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ABSTRACT 

THE NATURAL AND ORTHOGONAL INTERACTION (NOIA) MODELS FOR 

QUANTITATIVE TRAITS (QTs) AND COMPLEX DISEASES 

Publication No.________ 

Feifei Xiao, M.S. 

Supervisory Professor: Christopher I. Amos, Ph.D. 

 

 

      My dissertation focuses on developing methods for gene-gene/environment interactions and 

imprinting effect detections for human complex diseases and quantitative traits.  It includes three 

sections: (1) generalizing the Natural and Orthogonal interaction (NOIA) model for the coding 

technique originally developed for gene-gene (GxG) interaction and also to reduced models; (2) 

developing a novel statistical approach that allows for modeling gene-environment (GxE) 

interactions influencing disease risk, and (3) developing a statistical approach for modeling genetic 

variants displaying parent-of-origin effects (POEs), such as imprinting. 

      In the past decade, genetic researchers have identified a large number of causal variants for 

human genetic diseases and traits by single-locus analysis, and interaction has now become a hot 

topic in the effort to search for the complex network between multiple genes or environmental 

exposures contributing to the outcome. Epistasis, also known as gene-gene interaction is the 

departure from additive genetic effects from several genes to a trait, which means that the same 

alleles of one gene could display different genetic effects under different genetic backgrounds. In this 

study, we propose to implement the NOIA model for association studies along with interaction for 

human complex traits and diseases. We compare the performance of the new statistical models we 

developed and the usual functional model by both simulation study and real data analysis. Both 

simulation and real data analysis revealed higher power of the NOIA GxG interaction model for 
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detecting both main genetic effects and interaction effects. Through application on a melanoma 

dataset, we confirmed the previously identified significant regions for melanoma risk at 15q13.1, 

16q24.3 and 9p21.3. We also identified potential interactions with these significant regions that 

contribute to melanoma risk.   

      Based on the NOIA model, we developed a novel statistical approach that allows us to model 

effects from a genetic factor and binary environmental exposure that are jointly influencing disease 

risk. Both simulation and real data analyses revealed higher power of the NOIA model for detecting 

both main genetic effects and interaction effects for both quantitative and binary traits. We also 

found that estimates of the parameters from logistic regression for binary traits are no longer 

statistically uncorrelated under the alternative model when there is an association. Applying our 

novel approach to a lung cancer dataset, we confirmed four SNPs in 5p15 and 15q25 region to be 

significantly associated with lung cancer risk in Caucasians population: rs2736100, rs402710, 

rs16969968 and rs8034191. We also validated that rs16969968 and rs8034191 in 15q25 region are 

significantly interacting with smoking in Caucasian population. Our approach identified the potential 

interactions of SNP rs2256543 in 6p21 with smoking on contributing to lung cancer risk. 

      Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a 

gene is differentially expressed depending on the parental origin of the same alleles. Genetic 

imprinting affects several human disorders, including diabetes, breast cancer, alcoholism, and 

obesity. This phenomenon has been shown to be important for normal embryonic development in 

mammals. Traditional association approaches ignore this important genetic phenomenon. In this 

study, we propose a NOIA framework for a single locus association study that estimates both main 

allelic effects and POEs. We develop statistical (Stat-POE) and functional (Func-POE) models, and 

demonstrate conditions for orthogonality of the Stat-POE model. We conducted simulations for both 

quantitative and qualitative traits to evaluate the performance of the statistical and functional models 

with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which 

ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal 
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minor and major allele frequencies is satisfied, had greater power for detecting the main allelic 

additive effect than a Func-POE model, which codes according to allelic substitutions, for both 

quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE 

and Func-POE models under HWE for quantitative traits. 
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CHAPTER 1 

Introduction 

 

1.1 Genetic Association Analyses for Finding Causal Variants for Human Complex Traits and 

Diseases 

        For the past several years, searching for genetic factors that cause various human complex traits 

and diseases has become one of the most important and challenging goals for modern geneticists. 

Genome-wide association studies (GWASs) have contributed substantively to this goal [1-3]. In this 

approach, every locus is isolated and analyzed. Several hundred thousand single nucleotide 

polymorphisms (SNPs) in thousands of individuals are assayed, which has provided a powerful 

approach for investigating the underlying genetic architecture of human complex traits and diseases 

[4, 5]. GWASs have identified a large number of causal variants for human genetic diseases and 

traits, such as cancer, diabetes and heart diseases [6-8], and have provided valuable insights into the 

complexities of the human diseases. For example, about 90 loci have been identified for association 

with the common human trait, height, and have explained about 56% of the overall phenotypic 

variance [9]. GWAS also identified common variants which account for 32% of narrow-sense 

heritability of body mass index [10]. 

      The goal of GWASs is to identify common variants for common diseases, but explaining a large 

and missing proportion of the heritability of most complex or multifactorial diseases and disorders is 

still a challenging task in the field of genetic epidemiology. A limitation of this approach that has 

been cited is that interactions between loci or between genes and environmental exposures are 

usually ignored [11, 12].  For this reason, more efforts are being made to characterize the complex 

network between multiple genes and environmental factors that contribute to disease outcome. 

Potential gene-gene or gene-environmental interactions have been indicated in recent years, but few 
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of them have been validated. The underlying biological pathways could be successfully elucidated as 

more and more interactions are uncovered. Aside from interactions, structural variation, such as copy 

number variations (CNVs), may account for some of the missing heritability if those variants 

contribute to the genetic basis of the human disease [13, 14]. Imprinting effects and rare variants 

may also account for part of the missing heritability too [15, 16]. Rare variants (minor allele 

frequency<0.5%) are not well captured by the GWA genotype arrays because of their small minor 

allele frequency, although they may have substantial effect sizes and contribute in aggregating to the 

burden of disease from genetic factors  [17-19]. 

 

1.2 Usual Functional Models for Genotype-Phenotype Mapping  

        We first briefly review the usual functional models for genotype-phenotype mapping. In the 

usual approach for genotype-phenotype mapping of a quantitative trait locus (QTLs), if the trait is 

influenced by a single diallelic locus, with alleles A� and A, we let minor allele be A. Assume we 

have a sample with n individuals. For the i-th individual, let y� be the observed trait phenotype and  

G��  be the genotypic value for specific locus. We use y to denote the vector of the observed trait 

which is normally distributed and y � �y�, y, … , y���. We model the phenotype as  y� �
G�� � ε�. The vector G� � Z · G, where G denote the vector of genotypic values including 

G��, G� and G as the genotypic values for the three possible genotypes for alleles A� and A; the n 

rows of matrix Z represent the corresponding genotype. Therefore, the vector of the observed 

phenotypes G� could be expressed as 

"#
$G��G�%%G�� &'

( �
"
##$

1% 0% 0%0% 1% 0%0% 0% 1% &
''( · )G��G�G*.                                                (1) 
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Several methods have been proposed for mapping a quantitative trait controlled by one locus with 

two alleles [20]. The vector of genotypic values G can be modeled as the product of genetic-effect 

design matrix S and the vector of genetic effect E. 

G � S · E.                                                                     (2) 

Let X be the design matrix for the whole sample, X � Z · S. Therefore, we obtain the regression of 

genetic effects as the form y � X · E � ε � Z · S · E � ε � Z · G � ε, where ε is the error term. 

Different mapping methods focus on the core design matrix, S. One of the usual regression models, 

which is referred to as a functional model, can be described as follows [20]: 

G � )G��G�G* � S.E. � )1 0 01 1 11 2 0* )Rad*.                                           (3) 

For an individual with genotype G��, the coding will be the first row of the design matrix S., and for 

an individual with genotype G�, the coding will be the second row of the design matrix S.  

      The inverse of equation (3) is  

E. � )Rad* � S.��G � 1 1 0 02 � 0 �2 � 1 2 �
3 )G��G�G*.                                    (4) 

Here, the reference point R corresponds to the genotypic value of one of the two homozygotes, G��. 

The additive effect, a, is half of the difference between the two homozygotes genotypic values. The 

dominance effect, d, is the difference of the heterozygote genotypic value and the average of the 

homozygotes genotypic values. Estimation of the genetic effects, a and d, could be performed by 

linear regression for quantitative trait or logistic regression for qualitative traits. The coding in 

equation (4) is referred to as Func-Usual modeling in our study. Another usual functional model 

codes the additive effect as (-1,0,1) for the three genotypes and the reference point corresponds to the 

average genotypic values of the two homozygotes [20]. These two usual functional models have the 

same estimators except the intercept term, and we therefore will not consider the second model in 
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what follows. These models are called functional models since they use natural effects of allele 

substitutions as parameters, mainly focusing on the biological properties [21].  

 

1.3 The Natural and Orthogonal Interactions (NOIA) model and Its Advantage for Association 

Studies 

      A second approach to modeling, the “statistical model”, referred as the NOIA statistical model, 

was proposed by Alvarez-Castro and Carlborg et al. for estimating genetic effects for a quantitative 

trait and gene-gene (GxG) interactions [21]. As shown in Ma et al. [22], G could be expressed as, in 

the NOIA model, 

G � )G��G�G* � S4E4 � 51 2N7 22p�p/V1 1 2 N7 4p��p/V1 2 2 N7 22p��p�/V; <μαδ@,                             (5) 

which ensures orthogonality of the estimated parameters. Here, p�A denotes the genotype frequencies 

of this locus in the population, where ij � 11,12 or 22. N7 � p� � 2p , V � p� � 4p 2
Cp� � 2pD � p�� � p 2 Cp�� 2 pD. N7 is the expected value of N and  V is the variance of 

N. N is the number of variant alleles (A, for example) which is equal to 0, 1 or 2 when the genotype 

is G��, G�, or G, respectively. 

      The inverse of equation (5) is 

E4 � <μαδ@ � S4��G � 5p�� p� pp��E p�E pE2 � 1 2 �
; )G��G�G*,                                   (6) 

with 

p�AE � p�A FGH�F7I .                                                           (7) 

        The genetic effects, E4, are based on the genotype frequencies of this locus in the population. 

Alvarez-Castro et al. [23] noted that the statistical model is an orthogonal model that has 

uncorrelated estimates of the parameters, which was also reflected by variance components 
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decomposition [22]. The statistical model (Equation (5)) and the functional model (Equation (3)) can 

be transformed to each other using: 

)Rad* � )1 N7 p�0 1 p�E0 0 1 * <μαδ@.                                                       (8) 

We notice that these two models have the same estimators for the dominant effect and different 

estimators for the additive effect. 

      As pointed out by Alvarez-Castro and Carlborg, there are two main advantages for the 

orthogonal models [21]. First, it makes model selection straightforward as the estimates are 

consistent in reduced models. Second, it enables accurate variance component analysis because of 

independent estimation of the genetic effects. A model with design matrix X satisfying X� · X being a 

diagonal matrix will be an orthogonal model [21]. That is 

X� · X � JS� · Z�K · Z · S � nS� · Q · S, 

where  

Q � )p�� 0 00 p� 00 0 p*. 

And given that S � Js�AK with s�� � 1, the criteria for orthogonality of the genetic regression model 

was derived by Cockerham and denoted in terms of our notation as following [21]. To attain 

orthogonality, one sets the off diagonal elements of the X� · X matrix to be zero since it will then 

follow that S� · Q · S is a diagonal matrix. 

s��p�� � sp� � sNp � 0, 

s�Np�� � sNp� � sNNp � 0, 

s�s�Np�� � ssNp� � sNsNNp � 0. 

       The statistical model fulfills these criteria and shows orthogonality for detecting and estimating 

genetic effects, whereas some parameters of the functional model (Equation (3)) are confunded, 

which can cause issues in hypothesis testing when Wald-type tests are used (as we shall see later in 
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the dissertation). The statistical model uses average effects of allele substitutions in populations as 

parameters for the decompostion of genetic variance. Its statistical formulation provides an approach 

in which the estimates of the genetic effects remain orthogonal; that is, they are consistent in reduced 

and unconfouned in the full model. This holds true even if Hardy-Weinberg Equilibrium (HWE) is 

violated. The orthogonality of the NOIA model is attractive becuase it ensures that the estimated 

genetic effects are not statistically correlated, rendering a more meaningful calculation of heritability 

of a trait comparing to the traditional models. The orthogonality of the statistical formulation of 

NOIA framework become important when multiple loci are contributing to the outcome. This is also 

why we were motivated to do the following studies.  

 

1.4 Testing Statistics of the Usual Functional Model and NOIA Statistical Model 

      To further understand the statistical characteristic of the usual functional model and the NOIA 

statistical model on testing the additive effect with or without dominant effect detection, we 

constructed the Wald test statistics for these two models before and after the dominance component 

is removed (details see Appendix 2.2). The Wald test statistic is z � PQRSJPQK � JTUTKVWTUXRSJPQK  where βZ 

denotes the vector of the estimation of the genetic effects and varJβZK � σCXEXD��. 

      We constructed the test statistic of the functional model with both additive and dominance effect 

detection as following.  XEX � n 5 1 N7 p�N7 p� � 4p p�p� p� p�; which is not a diagonal matrix. The test 

statistic for the functional model is  

�√�_`I
"
###
$ a IbWW 0 0

2a b``IbWWC��bW`D 0 a bWWIb``C��bW`D2abW`b``bWW 2abWWb``bW` 2abWWbW`b`` &
'''
( ZEy,  
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with the linear combination of the second or third row and  ZEy for the additive effect testing or 

dominant effect testing, respectively. We also constructed the test statistic of the functional model 

with only additive effect detection as follows. XEX � n c1 N7N7 N7 � 2pd . The test statistic for the 

additive functional model is 

�√�_`I )eN7 � 2p b``eF7fb``
�bW`eF7fb``2N7 1 2 N7 2 2 N7 * ZEy, 

with the linear combination of the second row and  ZEy for the additive effect testing.  

      In what follows, we show the Wald test statistic of the NOIA model with both additive and 

dominance effect detection. XEX � n 51 0 00 V 00 0 
bWWbW`b``I ; which fulfills the requirement of the 

orthogonality that we discussed in Section 1.3. The test statistic for the NOIA statistical model is 

�√�_`I � "$
√V √V √V2N7 1 2 N7 2 2 N72abW`b``bWW 2abWWb``bW` 2abWWbW`b`` &( ZEy, 

with the linear combination of the second or third row and  ZEy for the additive effect testing or 

dominant effect testing, respectively. After we remove the dominance component from the NOIA 

model, XEX � n g1 00 Vh. Moreover, the test statistic for the additive NOIA statistical model after the 

dominance component is removed: 

�√�_`I c√V √V √V2N7 1 2 N7 2 2 N7d � ZEy, 

with the linear combination of the second row and  ZEy for the additive effect testing.  

      From above formulations, we can clearly state that the NOIA model has same test statistic with 

the usual functional model for additive effect detection when only additive effect testing is included. 

The NOIA statistical model also has same test statistic with the usual functional model for 

dominance effect detection. Obviously, the NOIA statistical model has consistent testing for additive 
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effect detection after the dominance component is added to the modeling, whereas the usual 

functional model loses power. 

 

1.5 Gene-Gene Interactions and Gene-Environment Interactions Contributing to Human 

Complex Traits and Diseases 

      Unlike Mendelian diseases or traits in which single variants influence the outcome, multiple 

factors including genetic and environmental factors contribute to the complex diseases/traits. As 

stated in section 1.1, the interactions among different loci and environmental exposure are usually 

ignored in the usual GWAS. Accurate modeling of associations along with interactions remains a 

challeging task for geneticists. The term gene-gene (GxG) interaction, also called epistasis, has 

various definitions. The most common statistical definition of epistasis is a departure from additivity 

of genetic effects at each locus from two or more genes that influence a trait; thus, the same alleles of 

one gene could display different genetic effects in different genetic backgrounds. Epistasis has 

become a hot topic for genetic researchers in recent years. It was initially characterized in animal 

model in the early 1900’s as playing an important role in determining some phenotypes. For 

common human diseases and disorders, such as anemia, cystic fibrosis and complex autoimmune 

diseases, the relevance of gene-gene interactions is still under exploration but became a more 

prominent explanation for the failure of GWAS to explain much of the variation in risk among 

individuals in the last decade [24-26]. Moreover, epistasis was recently revealed to be the main force 

in long-term molecular evolution [27]. To test for statistical interactions influencing quantitative 

traits, linear regression may be used including both main genetic effects and interaction effects. For 

binary outcomes, the usual approach for modeling uses a log odds scale that is fitted with logistic 

regression. Several methods have been developed for searching for the interactions when performing 

genetic association studies [28-32]. The major motivation of developing these approaches is to 

improve the power of detecting effects and to provide a more comprehensive assessment of genetic 

architecture influencing a trait [33]. The contribution of enviromental factors in determining human 
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complex diseases has been the provenance of epidemiologists. The role of gene-environment 

interactions in disease etioogy has engaged both geneticists and epidemiologists and there was a 

resurrection of interest in this area starting about a decade ago as geneticists tools became easier to 

use for large scale studies [34]. The interactions between the enviromental exposure and the genetic 

factor, which is called gene-environment (GxE) interactions, are believed to be able to play an 

important role in the genetic archtecture of most human complex traits and diseases. The definition 

of GxE interactions is similar to the GxG interactions. The same alleles of one gene could display 

different genetic effects in different environmental backgrounds. For example, the interaction 

between genetic factors and cigarete smoking exposure contributing to the lung cancer is among the 

most well-know examples of GxE interactions [35]. Individuals with variants of a specific gene may 

be more susceptible to lung cancer risk in smokers; individuals with the same variants may not be 

inclined to increased risk of lung cancer in non-smokers. Therefore, understanding the underlying 

mechanisms may give valuable insights on cancer prevention and possibly treatment. GxE 

interactions have been recently revealed to be play crucial roles on development of Parkinson’s 

diseases, rheumatoid arthritis and lung cancer [36-38].  In recent years, for understanding the 

complexity of genotype-phenotype relationships along with the gene-environment interactions, 

several approaches and software have been developed [39-41]. Unwinding this complexity will help 

in explaining more of the heritability of human complex traits and diseases. 

 

1.6 Imprinting Effect is Usually Ignored in Traditional Association Studies 

      Genetic imprinting frequently affects genes during embryogenesis and is the most well-known 

parent-of-origin effect (POE). Imprinting causes the differential expression of genes based on the 

parental origin of the chromosome [42].The same alleles transmitted from the father have different 

levels of transcription and thus may render a different effect on the phenotype compared with the 

alleles transmitted from the mother. Genetic imprinting has been shown to be important for normal 

embryonic development in mammals [43]. So far, approximately 200 imprinted genes have been 
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validated or predicted in humans (http://www.geneimprint.com). Imprinted genes have been 

implicated in several complex human disorders, including diabetes, breast cancer, alcoholism, and 

obesity [44-47]. Kong et al. identified several variants of known imprinted genes showing significant 

effects on the development of breast cancer, carcinoma and type II diabetes [48]. An allele on an 

imprinted region of chromosome 14q32 was recently identified to affect type I diabetes susceptibility 

by Wallace et al. [49]. 

      Several statistical approaches have been developed for modeling POEs and imprinting effects. 

Shete et al. implemented a variance-components (VC) method for testing genetic linkage by 

incorporating an imprinting parameter [50]. They applied this framework to rheumatoid arthritis and 

gene expression data and found significant signals for linkage [51]. Gorlova et al. developed a QTL 

analysis test to evaluate both total and parent-specific linkage signals based on identity-by-descent 

sharing [16] . Ainsworth et al. also described an implementation of a family-based multinomial 

modeling methodology in which POE detection is considered using mothers and their offspring [52]. 

However, none of above approaches considered the orthogonality properties in the modeling of the 

genetic effects. 

      Most traditional association approaches assume that the two alleles from the parents contribute 

equally to the trait, thereby ignoring the important genetic phenomenon, POEs. These approaches 

estimate the main allelic effect, which could also be considered as the overall genetic effect, without 

considering POEs. As mentioned in Section 1.1, genetic imprinting affects expression of genes and 

may explain some of the missing heritability of human complex traits and diseases. It is important to 

develop new methods applicable to genome-wide scans that model the differential contribution of 

paternal and maternal alleles. It is desired that a method that allows for POE also maintain the power 

to detect the main allelic effect after adding one or more parameters related to POE to the model. 

Therefore, the proper and orthogonal decomposition of genetic variance renders the NOIA 

framework meaningful and useful to estimate main allelic effects along with the POE.  
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      In conclusion, considering the advantages of the orthogonal NOIA model on detecting genetic 

effects, missing heritability and ignored GxG/GxE or imprinting effects by usual association 

approach, we propose to apply the NOIA orthogonal models to characterize the complex network 

between multiple genes, environmental factors and imprinting effect, for investigating the underlying 

architecture of human complex traits and diseases. 
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CHAPTER 2 

Natural and Orthogonal Interaction Framework for Modeling Gene-Gene 

Interactions Applied to Cutaneous Melanoma 

       

      In this chapter, to evaluate the performance of the NOIA statistical model on detecting gene-gene 

interactions that was proposed by Alvarez-Castro and Carlborg [21], we applied the NOIA statistical 

model on both simulated and real data. For testing the gene-gene interactions in the association 

modeling, we added the interaction effect parameters into the modeling which always resulted in lost 

power to detect the main genetic effects, that is, the main additive and dominance effects. The usual 

functional one-locus model (equation (3)) uses natural substitution for the parameter estimations 

which renders a non-orthogonal model whenever a dominance component is modeled, which means 

that the hypothesis tests lose power when the interaction terms are incorporated into the modeling. 

However, the NOIA statistical model (equation (5)) overcomes this disadvantage because of its 

orthogonality [6]. That is, even when we add several additional parameters into NOIA modeling, the 

estimation of the original parameters will not be influenced. Therefore, we propose to formalize the 

NOIA statistical one-locus model in equation (5) to a two-locus model incorporating the detection of 

interactions. We also extended the usual functional one-locus model to compare the performance of 

this testing with the NOIA model. We evaluate the behavior of the NOIA statistical model over the 

usual functional model for detecting the genetic effects, through both simulation analyses and 

application on melanoma dataset. 

        With extensive simulation studies for both quantitative traits and case-control traits, we 

evaluated the performance of NOIA statistical model and usual functional model for detecting the 

main genetic effects and interaction effects. To evaluate the influence of the parameter setting on the 
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simulation results, we simulated different scenarios with positive, negative or zero values of the 

interaction terms. We also extended the NOIA statistical model to reduced models including the 

additive, dominant and recessive models. We evaluated the power and type I error for detecting the 

genetic effects. To further characterize the performance of the two models, we applied them to the 

melanoma dataset to search for casual variants and potential interaction effects influencing 

melanoma risk.  

      GWAS and family-based approaches have previously revealed several loci that influence CM 

risk. Several previous studies have shown that melanocortin 1 receptor (MC1R) located at 16q24.3, 

HERC2/ (HECT and RLD domain containing E3 ubiquitin protein ligase 2)/OCA2 at region 15q13.1 

and cyclin-dependent kinase inhibitor 2A (CDKN2A or p16) at 9p21.3 are the most significant 

susceptibility genes for melanoma susceptibility [53, 54]. Although one-locus association studies 

have been applied widely to investigate melanoma risk widely, the gene-gene interactions underlying 

this disease have not been fully exploited. Understanding how these genetic loci and interactions 

influence the development of melanoma could provide important clues in the pathogenesis and 

treatment of melanoma. 

      In the following sections, we introduce the methodology development of the NOIA and usual 

functional two-locus interaction models and the design of the simulations studies. We describe the 

application of the newly developed methods on a genome-wide scale melanoma dataset. 

 

2.1 Methods 

2.1.1 Two-Locus Gene-Gene Interaction Models 

      We already described the one-locus NOIA statistical model in Section 1.3. To extend the model 

to a two-locus model allowing gene-gene interaction testing, we assumed that a quantitative trait is 

influenced by two diallelic loci, A and B. We use p�A and q�A to denote the genotype frequencies of 

genotype A�A and B�A, respectively. Nk is the number of reference allele A, which is equal to 0, 1 or 2 



 

 

14 

 

when the genotype is G��, G� or G, respectively. Similarly, Nm is the number of reference allele 

B. N7k and N7m denote the means of Nkand Nm, respectively, whereas Vkand  Vm denote the variance 

of Nkand Nm, respectively. Therefore, N7k � p� � 2p, Vk � p� � 4p 2 Cp� � 2pD. 

Correspondingly, N7m � q� � 2q, Vm � q� � 4q 2 Cq� � 2qD. 

        For two-locus gene-gene interaction models, which were described by Alvarez-Castro and 

Carlborg [21], the vector of two-locus genotypic values, Gkm, can be built as follows: 

Gkm � Skm · Ekm � CSmnSkD · Ekm,                                             (9) 

if we assume that the two loci, A and B, and in linkage equilibrium. Ekm is the two-locus vector of 

genetic effects; Skm is the two-locus genetic effect design matrix which is the Kronecker product of 

the design matrix of loci B and A. From NOIA one-locus statistical model (equation (5)), the two-

locus modeling vectors Gkm, Ekm and design matrix Skm can all be obtained by the Kronecker 

product of one-locus modeling as follows:  

Gkm � 5GmWWGmW`Gm``
; n 5GkWWGkW`Gk``

; �
"
###
###
#$

GmWW · GkWWGmWW · GkW`GmWW · Gk``GmW` · GkWWGmW` · GkW`GmW` · Gk``Gm`` · GkWWGm`` · GkW`Gm`` · Gk``&
'''
'''
'(

�
"
##
##
#$

G����G���G��G���G��G�G��G�G&
''
''
'(

,                              (10) 

Skm4 � Sm4nSk4 �
"#
$1 2N7m 2 oW`o``Ip1 1 2 N7m 
oWWo``Ip1 2 2 N7m 2 oWWoW`Ip &'

( n
"#
$1 2N7k 2 bW`b``Iq1 1 2 N7k 
bWWb``Iq1 2 2 N7k 2 bWWbW`Iq &'

(
,        (11) 

Ekm4 � Em4nEk4 � ) 1αkδk* n ) 1αmδm* �
"
###
##$

μαkδkαmααδαδmαδδδ&
'''
''(

.                           (12) 
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Therefore, the vector of genotypic values, Gkm, can be expressed as 

"
##
##
#$

G����G���G��G���G��G�G��G�G&
''
''
'( �

"#
$1 2N7m 2 oW`o``Ip1 1 2 N7m 
oWWo``Ip1 2 2 N7m 2 oWWoW`Ip &'

( n
"#
$1 2N7k 2 bW`b``Iq1 1 2 N7k 
bWWb``Iq1 2 2 N7k 2 bWWbW`Iq &'

(
"
###
##$

μαkδkαmααδαδmαδδδ&
'''
''(

.            (13) 

        Through this derivation, we obtain the coding matrix, Skm4, for two-locus association along 

with gene-gene interactions modeling testing by linear regression. For this model, there are nine 

parameters to be inferred, including one baseline term (μ), two additive terms (αkand αm), two 

dominant terms (δk and δm), and four interaction terms (αα, δα, αδ and δδ). This was a full model 

including both additive effects and dominant effects. Reduced models, including additive, dominant, 

and recessive models, were also extended (Appendix 2.1).   

        As described in Section 1.2, the one-locus genotypes are usually coded as (-1, 0, 1) or (0, 1, 2) 

for the additive effect in the usual approach. Dominance effect is sometimes added for full modeling. 

Both of these two models are called a functional model, as it reflects the functionality of the alleles at 

the locus. Unlike the statistical model, the genetic effects from this functional model are using 

natural substitutions rather than based on the population effects which depend upon genotype 

frequencies. Similarly, using the (0, 1, 2) coding approach in equation (3), the two-locus genetic 

effect design matrix can be obtained as the Kronecker product of the two design matrices, 

Skm. � Sm.nSk. � )1 0 01 1 11 2 0* n )1 0 01 1 11 2 0* �
"
###
##$

1 0 01 1 11 2 0
0 0 00 0 00 0 0

0 0 00 0 00 0 01 0 01 1 11 2 0
1 0 01 1 11 2 0

1 0 01 1 11 2 01 0 01 1 11 2 0
2 0 02 2 22 4 0

0 0 00 0 00 0 0&
'''
''(

.   (14) 

      Therefore, the genotypic values could be expressed as 
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"
##
##
#$

G����G���G��G���G��G�G��G�G&
''
''
'( �

"
###
##$

1 0 01 1 11 2 0
0 0 00 0 00 0 0

0 0 00 0 00 0 01 0 01 1 11 2 0
1 0 01 1 11 2 0

1 0 01 1 11 2 01 0 01 1 11 2 0
2 0 02 2 22 4 0

0 0 00 0 00 0 0&
'''
''(

"
###
##$

Rakdkamaadadmaddd&
'''
''(

.                      (15) 

Herein we use Greek letters for the genetic effects to distinguish with those from the statistical 

model. Reduced models, including additive, dominant, and recessive models, were also extended for 

the usual functional model (Appendix 2.1). As in the one-locus functional model, the estimation of 

the parameters was not based on the genotype frequencies and therefore reflects the main and 

interaction effects in a different way compared with the NOIA model. This model is also not 

orthogonal. The relationship between the NOIA statistical model and usual functional model can be 

derived through Skm.Ekm. � Skm4Ekm4 [21] as follows: 

"
###
##$

Rakdkamaadadmaddd&
'''
''( � gSkm.�� · Skm4h ·

"
###
##$

μαkδkαmααδαδmαδδδ&
'''
''(

.                                        (16) 

2.1.2 Simulation Studies on Quantitative Traits and Qualitative Traits 

        We performed simulation analyses for both quantitative and case-control traits by applying the 

NOIA statistical GxG interaction model and the usual functional GxG interaction model. 

        To simulate samples of independent individuals with a quantitative trait controlled by two 

diallelic loci, we assumed that there was no linkage disequilibrium among the two markers. For locus 

A, a value of the minor allelic frequency (p) was given in the simulated population. Genotypes A��, 

A� and A were assigned to an individual with probabilities C1 2 pD, 2pC1 2 pDand p 

respectively. Similarly, the minor allelic frequency (p) was given to locus B. Genotype B��, B� and 
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B were assigned to an individual with probabilities C1 2 qD, 2qC1 2 qD and q respectively. From 

a prespecified vector of parameters, Errs.� � �R, ak, dk , ak, dk, aa, ad, da, dd�, we assigned each 

individual a genotypic value according to his/her assigned two-locus genotypes. Then, by randomly 

generating a value from a normal distribution with prespecified mean and variance (0 and σS ), we 

generated an observed phenotype/trait by adding this residual to the previously assigned genotypic. 

We used data from 2000 individuals as a replicate and simulated 1000 replicates for each genetic 

model. 

        In this part of our investigation of quantitative traits, three scenarios were simulated with 

different interaction terms (Table 2.1). The minor allele frequencies for both SNPs were set to 0.3, 

and the residual variance σS was 144.0. The true values of the nine parameters in these three 

scenarios are shown in Table 2.1.  

      To investigate whether the setting of allele frequency influences the testing of the effects, we also 

simulated another scenario for quantitative traits. The minor allele frequency was set to be 0.49. The 

pre-specified value for the other terms remained the same. 

      Ma et al. [22] thoroughly derived the formulation of the statistical model in quantitative traits and 

demonstrated that a similar statistical model could also be defined for a qualitative trait by handling 

the genetic effects as the logit scale of the outcome. Similarly, we performed a case-control 

simulation analysis in our study. We used logistic regression and Bayes theorem to set the genotypic 

values of each individual according to the prespecified genetic effect terms, Errs.�
. For each replicate, 

1000 cases and 1000 controls were simulated, and a total of 1000 replicates were simulated. The 

minor allele frequency was set to 0.30. Three scenarios were simulated with different generating 

values for the interaction terms. The generated values of the parameters in the three different 

scenarios are shown in Table 2.1. 
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Table 2.1 Simulation parameter values of genetic effects for quantitative and case-control traits 

dataset. R is the intercept term; ak and dk are the additive and dominant effects of locus A; am and dm are the additive and dominant effects of locus B; aa, ad, da and dd are the interaction effects 

between locus A and locus B. Interaction coefficients are positive values for scenario 1, negative for 

scenario 2, and zero for scenario 3 which means no interaction. Main additive effect and dominant 

effect all exists in every scenario for both traits.  

 

 t uv wv ux wx uu uw wu ww 

Quantitative trait 

Scenario 1 100.00 1.50 0.40 1.10 0.50 0.80 0.23 0.32 0.12 

Scenario 2 100.00 1.50 0.40 1.10 0.50 -0.80 -0.23 -0.32 -0.12 

Scenario 3 100.0 1.50 0.40 1.10 0.50 0 0 0 0 

Case-control trait 

Scenario 1 -2.0 0.50 0.30 0.40 0.37 0.15 0.08 0.10 0.04 

Scenario 2 -2.0 0.50 0.30 0.40 0.37 -0.15 -0.08 -0.10 -0.04 

Scenario 3 -2.0 0.50 0.30 0.40 0.37 0 0 0 0 

 

2.1.3 Application on Melanoma Susceptibility 

        We applied the NOIA statistical model and the usual functional model to the Cutaneous 

Melanoma (CM) data, samples from a genome-wide case-control study including 1804 cases and 

1026 controls. The SNPs were genotyped from Illumina Omni 1-Quad_v1-0_B array and 783,945 

SNPs remained after the quality control and other filtering procedures were applied [8]. The CM 

samples were collected from patients treated at The University of Texas MD Anderson Cancer 

Center between 1998 and 2008, and the controls were collected from the friends of the patients with 

matched sex and age during the same period. All the participants were non-Hispanic whites. The 

details of the genome-wide case-control study have been described previously [8]. The initial goal of 

that study was to detect novel loci that predisposed whites to CM. The objective of the current study 

was to apply the newly developed methods to validate the already identified potential causal SNPs 
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and gene-gene interactions that contribute to melanoma risk. We also attempted to compare the 

performance of the NOIA statistical model with that of the usual functional model on genetic effects 

detection. Logistic regression was used for the genetic effects estimation, and the P values were 

obtained using the Wald test statistic with the null hypothesis that the coefficient was zero. The 

Manhattan plots for the P values tested for the additive, dominant and interaction effects were 

graphed by Haploview software. 

 

2.2 Results 

2.2.1 Simulation Studies on Quantitative Traits and Qualitative Traits 

        We performed the simulation analysis on both simulated quantitative traits and case-control 

datasets. For each trait, analyses of three scenarios were performed when there were positive, 

negative or zero values for the interaction coefficients (Table 2.1). In each case, the minor allele 

frequency of locus A and locus B was both 0.30, and the residual variance was 144.0 for the 

quantitative trait. 

        First, we performed simulation studies on a quantitative trait under three scenarios. Our first 

simulation exhibited both main effects of two genes and their interactions with the true effect values 

Errs.� � �R, ak, dk , am, dm, aa, ad, da, dd� � � 100.00, 1.50, 0.40, 1.10, 0.50, 0.80, 0.50, 0.32, 0.12� . 
Figure 2.1 illustrates the power of the NOIA statistical model and usual functional model on 

detecting the four main genetic effects including the additive effects and the dominant effects of 

locus A and locus B, and four interaction effects between locus A and locus B. For detecting the main 

genetic effects, the NOIA statistical model clearly had greater power than the usual functional 

model, especially for additive effects (Fig. 2.1, upper panel). The NOIA statistical model also 

exhibited slightly greater or equal power than the usual functional model for detecting the interaction 

effects except the dominance by dominance effect (Fig. 2.1, bottom panel). The density distributions 

of the parameters estimated from these replicates was shown in Figure S2.1. Clearly, the variance of 
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all the main genetic effects (ak, dk , am and dm) and most of the interaction effects (aa, ad and da) 

estimated from the NOIA statistical model was much smaller than those from the usual functional 

model (Fig. S2.1). Furthermore, the estimations of the genetic effects were both accurate for the two 

models, as the peaks were all located around the simulated true values (Fig. S2. 1). 

 
Figure 2.1 Power under different critical values of the P values obtained using the Wald test for the 

quantitative simulation dataset under scenario 1 when the interaction terms were positive.  The upper 

panel is for the additive effects and dominant effects of locus A and locus B, respectively. The 

bottom panel is for the interaction effect between locus A and locus B. The simulating values of the 

genetic effects were Errs.� � � 100.00, 1.50, 0.40, 1.10, 0.50, 0.80, 0.50, 0.32, 0.12�. Corresponding values of the statistical 

genetic effects were Errs4� � �102.39, 2.35, 0.59, 1.97, 0.74,1.04, 0.28, 0.37, 0.12� . 
 

         To explore whether the values of the interaction terms influence the estimations of the 

parameters, we analyzed another scenario in which the interaction effect coefficients were set to be 

negative values and Errs.� � �100.00, 1.50, 0.40, 1.10, 0.50, 20.80, 20.23, 20.32, 20.12�. A similar 

pattern with the first scenario was detected for the power of detecting the genetic effects; however, in 

this scenario the preference of the statistical NOIA model over the usual functional model in 

detecting the main effect of locus A and locus B was not obvious (Fig. 2.2). For some of the 

parameters, the usual functional model even showed slightly greater power than the NOIA statistical 

model.  
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Figure 2.2 Power under different critical values of the P values obtained using the Wald test for the 

quantitative simulation dataset under scenario 2 when the interaction coefficients were negative. The 

upper panel is for the additive effects and dominant effects of locus A and locus B, respectively. The 

bottom panel is for the interaction effect between locus A and locus B. The simulating values of the 

genetic effects were Errs.� � �100.00, 1.50, 0.40, 1.10, 0.50, 20.80, 20.23, 20.32, 20.12�. Corresponding values of the 

statistical genetic effects were Errs4� � �101.49, 0.97, 0.21, 0.63, 0.26, 21.04, 20.28, 20.37, 20.12�.  
 

      We also analyzed a third scenario, in which there were no epistastic effects and only the main 

genetic effects from the two loci influence the trait (Fig. 2.3). In this scenario, the NOIA statistical 

model still had greater power for detecting the main genetic effects (Fig. 2.3, upper panel). The 

NOIA statistical and usual functional model yielded similar false positive rates for detecting the 

interaction effects, both of which were close to the nominal value (Fig. 2.3, bottom panel). The 

density distributions of the parameters estimated from these replicates in scenario 2 and scenario 3 of 

quantitative traits simulations are shown in Figure S2.2-S2.3. 
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Figure 2.3 Power under different critical values of the P values obtained using the Wald test for the 

quantitative simulation dataset under scenario 3 when no interaction effects present. The upper panel 

is for the additive effects and dominant effects of locus A and locus B, respectively. The bottom 

panel is for the interaction effect between locus A and locus B. The simulating values of the genetic 

effects were  Errs.� � �100.00, 1.50, 0.40, 1.10, 0.50, 0.0, 0.0, 0.0, 0.0�. Corresponding values of the statistical 

genetic effects were  Errs4� � �101.94, 1.66, 0.40, 1.30, 0.50, 0.0, 0.0, 0.0, 0.0�. 
 

        Figures 2.4-2.6 show the results obtained from the case-control trait simulations. In Figure 2.4, 

the simulating values of the genetic effects were 

Errs.� � �22.00, 0.50, 0.30, 0.40, 0.37, 0.15, 0.08, 0.10, 0.04�, in which main genetic effects and 

interaction effects influence the outcome trait and the interaction coefficients were positive values.  

Similar to the simulation studies of the quantitative traits, the NOIA statistical model had greater 

power than the usual functional model for detecting most of the genetic effect terms. The parameter 

of the dominant-dominant interaction effect was exactly the same between these two models, which 

is expected from the equation of the models (equation (16)). We can see dd � δδ after computation 

of the equation (16) which means that the parameters are identical. The test statistic for these two 

parameters should be identical too which can be implied from the test statistic of the dominance 

effect detection shown in Section 1.3. Interestingly, when we set the interaction terms to be negative 

values, where Errs.� � �22.00, 0.50, 0.30, 0.40, 0.37, 20.15, 2 0.08, 20.10, 20.04�, the power of 
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both models for detecting additive effects of locus A or locus B were similar to the power of these 

two models when the interaction terms were positive (Fig. 2.5).  

        For the third scenario, in which no interaction effects were present for the case-control trait, the 

power of the NOIA statistical model was still greater than that of the usual functional model to detect 

the main effects, while the false positive rates for detecting the interaction effects remained the same 

(Fig. 2.6). For all the scenarios we simulated, the density distributions of the eight parameters are 

presented in Figure S2.4-2.6. The estimation of the genetic effects was accurate, and the variance of 

the effects from the NOIA statistical modeling was less than that from the usual functional model for 

most parameters.  

      In the above analyses, we simulated the minor allele frequency of the two loci to be 0.3. We also 

studied setting the minor allele frequency to be 0.5 (Fig. S2.7-9). In most scenarios we simulated, the 

NOIA statistical model still had greater power than the usual functional model for detecting the main 

genetic effects and slightly greater power in detecting the interaction effects except for the scenarios 

when the interaction coefficients were negative values (Fig. S2.9). To evaluate the false positive 

rates of the two models, we also simulated a null scenario where no any effect existed. The false 

positive rates of the NOIA statistical model in the 0.05 significance level for detecting the eight 

genetic effects are: 0.051, 0.044, 0.054, 0.044, 0.048, 0.061, 0.055 and 0.058. The false positive rates 

of the usual functional model for detecting the eight genetic effects are: 0.042, 0.04, 0.04, 0.037, 

0.051, 0.058, 0.052 and 0.058. 
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Figure 2.4 Power under different critical values of the P values obtained using the Wald test for the 

case-control simulation dataset under scenario 1 when positive interaction effects present. The upper 

panel is for the additive effects and dominant effects of locus A and locus B, respectively. The 

bottom panel is for the interaction effect between locus A and locus B. The simulating values of the 

genetic effects were  Errs.� � �22.00, 0.50, 0.30, 0.40, 0.37, 0.15, 0.08, 0.10, 0.04�. Corresponding values of the statistical 

genetic effects were  Errs4� � �21.07, 0.78, 0.36, 0.70, 0.45, 0.23, 0.10, 0.12, 0.04 �. 

 
 

Figure 2.5 Power under different critical values of the P values obtained using the Wald test for the 

case-control simulation dataset under scenario 1 when negative interaction effects present. The upper 

panel is for the additive effects and dominant effects of locus A and locus B, respectively. The 

bottom panel is for the interaction effect between locus A and locus B. The simulating values of the 

genetic effects were  Errs.� � �22.00, 0.50, 0.30, 0.40, 0.37, 20.15, 2 0.08, 20.10, 20.04�. Corresponding values of the 

statistical genetic effects were  Errs4� � �21.29, 0.46, 0.24, 0.39, 0.29, 20.23, 20.10, 20.12, 20.04 �. 
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Figure 2.6 Power under different critical values of the P values obtained using the Wald test for the 

case-control simulation dataset under scenario 1 when negative interaction effects present. The upper 

panel is for the additive effects and dominant effects of locus A and locus B, respectively. The 

bottom panel is for the interaction effect between locus A and locus B. The simulating values of the 

genetic effects were  Errs.� � �22.0, 0.5, 0.3, 0.4, 0.37, 0.0, 0.0, 0.0, 0.0�. Corresponding values of the statistical genetic 

effects were  Errs4� � �21.18, 0.62, 0.30, 0.55, 0.37, 0.0, 0.0, 0.0, 0.0�.  
 

2.2.2 Application on a Real Dataset: Melanoma Susceptibility 

        To evaluate the performance of the NOIA statistical model and usual functional model, we 

carried out GWAS in the 2831 white participants, including 1805 cases and 1026 controls. To 

identify novel and verify the previously identified potential causal SNPs, we performed initial 

analyses using the one-locus NOIA statistical additive model. The Q-Q plot for the sample is shown 

in Figure S2.10. No obvious inflation of the test (γ � 1.011) was observed for the test statistic. Same 

estimations for the genetic effects were found for the one-locus usual functional additive model as 

expected (Section 1.4). Next, we applied the one-locus NOIA model with dominance component 

included to the melanoma dataset. SNPs with very few frequency of rare homozygotes (genotype cut 

off value was 0.005) were filtered and the Q-Q plot is shown in Figure S2.11 (γ � 1.014).The one-

locus association results showed that 9 SNPs were significant at the genome-wide association level 

(5.0 � 10��) and 140 SNPs were significant at the 1.0 � 10�
 significance level (Table 2.2 and 

Table S2.1). Of the most significant SNPs that contribute to melanoma risk, two regions were found 
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to be genome-wide significant (Table 2.2). They are located on 15q13.1 (centered at the 

HERC2/OCA2 region and 16q24.3 MC1R region). These two most significant SNPs located in these 

two regions are rs1129038 (P � 3.73 � 10��, odds ratio [OR] = 0.70, 95% confidence interval [CI] 

=0.61-0.79) and rs4785751 (P � 1.13 � 10���, OR=1.43, 95% CI=1.29 -1.60), respectively. The 

risk variants of these two SNPs were A and G, respectively. The SNPs located around MTAP were 

shown to be the third highly significant regions which are located at 9p21.3. The most significant 

SNP, SNP9-21789598 (P � 4.15 � 10��), is located at the 5’-UTR of the MTAP gene, close to the 

CDKN2A gene.  

Table 2.2 Top SNPs result from genome-wide association analysis of melanoma by NOIA statistical 

one-locus model using logistic regression (p � 1.0 � 10��). The odds ratio (OR), confidence 

interval (CI) and P value are shown for the additive effect testing. 

 

CHR SNP A1 A2 A2 freq Position OR(95%CI) P value 
Gene 

Symbol 

16 rs4785751 A G 0.53 88556918 1.43(1.29-1.60) 1.13E-10 DEF8 

16 rs4408545 A G 0.54 88571529 1.43(1.28-1.59) 3.81E-10 AFG3L1 

16 rs11076650 A G 0.46 88595442 1.40(1.26-1.56) 1.65E-09 DBNDD1 

16 rs8051733 A G 0.36 88551707 1.42(1.27-1.59) 2.66E-09 DEF8 

16 rs7195043 A G 0.50 88548362 0.72(0.64.0.80) 5.73E-09 DEF8 

16 rs11648898 A G 0.18 88573487 1.57(1.35-1.84) 1.46E-08 AFG3L1 

15 rs1129038 A G 0.22 26030454 0.70(0.61-0.79) 3.73E-08 HERC2 

16 rs4785752 A G 0.53 88562642 0.73(0.66-0.82) 4.14E-08 DEF8 

16 rs4785759 A C 0.53 88578381 0.73(0.66-0.82) 4.26E-08 AFG3L1 

15 rs12913832 A G 0.78 26039213 1.43(1.25-1.62) 6.15E-08 HERC2 

16 rs10852628 A G 0.31 88607428 1.40(1.24-1.58) 6.94E-08 DBNDD1 

9 rs6475552 A G 0.50 21691674 1.32(1.19-1.48) 3.71E-07 LOC402359 

9 SNP9-21789598 A G 0.49 21789598 0.75(0.68-0.84) 4.15E-07 MTAP 

9 rs7848524 A G 0.50 21691432 0.76(0.68-0.84) 4.28E-07 LOC402359 

16 rs4238833 A C 0.40 88578190 1.34(1.20-1.50) 4.56E-07 AFG3L1 

9 rs2383202 A G 0.49 21700215 1.32(1.19-1.47) 5.24E-07 LOC402359 

9 rs12380505 A G 0.50 21685893 0.76(0.68-0.85) 6.02E-07 LOC402359 

9 rs1335500 A G 0.49 21701675 1.32(1.18-1.47) 6.24E-07 LOC402359 

9 rs1452658 A G 0.50 21690795 1.32(1.18-1.47) 7.22E-07 LOC402359 

 

      To compare the performance of the NOIA statistical model with that of the usual functional 

model on a one-locus association study, we compared the top SNPs identified by these two models in 

a Manhattan plot (Fig. 2.7). The NOIA statistical model showed a highly significant signal in the 

HERC2 regions (Fig. 2.7a) at 15q13.1 whereas the usual functional model did not (Fig. 2.7b). The 



 

 

 

identification of the other two regions at 9p21.3 and 16q24.3 were similar for the two models. The 

results and signals we have reported so far are for the 

signal for the dominance effects

      We further applied the extended 

model (equation (15)) on the two

were incorporated. Attempting to identify potential SNPs that interacted with the two significant 

genes (HERC2 and MC1R) while contributing to the association with melanoma risk, w

rs1129038 and rs4785751, the two most significant SNPs, as the reference SNPs for the two

scan, respectively. We then performed a genome

reference SNPs separately and compared the performa

the usual functional model for detecting 

Figure 2.7 Manhattan plot for the genome

locus scan. Detection of the additive effect through (a) the NOIA statistical model and (b) the usual 

functional model. 

27 

identification of the other two regions at 9p21.3 and 16q24.3 were similar for the two models. The 

results and signals we have reported so far are for the estimation of additive effect. No obvious 

effects was identified by either model (data not shown).  

extended NOIA statistical model (equation (13)) and the usual functional 

on the two-locus association study in which gene-gene interactions testing 

were incorporated. Attempting to identify potential SNPs that interacted with the two significant 

) while contributing to the association with melanoma risk, w

rs1129038 and rs4785751, the two most significant SNPs, as the reference SNPs for the two

performed a genome-wide, two-locus scan by treating these two SNPs as 

reference SNPs separately and compared the performance of the NOIA statistical model with that of 

the usual functional model for detecting the main genetic and interaction effects.  

Manhattan plot for the genome-wide association studies of the CM susceptibility by one

locus scan. Detection of the additive effect through (a) the NOIA statistical model and (b) the usual 

identification of the other two regions at 9p21.3 and 16q24.3 were similar for the two models. The 

. No obvious 

 

and the usual functional 

gene interactions testing 

were incorporated. Attempting to identify potential SNPs that interacted with the two significant 

) while contributing to the association with melanoma risk, we selected 

rs1129038 and rs4785751, the two most significant SNPs, as the reference SNPs for the two-locus 

locus scan by treating these two SNPs as 

nce of the NOIA statistical model with that of 

 

wide association studies of the CM susceptibility by one-

locus scan. Detection of the additive effect through (a) the NOIA statistical model and (b) the usual 
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      First, we performed the analysis for SNP rs1129038 in HERC2 region. For the additive effects 

evaluation, the NOIA statistical model still showed a strongly significant signal with P value in the 

1 � 10��� significance level on the two significant regions adjacent to the MTAP and around MC1R  

genes, whereas the functional model had no obvious signal (Fig. 2.8a-b). Compared to the one-locus 

scan (Fig. 2.7a), the overall power for detecting the additive effect did not decrease in the NOIA 

two-locus model when more parameters were added in the model (Fig. 2.7a; 2.8a). This advantage 

did not emerge for the functional model (Fig. 2.7b; 2.8b). Moreover, no significant signal was 

observed for the dominant effects by either model (data not shown). For the four interaction terms, 

except the dominant-by-additive (da) interaction term, no obvious signal was identified by either 

model. A series of significant SNPs around gene IL31RA (interleukin-31 receptor A) and DDX4 on 

chromosome 5 were identified by the NOIA statistical model for interaction with rs1129038 at the 

dominant-by-additive interaction term (Fig. 2.8c), where the da term means the interaction between 

the additive effect of the rs1129038 and the dominant effect of the candidate interacted SNP. These 

signals were not identified by the usual functional model (Fig. 2.8d). We then checked the linkage 

disequilibrium (LD) status between the significant SNPs around the IL31RA gene and the significant 

SNPs around the DDX4 gene, showing that the two genes are in strong LD. 

      Table 2.3 presents the top SNPs interacted with rs1129038 at the  da interaction term analyzed 

by the NOIA statistical two-locus interaction model. Four SNPs near IL31RA and three SNPs near 

DDX4 were showing significant interaction with rs1129038 at the 1.0 � 10�� significance level. 

However, other than the da interaction effect and the main additive effect from rs1129038, no main 

effects from the candidate interacted SNPs were identified.   

 

 

 

 



 

 

 

 

 

 

Figure 2.8 Manhattan plot for the genome

locus scan for rs1129038. Detection of the additive effect (

statistical model and (b) the usual functional model; detection of the dominant

effect (  and ) through (c) the NOIA statistical model and (d) the usual functional model. 

       

      Similarly, we compared the performance of the gene

that interacted with rs4785751 

statistical model and that of the usual functional model on detection of the main additive effects, the 

former still remained the signal for those identified strongly associated regions while the latter did 

not (Fig. 2.9). No interaction effects were ident
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Manhattan plot for the genome-wide association studies of the CM susceptibility by two

locus scan for rs1129038. Detection of the additive effect ( and ) through (a) the NOIA 

statistical model and (b) the usual functional model; detection of the dominant-additive interaction 

) through (c) the NOIA statistical model and (d) the usual functional model. 

Similarly, we compared the performance of the gene-gene interaction models for detecting genes 

 located around MC1R gene. Comparing the performance of the NOIA 

statistical model and that of the usual functional model on detection of the main additive effects, the 

former still remained the signal for those identified strongly associated regions while the latter did 

action effects were identified by either model for rs4785751 (data not shown).

 

tudies of the CM susceptibility by two-

) through (a) the NOIA 

additive interaction 

) through (c) the NOIA statistical model and (d) the usual functional model.  

gene interaction models for detecting genes 

performance of the NOIA 

statistical model and that of the usual functional model on detection of the main additive effects, the 

former still remained the signal for those identified strongly associated regions while the latter did 

751 (data not shown). 
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Table 2.3 P values for the main effects and interaction effects when rs1129038 are used for reference 

SNP in the two-locus association analysis by NOIA statistical model (p � 10��).  Add=additive 

effect, Dom=dominant effect, Add-Add=additive-additive interaction effect, Dom-Add=dominant-

additive interaction effect; Add-Dom=additive-dominant interaction effect; Dom-Dom=dominant-

dominant interaction effect. Locus B is the reference SNP, rs1129038; Locus A is the candidate 

interacted SNP that scanned from the whole genome. 

 

CHR SNP Coordinate 
Gene 

Symbol 

P value 

Add_

A 

Dom_

A 
Add_B 

Dom_

B 

Add-

Add 
Dom-Add 

Add-

Dom 

Dom-

Dom 

5 rs6871296 55175024 LOC40221

6 

0.07 0.02 5.78E-08 0.46 0.45 1.06E-07 0.90 0.91 

5 rs3857290 55182187 IL31RA 0.08 0.03 6.26E-08 0.45 0.45 2.57E-07 0.87 0.83 

5 rs6876491 55181692 IL31RA 0.04 0.02 4.19E-08 0.33 0.47 5.37E-07 0.86 0.92 

5 rs10042075 55178483 IL31RA 0.03 0.01 3.01E-08 0.35 0.51 6.03E-07 0.86 0.73 

5 rs327240 55216666 IL31RA 0.02 0.25 2.61E-08 0.34 0.61 1.20E-06 0.75 0.27 

5 rs3843458 55090435 DDX4 0.03 0.12 6.69E-08 0.26 0.46 2.60E-06 0.70 0.60 

5 rs957459 55118231 DDX4 0.07 0.05 6.65E-08 0.28 0.46 2.92E-06 1.00 0.36 

5 rs10035707 55098280 DDX4 0.06 0.05 6.43E-08 0.28 0.46 4.07E-06 0.99 0.33 

10 rs12775320 78584174 KCNMA1 0.61 0.42 1.95E-07 0.00 0.50 6.58E-06 0.78 0.51 

4 rs6825100 17305532 KIAA1276 0.27 0.10 7.30E-08 0.15 0.49 9.49E-06 0.04 0.28 

 

      Finally, we also applied the reduced NOIA statistical model and the reduced usual functional 

model, the additive models (details shown in Appendix 2.1), for detecting the gene-gene interactions 

that contribute to melanoma risk.  For the second reference SNP, rs4785751, significant SNPs were 

identified for the additive-by-additive interaction effect (p value=7.07 � 10��) by both the NOIA 

and usual additive models (Table 2.4). These SNPs are located in chromosome 4 close to gene 

PGRMC2.  

 

 

 



 

 

 

Figure 2.9 Manhattan plot for the genome

locus scan for rs4785751. Detection of the additive effect (

model and (b) the usual functional model.

 

Table 2.4 p values and estimates for the main effects and interaction effects when rs4785751 was 

used for reference SNP in the two

( ).   

 

CHR SNP Coordinate 

4 rs10009093 143849384 

4 rs10019366 129459033 

4 rs4975181 129466845 

4 rs11723210 129500895 
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Manhattan plot for the genome-wide association studies of the CM susceptibility by two

locus scan for rs4785751. Detection of the additive effect (  and ) through the NOIA statistical 

model and (b) the usual functional model. 

p values and estimates for the main effects and interaction effects when rs4785751 was 

used for reference SNP in the two-locus association analysis by NOIA additive statisti

Gene 

Symbol 

Estimates 

Add_A Add_B Add-Add Add-A 

FLJ44477 0.08 0.37 -0.55 0.32 

PGRMC2 0.02 0.36 -0.44 0.76 

PGRMC2 0.10 0.37 -0.35 0.09 

PGRMC2 0.06 0.36 -0.45 0.44 

 

wide association studies of the CM susceptibility by two-

through the NOIA statistical 

p values and estimates for the main effects and interaction effects when rs4785751 was 

locus association analysis by NOIA additive statistical model 

P value 

Add_B Add-Add 

5.29E-11 7.07E-06 

1.09E-10 9.23E-06 

8.91E-11 9.71E-06 

1.24E-10 9.84E-06 



 

 

32 

 

2.3 Discussion 

      In most scenarios we simulated, the NOIA statistical model presented greater power for detecting 

additive effects and some interaction effects compared with the usual functional model. The NOIA 

model also yielded more precise estimators. Moreover, the investigation of type I error showed no 

significant difference of these two models. Real data analyses on the melanoma dataset also showed 

preference of the NOIA statistical model by one-locus and two-locus genome-wide scan. The 

epistasis analyses on the melanoma dataset showed that the NOIA statistical model preserved power 

for detecting the main genetic effects. The functional model lost power when multiple loci were 

jointly modeled. The NOIA statistical model identified potential epistasis between the rs1129038 

(located around HERC2 gene) and IL31RA gene while the functional model did not. Another 

significant region interacting with rs4785751 near MC1R gene was also identified, PGRMC2 located 

at 4q26, by the NOIA statistical additive model allowing gene-gene interactions.  

      On the other hand, by applying the additive one-locus NOIA model and usual functional model, 

we found that their performance for detecting the additive effect was the same. This can be explained 

by the theoretical evidence in Appendix 2.2. To further explore the reason why the NOIA model has 

preserved power on detecting the additive effect when the dominance component is included, 

whereas the usual model does not, we constructed the test statistic for each model in Appendix 2.2. 

From the test statistics shown there, we can clearly see the underlying mechanism is still related with 

the fact that the covariance between the additive and dominance component is not zero if the usual 

model is applied.  

      We also found another significant characteristic of the NOIA one-locus framework. Both the full 

NOIA and functional models are ill-conditioned if the SNP has only two or less genotypes in the 

population. This arose because of value of the determinant of the design matrix (X�X) is equal to 

zero when the dominance component is included in the testing. For the additive models, the 

determinant of the design matrix is not equal to zero (Appendix 2.2). When the design matrix is 

noninvertible, one needs to use generalized inverses as another alternative in setting up the tests 
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rather than the inverse procedure that in R programming software. It has always been a problem in R 

that the inverse procedures are not robust. Therefore, in our Q-Q plots, the λ values were less than 

1(0.86~0.92) when performing NOIA or usual functional one-locus models with dominance 

component testing on melanoma dataset. After we removed the SNPs with minor genotype 

frequency less than 0.005, the λ values were 1.014 and 1.023 respectively (Fig. S2.11). According to 

our analyses, we suggest to apply the NOIA full model in two stratifications for one-locus scan of 

real data. NOIA full model is preferred for SNPs with three types of genotypes to identify potential 

dominant effects while maintaining the power to detect additive effects. Additive model would be 

better to be applied for those SNPs to get right distribution when they do not have all three 

genotypes. 

      In this section, we compared the NOIA statistical model and usual functional model for 

analyzing epistasis, or gene interactions, for quantitative traits and dichotomous diseases. These two 

models were able to be transformed to each other and they had different meaning for their 

parameters. The NOIA statistical model focuses on the population properties whereas the usual 

functional model focuses on the biological properties. The methodology of the NOIA statistical 

model was developed early in 2007 [21], however their performance on detecting gene-gene 

interactions has not been tested or compared with the other models.  

        For the real data analyses, the NOIA statistical one-locus model provided confirmatory 

evidence of the association of three previously identified causal regions with melanoma risk, HERC2 

at 15q13.1, MC1R at 16q24.3 and CDKN2A at 9p21.3. Compared to the NOIA statistical model, the 

usual functional one-locus model did not detect the most significant region, the HERC2 gene, which 

has been well characterized in the previous studies [8]. When we compare our analyzed results from 

the full usual functional model to those from the usual functional additive model (Fig. 2.7), we found 

that the HERC2 signal was detected very clearly by the usual additive model but not by the usual full 

model. Thus we conclude the NOIA full model has greater power than the usual functional model in 

one-locus genome-wide scans.  
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        The epistasis analyses showed that the power of the NOIA statistical model was greater than 

that of the usual functional model for detecting main genetic effects when interactions are included. 

When two loci and epistasis were modeled together, the usual functional model presented decreased 

power while the statistical model maintained its power for detecting the main genetic effects (Fig. 

2.8a). This result reflects one of the important properties of the NOIA model, orthogonality. Using 

orthogonal models for quantitative traits analysis or binary diseases yields consistent genetic effect 

estimation in reduced models. Here, we clearly see that the functional model had no consistent 

genetic effect estimation when multiple loci were modeled together.  

        Moreover, the NOIA statistical model identified potential epistasis between the rs1129038 

(located around HERC2) and a region at chromosome 5, whereas the functional model did not. This 

associated region is located in the 5’-UTR of IL31RA gene located at 5q11.2 and the intron of the 

gene DDX4 located at 5p15.2-p13.1. The expression of IL31RA is induced in activated monocytes 

and is constitutively expressed in epithelial cells. The interesting aspect of this interaction is that no 

main genetic effect was found for these SNPs. The interaction is based on the dominant-by-additive 

interaction term. Although it is hard to interpret the dominant-additive interaction term here, it is 

possible that only the reference locus (rs1129038) has a main effect while a significant interaction 

effect exists for gene-gene interaction models. Another significant region that interacted with 

rs4785751, PGRMC2 located at 4q26, was also identified, by the NOIA additive model. This is the 

first report of the implication of potential genes and regions that were shown to interact with SNPs 

associated with melanoma risk. If these interactions are confirmed by validation studies, there will be 

no doubt that the NOIA statistical model is preferred for epistasis detection compared to the usual 

functional model.  

        Whether there are factors that influence interaction effects without playing marginal/main 

effects has been a critical issue in genetic association studies [55]. In single-locus analysis, each 

locus is considered separately. Therefore, factors that influence interaction effects but not marginal 

effects will be missed, as they do not lead to marginal correlation between the genotype and outcome 
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phenotype. Our results highlight the application of NOIA interaction models for detecting both main 

and interaction effects, which could explain more heritability of human complex diseases. The usual 

functional models do not have this advantage because they may lose power when more parameters 

are added to the modeling. 

      Beyond two-locus interactions, we may also expect interaction of multiple loci, for instance, 

three-locus interactions. One may simply extend the full and additive NOIA statistical models by 

straightforwardly applying Kronecker products to additional loci. The NOIA three-locus interaction 

models on the significant SNPs contributing to the melanoma risk showed no signal for higher 

dimensional interactions. We also applied the three-locus interaction models on the significant SNPs 

contributing to lung cancer (the dataset we will use in next section) and we did not detect any three 

dimensional interactions. This may be because even less power is available to detect higher-order 

models. Large datasets will be required to estimate these parameters accurately. Interpreting the 

interactions is also complicated even for two-locus interactions. Validation from replication analysis 

and experiments to explain how these factors interact with each other is a challenging task. The 

underlying mechanism of the interactions may also difficult to explain. 

        The difference between the NOIA statistical model and the usual functional model lies in their 

focus. The former is characterized by orthogonal parameters that denote average effects of allele 

substitutions over population, whereas the latter focuses on the natural allele substitutions for 

parameter estimation. They are different viewpoints of a similar analysis. Nonetheless, when 

investigating the epistasis or gene-environment interactions, choosing the most appropriate 

framework is still important. We still recommend using the NOIA statistical model for epistasis 

study because of its greater power and its desired statistical properties. 
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CHAPTER 3 

Natural and Orthogonal Interaction Framework for Modeling Gene-Environment 

Interactions with Application to Lung Cancer 

 

      GWASs have not been effective in identifying much of the heritability of the human diseases as 

single SNP is isolated and analyzed by this approach. Much heritability has not been able to be 

explained especially when multiple loci or binary environmental exposure are jointly influencing 

disease risk. In the previous section, we formulized the NOIA orthogonal model on modeling joint 

contribution of multiple loci to the diseases development or quantitative levels of a trait.  In this 

section, we propose to develop a statistical approach for modeling effects from genetic factors and 

environmental exposure, from the orthogonal NOIA model. We included a binary environmental 

exposure and its interaction with gene in the modeling of a quantitative trait. We evaluated the 

performance of the newly developed NOIA gene-environment (GxE) interaction model by 

comparing its statistical behavior with the usual models on simulated datasets for quantitative traits.  

We also explored the possibility of generalizing the orthogonal models to the analysis of 

binary traits, such as diseases. We found that the meaning of orthogonality is somewhat 

different on the log-odds scale than its original meaning for a quantitative trait: although the 

estimators are no longer orthogonal, the variance decomposition remains orthogonal when 

the log-odds are simply treated as genetic effects under the alternative hypothesis of an 

effect in the NOIA formulation. Our simulation results showed that for both quantitative and 

qualitative traits, the statistical models have higher power than the usual functional ones in 

most of the scenarios we have tested. Used with permission from S. Karger AG, Basel, Ma J. 

et al: Hum Hered 2012; 73: 185–194. [22] 

 

      We then applied the NOIA GxE modeling on a real lung cancer dataset. As widely known, 

smoking is by far the main risk factor of lung cancer as well as genetic factors. Previous studies have 

identified three chromosomal regions at 15q25, 5p15 and 6p21 as being significantly associated with 

the susceptibility of lung cancer [8, 56-58]. Replication studies then indicated interaction of smoking 
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and 15q25 variants in predisposing white populations to lung cancer susceptibility [59]. Our 

motivation is to validate the potential causal variants of lung cancer risk and identify potential 

interactions between these variants and smoking through the newly developed approach. In 

following sections, the performance of the usual functional model and NOIA statistical model will 

also be evaluated for the testing of effects from genetic factors and smoking exposure in full models 

and reduced models. 

 

3.1 Methods 

3.1.1 Methodology Development of the NOIA Gene-Environment Interaction Model 

  One-locus Model 

      We already introduced the one-locus usual functional model and NOIA statistical model in 

Chapter One.  

      As shown in Alvarez-Castro and Carlborg, this statistical model is orthogonal, meaning 

that estimates of these parameters are uncorrelated. The orthogonality of the statistical model 

is also reflected by the fact that the variance of G can be decomposed into those of the 

additive and dominant components. [22]  

      For the analysis of case-control data sampled according to a qualitative trait such as a 

disease, we can define a similar statistical model by treating the genotypic values and the 

genetic effects as the logit (i.e. logarithm of the odds) of the disease. However, two 

important features of the orthogonal models may no long be valid here. First, the estimates 

of parameters using logistic regression are not uncorrelated. Recall that the variance of 

estimates of parameters for linear regression can be expressed as VarCβ�D � σCχ�χD��, 

where χ  is the design matrix, as far as the error terms for all samples are independent and 

identically distributed with variance σ2, which can be shown to be diagonal for the statistical 

model. However, for logistic regression, the variance of estimates of parameters is VarCβ�D � σCχ�νχD��, 

where ν is a diagonal matrix with elements π�GJ1 2 π�GK 

for the i-th individual in the sample with π�G the probability of being affected given the 

values of repressor for the individual.  It can be shown that X�V X �  nS�D�S, 

where 

DE � 5π��C1 2  π��Dp�� 0 00 π�C1 2  π�Dp� 00 0 πC1 2 πDp;, 



 

 

38 

 

and S is a design matrix. This means that, for logistic regression, the statistical model 

defined in equation (5) has no orthogonal estimates as in the case of linear regression, unless 

the gene is not associated with the disease (π� would then assume the same values for all 

genotypes). Second, as will be shown later, the estimates of main effects for a full interaction 

model is no longer the same as the corresponding effects of the reduced models, i.e., the 

single-locus model and the environment-only models. Nevertheless, the orthogonal 

decomposition of variance is still valid here on the log-odds scale. We will therefore apply 

this model to the analysis of case-control data. We will hereafter use a common terminology, 

statistical model, for both quantitative and qualitative trait, and evaluate its performance in 

simulation studies. We do not explicitly model the influence of the genotype frequencies on 

the variance of the regression parameters in logistic regression. We extended the 

formulations for the statistical and functional models to the following three reduced genetic 

models: additive, dominant, and recessive. Used with permission from S. Karger AG, Basel, 

Ma J. et al: Hum Hered 2012; 73: 185–194. [22] 

 

  Gene- Environment Interaction 

      Suppose we have a binary environmental exposure, M, with phenotypic values M� and M for unexposed and exposed individuals, respectively. We denote the unexposed 

frequency by m. A functional model for this environmental exposure is Mrrrs � cM�Md � g1 01 1h c Ra�d, 

with effects defined as Errs� � c Ra�d � g 1 021 1h cM�Md. 

      For a two-level factor, following Alvarez-Castro and Carlborg, the criterion for 

orthogonality can be derived as follows: from the regression model 

1M��M�%M��
3 � 11 00 1% %0 13 cM�Md �  SErrs � XErrs, 

orthogonality requires that X�X �  nS�Z�Z S �  S�DS 
is diagonal, where D � cm� 00 md, 

and m� � m and m � 1 2 m are the exposure frequencies. Since X�X � n < m�s�� � ms� m�s��s� � ms�sm�s��s� � ms�s m�s� � ms @. 

It follows that the model S is orthogonal when m�s��s� � ms�s � 0. 

      Using this criterion, we find that the functional model given above is not 

orthogonal.  

      The orthogonal (or statistical) model for the binary environmental factor is  Mrrrs � cM�Md � g1 m 2 11 m h g µα�h, 

with effects defined as Errs� � g µα�h � g m 1 2 m21 1 h cM�Md. 
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      Applying the Kronecker product rule, we have the following non-orthogonal functional 

model for the gene-environment interaction:  

Grrs�� �
"
###
##$

G��M�G�M�GM�G��MG�MGM&
'''
''( �

"
###
##$

1 0 0 0 0 01 1 1 0 0 01 2 0 0 0 01 0 0 1 0 01 1 1 1 1 11 2 0 1 2 0&
'''
''(

"
###
##$

Ra�d�a�aada&
'''
''(

, 

and the following statistical model: 

Grrs�� �
"
###
###
$1 2N7 2 bW`b``I m 2 1 2Cm 2 1DN7 2 bW`b``I1 1 2 N7 
bWWb``I m 2 1 Cm 2 1DC1 2 N7D 
bWWb``I1 2 2 N7 2 bWWbW`I m 2 1 Cm 2 1DC2 2 N7D 2 bWWbW`I1 2N7 2 bW`b``I m 2m 2 bW`b``I1 1 2 N7 
bWWb``I m mC1 2 N7D 
bWWb``I1 2 2 N7 2 bWWbW`I m mC2 2 N7D 2 bWWbW`I &

'''
'''
(

"
###
#$

µα�δ�α�ααδα&
'''
'(

. 

The relation between the statistical and functional models is 

 

"
###
#$

µα�δ�α�ααδα&
'''
'( �

"
###
##$

1 N7 p� 1 2 m C1 2 mDN7 C1 2 mDp�0 1 p�� 0 1 2 m C1 2 mDp��0 0 1 0 0 1 2 m0 0 0 1 N7 p�0 0 0 0 1 p��0 0 0 0 0 1 &
'''
''(

"
###
##$

Ra�d�a�aada&
'''
''(

. [22]  

The formulation of the three reduced genetic models of the statistical and functional GxE 

and their relationships are shown in the supplementary text in Ma et al. Used with 

permission from S. Karger AG, Basel, Ma J. et al: Hum Hered 2012; 73: 185–194. [22] 

 

3.1.2 Simulation Studies on Quantitative Traits and Qualitative Traits 

      The simulation methods we are using in this section are similar to the simulation methods we 

mentioned in Chapter 2 for GxG interactions. Here, we set the exposed frequency m to be 0.22 for 

the simulated population. The allele frequencies (p) for the SNP were set to 0.30. Genotype 111, 

121, 221, 112, 122, or 222 were assigned to an individual with probabilities C1 2 pDC1 2 mD, 

2pC1 2 pDC1 2 mD, pC1 2 mD, C1 2 pDm 2pC1 2 pDm or pm respectively. From a prespecified 

vector of parameters, Errs.� � �R, aG, dG, aM , aa, da�, we assigned each individual a phenotypic value 
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according to his/her assigned one locus genotypes and exposure status. Then, by randomly 

generating a value from a normal distributions with prespecified mean and variance (0 and σS ), we 

generated an observed phenotype/trait by adding this residual to the previously assigned phenotypic 

value. The residual variance σS was 144.0. We used data from 2000 individuals as a replicate and 

simulated 1000 replicates for each genetic model.  

      In our investigation of quantitative traits, two scenarios were simulated with different effects 

terms.  

      We simulated case-control data with both main and interaction effects using the logistic 

models. If the risk of disease is determined by a diallelic gene and a binary exposure, we 

assume that the penetrance model is given by PrCd � 1|iD � ��fS�bC��GD ,  
where d � 1 denotes  that fact  that an  individual  is affected  and  G�  is the genotypic  

value when the joint genotype is i with i = 111, 121, 221, 112, 122, or 222. Using Bayes’ 

theorem, we have the distributions of the six genotypes in the cases as follows PrCi|d � 1D � �G/J�fS�bC��GDK∑ �H/g�fS�bJ��HKhH  , 

where P�  is the frequency of genotype  i in the population, given by C1 2 pDC1 2 mD, 2pC1 2 pDC1 2 mD, pC1 2 mD, C1 2 pDm 2pC1 2 pDm or pm, respectively, as in the 

simulation of a quantitative trait. Given the genotypic values and the frequencies of the joint 

genotypes, this expression was used for simulating joint genotypes of cases. For the 

simulation of controls, we have a similar expression: PrCi|d � 0D � �G/J�fS�bC��GDK∑ �H/g�fS�bJ��HKhH  . 

The genotypic values were determined from pre-specified genetic effects, Errs. It should be 

noted that, unlike the simulated data for a quantitative trait, not only the allele frequencies, 

but also the genetic effects, in the simulated case-control data are usually different from the 

corresponding pre-specified values (population parameters) because of ascertainment bias. 

Used with permission from S. Karger AG, Basel, Ma J. et al: Hum Hered 2012; 73: 185–

194. [22] 

 

      For the case-control trait, two scenarios were simulated with different effects terms. The minor 

allele frequencies for the markers were set to 0.25. The unexposed frequency was set to 0.22. The 

residual variance σS was 144.0. We used data from 2000 individuals as a replicate and simulated 

1000 replicates for each genetic model. 

3.1.3 Application on Lung Cancer Susceptibility 

      We applied the NOIA statistical model and the usual functional model to the ILCCO 

(International lung cancer consortium) data, consisting of 17 independent case-control 



 

 

41 

 

studies (most but not all of the original studies agreed to participate in this study). The 

objectives of the consortium are to share data to increase statistical power, reduce 

duplication of research efforts, replicate novel findings, and realize substantial cost savings. 

Details of the participating studies have been described previously [59]. Our goal here was to 

examine how genetic variants, which have been identified through GWAS, may interact with 

smoking in determining the risk of lung cancer by pooling the datasets. Here, we focused on 

six SNPs in three regions: rs2736100 and rs402710 (5p15), rs2256543 and rs4324798 

(6p21), and rs16969968 and rs8034191 (15q25). Our analysis included 17836 Caucasians 

with 7392 cases and 10444 controls after quality control. For both NOIA statistical model 

and the usual functional model, logistic regression was performed with sex, age and study 

group as covariates. Used with permission from S. Karger AG, Basel, Ma J. et al: Hum 

Hered 2012; 73: 185–194. [22] 

 

      A wald test was performed for the null hypothesis test that there is no association. The testing 

models can be generally shown as following, 

Logit (qualitative trait) = β0 + β1*G + β2*E + β3*GxE + sex + age+D�+…+D�. 

In the above expression, G denotes the genetic value; � denotes the environmental exposure value 

which is cigarettes smoking status here (0 for non-smokers and 1 for smokers); GxE is for the 

interaction values between the genetic effect and environmental effect.  D� (i=1, 2…16) is the 

dummy variable for the independent study groups. For both the NOIA statistical models and the 

usual functional models, logistic regression was performed, with sex, age and study group as 

covariates. We applied the full models including GxE interactions testing, the reduced models 

including GxE interactions testing, the full models without GxE interactions testing and the additive 

models without GxE interactions testing to the ILCCO dataset. 

 

3.2 Results 

3.2.1 Simulation Studies on Quantitative Traits and Qualitative Traits 

       We conducted extensive simulation analyses on both simulated quantitative traits and case-

control traits.  First, we performed simulation studies on a quantitative trait under two scenarios. The 

pre-specified minor allele frequency and exposure frequency was 0.30 and 0.22 respectively. The 

simulating residual variance was 144.0.  
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      Our first simulation exhibited both effects from the gene and the environmental factor along with 

the interactions. The true effect values were 

Errs.� � �R, a�, d� , a�, aa, da� � � 100.0,  3.0,  1.0,  2.0,  1.5,  1.0�. The corresponding statistical 

genetic effects values Errs4�
could then be calculated by the minor allele frequency, exposure frequency 

and the actual functional terms. Then, we got 

Errs4� � �μ, α�, δ� , α�, αα, δα� � �101.75,  4.18,  1.22,  2.71,  2.2,  1.0�. Figure 3.1 illustrates the 

power of the NOIA statistical model and usual functional model on detecting the effects from the 

genetic factor including the additive and dominant effects, the environmental exposure, and the 

additive-by-environment interaction. For detecting the main genetic effects and environmental 

effects, the NOIA statistical model clearly showed greater power than the usual functional model, 

especially for additive effects (Fig. 3.1, upper panel and left bottom panel). The NOIA statistical 

model also exhibited slightly greater power than the usual functional model for detecting the 

interaction effects (Fig. 3.1, right bottom panel). The density distribution of the parameters estimated 

from these replicates was shown in Figure S3.1. Clearly, the variance of the genetic additive effect 

and interaction effect estimated from the NOIA statistical model was much smaller than that from 

the usual functional model (Fig. S3.1). The variance of the other effects estimated from these two 

models was very close to each other. Furthermore, the estimations of the genetic effects were both 

accurate for the two models, as the peaks were all located around the simulated true values (Fig. S3. 

1).  
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Figure 3.1 Power under different critical values of the P values obtained using the Wald test for the 

simulated data with a quantitative trait influenced by a genetic factor and an environmental factor. 

The pre-specified minor allele frequency and exposure frequency was 0.30 and 0.22 respectively. 

The simulating residual variance was 144.0. The values of the six parameters of the genetic 

effects were Errs.� � � 100.0,  3.0,  1.0,  2.0,  1.5,  1.0�. The corresponding statistical genetic effects 

were Errs4� � �101.75,  4.18,  1.22,  2.71,  2.2,  1.0�.  
 

      Another simulation was performed for a scenario where a quantitative trait is only influenced 

by a genetic factor. The true effect values were Errs.� � � 100.0,  3.0,  1.0,  0.0,  0.0,  0.0�. The 

corresponding statistical genetic effects were Errs4� � �101.16,  3.70,1.00,0.00,0.00,0.00�. Figure 

3.2 shows the power of the NOIA statistical model and usual functional model on detecting the 

genetic effects, the environmental effect, and additive-by-environment interaction effect. For 

detecting the genetic additive effect, the NOIA statistical model clearly had greater power than 

the usual functional model (Fig. 3.2, upper left panel). For the other two parameters, the false 

positive rates were very close to the nominal level for both the NOIA statistical model and usual 

model (Fig. 3.2, bottom panel). The density distribution of the parameters estimated from these 

replicates was shown in Figure S3.2.  
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Figure 3.2 Power under different critical values of the P values obtained using the Wald test for 

the simulated data with a quantitative trait influenced by a genetic factor. The pre-specified minor 

allele frequency and exposure frequency was 0.30 and 0.22 respectively. The simulating 

residual variance was 144.0. The values of the six parameters of the genetic effects were Errs.� � � 100.0,  3.0,  1.0,  0.0,  0.0,  0.0�. The corresponding statistical genetic effects were Errs4� � �101.16,  3.70,1.00,0.00,0.00,0.00�.  
 

      Figures 3.3-3.4 show the results obtained from the case-control trait simulations. For the scenario 

when both a genetic factor and an environment factor influence the trait, the true effect values were 

�22.0,  0.3,  0.1,  0.2,  0.1,  0.04�. The corresponding statistical genetic effects were 

�21.75,  0.38,  0.11,  0.27,  0.12,  0.04�. Figure 3.3 shows that for detecting the main genetic effects 

and environmental effects, the NOIA statistical model clearly had greater power than the usual 

functional model, especially for additive effects (Fig. 3.3). The NOIA statistical model also exhibited 

slightly greater power than the usual functional model for detecting the interaction effects (Fig. 3.3, 

right bottom panel). The density distribution of the parameters estimated from these replicates was 

shown in Figure S3.3. Still, the variance of the genetic additive effect, environmental effect and 
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additive-by-environment interaction effect estimated from the NOIA statistical model was much 

smaller than that from the usual functional model (Fig. S3. 3).  

 

Figure 3.3 Power under different critical values of the P values obtained using the Wald test for the 

simulated data with a case-control trait influenced by a genetic factor and an environmental factor. 

The pre-specified minor allele frequency and exposure frequency was 0.25 and 0.22 respectively. 

The values of the six parameters of the genetic effects were Errs.� ��22.0,  0.3,  0.1,  0.2,  0.1,  0.04�. The corresponding statistical genetic effects were Errs4� ��21.75,  0.38,  0.11,  0.27,  0.12,  0.04�.  
 

      For the scenario when only a genetic factor influences the case-control trait (Fig. 3.4), the true 

effect values were �22.0,  0.4,  0.2,  0.0,  0.0,  0.0�. The corresponding statistical genetic effects were 

�21.73,  0.5,  0.2,  0.0,  0.0,  0.0�. For detecting the genetic effect, the NOIA statistical model clearly 

had greater power than the usual functional model, especially for the additive effect (Fig. 3.4, upper 

panel). For the other two parameters, the false positive rates were very close to the nominal level for 

both the NOIA statistical model and usual model (Fig. 3.4, bottom panel). The density distribution of 

the parameters estimated from these replicates was shown in Figure S3.4. 
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Figure 3.4 Power under different critical values of the P values obtained using the Wald test for the 

simulated data with a case-control trait influenced by a genetic factor. The pre-specified minor allele 

frequency and exposure frequency was 0.25 and 0.22 respectively. The values of the six parameters 

of the genetic effects were Errs.� � �22.0,  0.4,  0.2,  0.0,  0.0,  0.0�. The corresponding statistical 

genetic effects were Errs4� � �21.73,  0.5,  0.2,  0.0,  0.0,  0.0�.  
 

      To evaluate the false positive rate of the two models, we also simulated a null scenario where 

no any effect influences the quantitative trait. The false positive rates of the NOIA statistical 

model in the 0.05 significance level for detecting the five effects are: 0.058, 0.053, 0.043, 0.052 

and 0.049. The false positive rates of the usual functional model for detecting the five effects are: 

0.058, 0.058, 0.061, 0.055 and 0.05. They are very close to the nominal level for both models. For 

the qualitative traits, the false positive rates of the NOIA statistical model in the 0.05 significance 

level for detecting the five effects are: 0.047, 0.045, 0.047, 0.052 and 0.052. The false positive 

rates of the usual functional model for detecting the five effects are: 0.06, 0.05, 0.059, 0.058 and 

0.052. The functional model has slightly higher false positive rates than the NOIA statistical 

model when applied on qualitative traits. 
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3.2.2 Application of the NOIA Model on Lung Cancer Susceptibility 

      Next, we conducted real data analyses by applying the NOIA statistical model and usual 

functional model to the ILCCO dataset. The statistics of the samples and the summary of the 

SNPs that we used in ILCCO dataset are shown in Table S3.1 and Table S3.2, respectively. There 

are about 41% females and 59% males in cases, 48% females and 52% males in controls. The 

distribution of the age and smoking status among cases and controls are also shown in Table S3.1. 

The risk allele and the minor allele frequencies for the 6 SNPs under investigation are shown in 

Table S3.2. We mainly focus on the three chromosomal regions (5p15, 6p21 and 15q25), 

including 6 potential causal variants. First, to evaluate the performance of the NOIA statistical 

model and usual functional model, we applied the additive models with no interaction effects 

testing to the dataset. The odds ratio with 95% confidence intervals and P values estimated from 

the NOIA statistical model and usual functional model are shown in Table 3.1. The two models 

had similar performance on detecting the genetic additive effect and smoking exposure effect. 

Consistent with previously published results, both models detected significant additive effects 

from 5p15 and 15q25. Table 3.2 shows the results when additive-by-smoking (Add-SM) 

interaction effect is incorporated in the models. Both models identified potential Add-SM 

interactions from the rs2256543 on 6p21 and the two SNPs on 15q25 predisposing to the lung 

cancer risk. The NOIA statistical (NOIA-Stat) model showed greater power on detecting the 

additive effect and same power on detecting the Add-SM interaction effect than the usual 

functional (Usual-Func) model. Comparing Table 3.1 and Table 3.2, we clearly state that after the 

Add-SM interaction term is added into the modeling, the additive Usual-Func model has 

extremely larger P values on detecting the additive effect than those obtained before, whereas the 

additive NOIA-Stat model preserved the power.       

      We then attempted to apply the full NOIA-Stat model with dominance component and the full 

Usual-Func model with dominance component to the ILCCO dataset. First, we performed the full 

models without GxE interactions testing. Table 3.3 illustrates the odds ratio with 95% confidence 
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intervals and P values. The full NOIA-Stat model and Usual-Func model had close coefficient 

estimators and P values on testing the significant additive effects from 5p15 and 15q25. Still, the 

P values estimated from the full NOIA-Stat model were slightly smaller than those from the full 

Usual-Func model. Moreover, we performed the full NOIA-Stat and Usual-Func models in which 

testing for additive effects, dominant effects and GxE interactions were incorporated on the real 

dataset (Table 3.4). Only the NOIA-Stat model identified potential Add-SM interactions from the 

rs2256543 on 6p21 contributing to the lung cancer risk. Both models identified the Add-SM 

interactions from the two SNPs on 15q25. Again, the full NOIA-Stat model showed greater 

power for detecting the additive effect compared to the full Usual-Func model. 

      To further validate the potential interaction effects of the two SNPs on 15q25 with smoking 

exposure, we performed stratified analyses on this dataset. First, we stratified the samples into 

two sub-populations: non-smokers and smokers. Then, we used (0, 1, 2) coding for the additive 

effect testing. We used sex, ages, study groups as covariates. The 95% confidence interval of the 

OR and P values are shown in Table 3.5. We can clearly state that the two SNPs on 15q25 are 

extremely significant in smokers (P value=2.08 � 10�Nfor rs16969968, P value=2.50 � 10�� 

for rs8034191) contributing to lung cancer susceptibility. And the two SNPs are not significant in 

non-smokers. 

      For all SNPs and all models, the smoking effect was extremely significant. None of the SNPs 

had significant dominant effect or dominant-smoking interaction effect by any model. For all 

models, the estimation of the effect of sex and age were consistent because they were modeled in 

the same way. Furthermore, to explore whether there are any potential GxG interactions among 

these six SNPs predisposing white population to lung cancer, we performed the GxG models that 

mentioned in Chapter 2 on the ILCCO dataset. No interactions were identified (data not shown).
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Table 3.1 Odds ratio and P values estimated from additive models when there were no interactions modeled 
a
. 

 
 

  
OR(95% CI) p value 

SNPs Model
 b
 Add SM Sex Age Add SM Sex Age 

rs2736100_5p15 Func/Stat 1.17(1.11-1.23) 5.99(5.42-6.63) 1.26(1.16-1.36) 1.01(1.01-1.02) 2.9E-10 8.9E-268 8.8E-09 1.5E-16 

rs402710_5p15 Func/Stat 0.86(0.81-0.90) 6.02(5.42-6.69) 1.26(1.16-1.36) 1.01(1.01-1.02) 7.7E-09 1.5E-244 6.8E-09 3.1E-37 

rs2256543_6p21 Func/Stat 1.03(0.98-1.08) 5.99(5.43-6.62) 1.25(1.16-1.35) 1.01(1.01-1.02) 0.23 1.2E-271 8.2E-09 6.0E-16 

rs4324798_6q21 Func/Stat 1.12(0.95-1.32) 5.93(5.37-6.55) 1.23(1.14-1.32) 1.02(1.02-1.02) 0.28 3.4E-270 3.0E-08 6.1E-29 

rs16969968_15q25 Func/Stat 1.25(1.19-1.31) 5.86(5.31-6.48) 1.23(1.14-1.32) 1.02(1.01-1.02) 1.3E-19 9.3E-266 3.5E-08 4.7E-28 

rs8034191_15q25 Func/Stat 1.29(1.22-1.36) 5.11(4.50-5.81) 1.29(1.19-1.40) 1.02(1.02-1.03) 1.4E-19 1.2E-136 2.6E-09 3.2E-33 

     a. The study group has been used as covariates. Add=Additive effect; SM=smoking;  

     b. Func=The usual functional model; Stat=The NOIA statistical model. 



 

 

50 

 

 

 

 

Table 3.2 Odds ratio and P values estimated from additive models when interactions were modeled 
a 

 
 

  
OR(95% CI) p value 

SNPs Model
 b
 Add SM Add-SM Sex Age Add SM Add-SM Sex Age 

rs2736100_5p15 
Usual-Func 1.23(1.10-1.39) 6.02(5.45-6.67) 0.94(0.82-1.07) 1.26(1.16-1.36) 1.01(1.01-1.02) 0.0005 1.6E-265 0.33 9.0E-09 1.6E-16 

NOIA-Stat 1.18(1.12-1.24) 6.00(5.43-6.64) 0.94(0.82-1.07) 1.26(1.16-1.36) 1.01(1.01-1.02) 1.9E-10 2.2E-267 0.33 9.0E-09 1.6E-16 

rs402710_5p15 
Usual-Func 0.88(0.76-1.00) 5.96(5.31-6.71) 0.97(0.84-1.13) 1.26(1.17-1.36) 1.02(1.02-1.03) 0.055 1.2E-195 0.73 7.0E-09 3.1E-37 

NOIA-Stat 0.86(0.81-0.91) 6.01(5.41-6.68) 0.97(0.84-1.13) 1.26(1.17-1.36) 1.02(1.02-1.03) 2.3E-08 4.3E-244 0.73 7.0E-09 3.1E-37 

rs2256543_6p21 
Usual-Func 0.92(0.81-1.03) 6.10(5.52-6.76) 1.15(1.01-1.31) 1.26(1.16-1.36) 1.01(1.01-1.02) 0.15 2.4E-267 0.036 6.6E-09 5.2E-16 

NOIA-Stat 1.02(0.97-1.07) 6.00(5.44-6.64) 1.15(1.01-1.31) 1.26(1.16-1.36) 1.01(1.01-1.02) 0.47 1.2E-271 0.036 6.6E-09 5.2E-16 

rs4324798_6q21 
Usual-Func 1.07(0.64-1.64) 5.80(5.22-6.47) 1.05(0.66-1.80) 1.23(1.14-1.32) 1.02(1.02-1.02) 0.60 3.0E-66 0.31 3.0E-08 6.2E-29 

NOIA-Stat 1.04(0.95-1.12) 5.94(5.38-6.56) 1.12(0.89-1.41) 1.23(1.14-1.32) 1.02(1.02-1.02) 0.42 2.8E-270 0.31 3.0E-08 6.2E-29 

rs16969968_15q25 
Usual-Func 1.00(0.88-1.13) 6.29(5.66-7.01) 1.31(1.14-1.49) 1.23(1.14-1.32) 1.02(1.02-1.02) 0.99 4.0E-249 0.0001 3.7E-08 2.7E-28 

NOIA-Stat 1.23(1.17-1.29) 5.87(5.32-6.49) 1.31(1.14-1.50) 1.23(1.14-1.32) 1.02(1.02-1.02) 9.2E-16 4.9E-266 0.0001 3.7E-08 2.7E-28 

rs8034191_15q25 
Usual-Func 1.02(0.86-1.21) 5.43(4.74-6.24) 1.29(1.08-1.55) 1.29(1.19-1.41) 1.02(1.02-1.03) 0.79 1.9E-128 0.0057 2.3E-09 1.9E-33 

NOIA-Stat 1.26(1.19-1.33) 5.09(4.48-5.80) 1.29(1.08-1.55) 1.29(1.19-1.41) 1.02(1.02-1.03) 3.1E-15 1.8E-136 0.0057 2.3E-09 1.9E-33 

      a. The study group has been used as covariates. Add=Additive effect; SM=smoking. 

      b. Usual-Func=The usual functional model; NOIA-Stat=The NOIA statistical model. 
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Table 3.3 Odds ratio and P values estimated from full models when no interactions were modeled 
a 

 

 

  
OR(95% CI) p value 

SNPs Model
 b
 Add Domi SM Sex Age Add Domi SM Sex Age 

rs2736100_5p15 
Usual-Func 1.17(1.11-1.23) 1.00(0.93-1.07) 5.99(5.42-6.63) 1.26(1.16-1.36) 1.01(1.01-1.02) 3.4E-10 0.95 1.0E-267 8.8E-09 1.5E-16 

NOIA-Stat 1.17(1.11-1.23) 1.00(0.93-1.07) 5.99(5.42-6.63) 1.26(1.16-1.36) 1.01(1.01-1.02) 2.9E-10 0.95 1.0E-267 8.8E-09 1.5E-16 

rs402710_5p15 
Usual-Func 0.86(0.81-0.90) 0.99(0.91-1.07) 6.01(5.42-6.69) 1.26(1.16-1.36) 1.01(1.01-1.02) 4.0E-07 0.79 1.5E-244 6.8E-09 3.1E-37 

NOIA-Stat 0.86(0.81-0.90) 0.99(0.91-1.07) 6.01(5.42-6.69) 1.26(1.16-1.36) 1.01(1.01-1.02) 7.7E-09 0.79 1.5E-244 6.8E-09 3.1E-37 

rs2256543_6p21 
Usual-Func 1.03(0.98-1.08) 1.02(0.95-1.09) 5.99(5.43-6.62) 1.25(1.16-1.35) 1.01(1.01-1.02) 0.28 0.55 1.1E-271 8.1E-09 5.9E-16 

NOIA-Stat 1.03(0.98-1.08) 1.02(0.95-1.09) 5.99(5.43-6.62) 1.25(1.16-1.35) 1.01(1.01-1.02) 0.23 0.55 1.1E-271 8.1E-09 5.9E-16 

rs4324798_6q21 
Usual-Func 1.12(0.95-1.32) 0.92(0.77-1.11) 5.93(5.37-6.55) 1.23(1.14-1.32) 1.02(1.02-1.02) 0.19 0.38 3.6E-270 2.9E-08 5.9E-29 

NOIA-Stat 1.05(0.97-1.13) 0.92(0.77-1.11) 5.93(5.37-6.55) 1.23(1.14-1.32) 1.02(1.02-1.02) 0.27 0.38 3.6E-270 2.9E-08 5.9E-29 

rs16969968_15q25 
Usual-Func 1.23(1.17-1.30) 1.06(0.99-1.14) 5.86(5.31-6.48) 1.23(1.14-1.32) 1.02(1.01-1.02) 1.3E-15 0.10 1.0E-265 3.9E-08 5.7E-28 

NOIA-Stat 1.25(1.19-1.31) 1.06(0.99-1.14) 5.86(5.31-6.48) 1.23(1.14-1.32) 1.02(1.01-1.02) 9.6E-20 0.10 1.0E-265 3.9E-08 5.7E-28 

rs8034191_15q25 
Usual-Func 1.27(1.20-1.35) 1.05(0.97-1.13) 5.11(4.50-5.81) 1.29(1.19-1.40) 1.02(1.02-1.03) 1.5E-16 0.26 9.7E-137 2.7E-09 3.6E-33 

NOIA-Stat 1.29(1.22-1.36) 1.05(0.97-1.13) 5.11(4.50-5.81) 1.29(1.19-1.40) 1.02(1.02-1.03) 1.1E-19 0.26 9.7E-137 2.7E-09 3.6E-33 

a. The study group has been used as covariates. Add=Additive effect; Dom=Dominant effect; SM=smoking. 

b. Usual-Func=The usual functional model; NOIA-Stat=The NOIA statistical model. 
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Table 3.4 Odds ratio and P values estimated from full models when interactions were modeled 
a 

 

  
OR(95% CI) p value 

SNPs Model
 

b

Add Domi SM Add_SM Domi_SM Sex Age Add Domi SM Add_SM Domi_SM Sex Age 

rs2736100_5p1

5 

Usual-

Func 

1.24(1.10-

1.40) 

1.03(0.87-

1.23) 

6.14(5.37-

7.05) 

0.93(0.82-

1.07) 

0.96(0.80-

1.16) 

1.25(1.16-

1.36) 

1.01(1.01-

1.02) 
0.0005 0.71 3.24E-149 0.3105 0.67 9.07E-09 1.66E-16 

NOIA-

Stat 

1.18(1.12-

1.24) 

1.00(0.93-

1.07) 

6.00(5.43-

6.64) 

0.94(0.82-

1.07) 

0.96(0.80-

1.16) 

1.25(1.16-

1.36) 

1.01(1.01-

1.02) 
1.9E-10 0.97 3.50E-267 0.3212 0.67 9.07E-09 1.66E-16 

rs402710_5p15 

Usual-

Func 

0.87(0.75-

1.02) 

1.00(0.82-

1.23) 

6.02(5.08-

7.16) 

0.98(0.83-

1.16) 

0.98(0.79-

1.22) 

1.26(1.17-

1.36) 

1.02(1.02-

1.03) 
0.0880 0.97 1.35E-93 0.8131 0.88 6.98E-09 3.13E-37 

NOIA-

Stat 

0.86(0.81-

0.91) 

0.99(0.91-

1.07) 

6.01(5.41-

6.68) 

0.97(0.84-

1.13) 

0.98(0.79-

1.22) 

1.26(1.17-

1.36) 

1.02(1.02-

1.03) 
2.29E-08 0.82 4.43E-244 0.7312 0.88 6.98E-09 3.13E-37 

rs2256543_6p2

1 

Usual-

Func 

0.92(0.82-

1.04) 

0.95(0.80-

1.13) 

5.84(5.09-

6.71) 

1.14(1.00-

1.30) 

1.09(0.91-

1.32) 

1.26(1.16-

1.36) 

1.01(1.01-

1.02) 
0.1950 0.55 3.99E-138 0.0579 0.36 6.56E-09 4.90E-16 

NOIA-

Stat 

1.02(0.97-

1.07) 

1.01(0.95-

1.09) 

6.00(5.44-

6.64) 

1.15(1.01-

1.31) 

1.09(0.91-

1.32) 

1.26(1.16-

1.36) 

1.01(1.01-

1.02) 
0.4594 0.68 1.18E-271 0.0370 0.36 6.56E-09 4.90E-16 

rs4324798_6q2

1 

Usual-

Func 

1.07(0.64-

1.64) 

0.86(0.53-

1.49) 

6.11(3.83-

10.46) 

1.05(0.66-

1.80) 

1.08(0.61-

1.82) 

1.23(1.14-

1.32) 

1.02(1.02-

1.02) 
0.7826 0.57 8.06E-13 0.8370 0.78 2.91E-08 5.87E-29 

NOIA-

Stat 

1.04(0.95-

1.12) 

0.92(0.76-

1.11) 

5.94(5.38-

6.56) 

1.12(0.89-

1.41) 

1.08(0.61-

1.82) 

1.23(1.14-

1.32) 

1.02(1.02-

1.02) 
0.4027 0.37 2.90E-270 0.3322 0.78 2.91E-08 5.87E-29 

rs16969968_15

q25 

Usual-

Func 

1.00(0.87-

1.14) 

1.01(0.84-

1.22) 

6.10(5.25-

7.11) 

1.29(1.11-

1.49) 

1.06(0.87-

1.30) 

1.23(1.14-

1.32) 

1.02(1.02-

1.02) 
0.9511 0.91 3.69E-121 0.0007 0.56 4.13E-08 3.48E-28 

NOIA-

Stat 

1.23(1.17-

1.29) 

1.06(0.98-

1.14) 

5.87(5.32-

6.49) 

1.31(1.14-

1.50) 

1.06(0.87-

1.30) 

1.23(1.14-

1.32) 

1.02(1.02-

1.02) 
7.4E-16 0.13 6.94E-266 0.0001 0.56 4.13E-08 3.48E-28 

rs8034191_15q

25 

Usual-

Func 

1.03(0.85-

1.23) 

0.98(0.76-

1.26) 

5.23(4.31-

6.40) 

1.27(1.05-

1.54) 

1.07(0.82-

1.40) 

1.29(1.19-

1.41) 

1.02(1.02-

1.03) 
0.7671 0.89 2.01E-60 0.0165 0.60 2.43E-09 2.19E-33 

NOIA-

Stat 

1.26(1.19-

1.33) 

1.04(0.96-

1.13) 

5.09(4.48-

5.80) 

1.29(1.08-

1.55) 

1.07(0.82-

1.40) 

1.29(1.19-

1.41) 

1.02(1.02-

1.03) 
2.23E-15 0.35 2.10E-136 0.0055 0.60 2.43E-09 2.19E-33 

a. The study group has been used as covariates. Add=Additive effect; Dom=Dominant effect; SM=smoking. 

b. Func=The usual functional model; NOIA-Stat=The NOIA statistical model. 
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Table 3.5 Analyses after stratification by smoking status for rs16969968 and rs8034191 in 

15q25 
a 

 

 
Non-smokers Smokers 

SNPs Add Sex Age Add Sex Age 

OR
 
(95% CI)

 b
 

rs16969968 1.00(0.88-1.13) 1.41(1.17-1.70) 1.00(1.00-1.01) 1.31(1.24-1.38) 1.19(1.09-1.29) 1.02(1.02-1.03) 

rs8034191 1.02(0.86-1.22) 1.95(1.52-2.52) 1.02(1.01-1.03) 1.32(1.25-1.40) 1.21(1.11-1.33) 1.02(1.02-1.03) 

P-value 

rs16969968 0.95 0.0003 0.42 2.08E-23 3.29E-05 1.41E-30 

rs8034191 0.81 2.05E-07 0.003 2.50E-21 2.78E-05 2.90E-29 

a The study group has been used as covariates. Add=Additive effect. 

b OR=Odds Ratio; CI=Confidence Interval 
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3.3 Discussion 

      In this chapter, we described a new extension of the existing NOIA framework which was 

originally developed for testing GxG interactions for quantitative traits. We extended it to include a 

binary environment trait and explored the testing of GxE interactions along with the main effects. 

The NOIA model was also extended to case-control analyses, although some of the important 

properties of the NOIA model did not hold true. One is that estimates of the parameters from logistic 

regression for the case-control trait are no longer statistically uncorrelated under the alternative 

model that there is an association. Also, the estimates of the parameters from logistic regression of 

the full NOIA model are not consistent with those from the reduced (additive) NOIA model. We also 

showed the evidence of the second point by the real data analyses by comparing the results in Table 

3.1 and Table 3.3.  

       By simulation studies, we stated that NOIA statistical models were usually more powerful than 

the functional models for detecting main effects and interaction effects for both quantitative traits 

and binary traits. This point is consistent with the results from real data analyses. When we 

performed additive models without interaction effect testing integrated, the NOIA-Stat model 

showed same performance with the Usual-Func model (Table 3.1). After the interaction effect was 

tested along with the additive effect, the NOIA-Stat preserved the power for identifying the additive 

effects whereas the Usual-Func did not (Table 3.2). When we performed full models without 

interaction effect testing integrated, the NOIA-Stat model presented similar performance with the 

Usual-Func model (Table 3.3). Similarly, after the interaction effect was tested along with the main 

effects, the NOIA-Stat model preserved the power for identifying the main genetic effects, whereas 

the Usual-Func model had greatly larger P values compared with those tested without interaction 

effects incorporated (Table 3.4).     

      The application of the NOIA-Stat model confirmed four SNPs in 5p15 and 15q25 region to be 

significantly associated with lung cancer susceptibility in Caucasians population: rs2736100, 
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rs402710, rs16969968 and rs8034191. The full Usual-Func model failed to identify them or with 

larger P values. We also validated that rs16969968 and rs8034191 in 15q25 region are significantly 

interacted with smoking in Caucasians population by stratification analyses. Potential interactions of 

SNP rs2256543 on 6p21 with smoking on contributing to lung cancer risk are indicated in our study 

which is the first report. It is interesting that no main effects were found for this SNP, however 

which happens in reality [60]. Such cases that display interaction but no marginal effect are usually 

ignored in usual one-locus analyses. However, this interaction needs more evidence to be validated.       

      Comparing the performance of the NOIA statistical model and usual functional model, we can 

clearly state the preference of the NOIA model on modeling GxE interactions for both quantitative 

traits and qualitative traits. Even for one-locus genetic analysis, such as GWAS, one should consider 

applying the statistical model, since it orthogonalizes the additive and dominant effects and hence 

improves power of detecting genetic effects. 
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CHAPTER 4 

The NOIA Model Integrating Parent-of-Origin Effects (POEs) for Association 

Study of QTLs and Complex Diseases 

 

      In this chapter, we propose to implement the NOIA framework by incorporating POEs. The 

highly significant genetic markers identified via GWAS have explained only a proportion of the 

heritability of most human diseases [13, 61]. Genetic imprinting affects expression of genes and may 

explain some of the missing heritability. Both the orthogonal NOIA statistical model and usual 

functional model ignored the important genetic phenomenon, imprinting effects. We propose that 

more disease-associated genes could be detected by incorporating POEs with orthogonal models than 

by using traditional models, and that the NOIA POE model would fulfill the requirement of 

maintaining the power to detect the main allelic effect for complex diseases when multiple loci 

contribute to disease risk. The orthogonality of the statistical formulation of NOIA framework is 

important, especially when multiple loci are contributing to the outcome. We also proposed that 

using Kroneker product rule, our one-locus NOIA POE formulation can be easily extended to the 

general case of multiple loci (and environmental factors) to model general GxG/GxE interactions in 

the presence of imprinting effect, making NOIA a unified framework for detecting GxG/GxE 

interactions along with imprinting effects. Here we focus on one-locus association analysis for 

quantitative trait, implementing NOIA into a POE integrated framework by re-parameterization.  

      From the NOIA statistical model without POE (Stat-Usual, equation (5)) and the traditional 

functional model without POE (Func-Usual, equation (3)), we derived the formulas of several 

different quantitative trait association models, including a statistical POE (Stat-POE) model and a 

functional POE (Func-POE) model. Then, we evaluated the performance of the Stat-POE and Func-
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POE models. We also compared the performance of the POE models (Stat-POE and Func-POE) with 

that of the models without POE incorporated (Stat-Usual and Func-Usual). These studies were all 

performed for both a simulated quantitative trait dataset and a qualitative trait dataset. We found that 

the incorporation of POE into the statistical model did not affect the estimation of the main allelic 

effect. Although our methods are currently developed and evaluated for single locus association 

study, they can be readily extended to gene-gene interaction or gene-environment interaction models.  

      In following sections, considering the orthogonal property of the NOIA statistical model and the 

non-orthogonal functional model mentioned in Chapter 1, we introduce our methodology extension 

of these two models by integrating POE detection. We also sought to evaluate the performance of 

these extended models in detecting both the overall genetic effect and POEs. 

 

4.1 Methodology Development of the POE Models 

      Instead of three genotypic values in usual models without POE incorporation, the vector of 

genotypic values G has four components: G��, G�, G�and G, in which the first allele represented 

by the first digit in the subscript is transmitted from the mother, and the second allele from the father. 

We used N� and N to denote the number of maternal and paternal reference allele A, 
respectively. N1 and N2 are independent variables with binomial distributions, respectively. 
That is, 

N� �  0    if G � G�� or G�1    if G � G� or G ¡ ,                                                (17a) 

N �  0    if G � G�� or G�1    if G � G� or G ¡.                                                 (17b) 

      Similar to equation (1), the vector of the observed phenotypes G� can be expressed as G� � Z · G 

and 
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"#
$G��G�%%G�� &'

( �
"
###
#$

1 0% %0 1% %
0 0% %0 0% %0 0% %0 0% %
1 0% %0 1% % &

'''
'( · 1G��G�G�G

3, 

where the new n rows of matrix Z represents the corresponding genotype for each individual.  

      First, we extended the usual functional (Func-Usual, equation (3)) and statistical model (Stat-

Usual, equation (5)) by decomposing the additive effects into paternal and maternal additive effects 

(see Appendix 3.1). In the process of extension of the statistical model, our motivation was to 

incorporate POE detection while still maintaining its orthogonality. Next, these models were 

transformed into an equivalent but more comprehensive framework, which was straightforward for 

detecting the main allelic additive effect and POE simultaneously. The main allelic effects denote the 

overall additive effect on the outcome trait conferred by this allele, and the POE is defined as the 

imprinting effect of the allele with paternal origin over the same allele with maternal origin. The 

following subsections depict the developed models, and Appendix 3.1 shows the details about how 

we derived these new models. 

4.1.1 The POE Functional (Func-POE) Model  

      First, we defined r� and r as the main allelic additive effect and POE of the locus, or gene, 

respectively. Then, we extended the functional model (3) to the following, 

G � R � FWfF` r� � F`�FW r � εd,                                                (18) 

which could be also expressed as 

1G��G�G�G
3 � S.`E.` �

"#
$1 01 �

0 0� 11 �1 1 2 � 10 0&'
( 5 Rr�rd ;.                                    (19) 

The inverse is  
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E.` � 5 Rr�rd ; � S.` ��G � 1 1 021 0 0 00 10 12 � �
21 0� 2 �

3 1G��G�G�G
3.                         (20) 

4.1.2 The POE Statistical (Stat-POE) Model 

      Here we let γ� and γ denote the main allelic additive effect and POE of the locus, or gene, 

respectively. Similarly, we extended the orthogonal statistical model (5) to following. 

G � μ � FWfF`�CF7WfF7`D γ� � F`�FW�CF7 `�F7 WD γ � εδ,                            (21) 

where N7�and N7 denote the means of N�and N, respectively, whereas V�and  V denote the variance 

of N�and N, respectively. In the models without POE incorporated (Func-Usual and Stat-Usual), 

p� relates to the probability of an allele that has an allele A1 from either parent. In our new models, 

the meaning of p� is different since it relates to the probability of an allele that has allele A1 from 

the mother and allele A2 from the father. p� denotes the probability of an allele that has allele A2 

from the mother and allele A1 from the father. Thus,  

N7� � p� � p, 

N7 � p� � p, 

V� � Cp� � pDCp�� � p�D � N7�C1 2 N7�D, 

V � Cp� � pDCp�� � p�D � N7C1 2 N7D. 

      Therefore, according to equation (21), the vector of genotypic values can be expressed as 

1G��G�G�G
3 � S4`E4` �

"
###
$ 1 �CF7 WfF7`D1 ��CF7WfF7 `D

�CF7`�F7WD     ε����CF7`�F7WD     ε�    1 ��CF7WfF7`D    1 1 2 F7 WfF7 `
���CF7`�F7 WD ε��CF7`�F7WD ε &

'''
( 5 μγ�γδ ;,                   (22) 

where  

ε � 5ε��ε�ε�ε
; � 122p�p�p/D2p��p�p/D2p��p�p/D22p��p�p�/D3,                                       (23) 
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and 

D � p�p�p � p��p�p � p��p�p � p��p�p�.                         (24) 

      The inverse is then E4` � S4` ��G which can be expressed as 

5 μγ�γδ ; �
"#
$ p�� p�p��EE �p��E p�EE �p�E p� pp�EE �p�E   pEE �pE  p��EE 2p��E  p�EE 2p�E   2 � �

p�EE 2p�E pEE 2pE� 2 � &'
( 1G��G�G�G

3,                (25) 

If we define 

¢p�AE � C21DFWCGHD��p�A�C1 2 N7D��F`CGHDCN7DF`CGHD 2 p�A�N7��F`CGHDC1 2 N7DF`CGHD/Dp�AEE � C21DF`CGHD��p�A�C1 2 N7�D��FWCGHDCN7�DFWCGHD 2 p�A�N7���FWCGHDC1 2 N7DFWCGHD/D¡,      (26) 

where N�C�AD and NC�AD denoted N�and N value of the genotype A�A, respectively. From equations 

(25) and (26), each column of S4` �� is independent of the others therefore the parameters are 

orthogonal. 

       S4` �� can also be expressed as  

"
##$

p�� p�2 bWWCbW`F7Wfb`WF7`D£ bW`JbWWF7W�b``C��F7`DK£
p� p2 b`WCb``C��F7WD�bWWF7 `D£  b``Jb`WC��F7WDfbW`C��F7`DK£   2 bWWCbW`F7W�b`WF7`D£   bW`JbWWF7Wfb``C��F7`DK£   2 � �

2 b`WCb``C��F7WDfbWWF7`D£ b``Jb`WC��F7WD�bW`C��F7`DK£� 2 � &
''(.     (27) 

      The POE functional model (Func-POE) and statistical model (Stat-POE) are related by 

5 μγ�γδ ; �
"#
$1 FWfF`0 1

F`�FW p� � p�0 p�EE � p�EE � p�E � p�E0 00 0 1 p�EE � p�EE 2 Cp�E � p�E D0 1 &'
( 5 Rr�rd ;,                       (28) 

where 

p�EE � p�EE 2 Cp�E � p�E D � 2p��pCp� 2 p�D/D, 

which means γ � r for the case of equal frequency of the two types of heterozygote (p� � p�). 
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4.2 Results 

4.2.1 Orthogonality of the Stat-POE Model 

      We have previously showed that the Stat-Usual model was orthogonal in the sense that the 

estimates of the four parameters were uncorrelated [22]. As stated in the previous section, from 

equations (25) and (26), the lack of correlation of the column values of S4`�� implies that the Stat-

POE model is also orthogonal. The fact that the variance of G can be decomposed into two 

independent additive components and one dominance component also reflect the orthogonality of the 

statistical imprinting model. To prove the orthogonality, we performed the following decomposition. 

From Equation (21), we have 

V� � Var ¤N� � N 2 CN7� � N7D2 γ�¥ � Var ¤N 2 N� 2 CN7 2 N7�D2 γ¥ � VarCεδD 

                               �2Cov §FWfF`�CF7WfF7`D γ�, F`�FW�CF7`�F7WD γ¨.                                                  (29) 

Note that 

Cov §FWfF`�CF7 WfF7`D γ�, εδ¨ � γ�δCov gFWfF` , εh � 0, 

and similarly,  

Cov §F`�FW�CF7 `�F7WD γ, εδ¨ � 0. 

      Also, VarCεδD � δvarCεD � 4p��p�p�pδ/D. Therefore, we can express the additive and 

dominant variance components as 

V© � γ�Var gFWfF` h � γVar gF`�FW h � 2γ�γCov gFWfF` , F`�FW h,             (30) 

Vª � 4p��p�p�pδ/D.                                            (31) 

     To show that the additive variance, V©, can be decomposed to be two parts that are dependent on 

only two additive effects (γ�and γ) respectively, Cov gFWfF` , F`�FW h � 0 needs to be satisfied. 

And, as we know 

Cov cN� � N2 , N 2 N�2 d � 14  EJCN� � NDCN 2 N�DK 2 14 ECN� � NDECN 2 N�D 
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� 14 V 2 14 V� � 14 Cp� � pDCp�� � p�D 2 14 Cp� � pDCp�� � p�D 

� �
 Cp�� 2 pDCp� 2 p�D,                                                                                                             (32) 

which is indeed equal to 0 under the condition that p� � p� or p�� � p. In this way, we divided 

the additive variance component into two independent parts as follows:  

V� � Cp� � pDCp�� � p�D � N7�C1 2 N7�D, 

V � Cp� � pDCp�� � p�D � N7C1 2 N7D, 

V©W � ©W`
 VarCN� � ND � ©W`
 JCp� � pDCp�� � p�D � Cp� � pDCp�� � p�DK,     (33) 

V©` � ©``
 VarCN 2 N�D � ©``
 Cp�� 2 pDCp� 2 p�D.                          (34) 

And V� � V©W � V©` � Vª. 

      The two additive variance components V©W and V©`  are related only to the additive effects 

parameters γ�and γ, respectively, one due to overall genetic effect and the other due to POEs. The 

dominance variance component  Vª is only related to the dominance effect δ. Of the fact that the 

variance components can be decomposed into two independent additive components and one 

dominant component suggests the notion that the transformed POE statistical model is orthogonal. 

We also proved that the Stat-POE model is orthogonal before transformation (Appendix 3.2). On the 

other hand, by checking whether X� · X is a diagonal matrix, we showed that the transformed Stat-

POE model was orthogonal (Appendix 3.3).  However, for the transformed Func-POE model, the 

variance components could not be decomposed into three independent parts, indicating that the 

Func-POE model is not completely orthogonal (Appendix 3.4). 

4.2.2 Simulation Methods 

      We performed simulation analysis for both quantitative traits and qualitative traits (case-control) 

using an approach similar to that used in [22], and the simulated data were analyzed using the four 

aforementioned models: Stat-POE, Func-POE, Stat-Usual and Func-Usual. We already derived the 

test statistics of the Stat-Usual and Func-Usual in Appendix 2.2. Similarly, the Wald test statistic for 
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the Stat-POE model is 

�√�_`£
"
###
$ √D √D�CF7WfF7`DebW`fb`W J��CF7 WfF7`DKebW`fb`W

√D √DJ��CF7 WfF7 `DKebW`fb`W J�CF7WfF7 `DKebW`fb`W0 e�CF7 WfF7`D`fCF7 WfF7`Dfb``2abW`b`Wb``bWW abWWb`Wb``bW`
2 e�CF7 WfF7 `D`fCF7 WfF7 `Dfb`` 0

abWWbW`b``b`W 2abWWbW`b`Wb`` &
'''
( ·

ZE · y with the second to fourth rows for the main additive effect, POE and dominant effect testing, 

respectively. Since the functional model is not orthogonal (Appendix S3.4), it is difficult to obtain an 

expression for the test statistic of the Func-POE model. 

4.2.2.1 Simulation of Data with a Quantitative Trait 

      To simulate samples of independent individuals with a quantitative trait controlled by a diallelic 

locus, we assumed that the gene is under HWE. The case that a gene is not under HWE will be 

investigated in our future work. For a given value of the minor allelic frequency (p) in the 

population, genotype 11, 12, 21, 22 were assigned to an individual with probabilities C1 2 pD, 

pC1 2 pD, pC1 2 pD and p respectively. We assumed the genotype frequencies of the two types of 

heterozygotes were the same in the population. We also assumed the phenotype was influenced by a 

main allelic additive effect, a POE, and a dominant effect. From a prespecified vector of parameters ( 

E.� � �R, a�, a, d �), we assigned each individual a genotypic value according to his/her assigned 

genotypes. Then, by randomly generating a value from a normal distributions with prespecified mean 

and variance (0 and σS ), we generated an observed phenotype/trait by adding this residual to the 

previously assigned phenotypic value. We used data from 2000 individuals as a replicate and 

simulated 1000 replicates for each genetic model. 

      In the simulation study of a quantitative trait, three scenarios were simulated with different levels 

of POE (Table 4.1). The minor allele frequency p was set to 0.28, and the residual variance σS was 

144.0. The true values of the four parameters in these three scenarios are shown in Table 4.1. For the 

sample size with 2000 individuals, the computation speeds of the four models on quantitative traits 
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analysis are: 22 seconds for the Stat-POE model, the Stat-Usual model and Func-Usual model, 

respectively; 24 seconds for the Func-POE model. 

4.2.2.2 Simulation of Data with a Qualitative Trait 

      Ma et al. [22] previously derived the formulation of the statistical model without POE 

incorporated in quantitative traits and demonstrated that a similar statistical model could also be 

defined for a qualitative trait by handling the genetic effects as the logit function of the disease. As 

mentioned in previous sections, the orthogonality of that model does not exist for the qualitative trait 

under the alternate hypothesis when there is a genetic effect, but is valid under the null hypothesis of 

no effect. It is not difficult to show that it is still the case for our Stat-POE model. Here we 

performed simulations to evaluate the performance of our POE-related models in a case-control 

study design. 

         Briefly, we used the logistic model and Bayes’ theorem to set the genotype of each individual 

according to the prespecified genetic effect terms, E.� � �R, a� , a, d �. The disease penetrance for 

each genotype was determined by 

PrCd � 1|ijD � ��fS�bJ��GHK,  
where d denotes the disease status with value 1 for patients and 0 for control. G�A was the genotypic 

value when the genotype was ij with ij � 11,12,21 or 22. Then the distributions of the four 

genotypes in the cases was determined by 

PrCij|d � 1D � �GH/g�fS�bJ��GHKh∑ �«¬/J�fS�bC��«¬DK«¬  .  

      As in the simulation study for a quantitative trait, P�A is the genotype frequency of 11, 12, 21 and 

22 in the population, determined by C1 2 pD, pC1 2 pD, pC1 2 pD and p, respectively. For 

simulating controls in the population, we used a similar distribution as follows 

PrCij|d � 0D � �GH/g�fS�bJ�GHKh∑ �«¬/J�fS�bC�«¬DK«¬  .  
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      For each replicate, 1000 cases and 1000 controls were generated, and a total of 1000 replicates 

were simulated. The minor allele frequency p was set to 0.28. Two scenarios were simulated with 

different levels of POE (Table 4. 1). The simulating values of the parameters in the two different 

scenarios are shown in Table 4.1. 

Table 4.1 Simulation true values of genetic effects for quantitative and qualitative traits datasets.  

denotes intercept; ®� and ® denote overall genetic effect and POE effect, respectively; and ¯ denotes 

dominant effect. Three scenarios with strong, medium and weak POEs were simulated for 

quantitative traits; two scenarios with strong and weak POEs were simulated for qualitative traits. 

 

  ®� ® ¯ 

Quantitative trait 

Scenario 1 90.0 3.0 -3.0 1.2 

Scenario 2 90.0 3.0 -2.0 1.2 

Scenario 3 90.0 3.0 -1.0 1.2 

Qualitative trait 

Scenario 1 100.0 2.0 -2.0 0.5 

Scenario 2 100.0 2.0 -0.6 0.5 

 

      To determine whether the setting of the MAF value influence the performance of the models, we 

also simulated two additional scenarios with different MAF values (0.03 and 0.48) for both 

quantitative traits and qualitative traits. 

4.2.3 Results for simulated data 

      First we performed a simulation study for a quantitative trait in three scenarios with strong, 

moderate, and weak imprinting effect while the main allelic additive effect remained the same (Table 

4.1). The true values of the four parameters in these three scenarios are shown in Table 4.1. The 

density distributions of all four effects after analyzing 1000 replicates in scenario 1 with strong 

imprinting effect is shown in Figure 4.1. The estimates of all four parameters were accurate for both 

the Stat-POE and Func-POE models. Compared with the Func-POE model, the Stat-POE model had 
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smaller variance in most cases for detecting the intercept and main allelic additive effect terms. The 

estimates for the POE term and dominant effect term were the same between the Func-POE and Stat-

POE models. Similar patterns could be detected for the other two scenarios (data not shown).  

 

 

Figure 4.1 Density distributions of the estimates of the parameters from a simulated data analysis 

with a quantitative trait influenced by a genetic factor and by strong POE (Scenario 1). The pre-

specified minor allele frequency was 0.28. The values of the four parameters were E.� ��90.0, 3.0, 23.0, 1.2 � and  E4� � �91.3, 4.05, 23, 1.2 � for the functional POE (Func-POE) model 

and the statistical POE (Stat-POE) model, respectively. The solid arrows denote the true simulated 

values of the parameters for Stat-POE model and the dashed arrows denote those for the Func-POE 

model. 

 

      To evaluate the performance of these models in detecting a main allelic additive effect and POE, 

we calculated the statistical power of four models under different critical values of P values obtained 

using a Wald test (Fig. 4.2). Figure 4.2 shows the power for detecting the main allelic additive effect 

for scenario 1 with strong POE. The power of both statistical models (Stat-POE and Stat-Usual) for 

detecting additive effects was greater than that of both functional models (Func-POE and Func-

Usual). The power of detecting additive effect was the same for the Stat-POE and Stat-Usual models. 
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It was also the same for the Func-POE and Func-Usual models. In the other two scenarios in which 

medium or weak POE was simulated, identical results(data not shown) were obtained for the main 

genetic effect term as shown in Figure 4.2a, since the main allelic additive effect was set to the same 

value, 3.0 (Table 4.1). These results indicated that the power for detecting the main allelic effect did 

not change even if a POE parameter was integrated into the analysis model. The performance of 

these four models for detecting dominant effects was the same in three scenarios (data not shown), 

which was consistent with the formulations.

 

Figure 4.2 Power under different critical values of the P values obtained using the Wald test for the 

quantitative simulation data shown in Table 4.1. (a) Power for detecting the main allelic additive 

effect in scenario 1 when strong POE exists. Power for detecting POE of the Stat-POE and Func-

POE models was compared for scenario 1 (b), scenario 2 (c), and scenario 3 (d). 
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      Figure 4.2b-d shows the power of the Stat-POE and Func-POE models for detecting the POE in 

three scenarios. The performance of the two POE models remained the same for the three scenarios. 

This is because in our simulation, the genotype frequency values for the two types of heterozygotes 

were set at the same value which is valid when HWE hold true. This results in p�EE � p�EE 2 Cp�E �
p�E D � bWWb``CbW`�b`WD£ � 0. Therefore, according to equation (28), the POE repressor in the Stat-

POE model was equivalent to that in the Func-POE model. When the assumption that the genotype 

frequencies for the two heterozygotes are the same is violated, it will result in different performance 

of the Stat-POE and Func-POE models for detecting POE. Additionally, the overall power decreases 

when the POE decreases (Fig. 4.2b-d). 

      To evaluate whether the MAF influences the estimation of the genetic effects by these models, 

we also performed analyses for quantitative traits when the MAF was 0.03 and 0.48, respectively 

(Fig. S4.1-S4.2). Figure S1 shows that when strong POE existed, the Stat-POE model still presented 

extremely greater power than the Func-POE model in detecting main additive effect for rare variants 

(MAF=0.03). Figure S4.2 shows that when strong POE existed, the Stat-POE model presented 

slightly greater power than the Func-POE model in detecting main additive effect for variants with 

MAF as 0.48. 

      Similarly, we also performed analyses for simulated case-control data. The simulating values for 

each of the two scenarios are shown in Table 4.1. Figure 4.3 shows the density distributions of all 

four effects after analyzing 1000 replicates in scenario 1. Similar patterns were detected for the 

distributions of the four parameters as in the quantitative trait. And the estimates were all accurate 

for both the Stat-POE and Func-POE models, except for the intercept term. The differential 

estimation of the intercept term arose from non-random sampling in our simulation. The variance of 

the main allelic additive effect was still smaller via analysis using the Stat-POE model than via 

analysis using the Func-POE model. And the estimate distributions are very close or the same for 

these two models for detecting POE and dominant effect. 
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      Figure 4.3 Density distributions of the estimates of all four parameters from a simulated data 

analysis with a qualitative trait influenced by a genetic factor and by strong POE. The pre-specified 

minor allele frequency was 0.28; the true values of the four parameters were E.� � �100.0,2.0, 22.0,0.5 � and  E4� � �100.0,2.44, 22,0.5 � for the Func-POE and the Stat-POE 

models, respectively. The solid arrows denote the true simulated values of the parameters for Stat-

POE model and the dashed arrows denote those for the Func-POE model. 

 

      Figure 4.4 shows the power of the four models for detecting the main allelic additive effect, POE 

and dominant effect when the trait was affected by relatively strong POE for case-control data. The 

performance of the Stat-POE model was slightly better than that of the Stat-Usual model, and the 

performance of both was better than that of the functional models, Func-POE and Func-Usual (Fig. 

4.4a). The Stat-POE and Func-POE models had the same power for detecting POE (Fig. 4.4b, 4.4c). 

Interestingly, both POE models (Stat-POE and Func-POE) had higher power for detecting 

dominance effect than the usual models, Stat-Usual and Func-Usual (Fig. 4.4c).  
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Figure 4.4 Power under different critical values of the P values obtained using the Wald test for the 

case-control simulation data influenced by a genetic factor with strong POE (scenario 1). The minor 

allele frequency was 0.28.   

 

      Another simulation was performed with a moderate POE for case-control data (Table 4.1, 

scenario 2; Fig. 4.5). Interestingly, the performance of the Stat-POE model was not much better than 

that of the Stat-Usual model (Fig. 4.5a) for detecting the main allelic additive effect (Fig. 4.4a). For 

detecting the main allelic additive effects, the statistical models (Stat-POE and Stat-Usual) had much 

higher power than the functional models, Func-POE and Func-Usual. The statistical models and 

functional models had the same or very close power with and without the incorporation of POE, 

respectively. The Stat-POE and Func-POE models had the same or very close power for detecting 

POE and dominant effect (Fig. 4.5b, 4.5c). 

      Simulations were also performed when MAF was set as 0.03 and 0.48 for case-control traits, 

respectively (Fig. S4.3-S4.4). For rare variants (MAF=0.03), the Stat-POE model presented 

extremely greater power than the Func-POE model in detecting main additive effect, although 

slightly greater power was observed for Func-POE model in detecting the POE (Fig. S4.3). For 

variants with MAF=0.48, the Stat-POE model presents extremely greater power than the Func-POE 

model in detecting main additive effect and dominant effect (Fig. S4.4). The power of the Stat-POE 

model was even higher than that of the Stat-Usual model in detecting the main additive effect (Fig. 

S4.4a). 
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      Figure 4.5 Power under different critical values of the P values obtained using the Wald 

test for the case-control simulation data influence by a genetic factor with moderate POE 
(scenario 2). The minor allele frequency was 0.28. 

 

      Type I error was also inspected for both the quantitative trait and the qualitative trait by 

simulating a null scenario where there was no main genetic effect or POE. We estimated the type I 

error for the main additive effect, POE and dominant effect for both quantitative traits and case-

control traits when the MAF was set as 0.03, 0.28 or 0.48 (Table 4.2). The false positive rate for 

detecting the additive effect was almost the same for the statistical and functional POE models in 

most scenarios we simulated (around 0.05 or less for the 1000 replicates). The false positive rate for 

detecting the additive effect was smaller estimated from the Func-POE model than that from the 

Stat-POE model, when MAF was set as 0.03 for case-control traits. For detecting POE, these two 

models usually had very close false positive rates for both quantitative and case-control traits. 
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Table 4.2 Type I error for simulation of quantitative and case-control traits data sets. False positive 

rates for the genetic effects estimated from the Stat-POE, Func-POE, Stat-Usual and Func-Usual 

models under different minor allele frequency settings. Add= overall genetic additive effect; 

Dom=dominant effect; MAF=minor allele frequency.  

 

MAF=0.03 MAF=0.28 MAF=0.48 

Models/MAF vww POE Dom vww POE Dom vww POE Dom 

      Quantitative trait 

Stat-POE 0.047 0.037 0.059 0.055 0.038 0.048 0.053 0.043 0.043 

Func-POE 0.055 0.036 0.059 0.056 0.037 0.048 0.052 0.042 0.043 

Stat-Usual 0.048   0.06 0.056   0.048 0.053   0.044 

Func-Usual 0.048   0.06 0.056   0.048 0.053   0.044 

      Case-control trait 

Stat-POE 0.044 0.062 0.017 0.05 0.045 0.046 0.047 0.049 0.039 

Func-POE 0.01 0.063 0.017 0.049 0.047 0.046 0.049 0.048 0.039 

Stat-Usual 0.045   0.017 0.047   0.047 0.047   0.038 

Func-Usual 0.045   0.017 0.047   0.047 0.047   0.038 
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Table 4.3 Summary of the power of the Stat-POE and Func-POE models in different simulation 

scenarios for both quantitative traits and case-control traits. Add: overall genetic additive effect; 

Dom=dominant effect.  Threshold of the P value was 0.001. 

 
MAF=0.03 MAF=0.28 MAF=0.48 

 
Strong 

POE 

Weak 

POE 

Strong 

POE 

Weak 

POE 

Strong 

POE 

Weak 

POE 

  Quantitative traits 

Add 
Stat-POE 0.98 0.98 0.93 0.94 0.79 0.78 

Func-POE 0.01 0.01 0.36 0.35 0.75 0.75 

POE 
Stat-POE 0.4 0.1 0.61 0.1 0.77 0.03 

Func-POE 0.4 0.1 0.61 0.1 0.77 0.02 

Dom 
Stat-POE 0.005 0.007 0.07 0.06 0.12 0.15 

Func-POE 0.005 0.007 0.07 0.06 0.12 0.15 

  Case-Control traits 

Add 
Stat-POE 0.73 0.73 1 1 1 1 

Func-POE 0.001 0.001 1 1 1 1 

POE 
Stat-POE 0.8 0.33 1 0.33 1 0.61 

Func-POE 1 0.41 1 0.38 1 0.73 

Dom 
Stat-POE 0.04 0.05 0.29 0.35 0.8 0.9 

Func-POE 0.04 0.05 0.29 0.35 0.8 0.9 
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4.3 Discussion 

      In this chapter, we extended the NOIA framework, which was initially developed for epistasis 

quantitative traits analyses by incorporating POE for genetic association analysis. Herein, we 

propose a unified framework for one-locus association study that allows for both main allelic 

additive effect and POE estimation via linear regression. By simulation study, we illustrated the 

statistical properties of this implemented framework on one-locus association study. We summarized 

the detailed comparison of the performance of the Stat-POE and Func-POE models in Table 4.3. In 

most scenarios we simulated, the Stat-POE model had greater power than the Func-POE model in 

detecting the main additive effect. For testing imprinting effect, the Stat-POE model had same power 

as the Func-POE model for quantitative traits whereas the former presented slightly worse power 

than the latter for qualitative traits.  

      We used genetic variance decomposition to show that the Stat-POE model was orthogonal when 

either HWE or equal minor and major allele frequencies is satisfied for quantitative traits (equations 

29-33). Thus, even when the POE was absent, estimating of the main allelic additive effect was not 

affected when a new parameter was added in the analytic model. This was not true for the Func-POE 

model, as demonstrated by simulation results for quantitative traits (Fig. 4.2a).  Although the Func-

POE model was not orthogonal (Appendix 3.4), the same performance of the Func-POE and Func-

Usual models for detecting the main allelic additive effect in Figure 4.2a could still held true as the 

power between these two models was only slightly different. Another reason might be because the 

term 
°W± CovCN� � N, εD in equation (D3) (Appendix 3.4) is rather small. The Stat-POE and Func-

POE models we proposed could also be applied to qualitative traits via logistic regression although 

the property of orthogonality would no longer exist under the alternative model [22]. When 

orthogonality exists under the null, the subsequent tests have appropriate type I error rates, but the 

failure of orthogonality under the alternate model can lead to improper estimates of heritability, 

although the estimators may be less biased than those that are obtained from the functional models. 
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      Using simulations, we demonstrated that the statistical models, including the Stat-POE and Stat-

Usual models, had better performance for detecting the main allelic additive effect than the 

functional models, Func-POE model and Func-Usual for both quantitative traits and qualitative 

traits. And the same power of these two POE models on detecting the POE arose when p� � p� 

was true. Stat-POE model had better performance on detecting the main allelic additive effect than 

the Stat-Usual model for qualitative traits when strong POE exists. The power was the same for 

detecting the main allelic effect even if a POE parameter was integrated into the analysis model and 

supported orthogonality of the Stat-POE model (Fig. 4.2a, Fig. S4.1 and S4.2). The performance of 

our framework was not exactly the same in quantitative and qualitative trait simulation studies. The 

simulation study for both quantitative and qualitative traits showed that the estimates of all four 

parameters were accurate for both the Func-POE and Stat-POE models. However, the performance 

of these two models for detecting the main allelic effect and dominance effect presented a different 

pattern in qualitative traits (Fig. 4.4 and 4.5). In qualitative traits, for detecting the main allelic effect, 

the statistical (Stat-POE and Stat-Usual) models, still had greater power than did the functional (Stat-

Usual and Func-Usual) models in most cases, regardless of the strength of the POE, which is 

consistent with the findings of the quantitative traits simulation study (Fig. 4.2). However, the power 

of the Stat-POE and Stat-Usual models was not usually the same for the qualitative trait simulation 

in different scenarios (Fig. 4.4a, 4.5a), which varied from the findings of the quantitative traits 

simulation (Fig. 4.2). The performance of the four models on detecting the dominance effect is also 

different in the  simulation analysis for a qualitative trait (Fig. 4.4c; Fig. S4.3 and S4.4), which 

shows that the POE models (including the Stat-POE and Func-POE) usually have greater power than 

the usual models. This difference in performance arises because the test statistics used for logistic 

and linear regression differ. 

      We can also illustrate the reason why the proposed model could detect more disease-associated 

genes than the traditional models in model setting as follows. First, the orthogonal (Stat-Usual) 

model proposed by Alvarez-Castro et al. has an advantage of orthogonalizing the estimating of the 
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additive effect and dominant effect but the usual model (Func-Usual) does not. We constructed the 

test statistic of the Stat-Usual and Func-Usual models for quantitative traits with dominance 

component and without dominance effect (Section 1.4 and Appendix 2.2). The test statistic for 

estimating the additive effect did not change if the dominance component was removed for the Stat-

Usual model. However, the test statistic was not consistent if the dominance component was 

removed from the Func-Usual model. Thus, the Stat-Usual model is preferred than the Func-Usual 

model in association studies when dominance component is incorporated. Second, we also compared 

the test statistic of the Stat-Usual and our newly developed Stat-POE models. We found that the test 

statistic of the main additive effect was the same for the two models, which was consistent with the 

simulation studies. And even in simulation studies for a case-control trait, we found that the Stat-

POE had greater power for detecting the main additive effect than the usual orthogonal model (Stat-

Usual). Comparing the test statistic of the Func-POE and Fun-Usual models, we found that the 

estimation of the main genetic effect was not consistent, and the power decreased when POE testing 

was included. Therefore, Stat-POE model could detect more significant additive effect signals than 

the Func-POE model. 

      Several recent studies have incorporated POEs in association analyses for quantitative traits. 

Genome-wide rapid association using mixed model and regression (GRAMMAR) and its extension 

are a recently developed approach that is based on a measured genotype approach and has been 

shown to have greater power than the transmission disequilibrium test (TDT)-based tests [62]. A 

maximum likelihood test was also developed for detecting POEs using haplotypes [63]. Ainsworth et 

al. also described an implementation of a family-based multinomial modeling approach that allows 

for imprinting detection [52]. This method used family data, case-mother duos or case-parents trios, 

to look for departures in observed genotypes distributions from expected distributions among 

affected offspring, given the genotypes of their parents. The mechanism of this approach is still more 

related to the TDT test. However, to our knowledge, our approach is the only one that has the 

advantage of orthogonality on the effects estimation for association studies of detecting POE. NOIA 
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was previously proposed and formularized for gene-gene interaction analysis models of quantitative 

traits and was further implemented and extended by Ma et al. [22] to r reduced genetic models and 

estimating effects from both genetic and binary environmental exposure. However, neither of these 

models had the potential to detect POE. We already found that when POE was not incorporated, the 

power of the statistical model (Stat-Usual) was greater than that of the functional model (Func-

Usual) in most cases. This finding held true in our study for detecting main effects even when POE 

was integrated. Our study exemplifies another significant implementation of NOIA that adopts the 

orthogonal property of the statistical model if the family data are available or if phasing is plausible 

for obtaining the parental transmitting status of the candidate disease-associated locus. Because 

alleles of different parental origins can exert different effects, the effect contributing to the disease 

outcome may be masked in usual models that can detect only the main allelic additive effect. The 

methodology and simulation study used for our extension of NOIA yielded a plausible means of 

detecting more genes that contribute to complex diseases or quantitative traits that were not detected 

in routine GWASs.  

      Although our extension significantly contributes to disease gene mapping, pedigree data are 

needed for our framework to be used to estimate transmitting information of each heterozygotes or 

homozygotes locus. Obtaining the transmitting status of one locus is more difficult for non-

informative pedigrees than for informative pedigrees which need to be determined by nearby linked 

loci or haplotype phasing. This limits the application of our model in GWAS. However, with the 

development of genotyping technique, it will be possible to obtain pedigree data with sufficient 

sample size in the near future. Another direction of our next step will be generalizing our formulation 

to the case of non-deterministic genotypes, e.g. with probabilistic parental information or missing 

data, to incorporate the phasing uncertainty of genotypes. 

      The motivation of our implemented framework was based on the orthogonality property of NOIA 

which allows model selection and variance component analysis more straightforward. A next step is 

to extend the formulation proposed here to multi-locus and/or environment factor case, including 
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gene-gene interaction and gene-environment interaction analyses while POE is integrated. 

Conceptually, this generalization should fairly straightforward by applying the Kronecker product 

rule as in [21], if we assume linkage equilibrium between loci and no association between a genetic 

locus and an environment factor. However, it would probably be challenging to deal with and 

properly interpret a large number of interaction terms. The extension, nevertheless, would be 

attractive as imprinting effects of one locus may indeed have complex interaction with main effects 

of other loci. We are currently working along this direction. 
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CONCLUSIONS 

 

      To investigate the properties and application of the NOIA framework on association studies, we 

implemented it in three directions. First, we generalized the NOIA coding technique to the full model 

and reduced models (including additive, dominant and recessive) allowing for GxG interaction 

testing. Through extensive simulation studies, we demonstrated greater statistical power of the NOIA 

model comparing with the usual approach.  The newly developed methods were applied to 

melanoma datasets. Through real data analyses, we confirmed that NOIA model had obviously 

greater power on detecting the main genetic effects and interaction effects compared to the usual 

approach. We also validated several previously identified causal variants of melanoma and found 

some novel gene-gene interactions. Further experiments need to be carried out to verify these 

interactions. 

      To explore the extension of the NOIA framework for detecting GxE interactions, we developed a 

novel statistical approach that allows us to model effects from a genetic factor and binary 

environmental exposure that are jointly influencing disease risk. Through extensive simulation 

studies, we demonstrated greater statistical power of the NOIA GxE model on detecting the main 

effects and interaction effects comparing with the usual approach. To evaluate the performance of 

the newly developed method, we applied it on lung cancer datasets. Our results of identifying the 

causal variants were consistent with previous studies. Moreover, we also found some novel gene-

environment interactions for lung cancer risk. 

      We also developed a statistical approach for modeling genetic effects due to imprinting effects in 

the orthogonalized framework. The POEs are usually ignored in traditional approaches (for example, 

GWAS), which were designed to only detect the overall genetic effect, resulting in weaker tests and 
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lower estimate of heritability of human complex diseases and traits. We believe that incorporations 

of POEs detecting into association studies could solve this problem to some extent, and estimating 

the effects and testing for imprinting is important for further delineating the complex genetic 

architecture for human diseases and traits. Extensive simulation studies demonstrated the statistical 

performance of the new methodology that we have developed. We found that Stat-POE model had 

better performance on detecting the main allelic additive effect than the Func-POE model for both 

quantitative traits and qualitative traits.  We also found that Stat-POE model had better performance 

on detecting the main allelic additive effect than the Stat-Usual model for case-control traits when 

strong POE exists.  

      We believe that the new methods that we have developed will be useful in further understanding 

the impact of gene-gene interactions, gene-environment interactions and imprinting effects on human 

complex traits and diseases. Orthogonal methods are useful for improving estimation of effects 

particularly when multiple loci or environmental factors are jointly contributing to the outcome and 

when GxG/GxE interactions are investigated, especially when imprinting effects are incorporated 

into the modeling. Through our implementation, the NOIA framework could be a more unified and 

comprehensive system for detecting GxG/GxE interactions and even POE, which will provide 

invaluable insight into the efforts for finding the “missing heritability”. And the revealed interactions 

will be useful to help explain the underlying mechanism of the development of lung cancer and 

melanoma. 

Next, we will extend our newly developed orthogonal models to higher dimensional interactions 

which could be easily reached by applying the Kronecker product, for example, GxGxG or GxGxE 

interactions modeling or GxG/GxE interactions testing with consideration of imprinting effects. The 

more than two dimensional interactions have not been widely investigated; however, they may 

indeed explain some of the heritability of human complex diseases and traits. We will also explore to 

explore the application of our models to the cases when the loci are not in HWE or the parent origin 

information is missed. 
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APPENDIX 

Appendix 1: Supplementary figures and tables 

 

Figure S2.1 Density distributions of the estimates of the parameters from a simulated data analysis 

with a quantitative trait influenced by two loci and positive interaction coefficients.  
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Figure S2.2 Density distributions of the estimates of the parameters from a simulated data analysis 

with a quantitative trait influenced by two loci and negative interaction coefficients.  

 

 

 

Figure S2.3 Density distributions of the estimates of the parameters from a simulated data analysis 

with a quantitative trait influenced by two loci and no gene-gene interactions.  
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Figure S2.4 Density distributions of the estimates of the parameters from a simulated data analysis 

with a case-control trait influenced by two loci and positive g interaction coefficients.  

 

 
 

 

Figure S2.5 Density distributions of the estimates of the parameters from a simulated data analysis 

with a case-control trait influenced by two loci and negative interaction coefficients.  
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Figure S2.6 Density distributions of the estimates of the parameters from a simulated data analysis 

with a case-control trait influenced by two loci and no gene-gene interactions.  

 

 
 
Figure S2.7 Power under different critical values of the P values obtained using the Wald test for the 

quantitative simulation data influence by two loci and positive interaction coefficients. The minor 

allele frequency was 0.50. The upper panel is for the additive effects and dominant effects of locus A 

and locus B, respectively. The bottom panel is for the interaction effect between locus A and locus 

B. The simulating values of the genetic effects were Errs.� � �100.00, 1.50, 0.40, 1.10, 0.50, 0.80, 0.23, 0.32, 0.12�. Corresponding values of the 

statistical genetic effects were Errs4� � �104.16, 2.46, 0.69, 2.02, 0.88, 0.8, 0.23, 0.32, 0.12�.  
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Figure S2.8 Power under different critical values of the P values obtained using the Wald test for the 

quantitative simulation data influence by two loci and negative interaction coefficients. The minor 

allele frequency was 0.50. The upper panel is for the additive effects and dominant effects of locus A 

and locus B, respectively. The bottom panel is for the interaction effect between locus A and locus 

B. The simulating values of the genetic effects were Errs.� � �100.00, 1.50, 0.40, 1.10, 0.50, 20.80, 20.23, 2 0.32, 20.12�. Corresponding values of the 

statistical genetic effects were Errs4� � �101.95, 0.54, 0.11, 0.18, 0.12, 20.80, 20.23, 20.32, 20.12�. 
 

 

 
Figure S2.9 Power under different critical values of the P values obtained using the Wald test for the 

quantitative simulation data influence by two loci no interaction effects. The minor allele frequency 

was 0.50. The upper panel is for the additive effects and dominant effects of locus A and locus B, 

respectively. The bottom panel is for the interaction effect between locus A and locus B. The 

simulating values of the genetic effects were Errs.� � �100.00, 1.50, 0.40, 1.10, 0.50, 0.0, 0.0, 0.0, 0.0�. Corresponding values of the statistical 

genetic effects were Errs4� � �103.05, 1.50, 0.40, 1.10, 0.50, 0.0, 0.0, 0.0, 0.0�. 
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Figure S2.10 Q-Q plot for P values of genotyped SNPs obtained from NOIA statistical model on 

additive effect estimation. lambda=1.011. 
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Figure S2.11 Q-Q plot for P values of genotyped SNPs obtained from NOIA statistical model with 

dominance component detection on additive effect estimation, lambda=1.014. SNPs with genotype 

frequency of any homozygote less than 0.005 were filtered. 
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Table S2.1 Results from genome-wide association analysis of melanoma by NOIA statistical one-

locus model using logistic regression (p � 1.0 � 10�
).  

 

CH

R 
SNP A1 A2 

A2 

freq 
Coordinate OR 

2.5%

CI 

97.5% 

CI 
P 

Gene 

Symbol 

1 rs2089427 A G 0.45 213637204 1.24 1.11 1.39 9.96E-05 LOC643536 

1 rs6693552 A C 0.18 238280547 1.34 1.16 1.55 9.39E-05 LOC645884 

1 rs12733694 A G 0.18 238284757 1.34 1.16 1.56 7.69E-05 FMN2 

1 rs11204754 A G 0.5 149227878 0.8 0.72 0.89 6.43E-05 ANXA9 

1 rs12753507 A G 0.43 213446975 1.24 1.11 1.39 9.81E-05 KCNK2 

1 rs1722784 A G 0.5 149228493 1.26 1.13 1.4 3.59E-05 ANXA9 

1 rs11506 A G 0.07 163898130 0.67 0.55 0.82 8.57E-05 ALDH9A1 

1 rs10926064 A G 0.64 238240621 1.27 1.14 1.42 2.67E-05 LOC645884 

2 rs2060167 A G 0.75 166397588 1.29 1.14 1.46 7.46E-05 TTC21B 

2 rs12471713 C G 0.88 65957786 1.48 1.26 1.75 2.98E-06 FLJ16124 

2 rs3791511 A G 0.88 239745477 0.7 0.58 0.83 7.71E-05 HDAC4 

2 rs2083244 A G 0.39 119377691 0.79 0.71 0.88 4.14E-05 MARCO 

3 rs4643673 A G 0.36 148129994 0.79 0.7 0.88 3.52E-05 PLSCR5 

3 rs3912449 A G 0.14 7658162 0.73 0.63 0.85 5.98E-05 GRM7 

3 rs9790140 A C 0.92 96158387 1.49 1.23 1.82 5.97E-05 WDR82P1 

3 rs6549877 A G 0.87 28720143 1.37 1.17 1.61 9.04E-05 C3orf53 

3 rs1872396 A G 0.86 7655452 1.38 1.18 1.61 4.46E-05 GRM7 

4 rs17035512 C G 0.88 106509509 1.4 1.19 1.65 4.50E-05 PPA2 

4 rs6811159 A G 0.12 106542507 0.72 0.61 0.84 6.12E-05 PPA2 

4 rs17035584 A G 0.88 106574235 1.39 1.18 1.64 7.01E-05 PPA2 

4 rs6823995 A G 0.13 106483130 0.72 0.61 0.85 6.51E-05 PPA2 

4 rs17035553 A G 0.84 106540872 1.35 1.17 1.56 5.22E-05 PPA2 

4 rs3898404 A G 0.16 106575844 0.75 0.64 0.86 8.05E-05 PPA2 

4 rs6812270 A T 0.12 106285899 0.72 0.62 0.85 9.73E-05 KIAA1546 

5 rs10940474 A G 0.34 54916458 1.3 1.16 1.47 1.49E-05 FLJ90709 

6 rs4431416 A G 0.43 68146608 1.24 1.12 1.39 9.43E-05 LOC728052 

6 rs7769019 A G 0.04 33706620 0.57 0.43 0.74 4.39E-05 ITPR3 

6 rs2495971 A C 0.16 34037043 1.38 1.18 1.61 5.47E-05 GRM4 

6 rs3087617 A T 0.08 31664635 1.54 1.24 1.91 8.64E-05 LST1 

6 rs9454109 A G 0.72 68004709 0.75 0.67 0.85 5.18E-06 RCADH5 

7 rs10245068 A C 0.89 37331759 0.68 0.56 0.82 4.53E-05 ELMO1 

8 rs2248448 A G 0.5 4528471 0.81 0.72 0.9 9.68E-05 CSMD1 

8 rs4909616 A G 0.31 135569749 0.78 0.7 0.88 4.53E-05 ZFAT1 

8 rs10094500 A C 0.51 4558681 1.28 1.15 1.43 8.41E-06 CSMD1 

8 rs2724961 A G 0.53 4547635 0.79 0.7 0.88 1.52E-05 CSMD1 

8 rs2617014 A G 0.55 4537866 0.78 0.7 0.87 6.99E-06 CSMD1 

9 rs7023954 A G 0.61 21806758 1.28 1.15 1.43 1.22E-05 MTAP 

9 rs11792508 A C 0.92 243594 1.52 1.25 1.84 2.78E-05 DOCK8 

9 SNP9-21803495 A G 0.52 21803495 0.78 0.7 0.88 1.48E-05 MTAP 

9 SNP9-21803518 A G 0.51 21803518 0.8 0.72 0.89 5.37E-05 MTAP 

9 rs1987458 A G 0.44 21694873 0.8 0.72 0.89 6.46E-05 LOC402359 

9 SNP9-21803241 A G 0.49 21803241 1.25 1.12 1.4 5.78E-05 MTAP 

9 SNP9-21816516 A G 0.38 21816516 0.78 0.7 0.87 1.29E-05 MTAP 
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9 SNP9-21816940 A C 0.62 21816940 1.28 1.15 1.43 1.29E-05 MTAP 

9 SNP9-21808674 A G 0.41 21808674 0.79 0.7 0.88 1.68E-05 MTAP 

9 SNP9-21786791 A G 0.63 21786791 1.29 1.15 1.44 9.87E-06 MTAP 

9 SNP9-21817406 A G 0.38 21817406 0.78 0.7 0.88 1.64E-05 MTAP 

9 rs10811615 A G 0.55 21772164 1.25 1.12 1.39 8.34E-05 LOC402359 

9 SNP9-21761241 A G 0.39 21761241 0.79 0.7 0.88 2.43E-05 MTAP 

9 SNP9-21818242 A G 0.52 21818242 0.79 0.71 0.88 2.23E-05 MTAP 

9 SNP9-21806637 A G 0.41 21806637 0.78 0.7 0.87 1.03E-05 MTAP 

9 SNP9-21796564 A G 0.62 21796564 1.28 1.14 1.43 1.42E-05 MTAP 

9 rs1561650 A G 0.39 21742358 0.8 0.71 0.89 6.87E-05 LOC402359 

9 SNP9-21778782 A G 0.61 21778782 1.27 1.14 1.42 1.78E-05 MTAP 

9 SNP9-21775139 A T 0.39 21775139 0.78 0.7 0.88 1.80E-05 MTAP 

9 SNP9-21803718 A G 0.47 21803718 0.78 0.7 0.87 8.04E-06 MTAP 

9 SNP9-21775018 A G 0.61 21775018 1.27 1.14 1.42 2.45E-05 MTAP 

9 SNP9-21799077 A T 0.62 21799077 1.27 1.14 1.42 2.26E-05 MTAP 

9 SNP9-21777262 A G 0.61 21777262 1.28 1.14 1.42 1.72E-05 MTAP 

9 SNP9-21818110 A C 0.38 21818110 0.78 0.7 0.87 1.11E-05 MTAP 

9 rs10965144 A G 0.62 21798913 1.26 1.13 1.41 3.74E-05 MTAP 

9 SNP9-21774758 A T 0.61 21774758 1.27 1.14 1.42 2.07E-05 MTAP 

9 SNP9-21778481 A G 0.39 21778481 0.79 0.7 0.88 2.03E-05 MTAP 

9 rs3928894 A G 0.49 21808310 1.25 1.12 1.39 7.84E-05 MTAP 

9 SNP9-21806646 A G 0.51 21806646 0.8 0.72 0.89 6.39E-05 MTAP 

9 rs10965133 A G 0.61 21778656 1.27 1.14 1.42 2.06E-05 LOC402359 

9 SNP9-21760951 A G 0.39 21760951 0.79 0.71 0.88 3.26E-05 MTAP 

9 rs1335503 A G 0.39 21727822 0.8 0.72 0.9 8.94E-05 LOC402359 

9 SNP9-21783177 A C 0.48 21783177 0.79 0.71 0.89 3.40E-05 MTAP 

9 SNP9-21768660 A G 0.55 21768660 1.25 1.12 1.39 7.80E-05 MTAP 

9 SNP9-21764467 A G 0.48 21764467 0.8 0.72 0.9 8.78E-05 MTAP 

9 rs1335500 A G 0.49 21701675 1.32 1.18 1.47 6.24E-07 LOC402359 

9 SNP9-21751440 C G 0.52 21751440 1.24 1.11 1.39 9.04E-05 MTAP 

9 SNP9-21761756 A G 0.48 21761756 0.8 0.72 0.89 6.86E-05 MTAP 

9 SNP9-21762267 A G 0.48 21762267 0.8 0.72 0.9 8.11E-05 MTAP 

9 rs12380505 A G 0.5 21685893 0.76 0.68 0.85 6.02E-07 LOC402359 

9 SNP9-21780669 C G 0.52 21780669 1.26 1.13 1.4 4.27E-05 MTAP 

9 SNP9-21794693 A G 0.48 21794693 0.79 0.71 0.89 3.14E-05 MTAP 

9 rs10811582 A G 0.4 21682017 1.29 1.16 1.45 5.80E-06 LOC402359 

9 SNP9-21775304 C G 0.52 21775304 1.24 1.11 1.38 9.91E-05 MTAP 

9 SNP9-21765061 A G 0.48 21765061 0.8 0.72 0.9 8.23E-05 MTAP 

9 SNP9-21780142 C G 0.52 21780142 1.25 1.12 1.39 6.32E-05 MTAP 

9 rs896655 A G 0.39 21696571 0.8 0.72 0.89 6.69E-05 LOC402359 

9 SNP9-21763167 C G 0.48 21763167 0.8 0.72 0.89 4.74E-05 MTAP 

9 rs2383202 A G 0.49 21700215 1.32 1.19 1.47 5.24E-07 LOC402359 

9 SNP9-21780067 A G 0.48 21780067 0.8 0.72 0.89 6.90E-05 MTAP 

9 SNP9-21778523 A G 0.48 21778523 0.8 0.72 0.9 8.15E-05 MTAP 

9 SNP9-21755601 A G 0.52 21755601 1.24 1.11 1.39 9.27E-05 MTAP 

9 SNP9-21765957 A G 0.52 21765957 1.25 1.12 1.39 7.01E-05 MTAP 

9 SNP9-21759412 A G 0.52 21759412 1.24 1.11 1.39 9.77E-05 MTAP 

9 SNP9-21792469 A G 0.47 21792469 0.8 0.71 0.89 3.49E-05 MTAP 

9 rs7866787 A G 0.48 21750639 0.8 0.72 0.9 7.94E-05 LOC402359 
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9 SNP9-21778081 A C 0.48 21778081 0.8 0.72 0.89 7.24E-05 MTAP 

9 rs7848524 A G 0.5 21691432 0.76 0.68 0.84 4.28E-07 LOC402359 

9 rs7023329 A G 0.47 21806528 0.79 0.71 0.88 1.27E-05 MTAP 

9 rs6475552 A G 0.5 21691674 1.32 1.19 1.48 3.71E-07 LOC402359 

9 rs1345026 A G 0.58 21735756 0.79 0.7 0.88 2.43E-05 LOC402359 

9 rs1452658 A G 0.5 21690795 1.32 1.18 1.47 7.22E-07 LOC402359 

9 SNP9-21789598 A G 0.49 21789598 0.75 0.68 0.84 4.15E-07 MTAP 

10 rs2797272 A G 0.24 9125309 0.77 0.68 0.88 5.74E-05 LOC389936 

10 rs11001702 A G 0.09 53773431 0.67 0.56 0.8 1.25E-05 DKK1 

11 rs644817 A C 0.93 69749575 0.62 0.48 0.78 7.88E-05 FADD 

12 rs12826471 A G 0.84 3455203 0.71 0.61 0.83 1.53E-05 PRMT8 

13 rs2202561 A G 0.61 70442966 1.26 1.13 1.41 5.69E-05 LOC647277 

13 rs7995083 A G 0.13 23043162 1.41 1.2 1.67 4.96E-05 TNFRSF19 

13 rs17691655 A G 0.76 70445908 1.34 1.18 1.52 5.23E-06 LOC647277 

14 rs7150290 A G 0.14 52220859 1.4 1.19 1.64 4.10E-05 ERO1L 

15 rs8030574 A C 0.23 71415267 0.77 0.68 0.88 9.47E-05 HCN4 

15 rs1129038 A G 0.22 26030454 0.7 0.61 0.79 3.73E-08 HERC2 

15 rs12913832 A G 0.78 26039213 1.43 1.25 1.62 6.15E-08 HERC2 

16 rs11648898 A G 0.18 88573487 1.57 1.35 1.84 1.46E-08 AFG3L1 

16 rs4238833 A C 0.4 88578190 1.34 1.2 1.5 4.56E-07 AFG3L1 

16 rs10852628 A G 0.31 88607428 1.4 1.24 1.58 6.94E-08 DBNDD1 

16 rs258322 A G 0.88 88283404 0.63 0.53 0.76 1.13E-06 CDK10 

16 rs164741 A G 0.65 88219799 0.76 0.67 0.85 2.44E-06 DPEP1 

16 rs4785751 A G 0.53 88556918 1.43 1.29 1.6 1.13E-10 DEF8 

16 rs17827507 A G 0.27 83202987 0.77 0.68 0.86 1.43E-05 COTL1 

16 rs4785752 A G 0.53 88562642 0.73 0.66 0.82 4.14E-08 DEF8 

16 rs352935 A G 0.52 88176081 1.25 1.12 1.39 8.26E-05 CPNE7 

16 rs4785759 A C 0.53 88578381 0.73 0.66 0.82 4.26E-08 AFG3L1 

16 rs8051733 A G 0.36 88551707 1.42 1.27 1.59 2.66E-09 DEF8 

16 rs4408545 A G 0.54 88571529 1.43 1.28 1.59 3.81E-10 AFG3L1 

16 rs4785763 A C 0.63 88594437 0.75 0.67 0.84 1.23E-06 AFG3L1 

16 rs11076650 A G 0.46 88595442 1.4 1.26 1.56 1.65E-09 DBNDD1 

16 rs7195043 A G 0.5 88548362 0.72 0.64 0.8 5.73E-09 DEF8 

16 rs9939542 A C 0.3 88580549 1.33 1.18 1.51 3.15E-06 AFG3L1 

17 rs3744578 A G 0.21 11589057 1.32 1.15 1.52 8.33E-05 DNAH9 

17 rs9904264 A G 0.21 11587008 1.34 1.17 1.54 3.96E-05 DNAH9 

17 rs16957962 A G 0.33 9000751 1.29 1.14 1.45 2.85E-05 NTN1 

19 rs868878 A G 0.88 7737047 0.69 0.57 0.82 4.60E-05 CLEC4M 

19 rs2285963 A G 0.88 5542735 1.42 1.21 1.68 2.57E-05 SAFB2 

19 rs934433 A G 0.6 36000617 0.79 0.7 0.88 1.86E-05 ZNF536 

19 rs934432 A C 0.4 36000424 1.27 1.14 1.42 1.66E-05 ZNF536 

19 rs6510181 A C 0.39 35984559 1.25 1.12 1.4 6.43E-05 ZNF536 

19 rs1549951 A G 0.61 35984184 0.8 0.71 0.89 6.85E-05 ZNF536 

19 rs3745542 A G 0.3 56279455 1.32 1.17 1.49 7.87E-06 KLK14 

20 rs2284271 A G 0.91 43038835 1.47 1.21 1.78 8.12E-05 STK4 

20 rs17730901 A C 0.88 16198822 1.39 1.18 1.63 7.78E-05 C20orf23 

20 rs4814466 A G 0.88 16201819 1.39 1.18 1.64 6.24E-05 C20orf23 

20 
SNP20-

31969319 
C G 0.89 31969319 0.68 0.57 0.82 7.25E-05 CHMP4B 
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Figure S3.1 Density distributions of the estimates of the parameters from a simulated data analysis, 

illustrated in Figure 3.1. The pre-specified minor allele frequency and exposure frequency was 0.30 

and 0.22, respectively. The simulating residual variance was 144.0. The values of the six 

parameters of the genetic effects were Errs.� � � 100.0,  3.0,  1.0,  2.0,  1.5,  1.0�. The corresponding 

statistical genetic effects were �s²³ � �101.75,  4.18,  1.22,  2.71,  2.2,  1.0�. The solid arrows 

denote the true simulated values of the parameters for the NOIA statistical model and the dashed 

arrows denote those for the usual functional model. 
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Figure S3.2 Density distributions of the estimates of the parameters from a simulated data 

analysis, illustrated in Figure 3.2. The pre-specified minor allele frequency and exposure 

frequency was 0.30 and 0.22, respectively. The simulating residual variance was 144.0. The 

values of the six parameters of the genetic effects were Errs.� � � 100.0,  3.0,  1.0,  0.0,  0.0,  0.0�. The corresponding statistical genetic effects were �s²³ � �101.16,  3.70,1.00,0.00,0.00,0.00�. The solid arrows denote the true simulated values 

of the parameters for the NOIA statistical model and the dashed arrows denote those for the 

usual functional model. 
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Figure S3.3 Density distributions of the estimates of the parameters from a simulated data 

analysis, illustrated in Figure 3.3. The pre-specified minor allele frequency and exposure 

frequency was 0.25 and 0.22, respectively. The values of the six parameters of the genetic 

effects were Errs.� � �22.0,  0.3,  0.1,  0.2,  0.1,  0.04�. The corresponding statistical genetic 

effects were �s²³ � �21.75,  0.38,  0.11,  0.27,  0.12,  0.04�. The solid arrows denote the true 

simulated values of the parameters for the NOIA statistical model and the dashed arrows 

denote those for the usual functional model. 
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Figure S3.4 Density distributions of the estimates of the parameters from a simulated data analysis, 

illustrated in Figure 3.4. The pre-specified minor allele frequency and exposure frequency was 0.25 

and 0.22, respectively. The values of the six parameters of the genetic effects were �s´³ ��22.0,  0.4,  0.2,  0.0,  0.0,  0.0�. The corresponding statistical genetic effects were �s²³ ��21.73,  0.5,  0.2,  0.0,  0.0,  0.0�. The solid arrows denote the true simulated values of the parameters 

for the NOIA statistical model and the dashed arrows denote those for the usual functional model. 
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Figure S4.1 Power under different critical values of the P values obtained using the Wald test for the 

quantitative simulation data influence by a genetic factor with strong POE (scenario 1). The minor 

allele frequency was 0.03. Power for detecting (a) the main allelic additive effect, (b) the POE and 

(c) the dominant effect. 

 

 

 

Figure S4.2 Power under different critical values of the P values obtained using the Wald test for the 

quantitative simulation data influence by a genetic factor with strong POE (scenario 1). The minor 

allele frequency was 0.48. Power for detecting (a) the main allelic additive effect, (b) the POE and 

(c) the dominant effect. 
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Figure S4.3 Power under different critical values of the P values obtained using the Wald test for the 

case-control simulation data influence by a genetic factor with POE. The minor allele frequency was 

0.03. Power for detecting (a) the main allelic additive effect, (b) the POE and (c) the dominant effect. 

 

 
 

 

Figure S4.4 Power under different critical values of the P values obtained using the Wald test for the 

case-control simulation data influence by a genetic factor with POE. The minor allele frequency was 

0.48. Power for detecting (a) the main allelic additive effect, (b) the POE and (c) the dominant effect. 
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Table S3.1 Distributions of selected demographic variables of the ILCCO dataset 

 

 

 

 

 

 

 
Table S3.2 Summary of the SNPs that we used in ILCCO dataset 

a
 

 

Chromosomal locus 

and variant 

Risk 

Allele 
MAF Case Control Non.smoker.freq SNPs 

rs2736100_chr5p15 C 0.51 6684 9558 0.24 0=AA 1=AC 2=CC 

rs402710_chr5p15 G 0.65 6682 8054 0.22 0=GG 1=GA 2=AA 

rs2256543_chr6p21 A 0.44 6781 9621 0.24 0=GG 1=GA 2=AA 

rs4324798_chr6q21 A 0.09 7283 10163 0.23 0=GG 1=GA 2=AA 

rs16969968_chr15q25 A 0.35 7186 10070 0.23 0=GG 1=GA 2=AA 

rs8034191_chr15q25 G 0.35 5070 8316 0.19 0=AA 1=AG 2=GG 

  a Non.smoker.freq=the frequency of non-smokers;  

 

 

 

Variables Case patients, No. (%) Control subjects, No. (%) 

Sex 
  

  Male 4334(59) 6054(58) 

   Female 3058(41) 4390(42) 

Age(year) 
  

   <50 1043(14) 2172(21) 

   50-59 1823(25) 2704(26) 

   60-69 2594(35) 3430(33) 

   70-79 1682(23) 1969(19) 

   >=80 206(3) 141(1) 

Smoking status  

   never 735(10) 3344(32) 

   former smokers 3033(41) 3873(37) 

   current smokers 3524(48) 2772(27) 

   ever smokers 100(1) 455(4) 
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Appendix 2: One-Locus and Two-Locus Scan by the NOIA and Usual Functional model 

 

Appendix 2.1: Gene-gene interaction: Reduced models 

      Ma et.al [22] stated the reduced one-locus models for NOIA statistical and usual models, 

including the additive, recessive, dominant models. Hereafter we are showing the corresponding 

two-locus models.  

      If the gene is additive, we have the following two-locus statistical model 

"
##
##
#$

G����G���G��G���G��G�G��G�G&
''
''
'( � 51 2N7m1 1 2 N7m1 2 2 N7m

; n 51 2N7k1 1 2 N7k1 2 2 N7k
; 5 μαkαmαα; �

"
###
###
#$

1 2N7k1 1 2 N7k1 2 2 N7k
2N7m N7kN7m2N7m 2C1 2 N7kDN7m2N7m 2C2 2 N7kDN7m1 2N7k1 1 2 N7k1 2 2 N7k

1 2 N7m 2N7kC1 2 N7mD1 2 N7m C1 2 N7kDC1 2 N7mD1 2 N7m C2 2 N7kDC1 2 N7mD1 2N7k1 1 2 N7k1 2 2 N7k
2 2 N7m 2N7kC2 2 N7mD2 2 N7m C1 2 N7kDC2 2 N7mD2 2 N7m C2 2 N7kDC2 2 N7mD&

'''
'''
'(

5 μαkαmαα;, 

and functional model: 

Gkm � )1 01 11 2* n )1 01 11 2* 5 Rakamaa; �
"
###
##$

1 01 11 2
0 00 00 01 01 11 2
1 01 11 21 01 11 2
2 02 22 4&

'''
''( 5 Rakamaa;. 

They are related as  

5 μαkαmαα; � 11 N7k0 1 N7m 2N7kN7m0 N7m0 00 0 1 N7k0 1 3 5 Rakamaa;. 

      If the gene is recessive, we have the following two-locus statistical model 
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"
##
##
#$

G����G���G��G���G��G�G��G�G&
''
''
'( � )1 2q1 2q1 1 2 q* n )1 2p1 2p1 1 2 p* 5 μαkαmαα; �

"
###
###
$1 2p1 2p1 1 2 p

2q pq2q pq2q 2C1 2 pDq1 2p1 2p1 1 2 p
2q pq2q pq2q 2C1 2 pDq1 2p1 2p1 1 2 p

1 2 q 2pC1 2 qD1 2 q 2pC1 2 qD1 2 q C1 2 pDC1 2 pD&
'''
'''
(

5 μαkαmαα;,   

and the functional model: 

Gkm � )1 01 01 1* n )1 01 01 1* 5 Rakamaa; �
"
###
##$

1 01 01 1
0 00 00 01 01 01 1
0 00 00 01 01 01 1
1 01 01 1&

'''
''( 5 Rakamaa;. 

They are related as  

5 μαkαmαα; � 51 p0 1 q 2pq0 2q0 00 0 1 2p0 1 ; 5 Rakamaa;. 

      If the gene is dominant, we have the following two-locus statistical model 

"
##
##
#$

G����G���G��G���G��G�G��G�G&
''
''
'( � )1 q�� 2 11 q��1 q�� * n )1 p�� 2 11 p��1 p�� * 5 μαkαmαα; �

"
###
###
$1 p�� 2 11 p��1 p��

q�� 2 1 Cp�� 2 1DCq�� 2 1Dq�� 2 1 p��Cq�� 2 1Dq�� 2 1 p��Cq�� 2 1D1 p�� 2 11 p��1 p��
q�� q��Cp�� 2 1Dq�� p��q��q�� p��q��1 p�� 2 11 p��1 p��
q�� q��Cp�� 2 1Dq�� p��q��q�� p��q�� &

'''
'''
(

5 μαkαmαα;, 

and the functional model 

Gkm � )1 01 11 1* n )1 01 11 1* 5 Rakamaa; �
"
###
##$

1 01 11 1
0 00 00 01 01 11 1
1 01 11 11 01 11 1
1 01 11 1&

'''
''( 5 Rakamaa;. 
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They are related as  

5 μαkαmαα; � 11 p�� 2 10 1 q�� 2 1 2C1 2 p��DC1 2 q��D0 q�� 2 10 00 0 1 p�� 2 10 1 3 5 Rakamaa;. 

 

Appendix 2.2: Test Statistics for Full and Reduced One-Locus Models 

The wald test statistic is z � PQRSJPQK, where  

βZ � CXEXD��XEy covJβZK � σCXEXD�� � gseJβZKh
 

The n rows of matrix  Z represent the corresponding genotype for individual i. And X � Z � S. 

Z �
"
##$

1% 0% 0%0% 1% 0%0% 0% 1% &
''(, and  ZEZ � n )p�� 0 00 p� 00 0 p* 

XEX � CZSDEZS � SEZEZS 

We recall that, N7 � p� � 2p, V � p� � 4p 2 N7  � 4p��p � p��p� � p�p. 

For NOIA statistical model with no dominance component modeled,  

S � )1 2N71 1 2 N71 2 2 N7* 

XEX � SEZEZS � g 1 1 12N7 1 2 N7 2 2 N7h � n )p�� 0 00 p� 00 0 p* � )1 2N71 1 2 N71 2 2 N7* � n g1 00 Vh 

det CXEXD � nV 

CXEXD�� � 1nV gV 00 1h 

Then z � PQRSJPQK � JTUTKVWTUXe_`CTUTDVW � Wµ¶gI �� �h�g � � ��F7 ��F7 �F7h�·UX
a¸`µ¶c√I �� �d � �√�_`I c√V √V √V2N7 1 2 N7 2 2 N7d � ZEy 

For NOIA statistical model with dominance component, 
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S4 �
"
##$

1 2N7 2 2p�pV1 1 2 N7 4p��pV1 2 2 N7 2 2p��p�V &
''( 

XEX � S4EZEZS4 � n ) 1 1 12N7 1 2 N7 2 2 N722p�p/V 4p��p/V 22p��p�/V* � )p�� 0 00 p� 00 0 p*

�
"
##$

1 2N7 2 2p�pV1 1 2 N7 4p��pV1 2 2 N7 2 2p��p�V &
''( � n 11 0 00 V 00 0 4p��p�pV 3 

det CXEXD � 4np��p�p 

CXEXD�� � 14np��p�p 14p��p�p 0 00 4p��p�pV 00 0 V3 

Then we got the test statistic for the NOIA one-locus full mode as follows: 

z � PQRSJPQK � JTUTKVWTUXe_`CTUTDVW � �√�_`I � "$
√V √V √V2N7 1 2 N7 2 2 N72abW`b``bWW 2abWWb``bW` 2abWWbW`b`` &( ZEy. 

For usual functional model with no dominance component modeled,  

S � )1 01 11 2* 

XEX � SEZEZS � g1 1 10 1 2h � n )p�� 0 00 p� 00 0 p* � )1 01 11 2* � n c1 N7N7 N7 � 2pd 

det CXEXD � nV 

CXEXD�� � 1nV cN7 � 2p 2N72N7 1 d 

z � βZseJβZK � CXEXD��XEyeσCXEXD�� � 1√nσV � 5aN7 � 2p 2peN7 � 2p
2p�eN7 � 2p2N7 1 2 N7 2 2 N7 ; � ZEy 
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It results in the same test statistic as the NOIA model for the additive effect estimating. 

For usual functional model with dominance component modeled,  

XEX � S.EZEZS. � n )1 1 10 1 20 1 0* � )p�� 0 00 p� 00 0 p* � )1 0 01 1 11 2 0* � n 5 1 N7 p�N7 p� � 4p p�p� p� p�; 

detCXEXD � 4np��p�p 

CXEXD�� � 14np��p�p 5 4p�p 22p�p 22p�p22p�p p�C1 2 p�D 2p�C1 2 N7D22p�p 2p�C1 2 N7D V ; 

z � βZseJβZK � CXEXD��XEyeσCXEXD�� �� 1√nσV
"
###
###
$ ¹ Vp�� 0 0

2¹ pVp��C1 2 p�D 0 ¹ p��VpC1 2 p�D
2¹p�pp�� 2¹p��pp� 2¹p��p�p &

'''
'''
(

ZEy 

From the second row of the matrix, we observe that the test statistic for the additive effect is different 

with those of the previous three models. And the test statistic z is smaller. 

 

Appendix 3 POE models 

 

Appendix 3.1: POE models before transformation 

 a� and a (or α�, α) denote the POE, from maternal and paternal origin, respectively. We extended 

the usual functional (Func-Usual) model (3) to the POE functional (Func-POE) model by 

incorporating a POE parameter into the model, and similar steps were carried out for the usual 

statistical model (Stat-Usual) (5) and resulted in a POE statistical model (Stat-POE).  

Model 1: POE functional (Func-POE) model: 

      Under the usual coding approach, the genotypic value G could be expressed as 
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G � º G�� � RG� � R � a � dG� � R � a� � dG � R � a� � a
¡. (A1) 

      That is  

1G��G�G�G
3 � S.E. � 51 01 0 0 01 11 11 1 0 11 0; 5 Ra�ad ;. (A2) 

       The inverse is  

E.W � S.W ��G, 

5 Ra�ad ; �
"
##$

1 02 � 2 �
0 0� �2 � �2 � �

2 � �� 2 �&
''( 1G��G�G�G

3. (A3) 

Simply, we could express genotypic value G on the number of the paternal or maternal reference 

allele, as follows: 

G � R � N�a� � Na � εd. (A4) 

 Model 2: POE statistical (Stat-POE) model: 

      From multiple linear regression, βZ � JX��X�K��X��y.  βZ consists of three of the four regression 

parameters, μ, α� and α. X� is a n � 3 vector of N� and N information and 

X� �
"
##$

111
001

0101…1
1…0

1…0&
''(. (A5) 

y is the observed trait phenotype and y � Z � G when those observations perfectly fit the genotypic 

values in ideal situations. Therefore, we could get the expression of the three parameter in βZ, as 

βZ � JX��X�K��X��ZG . Additionally, the dominance effect δ � �W`f�`W 2 �WWf�`` . After 
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combining the coding of the additive effects and dominant effects, adjusting the coding for the 

intercept term μ,  finally we got  

E4W � 5 μα�αδ ; � S4W��G �
"#
$ p�� p�p��E p�E p� pp�E   pE   p��EE  p�EE   2 � �

p�EE pEE� 2 � &'
( 1G��G�G�G

3. (A6) 

S4W ��can also be expressed as  

"
##$

p�� p��bWWb`WF7`£ �bW`b``C��F7`D£
p� pbWWb`WF7 `£     bW`b``C��F7`D£�bWWbW`F7 W£ bWWbW`F7 W£   2 � �

�b`Wb``C��F7WD£ b`Wb``C��F7WD£� 2 � &
''(. (A7) 

The inverse is  
G � S4WE4W 

It could be also expressed as 

G � μ � CN� 2 N7�Dα� � CN 2 N7Dα � εδ, (A8) 

which is equal to 

1G��G�G�G
3 � S4WE4W �

"#
$ 1 2N7�1 2N7� 2N7  ε��1 2 N7  ε�    1 1 2 N7�    1 1 2 N7� 2N7 ε�1 2 N7 ε &'

( 5 μα�αδ ;. (A9) 

     This relation between the functional model and the statistical model parameters is  

5 μα�αδ ; � 11 N7�0 1 N7 p� � p�0 p�E � p�E0 00 0 1 p�EE � p�EE0 1 3 5 Ra�ad ;. (A10) 

      Then, we transformed these two models to two equivalent models (18) and (21) by re-

parameterization using r� � a� � a, r � a 2 a� for the functional model and  γ� � α� � α, 

γ � α 2 α� for the statistical model. These two frameworks are equivalent to some extent, 
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whereas the transformed one is more straightforward than this original framework for nominating the 

overall genetic effect and POE separately. 

Appendix 3.2: Orthogonality of the Stat-POE model before transformation 

      In the Stat-POE model, from Equation A7, we could decompose the variance of the phenotypic 

value as  

V� � Var�CN� 2 N7�Dα�� � Var�CN 2 N7Dα� � VarCεδD � 2Cov�CN� 2 N7�Dα�, CN 2 N7Dα�, (B1) 

as 

Cov�CN� 2 N7�Dα�, εδ� � α�δCovCN�, εD � 0, (B2) 

and similarly,  

Cov�CN 2 N7Dα, εδ� � αδCovCN, εD � 0. (B3) 

Moreover, VarCεδD � δvarCεD � 4p��p�p�pδ/D. Therefore, we could express the additive 

and dominant variance components as 

V» � α�VarCN�D � αVarCND � 2α�αCovCN�, ND, (B4) 

Vª � 4p��p�p�pδ/D. (B5) 

      To show that the additive variance, V», could be decomposed to be two parts which are only 

dependent on two additive effects (γ�and γ), respectively, CovCN�, ND � 0 needs to be satisfied. 

And as we know CovCN�, ND � ECN�ND 2 ECN�DECND � p 2 N7�N7 � p��p 2 p�p� which 

indeed equals to 0 if the locus is in HWE. In this way, 

V»W � α�VarCN�D � α�V�, (B6) 

V»` � αVarCND � αV. (B7) 

      The two additive variance components V»W and V»`  is related only to the additive effects α� and 

α, respectively, with one due to maternal alleles and the other due to paternal alleles. The dominant 

variance component Vª is only related with the dominant effect δ, This property of the variance 

component to be divided into two independent additive components and one dominant component 

supports the notion that the POE statistical model before transformation is orthogonal.  
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Appendix 3.3: Orthogonality of the Stat-POE model after transformation 

      Except the variance component decomposition approach, the orthogonality of the Stat-POE 

models could also be checked by showing X� � X is a diagonal matrix in which X is the n � 4 design 

matrix for the sample. As described in the original NOIA paper[21], 

X� � X � n S� � D � S (C1) 

needs to be satisfied, where 

D � 1p�� 00 p� 0 00 00 00 0 p� 00 p
3. (C2) 

Given that S � Js�AK shown in equation (5) with s�� � 1, from (C1) and (C2) we derive the criteria 

for orthogonality when POE incorporated as 

p��s� � p�s�p�sN�ps
 � 0, (C3) 

p��s�N � p�sN�p�sNN�ps
N � 0, (C4) 

p��s�
 � p�s
�p�sN
�ps

 � 0, (C5) 

p��s�s�N � p�ssN�p�sNsNN�ps
s
N � 0, (C6) 

p��s�s�
 � p�ss
�p�sNsN
�ps
s

 � 0, (C7) 

p��s�Ns�
 � p�sNs
�p�sNNsN
�ps
Ns

 � 0. (C8) 

Except equation (C6), all of these criteria are satisfied by S in equation (5). And for equation (C6), 

p��s�s�N � p�ssN�p�sNsNN�ps
s
N � Cb`W�bW`DCb``�bWWD
 � 0 when p� � p� or 

p � p�� holds true. 

Appendix 3.4: Orthogonality of the Func-POE models 

We also checked the variance decomposition of the Func-POE models before and after 

transformation.  

    For the Func-POE model before transformation, as from Equation (A4),  

V� � a�VarCN�D � aVarCND � VarCεdD � a�aCovCN�, ND � a�dCovCN�, εD � adCovCN, εD, (D1) 

where CovCN�, ND=0 under HWE which I already showed previously in Appendix 3.2, and 
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CovCN�, εD � p� 2 Cp� � pDCp� � p�D 

CovCN, εD � p� 2 Cp� � pDCp� � p�D. 

Neither of them was equal to 0 even when the locus was under HWE.  

      For the Func-POE model after transformation, as from Equation (10),  

V� � °W`
 VarCN� � ND � °``
 VarCN 2 N�D � VarCεdD � °W± CovCN� � N, εD � °`± CovCN 2 N�, εD, (D2) 

where CovCN� � N, εD � Cp� � p�DCp�� 2 pD is not equal to 0, and CovCN 2 N�, εD �
Cp�� � pDCp� 2 p�D � 0 if it is under HWE. 

   V� � °W`
 VarCN� � ND � °``
 VarCN 2 N�D � VarCεdD � °W± CovCN� � N, εD. (D3) 

 Therefore, even if the HWE assumption holds, the variance of the Func-POE models could not be 

expressed as the completely decomposed form as could the Stat-POE models, which confirms that 

the Func-POE models were not orthogonal. 
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