) for HIF-1α reporter components and 

pLVDL312 (mKate) for HIF-1β reporter components.  

In the following experiment to verify its functionality, HEK293T cells were plated at 70-

80% confluence on the day of transfection. Cells were transfected (1:1) with four plasmid 

vectors alone, two different plasmid combinations, or single plasmids with nonsense-NL/CL. 

Volumes of Lipofectamine 2000 (Invitrogen) were used as recommended by the 

manufacturer for DNA delivery. The efficiency of plasmid transfection was assayed 48 h 

later via fluorescence using a microplate reader (Tecan, Männedorf, Switzerland). D-luciferin 

was added to the cell medium to perform bioluminescent imaging (BLI) by 1 min of photon 

counting using an IVIS 200 Series imaging system (Caliper Life Sciences, Hopkinton, MA). 

All BLI measurement were performed in triplicate. Relative light-unit readings were 

normalized by mKate fluorescence counts. 



 

Figure 7. Construction of 
the HIF-1α12-396/N-terminal halves of luciferase (a,b) 
luciferase fusion proteins(c,d).
vector with eGFP reporter, cre
NL. HIF-1β11-510 was cloned into the pLVDL 312 dual destination vector with mKate reporter, 
creating pLVDL 312- CL-HIF
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Construction of HIF-1α12-396 and HIF-1β11-510 reporter vectors. 
halves of luciferase (a,b) and HIF-1β11-510/C-terminal halves of 

s(c,d). HIF-1α12-396 was cloned into the pLVDL 301 dual destination 
creating pLVDL 301-NL-HIF-1α12-396 and pLVDL 301
into the pLVDL 312 dual destination vector with mKate reporter, 

HIF-1β11-510 and pLVDL 312 -HIF-1β11-510-CL.  

 

 

. Vector maps of 
terminal halves of 

into the pLVDL 301 dual destination 
and pLVDL 301-HIF-1α12-396-

into the pLVDL 312 dual destination vector with mKate reporter, 



31 

 

Production of Lentivirus for generating U87 HIF-1 Heterodimerization Reporter Cells  

Four different lentiviral stocks were produced by cotransfecting previously developed 

HIF-1 reporter lentiviral vectors and ViraPower Packaging Mix (Invitrogen) into HEK 293T 

packaging cells. The virus was harvested from the cell culture medium 24, 48, and 72 h after 

transfection. After filtering the collected medium through 0.22-µm filters, the virus was 

concentrated via centrifugation at 3500 rpm for 30 min at 4°C. The concentrated lentiviral 

stocks were then stored at -80°C for later use.  

After production of the lentiviral stocks, U87 cells were seeded in six-well culture 

dishes at 90% confluence and transduced with different pairs of HIF-1α and HIF-1β 

reporters using lentivirus stocks (1:1, respectively). The culture medium was supplemented 

with 2 µg/mL hexadimethrine bromide (Polybrene; Sigma, St. Louis, MO) at the time of 

transduction. At 24 h after transduction, the culture medium containing the virus was 

removed and replaced with fresh medium. 

 

Flow Cytometry and Protein Expression Analysis of Transduced U87 Reporter Cells 

The transduced U87 cells were culture-expanded and analyzed for expression of the 

HIF-1 reporter using a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA) after a 

week of transduction. The cells were collected via centrifugation at 1500 rpm, and 

resuspended into 500 µl PBS. The coexpression of the reporter genes (eGFP and mKate) 

was analyzed using a 488- and 620-nm excitation laser, respectively. 100,000 events were 

collected each time, and the percentage of cells exhibiting dual eGFP and mKate 

fluorescence was determined using FlowJo X program (Ashland, OR). 
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Selection of Stably Transduced U87 Reporter Cells 

Stably expressed U87/NL1α/CL1β reporter cells were selected using a BD FACSAria 

cell sorter (BD Biosciences) for future screening experiments. Only dual pLVDL 301-NL-HIF-

1α12-396 and pLVDL 312- CL-HIF-1β11-510 expressed cells within a narrow region spanning 

about 103 on the eGFP and mKate expression scale of a histogram plot were collected. The 

sorted U87/NL1α/CL1β cells were replated back to 96-well plates at the concentration of 20 

cells/well. After a week of growing, each well was examined for dual eGFP and mKate 

fluorescence under a microscope. The U87/NL1α/CL1β cells with the most homogenous 

expression of dual reporters were dispersed into new 12-well plates for further expansion. 

These stably transduced U87/NL1α/CL1β cells were later used in the drug screening 

experiments. 

 

Competitive HIF-α/β Protein-Binding Assay 

U87/NL1α/CL1β cells were seeded at 5 x 104 cells per well in a 24-well plate, 

incubated for 12 h, and transfected with HIF-1α, HIF-1β, or control DNA. BLI and fluorescent 

imaging of U87 reporter cells were performed at 24 and 48 h after transfection. Also, a WST-

1 cell viability test (Cayman Chemistry, Ann Arbor, MI) was performed in each group of 

experiments after the imaging. All experiments were done in triplicate. 

 

Hypoxia Chamber-Induced Endogenous HIF-1α Competition Assay 

U87/NL1α/CL1β cells were seeded at 5 x 104 cells per well in a 24-well plate and 

incubated for 12 h. To induce hypoxia, cells were placed in a modular incubator chamber 

(Billups-Rothenberg Inc., Del Mar, CA) and flushed with a mixture of gas consisting of 5% 
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O2, 5% CO2, and balance N2. The chamber was then sealed and incubated at 37°C. Cells 

under normal culture conditions were used as controls. BLI, fluorescent imaging, and WST-1 

cell viability testing were performed 24 and 48 h after treatment. Different groups of cells 

were collected and lysed for later western blot analysis. 

 

High-Throughput Drug Screening In Vitro 

Stably transduced U87/NL1α/CL1β cells were preseeded in 96-well plates at 4 x 104 

cells per well. A library of 41 compounds, previously reported to inhibit HIF-1 activity, or a 

vehicle (0.1% dimethyl sulfoxide [DMSO]) were added to each well for 24 h. The cells were 

imaged and analyzed using BLI with an IVIS 200 Series system via 1-min photon counting 

and fluorescence with a Tecan microplate reader. All BLI results were analyzed using Living 

Image software program (Caliper Life Sciences, Hopkinton, MA). All the experiments were 

done in triplicate. If the drug treatment resulted in a significant decrease in the BLI signal, 

the cells were further analyzed using the WST-1 cell viability test.  

 

Chemical Reagents and Instrumentation 

Reagents and solvents were purchased from Aldrich Chemical Co. (Milwaukee, WI) 

and used without further purification. Thin-layer chromatography was performed with 

precoated Kieselgel 60 F254 aluminum plates (Merck, Darmstadt, Germany). Proton, 13C, 

and 19F nuclear magnetic resonance (NMR) spectra were recorded using a Bruker 300-MHz 

spectrometer (Bruker, Rheinstetten, Germany) with tetramethylsilane as an internal 

reference at The University of Texas MD Anderson Cancer Center. High-resolution mass 

spectra for newly synthesized compounds were obtained with a Bruker BioTOF II mass 
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spectrometer (Bruker, Rheinstetten, Germany) at the University of Minnesota using 

electrospray ionization. Neutral proflavine was prepared from 3,6-diaminoacridine 

hemisulfate (Aldrich Chemical, Milwaukee, WI), which was dissolved in water, and 10% 

NH4OH was added to the solution until the pH was 8 under vigorous stirring. The solution 

was then filtered, washed with water, and dried to afford neutral proflavine. Compounds 1, 3, 

4, and 5 were purchased from Aldrich Chemical Co. and used as received. Compound 2 

was prepared using a reported procedure for similar compounds. The detailed synthesis of 

other compounds will be covered in the following section. 

 

Chemistry Synthesis 

General procedure A: reaction of proflavine with anhydrides for synthesis of compounds 6-

8 as reported previously. 

A solution of anhydride (3 eq.) was added dropwise to proflavine (1 mmol, 1 eq.) in 

pyridine (6 mL) and triethylamine (0.5 mL) at 50°C under N2 atmosphere with vigorous 

stirring. Stirring was continued for 1 h at 80°C. The mixture was then poured into water 

(80 mL). The obtained precipitate was filtered, washed with water, dried, and recrystallized 

using ethanol to yield the corresponding product.  

General procedure B: reaction of proflavine with alkoyl chlorides for synthesis of 

compounds 9-15 

A solution of aroyl chloride (3 eq.) in acetone (10 mL) was added dropwise to 

proflavine (1 mmol, 1 eq.) and K2CO3 (10 eq.) in acetone (40 mL) at 0°C under N2 with 

vigorous stirring. Stirring was continued for 15 h at room temperature. The mixture was then 

poured into a solution of aqueous NaHCO3 (40%, 80 mL). After cooling at 5°C, the obtained 
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precipitate was filtered, washed with water, dried, and recrystallized from ethanol to yield the 

corresponding product. 

General procedure C: reaction of proflavine with aroyl chlorides for synthesis of compounds 

16-24 as reported previously. 

A solution of aroyl chloride (3 eq.) in acetone (10 mL) was added dropwise to proflavine 

(1.43 mmol, 1 eq.) and K2CO3 (10 eq.) in acetone (40 mL), at 0°C under N2 with vigorous 

stirring. Stirring was continued for 15 h at room temperature. The mixture was then poured 

into water (30 mL) and then a satd. aq. NaHCO3 solution (20 mL). After cooling at 5°C, the 

obtained precipitate was filtered, washed with water and then ether (15 mL), and dried to 

yield the corresponding product. 

Preparation of N,N'-(Acridine-3,6-Diyl)Dicyclopropanecarboxamide (compound 10) 

General procedure B: compound 10 was obtained as yellow fluffy powder at a yield of 45%. 

1H NMR: (DMSO-d6): δ 11.43 (s, 2H, NH), 9.56 (s, 1H, H9), 8.85 (s, 2H, H4, H5), 8.35 (d, J = 

9.0, 2H, H1,H8), 7.81 (d, J = 9.0, 2H, H2, H7), 2.03 (m, 2H, CH), 0.95 (m, 8H, CH2: 

cyclopropyl). 

Preparation of N,N'-(Acridine-3,6-Diyl)Dicyclobutanecarboxamide (compound 11) 

General procedure B: compound 11 was obtained as yellow powder at a yield of 57%. 1H 

NMR: (DMSO-d6): δ 10.45 (s, 2H, NH), 9.13 (s, 1H, H9), 8.67 (s, 2H, H4, H5), 8.15 (d, J = 9.0, 

2H, H1,H8), 7.68 (d, J = 9.0, 2H, H2, H7), 2.40-1.80 (m, 14H, CH, CH2: cyclobutyl). 

Preparation of N,N'-(Acridine-3,6-Diyl)Dicyclopentanecarboxamide (compound 12) 

General procedure B: compound 12 was obtained as yellow powder at a yield of 57%. 1H 

NMR: (DMSO-d6): δ 10.91 (s, 2H, NH), 9.37 (s, 1H, H9), 8.80 (s, 2H, H4, H5), 8.25 (d, J = 9.0, 



36 

 

2H, H1,H8), 7.78 (d, J = 9.0, 2H, H2, H7), 3.00 (m, 2H, CH: cyclopentyl), 2.00-1.50 (m, 16H, 

CH2: cyclopentyl). 

Preparation of N,N'-(Acridine-3,6-Diyl)Dicyclohexanecarboxamide (compound 13) 

General procedure B: compound 13 was obtained as yellow powder at a yield of 57%. 1H 

NMR: (DMSO-d6): δ 11.06 (s, 2H, NH), 9.56 (s, 1H, H9), 8.91 (s, 2H, H4, H5), 8.33 (d, J = 9.0, 

2H, H1,H8), 7.82 (d, J = 9.0, 2H, H2, H7), 2.55 (m, 2H, CH: cyclohexyl), 2.00-1.62 (m, 11H, 

CH2: cyclohexyl), 1.55-1.18 (m, 11H, CH2: cyclohexyl). 

Preparation of N,N'-(Acridine-3,6-Diyl)Bis(Adamantanecarboxamide) (compound 14) 

General procedure B: compound 13 was obtained as yellow powder at a yield of 57%. 1H 

NMR: (DMSO-d6): δ 11.06 (s, 2H, NH), 9.56 (s, 1H, H9), 8.91 (s, 2H, H4, H5), 8.33 (d, J = 9.0, 

2H, H1,H8), 7.82 (d, J = 9.0, 2H, H2, H7), 2.55 (m, 2H, CH: cyclohexyl), 2.00-1.62 (m, 11H, 

CH2: cyclohexyl), 1.55-1.18 (m, 11H, CH2: cyclohexyl). 

Preparation of N,N'-(Acridine-3,6-Diyl)Bis(2,2,3,3-

Tetramethylcyclopropanecarboxamide) (compound 15) 

General procedure B: compound 15 was obtained as yellow powder at a yield of 65%. 1H 

NMR: (DMSO-d6): δ 11.06 (s, 2H, NH), 9.56 (s, 1H, H9), 8.91 (s, 2H, H4, H5), 8.33 (d, J = 9.0, 

2H, H1,H8), 7.82 (d, J = 9.0, 2H, H2, H7), 2.55 (m, 2H, CH: cyclohexyl), 2.00-1.62 (m, 11H, 

CH2: cyclohexyl), 1.55-1.18 (m, 11H, CH2: cyclohexyl). 

Preparation of N,N'-(Acridine-3,6-Diyl)Dibenzenesulfonamide (compound 17) 

General procedure C: compound 17 was obtained as yellow powder at a yield of 30%. 1H 

NMR: (DMSO-d6): δ 11.06 (s, 2H, NH), 9.56 (s, 1H, H9), 8.91 (s, 2H, H4, H5), 8.33 (d, J = 9.0, 
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2H, H1,H8), 7.82 (d, J = 9.0, 2H, H2, H7), 2.55 (m, 2H, CH: cyclohexyl), 2.00-1.62 (m, 11H, 

CH2: cyclohexyl), 1.55-1.18 (m, 11H, CH2: cyclohexyl). 

Preparation of N,N'-(Acridine-3,6-Diyl)Bis(4-(Trifluoromethyl)Benzamide) (compound 

19) 

General procedure C: compound 19 was obtained as yellow powder at a yield of 65%. 1H 

NMR: (DMSO-d6): δ 11.44 (s, 2H, NH), 9.50 (s, 1H, H9), 9.01 (s, 2H, H4, H5), 8.31 (d, J = 9.0, 

2H, H1,H8), 8.24 (d, J = 8.1, 4H, Ph), 8.08 (d, J = 9.0, 2H, H2, H7), 7.92 (d, J = 8.1, 4H, Ph). 

Preparation of N,N'-(Acridine-3,6-Diyl)Bis(4-Tert-Butylbenzamide) (compound 20) 

General procedure C: compound 20 was obtained as yellow powder at a yield of 60%. 1H 

NMR: (DMSO-d6): δ 10.73 (s, 2H, NH), 9.06 (s, 1H, H9), 8.78 (s, 2H, H4, H5), 8.16 (d, J = 9.0, 

2H, H1,H8), 7.99 (d, J = 8.7, 2H, Ph), 7.95 (d, J = 9.0, 2H, H2, H7), 7.60 (d, J = 8.7, 2H, Ph), 

1.35 (s, 18H, t-Bu). 

Preparation of N,N'-(Acridine-3,6-Diyl)Bis(3,4-Dimethoxybenzamide) (compound 21) 

General procedure C: compound 20 was obtained as yellow powder at a yield of 60%. 

1H NMR: (DMSO-d6): δ 11.22 (s, 2H, NH), 9.55 (s, 1H, H9), 9.01 (s, 2H, H4, H5), 8.41 (d, J = 

8.1, 2H, Ph), 8.22 (d, J = 9.0, 2H, H1,H8), 7.88 (d, J = 9.0, 2H, H2, H7), 7.65 (s, 2H, Ph), 7.16 

(d, J = 8.1, 2H, Ph). 

 

Structure Activity Relationship of Acridine Analogs 

U87/NL1α/CL1β reporter cells were preseeded in 96-well plates at 4 x 104 cells per 

well. A list of our developed acridine analogs with side chain derivatization, ACF (10µM, 

positive control) or a vehicle (0.1% dimethyl sulfoxide [DMSO]) were added to each well for 
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24 h incubation. The cells were analyzed by BLI with an IVIS 200 Series system via 1-min 

photon counting and fluorescence imaging with a Tecan microplate reader, and tested for 

the WST-1 cell viability assay. All the experiments were done in triplicate.  

 

HIF-1 transcriptional activity reporter assay 

C6#4 reporter cells previously developed in our lab were seeded at 1 x 104 per well in 

a 96-well plate, incubated for 12 h, and changed new medium with supplement of 100 µM 

CoCl2, producing chemically-induced hypoxia (Serganova et al., 2004). After 4 h, the cells 

were treated with different concentrations of vehicle, ACF, M-TMCP and D-TMCP for 

additional 24 h incubation. Fluorescent imaging was performed with a Tecan microplate 

reader to analyze GFP versus DsRed expression. All the experiments were done in triplicate. 

The WST-1 cell viability test (Cayman Chemistry, Ann Arbor, MI) was performed in each 

treatment group after the fluorescent imaging.  

 

Rapamycin-regulated firefly luciferase complementation cell-based reporter assays 

This reporter assay utilized the rapamycin-binding domain (FRB) of the kinase 

mammalian target of rapamycin and FK506-binding protein 12 (FKBP) fused with firefly 

luciferase halves, respectively, to develop rapamycin-regulated firefly luciferase 

complementation assay (Luker et al., 2004). HEK293T cells were plated to 70-80% 

confluence on the day of transfection. HEK-293 cells transfected with (1:1) FRB-NLuc/CLuc-

FKBP (DNA vectors were obtained from Dr. David Piwnica-Worms’s lab at Washington 

University School of Medicine). Volumes of Lipofectamine 2000 (Invitrogen) were used as 

recommended by the manufacturer for DNA delivery. In this firefly complementation 
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construct design, rapamycin induced FRB/FKBP association and reconstituted luciferase 

activity in cells. Therefore, the efficiency of plasmid transfection was assayed via BLI 48 h 

later after incubation of 50 nM rapamycin for 6 h. Transfected cells were then transferred 

into a 12 well plate at 5 x 104 per well, incubated for 6 h, and changed with new medium. For 

the first group of experiments, the transfected cells were first incubated with 50 nM 

rapamycin for 6 h to reconstitute luciferase, and then treated with or without 10 µM ACF, N-

3-(2,2,3,3-tetramethylcyclopropane-carboxamide)-6-aminoacridine hydrochloric acid salt (M-

TMCP) and N,N'-(acridine-3,6-diyl)bis(2,2,3,3-tetramethyl-cyclopropanecarboxamide) (D-

TMCP) for 24 h to examine the effect of these inhibitors in disrupting luciferase pairs. For the 

second group, 10 µM vehicles ACF, M-TMCP and D-TMCP were first added to the cell 

medium for 24 h incubation. Then the cells were treated with 50 nM rapamycin for additional 

6 h. All BLI were performed by 1 min of photon counting using an IVIS 200 Series imaging 

system (Caliper Life Sciences, Hopkinton, MA).  

 

Quantitative real-time reverse-transcription PCR (qRT-PCR)  

U87 WT cells were incubated under normoxia or hypoxia in the absence or presence 

of ACF, M-TMCP and D-TMCP (0 or 10 µM) for 24 hours. Total RNA isolated from 1x105 

cells (RNeasy mini kit; Qiagen, Valencia, CA) was reversely transcribed to cDNA by using 

RT2 First Strand Kit (Qiagen, Valencia, CA). First-strand cDNA equivalent to 5 µg RNA was 

applied in real-time PCR using RT2 SYBR Green Mastermix and RT² Profiler Hypoxia 

Signaling Pathway PCR Arrays (Qiagen, Valencia, CA) following the manufacturer’s protocol. 

qPCR conditions were 95°C for 10 min, followed by 40 cycles of 95°C for 15 sec, annealing 

at 60°C for 1 min. Fluorescence was collected at 60°C step. Data was normalized to the 

housekeeping gene beta-actin (ACTB). Controls were also included on each array for 
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genomic DNA contamination, RNA quality, and general PCR performance. The experiments 

were carried out in three independent experiments and analyzed using Applied Biosystems 

7500 Fast Real-Time PCR System and RT2 Profiler PCR Array Data Analysis v3.5 (Qiagen, 

Valencia, CA).  

 

Western Blot Analysis 

U87 cells were lysed with urea lysis buffer. Cell lysates (50 µg) were separated on 4-

12% Bis-Tris sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels (Invitrogen) 

and transferred onto nitrocellulose membranes. The membranes were blocked for 3 h in 

phosphate-buffered saline containing 5% nonfat dry milk and incubated in the same blocking 

buffer at 4°C overnight with primary antibodies against HIF-1α (1:500 dilution; Novus 

Biologicals, Littleton, CO) and β-actin (1:1000 dilution; Thermo Fisher Scientific, Waltham, 

MA). After incubation of corresponding secondary antibodies, proteins were detected using 

ECL chemiluminescence (Pierce, Rockford, IL). 

 

Tumor Xenograft and Drug Treatment 

Nude mice (NCr nu/nu) were purchased at 4 weeks of age from Taconic Farms 

(Hudson, NY). Stably transduced U87/NL1α/CL1β reporter cells (5 x 106 cells in 0.2 mL of 

Dulbecco’s modified Eagle’s medium) were injected subcutaneously into the right thigh of 

each mouse. The animals’ tumor growth patterns and physical conditions were monitored 

throughout the whole study. Tumor volume (V) was calculated using the following formula: V 

= length x width x height x 0.52. Once their tumor volumes reached approximately 100 mm3, 

the tumor-bearing mice were randomly categorized into four groups (8/group). They were 
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then intraperitoneally (i.p.) administered 150 µL of M-TMCP (2 mg/kg in 3%DMSO in saline; 

per i.p. injection), D-TMCP (2 mg/kg in 3%DMSO in saline; per i.p. injection), ACF (2 mg/kg 

in 3%DMSO in saline; per i.p. injection), or saline in each groups of mice over 14 days. The 

animals’ physiological parameters (weights, food intake, organ weights and motor activity), 

tumor volumes, and BLI were longitudinally monitored 3 h after each injection. On day 14 of 

treatment, BLI was performed before and 3 h after drug injection. All animals were handled 

in accordance with The University of Texas MD Anderson Institutional Animal Care and Use 

Committee guidelines. Statistical analyses were performed and fitted using with the Prism 

software program (GraphPad Software, La Jolla, CA). 

 

Organ Toxicity Assay 

After 21 daily treatments of D-TMCP (doses of 0, 1, 2, 5, 10 mg/kg in 3%DMSO in 

saline; 150 µl per i.p. injection), the mice were sacrificed. The animals’ physiological 

parameters (weights, food intake, organ weights and motor activity) were longitudinally 

monitored. Their organ samples, such as brain, heart, liver and kidney, were obtained and 

fixed in 10% formalin, embedded in paraffin, and sectioned into 5-µm slices for hematoxylin 

and eosin staining (H&E) or immunochemical staining of Ki67 (1:100 dilution; Thermo Fisher 

Scientific, Waltham, MA). 

 

Immunohistochemistry and Immunofluorescence 

The U87/NL1α/CL1β tumor bearing mice were sacrificed after the 14th day of 

treatment. Tumor samples were obtained and fixed in 10% formalin, embedded in paraffin, 

and sectioned into 5-µm slices first for immunochemical staining. The primary antibodies 
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used in immunochemical staining were those against CD34, GLUT-1, VEGF, Ki67 and 

Annexin V. According to the host of the primary antibody, compatible secondary antibodies 

(Vectastain ABC Kit; Vector Labs, Burlingame, CA) were applied. The tumor sections were 

then visualized by adding diaminobenzidine (Dako, Carpinteria, CA) and counterstained with 

hematoxylin in IHC or hoechst in immunofluorescent staining. Four representative regions 

(10-20× objectives) in each tumor were photographed. The areas of CD34, Ki67 and 

Annexin V staining were quantified under × 400 magnifications with a position pixel 

algorithm using the ImageJ software program (National Institutes of Health, Bethesda, MD).  

 

Statistical Analyses 

Statistical analyses were performed using built-in statistical software programs from 

Prism software program (GraphPad Software, La Jolla, CA). The specific test and significant 

level of each experiment were showed in the each figure legend. 
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Chapter 3: Development and Optimization of a Reporter System for 

Bioluminescence Imaging of HIF-1α/HIF1β Heterodimerization 

3.1 Overview of the HIF-1α/β Heterodimerization reporter system 

The first aim of this study was to develop a split firefly luciferase (FLuc) fragment 

complementation-based approach for quantitative bioluminescence imaging of HIF-1α/β 

heterodimerization in vitro and in vivo. In this reporter system, physical interactions of two 

HIF-1α/β proteins bring the N- and C-terminal fragments of FLuc close enough to 

reconstitute the luciferase activity and result in photon emission (luminescence) in the 

presence of the luciferase substrate. Reciprocally, the addition of inhibitor of HIF-1α/β 

dimerization can disrupt the interaction and results in loss of luciferase activity. Thus, this 

reporter system can be used as a drug screening tool for HIF-1 dimerization inhibitors. The 

schematic illustration of the split luciferase complementation system is summarized in Figure 

8.  

 

Figure 8. Schematic of HIF-1 dimerization reporter system in drug screening. 
Spontaneous association of HIF-1α12-396 and HIF-1β11-510 brings inactive fragments of firefly 
luciferase into close proximity to reconstitute bioluminescence activity. Disruption of HIF-
1α12-396 and HIF-1β11-510 dimerization results in no bioluminescence activity.  
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3.2 Optimization of HIF-1α/β heterodimerization reporter system 

Using four lentiviral vector constructs with different positions of individual FLuc 

fragments in relation to HIF-1α and HIF-1β (N- or C-terminal fusions through a linker; major 

features showed in Fig. 9), the highest constitutive bioluminescence signal was observed 

from the HEK293 cells transiently transfected with NL-1α and CL-1β or 1α-NL and 1β-CL 

vector pairs (Fig. 10), whereas no Fluc activity was observed in HEK293 cells transfected 

with either one of the vectors or with negative control vectors containing a nonsense 

sequence in place of the PAS domains of HIF-1α and HIF-1β (NL-non or non-CL).  

In consistent, similar results were also observed in U87 human glioma cells, which 

were stably transduced with different pairs or individual lentiviral vectors. The magnitude of 

expression of individual reporter constructs in stably transduced U87 cells was very similar, 

based on co-expression levels of eGFP and mKate fluorescent proteins measured by dual-

color FACS (Fig. 11). The highest BLI signal was observed with NL-1α + CL-1β vector pair 

(Fig. 12A). Overall, we found that a head-to-head or tail-to-tail combination of the fusion 

proteins produced better BLI signals than head-to-tail combination did. U87 cells stably 

transduced with NL-1α + CL-1β vector pairs (U87/NL1α/CL1β cells) were chosen to 

establish a HIF-1α/β heterodimerization reporter system in the following experiments. The 

subcellular co-localization of co-expressed eGFP and mKate reporter proteins in the 

U87/NL1α/CL1β cells was also confirmed by fluorescence confocal microscopy (Fig. 12B).  

In addition, the degradation half-life of the enzymatically active NL-1α + CL-1β reporter 

complex in U87/NL1α/CL1β cells was about 34.12 min, as measured by BLI after 

cycloheximide block (Fig. 13). In subsequent in vitro experiments, for the assessment of 

inhibitors of HIF-1α and HIF-1β heterodimerization in U87/NL1α/CL1β cells, BLI was 

performed no earlier than 24h post initiation of incubation.  
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Figure 9. Schematic drawing shows major features of four lentiviral vectors of HIF-1α 
and HIF-1β dimerization reporters. Four developed lentiviral vector constructs with 
different positions of individual N- or C-terminal Fluc fragments (NL or CL) in relation to HIF-
1α and HIF-1β subdomains, fused through a flexible linker. Two different orientations of HIF-
1α12-396  linking with NL in pLVDL301 vector (pLVDL 301-NL-HIF-1α12-396 and pLVDL 301-
HIF-1α12-396-NL) co-expressed eGFP fluorescent protein, and another two orientations of 
HIF-1β11-510 linking with CL in pLVDL312 vector (pLVDL 312- CL-HIF-1β11-510 and pLVDL 
312 -HIF-1β11-510- CL) co-expressed mKate fluorescent protein. 
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Figure 10. Bioluminescence in HEK293 cells transiently transfected with NL-1α and 
CL-1β or 1α-NL and 1β-CL vector pairs as indicated. The highest constitutive 
bioluminescence signal was observed from the HEK293 cells transiently transfected with 
NL-1α and CL-1β or 1α-NL and 1β-CL vector pairs, whereas no Fluc activity was observed 
in HEK293 cells transfected with either one of the vectors or with negative control vectors 
containing a nonsense sequence in place of the PAS domains of HIF-1α and HIF-1β (NL-
non or non-CL). Data are expressed as average photon radiance ± SEM of quadruplicate 
wells. (*, P < 0.05; **, P < 0.01; ***, P < 0.005) 
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Figure 11. Result of cell cytometry to evaluate eGFP and mKate coexpression level in 
transduced U87 cells.  A) Wt U87 cells.  B, C) Single transfection of NL-1α or CL-1β in U87 
cells. D,E,F,G) Dual transduction of four different complementary reporter combinations in 
U87 cells.   
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Figure 12. A) Highest BLI signal was observed with U87 human glioma cells transfected 
with NL-1α + CL-1β vector pair, following by 1α-NL + 1β-CL (head-to-head or tail-to-tail 
position), NL-1α + 1β-CL and 1α-NL + CL-1β (head-to-tail position). Result of quantitative 
BLI signal measurement indicated head-to-head or tail-to-tail HIF-1 complementation pairs 
demonstrated higher Fluc activity than head-to-tail pairs. B) Subcellular co-localization of co-
expressed eGFP (NL-1α) and mKate (CL-1β) reporter proteins in the U87/NL1α/CL1β cells 
was confirmed by fluorescence confocal microscopy. The merged panel in lower-right shows 
colocalization (yellow) of NL-1α and CL-1β in cytoplasm. Fluorescence data are shown in 
comparison with the corresponding bright-field image.  
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Figure 13. The degradation half-life of enzymatically active NL-1α + CL-1β reporter 
complex in U87/NL1α/CL1β cells. The cells were plated into a 96 well plate for 4 hours. 
Cycloheximide was then mixed with culture media to block protein synthesis. The cells were 
imaged for BLI by IVIS, and fluorescence using a plate reader after the addition of 
cycloheximide for 0.5, 1, 2, 3, 4, 5, 6, 7, 16 and 24 hours. The half-life was calculated as 
34.12 min, with a 95% confidence interval of 29.72 to 40.4 min. 
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3.3 Validation of HIF-1α/β Dimerization Reporter System 

3.3.1 Overexpressed HIF-1α12-396 or HIF-1β11-510 reduces the activity of HIF-1α/β 

dimerization reporter 

To validate the specificity of this reporter system, we transfected U87/NL1α/CL1β 

reporter cells with HIF-1α12-396 or HIF-1β11-510 DNA plasmids for 24 and 48 h. The 

overexpression of PAS domains of either HIF-1α or HIF-1β without FLuc fragments (which 

acts as competitive inhibitors of FLuc fragment-containing interacting PAS domains), 

resulted in almost 25% and 50% reduction in BLI signal intensity at 24h and 48h, 

respectively (Fig. 14A); no changes in the magnitude of expression of NL-1α or CL-1β 

reporter proteins were observed, based on the fluorescence levels of co-expressed eGFP 

and mKate, respectively (Fig. 14B). 
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Figure 14. A) In U87/NL1α/CL1β cells, the overexpression of PAS domains of either HIF-1α 
(HIF-1α12-396) or HIF-1β (HIF-1β11-510), competing with PAS domain-binding sites of reporter 
protein, resulted in almost 25% and 50% reduction in BLI signal intensity at 24h and 48h, 
respectively. Representative data are expressed as percentage changes of photon radiance 
vs. vehicle at 24 or 48h. (*, P < 0.05; **, P < 0.01; ***, P < 0.005 vs. vehicle 24h; two-way 
ANOVA with Bonferroni correction) B) No changes in the magnitude of expression of NL-1α 
or CL-1β reporter proteins were observed based on the fluorescence levels of co-expressed 
eGFP and mKate. Data was calculated as the relative changes of fluorescence level vs. 
vehicle at 24 or 48h. 
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3.3.2 Hypoxia-induced upregulation of endogenous HIF-1α reduces the activity 

of HIF-1α/β dimerization reporter 

We induced low oxygen condition (5% O2) to create hypoxia using a modular incubator 

chamber. Lack of oxygen stabilizes endogenous HIF-1α in U87/NL1α/CL1β cells and allows 

endogenous HIF-1α to compete with the reporter protein binding sites. The result of western 

blotting showed that incubation of U87/NL1α/CL1β cells in a hypoxic atmosphere after 24h 

induced the upregulation of endogenous HIF-1α protein levels (Fig. 15A). Upregulated HIF-

1α acted as a competitive inhibitor of this reporter system and caused a significant decrease 

(85%, p<0.005) in BLI signal at 48h of incubation (Fig. 15B) as compared to control (20% 

O2), without reduction in cell viability (Fig. 15C). These results proved that this 

U87/NL1α/CL1β reporter system was able to reflect the interaction between HIF-1α12-396 and 

HIF-1β11-510 and can confidently be used as a platform for identifying inhibitors of HIF-1 

dimerization. 
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Figure 15. A) HIF-1α and β-actin protein levels were determined by Western blotting assays. 
Endogenous HIF-1α increased after 24h incubation in 5% O2 , but no difference in β-actin 
protein expression was noted. B) Low oxygen induced-endogenous HIF-1α stabilization also 
allows HIF-1α to compete with NL-HIF-1α12-396 for dimerization with CL-HIF-1β11-510, which 
causes significantly decreased BLI signals after 48 h incubation of 5% O2. (**, P < 0.01; ***, 
P < 0.005 vs. 20% O2 at each time point; two-way ANOVA with Bonferroni correction) C) No 
obvious reduction in cell viability between 20% O2 and 5% O2 incubation was observed at 24 
or 48h.  
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Chapter 4: High-Content Screening of Inhibitors of HIF-1α/HIF-1β Dimerization 

in Cellulo  

As part of the initial screen for novel inhibitors of HIF-1α/HIF-1β dimerization, 41 

compounds were tested at 10 µM concentration. Twelve out of 41 compounds demonstrated 

various degrees of inhibition of HIF-1α/HIF1β heterodimerization in U87/NL1α/CL1β reporter 

cells, but without significant inhibition of cellular viability (Table. 2). The most potent 

compound identified was acriflavine (ACF; compounds 7), a known inhibitor of HIF-1α/β 

heterodimerization (Lee et al., 2009), which confirmed the efficacy of this screening system.  

As indicated by Dr. Semanza’s group, ACF is likely to bind to HIF-1α, not HIF-1β. In 

order to optimize its inhibitory effect, a systematic approach was designed to understand the 

structure-activity relationships (SAR) between ACF and HIF-1α using side-chain 

derivatization. The half-maximal inhibitory concentration (IC50) and cytotoxicity of each 

compound were determined using the newly developed cell-based HIF-1α/β dimerization 

reporter system and WST-1 cell viability assay, respectively.  

As shown in Table 3, the studies were initiated by evaluating compounds (1-4), which 

are structurally related to ACF. Although these compounds showed some efficacy, the 

inhibition is several folds lower than ACF. We also compared the neutral and salt forms of 

3,6-diaminoacridine (5) which demonstrated that salt forms ( compounds 6 and 7) were 

more potent than the neutral form, which may be explained by the significantly improved 

solubility of salts compared to the neutral form. The observation was also supported by 

comparing compounds 3 and 4. Furthermore, the data in Table 3 shows that the elimination 

of the 3,6-amino groups (compound 3 relative to 6) demonstrates the importance of the 3,6-

amino moiety to the efficacy of the compound. The dimethylation of the 3,6-amino groups 

(compound 10 relative to 5) showed little change in efficacy, which could lead to the 
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conclusion that hydrogen bonding either does not exist or does not contribute to the efficacy 

of the molecule. In addition, compound 10 is not a good lead since an extended 

functionalization is blocked by the unreactive nature dimethyl groups. As a result, 3,6-

diaminoacridine was selected for further functionalization at the amino groups to assess the 

SAR in the next step. The alkyl amide variation revealed an interesting pattern, the efficacy 

of the molecule was significantly enhanced by increasing the bulkiness of the alkyl group (t-

butyl > isopropyl > ethyl). The same pattern was shown using a variation of ring size and 

bulkiness. The three-membered ring system showed the lowest efficacy, and then the 

efficacy was gradually enhanced by increasing the ring size (cyclopropyl < cyclobutyl < 

cyclopentyl < cyclohexyl). Also, the bulkiness of the ring system has a profound impact on 

the efficacy. The adamantyl and the tetra-methylcyclopropyl moieties showed the highest 

efficacy among all molecules.  

In Table 4, the amide aromatic moieties in a variety of substituents on the benzene 

ring such as electron releasing groups (e.g. methyl and t-butyl) and electron withdrawing 

groups (e.g. trifluoromethyl), which could negatively impacted the efficacy. Interestingly, the 

heteroaromatic thiophene showed an improved efficacy compared to benzene (thiophene > 

benzene > furan > isoxazole). On the other hand, the di-thiophene (compound 26) moiety 

showed the highest toxicity among all molecules. It is also worth noting that increased 

lipophilicity of the molecule positively impacted the efficacy. This was illustrated by the fact 

that the best compounds (tetramethylcyclopropyl, adamantly, BOC, benzyl, thiophene)  in 

this series share a relatively higher logD value (> 5.0) with the exception of benzene- 

substituted molecules, which showed lower efficacy regardless of the lipophilicity. 

The SAR of the mono and the hetero-di substituted acridines were assessed for their 

efficacy as shown in Table 5. N-3-(2,2,3,3-tetramethylcyclopropanecarboxamide)-6-

aminoacridine hydrochloric acid salt (29) was the best compound in the entire series. These 
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results revealed a very interesting pattern in compounds that contain the N-3-(2,2,3,3-

tetramethylcyclopropanecarboxamide moiety, they showed an improved efficacy 

(compounds 28 vs. 27 and 31 vs. 32 or 30). This conclusion demonstrates the significance 

and validates the importance of the N-3-(2,2,3,3-tetramethylcyclopropanecarboxamide 

moiety on the efficacy of the molecule.  

In Table 5, compounds 30-32 are the biotinylated derivatives of ACF (compound 5), 

and compounds 27 and 29, respectively. These compounds were synthesized to determine 

the binding target (HIF-1α or HIF1-β PAS domain) in pull-down assays. The efficacy of 

biotinylated mono N-3-acridine-(2,2,3,3-tetramethylcyclopropanecarboxamide 31 was 

comparable to that of the ACF. However, the inhibitory activity of the biotinylated 

compounds 30-32 was uniformly reduced by only about two-fold as compared to the 

corresponding non-biotinylated  compounds, which may result from interference of biotin 

group in binding to HIF-1. These results confirmed that the biotinylated compounds 30-32 

still bind to their targets and could be used for the pull-down assay. 

Based on the results of SAR studies, the N,N'-(acridine-3,6-diyl)bis(2,2,3,3-

tetramethyl-cyclopropanecarboxamide) (compound 18, D-TMCP) and N-3-(2,2,3,3-

tetramethylcyclopropane-carboxamide)-6-aminoacridine hydrochloric acid salt (compound 

29, M-TMCP) exhibited the most potent inhibitory activities against HIF-1α/HIF-1β 

heterodimerization (IC50 = 1.0 and 0.9 µM, respectively; Fig. 16A,B) that were about 10-fold 

more potent than that of the ACF (IC50 = 11.19 µM). Cellular toxicity from D-TMCP (18) and 

M-TMCP (29) was observed at 80 and 50-fold higher concentrations (IC50 = 80.5 and 49.04 

µM, respectively; Fig. 16C), which provides a fairly broad therapeutic window. Although the 

BOC group showed comparable efficacy (IC50 = 1.6 µM), the compound was relatively toxic 

(toxicity IC50 = 23.9 µM). These SAR observations may provide valuable perspectives to the 

future development of HIF-1α/β disruptors. 
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Table 2: The list of initially screened compounds 

Chemical Names 

Acrflavine (ACF) 

Proflavine hemisulfate salt hydrate 

3,4,9,10-perylenetetracarboxylic diimide 

2-(4,5,6-TRIHYDROXY-3-OXO-3H-XANTHEN-9-YL)-BENZOIC ACID 

Methylene Blue hydrate  

Anthracene  

BIX-01338 HYDRATE  

Acridine Orange 10-nonyl bromide 

1,9-PYRAZOLOANTHRONE 

BIX 01294 TRIHYDROCHLORIDE HYDRATE  

Dibenzothiophene 

3,4,9,10-perylenetetracarboxylic 3,4,9,10-dianhydride 

5-AZA-2'-DEOXYCYTIDINE  

Valproic acid 

5-Methylfuran-2-carbonyl chloride 

trans-2-Phenyl-1-cyclopropanecarbonyl chloride 

NSC-609699 

N,N-DIMETHYL-10H-INDOLO(3,2-B)QUINOLIN-11-AMINE HYDROCHLORIDE 

Bortezomib 

3,3’-Diindolylmethane 

6-Formylindolo(3,2-b)carbazole 

KC7F2 

AC1-004 

2-Methoxyestradiol 

FG-4592 

IOX2 

Berberine 

KF58333 

S409995 

N-Methoxycarbonylmaleimide 

RG108 

Hydralazine hydrochloride 

SAHA 

Bis(dibenzylideneacetone)palladium(0) 

Ethynyltributylstannane 

Silver p-toluenesulfonate 

ATTO-465 

ATTO-495  

ATTO-520 thio-12  

methyl-acridine orange 

2-amino-3-(1,2-dihydro-2-oxoquinoline-4-yl)propionic acid 
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Table 3: SAR studies of acridine like molecules                                 

# R IC50 (µM) Toxicity 

IC50 (µM) 

logP M.WT # R IC50 (µM) Toxicity 

IC50 (µM) 

logP M.WT 

1 

 

31.48 >50 0.52 109.1 5 

 

17.31 >50 1.93 297.2 

2 

 

54.93 139 4.0 178.1 6 

 

20.20 21.5  245.7 

3 

 

53.0 >100 3.5 179.2 7 

 

11.19 >50 1.93 209.2 

4 

 

27.46 >100 0.34
a
 321 8 

 

20.80 15.40 4.11 265.4 
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Table 4: SAR studies of the homo-di-substituted-3,6-acridine amide. 

# R IC50 (µM) 
Toxicity 

IC50 (µM) 
logP M.WT # R IC50 (µM) 

Toxicity 

IC50 (µM) 
logP M.WT 

9 
 

1.57 23.90 5.48 409.5 18 

 

1.01 80.57 6.58 457.6 

10 

 

39.48 

 
>50 3.16 321.4 19 

 

4.064 9.39 5.15 417.5 

11 

 

44.42 

 
>50 3.86 349.4 20 

 

10.44 >50 6.12 445.5 

12 

 

10.90 26.76 4.69 377.5 21 

 

62.55 >50 7.00 553.5 

13 

 

42.66 >50 2.92 345.4 22 

 

29.71 42.11 8.56 529.6 

14 

 

19.98 31.71 3.97 373.4 23 

 

47.12 117.4 4.64 537.6 

15 

 

9.01 >50 5.03 401.5 24 

 

7.719 >100 2.38 397.4 

16 

 

4.15 6.54 6.0 429.6 25 

 

20.08 19.28 1.61 399.4 

17 

 

4.121 32.87 7.8 533.7 26 

 

2.172 3.497 5.11 429.5 
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Table 5: SAR assessment of the mono and hetero-substituted acridines and 

biotinylated derivatives 

# Structure IC50 (µM) 
Toxicity 

IC50 (µM) 
logP M.WT 

27 
 

5.17 53.12 5.48 409.5 

28 

 

2.894 >50 5.14 433.6 

29 

 

0.91 49.04 5.15 417.5 

30 
 

9.797 98.85 3.0 535.7 

32 
 

36.40 50.80 1.83 435.6 

31 

 

7.847 62.93 3.86 559.7 

 

  



61 

 

 

 

Figure 16. M-TMCP and D-TMCP inhibit HIF-1α/ HIF-1β Dimerization in a dose-
dependent manner. A, B) BLI of U87 reporter cells treated with different dose of M-TMCP, 
D-TMCP or ACF. The IC50 was determined by constructing a non-linear dose response 
curve. D-TMCP or M-TMCP exhibited significantly higher inhibitory activities against HIF-
1α/HIF-1β heterodimerization (IC50 = 1.0 and 0.9 µM, respectively) than ACF (IC50 = 11.19 
µM) (P<0.005). Representative data are expressed as percentage change of photon 
radiance vs. un-treated control. Data were obtained from quadruplicate wells of three 
independent experiments. C) Cell viability of different doses of M-TMCP, D-TMCP or ACF 
treatments was also determined using WST-1 assay. Cellular toxicity from D-TMCP and M-
TMCP was observed at 80 and 50-fold higher concentrations (IC50 = 80.5 and 49.04 µM, 
respectively), which provides a fairly broad therapeutic window.  
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Chapter 5: Evaluation of Selected Agents as Inhibitors of HIF-1-mediated 

Transcriptional Activity  

5.1 M-TMCP and D-TMCP inhibit HIF-1α/ HIF-1β Dimerization, but not FLuc 

fragment reconstitution  

Both M-TMCP and D-TMCP were equally ineffective at 10 µM when tested in HEK293 

cells transfected with an alternative well characterized rapamycin-inducible FRB-NLuc/CLuc-

FKBP protein-protein interaction reporter system (Luker et al., 2004). The magnitude of 

bioluminescent signals from HEK293/FRB-NLuc/CLuc-FKBP cells was unaffected by the 

sequence of incubation with M-TMCP or D-TMCP compounds, either before or after reporter 

induction with rapamycin. Thus, this study confirmed that both M-TMCP and D-TMCP do not 

inhibit the trans-complementation of FLuc N- and C-terminal fragments, or enzymatic activity 

of reconstituted FLuc, or generation of BLI signal (Fig. 17). 
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Figure 17. No effect of ACF, M-TMCP and D-TMCP on rapamycin-induced FRB-
NLuc/CLuc-FKBP association in HEK-293 cells. ACF, M-TMCP and D-TMCP do not 
disrupt the association of two FLuc fragment pairs. HEK-293 cells transfected with FRB-
NLuc/CLuc-FKBP were incubated A) with 50 nM rapamycin and treated with or without 10 
µM ACF, M-TMCP and D-TMCP, or B) 10 µM vehicle or inhibitors first for 24 h and then 
followed by the addition of 50 nM rapamycin. The representative bioluminescence images of 
live cells in a 12-well plate are shown. Data expressed as average photon radiance ± SEM 
from three independent experiments. 
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5.2 M-TMCP and D-TMCP inhibit HIF-1-mediated Transcriptional Reporter 

Activity 

To directly assess the contribution of our inhibitors in disrupting HIF-1α/β heterodimers 

and suppressing HIF-1-mediated transcriptional activity via HRE, a hypoxia-inducible 

C6#4/HRE-GFP/CMV-dsRed cell reporter system with 8×HRE driven TKGFP expression 

was used to examine the efficacy of selected inhibitors (Serganova et al., 2004). In 

C6#4/HRE-GFP/CMV-dsRed reporter cells, both M-TMCP and D-TMCP exhibited similar 

efficacy for inhibition of HIF-1-mediated transcriptional activity (IC50 = 3.88 and 2.17 µM, 

respectively), which was about 2-fold better than that of the ACF (IC50 = 7.01 µM) (Fig. 18A). 

Cellular toxicity from D-TMCP and M-TMCP in the C6#4/HRE-GFP/CMV-dsRed reporter 

cells was observed at more than 100-fold higher concentrations and revealed no 

contribution to inhibitory effect (Fig. 18B). A comparison of IC50 for both HIF-1 dimerization 

and transcriptional activity of each inhibitor is presented in Figure. 19. Overall, M-TMCP and 

D-TMCP showed about a log order of HIF-1 inhibitory activity as compared to ACF.  
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Figure 18. Inhibitory effect of M-TMCP, D-TMCP or ACF on HIF-1 mediated 
transcription. A) M-TMCP, D-TMCP or ACF inhibits HRE-driven transcription under 
hypoxia in C6#4/HRE-GFP/CMV-dsRed reporter cells. The reporter cells were incubated 
with different concentrations of M-TMCP, D-TMCP or ACF for 24 h. Constitutively expressed 
DsRed florescent protein in C6#4/HRE-GFP/CMV-dsRed cells were used as reference. The 
relative changes of GFP/DsRed expression vs. control was calculated as an indication of 
HRE-driven transcription levels in cells treated with inhibitors at each concentration. The 
result showed that IC50 of HIF-1 transcriptional activity in the cells treated with M-TMCP, D-
TMCP or ACF is 3.88 µM, 2.17 µM and 7.01 µM, respectively. Data were obtained from 
quadruplicate wells of three independent experiments. B) IC50 of cellular toxicity of 
C6#4/HRE-GFP/CMV-dsRed cells treated with M-TMCP, D-TMCP or ACF is almost 10 
times higher than the IC50 of HIF-1 transcriptional activity. (*, P < 0.05; **, P < 0.01; ***, P < 
0.005; two-way ANOVA with Bonferroni correction)  
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Figure 19.  Comparison of IC50 of M-TMCP, D-TMCP and ACF in U87/NL1α/CL1β 
reporter cells or C6#4/HRE-GFP/CMV-dsRed HIF-1 transcriptional activity reporter 
cells. (*, P < 0.05; **, P < 0.01; ***, P < 0.005; two-way ANOVA with Bonferroni correction) 
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5.3 M-TMCP and D-TMCP inhibit mRNA expression of HIF-1-dependent genes 

in hypoxia 

To further investigate whether the selected inhibitors were effective in transcriptionally 

regulating hypoxia-induced genes in tumorigenesis, the human hypoxia signaling pathway 

array was used to profile the expression of 84 hypoxia-associated genes (Tab. 6), including 

genes related to stress response, angiogenesis, metabolism, DNA damage and repair, HIF 

signaling transcription factors and HIF interacting proteins. First, non-supervised hierarchical 

clustering analysis of our entire qRT-PCR data was displayed as a heat map with 

dendrograms to indicate co-regulated genes across groups (Fig. 20). Comparison of gene 

expression patterns in wild-type U87 cells cultured under conditions of normoxic, hypoxic 

conditions or hypoxic U87 cells treated with M-TMCP or D-TMCP demonstrated significant 

differences in the magnitudes of expression of multiple HIF1-dependent genes. The 

hierarchical cluster analysis also revealed that the gene expression pattern in treatment 

group were more similar to that of the normoxic group, rather than hypoxic groups. This 

finding confirmed the assertion that M-TMCP and D-TMCP intervene with the expression of 

hypoxia-responsive genes. 

Furthermore, hierarchical cluster analysis revealed that several clusters of genes 

upregulated by hypoxia have been significantly inhibited by 24h treatment with ACF, M-

TMCP or D-TMCP (cluster 3.2.1.2 in Figure. 20). Disruption of hypoxia-induced HIF-1 

transcriptional activity by ACF, M-TMCP or D-TMCP treatment resulted in a more profound 

inhibition in one sub-cluster of genes (i.e., 3.2.1.2.1) as compared to other sub-clusters (i.e., 

3.2.1.2.2), suggesting the genes in 3.2.1.2.2 may not be directly or solely regulated through 

HIF-1 complex but other pathways. The subset of data including representative genes from 

these two clusters is presented in Figure 21. Notably, several genes which are upregulated 

in hypoxia and promote tumorigenesis (Hirota and Semenza, 2006, Semenza, 2001, Zhang 
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et al., 2012, Tacchini et al., 2001, Zou et al., 2013, Iyer et al., 1998, Garayoa et al., 2000, 

Cormier-Regard et al., 1998, Riddle et al., 2000, Ryan et al., 1998, Manalo et al., 2005, 

Bhattacharyya and Tobacman, 2012, Semenza et al., 1994) were significantly down-

regulated by ACF, M-TMCP or D-TMCP treatment, including: vascular endothelial growth 

factor A (VEGFA); facilitated glucose transporter member 1 (GLUT-1); hexokinase 2 (HK2), 

enolase 1 (ENO1), notch 1 (NOTCH1), plasminogen activator (PLAU), collagen type I alpha 

(COL1A1), procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3); whereas lesser 

extend of downregulation was observed for: glucose-6-phosphate isomerase (GPI); 

angiopoietin-like 4 (ANGPTL4), including adrenomedullin (ADM), and insulin-like growth 

factor binding protein 1 (IGFBP1). These results confirmed that M-TMCP and D-TMCP can 

suppress the expression of pro-tumorigenic genes and disrupt hypoxia adaptive cascade in 

tumor by inhibiting HIF-1α/β complex.  
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Table 6: 84 hypoxia-associated genes in human hypoxia signaling pathway array  



70 

 

 

Position Unigene Refseq Symbol Description 

A01 Hs.441047 NM_001124 ADM Adrenomedullin 

A02 Hs.320151 NM_006412 AGPAT2 1-acylglycerol-3-phosphate O-acyltransferase 2  

A03 Hs.494321 NM_015239 AGTPBP1 ATP/GTP binding protein 1 

A04 Hs.9613 NM_001039667 ANGPTL4 Angiopoietin-like 4 

A05 Hs.433291 NM_003491 NAA10 N(alpha)-acetyltransferase 10, NatA catalytic subunit 

A06 Hs.459070 NM_014862 ARNT2 Aryl-hydrocarbon receptor nuclear translocator 2 

A07 Hs.624291 NM_004324 BAX BCL2-associated X protein 

A08 Hs.728782 NM_003670 BHLHE40 Basic helix-loop-helix family, member e40 

A09 Hs.728893 NM_001168 BIRC5 Baculoviral IAP repeat containing 5 

A10 Hs.23118 NM_001738 CA1 Carbonic anhydrase I 

A11 Hs.2490 NM_033292 CASP1 Caspase 1, apoptosis-related cysteine peptidase (interleukin 

1, beta, convertase) 

A12 Hs.502302 NM_001752 CAT Catalase 

B01 Hs.690198 NM_001791 CDC42 Cell division cycle 42 (GTP binding protein, 25kDa) 

B02 Hs.150793 NM_001275 CHGA Chromogranin A (parathyroid secretory protein 1) 

B03 Hs.172928 NM_000088 COL1A1 Collagen, type I, alpha 1 

B04 Hs.459759 NM_004380 CREBBP CREB binding protein 

B05 Hs.695 NM_000100 CSTB Cystatin B (stefin B) 

B06 Hs.95120 NM_134268 CYGB Cytoglobin 

B07 Hs.631844 NM_001348 DAPK3 Death-associated protein kinase 3 

B08 Hs.289123 NM_006400 DCTN2 Dynactin 2 (p50) 

B09 Hs.348418 NM_001938 DR1 Down-regulator of transcription 1, TBP-binding (negative 

cofactor 2) 

B10 Hs.195080 NM_001397 ECE1 Endothelin converting enzyme 1 

B11 Hs.520703 NM_001402 EEF1A1 Eukaryotic translation elongation factor 1 alpha 1 

B12 Hs.517145 NM_001428 ENO1 Enolase 1, (alpha) 

C01 Hs.517517 NM_001429 EP300 E1A binding protein p300 

C02 Hs.468410 NM_001430 EPAS1 Endothelial PAS domain protein 1 

C03 Hs.2303 NM_000799 EPO Erythropoietin 

C04 Hs.643580 NM_017892 PRPF40A PRP40 pre-mRNA processing factor 40 homolog A (S. 

cerevisiae) 

C05 Hs.654784 NM_002067 GNA11 Guanine nucleotide binding protein (G protein), alpha 11 (Gq 

class) 

C06 Hs.466471 NM_000175 GPI Glucose-6-phosphate isomerase 

C07 Hs.76686 NM_000581 GPX1 Glutathione peroxidase 1 

C08 Hs.523443 NM_000518 HBB Hemoglobin, beta 

C09 Hs.597216 NM_001530 HIF1A Hypoxia inducible factor 1, alpha subunit  

C10 Hs.500788 NM_017902 HIF1AN Hypoxia inducible factor 1, alpha subunit inhibitor 

C11 Hs.420830 NM_152794 HIF3A Hypoxia inducible factor 3, alpha subunit 

C12 Hs.406266 NM_000189 HK2 Hexokinase 2 

D01 Hs.517581 NM_002133 HMOX1 Heme oxygenase (decycling) 1 

D02 Hs.528299 NM_006388 KAT5 K(lysine) acetyltransferase 5 

D03 Hs.277704 NM_006389 HYOU1 Hypoxia up-regulated 1 

D04 Hs.523414 NM_000612 IGF2 Insulin-like growth factor 2 (somatomedin A) 

D05 Hs.642938 NM_000596 IGFBP1 Insulin-like growth factor binding protein 1 

D06 Hs.1722 NM_000575 IL1A Interleukin 1, alpha 

D07 Hs.654458 NM_000600 IL6 Interleukin 6 (interferon, beta 2) 

D08 Hs.532082 NM_002184 IL6ST Interleukin 6 signal transducer (gp130, oncostatin M 

receptor) 

D09 Hs.430551 NM_003870 IQGAP1 IQ motif containing GTPase activating protein 1 
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Position Unigene Refseq Symbol Description 

D10 Hs.708128 NM_003685 KHSRP KH-type splicing regulatory protein 

D11 Hs.479754 NM_000222 KIT V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene 

homolog 

D12 Hs.551506 NM_002299 LCT Lactase 

E01 Hs.194236 NM_000230 LEP Leptin 

E02 Hs.356769 NM_000528 MAN2B1 Mannosidase, alpha, class 2B, member 1 

E03 Hs.159410 NM_014484 MOCS3 Molybdenum cofactor synthesis 3 

E04 Hs.73133 NM_005954 MT3 Metallothionein 3 

E05 Hs.179718 NM_002466 MYBL2 V-myb myeloblastosis viral oncogene homolog (avian)-like 2 

E06 Hs.709191 NM_000625 NOS2 Nitric oxide synthase 2, inducible 

E07 Hs.495473 NM_017617 NOTCH1 Notch 1 

E08 Hs.1832 NM_000905 NPY Neuropeptide Y 

E09 Hs.493767 NM_001161 NUDT2 Nudix (nucleoside diphosphate linked moiety X)-type motif 2 

E10 Hs.66581 NM_006849 PDIA2 Protein disulfide isomerase family A, member 2 

E11 Hs.517216 NM_003768 PEA15 Phosphoprotein enriched in astrocytes 15 

E12 Hs.146100 NM_015553 IPCEF1 Interaction protein for cytohesin exchange factors 1 

F01 Hs.77274 NM_002658 PLAU Plasminogen activator, urokinase 

F02 Hs.153357 NM_001084 PLOD3 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 

F03 Hs.103110 NM_005036 PPARA Peroxisome proliferator-activated receptor alpha 

F04 Hs.491440 NM_001009552 PPP2CB Protein phosphatase 2, catalytic subunit, beta isozyme 

F05 Hs.43322 NM_006251 PRKAA1 Protein kinase, AMP-activated, alpha 1 catalytic subunit 

F06 Hs.82793 NM_002795 PSMB3 Proteasome (prosome, macropain) subunit, beta type, 3 

F07 Hs.591286 NM_002852 PTX3 Pentraxin 3, long 

F08 Hs.654583 NM_000964 RARA Retinoic acid receptor, alpha 

F09 Hs.652114 NM_000991 RPL28 Ribosomal protein L28 

F10 Hs.265174 NM_000994 RPL32 Ribosomal protein L32 

F11 Hs.498569 NM_002952 RPS2 Ribosomal protein S2 

F12 Hs.546287 NM_001011 RPS7 Ribosomal protein S7 

G01 Hs.515500 NM_005500 SAE1 SUMO1 activating enzyme subunit 1 

G02 Hs.473721 NM_006516 GLUT-1 Facilitated glucose transporter, member 1 

G03 Hs.380691 NM_001042 GLUT-4 Facilitated glucose transporter, member 4 

G04 Hs.467097 NM_003089 SNRNP70 Small nuclear ribonucleoprotein 70kDa (U1) 

G05 Hs.503178 NM_003128 SPTBN1 Spectrin, beta, non-erythrocytic 1 

G06 Hs.25723 NM_006396 SSSCA1 Sjogren syndrome/scleroderma autoantigen 1 

G07 Hs.380973 NM_006937 SUMO2 SMT3 suppressor of mif two 3 homolog 2 (S. cerevisiae) 

G08 Hs.435609 NM_000360 TH Tyrosine hydroxylase 

G09 Hs.474783 NM_003312 TST Thiosulfate sulfurtransferase (rhodanese) 

G10 Hs.75318 NM_006000 TUBA4A Tubulin, alpha 4a 

G11 Hs.80658 NM_003355 UCP2 Uncoupling protein 2 (mitochondrial, proton carrier) 

G12 Hs.73793 NM_003376 VEGFA Vascular endothelial growth factor A 

H01 Hs.534255 NM_004048 B2M Beta-2-microglobulin 

H02 Hs.412707 NM_000194 HPRT1 Hypoxanthine phosphoribosyltransferase 1 

H03 Hs.728776 NM_012423 RPL13A Ribosomal protein L13a 

H04 Hs.592355 NM_002046 GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

H05 Hs.520640 NM_001101 ACTB Actin, beta 

H06 N/A SA_00105 HGDC Human Genomic DNA Contamination 

H07 N/A SA_00104 RTC Reverse Transcription Control 

H08 N/A SA_00104 RTC Reverse Transcription Control 

H09 N/A SA_00104 RTC Reverse Transcription Control 
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H10 N/A SA_00103 PPC Positive PCR Control 

H11 N/A SA_00103 PPC Positive PCR Control 

H12 N/A SA_00103 PPC Positive PCR Control 
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Figure 20. mRNA expression profile of human HIF-1 related genes in normoxic U87 
cells and hypoxic U87 cells treated with HIF-1 dimerization inhibitors. Two-dimensional 
hierarchical clustering of the data matrix consisting of 84 genes by five different treatment 
groups, normoxia, hypoxia, hypoxia and treated with ACF, M-TMCP and D-TMCP, 
repectively. Genes (rows) and groups (columns) were clustered independently by 
hierarchical clustering. Three main clusters are numbered. The gene expression in the 
subcluster of 3.2.1.2.1 was down-regulated in all three inhibitor groups compared to hypoxia 
and relatively closer to the expression in normoxia. In cluster of 3.2.1.2.2, the gene 
expression was also decreased in the inhibitor treated groups, but not as dramatically as the 
genes in cluster of 3.2.1.2.1. This indicates that the genes in 3.2.1.2.2 may not be strictly 
controlled by HIF-1 but also other signaling pathways. Data shown are averages of triplicate 
qRT-PCR measurements. 
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Figure 21. The mRNA expression of selective tumor progression and angiogenesis-
related genes was significantly decreased in hypoxic U87 glioma cells treated with M-
TMCP and D-TMCP. U87 cells were incubated under normoxia or hypoxia in absence or 
presence of the inhibitors at concentration of 10 µM for 24 hours. Total RNA was isolated 
from the whole-cell lysates for profiling of hypoxia-related genes by qRT-PCR. Fold changes 
of mRNA levels relative to normoxia were calculated as 2 (-Avg.(Delta(Ct)). Mean ± SEM (n=3). 
Note the scales of fold changes in two plots are different. 
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Chapter 6: Evaluation of Therapeutic Efficacy of Selected Inhibitors in Tumor 

Xenograft Bearing Mice  

6.1 Imaging Inhibition of HIF-1α /HIF1-β Heterodimerization and Antitumor 

Therapeutic Efficacy by M-TMCP and D-TMCP in Tumors in Vivo  

The anti-tumor efficacy of selected HIF-1 inhibitors was evaluated in nude mice 

bearing subcutaneous (s.c.) tumor xenografts developed from the U87/NL1α/CL1β reporter 

cells. Vehicle, M-TMCP, D-TMCP or ACF was administered by daily intraperitoneal (i.p.) 

injection to tumor xenograft mouse. Treatment was initiated 14 days after implantation, at 

which time the tumors had grown to an average of approximately 100 mm3 in all groups, and 

continued for another 14 days (Fig. 22). Daily administration of either M-TMCP or D-TMCP 

(2 mg/kg in 3%DMSO in saline; 150 µl i.p.) in mice, resulted in a significant inhibition of 

bioluminescence signals from the reporter tumors as early as 3 days post treatment (Fig. 23) 

and significant inhibition of tumor growth, which was manifested by prolongation of tumor 

doubling times - 4.86 and 5.19 days, respectively, when compared to vehicle-treated control 

mice (doubling time of 3.88 days) (Fig. 24). Daily treatment of mice with ACF (2 mg/kg in 3% 

DMSO in saline; 150 µl i.p.) resulted in a less dramatic inhibition of the reporter activity (Fig. 

23A) and tumor growth (Fig. 24) (doubling time of 4.42 days), as compared to M-TMCP or 

D-TMCP-treated mice. In addition, treatments of M-TMCP or D-TMCP at the dosage of 2 

mg/kg demonstrated more significant log10 tumor cell kill (0.453 and 0.45, respectively), as 

compared to ACF (0.387) (Bissery et al., 1991) in Figure 25. Statistically significant 

differences in average tumor sizes between groups of mice treated with either M-TMCP or 

D-TMCP versus the ACF-treated group were observed staring from the 9th day of treatment 

(P < 0.05 and P < 0.001, respectively). Noteworthy, there were no differences between the 
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treated and control groups in the dynamics of body weight during treatment (Fig. 26), 

indicating a low systemic toxicity of the treatment doses used. 

  



 

 

 

 

Figure 22. Schematic tumor growth and 
5 x 106 U87/NL1α/CL1β reporter cells at Day 0. At Day 14, 
approximately 100 mm3. The

four groups (6 mice / group). 
(2 mg/kg in 3%DMSO in saline
injected into each groups of mice over the next 14 days.
physical conditions were monitored throughout the study
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tumor growth and treatment flow. Nude mice were 
reporter cells at Day 0. At Day 14, tumor volumes reached 
hese tumor-bearing mice were then randomly 

group). 150 µL of M-TMCP (2 mg/kg in 3%DMSO in saline
in 3%DMSO in saline), ACF (2 mg/kg in 3%DMSO in saline), or saline 

each groups of mice over the next 14 days. The tumor growth patterns and 
physical conditions were monitored throughout the study.  

 

were implanted with 
tumor volumes reached 

 categorized into 

in 3%DMSO in saline), D-TMCP 
), or saline was i.p 

tumor growth patterns and 
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Figure 23. HIF-1α/β dimerization inhibition of M-TMCP and D-TMCP on U87/NL1α/CL1β 
glioma cancer xenograft model. A) Monitoring HIF-1 disruption in mice by BLI. The BL 
signal decrease significantly in M-TMCP and D-TMCP group only after 4 day of repeated 
treatment. Data are presented as log (total photon radiance) ± SEM of six mice in each 
group imaged repeatedly over the course of the experiment. B) Bioluminescent imaging of 
four representative Nu/Nu mice with different treatments. The BLI images were taken 4 h 
after daily treatment. 
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Figure 24. Anti-tumor effect of M-TMCP and D-TMCP on U87/NL1α/CL1β human 
glioma xenograft in mice. The tumor growth patterns of mice during the course of 
treatment. Significant prolongation of tumor doubling times in M-TMCP and D-TMCP treated 
groups (4.86 and 5.19 days, respectively), as compared to vehicle-treated control mice 
(doubling time of 3.88 days). Daily treatment of mice with ACF resulted in a less dramatic 
inhibition of tumor growth (doubling time of 4.42 days). Volume mean ± SEM (n = 8) is 
shown. 

 

  



 

 

Figure 25. Log tumor cell kill
glioma xenograft in mice. 
tumor cell kill values (0.453 and 0.45, 
(0.387). Log10 (tumor volume in mm
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Log tumor cell kill of M-TMCP and D-TMCP on U87/NL1α
. M-TMCP and D-TMCP treated groups demonstrated higher 

(0.453 and 0.45, respectively), as compared to ACF
Log10 (tumor volume in mm3) ± SEM (n = 8) is shown.  

 

U87/NL1α/CL1β human 
demonstrated higher log 

ACF-treated mice 
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Figure 26. No loss in body weights of U87/NL1α/CL1β xenograft-bearing mice treated 
with HIF-1 dimerization inhibitors. Weights of the tumor xenograft bearing mice treated 
with vehicle (black), ACF (red), M-TMCP (Blue) or D-TMCP (Green) were measured 
throughout the experiment. Mean ± SEM (n = 6) is shown. 
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6.2 Effects of M-TMCP and D-TMCP Treatment on Tumor Vascularization, 

Proliferation, and Apoptosis in vivo 

To determine the ability of M-TMCP and D-TMCP on tumor prognosis, mice bearing 

U87/NL1α/CL1β xenograft were treated with vehicle, ACF, M-TMCP and D-TMCP for 14 

days. After the last dose, tumor samples were collected and evaluated by 

immunohistochemical analysis.  At the end of the 14th day treatment, immunohistochemical 

analysis of U87/NL1α/CL1β tumor tissue samples demonstrated significant differences in 

microvacular morphology, tumor cell proliferative activity and apoptosis in treated groups 

versus control group. Tumors in the vehicle-treated control group had characteristically high 

levels of VEGF and GLUT-1 expression, abnormally increased microvascular morphology 

and density (CD34+), high proliferative activity (high Ki67 labeling index) and low 

percentage of Annexin V+ apoptotic cells (Fig. 27). Notably, in control tumors the 

expression of VEGF and GLUT-1 were observed in avascular and apparently hypo- or non-

perfused microvessels, whereas no expression of VEGF and GLUT-1 were observed within 

120-150 µm around well perfused microvessels (Fig. 28, 29). In contrast, the expression of 

VEGF and GLUT-1 were markedly decreased in ACF, M-TMCP, D-TMCP -treated tumors 

(Fig. 27A), along with a statistically significant reduction in the number, size, and branching 

of CD34+ microvessels (Fig. 27B), decreased in tumor cell proliferation (Fig. 27C), and 

increased percentage of apoptotic cells (Fig. 27D; Fig. 30). These IHC results suggested 

that our identified HIF-1 dimerization inhibitors hit their therapeutic target by suppressing 

HIF-1 dependent signaling pathway associated with reduced tumor vascularization, cellular 

invasiveness and modified metabolic micro-environment.  
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Figure 27. M-TMCP and D-TMCP reduced tumor vascularization, modified metabolic 
micro-environment, inhibited cellular invasiveness, and induced cellular apoptosis. 
Mice with approximately 100mm3 U87/NL1α/CL1β cells xenografts were treated for 14 days 
and euthanized on day 28. A) Tumor samples were collected after the last treatment and 
analyzed by immunohistochemistry for VEGF, GLUT-1, CD34, Ki67 and Annexin V. Scale 
bar: 200 µm. B) Total pixel area of VEGF in different treatment. Significantly suppression of 
VEGF expression were observed in ACF, M-TMCP and D-TMCP treated tumor samples C) 
Inhibitor treatment decreased cellular proliferation determined by Ki67, resulting in the tumor 
growth retardation in xenograft models. D) All tumor samples treated with the inhibitors 
demonstrated significantly higher apoptotic index comparing to control samples. The stained 
area of CD34 and Ki67 in 20 fields was quantified under × 400 magnifications (n = 3, each 
treatment). The stained area of Annexin V in 5 fields was quantified under × 800 
magnifications (n = 3, each treatment). *, P < 0.05; ***, P < 0.005 vs. control (two-way 
ANOVA with Bonferroni correction)  
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Figure 28. Immunofluorescent staining for evaluating expression of VEGF (Green) 
with associated tumor vascular structure (CD34+; Red) in U87/NL1α/CL1β tumors. 
Mice bearing U87/NL1α/CL1β xenograft were treated with vehicle, ACF, M-TMCP and D-
TMCP (2 mg/kg in 3%DMSO in saline; 150 µl i.p.) for 14 days. After the last dose, tumor 
samples were collected and evaluated by immunohistochemical analysis. In control tumors, 
the expression of VEGF was observed in avascular and apparently hypo- or non-perfused 
microvessels, whereas much lesser expression of VEGF was observed within 120-150 µm 
around well perfused microvessels. In addition, the expression of VEGF was markedly 
decreased in ACF, M-TMCP, D-TMCP -treated tumors along with a statistically significant 
reduction in the number, size, and branching of CD34+ microvessels. Scale bar: 100 µm.  
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Figure 29. Immunofluorescent staining for evaluating expression of GLUT-1 (Green) 
with associated tumor vascular structure (CD34+; Red) in U87/NL1α/CL1β tumors. 
Mice bearing U87/NL1α/CL1β xenografts were treated with vehicle, ACF, M-TMCP and D-
TMCP (2 mg/kg in 3%DMSO in saline; 150 µl i.p.) for 14 days. After the last dose, tumor 
samples were collected and evaluated by immunohistochemical analysis. The expression of 
GLUT-1 was markedly decreased in ACF, M-TMCP, D-TMCP -treated tumors. In addition, 
the expression of GLUT-1 was often observed in avascular area. Scale bar: 100 µm.  
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Figure 30. Immunofluorescent staining for evaluating expression of Annexin V (Green) 
with associated tumor vascular structure (CD31+; Red) in U87/NL1α/CL1β tumor. Mice 
bearing U87/NL1α/CL1β xenograft were treated with vehicle, ACF, M-TMCP and D-TMCP 
(2 mg/kg in 3%DMSO in saline; 150 µl i.p.) for 14 days. After the last dose, tumor samples 
were collected and evaluated by immunohistochemical analysis. The percentage of 
apoptotic cells (Annexin V positive) was slightly increased in ACF, M-TMCP, D-TMCP -
treated tumors verse control, along with a statistically significant reduction in the number, 
size, and branching of CD34+ microvessels. Scale bar: 100 µm.  
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6.3 Assessment of systemic toxicity after chronic administration of D-TMCP in 

vivo 

To examine whether the administration of D-TMCP caused drug-induced organ toxicity 

in nude mice, a separate group of normal mice were treated for three weeks with daily 

administration of 0, 1, 2, 5, or 10 mg/kg of D-TMCP (in 3%DMSO in saline; 150 µl i.p.). All 

different dosage treatments of D-TMCP did not cause any notable histological changes in 

brain, heart, lung, liver, spleen, pancreas, kidney, and testis (Fig. 31 and 32), suggesting 

that D-TMCP was well tolerated in mice at doses up to 10 mg/kg. 
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Figure 31. No physiological changes observed after repeated D-TMCP treatment, 
ranging from 1 to 10 mg/kg, for up to 21 days.  Histology analysis of organs from nude 
mice after 21 days of repeated D-TMCP treatement. After mice were sacrificed, their major 
organs were collected and fixed in formalin and paraffin-embedded. No abnormalities in the 
tissue physiology were observed under the microscope in the H&E sections (400× 
magnification). Scale bar: 200 µm. 

 



94 

 

 

  

  



95 

 

 

 

Figure 32. No abnormal cellular proliferation observed after repeated D-TMCP 
treatment, ranging from 1 to 10 mg/kg, for up to 21 days.  Histology analysis of organs 
from nude mice after 21 days of repeated D-TMCP treatment. Mice major organs were 
collected, fixed in formalin, paraffin-embedded and stained with Ki67 IHC. The expression of 
Ki67 between each group was similar. No abnormal cellular proliferation was observed. 
Scale bar: 200 µm.  
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Chapter 7: Summary and Discussion 

HIF-1 participates in energy metabolism, angiogenesis, and proliferation in tumors. 

Enhanced HIF-1 expression is a common feature of most solid tumors and often leads to 

poor clinical outcomes. Targeting HIF-1 has long been recognized as an effective yet 

challenging therapeutic strategy for cancer. Despite efforts have been made to identify small 

molecule inhibitors that target HIF-1 pathway, the strategies reported so far were mostly 

used in vitro yeast two-hybrid-like or cell-based reporter assays (Mahon et al., 2001, Bex et 

al., 2007, Li et al., 2008, Cockman et al., 2006, Schwartz et al., 2009, Tan et al., 2005, 

Narita et al., 2009, Semenza, 2007a, Mooring et al., 2011, Lee et al., 2009). The major 

drawback of in vitro yeast two-hybrid-like assays is the possibility of identifying biologically 

irrelevant interactions that may never occur in vivo, while the cell-based HIF-1-targeted 

assays offer the advantage of recapitulating relevant signaling in vivo. Most of the currently 

used cell-based HIF-1 assays utilize DNA constructs containing reporter genes under the 

control of multiple copies of HREs, usually the promoter region of VEGF. The binding of HIF-

1 to HREs transactivates its downstream reporter gene, such as fluorescent or luciferase 

protein. This type of reporter design provides only the final result of HIF-1 transcriptional 

activity, with no information about the mechanisms of action. Therefore, in the present study, 

an exclusive HIF-1-targeted screening system was designed focusing on specific protein-

protein interaction domains (PAS-AB) in HIF-1α and HIF-1β to identify only selective 

inhibitors of HIF-1α/β dimerization. The orientation of reporter vector was also determined to 

optimize the complementation assay for enhanced induction of HIF-1α/β dimerization. 

Moreover, the HIF-1α/β dimerization cell-based reporter system was established via 

lentiviral transduction instead of commonly used transient transfection, in which the level of 

gene expression decreases quickly over time. This stably transduced U87/NL1α/CL1β cells 

can provide robust and quantifiable results in live cells or animal in near real time.  
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Although HIF-1α/HIF-1β and HIF-2α/HIF-1β share some similar properties, recent 

studies have suggested that they demonstrate distinct characteristics for both isoforms 

(Loboda et al., 2012, Loboda et al., 2010, Ratcliffe, 2007, Hu et al., 2003). For example, in 

regulation of angiogenesis, HIF-1α/HIF-1β and HIF-2α/HIF-1β may exert counteractive 

influences on angiogenic mediators. In hypoxia, HIF-1α/HIF-1β and HIF-2α/HIF-1β regulate 

VEGF expression in the same manner (Jones et al., 2001). However, while HIF-1α 

decreases interleukin-8 (IL-8) expression, the overexpression of HIF-2α results in increase 

of IL-8 (Florczyk et al., 2011, Loboda et al., 2009). The relationships between HIF-1α and 

HIF-2α in regulating different signal pathways remain to be explored further. These 

paradoxical effects of HIF-1α and HIF-2α in cancer may influence therapeutic approaches in 

developing HIF-1 targeted drugs. The discovery of HIF-1α was earlier than HIF-2α, and 

intensive investigation have led to better understanding of HIF-1α/HIF-1β in cellular 

signaling network and pathological situations. Therefore, the design of current reporter 

system specifically aimed to identify the inhibitors of HIF-1α/HIF-1β heterodimers. However, 

HIF-1α and HIF-2α share a high degree of homology. There is still a possibility that inhibitors 

identified using this HIF-1α/HIF-1β reporter system may also disrupt the formation and 

function of HIF-2α/HIF-1β heterodimer.  

There is an increasing interest in identification of small molecular inhibitors that 

target protein-protein interactions that are essential for stabilization and formation of the 

HIF-1α/HIF-1β heterodimer. Although several studies have demonstrated that some 

compound pose significant inhibitory activities in cell free assays, many failed during cell-

based assays because of their poor pharmacokinetic properties, such as cell membrane 

permeability or absorption (Park et al., 2006a, Koh et al., 2008, Mooring et al., 2011, 

Yewalkar et al., 2010). Herein, this newly developed high-throughput system was designed 

to screen potential HIF-1α/β inhibitors in live cells so that cell permeability or absorption of 



99 

 

inhibitors would be reflected in the IC50 value. Using a cell based assay, Lee et al (2009) 

previously have identified acriflavine (ACF), a mixture 3,6-diamino-10-methylacridinium 

chloride and 3,6-diaminoacridine, as an inhibitor of HIF-1α/β dimerization and transcriptional 

activity (Lee et al., 2009). The high potency of ACF was confirmed using the newly 

developed reporter system in the initial screen of HIF-1 inhibitory compound library. 

However, this study was based on a mixture of two compounds. As a result, it was not clear 

which of these two compounds is responsible for the potency. To this end, the utilization of 

structure–activity relationships led to the discovery of a mono- and di-substituted 3,6-

diaminoacridine analogues that have significant inhibition of the HIF-1α/HIF-1β 

heterodimeric interaction. The functionalization at the 3,6-position of the diaminoacridine to 

assess potency was critical for understanding the structure-activity relationships in this 

series and for identifying compounds with improved pharmacodynamic profiles. 

The PAS domain in HIF-1α or HIF-1β can be sub-categorized into PAS-A and PAS-B 

subdomains, both of which contribute to the heterodimerization. Card et al. demonstrated 

that a point mutation in the PAS-B subdomain of HIF-2α can disrupt HIF-2α/HIF-1β 

heterodimer formation in vitro, and further attenuate hypoxia transcriptional responses in 

living cells. This result suggested the possibility of disrupting HIF-1 heterodimerization by 

partially blocking a single PAS subdomain. In Lee et al. study, it was showed that ACF binds 

to the PAS-B subdomain of HIF-1α, thereby disrupting HIF-1α/β dimerization and leading to 

inhibition of HIF-1 transcriptional activity. Therefore, it is most likely that M-TMCP and D-

TMCP also bind to the PAS domain of HIF-1α, based on their similarity in chemical structure 

with ACF. In such case, M-TMCP or D-TMCP binds with stabilized HIF-1α only in hypoxic 

regions, which also introduces an opportunity to use M-TMCP or D-TMCP as HIF-1α 

targeted hypoxia imaging agent.  
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Treatment with M-TMCP or D-TMCP for two weeks resulted in a significant inhibition 

of tumor growth. The balance between cell proliferation and cell death determines the 

growth dynamics of tumor tissue. The decrease in tumor cell proliferation (Ki67+ labeling 

index) and the increase in the number of apoptotic cells, as compared to control, explain the 

tumor shrinkage observed in all three treatment groups. In addition, M-TMCP or D-TMCP 

demonstrated significant antitumor activity that was associated with the decrease of VEGF 

and GLUT-1 expression in in vivo U87 human glioma mice models. These changes were 

paralleled by the downregulation of pro-tumorigenic genes involved in HIF-1 signaling 

network observed in the qRT-PCR arrays. Early decreases in BLI signals from the xenograft 

tumors treated with M-TMCP and D-TMCP indicated that our reporter system promptly 

detect HIF-1α/β disruption in tumors, which preceded the retardation of tumor growth.  

Some concerns may be raised about whether the identified HIF-1 inhibitors are too 

cytotoxic to serve as drug leads. In this study, D-TMCP inhibited HIF-1 activity at 

concentrations that did not affect proliferation or survival of the cells. Daily administration of 

1-10 mg/kg D-TMCP in nude mice for 21 days did not result in distinct changes in the 

morphology or function of major vital organs. Although acridine analogs are known for 

antimicrobial activity (Wainwright, 2001, Wainwright, 2000) and even some anti-tumor 

activity (Patel et al., 2010), for many years their potential roles as anti-cancer drugs have not 

been fully explored. Herein, this study clarified their mechanism of action at the transcription 

level and provided evidence for antitumor efficacy of acridine derivatives in in vivo small 

animal tumor models. However, to move the inhibitors into clinical trials, additional 

preclinical studies are still required. 

In conclusion, a novel methodology was developed for exploring selective HIF-1α/β 

dimerization inhibitors in cellulo and in vivo. Using this HIF-1α/β heterodimerization 

screening system, the structure-activity relationship of acridine analogues was established, 
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which provides valuable information for future optimizing HIF-1α/β inhibitor from chemical 

libraries. Moreover, the most promising drug candidates, M-TMCP and D-TMCP, exhibit 

significant antitumor efficacy with no physiological toxicity and show great clinical potential 

as a dual therapeutic and diagnostic agent. The identification of selective HIF-1α/β inhibitors 

is not only beneficial for therapeutic implications, but also as an analytic tool to further 

explore the role of HIF-1α/β in human cancers. 
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Chapter 8: Future Direction 

              In the future, the therapeutic potential of M-TMCP or D-TMCP will be further 

evaluated using different animal models. In addition, we will investigate whether the 

combination of M-TMCP or D-TMCP with other treatments (e.g. chemotherapy, radiotherapy, 

or immunotherapy) may be more effective in achieving tumor remission and increasing 

survival rate. On the other aspect, M-TMCP or D-TMCP will be labeled with different 

radionuclides, such as 18F or 188Re, to explore the possibility of developing new HIF-1α 

imaging agent. After isotopic labeling, their efficacy will need to be re-evaluated. If 

successful, this HIF-1α imaging agent can serve as a hypoxia indicator to evaluate the 

treatment response of anti-cancer drugs or radiation therapy. In the meantime, more 

compound libraries will be explored using this high content HIF-1α/β dimerization screening 

system to identify potential drug leads.  
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