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Abstract

It is well accepted that tumorigenesis is a multi-step procedure involving

aberrant functioning of genes regulating cell proliferation, differentiation, apop-

tosis, genome stability, angiogenesis and motility. To obtain a full understanding

of tumorigenesis, it is necessary to collect information on all aspects of cell activ-

ity. Recent advances in high throughput technologies allow biologists to generate

massive amounts of data, more than might have been imagined decades ago.

These advances have made it possible to launch comprehensive projects such as

(TCGA) and (ICGC) which systematically characterize the molecular fingerprints

of cancer cells using gene expression, methylation, copy number, microRNA and

SNP microarrays as well as next generation sequencing assays interrogating so-

matic mutation, insertion, deletion, translocation and structural rearrangements.

Given the massive amount of data, a major challenge is to integrate information

from multiple sources and formulate testable hypotheses.

This thesis focuses on developing methodologies for integrative analy-

ses of genomic assays profiled on the same set of samples. We have developed

several novel methods for integrative biomarker identification and cancer classi-

fication. We introduce a regression-based approach to identify biomarkers pre-

dictive to therapy response or survival by integrating multiple assays including

gene expression, methylation and copy number data through penalized regres-

sion. To identify key cancer-specific genes accounting for multiple mechanisms of

regulation, we have developed the integIRTy software that provides robust and

reliable inferences about gene alteration by automatically adjusting for sample

heterogeneity as well as technical artifacts using Item Response Theory.

To cope with the increasing need for accurate cancer diagnosis and in-

dividualized therapy, we have developed a robust and powerful algorithm called
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SIBER to systematically identify bimodally expressed genes using next generation

RNAseq data. We have shown that prediction models built from these bimodal

genes have the same accuracy as models built from all genes. Further, pre-

diction models with dichotomized gene expression measurements based on their

bimodal shapes still perform well. The effectiveness of outcome prediction us-

ing discretized signals paves the road for more accurate and interpretable cancer

classification by integrating signals from multiple sources.
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Chapter 1

Introduction

1.1 Background

Recent advances in biotechnology allow biologists to generate massive

amounts of data, which is more than one could imagine decades ago. For exam-

ple, it is routine to monitor the whole genome transcription level through various

microarray and next generation sequencing platforms. Besides the transcrip-

tome, many other aspects of cell activity are also frequently measured, including

mutation, DNA methylation, DNA copy number change, microRNA expression,

protein expression, and phosphorylation. Further, new technologies are still being

developed that will make bioassays more diverse, powerful and inexpensive.

This leads to a rich body of biological information accessible through

various public repositories. According to the update on Bioinformatics Links Di-

rectory [Brazas et al., 2010] and the review by Zhang [Zhang et al., 2011], there

are around 1500 unique publicly available data sources which can be summarized

into six categories: (1) sequence database such as GenBank [Benson et al., 1997],

RefSeq [Pruitt et al., 2009] and CMR (Comprehensive Microbial Resource) [Peter-
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son et al., 2001]; (2) functional genomics database including GEO (Gene Expres-

sion Omnibus) [Barrett et al., 2011], ArrayExpress [Parkinson et al., 2011] and

FFGED (Filamentous Fungal Gene Expression Database) [Zhang and Townsend,

2010]; (3) protein-protein interaction database such as BIND (Biomolecular In-

teraction Network Database) [Bader et al., 2003], DIP (Database of Interacting

Proteins) [Salwinski et al., 2004], IncAct [Aranda et al., 2010]and MINT (Molec-

ular Interactions Database) [Ceol et al., 2010]; (4) pathway database such as

KEGG (Kyoto Encyclopedia of Genes and Genomes) [Kanehisa et al., 2010];

(5) structure database such as CATH (Class Architecture Topology Homology)

[Greene et al., 2007]and PDB (Protein Data Bank) [Rose et al., 2011]; (6) anno-

tation database such as GO (Gene Ontology) [Ashburner et al., 2000]and NCBI

Taxonomy [Sayers et al., 2011].

Given the technology advancement as well as the rich information pro-

vided by public databases, data integration becomes an indispensable component

for biomedical research due to at least two reasons: (1) most of the research ef-

fort becomes the analysis and interpretation of data rather than data generation

because of the high level of automation in data generation. This is especially true

for projects involving next generation sequencing technology where approximately

four fifths of the effort goes to the integration and analysis of the collected data

[Mardis, 2010], and (2) the answers to most biological questions are rarely pro-

vided directly by the experimental results. Downstream bioinformatics analysis

involving integrating diverse data sources is required.

Many techniques and systems have been exploited for integrating biomed-

ical data. As summarized in [Goble et al., 2008], current approaches for data

integration can be roughly grouped into five groups: data warehousing, service-

oriented integration, semantic integration, wiki-based integration, and hypothesis-

driven integration. Data warehousing aims to provide a “one-stop shop” access to

different but related data sources. Usually a pre-defined data model is needed to
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extract, clean and formulate data from existing sources. Data warehousing suffers

from frequent data updates. In contrast, service-oriented integration leverages the

power of web services where individual data sources agree to open their data via

web services and thus data integration becomes a communication between com-

puters over the web. Most web pages are created for human reading which are not

efficient for a computer to understand. Therefore, semantic integration that uses

semantic web standards as a universal medium for data exchange has been pro-

posed. To allow user participation and contribution, the wiki-based integration

becomes necessary. Finally, to incorporate domain knowledge, hypothesis-driven

integration is needed which explicitly makes assumptions about the data and

applies statistical approaches for data integration.

This thesis mainly focuses on hypothesis-driven integration. The pri-

mary question we are trying to address is how to extract biological insights from

multiple high throughput biological assays profiled on the same set of samples.

In particular, we are interested in identifying biomarkers and building accurate

classifiers by integrating information from different assay types. The final goal

of our analysis would be to formulate testable hypothesss suggesting follow-up

studies.

1.2 Related work and motivation

It is widely agreed that tumorigenesis is a multi-step procedure that

involves aberrant functioning of genes regulating various aspects of cell prolifer-

ation, differentiation, apoptosis, genome stability, angiogenesis and motility. To

obtain a full picture of cancer, we need to gather information on all aspects of cell

activity. The Cancer Genome Atlas [McLendon et al., 2008] project has taken the

initiative to profile more than twenty cancers with almost all existing biological

assays including mutation, gene expression, DNA methylation, DNA copy num-
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ber (CN), microRNA expression and protein expression. However, data collection

is only the first step towards curing cancer. Extracting biological insights from

this comprehensive dataset through integrated analysis is a major challenge.

Below we review some of the mostly widely used data integration ap-

proaches developed in the last decade. In terms of the adopted procedure for

data integration, current approaches can be classified into four categories: step-

wise, regression-based, correlation based, and latent variable models [Lahti et al.,

2012, Huang et al., 2012]. The last three methods jointly model different assay

types and hence are called joint methods according to Huang et al. [2012]. Step-

wise methods analyze the individual assay type and then manually combine the

results; joint modeling specifies a model, usually in the form of a linear model or

latent variable model, to combine evidence from different sources before making

inferences.

In addition to the various procedures used, existing data integration

methods also differ in their analysis goals. Many current methods focus on the

dependency between gene expression and CN. These include the correlation and

regression based methods that explicitly search for genes with correlated mea-

surements. For example, Menezes et al. [2009] applied linear mixed models to

identify genes whose expression is regulated by CN change. In Peng et al. [2010],

the dependence between RNA expression and DNA copy number change is mod-

eled through penalized multiple regression models. There are also methods that

identify overlapped genetic alterations. The SODEGIR (Significant Overlap of

Differentially Expressed and Genomic Imbalanced Regions) method is designed to

infer genomic regions with both differential expression and copy number change

[Bicciato et al., 2009]. The CONEXIC (COpy Number and EXpression In Cancer)

method aims to identify driving mutations and the affected biological processes

[Akavia et al., 2010]. The remMap method searches concomitant gene expression

and CN alteration in cancer [Peng et al., 2010]. It is also possible to simulta-
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neously integrate gene expression, CN and clinical data. For example canonical

correlation analysis has been used to identify associations among gene expression,

CN change and clinical outcome [Waaijenborg et al., 2008, Lê Cao et al., 2009,

Witten et al., 2009]. The integrated classification problem is still emerging in

high throughput data analysis and hence has not been well studied.

Most existing integration methods deal with two assay types such as GE

and CN. The CNAmet method advances by simultaneously integrating GE, CN

and methylation data [Louhimo and Hautaniemi, 2011]. Still, due to the high

degree of heterogeneity in the data, existing approaches are not flexible enough

to integrate an arbitrary number of assay types. This motivates us to develop a

more general approach for data integration. The first approach we use is through

regression where different assay types enter the regression model as covariates.

This approach enables us to evaluate how predictive a gene is by combining in-

formation from diverse sources. Our second approach is similar in concept to

Louhimo and Hautaniemi [2011] where the integration is performed on binary

signals derived from the original data. By integrating data from derived binary

signals, we gain several benefits: (1) data integration becomes more flexible; (2)

the binary signals are easy to interpret and understand; (3) the implementation

and inference becomes simpler. Under this framework, we have developed several

methods. For example, we have developed the integIRTy pipeline which is able

to integrate an arbitrary number of assay types [Tong and Coombes, 2012]. We

have also developed the SIBER algorithm which systematically extracts binary

signals from the data [Tong et al., 2013]. We also formally investigate how well

the binary signals perform in terms of predicting clinical outcome and estab-

lished that bimodal genes contain the same information as provided by all genes.

The effectiveness of building classifiers from discrete signals will greatly facilitate

integrated classification using multiple data sources.
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1.3 Thesis organization and contributions

This thesis focuses on approaches for the integrative analysis of genomic

assays profiled on the same set of samples. We have developed several novel

methods to solve problems not addressed by existing approaches.

We begin with integrative biomarker identification in Chapter 2. We

first propose a regression framework to integrate multiple assays including gene

expression, methylation, and copy number data. We discuss the dependency

problem where measurements from different assays are correlated violating the

standard regression assumption, and we propose a penalized regression approach

to obtain accurate inference. The proposed model is applied to the TCGA

(http://cancergenome.nih.gov/) ovarian serous cystadenocarcinoma (OV) datasets

and identifies a set of genes predictive of treatment response and overall survival.

We find that known cancer related genes are not enriched for predictive genes.

We then introduce the integIRTy method in Chapter 3 to identify gene

alterations from multiple assays using the Item Response Model. This is another

way to identify biomarkers through data integration. This method is motivated

by the fact that tumor suppressors can be blocked (or oncogenes activated) by

different mechanisms in different patients. Hence, simply looking at one assay

at a time will miss genes that alter rarely in individual assay but in a consistent

manner across assays. After extensive simulation and real data analysis, we find

that integIRTy is more robust and reliable than conventional methods when ap-

plied to a single assay. When applied to multiple assays, integIRTy can identify

novel genes that cannot be found by looking at individual assays separately. Fur-

ther, integIRTy allows us to explore the global alteration pattern across multiple

assays.

Chapters 4 and 5 provide the foundation for integrative classification

http://cancergenome.nih.gov/
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using information from multiple sources. We base the integration on discrete

signals. Differing from most current approaches which model continuous signals,

we find that discrete signals such as bimodal expression and discrete copy number

changes are effective and easy for data integration. We start with bimodality

which identifies natural binary signals in the cell. Chapter 4 deals with how to

identify bimodal genes from RNAseq data. We present the Bimodality Index (BI)

approach which generalizes the existing method by Wang et al. [2009] developed

for microarray data based on mixture model. The generalized BI proves to be

robust, powerful, invariant to shifting and scaling, has no blind spots, and has a

sample-size-free interpretation.

Chapter 5 addresses the question: are bimodal genes enough for predic-

tion? This question is important because it is the basis for discrete-scale integra-

tion. We approach this problem by assembling an established benchmark dataset,

and we compare the classification performance between bimodal-gene-only model

and all-gene model. We find there is no significant difference between the two

models and conclude that bimodal genes contain all the information needed to

predict outcome. These results pave the road for a comprehensive study that per-

forms classification with discrete features extracted from different data sources.

Finally, Chapter 6 concludes the thesis and discusses several future re-

search directions.
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Chapter 2

Prognostic biomarker identification through data

integration

2.1 Background

Biomarkers play a crucial role in medicine. The usage of biomarkers

enables more accurate diagnosis, prognosis, and more effective treatment. For

example, predictive biomarkers give indications of the probable effect of a certain

treatment. These include drug-related biomarkers that indicate whether a drug

is likely to be effective on a specific patient. Prognostic biomarkers provide in-

formation on how a disease may develop. It is thought that genetic biomarkers

are the key to personalized medicine [Tevzak et al., 2010]. The great promise

of biomarkers has led many organizations and big pharmaceutical companies to

invest heavily in biomarker and drug development.

It turns out that biomarker identification is a central component for drug

development. With the completion of the Human Genome Project, biomedical

research has advanced tremendously in the past ten years. Rather than mea-

sure cell activities one at a time, it has now become easy and cheap to monitor
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genome-wide events thanks to the evolving high throughput technologies that

cover DNA, mRNA, protein and metabolites. It is expected that these biotech-

nologies will usher in a paradigm shift in genomic medicine where patients can

receive personalized treatment tailored to their genetic composition. There is

no doubt that data can be collected at an unprecedented pace. However, the

challenge becomes how to analyze this data and transform it into knowledge. It

becomes a more serious problem when deriving candidate biomarkers since it is

almost impossible to follow up every target that is measured. Further, it is one

thing to identify therapeutic candidates through these high throughput assays,

but it is another to have these biomarkers going through clinical trials and being

marketed.

There are two major methods for biomarker identification: filter and

wrapper [Inza et al., 2004]. The filter method selects biomarkers by examining the

relevance of the features to the outcome. Usually this is in the form of statistical

tests (e.g., student’s t-test or F test) or information metric e.g., information gain

or mutual information) [Liu and Motoda, 1998]. Feature selection by the filter

method is separated from evaluating the prediction model. In comparison, the

wrapper method embeds feature selection into the prediction model. Wrappers

train a new model for each subset of features and scores the feature subset with the

prediction performance. As a result, wrappers can produce a feature set that is

tuned to a specific predictive model and usually yield better accuracy in industrial

machine learning applications. However, wrappers are computationally intensive

and more likely to overfit for high throughput data. Instead, filter methods are

mostly adopted in the analysis of high throughput data [Chu et al., 2005, Inza

et al., 2004].

Here we propose a regression framework that integrates information across

different types of assays for biomarker identification. This method is an example

of a filter method that is flexible enough to deal with both binary and survival
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outcome. The rest of this chapter is organized as follows. We first introduce the

multiple logistic regression and Cox proportional hazard models in section 2.2.

We discuss the collinearity issue arising from the correlated measurements as well

as methods to solve it. We then present the results of applying this method to

identify prognostic markers in TCGA ovarian cancer data in Section 2.3. We

finish this chapter with a brief summary and discussion of future research.

2.2 Methods

We formulate a multiple regression framework for integrated biomarker

identification. The goal is to identify genes predictive of therapy response (com-

plete response/non-complete response) or overall survival time. This is a gener-

alization of the commonly used student’s t-test and univariate Cox Proportional

Hazards (PH) regression models applied to one assay type.

2.2.1 Logistic regression model

In the first model, we investigate the relationship between the binary

therapy response and measurements from gene expression, methylation and copy

number assays. For individual i (i = 1, 2, ..., N), the measurements for a particu-

lar gene are denoted by xi = (1, xi1, ..., xik, ..., xiK) where xik is the measurement

from the kthassay (k = 1, 2, ..., K). Note that β0 is the intercept term. In our case,

there are two expression assays, one methylation assay, and one copy number as-

say, and hence K = 4. The therapy response is denoted by yi = (y1, y2, ..., yN)

where yi = {0, 1}.

We apply the following logistic regression model:
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log
pi

1− pi
=

k=K∑
k=0

βkxik (2.1)

where pi = P (yi = 1) is the probability of achieving complete response for

individual i (i = 1, 2, ..., N). βk for k = 1, 2, ..., K is the regression coefficient for

the kthassay. Note that the gene index is suppressed in this formula.

The expression, methylation, and copy number measurements are ex-

pected to be correlated, which violates the independence assumption for multiple

regression. Several approaches have been proposed to deal with this issue in-

cluding LASSO regression [Tibshirani, 1996] and ridge regression [Marquaridt,

1970].

Given a set of predictors, it is desirable to identify which set of variables

predicts best. Therefore, a model selection procedure is needed. One common

practice is to apply a stepwise selection procedure that can be either forward

selection, backward elimination, or bidirectional selection. In our implementation,

we adopt backward elimination and use (AIC) to select the best model among

the candidate models.

The parameters β = (β1, β2, β3, β4) for the logistic regression model in

equation 2.1 can be estimated by maximizing the following log-likelihood func-

tion:

`1(β) =
i=N∑
i=1
{yiln( 1

1 + exp(−xi′β)) + (1− yin)ln( exp(−xi′β)
1 + exp(−xi′β))} (2.2)

The LASSO version of logistic regression is nothing but adding an L1

penalty on the regression coefficients. This corresponds to maximizing the fol-

lowing constrained log-likelihood equation:
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`1(β)LASSO = `1(β)− λ
k=K∑
k=1
|βk|

where λ > 0 is a Lagrangian multiplier. The optimal λ can be obtained through

cross-validation.

The Ridge regression model is quite similar. We only need to add an L2

penalty on the regression coefficients:

`1(β)Ridge = `1(β)− λ
k=K∑
k=1

β2
k

2.2.2 Cox Proportional Hazards model

To investigate the relationship between overall survival time and whole-

genome assays, we apply the Cox PH model. For individual i, we observe (ti, δi)

where ti is the overall survival time and δiis the censoring indicator (δi = 1 means

no censoring; δi = 0 means censoring.)

hi(t|xi) = h0(t)exp(
k=K∑
k=1

βkxik) (2.3)

where h0(t) is the baseline hazard function. h0(t) can have a parametric form or

remain unspecified leading to a semi-parametric model. This model assumes the

proportional hazard condition, which means that the hazard ratio between two

individuals is independent of time and only time-independent covariates are

allowed.

The parameters β = (β1, β2, β3, β4) for the Cox PH model are usually

estimated by maximizing the partial log-likelihood without specifying h0(t):
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`2(β) =
i=N∑
i=1

δi[xi′β − log{
∑
j∈R(i)

exp(xi′β)}] (2.4)

where R(i) is the set of indices for individuals that are at risk at time i.

To impose LASSO type penalty on the regression coefficient, we modify

the partial log-likelihood as:

`2(β)LASSO = `2(β)− λ
k=K∑
k=1
|βk|

The Ridge regression is quite similar:

`2(β)Ridge = `2(β)− λ
k=K∑
k=1

β2
k

Both the LASSO and Ridge versions for the logistic regression and Cox

PH regression models can be fit through the glmnet package in R.

2.2.3 Hypothesis testing

Given a fitted modelM1 which may include a single covariate or multiple

covariates, we want to test if this model is better than a null model M0 where

only an intercept term is fitted. Under the generalized linear model framework,

this can be done through the Analysis of Deviance [McCullagh and Nelder, 1989].

The deviance of model M1 is defined as:

D(M1) = −2{logL(M1)− logL(Ms)}
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where L(M1) is the likelihood fitted by model M1 while L(Ms) is the likelihood

from the saturated model Ms. The saturated model Ms is the model that fits a

parameter for each observation and hence fits the data exactly.

Similarly, the deviance of null modelM0 which only fits an intercept term

to the data can be defined as:

D(M0) = −2{logL(M0)− logL(Ms)}

It then follows that the difference of deviance D(y) follows a χ2 distribu-

tion with a degree of freedom equal to the number of extra parameters d in M1

compared to M0:

D(y) = D(M0)−D(M1) ∼ χ2
d

Note that it is not needed to evaluate logL(Ms) in computing D(y) since

logL(Ms) is cancelled out:

D(y) = −2{logL(M0)− logL(M1)}

Since we are testing each of the genes separately, we have to deal with the

multiplicity of simultaneous tests. Many methods have been proposed to account

for multiplicity. Usually these methods control different type I error rates such

as family-wise error rate, false discovery rate, per-comparison error rate, or per-

family error rate [Dudoit et al., 2003]. We adopt the method developed by ? that

controls the False Discovery Rate (FDR) . In particular, the set of p values is

modeled by a Beta-Uniform Mixture (BUM) model where the uniform component

represents non-informative genes while the beta component corresponds to the

set of predictive genes.
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2.3 Results

2.3.1 Cancer subtypes and prognosis

We performed an exploratory data analysis to examine if there were obvi-

ous subtypes among the samples. We focused on TCGA (http://cancergenome.nih.gov/)

ovarian serous cystadenocarcinoma (OV) data, as this data contained the most

samples at the time of analysis in March 2010.

We started with data assembly. For genewise integration, four assay

types are available: Affymetrix U133A expression (BI HT_HG-U133A), Illu-

mina Infinium 27K methylation arrays (JHU-USC HumanMethylation27), Agi-

lent CN arrays (HMS HG-CGH-244A), and Agilent expression arrays (UNC Ag-

ilentG4502A_07). We obtained genewise summary for CN data by mapping the

segments to the human genome. The details are provided in Section 3.5.1. We

restricted our attention to the solid tumor samples simultaneously measured by

all platforms. There were four types of tissues selectively profiled for the OV data

at the time of analysis: solid tumor (coded as 01 by TCGA consortium), normal

tissue (11), cell line (20) and normal blood (10). Most of the profiled samples

were from the solid tumor tissue. As a proof of concept, we aimed to integrate

across all platforms and thus only focused on genes measured in all assays. At

the end, we got 207 shared solid tumor samples and 9855 genes for integration

(see Figure 2.1).

Measurements (β values) from the methylation data are bounded between

0 and 1. Measurements from the CN data are log2 intensity ratios (log2R) between

two channels. For easy interpretation, we categorize the methylation data into

three groups: β < 0.25 (no methylation), 0.25 ≤ β < 0.75 (partial methylation),

β ≥ 0.75 (complete methylation). We also categorize the CN data into three

groups: log2R < −0.35 (loss), −0.35 ≤ log2R < 0.2 (neutral), log2R ≥ 0.2 (gain)

http://cancergenome.nih.gov/
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Figure 2.1: Data assembling for TCGA OV data. TCGA level 3 data for gene ex-
pression (U133A, Agilent), methylation and copy number (CN) are downloaded from
http://cancergenome.nih.gov/ and assembled by breaking down the tissue types. Clinical in-
formation including vital status, overall survival and therapy response is also indicated.

based on exploratory analysis.

We also examined the clinical data. The clinical file contained basic in-

formation about the patients including age, sex, ethnicity group, tumor grade,

primary therapy response and survival information. The primary therapy re-

sponse fell into four categories: complete response, partial response, progressive

disease and stable disease. We found that the survival for partial response, pro-

gressive disease and stable disease is quite similar. Therefore, we grouped the

three categories into non-complete response. Figure 2.2 shown that the overall

survival differed between complete response and non-complete response. It is

therefore important to examine whether there are markers that predict complete

response/non-complete response status.

An immediate question to ask is whether there are subtypes among the

OV patients. Further, we would like to evaluate if the patients with complete

response and non-complete response form natural groups. To answer these ques-

tions, we performed two-way clustering using the Affymetrix expression data with

all 379 solid tumor samples. We selected genes with the BI method which led to
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Figure 2.2: Kaplan-Meier survival curves for TCGA ovarian cancer patients. For patients with
primary therapy response status, 216 have complete response while 91 have non-complete re-
sponse. The median survival time is indicated by the red dashed line.

1130 bimodal genes [Wang et al., 2009]. Figure 2.3 shows the dendrogram from

two-way clustering. The samples form three groups, while there are at least four

groups of genes. We split the samples based on the clustering result and exam-

ined if this grouping is associated with therapy response status or overall survival.

Unfortunately, this analysis did not find any significant association between the

patient clusters and clinical outcome (therapy response or survival time). For

the four groups of genes, we queried the DAVID (http://david.abcc.ncifcrf.gov/)

database and found that the second group indicated in Figure 2.3 was significantly

associated with immune response (p value=10−31) by GO term enrichment anal-

ysis.

The patient clusters using all bimodal genes did not associate with either

therapy response or overall survival time. We conjectured that clusters derived

from a subset of the genes are correlated with clinical outcome. We therefore

split the genes into four groups based on the gene clustering result and repeated

our analysis. Unfortunately, the clusters formed by subsets of genes still do not

http://cancergenome.nih.gov/
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Figure 2.3: Two-way clustering of 379 solid tumor samples for TCGA OV expression data

predict outcome. This suggests that a supervised learning approach is needed to

derive predictive markers and signatures.

2.3.2 Predictive power of different assay types

Our logistic regression model, as well as the Cox PH model, can identify

biomarkers (either expression, methylation or copy number) predictive of clinical

outcome. After fitting the regression models, we obtain a p value for each gene.

For a direct comparison of the predictive power of different assays as well as

the combined data, we first fit univariate regression model only allowing one

covariate. We then compared the results to a full model where all measurements

enter the model. We found that the LASSO and ridge regression behave similarly.

Therefore, we only present results from ridge regression.

Figure 2.4 shows the results from our logistic regression models. In each

panel, we show the histogram with a fitted Beta-Uniform Mixture (BUM) model

superimposed [Pounds and Morris, 2003]. The blue line indicates the uniform

component while the green line indicates the beta component. The uniform com-

ponent corresponds to no predictive power while the Beta component suggests
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different degrees of predictive power depending on its shape as well as the com-

ponent size. We find that the four assay types have varying predictive power for

therapy response. In particular, the Affymetrix expression data (Expr-U133A)

has an obvious Beta component while the Agilent expression data (Expr-Agilent)

seems to be pure noise. This however does not indicate Affymetrix is more accu-

rate than Agilent because there are other issues beyond the technology itself. We

start with the level 3 data which is preprocessed and summarized measurements.

Therefore, the difference might come from data preprocessing. Another possible

reason is batch effects.

Comparing across assay types, the copy number data seems to be more

predictive than either expression or methylation data. The histogram for methy-

lation data is somewhat irregular. The integrated analysis from the multiple

regression model improves the predictive power, which is not surprising since

more predictors are included. The last panel in Figure 2.4 shows the result after

applying model selection. The stepwise model selection procedure distorts the

distribution of p values by deliberately searching for the best model satisfying

the AIC criterion. This leads to a null model where no predictor is included for

most of the genes (p values close to 0, not shown).

Similarly, Figure 2.5 shows the results from our Cox PH regression mod-

els. In this case, the two expression assays behave similarly. The copy number

data becomes least predictive. The predictive power for methylation data is also

marginal. Compared to results in Figure 2.4, the predictive power for each assay

seems to have been changed. This is because the therapy response and overall

survival are different outcomes despite being correlated.

The histogram of p values obtained from the methylation data looks

bizarre in both the logistic regression model and the Cox PH model. In particular,

we notice that there is a high bar in the histogram of p values (p values around
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Figure 2.4: BUM plot of logistic regression model. The first four figures show the histograms
of p values from the univariate logistic regression models. The fifth figure shows the histogram
of p values from our multiple regression models. The last figure shows the result after applying
stepwise model selection by AIC. A Beta-Uniform Mixture model (BUM) is fitted for each of
the histograms and indicated by the blue and green lines. Note that the BUM model on the
last panel is inappropriate due to the embedded multiple testings during model selection.
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Figure 2.5: BUM plot of Cox PH model. The first four figures show the histogram of p values
from univariate Cox PH regression model. The fifth figure shows the histogram of p values from
Cox PH model with all covariates. The last figure shows the result after applying stepwise model
selection by AIC. A Beta-Uniform Mixture model (BUM) is fitted for each of the histograms and
indicated by the blue and green lines. The spike of p values around 0.77~0.78 in methylation
data is because around 200 genes have

0.42~0.43 in the logistic regression model and 0.77~0.78 in the Cox PH model).

The high bar in the logistic regression model corresponds to 452 genes having

exactly the same p value (there are 41 other genes having similar p value in the

bar). The reason is that for these 452 genes, 135 patients have been partially

methylated and one patient has no methylation. As a result, these genes have

the same p value in the logistic regression model. Similarly, the high bar in the

histogram of p values from the Cox PH model mostly corresponds to 204 genes.

For these 204 genes, 156 patients have no methylation and 1 patient have partial

methylation. Note that the sample size differs in the logistic regression model

and the Cox PH model since there are missing values in the clinical data.
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Table 2.1: Numbers of significant genes selected at different FDR rates for the logistic regression
models.

The BUM model allows us to control for multiple testing using False

Descovery Rate (FDR). Table 2.1 and Table 2.2 list numbers of genes selected

at different FDRs using Affymetrix arrays (U133A), Agilent arrays (Agilent),

methylation, copy number (CN) and integrated data (combined). The numbers

of genes remaining after Bonferroni correction are also indicated. Note that for

the integrated data, the FDR estimate is dubious since there is inherent multiple

testing during model selection which violates the assumption of BUM model.

More strict control of multiple testing for the integrated data could be attained

using permutation.

According to Table 2.1, CN data tends to identify more genes related to

therapy response. However, even at FDR=0.1, there are only 23 genes identified

which indicates there are not many predictive genes for therapy response. Note

that at FDR=1, methylation and CN do not select all genes. The reason is that

there are some genes with all methylation or CN data falling into only one group

for the categorized data. There is no gene identified after Bonferroni correction.

Table 2.2 summarizes the results from the Cox PH models. There is no

significant gene identified by CN data using any FDR cutoffs. Expression (both

Affymetrix and Agilent) data identifies the most genes significantly associated

with overall survival.
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Table 2.2: Numbers of significant genes selected at different FDR rates for the Cox PH models.

Example genes predictive of overall survival time are shown in Figure

2.6. We select example genes from the top genes from integrated analysis that

are also contained in the sequencing list. For gene SLC2A5 (ranked 9th in the

integrated analysis using our Cox PH model), increased methylation leads to

improved survival. For gene SKP2 (ranked 6th in the integrated analysis using our

Cox PH model), increased CN improves survival. However, we should interpret

this result with caution since the result is based on the training data. A more

rigid evaluation should be performed on independent validation data.

2.3.3 Cancer genes and predictive power

We have identified genes predictive of therapy response and overall sur-

vival. Beyond this, there are genes that are deemed to be cancer related, for

example the oncogene and tumor suppressors. This prior knowledge of “cancer

genes” can be used as a reference to examine whether biologically important genes

are also predictive of clinical outcome. We extract a cancer gene list from the

targeted sequencing candidates. The targeted sequencing candidates consisting

of 1326 genes were curated by TCGA consortium to identify important muta-

tions due to their biological importance. As a result, these genes are likely to
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Figure 2.6: Kaplan-Meier curves for example genes predictive to overall survival. (a) The two
groups of samples defined by methylation status (no methylation and partial methylation)
separate well in terms of Kaplan-Meier survival curve for gene SLC2A5. Increased methylation
leads to improved survival. (b) The three groups of samples defined by CN status have different
survival curves in gene SKP2. Increased CN leads to improved survival.

be key drivers for cancer. We construct three gene lists: (1) genes predictive

of therapy response (denoted as logistic in Figure 2.7); (2) genes predictive of

overall survival (denoted as coxph); (3) the cancer related genes (denoted as se-

quenced). The sequenced gene list is pre-determined; the logistic and coxph gene

lists are defined as genes passing a particular FDR cutoff. To test if the three

gene lists are independent, we apply a χ2 test to every combination of two gene

lists. Figure 2.7 shows the relationship between χ2 p value and FDR. We find

that genes predictive of therapy response or overall survival rarely overlap with

cancer genes. A possible explanation for this would be that the cancer gene list

is mostly based on mutation data. Therefore, to get improved enrichment, we

should use mutation data rather than expression, methylation or copy number

for the association analysis. The genes predictive of therapy response overlap

with genes predictive of overall survival at high FDR rate. At low FDR rates,

there is only marginal overlap between the two predictive gene lists. In fact, at

FDR<0.3, there is so little overlap that the 2-by-2 table degenerates to a 2-by-1

table, and hence no p value is computed.
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Figure 2.7: Test of independence between predictive gene list and cancer related gene list. The
cancer related genes are defined as the genes selected for targeted sequencing. The predictive
gene list is defined as genes passing a given FDR. We test if the sequenced gene list is indepen-
dent of the selected predictive gene list with χ2 test. The x-axis shows FDR cutoff while y-axis
shows the χ2test p value. Blue line indicates the p value from testing sequenced gene list and
predictive gene list to therapy response. The horizontal red line represents the 0.05 significance
cutoff.
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2.4 Discussion

In this chapter we have presented a flexible framework for gene-wise

integration using multiple biological assays based on regression. This method

allows us to evaluate the predictive power of individual assays as well as the

combined data. To pick the set of most predictive measurements and remove

measurements that are non-informative, we propose stepwise model selection.

An application to the TCGA ovarian cancer data is illustrated. Our analysis

shows that the gene expression, methylation and copy number have different

power to predict either therapy response status or overall survival. Further, the

genes predictive of therapy response also differ from genes predictive of overall

survival. We find that the curated cancer gene list downloaded from TCGA

data portal is not enriched with predictive genes. The underlying reason might

be that the cancer gene list is constructed based on mutation information and

hence enrichment is only expected if the association analysis is based on mutation

data.

We have applied the Beta-Uniform Mixture model to deal with multiplic-

ity in testing thousands of genes. However, this approach does not work when

model selection is applied. The inherent multiple testing in stepwise regression

model would deflate the p value that makes the BUM model inappropriate. One

possible solution would be permutation based correction as described in Dudoit

et al. [2003].

Our approach for integrative biomarker identification is performed at

the gene level. Extension work would perform integration at the network level.

Network based biomarkers have many attractive features. It has been reported

that network based biomarkers can be more predictive than gene based biomark-

ers Chuang et al. [2012]. Besides, network based biomarker can illuminate the

relationship between individual genes and hence suggest underlying regulation
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mechanisms. Currently, the work for deriving network based biomarkers is lim-

ited to one type of assay such as gene expression or protein array. Developing

a method to identify network based biomarkers from multiple assay types would

be an interesting topic.
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Chapter 3

Gene alteration identified by the Item Response

Model

(Most of the materials in this chapter have been published online in Bioin-

formatics, September 2012: Tong, P. et al, “integIRTy: a method to identify genes

altered in cancer by accounting for multiple mechanisms of regulation using item

response theory”. According to the journal policy, the author retains the right to

include the published article in full or in part in a dissertation.)

3.1 Background

The previous chapter introduced a regression based method to identify

predictive biomarkers utilizing multiple assay types. This is very important for

deriving novel therapeutics and ultimately allocating patients into different risk

groups based on their genetic fingerprints. Now we shift to another important

topic where the goal is to illuminate cancer related alterations. These alterations

are not necessarily predictive to clinical outcome directly. Instead, they charac-

terize the irreversible events transforming a normal cell to a cancerous cell. As
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a result, such alterations can help us understand the mechanisms driving cancer

formation and suggest biologically driven approaches for cancer treatment.

Cancer related alterations can happen in all aspects of the hallmarks of

cancer: sustaining proliferative signaling, evading growth suppressors, resisting

cell death, enabling replicative immortality, inducing angiogenesis, activating in-

vasion and metastasis, reprogramming energy metabolism, and evading immune

destruction [Hanahan and Weinberg, 2011]. It is realized that identifying such

alterations is the first step towards individualized cancer treatment. With the re-

cent explosion of high throughput technologies, researchers have been employing

multiple types of assays to interrogate the genetic characteristics of cancers. For

example, The Cancer Genome Atlas (TCGA) is aimed at systematically profil-

ing over 20 different cancer types using gene expression, methylation, microRNA,

SNP and copy number array as well as next generation sequencing to explore alter-

ations in DNA and RNA [McLendon et al., 2008]. The rich information gathered

through the TCGA project poses a great challenge for data integration.

Currently, there are four major methods proposed to integrate gene ex-

pression and copy number (CN) data: stepwise, regression-based, correlation-

based, and latent variable models [Lahti et al., 2012, Huang et al., 2012]. Most

of these methods focus on pairwise correlation between assays and/or outcome.

For example, SODEGIR is a stepwise method to identify overlapping genomic

regions of differential expression and genomic imbalance [Bicciato et al., 2009].

Linear mixed models have also been used to to search for genes whose expression

is affected by CN change [Menezes et al., 2009]. Similarly, penalized multiple re-

gression is another method to model the dependence between gene expression and

CN change [Peng et al., 2010]. To search for associations among gene expression,

CN change and clinical outcome, methods based on canonical correlation analysis

have also been developed [Waaijenborg et al., 2008, Lê Cao et al., 2009, Witten

et al., 2009]. A comprehensive comparison study of these methods can be found
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in Louhimo et al. [2012]. Recently, the CNAmet method has been developed to

integrate gene expression, methylation and copy number with a goal of searching

for synergistic regulations [Louhimo and Hautaniemi, 2011].

All existing approaches explicitly model the dependence of gene expres-

sion, methylation, and copy number. However, methylation and copy number

only accounts partially for the expression variation. The correlations between

expression and copy number/methylation are sometimes weak or even in the op-

posite direction since there are many other regulators of gene expression. There-

fore, inference relying on the dependence structure might be too restrictive. We

proposed a novel method called integIRTy (integration using Item Response

Theory) that is able to infer gene alterations from multiple assays without as-

suming any correlation structure. IntegIRTy is a latent variable approach that

automatically adjusts for sample heterogeneity as well as technical artifacts such

that alteration scores are put on a common scale for easy comparison.

IntegIRTy is based on the Item Response Theory (IRT) developed in

psychology. The IRT model has been widely used to construct and score psycho-

logical and educational tests such as the SAT and GRE tests [Baker and Kim,

2004]. A test consists of a set of items (or questions) constructed to measure a

certain ability. Once the response to the items is obtained, IRT can be used to

infer the latent ability score after adjusting for item difficulty. The IRT model

enjoys the invariant property where the latent ability estimates are invariant to

item difficulty level. This is quite appealing when it is necessary to compare

scores from different years or different institutions.

The context of IRT in educational tests resembles the challenge of identi-

fying gene alterations. Given a set of samples simultaneously profiled by different

assay types, we treat the genes as examinees and samples measured in different

assays as items. The heterogeneity among assays as well as samples can be au-
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tomatically adjusted by fitting different item parameters. Due to the invariant

property of IRT, the latent ability estimates would be comparable. Further, to

integrate multiple assay types, we can just assemble a larger test with different

assays supplying the items. This gives us a flexible path for data integration.

We evaluate the proposed method through both simulation study and real

data analysis. The simulation shows that both item parameters and latent trait

estimates are quite accurate. When applied to integrate real data, integIRTy

can identify novel alterations that cannot be found when analyzing the assays

separately. The new method is also compared to conventional methods such as

student’s t-test and Wilcoxon rank-sum test when there is only one assay type.

We found that integIRTy is more robust and reliable than these conventional

methods. Comparison with the CNAmet approach shows that the two approaches

provide complementary information when data is integrated.

3.2 Methods

Item Response Theory (IRT) refers to a family of models that describe
the relationship of an examinee’s performance on a set of test items
to his or her underlying (latent) ability level. In practice, this rela-
tionship is modeled by a monotonically increasing function called the
Item Characteristic Curve (ICC; see Fig.3.1). For binary responses
(i.e., right or wrong), a two-parameter logistic model (2PL) can be
specified as follows:

Pi(θj) = eai(θj−bi)

1 + eai(θj−bi)
(3.1)

The left hand side is the probability of a correct response to item i for
person j with ability level θj. On the right side, bi is the item difficulty
parameter for item i that determines the position of the ICC in re-
lation to the ability scale. The item difficulty is the ability level
required to achieve a 50% chance of a correct response on this item.
As bi increases, the item becomes harder. The remaining parameter,
ai, is the item discrimination for item i, which represents how well
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the item discriminates among the examinees. It is proportional to the
slope of the ICC at ability level bi. Higher discrimination means that
the item discriminates more clearly among the examinees, and hence
is more informative. Fig.3.1a shows an ICC with difficulty bi = 0.5
and discrimination ai = 1. Fig.3.1b shows several ICCs fitted from
real data.

As noted above, we apply IRT by treating genes as examinees and
patients as items. The main parameter of scientific interest is the
latent “ability” of each gene to be altered in cancer samples across all
assay types and samples. Patients with many altered genes (low item
difficulty) provide less useful information than patients with only a few
altered genes (high item difficulty). Groups of patients with similar
patterns of altered genes tend to have a high item discrimination and
so are weighted more heavily than a patient who has an idiosyncratic
set of altered genes (and low item discrimination).

Importantly, the IRT model is expressed at the item level rather
than the test level. This feature gives IRT models the so-called
invariant property. The invariant property implies that (i) item pa-
rameters are characteristics of the item, and hence are not dependent
upon examinees who take the test; (ii) the ability parameter that
characterizes an examinee is not test-dependent, and hence scores
from different tests are comparable.

The 2PL model can be augmented by introducing a guessing param-
eter, which is then called the three-parameter logistic model (3PL).
There is also a one-parameter logistic model (1PL), obtained by forc-
ing ai to equal 1. This model is also called the Rasch model. Since
the three models are nested, one can use a Likelihood Ratio test to
select the best model [Neyman and Pearson, 1933]. Alternatively, we
can use an information-based criterion such as Akaike’s information
criterion (AIC) or Schwarz’s Bayesian information criterion (BIC) to
identify the best model.

3.2.1 Parameter Estimation

Parameter estimation has received tremendous considerations in the
IRT literature. Methods under the maximum likelihood framework
include joint maximum likelihood (JMLE), marginal maximum like-
lihood (MMLE), and conditional maximum likelihood (CML). JMLE
has been shown to have many inherent problems, the most serious
being that it does not provide consistent estimates [Baker and Kim,
2004]. It also fails to estimate the latent trait when all items are an-
swered correctly or incorrectly. In comparison, both MMLE and CML
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Figure 3.1: Illustration of Item Characteristic Curve (ICC). (a) Exemplar ICC with a difficulty
level of 0.5 and discrimination 1. (b) ICCs from real data. The first four OV patient samples
for each assay are shown here. (Figure reprinted from Tong, P. et al, Bioinformatics, 2012 )

provide consistent parameter estimates. However, the CML approach
is only possible under the Rasch model [Andersen, 1980]. Recently,
Bayesian estimation has also been used [Fox, 2010]. We adopt the
MMLE procedure that has become the standard method since its in-
troduction, for which an implementation in R is available through the
ltm package [Rizopoulos, 2006].

According to Baker and Kim, the MMLE can be formulated under
the EM framework [Baker and Kim, 2004]. First, the item parame-
ters are estimated by maximizing the observed data likelihood after
integrating out the latent traits. For example, the contribution of the
mth examinee to the observed likelihood can be written as:

`m =
i=K∑
i=1

log

�
p(xim = 1|am, bm; θ)f(θ)dθ (3.2)

In Equation 3.2, a prior distribution f(θ) needs to be specified for the
latent trait (usually a standard normal distribution is used), xim is the
response to item i for examinee m, and K is the total number of items
in the test. Since there is no closed-form formula for the observed
data likelihood, Gauss-Hermite quadrature is required to evaluate the
integral. Second, given current item parameter estimates â, b̂, the
latent trait is estimated by the posterior mode as:

θ̂m = arg max
θ

i=K∑
i=1

log

�
p(xim = 1|â, b̂; θ)f(θ) (3.3)
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3.2.2 Estimation of Latent Traits from Integrated Data

Conceptually, estimating the latent trait for integrated data would
be the same as estimation from an individual assay. However, when
there are many assays to integrate or when there are many items in
each assay, parameter estimation could become ill-conditioned. This
can happen when there are more unknown parameters (since each item
introduces two parameters) than the data can afford to estimate. One
way to deal with this problem is to fix the item parameters estimated
from the individual assay type when modeling the combined data.
That is, the item parameters characterizing the items remain the same
when we estimate the integrated latent trait. This approach is valid
because the IRT model has the invariant property. Since the item
parameters are pre-estimated, we can simply calculate the latent traits
for integrated data using the maximum a posteriori estimates [Magis,
2011].

3.2.3 Statistical Significance Assessment

In order to identify genes showing statistically significant alteration,
we need to derive the null distribution of latent traits. Since there
is no existing method for this purpose in the item-response setting,
we use a nonparametric test to define empirical p-values based on
permutation. Two alternative strategies can be used to infer the null
distribution of latent traits similar to the ‘gene sampling’ and ‘sample
label permutation’ methods [Ackermann and Strimmer, 2009].

Gene sampling corresponds to calculating latent traits after permuting
the response matrix within samples. In this case, computed p values
measure how different the observed latent trait is from the case where
alterations happen randomly on the genes. Note that this method can
be used even when normal (control) samples are unavailable. When
normal samples are present, the sample label permutation approach
can be used. The null latent trait can be computed by following the
same procedure as computing the observed latent traits after permut-
ing sample labels. As Ackermann and Strimmer point out, the two
approaches can yield quite different results since they test different
null hypotheses. Once the empirical p value is calculated, multiple
testing can be adjusted using existing methods [Dudoit et al., 2003].
It should be noted that our integration approach entails no additional
price in terms of multiple comparisons compared to analyzing just one
dataset.
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Figure 3.2: Pair-wise smoothed density (darker cloud indicates higher density) of estimated
latent trait for alteration (upper panels) and Spearman rank correlations (lower panels) among
different assays and integrated data. When normal control samples are available for all assays,
we also show the correlations of computed p-values from conventional methods in bracket. (a)
OV dataset. (b) BRCA dataset. (c) GBM dataset. (Figure reprinted from Tong, P. et al,
Bioinformatics, 2012 )

3.2.4 Data Dichotomization

Proper transformation of the data is needed to fit the IRT model. To
do this, one needs to define a metric measuring the alteration magni-
tude. Then, a specified cutoff is used to dichotomize the data. Many
methods can be used to define the alteration magnitude. For two-
channel array data which provides the log ratio of intensities from
tumor and healthy reference tissue, the log ratio itself can serve as
alteration magnitude. When normal tissue is present, a feasible met-
ric for expression data is to use a Z-like statistic that measures the
deviation of a tumor sample from normal controls (see Section 3.5.2).

We could dichotomize the methylation data the same way as expres-
sion data. However, since methylation measurements (the β value)
are bounded between 0 and 1 with an asymmetric distribution, a
more biologically relevant method is to first discretize the methyla-
tion into three groups: unmethylated (β < 0.25), partly methylated
(0.25 ≤ β ≤ 0.75), and highly methylated (β > 0.75). If the group
membership for a tumor sample differs from the normal reference
(defined by the normal β mean value), then we code this gene in this
sample as altered.

Transformation of CN data is easier. Choosing a fixed threshold (e.g.,
0.1, 0.2, . . ., 0.7), genes with absolute adjusted log2Ratio larger than
this cutoff are converted to 1, and 0 otherwise. We use the adjusted
log2Ratio derived by subtracting measurements on matched normal
tissue from tumor tissue to exclude germline CN change that is irrel-
evant to tumorigenesis.

Generally, the choice of cutoff to dichotomize the alteration magnitude
should not affect the final result as long as it is sensible. This can be
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evaluated through a sensitivity analysis, which we present below by
comparing the latent trait estimates obtained from various versions
of the data transformed using different cutoffs.

(This section is an excerpt from Tong, P. et al, “integIRTy: a method to

identify genes altered in cancer by accounting for multiple mechanisms of regula-

tion using item response theory”, Bioinformatics, 2012 )

3.3 Results

We performed a simulation study to show that the model can recover
both the item parameters and latent traits in an integration setting
(see Section 3.5.3). We then investigated three public datasets (Table
3.1). Details about the samples and preprocessing steps are provided
in Section 3.5.1. Both the OV and GBM datasets contain three types
of assays interrogating expression (Expr), methylation (Methy) and
copy number (CN). The BRCA dataset only contains data for ex-
pression and copy number. All three datasets have been examined
in detail. However, due to page limitations, we mainly focus on OV
data and present other datasets when necessary. The 1PL, 2PL and
3PL models have been fitted on each dataset. Based on BIC, the
2PL model is shown to be the preferred model in all datasets (Sup-
plemental Table 3). Hence, all results presented below are from 2PL
model.

Table 3.1: Number of patients per dataset (Table reprinted from Tong, P. et al, Bioinformatics,
2012 )

OV BRCA GBM
Tumor Normal Tumor Normal Tumor Normal

Expression 569 8 37 NA 473 10
Methylation 526 10 0 NA 370 6

CN 571 567 37 NA 341 341

3.3.1 Alteration Patterns Across Assays

IntegIRTy allows us to evaluate and compare the alteration pattern
across different assays. Fig.3.2 compares the alteration from individ-
ual assays and after integration for OV, BRCA and GBM datasets. A
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common pattern is that there are not many genes with severe alter-
ation in all assays. We observed little correlation between the assays
for either the conventional method or our IRT method. This is in
agreement with previous results that showed only a small fraction of
the variation in expression was attributable to methylation [Wu et al.,
2010] or to CN change [Stranger et al., 2007] in a global sense.

The amount contributed by individual assays to the integrated data
differs. For both OV and GBM, the integrated latent trait is primarily
influenced by methylation data, followed by copy number, and then
expression. In BRCA, expression has a larger influence than copy
number. The correlation between latent traits from integrated data
and individual datasets is well behaved compared to the conventional
method where the integrated p-value is mostly dominated by the copy
number data.

3.3.2 Sensitivity Analysis

The latent trait estimates derived using different thresholds to di-
chotomize the expression data agree well, especially for high latent
traits (Supplemental Figure 3.6 a-c). In the low latent trait range,
agreement is somewhat worse, mainly due to high standard error (SE)
associated with latent trait estimates. The agreement for CN is even
better (Supplemental Figure 3.6 d-f). Hence, the proposed method
is robust to cutoff choice during data transformation. In comparison,
the naive score that simply computes the percentage of “correct re-
sponses” (i.e., alterations) varies when using different thresholds (Sup-
plemental Figure 3.7). Although the latent trait estimates are similar
using different thresholds, we use relatively stringent thresholds (2.5
for expression and 0.4 for copy number) for further analyses.

3.3.3 Contribution of Individual Assays to the Integrated Analysis

We performed a series of analyses to determine how individual assays
contribute to the list of genes found by an integrate analysis using
integIRTy. Fig.3.3 breaks down the lists of “top N” genes (for N
from 100 to 1000) from the integrated analysis of the OV dataset
to see which genes are on one, two, or all three of the top N lists
from the individual assays. This figure shows that the top N list for
methylation has the best agreement with the integrated list, with ex-
pression being second, and copy number having the least agreement.
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Figure 3.3: Relations between integrated and individual gene lists in OV data. We selected the
top (100 to 1000) genes from the integrated analysis and from individual asssays (E: expression,
M: methylation, C: copy number). Each bar is equivalent to a Venn diagram showing how
many of the top genes from the integrated analysis came from one, two (EM = expression and
methylation; EC = expression and copy number; MC = methylation and copy number) or all
three (EMC) individual assay gene lists. Black regions and numbers at the top of each bar
count the number of “novel” genes that only appear on the list from the integrated analysis.
(Figure reprinted from Tong, P. et al, Bioinformatics, 2012 )
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The relative contributions of the three assays to the integrated list re-
main consistent as we increase the length of the gene list. Moreover,
both the absolute and relative number of “novel” genes decreases as
N increases. We performed similar analyses integrating assays two
at a time and constructed similar plots (Supplemental Figure 3.18-
Supplemental Figure 3.19); the findings from this sequential integra-
tion are consistent with Fig.3.3.

3.3.4 Novel Altered Genes Emerge When Data Is Integrated

The latent trait estimated from the integrated data represents the
overall propensity of a gene to be altered in at least one assay (ex-
pression, methylation or copy number). Although this latent trait is
a compromise among the latent traits estimated from individual as-
says, in many cases the integrated rank (smaller rank for larger latent
trait) is smaller than the average rank of the three assays (Supple-
mental Figure 3.8a, c and e). There are also several occasions (296
genes in OV, 380 genes in BRCA, 811 genes in GBM) where the in-
tegrated rank is smaller than any of the ranks from individual assay
(Supplemental Figure 3.8b, d and f). The ability to identify altered
genes that cannot be identified by individual assays shows the merits
of data integration as well as the effectiveness of our method.

Table 3.2 shows the latent trait and rank for the top 20 genes selected
using the integrated data for the OV data (similar results for BRCA
and GBM data are in Supplementary Tables 1 and 2). The genes
CDKN2A, VEGFC and STMN1 are only discovered by the integrated
analysis (in top 20) and would not have been discovered using any of
the individual assays (out of top 100). To verify that these genes
are altered, we examined the original data and their relationships
(Supplemental Figure 3.9- 3.11). The original data strongly supports
our finding. Interestingly, mRNA up-regulation of CDKN2A is as-
sociated with increased methylation. Further, functional annotations
show that these genes are linked to cancer. Specifically, CDKN2A is
involved in two critical cell cycle regulatory pathways, the p53 path-
way and the RB pathway. CDKN2A plays an important role in many
human cancers including pancreatic cancer, esophageal and gastric
cancers, leukemia, bladder cancer. and cutaneous melanoma. Differ-
ential expression of VEGFC is related to the different propensity to
lymph node metastasis in thyroid cancers [Hung et al., 2003]. STMN1
is an oncoprotein regulating microtubule dynamics. Defective STMN1
causes constant mitotic spindle assembly and hence unregulated cell
growth [Cassimeris, 2002].

Among the top 20 genes discovered by integration, the BRCA datasets
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Table 3.2: Latent trait and rank for top 20 genes selected by integrated analysis of TCGA OV
data

Integrated Expression Methylation Copy Number
Genes LT∗ Rank LT Rank LT Rank LT Rank
TTYH1 3.52 1(EM) 5.00 45(E) 3.11 47(M) 0.49 2744

SPARCL1 3.46 2(M) 3.91 108 3.43 18(M) 1.42 1148
SPAG6 3.27 3(EM) 6.21 17(E) 2.89 79(M) -1.30 6973
CRISP2 3.01 4(E) 6.70 8(E) 2.40 225 -0.65 5646
DPT 3.01 5(E) 4.93 49(E) 2.73 115 -1.57 7397
CFD 2.86 6(E) 4.66 63(E) 2.09 433 1.89 616

HNF1B 2.81 7(E) 4.98 47(E) 1.89 607 2.89 133
CDKN2A 2.72 8(I) 3.79 120 2.37 247 0.51 2684
C11orf16 2.71 9(E) 5.83 24(E) 1.96 549 0.49 2752
PDE8B 2.68 10(E) 5.93 22(E) 1.79 718 1.47 1050
RIMBP2 2.68 11(E) 4.44 73(E) 2.23 322 -0.39 4876
PIPOX 2.64 12(M) 1.68 654 4.01 3(M) 2.63 182
VEGFC 2.60 13(I) 3.31 152 2.27 302 1.59 839
AGT 2.56 14(E) 4.33 79(E) 2.18 360 -1.05 6406

CXorf57 2.52 15(E) 4.62 65(E) 1.78 735 1.38 1213
CST6 2.51 16(M) 2.82 224 3.16 40(M) -2.02 8111

PRAME 2.43 17(E) 4.09 94(E) 1.76 749 1.61 815
CDO1 2.43 18(M) 2.17 396 2.99 61(M) 0.54 2568
FBLN1 2.41 19(C) 2.91 206 2.06 452 3.35 67(C)
STMN1 2.41 20(I) 2.85 216 2.55 168 -0.28 4579

LT∗ stands for latent trait. Genes with ranks lower than 100 are coded differently in the rank
column (expression: E, methylation: M, copy number: C). Genes identified only by integrated
data are coded as I in the integrated rank column.

identify two novel genes (SELENBP1 and EDIL3) while the GBM
datasets identify 17 novel genes (Supplemental Table 2). SELENBP1
has been found to mediate the anticancer action of selenium in prostate
[Yang and Sytkowski, 1998], lung [Chen et al., 2004], and colon [Kim
et al., 2006] cancer. EDIL3 plays an important role in mediating an-
giogenesis [Aoki et al., 2005]. Functions of the 17 novel genes in GBM
data include cell death, hematological system development, cell mor-
phology, nervous system development and cell cycle, according to In-
genuity Pathway Analysis (Ingenuity R© Systems, www.ingenuity.com).

3.3.5 Comparison to Conventional Methods

Identifying altered genes is essentially a two-group (tumor versus nor-
mal) comparison problem. Hence, we can compare our method to con-
ventional methods such as the t-test (for expression and copy number
data) or rank test (for methylation data which is bounded between
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Figure 3.4: Example genes with discordant calls between conventional method and our method.
The original measurement is plotted against sample index after sorting by tissue type and batch
number. Red circles indicate altered values based on dichotomized data; green circles indicate
unaltered values. The expression from normal control samples are indicated by solid green dots.
Black solid lines represent tumor and normal mean. Dashed lines denote the component means
estimated from 2-component mixture. In the panel titles, we show gene symbol, latent ability,
percentage of tumor samples altered (rate), and conventional test p-value. (a) A typical gene
missed by t-test but identified by our method. Bimodality index (BI) shown in the title strongly
suggests a sub-group of the tumor samples have a large magnitude of over-expression compared
to normal samples, and hence, is likely to be altered. (b) A gene missed by our method but
flagged by t-test. This is an example where statistical significance does not imply biological
significance. The difference between tumor and normal sample is minor. (c) A typical gene
missed by rank test but flagged by our method. Over 50% of the tumor samples have increased
methylation which strongly suggests altered methylation. (d) A gene missed by our method but
flagged by rank test. The trend of beta value here is mostly due to batch effect, not biological
difference. All tumor and normal samples are not methylated (β < 0.25). Accordingly, our
method assigns a very low latent trait estimate. In comparison, the conventional method
dictates a strong statistical difference between tumor and normal simply due to batch effect.
(Figure reprinted from Tong, P. et al, Bioinformatics, 2012 )
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0 and 1)(see Supplemental Figure 3.12). There is no direct test that
applies to combined data. Inspired by Fisher’s method for meta-
analysis based on p-values, we use the geometric mean of the p-values
from each assay to represent the “conventional” p-value from the in-
tegrated data. Empirical p-values for the latent traits were computed
based on the permutation test described previously. A gene was as-
signed a positive call if its p-value was less than a specific cutoff. Thus,
we can divide the genes into four categories: Positive/Negative (pos-
itive call by our method and negative call by conventional method),
Negative/Positive (negative call by our method and positive call by
conventional method), Positive/Positive (both methods give positive
calls) and Negative/Negative (both methods give negative calls). Con-
ventional methods model genes separately while our method models
all genes and samples simultaneously. Hence, we do not expect a per-
fect correlation between latent traits and p-values from conventional
methods.

We inspected the original measurements and found that the Posi-
tive/Negative genes found by our method are meaningful and very
likely to be truly altered genes while Negative/Positive genes missed
by our method are actually not severely altered even though they are
statistically significant due to increased sample size or batch effect
(see Fig.3.4). For example, Positive/Negative genes usually exhibit
non-Gaussian expression which cannot be detected by the t-test but
can be identified by our method as shown in Fig.3.4a. Compared to
normal, this gene is expressed 16 fold higher in more than 15% of
the tumor samples which suggests it is likely to be altered. Fig.3.4b
shows a typical example of a Negative/Positive gene in expression. Al-
though the increased sample size enables us to compute a significant
p-value, a statistically significant difference doesn’t necessarily mean
a biological difference. In this example, there is almost no difference
in the mean expression (8.7 vs 8.1) which strongly suggests that our
method gives the right decision. In Fig.3.4c, a Positive/Negative gene
is shown that obviously exhibits different methylation pattern that
the rank test fails to detect. In comparison, Negative/Positive genes
are usually not biologically different (i.e. almost all samples have beta
value less than 0.25 and hence are unmethylated) but statistically dif-
ferent mainly due to a batch effect (Fig.3.4d). For CN data, there are
many negative/positive cases where t-test assigns more than half of
the genes a 0 p-value due to large sample size (571 tumor and 567 nor-
mal samples). In fact, the difference of mean log2ratio between tumor
and normal is biologically negligible for almost all of these genes.
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Figure 3.5: Complementary information provided by integIRTy and CNAmet. (a) Over-
expression in tumor where the regulation by methylation and CN is not synergistic. As a result,
CNAmet fails to detect it. (b) Mild over-expression mainly driven by CN gain. integIRTy
didn’t detect this gene due to the high background CN change. (c) Over-expression in tumor
samples driven by hypomethylation and CN gain. Genes like this are easy to be detected by
both methods. (d) Expression is turned off in both tumor and normal samples due to hyper-
methylation. Since there is little difference between tumor and normal, both methods suggest
it is not altered. (Figure reprinted from Tong, P. et al, Bioinformatics, 2012 )

3.3.6 Item Parameters Characterize Properties of Samples

While the estimated latent traits characterize the properties of genes,
the item parameters can characterize patient samples. Samples with
small item difficulty are easier to be altered, and hence contain more
alterations. In both OV and GBM data, expression data has the
largest (median) difficulty followed by methylation and then CN (Sup-
plemental Figure 3.13). This implies the frequency of CN alteration
is higher compared to expression or methylation. The widespread
CN change in OV data identified by our model agrees with previous
finding [The Cancer Genome Atlas Research Network, 2011]. The me-
dian item difficulty for expression and CN in BRCA data is similar,
although the difficulty estimates for CN are more variable, suggesting
a higher heterogeneity in CN.
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3.3.7 Complementary Information Provided by integIRTy and CNAmet

We compared integIRTy with CNAmet, another method developed
to integrate expression, methylation, and CN data [Louhimo and
Hautaniemi, 2011]. Although CNAmet shares a similar idea by di-
chotomizing methylation and CN data before integration, it has a
different goal. Rather than identify genes altered between tumor
and normal samples, CNAmet searches for genes whose expression
is synergistically regulated by methylation and CN. Conceptually,
gene alteration can happen with or without synergistic regulation
and vice versa. This is confirmed by real data analysis where both
alteration without synergistic regulation (Fig.3.5a) and no alteration yet under
synergistic regulation (Fig.3.5b) are observed. When both methods
give concordant calls (Fig.3.5c and Fig.3.5d), integIRTy and CNAmet
provide complementary information that not only tell us whether a
gene is altered but the underlying mechanism. Interstingly, roughly
half of the altered genes are not under synergistic regulation and half
of the genes under synergistic regulation are not altered (Supplemen-
tal Figure 3.14).

(This section is an excerpt from Tong, P. et al, “integIRTy: a method to

identify genes altered in cancer by accounting for multiple mechanisms of regula-

tion using item response theory”, Bioinformatics, 2012 )

3.4 Discussion

Data integration is a critical challenge in integrative biology where mul-

tiple assays are simultaneously employed to profile the same set of samples. Most

existing approaches for data integration assume a dependency structure among

the assays which might not be satisfied in all cases. Here we propose a natural

and interpretable framework to integrate heterogeneous high throughput datasets

without explicitly assuming any correlation structure.

The proposed method integIRTy puts the “propensity to alteration” on a

common scale such that meaningful comparison can be attained. This is achieved

by automatically adjusting for sample heterogeneity through fitting different item
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parameters in an Item Response Model framework. It is found that the integrated

latent trait can be used to identify novel genes that alter marginally in individual

assay but in a consistent manner across assays. Furthermore, the estimated latent

trait together with item parameters characterizing the properties of genes and

patient samples can be used to visualize high dimensional dataset intuitively.

Genes identified by our method are more reliable and biologically mean-

ingful than genes found by conventional methods such as student’s t test and

rank test. With enough sample size, conventional methods would always declare

a significant difference between tumor and normal where the effect size might be

biologically negligible. In contrast, genes identified by integIRTy are ensured to

have biological difference. The reason is that latent traits are computed from

the dichotomized data with the biology (alteration status) already built in. Fur-

ther, integIRTy doesn’t make any distributional assumption about the original

data. As a result, genes violating the distributional assumption are missed by

conventional methods (e.g., t test) but can be still found by our method.

Currently, integIRTy proceeds by transforming the data into binary in-

dicators. However, it is possible to work with an ordinal response matrix that

might arise from categorizing copy number into loss, neutral and gain. In this

case, we can apply the rating scale model [Andrich, 1978], the generalized partial

credit model [Muraki, 1992] or the graded response model [Samejima, 1969]. A

generalized version of the latent trait model that works on continuous measure-

ments would be quite interesting. It turns out that the natural generalization

of the IRT model [Mellenbergh, 1994, Moustaki, 2011] is equivalent to Factor

Analysis (FA). FA works well in integrating expression data profiled by different

microarray platforms [Wang et al., 2011] where the data is highly homogeneous.

To integrate data from multiple assay types, it is necessary to specify a joint

distribution leading to a very complicated model that is difficult to track. There-

fore, the FA model cannot be easily applied to integrate heterogeneous data from
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multiple assays. For continuous bounded data (e.g., data from a methylation ar-

ray), a generalized IRT model based on beta distributions is available [Noel and

Dauvier, 2007]. However, this model does not work on normally distributed data

and hence does not apply to our integration setting.

The proposed method can be extended to incorporate clinical variables.

This can be achieved by specifying a linear relation between the clinical variable

and the latent trait parameter. The latent trait can be thought of as a random

effect. In this case, the extended model can be used to examine how the clinical

variable affects the population mean of latent traits.

3.5 Appendix

(Excerpts in this Appendix section are from the supplemental materials

published online from: Tong, P. et al (2012), Bioinformatics. “integIRTy: a

method to identify genes altered in cancer by accounting for multiple mechanisms

of regulation using item response theory”. According to the journal policy, the

author retains the right to include the published article in full or in part in a

dissertation.)

3.5.1 Dataset Assembly (OV, BRCA and GBM)

The latest version of TCGAOV (ovarian carcinoma) and GBM (glioblas-
toma) data up to December 2011 were downloaded from TCGA data
portal at http://cancergenome.nih.gov/. For OV data, we selected the
Affymetrix U133A array (BI HT_HG-U133A), the Illumina Infinium
HumanMethylation27 BeadChip (JHU-USC HumanMethylation27),
and the Agilent CGH array (MSKCC CGH-1X1M_G4447A) as repre-
sentative platforms measuring gene expression, methylation, and copy
number. For GBM datasets, we assembled the Agilent expression ar-
ray (UNC AgilentG4502A), Illumina Infinium HumanMethylation27
BeadChip (JHU-USC HumanMethylation27) and Agilent CGH ar-
ray (HMS HG-CHG-415K, HMS HG-CGH-244A). The TCGA GBM
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data didn’t contain normal tissue samples for methylation. Instead,
we use the methylation data from Wu et al. [2010] which contain six
normal human brain tissues from accident victims profiled by Nim-
bleGen tiling array. The gene list identified as methylated in normal
tissue is downloaded through the supplement file in their paper. The
BRCA data was produced by Pollack et al consisting of copy number
and expression array data for 37 breast tumors interrogated by the
same 2-channel cDNA microarrays [Pollack et al., 2002]. A global
reference sample from a healthy female is used to hybridize each sam-
ple. Preprocessed data by the authors were downloaded. Clone ID
to gene symbol conversion was done by the Stanford Source website
(http://smd.stanford.edu/cgi-bin/source/sourceSearch).

The TCGA data portal deposits 4 levels of data. Our analysis is
based on the level 3 data that contains the interpreted or segmented
data. For expression data, this means the summarized expression
for each gene. For methylation, level 3 data contains the β value for
each methylation site. Level 3 data for copy number stores segmented
regions per sample.

We need summarized measurements for each gene and each sample
in our analysis. The Level 3 gene expression data is already in this
format and needs no further manipulation. For the copy number, we
need to map the segmented regions to individual genes. The Ref-
Gene gene coordinates from UCSC annotation database (hg18) are
used for this purpose [Fujita et al., 2011]. Genes partially covered by
one or more regions need special attention. Our strategy is to use the
log2Ratio with the most supporting probes to represent the CN value.
We do not use the most extreme measurement since many of these
cases contain only 1 or 2 probes which are not robust. Genes on chro-
mosome X and Y are excluded in the final analysis for copy number
data. Since there is copy number polymorphism as well as somatic
copy number change that might not be related to cancer, we use the
adjusted log2Ratio, which is computed by subtracting the log2Ratio of
the paired control sample from the log2Ratio of the solid tumor sam-
ple. For methylation, multiple methylation sites for the same gene
are summarized by their median to represent the overall gene methy-
lation status. The correspondence information between methylation
site and genes is already contained in the level 3 data. (An excerpt
from Tong, P. et al, “integIRTy: a method to identify genes altered
in cancer by accounting for multiple mechanisms of regulation using
item response theory”, Bioinformatics, 2012 )
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3.5.2 Data transformation

Proper transformation of the data is needed to fit the IRT model.
Details for dichotomizing methylation and CN data are described pre-
viously. Here we give the details for a Z-like metric that dichotomizes
expression data. This metric requires normal control samples. The
Z-like metric is defined as:

Zgi = xgi − µg,normal√
σ2
g,tumo + σ2

g,normal

Nnormal

Here xgi is the original (continuous) measurement for gene g in sample
i, µg,normal is the normal mean expression for gene g, σg,tumor and
σg,normal are the standard deviations (SDs) for gene g computed from
tumor and normal samples, respectively, and Nnormal is the number
of normal samples. We observed that σg,tumor can be inflated when
tumor samples exhibit non-Gaussian expression, which would lead to a
deflated alteration magnitude. To accommodate this situation, we use
the Bimodality Index to flag these genes and replace σg,tumor with the
standard deviation estimated from a two-component normal mixture
model [Fraley and Raftery, 2002]. After setting a cutoff for |Zgi|, say
2.5 or 3, we can convert Zgi to a binary indicator. A converted 1 means
that the expression measurement for gene g in sample i differs from
the normal tissue, and so that this gene is likely to be altered. (An
excerpt from Tong, P. et al, “integIRTy: a method to identify genes
altered in cancer by accounting for multiple mechanisms of regulation
using item response theory”, Bioinformatics, 2012 )

3.5.3 Simulation Study

We simulate data with known latent traits and item parameters and
show that the model can recover both item parameter and latent
traits. Let θE = (θE1 , θE2 , . . . , θEG) denote the vector of latent traits for
expression data with G genes. Similarly, let θM = (θM1 , θM2 , . . . , θMG )
and θC = (θC1 , θC2 , . . . , θCG) denote the latent traits for methylation
and CN data, respectively. The latent traits for different genes can
be treated as i.i.d. random variables. In particular,

θEg
iid∼ N(0, 1), g = 1, 2, . . . , G

θMg
iid∼ N(0, 1), g = 1, 2, . . . , G



49

θCg
iid∼ N(0, 1), g = 1, 2, . . . , G

To simulate the dependency among different mechanisms of regula-
tion, for any positive definite 3-by-3 matrix S, we can impose the
following restrictions:

 θEg
θMg
θCg

 ∼MVN

 0
0
0
,Σ



The item parameters are simulated from a Gamma distribution. For
example, for the expression data, we have:

bEi
iid∼ Gamma(αE, βE), i = 1, 2, . . . , K

aEi
iid∼ Gamma(γE, δE), i = 1, 2, . . . , K

In our simulation, we specify G=2000 genes and K=200 samples in
each platform. The Gamma distribution for difficulty parameter has
mean 3, 2, 1 and variance all as 0.2 for expression, methylation and CN
data, respectively. For item discrimination parameters, the Gamma
distribution has mean 1.5, 1.2, 1.1 and variance of 0.1 in the three
datasets. The covariance matrix S is specified as follows to resemble
real data where almost no correlation was observed:

Σ =

 1 −0.1 0.1
−0.1 1 −0.1
0.1 −0.1 1



After simulating the item parameter and latent traits, the response
matrix X = (xij) for a given platform can be generated as:

xij ∼ Bernoulli(pij)

with logit(pij) = ai(θj − bi)

The comparison of estimated item parameter and latent traits to the
truth is shown in Supplemental Figure 3.15-3.17. The model correctly
recovers both item parameters and latent trait estimates. We see that
the deviation of latent trait estimates from truth in the expression
data is larger than the other two datasets. This is because the items
in expression data have larger difficulty parameters (with mean 3 com-
pared to 2 and 1). As the latent traits have mean 0, it is more difficult
to estimate item parameters that deviate more from 0. Also, the devi-
ation of latent trait estimates around mean item difficulty (3 in Expr,
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2 in Methy, 1 in CN) is smaller than other regions. Intuitively, when
a test is too difficult or too easy, it would provide inferior estimates of
ability compared to a test designed with proper difficulty level. (An
excerpt from Tong, P. et al, “integIRTy: a method to identify genes
altered in cancer by accounting for multiple mechanisms of regulation
using item response theory”, Bioinformatics, 2012 )

3.5.4 Supplemental Figures
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Figure 3.6: Matrix plot of estimated latent traits from OV, BRCA, GBM data under different
cutoff choices for data transformation is shown. The upper panel shows smoothed density
estimates with blue cloud. The latent trait estimates agreed well, especially in the high ability
range. This indicates the proposed method is robust to cutoff choice for data transformation.
(a) OV-Expression (b) BRCA-Expression (c) GBM-Expression (d) OV-CN (e) BRCA-CN (f)
GBM–CN (Figure reprinted from Tong, P. et al, Bioinformatics, 2012 )
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Figure 3.7: Pairwise scatter plot of the naive score obtained by simply computing the percentage
of “correct responses” (i.e., alterations) using different thresholds. The OV expression data is
shown here. Lower off-diagonal panels show smoothed scatter plot. As the cutoff used for
dichotomization changes, the naive score also changes. Therefore, the naive score is sensitive
to threshold choice. (Figure reprinted from Tong, P. et al, Bioinformatics, 2012 )
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Figure 3.8: Comparison of the rank of integrated latent trait and average or minimum rank from
individual platforms. The blue cloud shows the density at each data point. Smaller rank means
higher latent trait and hence more severe alteration. (a)~(b) for OV data, (c)~(d) for BRCA
data, (e)~(f) for GBM data (Figure reprinted from Tong, P. et al, Bioinformatics, 2012 )
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Figure 3.9: Original data for CDKN2A. All platforms suggest CDKN2A is marginally altered
while integration makes this gene stand out as top 20. High expression is associated with
increased CN and methylation. (a)~(c) are the histograms with estimated kernel density super-
imposed for Expr, CN and Methy data from tumor samples. The normal samples are indicated
by vertical blue lines. (d) shows the scatterplot of Expr and Methy colored by CN (Loss:
log2Ratio < -0.4, Gain: log2Ratio > 0.4, Neutral: in between). The black circles indicate
measurements for available normal samples which only have Expr and Methy data. (Figure
reprinted from Tong, P. et al, Bioinformatics, 2012 )
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Figure 3.10: Original data for VEGFC. mRNA down-regulation of VEGFC is associated with
CN loss and increased methylation. (a)~(c) are the histograms with estimated kernel density
superimposed for Expr, CN and Methy data from tumor samples. The normal samples are
indicated by vertical blue lines. (d) shows the scatterplot of Expr and Methy colored by CN
(Loss: log2Ratio < -0.4, Gain: log2Ratio > 0.4, Neutral: in between). The black circles
indicate measurements for available normal samples which only have Expr and Methy data.
(Figure reprinted from Tong, P. et al, Bioinformatics, 2012 )
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Figure 3.11: Original data for STMN1. Increased expression of STMN1 is associated with
decreased methylation and CN gain although there are many samples showing CN loss. (a)~(c)
are the histograms with estimated kernel density superimposed for Expr, CN and Methy data
from tumor samples. The normal samples are indicated by vertical blue lines. (d) shows the
scatterplot of Expr and Methy colored by CN (Loss: log2Ratio < -0.4, Gain: log2Ratio > 0.4,
Neutral: in between). The black circles indicate measurements for available normal samples
which only have Expr and Methy data. (Figure reprinted from Tong, P. et al, Bioinformatics,
2012 )
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Figure 3.12: Comparison of conventional method and proposed method. The log transformed p-
value is compared to latent trait estimates. Smoothed density of the scatterplot is superimposed
in each panel. Horizontal solid lines correspond to p-value of 0.01while vertical solid lines
correspond to the 99% quantile of null distribution based on gene sampling (and hence, the
empirical p-value of 0.01). Rank correlation between p-value and latent trait is shown on the
top of each panel. Examination of the discordant calls (top right and bottom left quadrant)
shows our method is more reliable and meaningful than conventional methods (see Fig 4 in the
main text). (Figure reprinted from Tong, P. et al, Bioinformatics, 2012 )
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Figure 3.13: Boxplot of item difficulty from different platforms are compared. Samples with
small item difficulty contain more alterations. (a) OV data (b) BRCA data (c) GBM data
(Figure reprinted from Tong, P. et al, Bioinformatics, 2012 )
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Figure 3.14: Venn diagram of identified genes from integIRTy and CNAmet in OV data. At
FDR=0.01, the genes selected by integIRTy and CNAmet (both gain and loss analysis) are
shown. Roughly half of the genes identified by integIRTy and CNAmet are shared. Genes
identified by integIRTy but missed by CNAmet are usually altered without synergistic regu-
lation while genes missed by integIRTy but found by CNAmet show little difference between
tumor and normal. Specific examples found in Fig. 5 of the main text (Figure reprinted from
Tong, P. et al, Bioinformatics, 2012 )
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Figure 3.15: Comparison of item difficulty estimates and truth in simulation study (Figure
reprinted from Tong, P. et al, Bioinformatics, 2012 )

Figure 3.16: Comparison of item discrimination estimates and truth in simulation study (Figure
reprinted from Tong, P. et al, Bioinformatics, 2012 )
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Figure 3.17: Comparison of latent trait estimates and truth in simulation study (Figure reprinted
from Tong, P. et al, Bioinformatics, 2012 )
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Figure 3.18: Top (100 to 1000) genes from 2-way integrated analysis and from 1-way analysis
(no integration) are compared. E: expression, M: methylation, C: copy number. Each bar is
equivalent to a Venn diagram showing how many of the top genes from the integrated analysis
came from. Black regions and numbers at the top of each bar count the number of “novel”
genes that only appear on the list from the integrated analysis. When integrating methylation
with either expression or copy number, methylation contributes the majority of the top genes.
When expression is integrated with copy number, expression contributes most of the top genes.
(Figure reprinted from Tong, P. et al, Bioinformatics, 2012 )
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Figure 3.19: Top (100 to 1000) genes from 3-way integrated analysis are compared with genes
from 1-way and 2-way integration. Each bar is equivalent to a Venn diagram showing how
many of the top genes from the integrated analysis came from. Adding a third assay to 2-way
integration introduces several novel genes (black boxes) that are mostly highly altered. Adding
methylation to EC integration brings in many genes that are unique to methylation data. This
suggests methylation is the most informative assay for gene alteration. (Figure reprinted from
Tong, P. et al, Bioinformatics, 2012 )
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3.5.5 Supplemental Tables

Table 1: Latent trait and rank for top 20 genes selected by integrated
data in BRCA (Table reprinted from Tong, P. et al, Bioinformatics,
2012 )

Integrated Expression Copy Number
Genes Latent trait Rank Latent trait Rank Latent trait Rank

CYP4Z1 2.67 1(EC) 2.67 9 1.99 92
S100A8 2.56 2(E) 2.93 3 1.37 319
IGHG1 2.54 3(EC) 1.96 80 2.82 16
CXXC4 2.29 4(C) 1.74 142 2.44 41
GRB7 2.19 5(E) 2.56 16 1.17 461

CYP4X1 2.18 6(E) 2.52 17 1.24 403
SERPINB5 2.14 7(E) 2.10 58 1.69 171
CD79A 2.13 8(E) 2.18 47 1.55 224

HIST2H2BE 2.11 9(E) 2.40 28 1.21 422
NDRG1 2.10 10(E) 2.42 24 1.15 476
WNT11 2.09 11(C) 1.67 163 2.25 57

SELENBP1 2.09 12(I) 1.91 100 1.87 121
GJB1 2.08 13(E) 2.70 7 0.8 867
EDIL3 2.06 14(I) 1.88 110 1.85 127
POSTN 2.05 15(E) 2.14 55 1.45 273
IFIT1 2.04 16(E) 2.42 23 1.03 594

CEACAM5 2.03 17(E) 2.57 15 0.81 838
CRYM 2.02 18(E) 2.01 72 1.57 219
NPNT 2.00 19(E) 1.94 86 1.62 199

SLCO2A1 1.99 20(C) 1.33 358 2.56 28



65

Table 2: Latent trait and rank for top 20 genes selected by integrated
data in GBM (Table reprinted from Tong, P. et al, Bioinformatics,
2012 )

Integrated Expression Methylation Copy Number
Genes Latent trait Rank Latent trait Rank Latent trait Rank Latent trait Rank

PPP2R2D 3.39 1(I) 3.5 321 3.08 283 2.43 262
HECW1 3.24 2(I) 3.89 239 2.81 467 1.26 799
NOS3 3.15 3(I) 3.94 231 2.66 547 1.06 1035

POU6F2 2.95 4(I) 3.44 349 2.35 740 1.27 783
CALN1 2.91 5(I) 3.57 301 1.84 1126 1.35 575

DNAJC12 2.89 6(I) 2.91 533 3.31 137 2.27 340
HK1 2.75 7(I) 3.14 440 1.60 1371 2.43 267
UROS 2.73 8(C) 3.01 494 1.65 1314 2.74 50
CCNY 2.52 9(I) 2.63 675 2.53 621 1.70 392

SLC13A4 2.43 10(M) 2.61 683 3.31 6 1.21 874
ANK3 2.35 11(I) 3.22 415 1.16 2135 2.38 305
C7orf51 2.12 12(I) 2.67 658 1.41 1684 1.28 731
HOXA3 2.12 13(I) 2.65 666 1.41 1676 1.33 605
OPN4 2.11 14(I) 2.12 1053 1.81 1161 2.57 169
MPP7 2.09 15(I) 3.83 255 0.92 2479 1.65 435
NUDT1 2.03 16(I) 2.42 819 1.62 1354 1.08 1026
DIP2C 1.96 17(I) 1.88 1295 3.16 205 1.57 485
AASS 1.96 18(I) 2.41 825 1.42 1590 1.25 833

PKD2L1 1.85 19(I) 1.80 1398 1.66 1310 2.68 106
SNCG 1.79 20(E) 5.51 50 0.63 2897 2.53 201
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Table 3: Model selection using BIC (Table reprinted from Tong, P. et
al, Bioinformatics, 2012 )

Dataset 1PL 2PL 3PL
TCGA OV Expr 1493380.0 1483020.0 1482962.0
TCGA OV Methy 906278.7 827892.6 832165.0
TCGA OV CN 927403.8 891969.3 906220.7
BRCA Expr 191718.7 191416.2 191685.1
BRCA CN 222289.8 221699.0 221848.3

TCGA GBM Expr 3210477.0 3137962.0 3136744.0
TCGA GBM Methy 2106436.0 1897085.0 1897061.0
TCGA GBM CN 2772672.0 2467917.0 2535804.0

The minimum BIC value for each dataset is bolded. Note that the
difference of BIC values for 2PL and 3PL models in TCGA OV Expr,
TCGA GBM Expr and TCGA GBM Methy data is quite small.
Hence, for easy comparison and interpretation, we argue 2PL is pre-
ferred.
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Chapter 4

Bimodality identification from RNAseq Data

(Most of the materials in this chapter have been published online in Bioin-

formatics, January 2013: Tong, P. et al, “SIBER: systematic identification of

bimodally expressed genes using RNAseq data”. According to the journal policy,

the author retains the right to include the published article in full or in part in a

dissertation.)

4.1 Background

Chapter 3 introduces the integIRTy approach to identify altered genes

through integrative analysis. The idea is based on integrating binary signals ex-

tracted from different data sources. Besides the extracted binary signal, there are

actually natural binary signals in living organisms. One of the most important

binary signals is bimodal expression. In this chapter, we develop a novel method

to identify bimodal genes from RNAseq data. As will be shown in later chap-

ters, identifying bimodal genes is very important for accurate cancer classification

since bimodal genes contain most of the information needed for predicting clinical

outcome. Therefore, this chapter serves as a basis towards our goal of building
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accurate prediction models by integrating multiple data sources.

By definition, bimodal expression requires the distribution of expression

to have two modes representing the baseline expression and a deviation from

the baseline such as over-expression or under-expression. It has been found that

bimodally expressed genes can capture the heterogeneity among samples and

present clear separations between different subgroups in prostate cancer patients

[Tomlins et al., 2005]. These features make bimodal genes good candidates for di-

agnostic and prognostic markers especially in the era of personalized medicine.

The mechanisms driving bimodal expression can be different. These in-

clude DNA copy number change, microRNA regulation, DNA methylation, tran-

scription factor binding, histone modification, tissue heterogeneity and batch ef-

fects due to technical artifact [Biggar and Crabtree, 2001, Louis and Becskei,

2002, Chen and Widom, 2005]. Similarly, the impact of bimodal expression can

be quite different. In normal cells, bimodal expression is required for tissue-

specific and temporal-specific expression such that different sets of genes can be

turned on and off in different tissues and during different developmental stages.

Bimodal expression is also critical to maintain cell signaling. On the other hand,

disrupted bimodal expression can lead to uncontrolled cell proliferation and ul-

timately malignant cancer. It should be noted that technical effects can also

lead to bimodal expression. For example, batch effects usually lead to a high

percentage of bimodal genes (>50%). Our current analysis assumes the data has

high quality such that any bimodal expression is attributable to the underlying

biology.

Due to its importance, identifying bimodally expressed genes from whole

genome expression assays has become an important topic. Generally speaking,

existing methods can be grouped into two categories: nonparametric and normal

mixture models. For example, COPA (Cancer Outlier Profile Analysis) is the first
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method designed to search for genes with “outlier” expression patterns [Tomlins

et al., 2005]. COPA applies a simple transformation of the original data and uses

the transformed value to rank the genes. In particular, the expression of each gene

is subtracted by its median and scaled with its median absolute deviation, and

then ranked by a pre-specified quantile (e.g., 75%, 90% or 95%) of the transformed

data. The standardization using median and median absolute deviation rather

than the mean and standard deviation is to ensure robustness. This method

was applied to 132 datasets and the fusion of ERG and ETV1 was found to be

over-expressed in 57% of prostate cancer patients [Tomlins et al., 2005].

The second category models gene expression levels through a mixture

of normal distributions. For example, PACK (Profile Analysis using Clustering

and Kurtosis) first filters unimodal genes based on model selection with BIC and

then ranks bimodal genes using kurtosis [Teschendorff et al., 2006]. Bimodal

genes identified by PACK were found to be linked to breast cancer prognosis

[Teschendorff et al., 2007]. Rather than using BIC for model selection, the method

proposed by Ertel and Tozeren [2008] applies the likelihood ratio test (LRT) to

identify bimodal genes. Since the exact null distribution is not available, the

original authors use a χ2 distribution with six degrees of freedom obtained from

simulation studies to calculate approximate p-values. Recently, Wang et al. [2009]

proposed a new metric called the Bimodality Index (BI) to rank genes without

the need for model selection. This method provides a consistent ranking for all

genes using the BI metric that is computed from the fitted parameters from a two-

component normal mixture model. The BI approach not only effectively identifies

bimodal genes but also provides an intuitive interpretation. It has been shown

that the bimodal genes identified by BI define a subset of triple negative breast

cancers that might benefit from immune augmentation [Karn et al., 2012].

Existing methods designed for microarray data do not directly work with

RNAseq. As next generation sequencing (NGS) becomes more and more popular,
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it is important to develop a working method for identifying bimodally expressed

genes from RNAseq data. Unlike microarray data that is usually modeled by nor-

mal distribution, RNAseq is discrete count data. Usually, discrete distributions

such as Poisson and binomial distributions are used to model RNAseq counts.

When the samples present large heterogeneity, it is usually necessary to use the

negative binomial or generalized Poisson distribution to deal with the observed

over-dispersion. The intrinsic difference between RNAseq and microarray data

motivates us to develop a method specifically tailored for RNAseq data.

In practice, investigators may first transform the RNAseq data (e.g., log

or square root transformation) and treat the transformed data as if it came from

microarray. However, the validity of this approach has not been evaluated when

identifying bimodal genes. We therefore formally investigate the performance

of this approach by applying microarray based approaches including COPA and

PACK on the transformed data.

Our method generalizes the original BI approach such that it also works

on a mixture of arbitrary distributions such as mixtures of negative binomial, gen-

eralized Poisson, or log normal distributions. We evaluate the proposed method

through both simulation and real data analysis.

4.2 Methods

We propose a two-step procedure to identify bimodally expressed
genes. The first step is to fit a two-component mixture model. Specif-
ically, three candidate mixture models are considered. Two of these
models explicitly account for the discrete nature of the RNAseq data,
whereas the third model treats the data as continuous after some
transformation. The second step is to calculate the Bimodality Index
corresponding to the assumed mixture distribution.
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4.2.1 Mixture Models For RNAseq Count Data

We model the observed raw counts using a two-component mixture
model, as in Wang et al. [2009]. Denote the raw count for gene g in
sample s by Cg,s and the true expression by µg,c(s) depending on the
component (or cluster) membership c(s) that sample s belongs to.
Here, c(s) = k (for k = 1, 2) means that sample s belongs to compo-
nent k with mean expression µg,k. To avoid model non-identifiability,
we require µg,1 ≤ µg,2. Since each gene is studied separately, we may
suppress the index g for simplicity of notation. We consider three
different mixture models.

Negative Binomial mixture: Our first model is motivated by the
Negative Binomial (NB) distribution which is widely used to model
RNAseq data in differential gene expression analysis [Robinson and
Smyth, 2007, Anders et al., 2010, Hardcastle and Kelly, 2010, Di et al.,
2011]. Of note, we prefer NB over the Poisson distribution because the
former can account for the overdispersion observed in RNAseq data.
Specifically, the probability of observing count Cs can be formulated
as:

Pr(Cs) = πfNB(Cs;µ1, φ) + (1− π)fNB(Cs;µ2, φ) (4.1)

where fNB(·;µ, φ) is the probability mass function for the Negative
Binomial distribution with mean µ and dispersion φ (variance = µ+
φµ2):

fNB(y;µ, φ) =
Γ( 1

φ
+ y)

Γ(y + 1)Γ( 1
φ
)( 1
φµ+ 1)

1
φ (1− 1

φµ+ 1)y,

and µ1 and µ2 are the true expression levels for the two compo-
nents. The parameter φ affects the within-group variability. Note
that we assume equal dispersion in the two distributions,1 similar to
the tagwise dispersion mode in EdgeR [Robinson and Smyth, 2007,
Robinson et al., 2010]. When the dispersion parameter φ = 0, equa-
tion(4.1) reduces to a mixture of Poisson distributions. The parame-
ters (π, µ1, µ2, φ) can be estimated by maximizing the likelihood func-
tion:

L(π, µ1, µ2, φ|Cs) =
n∏
s=1
{πfNB(Cs;µ1, φ) + (1− π)fNB(Cs;µ2, φ)}

The Expectation-Maximization (EM) algorithm or direct optimiza-
tion can be used for this purpose.

Generalized Poisson mixture: The Generalized Poisson (GP) dis-
1We do not assume equal variance because, for NB distribution, the variance depends on the
mean. Assuming equal variance would impose an undesirable constraint on the component
means.
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tribution is another model used to describe RNAseq count data [Sri-
vastava and Chen, 2010]. Under the two-component mixture frame-
work, it can be formulated similarly as:

Pr(Cs) = πfGP(Cs;µ1, φ) + (1− π)fGP(Cs;µ2, φ) (4.2)

where fGP(·;µ, φ) is the probability density function for the Gener-
alized Poisson distribution with mean µ and dispersion φ (variance
= φµ)

fGP(y;µ, φ) = µ√
φ
{ µ√

φ
+ (1− 1√

φ
)y}y−1exp{− µ√

φ
− (1− 1√

φ
)y}/y!,

and µ1 and µ2 are the true expression levels for the two components.
For similar reasons to the NB model, we assume equal dispersion
between the two components. Note that the variance of the GP dis-
tribution is a linear function of its mean, whereas the variance of the
NB distribution is a quadratic function of the mean. When φ = 1, the
GP distribution reduces to Poisson. As a result, a mixture of Poisson
distribution is automatically included in the GP model.

Normal mixture with Box-Cox transformation: Instead of ac-
counting for the discrete nature of the RNAseq data as in models (1)
and (2), we could treat the data as normal after some transformation.
A wide class of transformations was proposed by Box and Cox [1964],
known as the Box-Cox transformation or power transformation,

y
(λ)
i =

{
(yλi − 1)/λ if λ 6= 0

log(yi) if λ = 0

As suggested by the data empirically, the optimal choice of λ for
RNAseq data considered in this paper is λ = 0, which corresponds to
the log-transformation (details in Section 4.3.2.1). This leads to our
third model as a mixture of lognormal (LN) distributions,

Pr(Cs) = πfLN(Cs;µ1, σ
2) + (1− π)fLN(Cs;µ2, σ

2) (4.3)

where fLN(·;µ, σ2) is the probability density function for Lognormal
distribution with mean µ and variance σ2 at the log scale. The vari-
ances of the two log transformed distributions are assumed to be equal,
similar to the mixture of normals considered in Wang et al. [2009]. We
note that the log-transformation has been used previously to analyze
RNAseq experiments [Cloonan et al., 2008, Lee et al., 2011, McIntyre
et al., 2011].
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4.2.2 Generalized Bimodality Index

The Bimodality Index [Wang et al., 2009] is defined as:

BI =
√
π(1− π) |µ1 − µ2|

σ
(4.4)

where δ = |µ1−µ2|/σ is the effect size that measures the distance be-
tween the two-components. The coefficient

√
π(1− π) is maximized

at π = 0.5 and hence penalizes unbalanced allocation into the two
components. A limitation of the original BI is that it is defined based
on a normal mixture with equal variance. It does not apply to normal
mixtures with unequal variance or to genes whose expression values
do not follow normal distributions (e.g., discrete distributions as in
RNAseq data). In order to deal with these situations, here we gener-
alize the original BI. The definition of BI in Wang et al. [2009] was
motivated by sample size considerations. For a normal mixture with
unequal variances, similar calculations tell us:

BI2 = π(1− π)(µ1 − µ2)2

(1− π)σ2
1 + πσ2

2
= (Zα/2 + Zβ)2

N (4.5)

Hence, the generalized BI can be calculated by:

BI =
√
π(1− π) |µ1 − µ2|√

(1− π)σ2
1 + πσ2

2

(4.6)

Formula (4.6) is quite similar to formula (4.4) except the effect size
is modified as: δ = |µ1 − µ2|/

√
(1− π)σ2

1 + πσ2
2. Note that when

σ1 = σ2, the generalized BI formula reduces to (4.4).

For other mixture models, deriving the exact BI formula directly from
sample size considerations is a tedious task, and the resulting BI may
be quite complicated. In general, there is no closed form for BI.
However, we can instead obtain a formula for BI under large sample
approximation. It turns out that, even for a mixture of discrete dis-
tributions, we can obtain the same BI formula as in (4.6) by using the
Central Limit Theorem. Details are provided in Appendix Section
4.5.1.

The generalized BI for normal mixtures with unequal variance has a
sample size interpretation, as indicated in formula (4.5) where α and β
are the type I and type II error and N is the sample size. Zα determines
the quantile for a standard normal distribution that has right tail
probability being α. In a typical microarray or RNAseq experiment,
the sample size N is predetermined and BI can be computed for each
gene. Different values of BI then represent different type I and type
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II error. To reliably detect useful bimodal genes, BI needs to exceed
a certain threshold that is determined by N.

4.2.3 Adjusting For Library Size and Gene Length Effect

Similar to microarray data, RNAseq data requires proper normaliza-
tion in order to make meaningful comparisons between samples. A
common practice is to scale the raw counts by both the gene length
Lg for gene g and the total reads Ts in sample s, giving the so-called
RPKM value [Mortazavi et al., 2008]. For this reason, we introduce a
normalization term, dg,s, into our mixture models. This term accounts
for technical effects including lane, flow-cell, and library preparation
effects. In the case of RPKM, dg,s = LgTs. Directly scaling the count
data by dg,s would transform the data onto a continuous scale that
cannot be modeled by NB or GP distributions. Instead, we incorpo-
rate dg,s through the expected count as:

E[Cg,s|dg,s, c(s)] = dg,sµg,c(s)

Hence, we only need to replace the component distribution f(Cs;µc(s), φ)
in Section 4.2.1 with f(Cs; dg,sµc(s), φ). The rest of the inference re-
mains the same. As pointed out by Bullard et al. [2010], RPKM
normalization performs poorly when there are highly differentially ex-
pressed genes. More robust normalization methods such as TMM [Robin-
son and Oshlack, 2010] and the method used in DESeq or DEXseq can
be applied [Anders et al., 2010, 2012]. Inclusion of such normalization
methods to our models is quite similar, only adding a scaling factor
to the component means.

(This section is an excerpt from Tong, P. et al, “SIBER: systematic

identification of bimodally expressed genes using RNAseq data”, Bioinformatics,

2013 )

4.3 Results

We let NB, GP, and LN denote the three models described above. For
each model, let BINB, BIGB, and BILN be the generalized BI computed
with respect to that model. The fundamental question to be addressed
is which model yields more robust and more reliable identification
of bimodal genes from RNAseq data. To evaluate the performance
of different models, and to compare to alternative methods, we first
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conduct simulation studies. We generate artificial RNAseq data from
one of the three models. Regardless of which model is used to generate
the data, we compute BI using all three models. This procedure allows
us to evaluate the performance of BI under misspecified models; this
step is important because the true underlying model for RNAseq data
is often unknown in practice.

In the second scenario, we look at TCGA data where both microar-
ray and RNAseq data are available for the same set of breast cancer
samples. We establish the “true” bimodal status for a subset of genes
by applying the existing methods to the microarray data, then man-
ually confirming the results by visually inspecting the distributions.
For this subset of genes, the misclassification rates (of genes as bi-
modal or unimodal) are expected to be low. We then compute BI
from the RNAseq data using all three models. Because there is a
good correspondence between microarray and RNAseq data [Marioni
et al., 2008], we can evaluate the performance of the BI models by
constructing receiver operating characteristic (ROC) curves that test
their ability to correctly match the microarray-based gene classifica-
tions.

4.3.1 Simulation Study

In this subsection, we consider RNAseq data generated from one of
the three mixture models, which will be referred to as NB, GP and
LN datasets, respectively.

4.3.1.1 NB, GP and LN Datasets

For each of the NB, GP, and LN datasets, we simulate both bimodal
and unimodal genes, which are generated from two-component and
one-component mixture models, respectively. To cover a spectrum
of settings in practice, we allow the mixture proportion parameter
π, the effect size δ, and the sample size to vary. Since we know the
true status of the generated gene data, we can construct ROC curves
that evaluate the ability of the BI models to correctly predict the true
status. The performance of BINB, BIGP and BILN will be evaluated
using the area under the corresponding ROC curves (AUC).

Bimodal genes: For the bimodally expressed genes, we choose differ-
ent combinations of parameters in order to represent a wide range of
bimodal shapes. Specifically, π takes values between 0.1 and 0.5 with
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Figure 4.1: Bimodal Index (BI) as a function of the size (π) of the smaller group. For each of
the three models, we simulated datasets with a range of different distances (δ = 2.5, 3, 3.5, 4)
and applied all three models to compute BI. Boxplots for π = 0 give the distribution of BI when
the data is simulated from a unimodal distribution. Performance under the correctly specified
model is similar for all three methods, with equal splits (π = 0.5) yielding the largest BI values.
The NB model (gray) performs extremely poorly under misspecified models, with BI values for
π = 0.1 clearly less than the unimodal BI values and peak BI when π = 0.2. The GP model
(red) performs poorly on data simulated from the LN model. The LN model (green) performs
consistently regardless of how the data is simulated. (Figure reprinted from Tong, P. et al,
Bioinformatics, 2013 )

a step of 0.1 (π = 0.6, . . . , 0.9 are omitted by symmetry). In practice,
π = 0.1 or 0.2 leads to an unbalanced mixture while π = 0.3, 0.4 or
0.5 leads to more balanced mixture distribution. We also use a range
of effect sizes, δ = 2.5, 3, 3.5, 4. To simulate genes that have differ-
ent expression levels, we set µ1 = 5 for the LN model (corresponding
mean on the exponential scale is 244.7), µ1 = 100, 1000, 5000, 10000
for the NB model and µ1 = 100, 1000, 2000, 4000 for the GP model.
For LN, we set σ = 1 due to the equal variance assumption (the
corresponding variance on the exponential scale is 34.5). We assume
equal dispersion between the two groups for both NB and GP mod-
els. As a result, we set the dispersion parameter φ = 0.1 for the NB
model and φ = 0.5µ1 for the GP model. This implies that in both
NB and GP models, the variance is a quadratic function of the mean,
as typically seen in RNAseq experiments (see the mean-variance rela-
tionship in Supplemental Figure 4.19). We use equation (4.6) to solve
for µ2 = µ1 + δ

√
(1− π)σ2

1 + πσ2
2. All possible combinations of π, µ1

and δ are considered in each model, which results in 20 (5 × 1 × 4)
settings in LN datasets and 80 (5 × 4 × 4) settings in NB and GP
datasets. The parameters were chosen to mimic real data. For each
setting, we simulate 100 genes which leads to 2000 bimodal genes in
LN datasets and 8000 genes in NB or GP datasets. We choose four dif-
ferent sample size settings (N=50, 100, 200 and 300) for each dataset.
Data generated from the LN model is continuous, but is rounded to
the nearest integer.

Unimodal genes: The unimodal genes are simulated from a one-
component model. To match the parameter settings for the bimodal
genes, we generate unimodal genes from the larger component corre-
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Figure 4.2: Robustness of NB, GP and LN models. ROC curves for the three mixture models
fitted on NB, GP and LN datasets are compared under sample size N=50, 100, and 200 (N=300
is omitted due to space limitations). Various bimodal shapes as characterized by different
distances (δ = 2.5, 3, 3.5, 4) and component size (π = 0.1, 0.2, 0.3, 0.4, 0.5) are simulated to
mimic real data. The LN model is most robust and provides satisfactory performance even
when the model is misspecified. (Figure reprinted from Tong, P. et al, Bioinformatics, 2013 )

sponding to the mixture proportion greater than 0.5. Equal numbers
of unimodal and bimodal genes are simulated and combined to form
LN, NB and GP datasets.

4.3.1.2 Effect of the Mixture Proportion

To examine the effect of the parameter π that describes the proportion
of samples in the smaller group, we prepared box-and-whisker plots
of BI as a function of π (Figure 4.1). For each of the three datasets
(for N = 300), we fit three mixture models to obtain parameter esti-
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mates and calculate BI. The distributions when the data come from
a unimodal distribution are included at π = 0. Ideally, we expect BI
to increase as π increases from 0 to 0.5. We see this behavior when
we analyze each dataset using the same model that was used to sim-
ulate it. The NB model, however, exhibits different behavior when
the model is misspecified; BI values for π = 0.1 are lower than in the
unimodal case and peak when π = 0.2. The GP model behaves well
on the the GP and NB datasets, but behaves poorly when the true
model is LN. The LN model, by contrast, has similar performance
regardless of which model was used to simulate the data.

4.3.1.3 Performance Evaluation Metrics

A useful measure to evaluate the performance of BI is the ROC curve.
Figure 4.2 and Supplemental Figure 4.5 plot the ROC curves for the
three BIs, namely BINB, BIGP and BILN, in NB, GP and LN datasets
for different sample sizes. Specifically, Supplemental Figure 4.5 shows
the performance when the assumed distribution is correct, whereas
Figure 4.2 shows the performance under misspecified models. Note
that the evaluation using AUC is limited since it puts the performance
under different False Positive (FP) rates on an equal footing. Hence,
to explicitly control FP, we also evaluate the performance by looking
at the power under predefined FP rates in Tables 4.1-4.3.

4.3.1.4 Performance Under Correctly Specified Models

Supplemental Figure 4.5 shows that when the model is correctly speci-
fied, the three methods perform similarly in terms of AUC. Even when
the sample size N = 50, the ROC curve is still satisfactory. For FP
rate and power under the correctly specified model, details are given in
column BINB in Table 4.1, column BIGP in Table 4.2 and column BILN
in Table 4.3. Note that the largest power in each row is bolded. We
see that under the correctly specified model, BINB, BIGP and BILN
all perform reasonably well. In all three models, increased sample
size improves power by reducing the cutoff of BI when controlling the
same type I error. For the same sample size and type I error, the LN
model has slightly larger power (in average 1.9% larger) than the NB
model. Both the LN and the NB model perform significantly better
than the GP model (the power of NB is 8.9% larger than GP) when
FP < 0.1. Nevertheless, the GP model has larger power at larger FP
which makes its AUC better than the NB model and almost matches
that of the LN model (Supplemental Figure 4.6). There is a minor
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decline of AUC in the NB and GP models. This happens because the
BI formula for the NB and GP models relies on large sample approx-
imation and hence loses some efficiency. Note that the FP rate and
power under different sample sizes for the LN model agrees with the
results in Wang et al. [2009].

4.3.1.5 Performance Under Misspecified Models

In practice, the true underlying model is often unknown. It is im-
portant to investigate the robustness of the proposed BIs under a
misspecified model. Here we compare the performance of the three
models and study the effect of model misspecification. Figure 4.2
shows the ROC curves under misspecified models. We see that the
performance varies suggesting different robustness among the three
models.

For the NB datasets where the true model generating the simulated
data is the NB model, Table 4.1 shows the smallest BI needed to
achieve a given type I error and corresponding power to detect bi-
modal genes for the three mixture models with N=50, 100, 200 or 300.
BILN provides competitive performance compared to the true model
while BIGP performs much worse. For the GP datasets, BILN even
dominates BIGP at all FP rate and sample sizes listed in Table 4.2
(however, not at all possible FP rates).

For the LN datasets, the power of BINB and BIGP stemming from
misspecified models is much lower than that of BILN under the same
FP rate (Table 4.3). More importantly, when the sample size is small
or moderate, the power of BINB and BIGP is even smaller than the FP
rate or half of the power achieved by BILN at best. When the sample
size is relatively large, i.e. N=200, the performance of BIGP improves
and almost matches BILN (AUC: 0.95 versus 0.97, see Figure 4.2).
However, increasing sample size only improves the power of BINB at
low FP rate while decreasing the power at high FP rate. Overall, the
AUC of BINB only increases slightly with sample size. The reason
is that the fitted NB model fails to detect most bimodal genes with
π = 0.1 in the GP and LN datasets (Figure 4.1). These results suggest
that BINB and BIGP are highly sensitive to model misspecification.
Hence, from the spectrum of settings considered, BILN outperforms
the other two methods in terms of power under the correctly specified
model as well as robustness under a misspecified model.
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Table 4.1: Performance on NB datasets (Table reprinted from Tong, P. et al, Bioinformatics,
2013 )

BINB BIGP BILN
FP N BI cutoff Power BI cutoff Power BI cutoff Power

0.01 50 1.605 0.395 1.540 0.264 1.608 0.438
100 1.347 0.590 1.312 0.384 1.325 0.589
200 1.144 0.772 1.123 0.549 1.145 0.707
300 1.054 0.842 1.006 0.666 1.042 0.771

0.05 50 1.410 0.582 1.344 0.418 1.394 0.584
100 1.199 0.732 1.138 0.556 1.181 0.698
200 1.030 0.856 0.966 0.706 1.026 0.798
300 0.946 0.901 0.880 0.788 0.948 0.851

0.10 50 1.301 0.678 1.226 0.524 1.287 0.659
100 1.111 0.802 1.039 0.652 1.100 0.757
200 0.958 0.891 0.886 0.786 0.958 0.850
300 0.882 0.924 0.814 0.854 0.894 0.890

4.3.1.6 Difficulty in Identifying the True Model

In general, it is desirable to identify the true underlying model (e.g.,
NB, GP, LN, or other models). However, this task is extremely chal-
lenging (and perhaps impossible) in practice. For example, when BIC
is used as the criterion for model selection, the BICs from NB, GP
and LN models are almost indistinguishable for all three simulated
datasets (Supplemental Figure 4.8). Compared to misspecified mod-
els, the true model does not show a clear advantage in terms of BIC.
In this sense, each of the three models provides similar fits for the
data, despite the fact that they have different performance in terms
of identifying bimodal genes. This finding suggests that robustness of
BI is important due to the practical difficulty in identifying the true
model.

4.3.1.7 Robustness to Outlier Data

In practice, microarray and RNAseq data often contain outliers due
to various technical artifacts such as library preparation and amplifi-
cation bias as well as biological variations that makes the expression
(RNAseq data after log transformation) deviate from the assumed
normal distribution. Ignoring these outliers might lead to false posi-
tive calls. Therefore, in addition to examine the robustness to model
misspecification, we also examine the robustness to outlier data. We
consider two kinds of outlier data, namely data of heavy tailed dis-
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Table 4.2: Performance on GP datasets (Table reprinted from Tong, P. et al, Bioinformatics,
2013 )

BINB BIGP BILN
FP N BI cutoff Power BI cutoff Power BI cutoff Power

0.01 50 1.521 0.510 1.515 0.336 1.604 0.586
100 1.275 0.759 1.277 0.520 1.356 0.759
200 1.093 0.799 1.154 0.632 1.157 0.869
300 0.992 0.799 1.031 0.742 1.068 0.915

0.05 50 1.323 0.714 1.296 0.521 1.406 0.732
100 1.126 0.796 1.102 0.688 1.205 0.846
200 0.969 0.799 0.929 0.829 1.047 0.920
300 0.898 0.799 0.839 0.877 0.970 0.952

0.10 50 1.223 0.770 1.183 0.628 1.298 0.799
100 1.042 0.800 1.001 0.775 1.122 0.887
200 0.903 0.799 0.841 0.883 0.979 0.945
300 0.844 0.799 0.764 0.918 0.914 0.967

tribution such as t distributions and data containing extreme values.
The detailed summary of our investigation is in Section 4.5.2. Exten-
sive simulation studies suggest that BI is robust to both heavy tailed
distributions and extreme values (Supplemental Figure 4.9-4.10).

4.3.1.8 Comparison to Alternative Approaches

Although there are no existing methods specifically designed to iden-
tify bimodal genes in RNAseq data, it is still meaningful to compare
the performance of BI with naive methods that treat the RNAseq data
as similar to microarray data after some transformation (“log(data+1)”).
To this end, we compare BILN with PACK and COPA. (Full details
are provided in Section 4.5.3.) When there are no outliers, Supple-
mental Figure 4.13 shows the performance of PACK is better than
BILN or COPA in most cases. However, PACK has difficulty detect-
ing bimodal genes with 20%-80% or 30%-70% split, since the kurtosis
values in these cases are near zero (Supplemental Figure 4.14). The
reason PACK still achieves a good ROC curve is mostly attributable
to the model selection step. When the data contains outliers, the per-
formance of BI and COPA is more robust than PACK (Supplemental
Figure 4.17-4.18). The reason is that model selection by BIC would
flag most unimodal genes with outliers as bimodal candidates which
makes it difficult for PACK to classify them correctly. In fact, BIC
would claim that around 40% of the genes are bimodal candidates in
the breast cancer data in the section. Supplemental Figure 4.15 shows
that COPA fails to detect bimodal genes with 50%-50% or 10%-90%
split at the chosen 10% quantile. We have to mention that COPA
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Table 4.3: Performance on LN datasets (Table reprinted from Tong, P. et al, Bioinformatics,
2013 )

BINB BIGP BILN
FP N BI cutoff Power BI cutoff Power BI cutoff Power

0.01 50 1.218 0.007 1.100 0.005 1.561 0.410
100 0.976 0.052 0.818 0.008 1.304 0.613
200 0.820 0.322 0.574 0.136 1.109 0.790
300 0.763 0.482 0.459 0.520 1.034 0.856

0.05 50 1.014 0.086 0.840 0.049 1.367 0.592
100 0.862 0.263 0.628 0.143 1.160 0.750
200 0.737 0.568 0.409 0.734 1.005 0.868
300 0.689 0.628 0.360 0.871 0.932 0.914

0.10 50 0.931 0.197 0.700 0.152 1.265 0.688
100 0.797 0.436 0.511 0.430 1.094 0.800
200 0.693 0.634 0.354 0.886 0.954 0.899
300 0.653 0.650 0.308 0.956 0.878 0.938

has a tuning parameter, that is the quantile used to rank the genes.
If this parameter changes, it is possible to identify a different set of
bimodal genes (Supplemental Figure 4.16). However, the downside
of using different quantiles is that it is difficult to obtain a consensus
ranking of the genes as well as evaluate the false positive rate. Based
on our simulation studies, we recommend the use of BI in practice
for its ability of detecting a wide variety of bimodal genes, having no
blind spots and being robust to outliers.

4.3.2 Real Data Analysis

We applied our methods to the TCGA Breast Cancer Dataset (BRCA)
that contains 341 breast cancer samples for which both microarray
and RNAseq data are available. The microarray data can serve as a
reference to the RNAseq data in detecting bimodal genes.

4.3.2.1 LN Model Fits Best For RNAseq Data

In order to examine which of the three models is most appropriate
for real RNAseq data (and to identify the optimal λ in the Box-
Cox power transformation), we need to identify reliable bimodal and
unimodal genes in this dataset with high fidelity. For this purpose,
we use the microarray data to guide our search. Since genes with
null expression are usually beyond the detection limit of microarray
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technology that may mislead the training set, we only looked at genes
with mean expression > 1.5 (Supplemental Figure 4.20). We then
selected 142 candidate unimodal genes with BI < 0.5, which ensures
that there is no apparent bimodality. For candidate bimodal genes,
we used BI > 1.2 as minimum requirement and found 181 candidates.
All these genes passed manual examination. The complete curated
gene list is provided in Supplemental Table 3.

Figure 4.3(a) shows an example gene where we used profile likelihood
to identify the optimal transformation indexed by λ. Figure 4.3(b)
shows the histogram of optimal λ for all genes. Figure 4.3(c) shows
that the optimal λ for the candidate unimodal genes is concentrated
at 0, suggesting that a log-transformation is optimal. Figure 4.3(d)
shows that the LN model recovers almost all bimodal and unimodal
genes in the curated dataset, while the performance of the NB and
GP models is quite limited. This suggests that the LN model (with
log transformation of the normalized counts) provides a better fit of
real RNAseq data for the purpose of identifying bimodal genes.

4.3.2.2 Bimodal Genes Identified Using RNAseq Data

Figure 4.4(a) shows the distribution of the mixture parameters (π and
δ) in the BRCA RNASeq data after fitting the LN model. The red
curve is the contour where FDR=0.01 (BI=1.093); genes identified as
bimodal by the LN model are above this curve and circled in pur-
ple. We present the distributions of log-transformed count data for
three genes known to be bimodally expressed in breast cancer (Figure
4.4(b)-(d)). Supplemental Table 1 shows the number of genes identi-
fied at different BI cutoffs, with FDRs obtained through simulation.
A complete list of BI values for all genes is listed in Supplemental
Table 2.

(This section is an excerpt from Tong, P. et al, “SIBER: systematic

identification of bimodally expressed genes using RNAseq data”, Bioinformatics,

2013 )
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Figure 4.3: RNAseq data best fit by LN model. (a) An example showing log-transformation (λ =
0) is identified as optimal by profile likelihood. Vertical dash lines indicate a 95% confidence
interval for the optimal λ. (b) Histogram of optimal λ for all genes in RNAseq data. λ
is concentrated at 0, suggesting log-transformation is optimal for the majority of genes. (c)
Histogram of optimal λ values for the unimodal genes from curated dataset. λ values smaller
than -3 are truncated at -3. Log-transformation is optimal for all these curated unimodal
genes. (d) ROC curve for LN, NB and GP models fitted on RNAseq data for manually curated
unimodal and bimodal genes. The performance of the LN model dominates that of the NB and
GP models, suggesting the data is fitted best by the LN model. (Figure reprinted from Tong,
P. et al, Bioinformatics, 2013 )

4.4 Discussion

During the last few decades, numerous studies have been published study-

ing the transcriptome using microarray and, more recently, RNAseq technology

with the hope of identifying biomarkers that can discriminate important pheno-

types such as disease status, therapy response or even patient survival. As the

paradigm for patient treatment shifts to personalized medicine, identifying clin-

ically actionable biomarkers that are robust and have sufficient discriminatory

power and dynamic range becomes an urgent task.
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Figure 4.4: Example bimodal genes (a) Genes identified by the LN model in BRCA data. Genes
with bimodal expression are circled in purple under FDR=0.01 (corresponding BI=1.093). π
is the size of first component; δ defines the distance between the two components as in (4.6).
(b)-(d) Results of know breast cancer bimodal genes including ESR1, PGR, and HER2. (Figure
reprinted from Tong, P. et al, Bioinformatics, 2013 )

In this chapter, we have proposed a novel method, SIBER, to systemat-

ically identify bimodal genes from RNAseq data. Our method is based on the

BI approach [Wang et al., 2009] but extends the original definition of BI to mix-

tures of unequal variance and mixtures of discrete distributions. We consider

different types of discrete distributions to model RNAseq and evaluate their per-

formance under both true models and misspecified models. We also investigate

their performance with real data.

Following the same line as BI, SIBER preserves nice interpretation. Strong

bimodal genes identified by SIBER either have balanced component size π around

0.5 or a large distance between the two modes as defined by δ. Although the exact

BI formula cannot be derived for mixture of negative binomial and generalized
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Poisson distributions, we have obtained an approximate formula that works well

in both simulation and real data analysis. Our simulation shows there is only

minimum power loss in this approximation. The idea for BI is quite general and

hence it can be applied in different settings. For example, it is straightforward to

derive the BI formula for a mixture of t-distributions or other distributions. It

is also possible to derive a non-parametric version of BI as done in Abdullatif Al

watban and Zheng Rong Yang [2012]. In all cases, the resulting BI formula is

invariant under shifting and scaling which is a quite appealing feature for real

data analysis since we should not change our idea of bimodality simply because

the data is processed differently.

The LN model turns out to be the most effective model in both simula-

tion study and real data analysis. Although all three models perform reasonably

well under the true model, only the LN model performs well under misspecified

models. In terms of recovering the bimodal status from the curated training set

based on microarray data, the LN model performs better compared to the NB

and GP models. We further show that the optimal transformation for curated

unimodal genes is indeed a log transformation. This partially explains the supe-

rior performance of the LN model. However, an intrinsic reason might be that

the nature of true expression levels is better described by a lognormal distribu-

tion, no matter whether it is measured by microarray (where the intensity value

is modeled by lognormal distribution) or RNAseq.

Although the lognormal model performs best for identifying bimodal

genes, it remains an open question whether the lognormal model also performs

well for differential expression analysis in RNAseq data. In fact, the nature of

the two tasks is quite different. While identifying bimodally expressed genes

is unsupervised, differential expression analysis requires knowing the treatment

condition and hence is supervised. Current comparison studies for RNAseq dif-

ferential expression analysis only discuss the discrete models such as generalized
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Poisson, negative binomial and two-stage Poisson [Kvam et al., 2012, Bullard

et al., 2010]. Further study is needed to assess the performance of lognormal

model in differential expression analysis.

Both the EM algorithm and Markov-chain Monte Carlo (MCMC) can be

used to estimate the parameters in a mixture model. It has been shown that the

two methods provide similar inference for BI [Wang et al., 2009]. Considering the

computational efficiency issue, SIBER implements the EM algorithm. To further

boost the computation speed, the SIBER package also provides parallel computing

capability.

The BI based approach has been shown to be the most effective method

for identifying bimodal genes. Once the bimodal genes have been identified,

many follow up studies can be performed. For example, we can examine what

GO categories or pathways are enriched in the bimodal gene list. Since many

bimodal genes share similar patterns, it is biologically appealing to decompose

the set of bimodal genes into a smaller number of binary signals that are distinct.

A more important task would be to examine the predictive power of bimodal

genes and see how well they perform for predicting clinical outcome. We defer

this important task to the next chapter.

4.5 Appendix

(Excerpts in this Appendix section are from the supplemental materials

published online from: Tong, P. et al (2013). “SIBER: systematic identification

of bimodally expressed genes using RNAseq data.”, Bioinformatics.)
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4.5.1 Derivation of the Generalized Bimodality Index

We first generalize the BI formula to a normal mixture with unequal
variance. Then we define BI for mixture of arbitrary distributions.

4.5.1.1 Normal Mixture with Unequal Variance

Suppose we have n1 = Nπ and n2 = N(1 − π) samples from normal
distributions N(µ1, σ

2
1) and N(µ2, σ

2
2), respectively.

Let the sample means be x̄1and x̄2. The null hypothesis is that the
two components have equal mean when the expression is unimodal.
Hence,

H0 : µ1 = µ2

H1 : µ1 6= µ2

We have

x̄1 − µ1 ∼ N(0, σ
2
1
n1

),

x̄2 − µ2 ∼ N(0, σ
2
2
n2

).

Define the test statistic to be:

T = x̄1 − x̄2√
σ2

1
n1

+ σ2
2
n2

Under H0,T ∼ N(0, 1)

To achieve type I error α, we set the critical value for rejecting H0 as
c. Then,

PH0(|T | > c) = α

where zα/2 is the quantile of the standard normal distribution such
that the upper tail probability is α

2 . Hence, c = zα
2

Similarly, under H1 where the gene is bimodal, a proper c would be
chosen to control type II error as β:

PH1(|T | < c) = β
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Since

PH1(|T | < c) = PH1(| x̄1 − x̄2 − (µ1 − µ2) + (µ1 − µ2)√
σ2

1
n1

+ σ2
2
n2

| < c)

where x̄1−x̄2−(µ1−µ2)√
σ2

1
n1

+
σ2

2
n2

∼ N(0, 1) under H1, we have:

c− µ1−µ2√
σ2

1
n1

+
σ2

2
n2

= zβ.

Plug in c = zα
2
, (zα

2
+ zβ)2 = (µ1−µ2)2

σ2
1
n1

+
σ2

2
n2

,

which means

(zα
2

+zβ)2

N
= π(1−π)(µ1−µ2)2

(1−π)σ2
1+πσ2

2
, BI2.

Therefore,

BI =
√
π(1− π) |µ1 − µ2|√

(1− π)σ2
1 + πσ2

2

=
√
π(1− π)δ (4.7)

where δ = |µ1−µ2|√
(1−π)σ2

1+πσ2
2
measures the distance between the two modes.

(An excerpt from Tong, P. et al, “SIBER: systematic identification of
bimodally expressed genes using RNAseq data”, Bioinformatics, 2013 )

4.5.1.2 Negative Binomial Mixture

We assume the data is generated from a 2-component Negative Bi-
nomial (NB) Mixture with means µ1, µ2 and variances σ2

1, σ2
2. We

assume σ2
1, σ2

2 are known parameters. Similar to the normal mixture
case, we formulate our hypothesis as:

H0 : µ1 = µ2

H1 : µ1 6= µ2

The most powerful test would be the Wald test which requires the
MLE of µ1, µ2, denoted as µ̂1, µ̂2:
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µ̂1 − µ̂2√
var(µ̂1) + var(µ̂2)

When σ2
1, σ2

2 are known, µ̂1, µ̂2 are not just the sample means. In
fact, they are complicated functions of the data and σ2

1, σ2
2. Instead,

we can use alternative test based on Central Limit Theory (CLT) as
below:

T = x̄1 − x̄2√
σ2

1
n1

+ σ2
2
n2

Under H0, T .∼ N(0, 1) approximately. This is the same as the normal
mixture case, except the distribution of T is an approximate.

With similar arguments as Section 4.5.1.1, this approximation leads
to exactly the same BI formula as the normal mixture:

BI =
√
π(1− π) |µ1 − µ2|√

(1− π)σ2
1 + πσ2

2

The above formula relies on CLT and hence relies on asymptotic nor-
mality. Motivated by this, we can first transform (i.e. Box-Cox trans-
formation) the data and use normal mixtures to identify bimodality.
The Box-Cox transformation is defined as below [Box and Cox, 1964]:

y
(λ)
i =

{
yλi −1
λ

if λ 6= 0
log(yi) if λ = 0

where yi is the original data and yλi is the transformed data. Real data
shows taking logarithm (as indicated by λ = 0) is optimal, which
means the original data is fitted by a mixture of lognormal (LN)
distribution, which we define as the LN model in the manuscript.
(An excerpt from Tong, P. et al, “SIBER: systematic identification of
bimodally expressed genes using RNAseq data”, Bioinformatics, 2013 )

4.5.1.3 Generalized Poisson Mixture

The data can be fitted with a mixture of Generalized Poisson Distri-
butions. Similar procedures would give us the approximate BI as:
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BI =
√
π(1− π) |µ1 − µ2|√

(1− π)σ2
1 + πσ2

2

= |µ1 − µ2|√
σ2

1
π

+ σ2
2

1−π

4.5.1.4 Zero-Inflation

RNAseq has a high resolution to measure null expression where exact
count of zero can be found. This is a special case in both our mixture
modeling as well as BI formula. In terms of fitting mixture models, one
component would be a point mass at zero while the other component
might be any of NB, GP, LN or other models. Both NB and GP
models can automatically fit such a zero-inflated model by fitting
µ1 = 0 since a point mass at zero is a special case of both NB and GP
distribution. However, for the LN model the point mass at zero can
not be automatically fitted as the EM algorithm would not return
µ1 = 0, σ1 = 0. To deal with this situation, we empirically detect
genes with 0-inflation (i.e. >20% of the samples have count zero) and
fit a univariate LN model on the nonzero counts.

For the BI formula in the zero-inflated case, it degenerates as follows
by setting µ1 = 0 and σ1 = 0 in formula 4.6 (An excerpt from Tong, P.
et al, “SIBER: systematic identification of bimodally expressed genes
using RNAseq data”, Bioinformatics, 2013 ):

BI =
√

1− πµ2

σ2

4.5.2 Investigation of Outlier Data

The comparison of NB, GP and LN models examines the robustness
to model misspecification. Now we examine the robustness to outlier
data points. Since previous comparison shows LN model performs
best in terms of power and robustness under various scenarios, we
just focus our investigation on LN model (or equivalently the normal
model after log-transformation). Real microarray data is usually ex-
emplified by heavy tailed distributions and extreme expression. This
motivates us to use a t-distribution to simulate data with heavy tail.
The severity of the heavy tail can be controlled by the degree of free-
dom (df). Both unimodal and bimodal genes can be generated under
similar settings as in Section 4.3.1.1 (therefore, we borrow the nota-
tion introduced before). Note that for a t-distribution, the standard
deviation (σ)is determined by σ =

√
df
df−2 and mean µ1 = 0. To gener-

ate a mixture of t-distribution with different bimodality, we can shift
a t-distribution with µ2 = σ ∗ δ to represent the second component
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where δ = 2.5, 3, 3.5, 4 quantifies the distance between the two com-
ponents. The proportion of the first component π1 is also set to be
between 0.1 and 0.5 with a step length of 0.1. To simulate data with
extreme expression, we simulate the ‘normal part’ with Normal(5, 1)
and add extreme values from a uniform distribution U[3σ, 4σ] + µ1.
The number of extreme values is chosen to be 1, 2 or 4. Both uni-
modal and bimodal genes with extreme values are simulated. The
presence of both a heavy tailed distribution and extreme values tends
to generate more small BI estimates in both unimodal and bimodal
genes (see Supplement Figure 4.11, 4.12). This effect is stronger on
the simulated unimodal genes. The overall performance of BI is quite
robust to both heavy tailed distributions and extreme values (4.9,
4.10). (An excerpt from Tong, P. et al, SIBER: systematic identifica-
tion of bimodally expressed genes using RNAseq data, Bioinformatics,
2013 )

4.5.3 Comparison with COPA and PACK

Both COPA [Tomlins et al., 2005] and PACK [Teschendorff et al.,
2006] are designed for microarray data. Since there is no existing
method dealing with RNAseq data for bimodal gene identification, we
compare our method with a naive approach that simply transforms
the RNAseq data and treats it as microarray data. In particular, we
compare BILN with COPA and PACK after log-transformation. Note
that the log-transformation is shown to be optimal for RNAseq data
and frequently used in other studies.

We implement PACK with the vabayelMix package. In particular
the unbiasedKurt() function is used to compute the Kurtosis of log-
transformed data. We perform PACK analysis without clustering
so that all genes can be assigned with a rank. In theory, samples
from a normal distribution would have Kurtosis of 0. In contrast,
bimodal genes arising from a mixture of normal distributions would
have nonzero Kurtosis (either positive or negative). We use the abso-
lute value of Kurtosis to rank the genes and hence construct an ROC
curve.

COPA applies a simple transformation of the data before ranking the
genes. Suppose the log-transformed values (or microarray measure-
ments) is a vector y = (y1, y2, ..., yN) where yi is the gene expression
in the ith sample for a given gene. Let the median of y be m and
its median absolute deviation (MAD) be d. COPA first applies the
following transformation for each yi:

y
′

i = yi −m
d
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Then, COPA uses the quantile of the transformed values y′ = (y′
1, y

′
2, ..., y

′
N)

to rank the genes. Originally, the 75%, 90% and 95% quantiles are
used which lead to three lists of rankings for identifying genes with
outlier over-expression. In our setting, the “outlier” group is the
first component since π1 ≤ 0.5. Because we assume µ1 ≤ µ2 which
means the “outlier” group has under-expression, it is equivalent to
choose 25%, 10% and 5% quantiles to rank the genes with outlier
under-expression. In our representation, we choose the 10% quantile
as the COPA score which is always negative. Hence, smaller COPA
score means stronger bimodality. This COPA score is then used to
rank the genes and to construct an ROC curve. (An excerpt from
Tong, P. et al, “SIBER: systematic identification of bimodally ex-
pressed genes using RNAseq data”, Bioinformatics, 2013 )

4.5.4 Supplemental Figures
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Figure 4.5: Performance under the correctly specified (“true”) model. ROC curves fitted by the
true model are compared for each of NB, GP and LN datasets under sample size N=50, 100,
200 and 300. Various bimodal shapes as characterized by different distances (δ = 2.5, 3, 3.5, 4)
between the two components and component size (π = 0.1, 0.2, 0.3, 0.4, 0.5) are simulated to
mimic real data. Under the true model, the three methods have similar performance. (Figure
reprinted from Tong, P. et al, Bioinformatics, 2013 )
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Figure 4.6: ROC curves under true models. ROC curves under correct model specification for
the three models. Black arrows indicate the point where ROC curves of GP models intersect NB
models; Green arrows indicate the intersection points of GP models and LN models. FP rates
at the intersection points between GP and NB models are 0.326, 0.210, 0.122 and 0.133 under
N=50, 100, 200 and 300, respectively; similarly, FP rates at the intersection points between GP
and LN models are 0.460, 0.358, 0.294 and 0.321 under N=50, 100, 200 and 300, respectively.
From a practical point of view where FP rate is not allowed to be large, the larger power at low
FP rate seen with the LN and NB models is preferred. Compared to the LN and NB models,
the TP rate of the GP model increases faster. However, the overall performance of the three
models in terms of AUC is quite similar. (Figure reprinted from Tong, P. et al, Bioinformatics,
2013 )
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Figure 4.7: Boxplot of fitted BI by the NB, GP and LN models stratified by different π1 for
simulated bimodal genes (denoted as H1 in the y-axis). Boxplot of estimated BINB , BIGP and
BILN from simulated bimodal genes stratified by π1 from each dataset at N=300. First row
represents NB dataset; second row for GP dataset and third row for LN dataset. BINB fails to
detect bimodal genes with π1=0.1 under misspecified model. Estimated BI increases with π1
except BINB in LN and GP datasets and BIGP in LN dataset due to model misspecification.
(Figure reprinted from Tong, P. et al, Bioinformatics, 2013 )
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Figure 4.8: Cases where it is impossible to identify the data generating model (true model)
by BIC. Comparison of BIC from fitting three mixture models on NB, GP and LN datasets.
Sample size N=300 is chosen for illustration purposes. Upper panel: smoothed density plot
with higher density indicated by thicker cloud; Lower panel: scatter plot; diagonal panel:
histogram of the BIC values. For all three datasets, BICs from the three models are almost
identical, suggesting they provide similar fits to the data, despite their varying performance for
bimodality identification. (Figure reprinted from Tong, P. et al, Bioinformatics, 2013 )
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Figure 4.9: Robustness to heavy tailed distributions. Unimodal and bimodal genes are simulated
from t or a mixture of t distribution with different degrees of freedom (df) to mimic the effect
of heavy tailed distribution frequently seen from real data. (Figure reprinted from Tong, P. et
al, Bioinformatics, 2013 )
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Figure 4.10: Robustness to extreme values. Different numbers of extreme values are simulated
such that the robustness to them can be examined. (Figure reprinted from Tong, P. et al,
Bioinformatics, 2013 )
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Figure 4.11: Effect of heavy tailed distributions on the estimation of BI. The estimated BI is
plotted against the true BI for simulated unimodal (true BI=0) and bimodal genes (BI > 0)
from t-distribution with different degrees of freedom (sample size N=200 is used for illustration).
The presence of heavy tails tends to generate more smaller BI values in both unimodal and
bimodal genes compared to the normal distribution. Overall, the shift in unimodal genes is
more obvious. (Figure reprinted from Tong, P. et al, Bioinformatics, 2013 )
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Figure 4.12: Effect of extreme values on the estimation of BI. The estimated BI is plotted
against the true BI for simulated unimodal (true BI=0) and bimodal genes (BI > 0) containing
different number of extreme values (N=200). The presence of extreme values generates more
smaller BI estimates in both unimodal and bimodal genes compared to the normal distribution.
Overall, the extreme values seems to affect the estimated BI more in unimodal genes. (Figure
reprinted from Tong, P. et al, Bioinformatics, 2013 )
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Figure 4.13: ROC curves for BILN , PACK and COPA.The performance of BILN , PACK and
COPA are compared under sample size N=50, 100 and 200. AUC is shown at bottom-right of
each panel. Since PACK and COPA works on normally distributed data, the count data is first
log-transformed before applying PACK and COPA. For PACK, the absolute value of Kurtosis
is used to rank the genes after model selection with BIC. For COPA, the 10% quantile of the
transformed values (centered by median and scaled by MAD) is used for ranking. Lower COPA
score leads to stronger bimodal expression. When there are no outliers, PACK performs best
followed by BI and then COPA. (Figure reprinted from Tong, P. et al, Bioinformatics, 2013 )
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Figure 4.14: PACK finds it difficult to detect bimodal genes with a 20%-80% or 30%-70% split.
Boxplot of kurtosis for simulated bimodal genes stratified by π1 in each dataset with sample
size N=300. For unimodal genes, kurtosis is theoretically 0 which is indicated by the horizontal
red line. However, most kurtosis at π1=0.2 in LN and NB dataset as well as π1=0.3 in GP
dataset is centered at 0. (Figure reprinted from Tong, P. et al, Bioinformatics, 2013 )
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Figure 4.15: COPA does not work well when bimodal expression is 50%-50% or 10%-90% split
at the chosen quantile for ranking. Boxplot of COPA scores (10% quantile of transformed
value) is shown for simulated bimodal genes stratified by π1 in each dataset with sample size
N=300. Lower COPA scores indicate stronger bimodal expression. At π1=0.5 in the LN and
NB datasets, COPA score is largest which overlaps with COPA score from unimodal genes.
Therefore, COPA fails to detect these genes. Similarly, at π1=0.1 and π1=0.5 in the GP
dataset, COPA assigns a large score to the simulated bimodal genes which makes COPA fail to
detect these genes. (Figure reprinted from Tong, P. et al, Bioinformatics, 2013 )
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Figure 4.16: COPA detects different set of bimodal genes as the quantile used for ranking
changes. Boxplot of COPA score under different choice of quantiles for simulated bimodal genes
with sample size N=300 is shown. Lower COPA score indicates stronger bimodal expression.
COPA is good at detecting bimodal genes with π1 = 0.1 ∼ 0.3 when 10% quantile is used, with
π1 = 0.2 ∼ 0.4 when 20% or 30% quantile is used and with π1 = 0.4 ∼ 0.5 when 40% quantile
is used, respectively. (Figure reprinted from Tong, P. et al, Bioinformatics, 2013 )
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Figure 4.17: Robustness to heavy tailed distributions. Unimodal and bimodal genes are simu-
lated from student’s t or a mixture of student’s t distribution with different degrees of freedom
(df) to mimic the effect of a heavy tailed distribution. Both BI and COPA are robust to data
with heavy tails while PACK is not. As df increases, the performance of PACK also improves.
(Figure reprinted from Tong, P. et al, Bioinformatics, 2013 )
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Figure 4.18: Comparison of robustness to extreme values. Different numbers of extreme values
are simulated such that the robustness to them can be examined. Both BI and COPA are
robust to extreme values while PACK is not, mostly due to model selection step that flag the
unimodal genes as bimodal. The AUCs at N=50 with 4 outliers in all three methods are not
good. This is because 8% of the samples are simulated to be extreme values which in reality
is not likely to happen. It is included here to demonstrate the trend. (Figure reprinted from
Tong, P. et al, Bioinformatics, 2013 )
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of choosing the quadratic fit over linear fit is less than 2.2×10−16. (Figure reprinted from Tong,
P. et al, Bioinformatics, 2013 )
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Figure 4.20: Curated genes with known bimodal status are not null expressed. Red dashed line
indicates mean expression > 1.5. Curated bimodal and unimodal genes have mean expression
level over 1.5 from microarray data. Most of these have percent of zero counts less than 5%
which confirms they are expressed. We check expression with percent of zero counts rather than
median count because median count is confounded with gene length effect. (Figure reprinted
from Tong, P. et al, Bioinformatics, 2013 )
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4.5.5 Supplemental Tables

Table 1: Genes identified in BRCA data at different BI threshold
(Table reprinted from Tong, P. et al, Bioinformatics, 2013 )

BI Cutoff Number of Bimodal Genes Identied FDR
1.0 2589 0.066
1.1 1805 0.008
1.2 1206 0.001
1.3 805 ≈ 0
1.4 554 ≈ 0
1.5 368 ≈ 0
1.6 231 ≈ 0
1.7 140 ≈ 0
1.8 95 ≈ 0

Table 2: SIBER analysis for all genes in BRCA data. See the online
supplementary file SupplementaryTable2.csv. The fitted parame-
ters in mixture model as well as BI are listed. log10(data+1) is applied
before fitting the mixture model.

Table 3: Curated unimodal and bimodal gene list. See the online
supplementary file SupplementaryTable3.csv. This table contains
the gene names as well bimodality status for 181 bimodal and 142
unimodal genes.

http://bioinformatics.oxfordjournals.org/content/early/2013/01/09/bioinformatics.bts713/suppl/DC1
http://bioinformatics.oxfordjournals.org/content/early/2013/01/09/bioinformatics.bts713/suppl/DC1
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Chapter 5

Bimodal genes contain most information for

predicting outcome

5.1 Background

In Chapter 4, we developed the SIBER approach to systematically identify

bimodal genes for RNAseq data. These bimodal genes can be good candidates

for therapeutic targets. It remains a question how these bimodal genes predict

clinical outcome. This chapter is devoted to investigating the predictive power

of bimodal genes. We will discuss the utility of bimodal genes in the context

of cancer classification. Further, after establishing the predictive power of bi-

modal genes, we propose an integrative approach for cancer classification based

on discrete signals extracted from multiple sources.

In the literature, it is reported that gene expression signatures derived

from whole transcriptome profiling using microarray and next generation sequenc-

ing have the potential to impact patient care including accurate diagnosis and

prognosis and ultimately realize the promise of personalized medicine. Over the

years, many computational methods have been proposed to classify patients into
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different risk groups or even predict survival with varying degrees of success

[Golub et al., 1999, Dudoit et al., 2002]. Existing approaches for class predic-

tion involve feature selection followed by model building and validation. The

feature selection step is needed to filter out irrelevant genes for better accuracy

and avoidance of over-fitting. The selected features are then used to train a

predictive model usually in the form of a classifier or regression model. The

performance is usually evaluated on a validation set or through cross-validation

when independent validation data is not available.

In addition to prediction accuracy, it is realized that a good signature

should help illuminate the underlying biology and more importantly, be clinically

actionable. The development of a clinically actionable biomarker involves multiple

phases [Pletcher and Pignone, 2011]. At the early phase, statistical association

should be established with the clinical outcome of interest. The risk of disease

needs to be accounted for to ensure that a large enough patient population exists.

Studies to a later stage investigate whether the novel biomarker would alter the

practice of physicians prescribing treatment decisions. Most methods to date

primarily focus on the association of a biomarker with the outcome while ignoring

the incidence rate of disease. In contrast, biomarkers based on bimodal expression

implicitly deal with incidence rate and hence are good candidates for clinically

actionable biomarkers [Wang et al., 2009].

Genes with bimodal expression exhibit strong contrast of expression dif-

ference between two patient groups [Ertel and Tozeren, 2008, Teschendorff et al.,

2006]. It has been shown that genes with prognostic power are enriched in bi-

modal genes where the expression among the samples forms two distinct clusters

representing low and high expression [Hellwig et al., 2010]. Although the tech-

nique to identify bimodal genes has become a mature technology [Wang et al.,

2009, Tong et al., 2013], there is no published work evaluating the predictive

power of bimodal genes.
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Here we propose to predict clinical outcome with binary signals arising

from bimodal expression. Classifiers built by this approach have a potential

to be more clinically useful and easy to operate. Through extensive evaluation

using multiple public benchmark datasets, we show that prediction models built

from bimodal genes have the same accuracy as models built with all genes. The

remainder of this chapter is organized as follows: In Section 5.2 we describe the

three benchmark data sets as well as the pipeline to evaluate the performance

of bimodal genes in predicting clinical outcome. The approach for bimodal gene

identification will be briefly reviewed. In Section 5.3 we present the performance

of models built from bimodal genes, unimodal genes and all genes and conclude

the effectiveness of outcome prediction using bimodal genes.

5.2 Methods

5.2.1 Datasets

We have assembled three benchmark datasets from public repositories.

These datasets have been frequently used to evaluate the performance of different

prediction models.

MAQC-II data We download the MAQC-II data [Shi et al., 2010]

from Gene Expression Omnibus (GEO) with series accession number GSE16716.

MAQC-II includes six datasets corresponding to thirteen binary endpoints coded

as A through M (Table 5.1). This dataset serves as a benchmark for predicting

binary outcome. The first three datasets are related to toxicogenomics in rodents.

The last three datasets are related to prognosis in human cancer including breast

cancer, multiple myeloma and neuroblastoma. Four of the thirteen endpoints are

artificially designed to serve as positive and negative controls: endpoints I and

M are negative controls where the class label is randomly assigned and hence
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impossible to predict; endpoints H and L are positive controls representing sex of

the patients that is highly predictable from gene expression data. The binary sur-

vival status (F, G, J , K) is compiled in the MAQC-II study based on a threshold

for the survival time. The MAQC-II dataset encompasses diverse outcomes with

different characteristics which makes it a good benchmark dataset for evaluating

classification methods.

Tan et al data For multi-class outcome data, we use the same datasets

as in Tan et al. [2005]. There are 10 datasets in total all related to human cancer

including leukemia, lung, colorectal, prostate, breast, central nervous system,

lymphoma, bladder, melanoma, renal, uterus, pancreas, ovary and mesothelioma.

A summary of the Tan et al data is provided in Table 5.2. The number of classes

in each dataset ranges from 3 to 14.

NCI Director’s Challenge Lung Cancer data The NCI Director’s

Challenge Consortium released comprehensive lung cancer data with blinded

training/testing split collected from multiple sites mimicking the true patient

population [Shedden et al., 2008]. The primary goal for the Director’s Challenge

project was to evaluate whether microarray measurements of gene expression

could be used to predict overall survival for lung cancer patients. We download

the released data and use the original assignment of training/testing status to

evaluate the predictive performance for different classifiers. To construct receiver

operating characteristic (ROC) curves for each classifier, Shedden et al. [2008]

recommend dichotomizing the survival into binary classes based on 3-year sur-

vival. We summarize the assembled data in Table 5.3. There are two test sets for

the NCI Director’s Challenge Lung data. The Test1 data is broadly similar to

the training set in the initial evaluation of gene expression data [Shedden et al.,

2008]. Test2 data has reduced signal intensity and is more challenging.
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Table 5.2: Summary of Tan et al dataset

Training Test1 Test2
Short Survival 96 23 25
Long Survival 152 68 52

Table 5.3: Summary of Director’s Challenge Lung Cancer data
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5.2.2 Identifying Bimodally Expressed Genes

Several methods have been proposed to identify genes with bimodal ex-

pression for microarray data. An extensive comparison of these methods can be

found in Hellwig et al. [2010]. We choose the Bimodality Index (BI) to identify

bimodal genes here for two reasons: (1) BI is shown to perform well for a wide

range of bimodal shapes; (2) under the BI framework, samples can be easily split

into two groups representing low and high expression.

Below we briefly review the BI method. For a given gene, let the expres-

sion value in sample i be yi for i=1, 2, . . . , N samples. The expression values are

modelled through a two component mixture model:

f(yi) = πf(yi;µ1, σ) + (1− π)f(yi;µ2, σ)

where f(yi;µ1,sv) is the density function for a normal distribution with mean µ1

and standard deviation σ and π is the proportion of samples in the first

component. After estimating the parameters (π, µ1, µ2, σ) using the

Expectation-Maximization method, BI can be calculated as:

BI =
√

(π(1− π) |µ1 − µ2|
σ

The above model is fit for each gene such that bimodal genes can be

identified by setting a threshold of BI that is related to the sample size N. Based on

the computed BI, we can build three sets of genes for later comparison: bimodal

genes, unimodal genes, and all genes. Gene expression array data usually contains

noise that might jeopardize classification accuracy. For this reason, we apply a

filtering step before any computation. In particular, we compute the variance
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of each gene and remove genes that have low variability. We filter out 50% of

the genes based on their variances. Microarray data might also suffer from batch

effects. An extensive study about batch effects in MAQC-II data can be found

in Luo et al. [2010]. We examined possible batch effect related to run date and

use mean-centering for batch effect correction when possible.

Given a bimodal gene, it is natural to draw a cutoff and dichotomize

the expression values. Doing so will make it easier to interpret the result as

well as greatly facilitate the development of diagnostic/prognostic devices. To

dichotomize the expression values of bimodal genes, we choose a cutoff such that

the probability of belonging to either component is 0.5. This leads to a cutoff

computed as the mean of two component means estimated from the mixture

model. Expression values smaller than this cutoff will be coded as 0 while larger

values will be coded as 1. There are also other methods to dichotomize bimodal

genes. For example, the posterior probability of belonging to either component

can also be used. This metric takes into account the component size but gives

similar results as using the mean of component means.

5.2.3 Classification Methods

We use PAM (Prediction Analysis of Microarrays) [Tibshirani et al., 2002]

for classification since it is widely used and performs well in extensive comparison

studies [Lee et al., 2005, Wessels et al., 2005]. Another good feature of PAM

classifier is that PAM uses soft-thresholding for feature selection. Therefore,

there is no limit on the number of features to be explored comparing alternative

classifiers such as Support Vector Machine and K Nearest Neighbours. We didn’t

include other classifiers because our primary focus is to evaluate whether bimodal

genes are enough for microarray based classification compared to all genes. In

this regard, we base our conclusion on the relative performance between using all
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genes and using only bimodal genes. For each endpoint or dataset, PAM was first

fit on the training set and then fro zen to make predictions on the validation set.

PAM implements cross-validation to select the number of features. Three-fold

cross-validation is used for all datasets in the training stage.

We also evaluate how the bimodal genes perform when the data is di-

chotomized. The PAM classifier is designed for continuous features and hence

inappropriate for binary features. We therefore evaluate alternative classifiers

including Naive Bayes, Classification and Regression Tree (CART) and Bayesian

Network (BN). CART is chosen since it can generate simple decision rules to make

prediction. We also evaluate BN since it is able to model the dependency among

bimodal genes and the clinical outcome. Naive Bayes is a simple yet effective

classifier that treats the features as independent.

5.2.4 Performance Evaluation Metrics

It is critical to use a valid metric to compare the performance of the all-

gene and bimodal-gene models. Classification accuracy is one of the mostly widely

used metrics. Although Matthews correlation coefficient (MCC) was used in the

MAQCII study [Shi et al., 2010], it only applies to binary predictions. Usually

the two metrics give similar results. Therefore, for the sake of simplicity, we only

present results based on accuracy while MCC is omitted in this presentation.

We compare the accuracy of validation set from classifiers built with all genes

and bimodal genes. To specifically test which of the two classifiers is better,

we applied the Net Reclassification Index (NRI) and Integrated Discrimination

Index (IDI) method [Pencina et al., 2008]. The result from NRI and IDI test

may be controversial in the sense that the classifier with higher accuracy can be

declared to be significantly worse than the other classifier with lower accuracy

(data not shown). Further, both NRI and IDI are criticized for ignoring the
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sampling variability [Pepe et al., 2007]. These considerations lead us to declare

a winning classifier when it has higher accuracy. Note that this criterion is also

used in Tan et al. [2005].

5.3 Results

5.3.1 MAQC-II Binary-Class Data

Table 5.4 shows the accuracy on test set for models using bimodal, uni-

modal and all genes. The largest accuracy among the three models for each

endpoint is bolded to aid visual inspection. The endpoints H and L are positive

controls and hence the accuracy is high for all three models. In contrast, the end-

points I and M are negative controls and thus accuracy around 0.5 is expected.

After excluding the negative controls, the bimodal gene model achieves 7 largest

accuracies out of 11 endpoints while the all gene model achieves 6 largest accu-

racies. The unimodal gene model only performs best on two of the 11 endpoints.

This result shows that for binary classification, the bimodal-gene model performs

similarly to all-gene model and better than the unimodal-gene model in terms of

classification accuracy.

5.3.2 Tan et al Multi-Class Data

Table 5.5 shows the performance of the three models on multi-class clas-

sification task on Tan et al data. Among the 10 data sets, the bimodal-gene

model performs best in 6 of them. The performance for the all-gene model is

similar (7 best out of 10). The unimodal-gene model performs much worse. Note

that the performance of all three models on the GCM data is poor. The reason

is that the outcome of GCM data contains 14 different categories. The sample

size on the training set is only 144 which means around 10 samples are used to
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Bimodal Unimodal All
A 0.716 0.659 0.716
B 0.672 0.721 0.711
C 0.917 0.863 0.897
D 0.710 0.650 0.640
E 0.890 0.870 0.890
F 0.696 0.654 0.678
G 0.626 0.650 0.631
H 0.869 0.822 0.874
I 0.477 0.500 0.491
J 0.848 0.842 0.848
K 0.782 0.798 0.808
L 0.987 0.727 0.987
M 0.490 0.478 0.502
Table 5.4: Result of MAQC-II dataset

Bimodal Unimodal All
Leukemia1 0.940 0.940 0.820
Leukemia2 0.800 0.670 0.800
Lung1 0.780 0.750 0.780
SRBCT 1.000 0.950 1.000
Breast 0.970 0.900 1.000
Lung2 0.960 0.970 0.970
DLBCL 0.930 0.900 0.900

Leukemia3 0.910 0.780 0.900
Cancers 0.860 0.840 0.880
GCM 0.410 0.570 0.570

Table 5.5: Result of Tan et al dataset

characterize each of the 14 categories. Although the accuracy is less than 0.6, it is

much better than random guess (the expected accuracy would be 0.07). over all

the datasets, the bimodal-gene model performs almost the same as the all-gene

model.

5.3.3 Director’s Challenge Lung Cancer Data

We have shown examples suggesting that bimodal genes contain enough

information for both binary and categorical classification tasks. We now go one

step further to evaluate how the bimodal genes perform when the features are
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Figure 5.1: Comparison of naive bayes (NB), Bayesian network (BN) and CART (rpart) on
Director’s challenge lung cancer data. As the number of top predictive genes changes, the AUC
of the three classification methods also varies. The performances on both training (labeled as
train in black) and test set (labeled as test1 in red or labeled as test2 in green) are illustrated.

dichotomized. The reason to dichotomize the data is because binary inputs make

it easier to interpret. Also, if classification based on binary features is still satis-

factory, this means we do not need exact measurements for the biomarkers. Only

the grouping information is needed for prediction. This will greatly facilitate the

development of diagnostic/prognostic device.

Figure 5.1 shows the performance of NB, CART and BN classifiers on

the Director’s Challenge lung cancer data. The performance seems to be rather

stable when the number of features changes. Both BN and CART achieve larger

AUC on the training set than NB classifier does. However, NB performs much

better than BN and CART on both test sets. Overall, BN and CART tend to

be overfitting. This suggests that when bimodal genes are dichotomized, NB is a

good choice for building classifiers.

We specifically investigate why BN performs so poorly on the test set.

Figure 5.2(a) shows the network constructed by the BN classifier with genes
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Figure 5.2: The dependency network learnt by Bayesian network on Director’s challenge lung
data. (a) The network with 181 genes and clinical outcome. The red node on top left indicates
the outcome node. (b) The Markov blanket for the outcome node. This is the network that is
needed to predict outcome.

significantly associated with outcome (p value<0.05). The red point on the top

left indicates the outcome variable. We see that there are many edges between

the nodes. Since there are only 248 samples used in training, most of these edges

might be dubious. In fact, not all nodes and edges learnt in BN are used for

making predictions. Only nodes serving as the Markov blanket (shown in Figure

5.2(b)) of the outcome variable are needed to make predictions. This further

explains why BN tends to overfit microarray data.

5.4 Discussion

Genes with bimodal expression play very important roles in various bi-

ological processes especially in carcinogenesis. The two modes of expression are

a reflection of switch-like regulation [Ertel and Tozeren, 2008]. Multiple studies

have suggested that bimodal genes can separate patients with different survival

[Tomlins et al., 2005] or cancer subtypes [Teschendorff et al., 2006]. The anal-

ysis done by Hellwig et al. 2010 evaluates the performance of different methods

for identifying bimodal genes and examine how the identified genes correlate to
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clinical outcome. The Bimodality Index approach [Wang et al., 2009] turns out

to outperform other methods by identifying more predictive genes. It remains a

question whether bimodal genes alone are enough for building predictive mod-

els.

In this chapter we formally evaluate the performance of classifiers built

from bimodal genes, unimodal genes and all genes using several benchmark

datasets. Then benchmark datasets cover a wide variety of endpoints, species

and array platforms. We choose the PAM classifier for all models to eliminate

the bias introduced by different classification methods. The built-in feature se-

lection in PAM further removes artifacts from fine tuning parameters during the

training process. We also check potential batch effects for each dataset to ensure

data quality as recommended in Luo et al. 2010. Practically, genes with low

variation are deemed as noise and filtered out before building classifiers. We also

adopt this practice to ensure a fair comparison.

Through extensive evaluation, we confirm that bimodal genes contain

the same information as all genes in predicting various binary and categorical

outcome. In the MAQC-II data, classifiers built from bimodal genes perform

best in 7 out of the 11 outcomes. Classifiers built from all genes perform best

in 6 outcomes. There are 4 tied accuracies between the bimodal-gene model and

the all-gene model. In terms of classification accuracy, the bimodal-gene model

is slightly better than the all-gene model and both are much better than the

unimodal-gene model. The result on Tan et al data is quite similar. Classifiers

built from bimodal genes perform best in 6 of the 10 data sets while the classifiers

built from all genes perform best in 7 of the data sets with 3 data sets having tied

accuracies. The accuracies in our analysis is similar to those reported publicly.

After establishing the predictive power of bimodal genes, we further eval-

uate how these genes perform when data is dichotomized. For the dichotomized
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data, PAM becomes inappropriate. We therefore choose three representative

classifiers including NB, CART and BN. The NB classifier achieves the best per-

formance among the three classifiers, and it is comparable to those reported in

Shedden et al. [2008]. Both CART and BN tend to overfit. We find that BN in-

fers too many edges even when the data is limited which explains why BN tends

to be overfit.

The effectiveness of building prediction models solely with bimodal genes

has great implications. Our analysis has established the predictive power of bi-

modal genes. This means we can extract natural binary signals such as bimodal

expression for prediction. Further, where there are multiple assays, it is straight-

forward to integrate the data when they are discretized. In terms of classification,

we can build classifiers with discretized data such as categorized copy number

change, methylation change and mutation data.

Our comparison is based on empirical criteria. A rigorous statistical test

for asserting the performance difference would be attractive. However, there is

no effective test developed yet. Both the NRI and IDI tests [Pencina et al., 2008]

do not work well in our context.

Our current analysis does not use gene modules that explicitly incorpo-

rate dependency among the genes. Due to the strong contrast of expression in

the bimodal genes, inferring regulatory networks from bimodal genes and building

classifiers with networks would be quite interesting.
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Chapter 6

Conclusions and future research

6.1 Conclusions

Throughout this thesis, we focus on developing statistical approaches for

integrating multiple high throughput assays. The key question we try to address

is how to extract biological insights and formulate testable hypothesis based on

the combined information. We have developed a variety of methodologies for

integrative analysis that cover both supervised and unsupervised learning. We

devote Chapters 2 and 3 to integrative biomarker identification and Chapters 4

and 5 to integrative classification.

Chapter 2 introduces a regression based approach to identify biomarkers

by integrating multiple assays including gene expression, methylation and copy

number data. This method allows us to evaluate the predictive power of each

individual assay as well as the combined data. We implement penalized regression

so that correlated measurements can be dealt with. To specifically identify a

subset of the measurements that is most predictive, we adopt a stepwise model

selection procedure. An application to the TCGA ovarian cancer data shows that
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gene expression, methylation, and copy number have different power to predict

either therapy response status or overall survival. Interestingly, genes predictive

of therapy response also differ from genes predictive to overall survival despite

significant overlap. We also find that the prognostic genes identified through

our integrated analysis rarely overlap with known cancer genes characterized by

mutation.

Chapter 3 shifts gears to identify biomarkers based on gene alteration.

In particular, we have developed a latent trait model for identifying altered genes

accounting for different mechanisms. This model automatically adjusts for the

heterogeneity among different assay types and samples such that the latent traits

for different genes are placed on a common scale. Compared to conventional

methods, our method is able to identify altered genes that are more reliable and

biologically meaningful. Further, our method can identify novel altered genes

that cannot be found by looking at individual assay separately.

Chapters 4 and 5 approach the data integration problem in the classifi-

cation setting. Both chapters resemble Chapter 3 in the sense that they perform

data integration with discrete signals. Chapter 4 proposes a novel method to

extract binary signals from RNAseq expression data. We present the Bimodality

Index (BI) approach which generalizes a previous method developed for microar-

ray data. The proposed method compares favorably with other methods in both

simulation and real data analysis. Chapter 5 evaluates the predictive power of

bimodal genes. Through extensive analysis on several benchmark datasets, we

find that bimodal genes contain the same amount of information as all genes

for predicting various endpoints. Further, even after converted into binary, bi-

modal genes still provide accurate classification. For these binary features, it is

found that the Naive Bayes classifier performs better than several other candidate

classifiers in terms of both the accuracy and ROC curve.
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6.2 Future research

Data integration has become an ongoing challenge in biomedical research.

The explosion of high throughput profiling technologies has enabled cheaper and

faster data generation. For example, both array-based and sequencing-based

platforms have been used to obtain profiles of whole genome expression, methy-

lation and copy number. Over the years, the biomedical community has collected

various sources of information stored in diverse repositories. How to link and in-

tegrate the collected data is a big challenge. We have developed several methods

for integrative analysis. Still, there are many topics that need further research.

An immediate project expanding our research would be classification with

multiple data sources. It is expected that by integrating information from differ-

ent sources, classification performance would be greatly enhanced. Our analysis

has shown the predictive power of binary signals. It is straightforward to build

classifiers with discretized copy number, methylation and mutation data. In our

evaluation, we choose to investigate the PAM, Naive Bayes, Bayesian Network

and CART classifiers. In terms of integrative classification, it is likely that dif-

ferent data sources might prefer different classifiers. To unleash the power of

integrated analysis, we can apply the boosting algorithm such that the weights

of different data sources can be learnt [Schapire, 2002].

Our research on data integration has explored both biomarker identifica-

tion and classification. What we have not touched is data integration using gene

networks. Network-based biomarker identification and classification is a natural

generalization of our work. In terms of integrative analysis, a network-based ap-

proach is quite attractive. We can first identify functional modules from different

data sources. These functional modules, jointly modeled through a dependency

network, will illuminate the inherent structure within the data. Classification

based on network modules would further help us understand how pathways as a
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whole affect phenotype.
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