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ABSTRACT 

 Many tumors arise from sites of inflammation providing evidence that innate immunity is a 

critical component in the development and progression of cancer.  Neutrophils are primary mediators of 

the innate immune response.  Upon activation, an important function of neutrophils is release of an 

assortment of proteins from their granules including the serine protease neutrophil elastase (NE).  The 

effect of NE on cancer has been attributed primarily to its ability to degrade the extracellular matrix 

thereby promoting invasion and metastasis.  Recently, it was shown that NE could be taken up by lung 

cancer cells leading to degradation of insulin receptor substrate-1 thereby promoting hyperactivity of the 

phosphatidylinositol-3 kinase (PI3K) pathway and tumor cell proliferation.  To our knowledge, nobody 

has investigated uptake of NE by other tumor types.  In addition, NE has broad substrate specificity 

suggesting that uptake of NE by tumor cells could impact processes regulating tumorigenensis other 

than activation of the PI3K pathway. 

 Neutrophil elastase has been identified in breast cancer specimens where high levels of NE 

have prognostic significance.  These studies have assessed NE levels in whole tumor lysates.  Because 

the major source of NE is from activated neutrophils, we hypothesized that breast cancer cells do not 

have endogenous NE but may take up NE released by tumor associated neutrophils in the tumor 

microenvironment and that this could provide a link between the innate immune response to tumors 

and specific adaptive immune responses.  In this thesis, we show that breast cancer cells lack 

endogenous NE expression and that they are able to take up NE resulting in increased generation of low 

molecular weight cyclin E (CCNE) and enhanced susceptibility to lysis by CCNE-specific cytotoxic T 

lymphocytes.  We also show that after taking up NE and proteinase 3 (PR3), a second primary granule 

protease with significant homology to NE, breast cancer cells cross-present the NE- and PR3-derived 

peptide PR1 rendering them susceptible to PR1-targeted therapies.  Taken together, our data support a 

role for NE uptake in modulating adaptive immune responses against breast cancer. 
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CHAPTER 1:  INTRODUCTION 

IMMUNITY AND INFLAMMATION IN CANCER 

Immunosurveillance 

 The immune system is complex and its role in resisting or eradicating formation and 

progression of tumors is unresolved.  In the early 1900s, Paul Ehrlich proposed that the immune system 

has a role in protecting the host from cancer.1  Subsequent to that, in 1957, Burnet stated:   

It is by no means inconceivable that small accumulations of tumor cells 
may develop and because of their possession of new antigenic potentialities 
provoke an effective immunological reaction with regression of the tumor 
and no clinical hint of its existence.2     

Around the same time, Thomas suggested that protection from neoplastic disease was the primary 

function of cellular immunity.3  Burnet and Thomas both speculated that lymphocytes could recognize 

and eliminate transformed cells and these observations led to the development of the 

immunosurveillance hypothesis.  This hypothesis proposed that the immune system can recognize 

tumor-specific antigens that are found on a developing tumor and can interfere with its progression by 

eliminating nascent tumor cells.4 

 Initial attempts to prove the validity of the immunosurveillance hypothesis experimentally 

were difficult due to the complexity of required models.  However, by the mid-1990s, improved mouse 

models allowed researchers to provide evidence that the immune system was involved in controlling 

tumor development.   There were two key findings.  The first was demonstration that endogenous 

interferon γ (IFN-γ) could protect against tumor formation and growth.  In a tumor transplant model,  

Dighe et al. found that chemically-induced Meth A fibrosarcomas grew faster and more efficiently in 

syngeneic BALB/c mice treated with a neutralizing monoclonal antibody specific for murine IFN-γ.5    

In addition, by stably overexpressing a dominant-negative mutant of the IFN-γ receptor alpha chain in 

Meth A sarcomas, they were able to ablate tumor sensitivity to IFN-γ.  When these tumors were 

transplanted into naïve syngeneic hosts, they had enhanced tumorigenicity and reduced 
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immunogenicity.  From these data, they concluded that IFN-γ has a role in tumor cell recognition and 

elimination.  The second key finding involved perforin, a component of the cytolytic granules of 

cytotoxic T cells (CTL) and natural killer (NK) cells that mediates target cell killing.  Using C57BL/6 

mice deficient in perforin, van den Broek et al. showed that tumors induced by multiple methodologies, 

including injection of syngeneic tumor cell lines as well as viral and chemical carcinogenesis, were 

eliminated better by wild-type mice than the perforin-/- mice.6  These results were corroborated by other 

investigators suggesting an important role for perforin-dependent cytotoxicity by CTL and NK cells in 

immune control of tumor development.7  A more definitive study supporting immunosurveillance and 

the importance of IFN-γ and lymphocytes used RAG-2-/- mice that lack NK, T and B cells.8  After 

injection of methycholanthrene (MCA), 129 /SvEv RAG-2-/- mice developed sarcomas with greater 

frequency and more rapidly than wild-type controls.  In addition, RAG-2-/- mice were more likely than 

wild-type controls to spontaneously develop epithelial tumors.  When MCA-induced sarcomas isolated 

from wild-type or RAG-2-/- mice were transplanted into RAG-2-/- recipient mice, their growth rates were 

similar suggesting that tumors arising in the presence or absence of an intact immune system were not 

inherently different.  In transplantation experiments, 17 of 17 sarcomas from wild-type mice became 

established and grew in naïve immunocompetent mice while 8 of 20 sarcomas generated in RAG-2-/- 

mice were rejected when transplanted into immunocompetent hosts.  These experiments suggested a 

role for the immune system in suppressing tumor growth.  The data also suggested a process of 

immunoselection whereby tumors formed in the absence of an intact immune system are more 

immunogenic than those formed in immunocompetent hosts.8  The broader implication of these findings 

is that immune selection pressure may favor the development of less immunogenic tumors.  This in part 

explains how tumors may develop in an immunocompetent host.  Based on these findings, the group led 

by Old and Schreiber proposed the concept of cancer immunoediting; a refinement of the 

immunosurveillance hypothesis.9 
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Cancer Immunoediting 

 Cancer immunoediting takes a broader view of the interaction between the immune system 

and the developing tumor by acknowledging both host-protecting and tumor-sculpting activities.  It is 

comprised of three phases:  elimination, equilibrium and escape.9  The elimination phase can be seen as 

a more contemporary view of the original immunosurveillance hypothesis in which the innate and 

adaptive immune systems both play a role in the eradication of developing tumors.  The equilibrium 

phase is when transformed cells are held in check by the immune system.  It is during this phase that the 

selection of less immunogenic variants of the tumor occurs.  Experimental evidence of an equilibrium 

state was published by Koebel et al. using a chemical carcinogenesis mouse model in which wild-type 

C57BL/6 or 129/SvEv mice were injected with a low dose of MCA.10  Mice with small stable tumors 

that were identified at the injection site were selected; mice that had tumors that continued to progress 

were removed from the study.  At day 200 of the experiment, one cohort of mice was treated with 

control immunoglobulin and none developed additional tumors.  Mice in the second cohort received a 

mixture of antibodies depleting CD4+ and CD8+ T cells and neutralizing IFN-γ.  Progressively growing 

tumors developed in 60% of these mice.  Experiments were repeated in RAG-2-/- mice and very few 

developed late-forming tumors arguing against de novo transformation of tumors and supporting the 

importance of adaptive immunity in the equilibrium phase.  These investigators also noticed that a small 

percentage of MCA-challenged wild-type mice untreated or treated with control antibody developed late 

appearing sarcomas.  They therefore questioned whether sarcoma cells that did or did not escape 

equilibrium could be distinguished on the basis of immunogenicity.  Tumor cells that had been 

maintained in equilibrium formed progressively growing tumors in RAG-2-/- mice but were rejected in 

wild-type mice suggesting that they were highly immunogenic.  In contrast, cells from late-forming 

sarcomas which grew spontaneously from mice in equilibrium formed tumors when transplanted into 

either RAG-2-/-  or wild-type mice.  From this they concluded that tumor cells held in equilibrium have 

an unedited phenotype whereas those that spontaneously escape equilibrium are edited.  By showing 

that tumor cells in equilibrium are highly immunogenic (unedited) whereas those that exit equilibrium 
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spontaneously are less immunogenic (edited), they defined a process (equilibrium) between elimination 

and escape.10   

 The escape phase of immunoediting occurs when tumor variants that have acquired 

insensitivity to immunologic detection or elimination begin to expand in an uncontrolled fashion.9  

Changes allowing for escape can occur at the level of the tumor cell or the tumor microenvironment.  

One change that occurs at the level of the tumor cell is the down-regulation or loss of major 

histocompatibility complex (MHC) class I protein which renders the cells invisible to the immune 

system (reviewed by Browning and Bodmer).11  Changes in the tumor microenvironment are more 

complex.  As will be discussed in detail below, factors produced by immune cells present in the tumor 

microenvironment can be immunosuppressive.  In addition, other immune cells including regulatory T 

cells and myeloid-derived suppressor cells are recruited to the tumor microenvironment where they 

suppress effective anti-tumor immune responses (reviewed by Mittendorf and Sharma).12 

 Although there is much to be learned, it is clear that the immune system plays a critical role 

in the development and progression of tumors.  This was acknowledged in 2011 when Hanahan and 

Weingberg included “evading immune destruction” as a new hallmark of cancer and identified 

inflammation as an enabling characteristic for the acquisition of this and other hallmarks.13 

Evading Immune Destruction – A New Hallmark of Cancer 

 In 2000, Hanahan and Weinberg proposed six hallmarks of cancer to provide a foundation 

for understanding cancer biology.14  These hallmark capabilities include:  sustaining proliferative 

signaling, evading growth suppressors, activating invasion and metastasis, enabling replicative 

immortality, inducing angiogenesis and resisting cell death.  In the subsequent years, significant 

progress has been made in understanding the mechanisms by which each hallmark contributes to the 

neoplastic process.   In addition, new observations have been made leading to an update of the 

hallmarks in 2011.13  In this update, Hanahan and Weinberg describe two enabling characteristics that 
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underlie the hallmarks of cancer including genomic instability and inflammation.  They also identify 

two emerging hallmarks – reprogramming of energy metabolism and evading immune destruction.   

Tumor-Associated Inflammatory Response 

In the 19th century, Rudolf Virchow was the first to postulate a link between inflammation 

and cancer when he described infiltration of leukocytes into tumors.  Pathologists have since identified 

that many tumors are infiltrated by inflammatory cells.  This inflammatory infiltrate resembles that 

found in non-neoplastic tissues leading to the suggestion that tumors are “wounds that never heal”.15  

Improvements of markers for immune cells has allowed for more accurate identification of the 

inflammatory cells present in the tumor microenvironment, and it is now appreciated that virtually all 

solid tumors contain immune cells at various densities ranging from subtle infiltration requiring cell 

type-specific antibodies for identification, to gross inflammation apparent by standard staining 

techniques .16  In the last decade, studies have shown that this tumor-associated inflammatory response 

enhances tumor formation and progression by helping neoplasias acquire the hallmark capabilities.  

There are multiple mechanisms by which this occurs (reviewed by Hanahan and Coussens).17  As an 

example of this, tumor associated macrophages (TAM) have been shown to influence tumor 

angiogenesis.  Using a transgenic mouse mammary tumor virus model, Lin et al. showed an increase in 

the number of TAM in premalignant lesions just prior to the angiogenic switch that occurs before 

malignant transformation.  When they depleted TAM, there was a reduction in vascular density resulting 

in delayed tumor progression and metastasis.  Reintroduction of the TAM resulted in an increase in 

vascular density and enhanced tumor progression.18  These findings have been corroborated in clinical 

studies showing a correlation between a high number of TAM and increased vascular density which 

suggests that TAM may promote angiogenesis.19-21  Other bone marrow-derived myeloid cells including 

neutrophils, dendritic cells (DCs), and mast cells have been shown to play a role in the formation and 

maintenance of blood vessels in tumors through the production of soluble mediators regulating 

angiogenesis including vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF- 

β), tumor necrosis factor-α (TNF-α) and platelet-derived growth factor (PDGF); chemokines such as 
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CXCL12 and IL-8/CXCL8; and other factor including matrix metalloproteinases, serine proteases, 

histamine, reactive oxygen species and nitric oxide (reviewed by Murdoch et al.).21, 22  The role of the 

inflammatory component supporting angiogenesis is just one example; there are data supporting the role 

of inflammatory cells in the acquisition of other hallmark capabilities as well.17 

Historically it was thought that inflammatory responses reflected the immune system’s 

attempt to eradicate tumors.   The fact that the inflammatory response may enhance tumorigenesis and 

progression by helping neoplasias acquire hallmark capabilities represents a paradox.  Emerging data 

actually suggests that many inflammatory cells have a dual function during tumor development 

displaying both tumor-promoting and tumor-suppressive capabilities.  This represents an active area of 

investigation as improved understanding of the pro- and anti-tumor activities of inflammatory cells will 

be critical in the development of effective immunotherapy. 

NEUTROPHILS 

 Of all cell types present within the tumor microenvironment, neutrophils have received the 

least attention.23  This may be due to the fact that neutrophils have been viewed simply as short-lived 

effectors of innate immunity with a primary role of clearing extracellular pathogens as part of an acute 

inflammatory response.  More recent data has identified a broader range of functions for neutrophils 

which suggest that these cells are important in the activation, regulation, and effector functions of both 

innate and adaptive immune responses and that they have a role in the pathogenesis of several disease 

processes including cancer.24   

Neutrophils – More Than Just Phagocytes 

 Myeloid cells, which arise from multipotent hematopoietic stem cells that mature through 

sequential differentiation steps, are the most abundant hematopoietic cells in the human body.  There are 

three groups of terminally differentiated myeloid cells – macrophages, DCs and granulocytes (Fig. 1).  

Neutrophils represent a type of granulocyte; a cell type characterized by cytoplasmic granules and 
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specific nuclear 

morphology.  

Neutrophils are the 

predominant 

population of 

circulating 

leukocytes 

accounting for 50-

75%.25   

Neutro-

phils are the first 

cells to be recruited 

to areas of 

inflammation.  They 

function to contain 

and clear infection by efficiently engulfing and degrading microorganisms using both oxidative and 

non-oxidative mechanisms (reviewed by Pham).26  After a microorganism is engulfed, it is sequestered 

in a phagolysosome.  Phagocytosis activates the membrane-bound NADPH oxidase system which 

generates reactive oxygen species (ROS) that are released into the phagolysosome where they mediate 

direct killing.  This represents the oxidative arm of the neutrophil’s antimicrobial action.  The non-

oxidative arm is mediated by cytotoxic agents contained within neutrophil granules.  Briefly, once a 

microorganism is sequestered, fusion of neutrophil granules with the phagolysosome occurs resulting in 

release of antimicrobial proteases and peptides into the phagolysosome.  A more detailed description of 

neutrophil granules and their content is included below.  More recently it has been shown that 

neutrophils can release neutrophil extracellular traps (NETs).  Described by Brinkmann et al. in 2004, 

NETs are web-like structures composed of chromatin derived from the neutrophil nucleus and 
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antimicrobial proteins to include proteases.27  They are able to trap and kill microbes extracellularly, and 

by localizing toxic proteases, they may prevent collateral damage to adjacent tissue.    

 While neutrophils have classically been characterized by their ability to phagocytose, 

produce ROS and release lytic enzymes from their granules, advances over the past two and a half 

decades have demonstrated that this is an overly simplistic view.  Although an entire review of 

neutrophil biology is outside the scope of this dissertation, an example of an important advance in the 

study of neutrophils was the demonstration that these cells can be induced to express genes encoding 

inflammatory mediators including chemokines and cytokines, complement components and Fc 

receptors.28  As shown in figure 2, either spontaneously or following stimulation, neutrophils can 

express or produce numerous cytokines, chemokines and angiogenic factors.  The expression or 

production of these factors has been confirmed by gene expression techniques, immunohistochemistry 

(IHC), enzyme-linked immunosorbent assays (ELISA) or cytokine-specific assays. 24  The most studied 

chemokine produced by neutrophils is IL-8.28  Bazzoni et al. showed that after phagocytosis of yeast 
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opsonized with IgG, or exposure to lipopolysaccharide (LPS), neutrophils were able to release IL-8.29 

Neutrophils not only produce IL-8 but are themselves a primary target of IL-8 as they respond to IL-8 

by releasing granule enzymes, generating respiratory burst activity and upregulating adhesion 

molecules.  IL-8 is chemotactic for neutrophils suggesting a feedback loop whereby neutrophils release 

IL-8 to recruit additional neutrophils to the site of inflammation.30  IL-8 is also chemotactic for 

basophils and T lymphocytes.  In fact, the release of many factors by neutrophils facilitates crosstalk 

with other cells of the immune system.  As another example, it has been shown that neutrophils secrete 

CXCL9, CXCL10 and CXCL11, all of which act on the CXCR3 receptor which is highly expressed on 

activated T cells, particularly Th1 CD4+ T cells, suggesting that neutrophils contribute to homing of Th1 

cells to sites of inflammation.31-33 In addition, Cassatella et al. showed that  neutrophils stimulated by 

LPS secrete IL-12 which influences T cell differentiation.34  

 Recently, Pelletier et al. showed cross-talk between human neutrophils and Th17 cells.35 

They found that supernatants from purified neutrophils stimulated with IFN-γ and LPS release CCL2 

and CCL20 which are chemoattractants for Th17 cells.   They also found that the release of CCL2 and 

CXCL10 mediated recruitment of Th1 cells, consistent with other studies.    Interestingly, they showed 

that human Th17 cells could chemoattract neutrophils through the release of IL-8 suggesting that the 

neutrophil/Th17 cell interaction may create a proinflammatory loop that amplifies local accumulation of 

these two cell types.  They confirmed this by showing co-localization of neutrophils and Th17 cells in 

gut tissue from patients with Crohn’s disease and synovial fluid from patients with rheumatoid arthritis.  

This was consistent with studies showing co-localization of neutrophils and Th17 cells in mouse models 

of Helicobacter pylori infection and inflammatory bowel disease.36, 37  An important aspect of the study 

by Pelletier et al. was that they were able to enrich neutrophils to >99% purity from Ficoll-Paque-

isolated granuloctyes by removing contaminating cells with mAbs against CD3, CD19, CD56, CD36, 

CD49d and Gly-A.   Many previous studies evaluating human neutrophils used only a Ficoll-Paque 

gradient that results in preparations that may more accurately be labeled granulocytic preparations as 

variable levels of contaminating eosinophils, monocytes and lymphocytes are present, potentially 
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altering experimental findings.  They propose therefore that this may address some of the conflicting 

data in the literature showing discrepancies between mouse and human neutrophils and differences in 

the ability to express cytokines.35 

 Taken together, findings from multiple studies discussed above suggest that, by secreting 

chemokines and cytokines that augment T cell responses, neutrophils enhance adaptive immune 

responses.  Paradoxically, neutrophils also secrete cytokines to include IL-10 and TGF-β that can 

suppress T cell activation and proliferation (reviewed by Mantovani et al).24 Cytokines and chemokines 

released from neutrophils also impact the localization and function of macrophages, dendritic cells and 

B cells.24  Thus, as an initial step in the process of inflammation, neutrophils, have a significant impact 

on the subsequent immune response through a diverse range of function. 

Tumor-Associated Neutrophils 

Neutrophil recruitment to tumor sites 

 Given the range of neutrophil functions, it is not surprising that neutrophils have been 

identified as important players in the pathogenesis of several disorders including cancer.  Neutrophils 

present in the tumor microenvironment have been referred to as tumor-associated neutrophils (TAN).  

Many cell types within the tumor microenvironment are capable of secreting neutrophil chemotactic 

substances.  This includes the tumor cells themselves.  Using a xenograft model, Sparmann and Bar-

Sagi demonstrated that mutant Ras resulted in transcriptional upregulation of IL-8 expression and that 

this correlated with a significant inflammatory infiltrate in the tumors.38  Although these investigators 

did not delineate the specific cell types in their inflammatory infiltrate, because IL-8 is a strong 

chemotactic factor for neutrophils, they postulated that Ras-induced IL-8 expression resulted in the 

recruitment of this cell type. In another mouse model, Verbeke et al. showed the chemokine GCP-2 

(CSCL6) to be important in recruiting neutrophils to melanoma tumors, as an antibody to GCP-2 was 

able to decrease neutrophil recruitment to tumor sites and subsequently reduce tumor growth.39  It is 

known that neutrophils move from the blood into tissues under the influence of other chemokines to 
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include CXCL1 and CXCL2, cytokines such as TNF-α and IFN-γ, growth factors (i.e. G-CSF) and cell 

adhesion molecules on their own surface (CD11b) and on the surface of endothelial cells (i.e. 

selectins).40  It is likely that many of these factors play a role in recruiting neutrophils to the tumor 

microenvironment.  In  a recent study published by Fridlender et al., investigators used a transcriptomic 

approach in mice to show that the expression of CXCL1, CXCL2, and CCL-3 were significantly 

upregulated in neutrophils infiltrating tumor when compared with bone marrow neutrophils .41 These are 

additional data suggesting that TAN initiate a positive feedback loop by secreting chemoattractants that 

will recruit additional neutrophils to the tumor site.     

Clinical reports of TAN 

 Several clinical studies have reported on the presence of neutrophils in human tumors with 

the majority suggesting that TAN confer a poor prognosis.  In a study evaluating 121 consecutive 

patients undergoing nephrectomy for localized renal cell carcinoma, Jensen et al. performed IHC using 

antibodies against CD66b to quantitate TAN.  On multivariate analysis, the presence of TAN was an 

independent prognostic factor associated with short recurrence-free survival, cancer-specific survival 

and overall survival (OS).42 More recent studies have shown that intratumoral CD66b+ neutrophils 

correlate with an adverse prognosis in colorectal carcinoma 43, resectable nonsmall cell lung cancer 

(NSCLC) 44 and hepatocellular carcinoma.45  The studies by Illie et al. and Li et al. studying NSCLC 

and hepatocellular carcinoma respectively, also evaluated the ratio of neutrophils to CD8+ T cells.  In 

both studies, an increased ratio was an even better predictor than the presence of TAN for poorer 

outcomes.44, 45 Although these studies suggest that TAN are most likely pro-tumorigenic, these findings 

are not universal as a study published by Caruso et al reported that a high neutrophil count was 

associated with a favorable prognosis in gastric cancer.46 An important caveat to this study however is 

that the investigators did not use specific antibodies to evaluate for the presence of TAN, rather the 

number of neutrophils present were determined from standard hematoxylin and eosin stained sections.   
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TAN:  Protumor role 

 Consistent with the presence of TAN correlating with a poor prognosis, there have been 

multiple mechanisms described by which TAN are involved in tumor development and progression.  

Experimental data exists suggesting a protumoral role for neutrophils with respect to tumorigenesis, 

tumor growth, angiogenesis, invasion, metastasis, and immunosuppression.  This subject has recently 

been reviewed by Piccard et al.47; select examples are highlighted below. 

 Angiogenesis.  Several studies have proposed multiple different mechanisms by which 

neutrophils support angiogenesis by releasing pro-angiogenic factors including VEGF, IL-8, and matrix 

metalloproteinases (MMPs).48-50  Using the RIP1-Tag2 pancreatic islet carcinogenesis mouse model, 

Nozawa et al. showed that neutrophils are important mediators of the angiogenic switch through their 

release of MMP-9 which activates VEGF.51  A study by Queen et al., showed that neutrophils purified 

from healthy donors and co-cultured with breast cancer cells were able to secrete high levels of 

oncostatin M, a cytokine belonging to the IL-6 family.  In turn, breast cancer cells stimulated with 

oncostatin M had increased VEGF production.52 They also demonstrated increased invasiveness in 

Matrigel assays. 

 Invasion and metastasis.  In addition to the study by Queen et al. which showed increased 

invasiveness of breast cancer cells co-cultured with neutrophils, an early study by Welch et. al used rat 

mammary adenocarcinoma cells to demonstrate that neutrophils increased invasion through a 

reconstituted basement membrane barrier in an in vivo invasion assay, a process mediated by 

collagenase-IV and heparanase.53  Subsequent studies have shown that neutrophil elastase, which will be 

discussed in detail below as a focus of this dissertation, can promote invasion and metastasis by 

degrading the extracellular matrix (ECM).54  Supportive data was published by Doi et al. who showed 

that a neutrophil elastase inhibitor could reduce hepatic metastases induced by ischemia and reperfusion 

in a rat model.55 
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 Immunosuppression.   Several studies have suggested mechanisms by which neutrophils 

may be immunosuppressive.  Rotondo et al. showed that NSCLC cell lines could induce exocytosis of 

arginase from neutrophils.  Arginase inhibits T cell proliferation by degrading arginine, resulting in 

decreased T cell responsiveness to CD3/TCR stimulation.56  In another study, Fridlender et al. 

demonstrated that, under the influence of TGF-β, neutrophils are skewed to assume a protumorigenic 

phenotype.  When these neutrophils were depleted, the activation status of CD8+ T cells, as determined 

using 4-1BB as an activation marker, increased providing evidence of another mechanism by which 

neutrophils can promote immunosuppression.57  

TAN:  Antitumor role 

 Although many studies such as those discussed above suggest a protumor role for 

neutrophils, review of the literature identifies numerous studies showing an antitumor role as well.  

Experimental data exists suggesting an antitumor role for neutrophils with respect to their ability to 

mediate cytotoxicity, reject tumors and stimulate adaptive immunity.  This subject was also included in 

the recent review by Piccard et al.47; select examples are highlighted below. 

 Cytotoxicity and Tumor Rejection.   As early as 1981, there were reports of direct killing of 

tumor cells by neutrophils in vitro.58 A subsequent study reported in the early 1980s, suggested that 

neutrophils could mediate direct cytotoxicity in vivo as well.  In this study, patients with ascites were 

administered intraperitoneal injections of OK-432 derived from group A streptococcus pyogenes, and in 

one patient they reported complete resolution of cancer cells in the ascites fluid which correlated with an 

increased number of intraperitoneal neutrophils.  Neutrophils collected from the ascites were able to 

lyse tumor cells in vitro.59  

 Animal studies have confirmed the ability of neutrophils to mediate tumor rejection. Using 

a model of B16 melanoma in C57BL/6 mice, Neville et al. showed that direct intratumoral injection of 

neutrophils led to a 50% reduction in tumor growth.60 Using a murine colon adenocarcinoma cell line 

transduced to express G-CSF, Colombo  et al showed that increased G-CSF at the tumor site led to 
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neutrophil recruitment and tumor rejection.61 Concordant with that, in experiments where neutrophils 

were deleted with antibodies, other investigators showed inhibition of tumor growth and metastases.62, 63  

   Stimulate Adaptive Immunity.  As was discussed above, neutrophils are able to secrete 

chemokines that recruit T cells, and pro-inflammatory cytokines that promote T-cell differentiation, 

proliferation and cytokine production. 31, 32, 34 There are other studies confirming antitumor effects 

mediated by neutrophils and CD8+ T cells interacting.   Photodynamic therapy (PDT) destroys tumor 

tissue by multiple mechanisms include direct killing, microvascular disruption and inflammation.64  

Using a murine tumor model, Kousis et al. have shown that PDT regimens that generate significant 

neutrophil infiltrates generate tumor-specific primary and memory CD8+ T cell responses.65  When 

CXCR2-/- mice that are defective in neutrophil tracking to peripheral tissues or mice depleted of 

neutrophils were used, PDT did not elicit a strong antitumor CD8+ T cell response.  As yet another 

mechanism by which neutrophils may contribute to an antitumor immune response, other studies have 

demonstrated a role for neutrophils as antigen presenting cells.  Beauvillain et al. showed that 

neutrophils can cross-present ovalbumin to naïve CD8+ T cells from OT1 transgenic mice.  Following 

injection of neutrophils in their model, OT-1 CD8+ T cells were able to proliferate and secrete IFN-γ.66  

Tumor-Associated Neutrophil Phenotype:  N1 vs N2 TAN 

 Polarization of tumor associated macrophages has been well characterized (reviewed by 

Allavena et al.).67 Briefly, classically activated macrophages (M1) induced by IFN-γ are antitumoral.  

They are characterized by high antigen presenting capacity, IL-12 and IL-23 production, and activation 

of type I T-cell responses.  They also have cytotoxic activity by releasing nitric oxide, ROS and TNF.  

Alternatively activated macrophages (M2) are induced by IL-4, IL-10, IL-13, immune complexes and 

glucocorticoids.  They are poor antigen presenting cells, have an IL-12lowIL-10hi phenotype, suppress T-

helper type I adaptive immunity, and promote angiogenesis and tissue remodeling.  M2 macrophages 

are therefore protumor.  The literature clearly suggests a dual role for neutrophils in tumor biology and 
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recently, Fridlender et al. provided evidence for protumoral (N2) and antitumoral (N1) TAN;  analogous 

to M1 and M2 macrophage polarization.57  

 Using both flank and orthotopic mouse models of NSCLC and mesothelioma, Fridlender et 

al. showed that TGF-β blockade led to an influx of CD11b+/Ly6G+ TAN.57  The 1A8 anti-Ly6G 

antibody was used as it is expressed only on neutrophils allowing investigators to differentiate 

neutrophils from macrophages (CD11b+Ly6G-).68  There was no significant change in the Ly6G- 

macrophages following TGF-β blockade.  There was also no change in the percentage of 

CD11b+/Ly6G+ cells in the blood or spleen, showing that only the intratumoral population of 

neutrophils increased.  The mechanism by which CD11b+/Ly6G+ TAN increased was multifactorial 

including increased expression of neutrophil attracting chemokines and cytokines as well as 

upregulation of ICAM-1 expression on endothelial cells.  The CD11b+/Ly6G+ TAN which were labeled 

as N1 TAN had increased antitumoral activities including enhanced expression of T cell-attracting 

chemokines, proinflammatory cytokines, lower levels of arginase, and more capability for tumor cell 

killing both in vivo and in vitro.  Depletion of N1 TAN impaired intratumoral CD8+ T cells and led to 

increased tumor growth, providing further evidence of the antitumor function. TAN in control mice not 

treated with the TGF- β blockade were labeled as N2 TAN and they had a protumor phenotype.  When 

N2 TAN were depleted, tumor growth slowed.57  

 In a recent review on TAN, Gregory and Houghton suggested that the changes seen in N1 

TAN did not represent a unique transcriptional program rather an increased state of activation i.e. the 

response to TGF-β blockade was generation of the same products at higher levels.69 In support of this 

hypothesis, these authors point to a second study demonstrating the alteration of neutrophil function in 

vivo.  In a study by Jablonska et al. tumors in IFN-β knockout mice grew faster and were more highly 

vascularized than tumors in wild-type controls.  Neutrophils from the IFN-β-/- mice had increased 

expression of proangiogenic factors including VEGF, CSCR4 and MMP-9, and expression of these 

genes was reversible ex-vivo with IFN-β.70  Therefore, the “polarization” of TAN or their level of 

activation may be dictated by the tumor microenvironment.     
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 In a recently published study, Fridlender el al. used microarrays to compare gene expression 

profiles in TAN versus naïve neutrophils derived from the bone marrow and to the granulocytic fraction 

of myeloid derived suppressor cells (MDSC).41 MDSC represent a heterogeneous population of 

suppressive immune cells that are defined in mice by their expression of the CD11b and Gr-1 surface 

markers.71 There are at least two subsets – granulocytic (Ly6G+) and monocytic (Ly6C+).  MDSC are 

produced at high levels in cancer and have been shown to inhibit T cell activation.  For the Fridlender et 

al. study, TAN and CD11b+Ly6G+ MDSC (G-MDSC) were obtained from the tumor and spleen 

respectively of mice growing AB12 mesothelioma.  Naïve neutrophils were isolated from the bone 

marrow of non-tumor-bearing mice.  RNA expression profiles were significantly different between the 

three groups with naïve neutrophils and G-MDSC being more closely related to each other than TAN.41  

The most significant difference identified between TAN and other neutrophil populations was the 

significant upregulation of cytokines and chemokines suggesting an important role for TAN in 

recruiting other immune cells to the tumor.  In addition, they found an upregulation in genes related to 

antigen presentation consistent with accumulating data showing that neutrophils may function as antigen 

presenting cells.72 In a recent review on TAN, Fridlender and Albeda indicate that when they compared 

RNA expression of N1 versus N2 TAN, they found that the majority of changes were upregulation of 

the same genes and pathways in the two subtypes.  There were however some differences such as the 

upregulation of CCL-17, which attracts regulatory T cells, in N2 TAN versus N1.25  Taken together, 

these data suggest that TAN are a distinct population of neutrophils however it remains unclear as to 

whether N1 and N2 TAN differ based on their transcriptional profile or represent differing states of 

activation dictated by factors present in the tumor microenvironment.   

NEUTROPHIL ELASTASE 

 As was discussed above, neutrophils are efficient at engulfing and degrading 

microorganisms.73 The non-oxidative arm of their antimicrobial action is mediated by the release of 

peptides and proteases from granules that occur after the granules fuse with phagolysosomes.  There are 

four types of granules in neutrophils: primary (also known as azurophil), secondary (also known as 
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specific), tertiary (also known as gelatinase) and secretory granules.74  A list of the granules and the 

protein constituents is shown in the table.  Neutrophil elastase (NE) is a member of a family of 

structurally related serine proteases that also includes proteinase 3 (PR3) and cathepsin G (CG).  They 

are found in primary granules.  Although the antimicrobial function of these proteases has been 

extensively studied, as will be highlighted below, they are capable of modulating many biologic 

processes. 

 

Biology of Neutrophil Serine Proteases 

 Neutrophil elastase, PR3 and CG have a high degree of homology with other serine 

proteases to include cytotoxic T lymphocyte-granule-associated granzymes and mast-cell chymase and 

tryptase.  They all contain a conserved catalytic triad containing histidine, aspartic acid and serine 

residues which are separated in the primary sequence of the protein but are brought together at the 

active site in their tertiary structure.75  The genes for NE, PR3 and CG all consist of five exons and four 

introns.76, 77  The genes encoding NE (formerly ELA2, now ELANE) and PR3  (PRTN3) are found in a 

cluster on chromosome 10 in mice 78 and chromosome 19 in humans.79  In humans, the cluster on 
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chromosome 19 also includes the gene for azurocidin (AZU), a catalytic serine that does not have 

proteolytic activity .80  The gene encoding CG (CTSG) is located in a separate cluster on chromosome 

14 (both mouse and human).  In humans, this cluster also includes gene encoding granzyme B and 

granzyme H.76, 81  

 The synthesis of NE, PR3 and CG is regulated at the transcriptional level during 

granulocyte development than at the post-translational level before being stored within neutrophil 

azurophilic granules in their proteolytically active mature form.  High levels of transcription of the 

genes encoding NE, PR3 and CG are limited to the promyelocytic stage of neutrophil differentiation in 

the bone marrow and are downregulated as neutrophils mature.79  It should be noted that low levels of 

mRNA encoding NE and CG are detected in monocytes and mast cells 78 and that  PR3 mRNA has been 

shown to be expressed by endothelial cells in humans.82 

 All three serine proteases are synthesized as inactive prepro-proteins containing a signal 

peptide, an amino-terminal predipeptide and a C-terminal pro-peptide.83-86  Subsequent processing has 

recently been reviewed by Korkmaz et al.87  Briefly, shortly after synthesis, the amino-terminal peptide 

is cleaved by a signal peptidase leaving an N-terminal pro-sequence of two amino acids.  Removal of 

the pro-dipeptide is required for activation of enzymatic activity.  This is accomplished by dipeptidyl 

peptidase I (DPPI).  In the absence of DPPI, N-terminal processing is incomplete and the pro-forms of 

serine proteases can be constitutively secreted or more easily degraded.79, 84, 88 N-terminal processing is 

essential for optimal storage of serine proteases in azurophil granules and usually occurs before or 

during transport to the granules.26  NE, PR3 and CG also undergo C-terminal processing by an as-yet-

unknown protease.86, 89  C-terminal processing is not required for enzymatic activity; however, data from 

Horwitz et al suggests that its retention might prevent normal trafficking of NE to azurophil granules.90  

These investigators showed that C-terminal processing reveals a docking site that allows NE to interact 

with the adaptor protein AP3 which is responsible for proteins shuttling form the Golgi to the granule 

compartment.  If NE does not attach to AP3, it is routed to the cell surface where it would likely be 

inactive secondary to distortion of the catalytic site.26  The definitive mechanisms responsible for serine 
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proteases tracking to granules is unknown although serglycin, an intracellular proteoglycan, has been 

shown to play a role in NE packaging into azurophilic granules.91  In addition to being stored in the 

azurophilic granules, immunostaining and electron microscopy have shown that NE is also localized in 

the nuclear envelope.92, 93 

 The serine proteases are stored in azurophil granules in their active form.  Once neutrophils 

are activated at inflammatory sites, these granules translocate to phagosomes and the plasma membrane 

where they release their contents.  Regulated exocytosis of secretory granules has been studied in many 

cell types including neurons, neuroendocrine cells, endocrine cells and hematopoietic cells, but remains 

only partially understood.  As reviewed by Burgoyne and Morgan, the process likely utilizes the same 

basic protein components in different cell types.94  The translocation process has two steps.  The first 

step depends on cytoskeleton remodeling and microtubule assembly.  The second step involves 

interaction between soluble-N-ethylmalemide-sensitive-factor accessory-protein receptors (SNAREs) 

present on the plasma membrane and the granule which facilitates fusion.95 Multiple different SNAREs 

have been identified in neutrophils and it is likely that different granule SNAREs interact differently 

with the plasma membrane SNAREs thereby dictating the rate of exocytosis.95, 96 After they are 

released, the neutrophil serine proteases are fully active.  Although NE and PR3 preferentially cleave 

after valine residues and CG favors hydrolysis of peptide bonds after aromatic amino acid residues, they 

have a broad range of substrates.26, 97  There protease activity can be inhibited by endogenous serine 

protease inhibitors (serpins) including elafin and α1-proteinase inhibitor (NE and PR3) and secretory 

leukocyte protease inhibitor (NE and CG).97, 98 

Neutrophil Elastase in Infection 

 Neutrophil elastase plays a role in the killing of gram-negative bacteria.99  Using targeted 

mutagenesis to generate strains of NE deficient mice, Belaaouaj et al. showed that NE-/- mice were more 

susceptible to sepsis and death following intraperitoneal infection with gram negative, but not gram 

positive, bacteria than wild-type mice.  Further work by that group identified at least one mechanism by 
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which NE mediates killing of gram negative bacteria.100  They showed that NE can degrade purified 

outer membrane protein A (OmpA) found on the surface of E. coli.  In vitro, NE killed wild-type E. coli 

but not OmpA-deficient E. coli.  In vivo, NE-/- mice had decreased survival in response to sepsis induced 

by E. coli, but the absence of NE had no impact on survival in response to sepsis induced by OmpA-

deficient E. coli.  A study by Weinrauch et al. demonstrated a role for NE in controlling enterobacteria 

such as shigella, salmonella and Yersinia.101  Briefly, they showed that NE can cleave virulence factors 

on these bacteria at a lower concentration than required to degrade other proteins and in neutrophils in 

which NE is inactivated, the bacteria are able to escape from the phagolysosome leading to increased 

survival within the infected neutrophil. 

 Reeves et al suggested that serine proteases, not ROS, were the primary agents responsible 

for destroying bacteria.102  They found that mice deficient in proteases but normal with respect to 

superoxide production and iodinating capacity were unable to resist staphylococcal and candida 

infections.  They also suggested that myeloperoxidase (MPO) protected serine proteases from 

inactivation by breaking down H2O2 to hypochloric acid.  In contrast, Hirche et al. showed that MPO 

mediates oxidative inactivation of NE.103  Activated neutrophils from MPO-deficient mice had increased 

NE activity.  In addition, they found that MPO-deficient mice were susceptible to infection with 

Klebsiella pneumonia suggesting that, in mouse models, both MPO and NE are necessary for optimal 

killing of bacteria. 

 Finally, as was discussed above, NE released from neutrophils is a component of NETs.  Within 

NETs, serine proteases are present at high concentrations able to degrade virulence factors and kill 

bacteria.27  Serine protease, including NE, therefore have both intra- and extracellular effects mediating 

host defense against infection. 

Neutrophil Elastase in Inflammation 

 In addition to having a role in host defense, NE has been associated with non-infectious, 

inflammatory processes.  In order for NE to regulate inflammation, it must avoid or escape the effects of 
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the endogenous inhibitors present in the extracellular environment.  The mechanism by which this 

occurs has not been definitively elucidated however there have been several proposed mechanisms as 

reviewed by Owen and Campbell.104  One proposed mechanism is that a compartment is created 

between the neutrophil and ECM where the proteases are released and protected from the larger, high 

molecular-weight protease inhibitors.104  Similarly, a proportion of serine proteases released from 

neutrophils bind to the plasma membrane and that tight binding makes them inaccessible to the larger 

inhibitors.105  Finally, it has been suggested that large quantities of proteases can overwhelm the 

protease inhibitors.104 

 Consistent with NE having a role in inflammation, several studies in animal models have 

shown that inhibition of NE reduces inflammation.  For example, in a hamster model where acute lung 

injury is induced by endotoxin inhalation, Kawabata et al. showed an increase in inflammatory cell 

count and protein concentration in bronchoalveolar lavage fluid that peaked at 24 hours and correlated 

with NE activity in the fluid. 106  When hamsters were treated with an NE-inhibitor, there was a dose 

dependent change in the inflammatory cell count and protein concentration and histopathologic analysis 

of the lung tissue showed a decrease in hemorrhage and inflammation to include neutrophil infiltration.  

A role for NE in inflammation has also been shown in ischemia-reperfusion models 107 and models of 

collagen-induced arthritis.108 

Role of Neutrophil Elastase in Cancer  

Clinical Reports of Neutrophil Elastase in Cancer 

 Several studies have investigated the prognostic significance of NE in cancer.  In a study 

using extracts from 40 NSCLC tumors, Yamashita et al. used an enzyme immunoassay to measure 

immunoreactive NE (ir-NE) and looked for an association of ir-NE with clinicopathologic 

characteristics.109  The assay measures both free-form NE and α 1-proteinase inhibitor complexed NE.  

They identified ir-NE in 34 specimens and the presence of ir-NE was significantly higher in stage IIIB 

disease versus stage I, II or IIIA.  The presence of ir-NE was also higher in larger (T3 and T4) versus 
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smaller (T1 or T2) tumors.  Patients with higher NE concentrations had shorter OS than those with 

lower NE concentrations.  In a subsequent study, these investigators measured ir-NE in 144 NSCLC 

extracts.110  The concentration of ir-NE was again significantly higher in patients with clinical T4 

tumors (versus clinical T1, T2 and T3).  Tumors with aortic invasion had higher levels of NE than those 

involving other sites.  This is an interesting observation given that the aorta is a rich source of elastin. 

 The prognostic significance of NE has also been evaluated in breast cancer.  In a study 

using an ELISA assay to measure NE (in complex with α1-proteinase inhibitor) in the cytosolic extracts 

of 1143 primary breast tumors, Foekens et al. showed that high levels of NE were associated with a poor 

prognosis.111  In a Cox multivariate regression analysis correcting for standard prognostic factors, NE 

was independently associated with poor metastasis-free survival, relapse-free survival and OS.  These 

data corroborated a previous report from Yamashita et al. who measured ir-NE in tumor extracts from 

313 primary breast cancer patients who underwent mastectomy and axillary lymph node dissection.112  

Using  an ir-NE concentration of 9.0 μg/100 mg protein as the cutoff, patients were categorized as 

having high (n=52) or low (n=261) levels of NE.   After a median follow-up of nine years, patients with 

high NE levels had significantly shorter disease-free survival (DFS).  On univariate analysis, ir-NE 

level, tumor size, lymph node involvement, histologic grade, lymphatic vessel involvement and 

administration of adjuvant therapy were all significant prognostic factors.  Multivariate analysis found 

that ir-NE level and lymph node involvement were the only independent prognostic factors.  This group 

has published updated results after a median follow-up of 18.5 years and NE levels continue to be a 

significant indicator of prognosis.113 

 Iwatsuki et al. used  IHC to look for NE in tumors from  twelve patients with astrocytomas 

with varying degrees of malignancy.114  No NE was found in any of four low-grade astrocytoma cases.  

In contrast, NE was found in areas of tumor infiltration in 4/4 glioblastoma cases and 3/4 anaplastic 

astrocytoma cases suggesting that tumors with a greater degree of malignancy had more NE.  These 

investigators concluded that NE released from neutrophils recruited to malignant gliomas aid in the 

process of infiltration. 
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 NE and PR3 have also been shown to be aberrantly expressed in myeloid leukemia.115  My 

advisor, Dr. Molldrem, has identified a conserved nonameric HLA-A2-restricted peptide in NE and PR3 

called PR1 (VLQELNVTV).116-118  In a study of 38 patients with chronic myelogenous leukemia (CML) 

treated with IFN-α2b therapy or allogeneic bone marrow transplant, he found a strong correlation 

between the presence of PR1-specific CTL identified by tetramer staining and clinical response to 

therapy.  These data suggest a role for T-cell immunity against the aberrantly expressed proteases in 

clearing malignant cells in CML. 118  Other investigators have confirmed that the presence of PR1-

specific CTL correlates with positive clinical outcomes following treatment.119, 120  In addition, in a 

study evaluating vaccination with the PR1 peptide, inoculated patients with acute and chronic 

myelogenous leukemias showed immunological and clinical responses including durable molecular 

remissions.121 

Mechanisms of Neutrophil Elastase Promoting Cancer 

 The role of NE in cancer has largely been attributed to its ability to degrade ECM proteins 

(collagen, fibronectin, proteoglycan and cadherins) thereby promoting invasion and metastasis.54, 122  In 

addition to its ability to degrade ECM directly, another proposed mechanism by which NE may promote 

invasion is by activation of MMP-2.  MMP-2, which is secreted as an inactive zymogen (proMMP-2), is 

an MMP involved in angiogenesis and tumor invasion.  In in vitro experiments using HT1080 sarcoma 

cells incubated with purified NE, Shamamian et al. demonstrated dose- and time-dependent activation 

of proMMP-2.123  The addition of neutrophil-conditioned media to cells expressing membrane-type 1 

MMP (MT1-MMP) resulted in increased activation of MMP2 and ECM invasion.  This effect was not 

seen when neutrophil-conditioned media was added to cells that do not express MT1-MMP suggesting 

that NE activation of proMMP-2 requires MT1-MMP.  Finally, proMMP-2 activation by neutrophil-

conditioned media was blocked by α 1-antitrypsin (NE inhibitor) but not by Batimastat (MMP inhibitor) 

showing that NE activation of MMP-2 is not dictated by MMP.  Taken together, these data support an 

indirect role by which NE promotes tumor invasion. 
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 Neutrophil elastase may also be involved in carcinogenesis via the TNF signaling pathway.  

TNF signaling is complicated with multiple downstream effects including activation of caspase 8 which 

mediates apoptosis (reviewed by Gaur and Aggarwal).124  An early study by Scuderi et al. showed that 

the addition of NE to endotoxin-stimulated human peripheral blood mononuclear cells (PBMC) resulted 

in decreased TNF in the culture supernatant.125  Co-culture of NE with TNF showed that NE degraded 

TNF.  Porteu et al. showed that NE is able to remove an active fragment from the TNF receptor from the 

cell surface,126 and subsequent to that, Van Zee et al. demonstrated that the shed TNF receptors consume 

circulating TNF.127  Taken together, these data suggest that NE could effectively decrease TNF 

signaling resulting in continuous cell growth due to failure of activation of caspase 8.  An in vivo study 

investigating the impact of NE on the development of ultraviolet (UV) light induced skin cancers in 

hairless mice, provided additional, supportive data suggesting an interaction between NE and TNF 

signaling.  Briefly, UV radiation has been shown to cause keratinocytes to produce TNF-α.128  In a 

model using NE-deficient mice, Starcher et al. showed that these mice formed fewer tumors than normal 

mice after UV irradiation.129  They postulated that this could be due to NE cleavage of the TNR 

receptor.   

 Recently, Houghton et al. showed that NE promotes lung tumor growth using the LSL-K-

ras mouse model.130  When compared to LSL-K-ras/NE+/+ mice, LSL-K-ras/NE-/- mice had decreased 

lung tumor growth and increased survival.  The investigators were unable to identify a component of the 

ECM that was altered in their model.  Instead, they showed that NE accelerated tumor cell proliferation 

via phosphatidylinositol-3 kinase (PI3K) hyperactivity.  They found that NE entered tumor cell 

endosomes via clathrin coated pits; the first report of a secreted protease gaining access to a cell beyond 

the plasma membrane.  Once internalized, NE degraded insulin receptor substrate-1 (IRS-1), a binding 

partner of the p85 regulatory subunit of PI3K.131  In turn, this increased the availability of PI3K to 

interact with the platelet-derived growth factor receptor promoting tumor cell proliferation.130 

 We have recently published a study showing that breast cancer cells can take up NE 

resulting in an increased adaptive immune response against the novel tumor antigen cyclin E.132  Details 
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of that study comprise chapter 2 of this thesis.  Taken together, these data suggest that there are multiple 

mechanisms by which NE may impact carcinogenesis. 

CYCLIN E 

Cyclin E and Cell Cycle Regulation 

 The E-type cyclins which includes cyclin E1 and cyclin E2 are central components of the 

cell cycle machinery.  They have 48% sequence homology with some regions i.e. the cyclin box 

domain, being more conserved (75% homology).133-135  The two are thought to be functionally redundant 

as cyclin E1/E2 double knockout mice are embryonic lethal while single knockout mice have largely 

normal phenotypes .136, 137  More detailed studies (reviewed by Caldon and Musgrove) have identified 

additional roles for the E-cyclins outside of cell cycle regulation including endoreplication and meiosis 

which associate more closely with either cyclin E1 or cyclin E2.138  However, cyclin E1 has been more 

studied than cyclin E2 to include in the majority of studies investigating cyclin E as a driver of 

oncogenesis therefore, for the remainder of this thesis, all references to cyclin E (CCNE) are for cyclin 

E1. 

 Normal cell division is regulated by checkpoints in the cell cycle including the G1 to S 

phase checkpoint, of which CCNE is an important regulator (reviewed by Johnson and Walker) (Fig. 

3).139  Briefly, as reviewed by Weinberg, the retinoblastoma (Rb) pathway is critical for passage of cells 

through G1 into S phase.140  The pathway is regulated through sequential phosphorylation of Rb by 

cyclins and their associated cyclin-dependent kinases (CDKs).  Early in the G1 phase, the cyclin 

D1/CDK4 and cyclin D1/CDK6 complexes phosphorylate Rb leading to a conformational change in the 

Rb protein and uncoupling from the E2F transcription Factor.141-143  The CCNE promoter is 

transcriptionally regulated by E2F thus the release of E2F results in transcription of CCNE as well as 

other S phase genes.144-146  Complexed with CDK2, CCNE continues phosphorylating Rb with peak 

levels occurring at the restriction point late in G1.140, 147, 148  As cells progress through S phase, CCNE is 

down-regulated by ubiquitin-mediated proteasomal degradation.149, 150  Thus,  in normal cells, cyclin E 
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levels oscillate during the cell cycle to ensure a limited window of activity.   Progression through the 

cell cycle is negatively regulated by CDK inhibitors including members of the Cip/Kip family (p21 and 

p27) that inhibit CDK2 (reviewed by Sherr and Roberts).151 

 The critical role of CCNE in regulating the G1/S checkpoint was shown experimentally by 

Ohtsubo et al.  Using mammalian fibroblasts engineered to constitutively overexpress CCNE they first 

demonstrated shortening of the duration of the G1 phase and decreased cell size suggesting that CCNE 

was rate-limiting in the G1 to S phase transition and that overexpression of CCNE promoted a faster 

transition.152  In a subsequent study, Ohtsubo et al showed that fibroblasts overexpressing CCNE had 

increased CCNE-dependent kinase activity and that microinjection of anti-CCNE antibodies during the 

G1 phase resulted in cell cycle arrest.153 

 



27 
 

 

Cyclin E and Cancer 

Role of Cyclin E Overexpression 

 The G1/S checkpoint is frequently deregulated in human tumors suggesting a role in 

carcinogenesis.  A link between cyclins and oncogenesis was initially made when it was found that 

cyclin A and cyclin D were inappropriately expressed in tumors (reviewed by Hunter and Pines).154 

Subsequently, Keyomarsi and Pardee  used breast cancer cell lines to show that various cyclins 

including A, B, D1 and E as well as CDKs 1 and 2 were overexpressed at both the mRNA (determined 

by Northern blot) and protein (determined by Western blot) levels compared to normal mammary 

epithelial cells.155  CCNE specifically was overexpressed at the protein level in all 10 breast cancer cell 

lines evaluated compared to three mammary epithelial cell lines.  Using the MDA-MB-157 breast 

cancer cell line, they found an 8-fold amplification of the CCNE gene which resulted in a 64-fold 

amplification of CCNE mRNA and overexpression of the CCNE protein.  They also noted that the 

CCNE from these tumor cells had higher H1 kinase activity than CCNE from the benign mammary 

epithelial cells.  In subsequent studies performed to better understand these alterations, Keyomarsi et al. 

showed that in contrast to what is seen in normal cells where CCNE protein and its kinase activity is cell 

cycle regulated, in tumor cells, CCNE is constitutively present and active across all phases of the cell 

cycle.156 

 Additional support for a role of abnormal CCNE expression and the development of breast 

cancer was provided in a study by Bortner and Rosenberg.157 Using the bovine β-lactoglobulin promoter 

to target expression of human CCNE to the mammary gland in a transgenic mouse model, they showed 

that lactating mammary glands overexpressing CCNE developed areas of hyperplasia which were not 

observed in control mice.  In addition, more than 10% of the mice developed mammary carcinomas.  

Spruck et al. showed that CCNE overexpression  in immortalized rat embryo fibroblasts and human 

breast epithelial cells caused chromosomal instability.158  These authors hypothesized that 
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downregulation of CCNE/CDK2 kinase activity following the G1 to S phase transition, which is 

impaired in cancers with constitutive expression of CCNE, is required for chromosomal stability.  Taken 

together, these data support a role for CCNE in cancer. 

Low Molecular Weight Cyclin E 

 In the early study by Keyomarsi and Pardee, multiple bands ranging from 35-50 kDa in size 

were observed on the Western blot probing for CCNE on lysates from the MDA-MB-157 breast cancer 

cell line.155 They referred to these as “cyclin E (-like) proteins” which were tumor specific, as western 

blots performed on lysates from mammary epithelial cells had only a single band at 50 kDa.  Because 

there was a single mRNA transcript, they deduced that these “cyclin E (-like) proteins” were generated 

post-translationally.   In a study performed to confirm these findings in vivo, Keyomarsi et al. generated 

lysates from frozen surgical specimens.  In 16 paired cases of breast cancer and adjacent nontumorous 

tissue, they found that these “cyclin E (-like) proteins”, subsequently renamed low molecular weight 

(LMW) forms, were expressed in the tumors but not the adjacent normal tissue.159  They made a similar 

observation in paired samples of lung, gastric, prostate, renal, pancreatic and colon cancer.  Other 

investigators have shown LMW CCNE in ovarian cancer 160 and melanoma.161  My supervising 

professor, Dr. Molldrem, has identified LMW CCNE in leukemia.162  

 Generation.  Subsequent work performed in the Keyomarsi laboratory demonstrated that 

the tumor-specific LMW isoforms are generated by post-translational proteolytic processing of the full-

length (FL) CCNE protein.163  In addition to the FL protein (50 kDa), they showed 5 LMW forms (Fig. 

4) ranging in size from 33 to 49 kDa.  Using site-specific mutations and transient transfections of 

FLAG-tagged CCNE constructs, they were able to identify two protease-sensitive domains in the FL 

protein.  Proteolysis by the serine protease elastase (in this study they utilized porcine pancreatic 

elastase) generated four of the five LMW forms which mimicked those observed in vivo.  Cleavage 

between N40/N45 generated LMW-EL3 and between A69/D70 generated LMW-EL6.163  LMW-EL2 

and LMW-EL5 are phosphorylated forms of LMW-EL3 and LMW-EL6 respectively.164 The FL form of 
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CCNE has been termed EL1.  The EL2/EL3 doublet has been termed cyclin E-truncation 1 (Trunk 1; 

T1), while the EL5/EL6 doublet has been termed cyclin E-truncation 2 (Trunk 2; T2).  LMW-EL4 is 

formed due to an alternate translational start site at M46.163 

 

 Localization.  The FL CCNE protein includes a canonical nuclear localization sequence, 

RSRKRK, at amino acids 27-32.165 Recognizing that the LMW forms lack the nuclear localization 

sequence, Delk et al. hypothesized that the LMW forms may have altered subcellular localization.166  

Subcellular fractionation experiments performed using breast and ovarian cancer cell lines showed that 

LMW CCNE expression was predominantly cytoplasmic while FL CCNE was found in both the nucleus 

and the cytoplasm.  Using a protein complementation assay, they showed that LMW CCNE could bind 

CDK2 in the cytoplasm and that this LMW-CCNE/CDK2 complex had kinase activity.   

 Function.  Multiple studies have confirmed that the LMW forms of CCNE are biologically 

active.  In addition to showing that the LMW forms of CCNE are generated by post-translational 

cleavage by elastase, Porter et al. also showed that these LMW forms are hyperactive.163  Breast cancer 

and mammary epithelial cell lines engineered to overexpress the T1 and T2 forms of LMW CCNE were 
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able to activate CDK2 and phosphorylate substrates (histone H1 and GST-Rb in standard kinase assays) 

more efficiently than FL CCNE.  This hyperactivity facilitated deregulation of the G1 to S transition 

providing a growth advantage for cells expressing LMW CCNE.  This was an important observation 

given the previous description of LMW CCNE as being tumor-specific.  In a study by Wingate et al, a 

baculovirus insect expression system was utilized to overexpress three forms of CCNE – EL, T1 and 

T2.167  In these studies, they showed that the LMW CCNE/CDK2 complexes are resistant to inhibition 

by the CDK inhibitors p21 and p27 when compared to FL CCNE/CDK2 complexes despite the fact that 

the complexes bind the CDK inhibitors equally.  They also showed that when FL and LMW CCNE 

were co-expressed, p27 preferentially binds the LMW forms but is unable to inhibit its activity.  This 

suggests another possible mechanism by which LMW CCNE contributes to tumorigenesis; resistance to 

inhibitory activity of p21 and p27. 

 Evidence also suggests that LMW CCNE confer resistance to endocrine therapy in breast 

cancer.  In the estrogen receptor (ER+) breast cancer cell line MCF-7, the addition of tamoxifen, a 

selective estrogen receptor modulator causes growth arrest.  Dhillon and Mudryj showed that exogenous 

expression of CCNE could abrogate this effect.168  In a study by Akli et al. MCF7 cells engineered to 

overexpress LMW CCNE showed a reduction in growth arrest in response to fulvestrant, another 

estrogen receptor antagonist.169  These investigators subsequently studied the effects of LMW CCNE 

expression on susceptibility to aromatase inhibitors; another form of endocrine therapy.  Using a model 

system in which they transfected MCF7 cells with aromatase (MCF7/Ac1), they found that MCF7/Ac1 

cells infected with LMW CCNE exhibited resistance to the G1 arrest induced by the addition of an 

aromatase inhibitor.  This effect was abrogated by the addition of Roscovitine, a CDK-inhibitor 

suggesting the effect was due to increased CCNE/CDK2 kinase activity.170  

 Finally, there is also evidence linking LMW CCNE with metastases.  Using a transgenic 

mouse model in which the T1 form of LMW CCNE (LMW-E-T1) is expressed under control of the 

MMTV promoter, Akli et al. showed that LMW CCNE contributed to lung metastases by interrupting 

the ARF-p53 pathway.171  In a study that corroborated these findings, Bales et al. used a melanoma 
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xenograft model and found that when SB-2 melanoma cells engineered to express LMW-E-T1 or 

LMW-E-T2 were injected into mice, 100% of the mice (10 in each group) developed lung metastases.161  

No mice in the vector alone group and 40% of mice in the EL group developed lung metastases.  Taken 

together, these data suggest that LMW CCNE has a role in driving tumorigenesis.  

Clinical Reports of Cyclin E in Cancer 

 The LMW forms of CCNE occur in approximately 25% of breast tumors.159  In a study 

performed to determine the prognostic significance of LMW CCNE in breast cancer, Keyomarsi et al. 

measured FL and LMW CCNE levels by Western blot in breast tumor tissue from 395 patients.  

Immunohistochemistry was used to determine CCNE levels in a subset of 256 patients.  The levels of 

CCNE  were compared to established factors predictive for disease-specific (DSS) and OS including 

age, tumor size, nodal status, disease stage, ER and progesterone receptor (PR) status.172  Using Western 

blot, low levels of LMW CCNE were detected in 289 patients and high levels were detected in 106.  

After a median follow-up of 6.4 years, the 5-year DSS and OS rates were 91% (95% CI: 87-94%) and 

84% (95% CI:80-88%) for patients with low levels of LMW CCNE versus 17% (95% CI: 10-25%) for 

both DSS and OS for patients with high levels of LMW CCNE (p<.001).  On multivariate analysis, 

independent factors predictive of death from breast cancer included high total CCNE (FL + LMW) 

levels, high LMW CCNE levels, positive lymph nodes, stage IIIB or IV disease and ER negative 

disease.  Of these factors, high total CCNE levels were the strongest predictor with a hazard ratio of 

13.3.  An interesting finding in this study was the relationship between CCNE and nodal status.  Breast 

cancer patients with negative lymph nodes have stage I disease which generally predicts for a favorable 

outcome.  However, in this study which included 114 patients with stage I disease, none of 102 with low 

CCNE levels died within five years of diagnosis while all 12 with high levels of CCNE died of disease.  

Overall these data suggest a potential role for the routine determination of CCNE levels in breast cancer 

patients as part of their standard pathologic evaluation.  Prior to this becoming standard practice, a 

prospective validation study is required.  In addition, the data from this study point out an important 

caveat.  Levels of CCNE determined by IHC were not significantly associated with death from breast 
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cancer on multivariate analysis.  Routinely obtaining lysates from breast tumors to perform Western blot 

analysis is not feasible in clinical practice.  In addition, the antibody used to detect CCNE targets the 

protein’s carboxy terminus therefore, when used for IHC, cannot differentiate FL from LMW CCNE.  

As discussed above, LMW CCNE has altered subcellular localization suggesting that cytoplasmic 

CCNE staining on IHC may serve as a surrogate for LMW CCNE expression.  Additional studies are 

needed to confirm this. 

 In a study that I performed while working in the laboratory with Drs. Keyomarsi and Hunt, 

I utilized the subset of 117 patients with HER2-overexpressing tumors from Dr. Keyomarsi’s initial 

cohort of 395.  Patients with high total CCNE (n=59) had a 5-year DSS rate of 14% versus 89% for 

those with low total CCNE (n=58).  Stratifying by LMW CCNE levels, we found that patients with high 

LMW CCNE (n=50) had a 5-year DSS rate of 10% versus 82% for patients with low LMW CCNE (n-

67) levels (p<.0001).  In vitro studies demonstrated that HER2 downregulation or decreased HER2-

mediated signaling resulted in decreased expression and function of the LMW forms of CCNE.  In vivo 

studies confirmed this relationship and we found synergistic cell killing when using agents that targeted 

HER2 (trastuzumab) and CCNE (roscovitine).173   

 The clinical significance of CCNE has been evaluated in other malignancies.  In ovarian 

cancer, CCNE expression and CCNE-associated kinase activity were found to have roles in predicting 

response to platinum-based chemotherapy.174 In bladder cancer, FL and LMW CCNE were found to be 

overexpressed in grade 2 and 3 transitional cell carcinomas with LMW CCNE levels being associated 

with invasiveness and OS.175 In addition, a recent meta-analysis of 14 studies showed that CCNE 

overexpression is a strong predictor of poor prognosis in lung cancer.176 

 Taken together, these data suggest that CCNE, particularly the tumor-specific, hyperactive 

LMW forms, may play a role in multiple different malignancies, suggesting that there may be utility in 

targeting LMW CCNE therapeutically.  As will be detailed in chapter 2 of this thesis, CCNE may be a 
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target for immunotherapy since its aberrant expression makes it a potentially targetable tumor associated 

antigen. 
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CHAPTER 2:  CELLULAR UPTAKE OF NEUTROPHIL ELASTASE LINKS  

INFLAMMATION TO A NOVEL ADAPTIVE IMMUNE RESPONSE 

INTRODUCTION 

 Activated neutrophils are the primary source of NE.  However, NE has been found in breast 

cancer tissue extracts where increased levels were associated with a poor prognosis.111-113  The source of 

NE in breast tumors is unknown but has previously been attributed to endogenous production.177, 178 

Because neutrophils, the primary source of NE, are present in the tumor microenvironment and because 

it was shown that lung cancer cells can take up NE,130 we hypothesized that breast cancer cells may take 

up NE as well.132 

 Although the prognostic value of NE in cancer has generally been attributed to its ability to 

degrade the ECM thereby promoting invasion and metastasis, the mechanism by which NE confers a 

poor prognosis in breast cancer is unknown.54, 122  One mechanism by which NE may confer a poor 

prognosis in breast cancer is by its ability to cleave CCNE into its LMW forms.  CCNE is an important 

regulator of the G1 to S phase cell cycle transition.  Overexpression of CCNE has been demonstrated in 

multiple tumor types including breast cancer in which it is associated with a poor prognosis.172   The 

principal mode of CCNE deregulation in breast cancer is post-translational processing of the FL protein 

to LMW forms.163  These LMW forms are tumor-specific and as discussed in detail above, are 

functionally hyperactive thereby promoting progression through the G1/S phase transition point.    

 The LMW forms of CCNE have been shown in other tumor types.  My supervising 

professor, Dr. Molldrem, has identified LMW CCNE in leukemia and has investigated CCNE as a 

leukemia-associated antigen.162  He identified a human leukocyte antigen (HLA-A2)-restricted CCNE-

derived peptide, CCNE144-152 (ILLDWLMEV) as a target for immunotherapy.  HLA-A2 binding assays 

confirmed peptide binding and standard cytotoxicity assays showed that CCNE144-152-specific CTL 

(CCNE-CTL) could specifically lyse leukemia cells overexpressing CCNE.  Importantly, the CCNE144-

152 peptide is present in FL CCNE and the LMW forms.  Because CCNE is aberrantly expressed in 
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breast cancer, we hypothesized that it may represent an immunotherapeutic target in breast cancer as 

well.132 

 Because the CCNE LMW forms are generated by cleavage of the FL protein by NE, we 

further hypothesized that uptake of NE could increase LMW CCNE expression.  Since these LMW 

forms lack a nuclear localization sequence, they remain in the cytoplasm where they may be 

preferentially processed and presented as antigens complexed with HLA-I molecules on the cell 

surface.132, 166 

 In this chapter, we demonstrate that breast cancer cells lack endogenous NE but can take up 

NE at concentrations comparable to that present in the tumor microenvironment suggesting TAN as the 

primary source of NE in breast cancer.  We also show that NE uptake results in increased LMW CCNE 

expression and enhanced susceptibility to lysis by CCNE-CTL.  These data therefore show a link 

between innate immunity and an adaptive immune response against CCNE, a novel breast cancer 

antigen. 

METHODS  

 The majority of the data in this chapter have recently been published in a manuscript that I 

was the first author on.132   Per The University of Texas Health Science Center at Houston and The 

University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences guidelines, 

the methods and results sections, including figures and figure legends are taken verbatim from that 

publication.  References and figures have been renumbered ensuring continuity of this thesis. 

Patients, cells and cell lines 

Peripheral blood samples were obtained through an institutional IRB-approved 
protocol. MCF-7, MDA-MB-231, T47D, and MDA-MB-453 breast cancer cells, U-937, Jurkat 
(JKT), HL-60 and T2 cell lines were obtained from American Type Culture Collection. HER-18 
was a gift from Dr. Mien-Chie Hung (MD Anderson Cancer Center, Houston, TX).  Cell lines 
were validated by short tandem repeat (STR) DNA fingerprinting using the AmpF/STR 
Identifiler kit according to manufacturer instructions (Applied Biosystems).   Breast cancer cells 
were cultured in Dulbecco’s modified Eagle’s medium with 10% FBS, 100U/mL penicillin, and 
100µg/mg streptomycin.  Media for HER-18 cells was supplemented with 0.5mg/ml G418.  U-
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937, JKT, T2 and HL-60 cell lines were cultured in RPMI-1640 (RPMI) with 10% FBS, 
100U/mL penicillin, and 100µg/mg streptomycin. All cells were maintained in 5% CO2 at 37oC.   

Western blot analysis  

Whole cells lysates were generated in RIPA buffer containing protease inhibitors (Santa 
Cruz Biotechnology).  Lysates were run on 10% SDS-page gels then transferred to 
polyvinylidene fluoride membranes.  After blocking, blots were probed with antibodies 
targeting neutrophil elastase (Santa Cruz Biotechnology) or CCNE (Santa Cruz Biotechnology).    

RNA extraction and amplification, cDNA synthesis and reverse transcription polymerase chain 
reaction 

Breast cancer cells were isolated from fresh frozen tumor samples (Origene) by laser 
capture microdissection (LCM) using an Arcturus PixCell laser capture microscope with an IR 
diode laser (Life Technologies, Applied Biosystems).   Total RNA was extracted and purified 
using the Arcturus PicoPure RNA Isolation Kit (Life Technologies, Applied Biosystems).  RNA 
integrity and quantity were evaluated by spectrophotometry (Nano Drop ND-1000 
Spectrophotometer, Thermo Scientific).  Before PCR, RNA was amplified using the Arcturus 
RiboAmp RNA Amplification Kit (Life Technologies, Applied Biosystems) to generate aRNA.  
cDNA was synthesized from 1µg of aRNA using the Roche Transcriptor First Strand cDNA 
Synthesis kit (Roche Applied Science).  For cultured cell lines, total cellular RNA was extracted 
and isolated using RNA STAT-60 RNA extraction reagent (Amsbio).  cDNA was synthesized 
as described above.   

Reverse transcriptase PCR (RT-PCR) reactions were carried out on an iCycler iQ 
thermal cycler (Bio-Rad Laboratories).  Primer sequences used included neutrophil elastase 
(forward primer 5'-CACGGAGGGGCAGAGACC-3', reverse primer 5'-
TATTGTGCCAGATGCTGGAG-3'), mammaglobin (forward primer 5'-
AGCACTGCTACGCAGGCTCT-3', reverse primer 5'-ATAAGAAAGAGAAGGTGTGG-3'), 
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an endogenous control, (forward 
primer 5'-TAGACGGGAAGCTCACTGGC-3', reverse primer 5'-
AGGTCCACCACCCTGTTGCT-3');oligonucleotides from Sigma Aldrich). 

Immunohistochemistry 

 Following LCM, remaining tumor tissue was fixed in formalin and paraffin-embedded 
for immunohistochemistry. Tissue sections were deparaffinized and rehydrated.  Nonspecific 
binding was blocked, after which sections were incubated with primary antineutrophil elastase 
monoclonal antibody (1:200;Clone NP-57, Dako).  Slides were incubated with secondary anti-
mouse IgG-biotin antibody (1:200;Vectastain Elite ABC Kit; Vector laboratories) then with the 
avidin-biotin peroxidase complex (1:100;Vectastain Elite ABC Kit) after which visualization 
was conducted with chromagen 3, 3’-diaminobenzidine (Dako).  Sections of normal tonsil tissue 
with neutrophils were used as positive controls.  Omission of the primary antibodies were used 
as negative staining control.   

Confocal microscopy and flow cytometry analysis 

To evaluate uptake of soluble neutrophil elastase, cells were maintained in low serum 
(0.5%) media supplemented with neutrophil elastase prepared from whole blood and purified to 
more than 95% (Athens Research and Technology).  Cathepsin G (Athens Research and 
Technology) was prepared in an identical fashion, therefore used as a control to show 
specificity of uptake.  After culture in media supplemented with neutrophil elastase over a range 
of concentrations, viability was assessed at 1, 4, or 24 hours by trypan blue exclusion assay or 



37 
 

by staining with SYTOX blue dead cell stain (Invitrogen).  Neutrophil elastase activity was 
determined using a fluorescent substrate assay (Enzcheck Protease Assay; Invitrogen) according 
to the manufacturer’s instructions. Dose and time course experiments were carried out.  Briefly, 
2x105 cells were maintained in 6-well plates in media supplemented with various concentrations 
of neutrophil elastase at 37º.  At designated timepoints, cells were harvested, permeabilized and 
stained with the following antibodies: Alexa-647- or -488-conjugated antineutrophil elastase 
(clone NP57; Santa Cruz), fluorescein isothiocyanate (FITC)-conjugated anti-EEA-1 (BD 
Biosciences), or FITC -conjugated anti-LAMP-2  (eBioscience).  Direct conjugation of 
antineutrophil elastase antibody was carried out using Alexa-647 and 488 conjugation kits 
(Invitrogen). Aqua live/dead stain (Invitrogen) was used to assess cell viability.  Flow 
cytometry was done using the Cytomation CyAn flow cytometer (Beckman Coulter). Data were 
analyzed using FlowJo software (Tree Star Inc.,). Confocal imaging was carried out using a 
Leica Microsystems SP2 SE confocal microscope.  To evaluate uptake of cell-associated 
neutrophil elastase, neutrophils were isolated from healthy donors by double Ficoll, after which 
they were irradiated and co-cultured with MDA-MB-231 cells at a 3:1 ratio for four hours.   

Peptide-specific CTL lines and cell-mediated cytotoxicity assay 

Healthy donor HLA-A2+ peripheral blood mononuclear cells (PBMC) were stimulated 
with CCNE144-152-peptide, as previously described.179  Briefly, T2 cells were incubated with 
20µg/mL of CCNE for 90 minutes at 37°C and  then irradiated and cultured with freshly 
isolated PBMCs at a 1:1 ratio.  On days 7, 14, and 21, re-stimulation with CCNE-pulsed T2 
cells was carried out, and the following day 20 IU/mL of recombinant human interleukin-2 (IL-
2; Biosource International) was added.  On day 25, CTLs were harvested and used in 
cytotoxicity assays as previously described.179  Target cells, including T2 cells ± CCNE peptide 
and HLA-A2+ breast cancer cells, were stained with 10 µg/mL of Calcein-AM (Sigma Aldrich), 
washed and plated in a 60-well Terasaki tray (2x103 cells/10ul/well).  Effector cells (CCNE-
CTL) were resuspended in 10 µl at increasing effector to target dilutions and added to target 
cells.  After 4 hours, trypan blue was added as a quenching agent.  Fluorescence was measured 
(FLx800 Microplate fluorescence reader, Bio-Tek Instruments) and the percentage of cell lysis 
was calculated as follows: % cytotoxicity= (1-(Eexperimental-EMedia)/(EControl-Emedia))*100, where E 
is fluorescence emission and control group is targets alone. 

Staining for CCNE-CTL in breast cancer patients 

 PBMC from HLA-A2+ breast cancer patients and healthy donors were stained with 
aqua live/dead stain (Invitrogen) and the following antibodies; CD8 APC-H7 (BD Biosciences), 
CD3 PE Cy7 (BD Biosciences), CD4 pacific orange (Invitrogen), CCNE-APC-conjugated 
tetramer and the following pacific blue conjugated lineage antibodies:  CD14 (BD Biosciences), 
CD16 (BD Biosciences) and CD19 (Biolegend).  Data were acquired on a Canto flow cytometer 
(BD Biosciences) and analyzed using FlowJo software (Tree Star Inc.,).  The frequency of 
CCNE-CTLs was determined as the percentage of cells that were alive, lineage-, CD4-, CD3+, 
CD8+ and CCNE-tetramer+. 

Statistical Analysis 

GraphPad Prism 5.0 software was used to perform statistical analyses and P-values less 
than 0.05 were considered significant.132  
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Additional methods 
 

In this chapter, we will show additional data not included in our recently published manuscript 

confirming that NE uptake occurs via clathrin-coated pits.  Briefly, cells were pretreated with 

chlorpromazine (10 µg/ml) to inhibit clathrin coated pits after which soluble NE was added to the 

media.  After 30 hours, cells were harvested, permeabilized and stained for intracellular NE.  Data were 

acquired on the Canto flow cytometer and analyzed using FlowJo software. 

 
RESULTS 

Breast cancer cells do not produce endogenous elastase 

 Because breast cancer cells are not derived from myeloid hematopoietic progenitors, the 
source of neutrophil elastase in breast tumors is not fully understood.  To investigate this, we 
evaluated cultured breast cancer cell lines for the presence of neutrophil elastase at the protein 
and mRNA level.  We did not detect neutrophil elastase protein (Fig. 5A) or mRNA transcripts 
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 investigated.  To evaluate whether the lack of expression was limited to cell lines, LCM was 
used to isolate breast cancer cells from primary tumors.  Following RNA extraction, RT-PCR 
confirmed the lack of neutrophil elastase mRNA in all breast cancer specimens evaluated (Fig. 
5C). Immunohistochemistry carried out on breast tumor tissue showed neutrophil elastase in 
TAN within the tumor microenvironment, but not in breast cancer cells (Fig. 5D).  Taken 
together, these data are consistent with our hypothesis that TAN present in the 
microenvironment are the primary source of neutrophil elastase in breast tumors. 

Soluble and cell associated NE are taken up by breast cancer cells 

 We have previously shown that antigen-presenting cells are capable of taking up 
soluble neutrophil elastase and that this uptake leads to cross-presentation of PR1, a nonameric 
peptide derived from neutrophil elastase that has been extensively investigated in myelogenous 
leukemias.118, 121, 179, 180 In addition, Houghton and colleagues showed the ability of lung cancer 
cells to take up neutrophil elastase.130  We therefore investigated whether breast cancer cells can 
take up neutrophil elastase using  MDA-MB-231 breast cancer cells cultured in neutrophil 
elastase-supplemented media. At 24 hours, flow cytometry was used to show neutrophil elastase 
uptake (3.4-fold increase in MFI vs. unpulsed).  At that point, the extent of neutrophil elastase 
following uptake was 76% of the level of neutrophil elastase in HL-60, a promyelocytic 
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leukemia cell line known to express endogenous neutrophil elastase (Fig. 6A).  Cell viability 
was not affected by neutrophil elastase in the culture media (Supplementary fig. 1).  
Experiments were repeated using additional breast cancer cell lines (HER18 and MDA-MB-
453), which showed neutrophil elastase uptake at 1, 4 and 24-hour time points (Supplementary 
fig. 2).  The extent of neutrophil elastase uptake varied among cell lines. 

To further study soluble neutrophil elastase uptake by MDA-MB-231 cells, 
concentration-response and time course experiments were carried out.  Concentration-response 
experiments showed concentration-dependent uptake of neutrophil elastase.  Importantly, there 
was no uptake of the non-specific proteins OVA or cathepsin G, a second serine protease (Fig. 
6B), suggesting neutrophil elastase uptake is antigen specific.  Time course experiments showed 
that neutrophil elastase uptake was time-dependent and occurred as early as one minute after 
addition of soluble neutrophil elastase to the culture media (Fig. 6C).  Confocal imaging 
confirmed early neutrophil elastase uptake by breast cancer cells and localization within distinct 
compartments, as shown by focal neutrophil elastase staining (Supplementary fig. 3).   

 We next sought to investigate whether enzymatic activity of neutrophil elastase was 
required for uptake.  Neutrophil elastase was incubated with one of 2 neutrophil elastase 
inhibitors, α-1 antitrypsin (65kD) or elafin (6kD), prior to its addition to culture media. 
Neutrophil elastase enzymatic activity inhibition by α-1 antitrypsin and elafin was confirmed 
(Supplementary fig. 4).  α-1 antitrypsin inhibited neutrophil elastase uptake whereas elafin had 
no effect (Fig. 6D) suggesting a potential steric-dependent but enzyme-independent mechanism.   

 Having shown 
concentration and time-
dependent uptake of soluble 
neutrophil elastase by MDA-MB-
231 cells, we next investigated 
whether these cells could take up 
cell-associated neutrophil 
elastase.  MDA-MB-231 cells 
were co-cultured with irradiated 
neutrophils as a source of 
neutrophil elastase or irradiated 
lymphocytes, which lack 
neutrophil elastase.  Radiation 
induced cell death in 
approximately 50% of 
neutrophils and the concentration 
of neutrophil elastase in the 
culture at 4 hours was 16µg/ml. 
Uptake of neutrophil elastase was 
again determined using flow 
cytometry which showed greater 
uptake of the cell-associated 
neutrophil elastase then soluble 
neutrophil elastase (P < .01) (Fig. 
7). 

Neutrophil elastase localization 
following uptake 

 Confocal images had 
shown uptake of soluble 
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neutrophil elastase into distinct cellular compartments (Supplementary fig. 3).  We therefore 
sought to determine the subcellular compartment to which neutrophil elastase localized after 
uptake.  MDA-MB-231 cells were cultured in neutrophil elastase-supplemented (10µg/ml) 
media.  At increasing time points, cells were harvested and co-stained for neutrophil elastase 
and either early endosomal antigen-1 (EEA-1) or lysosome-associated membrane protein 
(LAMP)-2 as markers for early endosomes or lysosomes, respectively.  These experiments 
confirmed early uptake of neutrophil elastase as it was detected intracellularly within 10 
minutes, and showed that soluble neutrophil elastase localizes to an early endosomal 

compartment (Fig. 8A).  There was no evidence of neutrophil elastase uptake into lysosomes 
(Fig. 8B). Experiments were repeated following uptake of cell-associated neutrophil elastase 
which showed early uptake of neutrophil elastase with perinuclear localization (Fig. 8C and 
8D). 
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NE is taken up into clathrin coated pits 

 Having shown that NE localizes to early endosomes after uptake, we next sought to confirm 

that uptake was via clathrin-coated pits.  MDA-MB-231 breast cancer cells were pretreated with 

chlorpromazine, an agent known to block clathrin-

mediated endocytosis, after which soluble NE (10 µg/ml) 

was added to the media.  As shown in figure 9, 

pretreatment with chlorpromazine inhibited NE uptake 

consistent with the findings of Houghton et al. who 

showed uptake of NE into endosomes via clathrin coated 

pits in a lung cancer cells.  These data were not included 

in our recent publication in Cancer Research.  

 

Uptake of soluble elastase increases LMW CCNE 
expression and susceptibility to CCNE-CTL mediated cytotoxicity 

Neutrophil elastase has been shown to cleave full-length CCNE at 2 sites giving rise to 
LMW isoforms which subsequently undergo phosphorylation to generate 2 sets of doublets 
(Fig. 10A) 163, 164.  LMW isoforms of CCNE lack a nuclear localization sequence and therefore 
accumulate in the cytoplasm 165, 166 which may facilitate ubiquitination and proteasomal 
processing for presentation on HLA-I molecules 181-184.  We therefore hypothesized that cells 
with increased LMW CCNE would be more susceptible to lysis by CCNE-CTL, by virtue of 
increased HLA/CCNE144-152 surface expression.  To test this hypothesis, we expanded CCNE144-

152-CTL from PBMC from HLA-A2+ healthy donors. Lysis was tested using cytotoxicity assays.  
Initially, HER18 and MDA-MB-231 (both HLA-A2+ ), were used as targets because of 
differences in baseline LMW CCNE expression (Fig. 13B).173  These assays showed that 
CCNE-CTL more effectively lysed HER18, which express more LMW CCNE than MDA-MB-
231 (Fig. 10C).  CCNE-CTL specific cytolysis was confirmed using unpulsed T2 cells and T2 
cells pulsed with CCNE (Supplementary fig. 5).  We next investigated the effect of neutrophil 
elastase uptake on LMW CCNE expression by MDA-MB-231 cells and whether this impacted 
susceptibility to lysis by CCNE-specific CTL.  Western blot analysis confirmed that uptake of 
soluble neutrophil elastase resulted in increased expression of LMW CCNE (Fig. 10B).  
Processing of CCNE by neutrophil elastase to LMW CCNE was confirmed using recombinant 
CCNE incubated with neutrophil elastase over a range of concentrations (5μg/ml - 100μg/ml) 
(Supplementary fig. 6).  Importantly, CCNE-CTL specific lysis of neutrophil elastase-pulsed 
MDA-MB-231 cells was greater than that versus unpulsed cells (Fig. 10D).  The cytotoxicity 
assays were performed multiple times using CTL generated from different healthy donors with 
variable precursor frequencies of CCNE-CTLs thereby explaining differences in the absolute 
levels of CCNE-specific killing.  Taken together, these data showed that exogenous neutrophil 
elastase such as may be present in the tumor microenvironment, can be taken up by breast 
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cancer cells exposing the CCNE-derived epitope and rendering the cells susceptible to CCNE-
CTL-mediated cytolysis. 

 

CCNE144-152 tetramer positive CD8+ T cells are present in peripheral blood of breast cancer 
patients. 

Having shown that breast cancer cells expressing CCNE are susceptible to lysis by 
CCNE-CTL, we next sought to confirm whether immunity to CCNE144-152 is detected in breast 
cancer patients.  PBMC were obtained from 11 HLA-A2+ breast cancer patients and 7HLA-A2+ 

healthy donors and stained with CCNE144-152  tetramer to assess the frequency of CCNE144-152-
specific CTL.  Figure 11A demonstrates our gating strategy.  All breast cancer patients had 
CCNE144-152-specific CTL present at a low precursor frequency with the median number of 
CCNE144-152-specific CTL=0.074±0.02 (Fig. 11B).  The frequency of CCNE144-152-specific CTL 
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in breast cancer patients was greater than in healthy donors (P=.001).  These data suggested that 
the CCNE144-152 peptide is naturally processed in breast cancer patients resulting in immunity to 
CCNE and that vaccination with a CCNE144-152 peptide could potentially augment the 
immunologic response against CCNE-expressing breast cancer targets.132  

 

 

DISCUSSION 

 In this chapter, we have identified a novel function for NE in breast cancer.  We have 

shown that:  1) breast cancer cells do not produce NE but are capable of taking up NE in an antigen-

specific manner; 2) NE is present in TANs suggesting TANs as the primary source of NE in breast 

cancer; 3) after NE uptake, LMW forms of CCNE increase leading to enhanced susceptibility of breast 

cancer cells to lysis by CCNE144-152-CTL and 4) PBMC from HLA-A2+ breast cancer patients have a 

low precursor frequency of CCNE144-152-CTL suggesting that the peptide is naturally processed and 

presented.  We have therefore established a novel mechanism linking NE, a serine protease released by 

innate immune cells, to an adaptive immune response against CCNE, a novel breast cancer antigen.132 
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 Inflammatory cells, to include neutrophils, comprise a significant component of the tumor 

microenvironment.  Until recently, neutrophils have received little attention due to their short half-life.  

Although their life span in the circulation is short (8-10 hours), they live longer at sites of inflammation 

due in part to positive effects of cytokines in the microenvironment on their survival.185  In addition, 

tumor and inflammatory cells upregulate neutrophil-chemotactic substances including IL-8 which 

results in continuous recruitment of neutrophils to a tumor site.69  Neutrophils themselves secrete IL-8 

suggesting that there could be a positive feedback loop ensuring TAN recruitment.23, 30   

 There is increasing interest in studying TANs and as has been discussed above, reports 

showing that for multiple tumor types to include renal cell carcinoma, colorectal cancer, NSCLC and 

hepatocellular cancer, TAN are associated with a poor prognosis.42-45  No studies have evaluated the role 

of TAN in breast cancer, however, it has been reported that the presence of NE in whole tumor extracts 

from breast cancer patients correlates with worse outcomes.111-113  The source of NE in breast cancer is 

unknown.  A study by Nguyen et al. showed NE protein in MDA-MB-231 cells by indirect 

immunofluorescence.186  However, we were unable to identify NE protein in MDA-MB-231 or other 

cultured breast cancer cells by Western blots of whole cell lysates or by confocal microscopy.  We were 

also unable to find NE mRNA transcripts.  Importantly, using RNA isolated from breast cancer with 

single cell laser capture microdissection, we were unable to amplify NE mRNA transcripts.  We believe 

therefore that we are the first to show that TAN within the tumor microenvironment is the source of NE 

in breast cancer.  To our knowledge, the presence of NE mRNA in epithelial cells has not been shown 

definitively, thereby supporting our conclusion. 

 As was discussed in detail in the introduction of this thesis, TAN have multiple effects 

within the tumor microenvironment.  Protumor effects include promoting invasion and metastasis, are in 

part due to the effects of NE which can remodel the ECM.54  Recently, Houghton et al. demonstrated a 

novel mechanism by which NE could promote tumor growth via an effect directly on tumor cells.  

Using a lung cancer model, they showed that NE could be taken up by tumor cells into clathrin-coated 

vesicles and localized to early endosomes.130  NE cleaved IRS-1 leading to hyperactivity of the PI3K 
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pathway and uncontrolled proliferation.  We have confirmed that tumor cells can take up exogenous 

NE; both soluble and cell-associated.  Uptake is antigen specific and both dose and time dependent 

suggesting a receptor-mediated mechanism.  Uptake was inhibited by α-1 antitrypsin but not elafin 

suggesting that the mechanism is potentially steric-dependent but enzyme-independent.  We have also 

shown another mechanism by which NE uptake could promote proliferation – generation of CCNE 

LMW forms.  Conversely, NE may also potentiate an anti-tumor immune response by increasing the 

susceptibility of tumor cells to lysis by CCNE-CTL.  The net effect of NE uptake by tumor cells likely 

depends upon multiple factors. 

 Cyclin E has characteristics of an ideal tumor-associated antigen (TAA).  It is aberrantly 

expressed as tumor-specific LMW forms and overexpression of these LMW forms drives cancer cell 

proliferation.155, 163  Our data showing a low precursor frequency of CCNE144-152 -tetramer positive CTL 

in the PBMC of breast cancer patients confirms that this peptide is naturally processed generating 

adaptive immunity in patients.  An immunotherapeutic strategy administering the CCNE144-152 peptide 

combined with an immunoadjuvant may effectively augment a CCNE-specific CTL response.   

 Combined with previous studies showing that NE cleaves CCNE into LMW forms,163 our 

data suggest that after uptake, NE increases availability of LMW CCNE in breast cancer cells which 

could enhance antigen processing and presentation of CCNE peptides.  This is supported by cytotoxicity 

assays performed using CCNE-CTL versus HER18 and MDA-MB-231 cells which have comparable 

amounts of FL CCNE but differing LMW CCNE expression.  HER18 cells have greater LMW CCNE 

expression and were more susceptible to lysis by CCNE-CTL.  Furthermore, after uptake of soluble NE 

from culture media by MDA-MB-231 cells there was an increase in LMW CCNE expression and a 

concomitant increase in susceptibility to lysis by CCNE-CTL.  Additional work is required to confirm 

that the LMW forms (versus FL CCNE) are the predominant source of CCNE144-152 peptide.  Because 

the LMW forms of CCNE are tumor specific, this could have important implications for an 

immunotherapy strategy targeting CCNE.  
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 Although NE uptake could promote an anti-tumor immune response by increasing 

susceptibility to CCNE-CTL, it is also possible that NE uptake could promote tolerance due to anergy 

induced by antigen presentation in the absence of adequate co-stimulation.  Breast cancer cells express 

MHC class I molecules and can present CCNE144-152 and other peptides however they lack costimulatory 

molecules thus may be unable to stimulate naïve T cells.  If this were the case, other strategies including 

antibodies targeting the CCNE144-152 /HLA-A2 conformational epitope or adoptive T-cell therapy could 

be used to overcome this tolerance.187, 188 

 In conclusion, we have shown that breast cancer cells take up NE resulting in increased 

LMW CCNE expression and enhanced susceptibility to lysis by CTL specific for a novel HLA-A2-

restricted CCNE-derived peptide.  Therefore, we propose a mechanism linking NE derived from TAN in 

the tumor microenvironment, to an adaptive immune response against CCNE, a novel antigen that is 

cleaved into tumor-specific LMW forms after NE uptake.  Additional investigation into the mechanism 

of NE uptake and the effects on antigen processing and presentation are indicated to improve our 

understanding of the interaction between inflammation and adaptive immunity in breast cancer. 
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CHAPTER 3:  CROSS-PRESENTATION OF NE AND PR3 BY BREAST  

INTRODUCTION 

 Neutrophil elastase and PR3 are serine proteases stored in neutrophil primary granules.  The 

biology of these proteases as well as their role in infection, inflammation and cancer has been discussed 

in detail above. My advisor, Dr. Molldrem has identified PR1, a conserved nonameric HLA-A2-

restricted peptide in NE and PR3.116-118  PR1-specific CTL have been detected in the peripheral blood of 

patients with myeloid leukemia where they correlated with positive clinic outcomes following IFN-α2b 

therapy or allogeneic bone marrow or stem cell transplant.118-120  Antigen processing and presentation 

has been extensively studied (reviewed by Neefjes et al.).189 HLA class-I molecules are expressed by all 

nucleated cells and are capable of presenting intracellular antigens to CD8+ T cells.  HLA class II 

molecules are expressed primarily on the surface of antigen presenting cells (APCs) and express 

extracellular antigens to CD4+ T cells.  Cross-presentation is a mechanism whereby exogenously 

derived antigens can be complexed with HLA class I molecules for presentation to CD8+ T cells.  It was 

originally thought that cross-presentation was restricted to subpopulations of APCs.190-192  However, a 

report by Francois et al. showed that mesenchymal stromal cells could cross-present soluble exogenous 

antigens in a mouse model.193 

 Recently, in a study that I was involved in, Alatrash et al. showed that NE and P3 are cross-

presented by normal donor APCs  and leukemia, and that cross-presentation by leukemia cells rendered 

them susceptible to PR1 targeted therapy.194  Because we showed that NE could be taken up by breast 

cancer cells,132 we hypothesized that uptake of NE and PR3 by breast cancer may lead to cross-

presentation making them susceptible to PR1-targeted therapy.  In this chapter, we demonstrate that 

PR3, like NE, is taken up breast cancer cells and that this leads to cross-presentation increasing 

susceptibility of breast cancer cells to killing by PR1-targeted therapies including PR1-CTL and 8F4, a 

novel T-cell receptor-like immunoglobulin G2a antibody with high binding affinity for the PR1/HLA-

A2 complex.188  Furthermore, we show PR1 in association with HLA-A2 on the surface of primary 
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breast tumors and the presence of PR1-CTL in peripheral blood from breast cancer patients.  Taken 

together, these data demonstrate the ability of breast cancer to cross-present NE and PR3and suggest 

that PR1 may be a broadly expressed antigenic epitope. 

METHODS 

Patients, cells and cell lines 

 Peripheral blood samples were collected as part of an Institutional Review Board-approved 

protocol.  PBMC and neutrophils were enriched using standard Histopaque 1077 and 1119 (Sigma) 

gradient centrifugation, respectively.  Breast cancer frozen tissue blocks were obtained from Origene.  

MCF-7, MDA-MB-231, T47D, and MDA-MB-453 breast cancer cells, U-937, Jurkat (JKT), HL-60 and 

T2 cell lines were obtained from American Type Culture Collection.  HER18 cells were provided by Dr. 

Mien-Chie Hung (MD Anderson Cancer Center, Houston, TX).  Cell lines were validated by STR DNA 

fingerprinting.  Breast cancer cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 100U/mL penicillin, 100µg/mg streptomycin, and 10% FBS.  G418 (0.5mg/ml) was 

added to HER18 media as a selective agent.  U-937, JKT, T2 and HL-60 cell lines were cultured in 

RPMI-1640 (RPMI) with 100U/mL penicillin, 100µg/mg streptomycin, and 10% FBS. All cells were 

maintained in 5% CO2 at 37oC.   

Western blot analysis  

 Whole cells lysates were generated by suspending cell pellets in RIPA buffer containing 

protease inhibitors (Santa Cruz Biotechnology).  Lysates were separated by electrophoresis on 10% SDS 

gels under reducing conditions then transferred to PVDF membranes.  After blocking, blots were probed 

with antibodies targeting PR3 (NeoMarkers) or GAPDH (Sigma).   

RNA extraction and amplification, cDNA synthesis and reverse transcription polymerase chain reaction 

 As previously described, breast cancer cells were isolated from fresh frozen tumor samples 

by LCM.  Total RNA was extracted and purified, and  RNA integrity and quantity were determined by 
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spectrophotometry.  Prior to PCR, RNA was amplified using two rounds of T7-based amplification 

yielding 2.5μg of  aRNA.  cDNA was synthesized from 1µg of aRNA.  For cultured cell lines, total 

cellular RNA was extracted and isolated and cDNA was synthesized as described above.132  For RT-

PCR, the primer sequences for PR3 included: forward primer 5'-GACCCCACCATGGCTCAC-3', 

reverse primer 5'-ATGGGAAGGACAGACAGGAG-3'.  The primer sequences for mammaglobin and 

GAPDH were included above (chapter 2). 

Flow cytometry analysis and confocal microscopy 

 To evaluate protein uptake, cells were maintained in reduced serum media (0.5% FBS) 

containing 10 μg/ml NE or PR3 (Athens Research and Technology) or EndoGrade ovalbumin (Ova) 

(Hyglos).  To evaluate cell-associated uptake of neutrophil proteases, breast cancer cells were co-

cultured with irradiated neutrophils at a 1:1 ratio (breast cancer : irradiated-cell).  Cells were 

permeabilized and stained with alexa- 647 directly conjugated anti-PR3 (Clone MCPR3-2; Thermo 

Scientific) antibody and analyzed by flow cytometry.  Aqua live/dead stain (Invitrogen) was used to 

assess viability.  Data were analyzed using FlowJo software (Tree Star Inc.,).  Confocal imaging to 

show PR3 intracellular localization was performed using a Leica Microsystems SP2 SE confocal 

microscope.  Antibodies used for confocal imaging included alexa-647 directly conjugated anti-PR3 and  

FITC-conjugated LAMP-2 antibody (eBioscience) to stain for lysosomes.  For experiments 

investigating cross-presentation, cells were surface-stained with fluorescently-conjugated 8F4 antibody 

as previously described.188    

Immunohistochemistry 

 Cryopreserved breast tumor tissue was formalin fixed then paraffin-embedded for IHC.  

Prior to staining, tissue sections were de-paraffinized, re-hydrated and quenched for endogenous 

peroxidase activity.  Non-specific binding was blocked with 10% normal horse serum then incubated 

with primary WGM2 anti-PR3 mAb clone (1:10) (Abcam).  Slides were washed and incubated with 

secondary anti-mouse IgG-biotin antibody (1:200) (Vectastain Elite ABC Kit) followed by avidin-biotin 
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peroxidase (1:100) (Vectastain Elite ABC Kit).  Chromagen 3, 3’-diaminobenzidine (Dako) was used 

for staining visualization.  Staining for neutrophils in normal tonsil tissue was used as a positive control. 

Sections of normal tonsil tissue with neutrophils were used as positive controls.  Negative controls were 

stained as described with omission of primary antibodies.   

Peptide-specific CTL lines and cell-mediated cytotoxicity assay 

 PR1-specific CTLs were expanded by stimulating PBMC from HLA-A2+ healthy donors 

with PR1-peptide as previously described.179  Briefly, T2 cells were washed in RPMI 1640 medium then 

incubated with 20µg/mL of PR1 for 90 minutes at 37°C.  PR1-loaded T2 cells were then irradiated and 

cultured with freshly isolated PBMC at a 1:1 ratio in RPMI 1640 medium supplemented with 10% 

human AB serum.  Cultures were re-stimulated with peptide-pulsed T2 cells on days 7, 14, and 21.  The 

following day, 20 IU/mL of recombinant human IL-2 (Biosource International) was added.  On day 25, 

CTLs were harvested and used in standard cytotoxicity assays as previously described.179  Briefly, target 

cells were stained with 10µg/mL of calcein-AM (Sigma Aldrich) for 90 minutes at 37°C, washed then 

co-incubated with peptide-specific CTLs at varying E:T ratios at 37°C.  After 4 hours, trypan blue was 

added and fluorescence was measured using an automated fluorescence reader (FLx800 Microplate 

fluorescence reader, Bio-Tek Instruments).  The percent specific cytotoxicity was calculated as:  (1-

(Eexperimental-EMedia)/(EControl-Emedia))*100, where E = fluorescence emission and the control group was 

targets alone. 

Complement-mediated cytotoxicity assay 

 To determine if cross-presentation increases breast cancer susceptibility to 8F4, we 

performed a complement-mediated cytotoxicity assay as previously described.188  MDA-MB-231 cells 

were cultured in NE or PR3 supplemented media for 24 hours then incubated with calcein AM (Sigma 

Aldrich), washed and resuspended in serum-free RPMI.  One million breast cancer cells were mixed 

with increasing doses of 8F4 antibody or isotype antibody as a negative control and incubated for 10 

minutes at 37°C.  Standard rabbit complement (5μL) (Cedarlane Labs) was added and cells were 
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incubated for 60 minutes at 37°C.  Supernatant from BB7.2 hybridoma (source for anti-HLA-A2) and 

digitonin (Promega) were used as positive controls.  Fluorescence was measured and specific killing 

was calculated as described above. 

Staining for PR1-CTL in breast cancer patients 

 PBMC from HLA-A2+ breast cancer patients were stained with the following antibodies; CD3 

PE Cy7 (BD Biosciences), CD8 APC-H7 (BD Biosciences),  CD4 pacific orange (Invitrogen), PE-

conjugated PR1/HLA-A2 dextramer (Immudex) and the following pacific blue-conjugated lineage 

antibodies:  CD14 (BD Biosciences), CD16 (BD Biosciences) and CD19 (Biolegend).  Aqua live dead 

stain (Invitrogen) was used to exclude dead cells.  Data were acquired on a Canto flow cytometer (BD 

Biosciences) and analyzed using FlowJo software (Tree Star Inc).  The frequency of PR1-CTLs was 

determined as the percentage of  live cells that were lineage-, CD4-, CD3+, CD8+ and PR1-dextramer+. 

Confocal imaging of patient tissues 

 Cryopreserved breast cancer tissue specimens were fixed with cold acetone then stained 

with Alex-488 conjugated mouse anti-cytokeratin-7 (CD7) antibody (Abcam) as a breast marker and 

Alexa-647 conjugated 8F4 antibody.188  ProLong Gold antifade reagent with dapi (Invitrogen) was 

added.  Confocal imaging was performed using Leica Microsystems SP2 SE confocal microscope and 

Leica software (version 2.61) was used for image analysis. 

RESULTS 

Breast cancer cells lack endogenous PR3 

 Having previously shown that breast cancer cells do not express endogenous NE but are 

able to take it up, we sought to determine if these cells express endogenous PR3.  Breast cancer cell 

lines and primary tumor tissues were analyzed for PR3 expression at the mRNA and protein levels.  

PCR showed that MDA-MB-231, MCF-7, HER18 and MDA-MB-453 breast cancer cells lack PR3 

mRNA (Fig.12A).  In addition, breast cancer cells extracted from three primary breast tumors by LCM 
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also lacked PR3 mRNA (Fig. 12B).  Western blots performed on whole cell lysates from the breast 

cancer cell lines confirmed the absence of PR3 protein expression (Fig. 12C).  Finally, IHC staining of 

breast tumors detected PR3 in breast cancer tissue but the PR3 was limited to the inflammatory 

component of the tumor, not in the breast cancer cells (Fig. 12D).  These data show that breast cancer 

cells do not express endogenous PR3, consistent with our previous findings that they do not express 

NE.132 
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PR3 is taken up by breast cancer cells 

 Having shown that PR3 is not endogenously expressed by breast cancer cells, we next 

sought to determine if it could be taken up by breast cancer cells as we have shown for NE.132  The 

HLA-A2+ breast cancer cell lines MDA-MB-231, MCF-7 and HER18 were maintained in media 

supplemented with 10 μg of PR3.  Cells were harvested at 1, 4 and 24 hours and then analyzed for 

intracellular PR3 expression using flow cytometry.  A time-dependent increase in PR3 was seen in all 

three cell lines (Fig. 13A).  Uptake of PR3 was dose dependent (Fig. 13B) however, unlike NE, the 

levels did not appear to plateau suggesting a non-receptor mediated process for P3 uptake.  To 

determine PR3 localization after uptake, we performed confocal microscopy and showed co-staining 

with LAMP-2 demonstrating that PR3 localizes within lysosomes (Fig 13C).  Antigen cross-

presentation occurs in distinct cellular compartments.195 Early uptake (1-4 hours) into lysosomal 

compartments may be an initial step in antigen degradation and processing for cross-presentation.196 

 Since neutrophils are a significant component of the inflammatory response in the tumor micro-environme                                         
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Since neutrophils are a significant component 

of the inflammatory response in the tumor 

micro-environment and because our data 

suggest TAN as the primary source of 

proteases in breast tumors, we next investigated 

the ability of breast cancer cells to take up cell-

associated PR3.  MDA-MB-231 cells were co-

cultured with irradiated neutrophils  or 

lymphocytes at a 1:1 ratio.  Additional cells 

were maintained in PR3-supplemented media 

as a positive control.  As shown (Fig. 14), 

breast cancer cells were able to take up cell 

associated PR3 and did so more efficiently then 

it took up soluble PR3 (average MFI = 12,292 

versus 1,356; p<0.05). 

NE and PR3 are cross-presented by breast cancer cells 

 PR1 is a conserved nonameric HLA-A2-restricted peptide in NE and PR3.116-118  Having 

shown that breast cancer cells take up both NE and PR3, we next sought to determine if they can be 

cross-presented.  MDA-MB-231 cells were cultured in media supplemented with NE or PR3 at 

increasing time points after which they were harvested and analyzed for PR1/HLA-A2 expression using 

8F4, a mouse anti-PR1/HLA-A2 antibody.  Significant cross-presentation from both NE and PR3 was 

seen at 24 hours with a 2.5- and 3-fold increase in PR1/HLA-A2 expression on the cell surface 

following culture in media supplemented with NE and PR3 respectively, compared with cells 

maintained in standard media (Fig 15A).   
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Cross-presentation of NE and PR3 renders cells susceptible to PR1-targeted therapy 

 PR1 has been effectively targeted in leukemia using a PR1 peptide vaccine,121  PR1-CTL,197, 

198 and 8F4 (anti-PR1/HLA-A2 antibody).188  We therefore investigated whether PR1/HLA-A2 

expression on breast cancer cells following NE or PR3 cross-presentation would render them 

susceptible to killing by PR1-CTL or 8F4 antibody.  MDA-MB-231 cells were cultured in media 

supplemented with NE or PR3 for 24 hours then incubated with PR1-CTLs in a standard cytotoxicity 

assay.  MDA-MB-231 maintained in standard media without NE or PR3 were not killed by PR1-CTL.  

Cross-presentation of NE and PR3 increased susceptibility of the cells to lysis by PR1-CTL (Fig. 15B).  
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Using 8F4 antibody in a complement dependent cytotoxicity assay, we also observed dose-dependent 

killing of MDA-MB-231 cells after NE or PR3 cross-presentation (Fig. 15C).   

PR1-immunity is detected in patients with breast cancer 

 Having shown that breast cancer cells cross-present NE and PR3 leading to susceptibility to 

killing by PR1-targeted therapies, we next sought to confirm whether immunity to PR1 is detected in 

breast cancer patients. PBMC were obtained from 11 HLA-A2+ breast cancer patients and 9 HLA-A2+ 

healthy donors and stained with PR1 dextramer to assess the frequency of PR1-specific CTL.  The 

median frequency of PR1-CTL in breast cancer patients was .05% of CD8+ T cells (range, .02-.2%), 

which was significantly greater that the frequency of PR1-CTL in healthy donors (p<0.05) (Fig. 16A). 
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Next we evaluated HLA-A2+ primary breast tumors.  Tissues were stained with 8F4 and anti-CK7 then 

evaluated using confocal microscopy.  Both tumor samples showed co-staining of 8F4 with CK7 

suggesting PR1/HLA-A2 expression on the breast cancer cells (Fig. 16B). 

DISCUSSION 

 In this chapter, we have provided evidence of two known leukemia-associated antigens, NE 

and PR3, being taken up and cross-presented by breast cancer cells suggesting that NE and PR3 may be 

targetable antigens in solid tumors.  Specifically, we have shown that similar to what we had previously 

found with NE, breast cancer cells are able to take up soluble and cell-associated PR3.  After uptake, 

NE and PR3 are cross-presented as evidenced by increased PR1/HLA-A2 expression on the cell surface, 

and this cross-presentation leads to susceptibility to PR1-targeted therapies.  Importantly, we show 

PR1/HLA-A2 expression on primary breast tumors and PR1-specific CTL in peripheral blood from 

breast cancer patients providing further evidence that studies evaluating PR1-targeted therapies in breast 

cancer are warranted. 

 Cross-presentation refers to the process whereby peptides derived from exogenous antigens 

are loaded onto MHC class I molecules for presentation to CD8+ T cells.  It is critical for initiating 

immune responses against viruses and tumors.  Cross-presentation is an important function of APCs and 

the majority of studies evaluating cross-presentation have focused on DCs, of which there are subtypes 

important for the process.  Tissue DCs transport antigen from tissues to secondary lymphoid organs 

such as lymph nodes.199 There, they transfer antigen to a subset of DCs capable of cross-presentation.  In 

mice, these cells are marked by surface expression of CD8α .200  We have previously shown that DCs 

take up and cross-present soluble NE and PR3 by 4 hours.194  In the current study, although PR1/HLA-

A2 expression was observed as early as one hour after addition of NE or PR3 to the culture media, 

maximal PR1/HLA-A2 expression was not observed until after 24 hours.  Since breast cancer cells are 

not APCs, they may not be optimally equipped for rapid cross-presentation.  Consistent with our 

findings, there are two previous studies showing cross-presentation by non-APCs, specifically 
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mesodermally-derived mesenchymal stromal193 and endothelial cells.201  In both of these studies, cross-

presentation occurred at later time points (> 12 hours). 

 Licensed DCs upregulate expression of co-stimulatory molecules including CD80 and 

CD86 and downregulate inhibitory molecules including PDL1 (reviewed by Kurts et al.).202  In contrast, 

tumor cells, to include breast cancer cells, lack co-stimulatory molecules therefore it is possible that 

cross-presentation of NE and PR3 by breast tumors would facilitate cross-tolerance in vivo.  There is 

indirect evidence to support this as NE expression in breast cancer is a negative prognostic factor.111-113  

The possibility that cross-presentation of NE and PR3 by breast cancer cells may lead to cross-tolerance 

has implications for therapeutic strategies.  Therefore, active immunization targeting PR1 may not be 

effective.  However, passive immunotherapy strategies employing PR1-CTL or an anti-PR1/HLA-A2 

monoclonal antibody may have antitumor activity in this setting.   

 Finally, the data in this chapter showing that breast cancer cells lack endogenous PR3 but 

are able to take it up is consistent with our previous data showing NE uptake.132  It is interesting to note 

that the kinetics of uptake differed.  Whereas the dose-response curve for NE uptake plateaued 

suggesting a receptor-mediated mechanism of uptake, there was no plateau for PR3 uptake suggesting a 

different mechanism. In addition, whereas NE localized to early endosomes,132 PR3 was found in 

lysosomes.  Both endosomal and lysosomal compartments are known to play a role in antigen cross 

presentation, providing further support for NE and PR3 cross-presentation by breast cancer cells. 196, 203

 In conclusion, we have shown that breast cancer cells can take up and cross-present NE and 

PR3 leading to susceptibility to PR1-targeted therapy.  Since inflammatory cells, to include neutrophils, 

are found in numerous solid tumors and can provide a source for NE and PR3, our findings identify 

cross-presentation as a novel mechanism that may render tumors susceptible to PR1 immunotherapies.  

Additional studies are required to determine how ubiquitous the process of NE and PR3 uptake is to 

include on other solid tumor types and non-malignant cells.  If multiple tumor types can take up and 

cross-present NE and PR3, this would suggest broad applicability for PR1 immunotherapy. 
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CHAPTER 4:  DISCUSSION AND FUTURE DIRECTIONS 

 In this thesis, we have identified novel functions of NE, a serine protease in the tumor 

microenvironment.  We show that NE is present in TANs and that breast cancer cells do not produce 

endogenous NE suggesting TANs as the primary NE source in breast cancer.  We also demonstrate that 

NE is taken up by breast cancer cells in an antigen-specific manner.  Importantly, after uptake, NE 

modulates adaptive immune responses by enhancing antigen presentation.   Specifically, NE uptake 

leads to increased generation of LMW CCNE isoforms and enhanced susceptibility of breast cancer 

cells to lysis by CCNE-CTL.  Furthermore, we have shown that NE, as well as PR3, a second neutrophil 

primary granule protease with significant homology to NE, is cross-presented by breast cancer cells 

leading to increased PR1/HLA-A2 on the cell surface and subsequent killing by PR1-targeted therapies 

including PR1-CTL and 8F4, an antibody targeting PR1/HLA-A2.  Therefore, we have provided 

evidence for a novel mechanism linking NE, a protease secreted by innate immune cells, to adaptive 

immune responses against novel antigens in breast cancer.  These findings have significant implications 

for cancer biology and tumor immunology.   

Uptake of neutrophil elastase  

 The majority of studies investigating the effects of NE in cancer have focused on its ability 

to promote invasion and metastasis through degradation of the ECM.54, 122, 123  Two other studies have 

demonstrated that NE can impact tumor cell proliferation by its effects on cell signaling.   Studies have 

shown that NE can cleave the TNF receptor from the cell surface and that cleaved receptors can bind 

circulating TNF-α thereby decreasing TNF signaling and subsequently decreasing caspase 8-mediated 

apoptosis.126, 127, 129   A study by Houghton et al. showed that NE uptake by lung cancer cells can cleave 

IRS-1 leading to hyperactivity of the PI3K pathway resulting in increased proliferation.130  Our studies 

confirmed the findings of Houghton et al. that cancer cells can take up exogenous NE.  NE uptake in 

breast cancer cells led to increased expression of LMW forms of CCNE which have previously been 

shown to be hyperactive compared to the FL CCNE protein.163  These hyperactive LMW forms promote 
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proliferation by shortening the G1/S phase transition of the cell cycle thus suggesting an additional 

potential mechanism for NE-induced tumor cell growth following uptake.   

 Importantly, we have provided further information regarding the mechanism of NE uptake 

by demonstrating uptake to be dose- and time-dependent suggesting a receptor-mediated mechanism.  

Because the timing and subcellular localization of NE after uptake is similar in different cancer cell 

types, it is possible that there is a common uptake mechanism.  If so, such a mechanism could be 

important for controlling cell growth.  

We have begun to investigate this in the 

laboratory where we have evaluated 

multiple different cell lines from various 

tumor types to include melanoma, 

ovarian cancer, pancreatic cancer and 

colon cancer, for their ability to take up 

NE (Fig. 17). We found that not all 

tumor types take up NE and for those 

that do, the extent of uptake varies.  We 

are working to use this differential 

uptake to determine the receptor 

involved using a computational approach.  Briefly, in addition to the five cell lines shown in figure 17, 

we have evaluated the fold change in uptake for 15 additional cell lines of diverse tissue origins with 

gene expression data (from Affymetrix GeneChip Human Genome U133 Plus 2.0 array) available from 

a public database.  Working with our biostatistical collaborator, Dr. Shoudan Liang, we have correlated 

NE uptake with the level of mRNA expression of membrane proteins thus identifying potential 

receptors that may mediate NE uptake.  This line of investigation is currently being pursued by Dr. 

Celine Kerros, a post-doctoral fellow working in the laboratory of my advisor Dr. Molldrem.   
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 Along with the report by Houghton et al., our demonstration of NE uptake by breast cancer 

cells represents the first studies showing the ability of a secreted protease to enter target cells.  We are 

continuing to evaluate other cell types for NE uptake and our data suggests that this is a ubiquitous 

phenomenon shared among multiple solid tumors.  Because NE has broad substrate specificity, it is 

likely that uptake provides NE access to a wide array of potential substrates affecting multiple biologic 

processes impacting tumor development and growth. As was demonstrated in chapters 2 and 3 of this 

thesis and will be discussed further below, uptake of NE also results in increased antigen presentation 

thereby making the tumor cells more attractive targets for adaptive immune responses and targeted 

immunotherapeutic approaches. 

Cyclin E as a novel breast cancer antigen 

 We have provided data linking NE uptake to an adaptive immune response against CCNE 

in breast cancer.  Specifically, we showed that increased expression of LMW CCNE after NE uptake 

leads to enhanced susceptibility to lysis by CCNE CTL.132   Importantly, using tetramer staining, we 

identified a low precursor frequency of CCNE144-152 CTL in breast cancer patients confirming that the 

antigen is naturally processed.  Our data therefore support the discovery of CCNE as a novel breast 

cancer antigen and suggest that CCNE-targeting immunotherapy to include a peptide vaccine combining 

CCNE144-152 with an immunoadjuvant may augment the CCNE-specific-CTL response.   

 Previously, overexpression of CCNE and its LMW forms has been shown to be a poor 

prognostic factor in breast cancer.172  Because CCNE is aberrantly expressed in breast cancer and this 

aberrant expression drives proliferation, CCNE has characteristics of an ideal TAA.  CCNE144-152, the 

immunogenic epitope that we have identified, is expressed in both the FL and LMW forms of the CCNE 

protein (Fig. 9A).  Our data strongly suggest that after NE uptake, there is increased substrate 

availability of the CCNE LMW fragments, which could facilitate antigen processing and presentation of 

CCNE peptides.  The LMW forms of CCNE lack the nuclear localization sequence that is in the amino 

terminus of the FL protein.  Consistent with this, Delk et al. have shown altered subcellular localization 
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of the LMW forms of CCNE with the majority being present in the cytoplasm.166  This cytoplasmic 

localization may facilitate proteasomal-mediated degradation and CCNE peptide translocation by the 

transporter associated with antigen presentation (TAP) protein to the endoplasmic reticulum where the 

peptides would access MHC class I molecules.189  In support of this hypothesis, we found that HER18 

cells are more susceptible to killing by CCNE-CTL than MDA-MB-231 cells that have less LMW 

CCNE expression (Fig. 10).  In addition, after uptake of soluble NE, there was an increase in LMW 

CCNE expression in the MDA-MB-231 cells and enhanced susceptibility of the cells to lysis by CCNE-

CTL.  Additional studies must be done to determine whether the LMW forms are the predominant 

source of CCNE144-152 peptide.  To evaluate this, we have discussed a collaboration with Dr. Khandan 

Keyomarsi whereby we would stably transfect MCF-7 breast cancer cells (HLA-A2+; high transfection 

efficiency, low baseline LMW CCNE expression) with the EL, trunk 1, and trunk 2 constructs that she 

has previously used to investigate the effect of FL versus LMW CCNE on cell cycle regulation.163  The 

EL construct overexpresses FL CCNE, the trunk 1 construct overexpresses the EL2 and EL3 LMW 

forms and the trunk 2 construct overexpresses the EL5 and EL6 forms.  These cells would be used as 

targets in standard cytotoxicity assays with CCNE-CTL as effectors.  We would hypothesize that the 

MCF-7 cells transfected to overexpress LMW CCNE would be lysed more effectively than cells 

transfected with the EL vector or the empty vector control.  This model system could also be used to 

further investigate ubiquitination and proteasome-mediated degradation of FL versus LMW CCNE; two 

processes required for antigen processing and presentation 

Antigen discovery  

 Because NE has broad substrate specificity, it is possible that uptake of NE may generate 

novel antigens other than CCNE.    There are however many challenges in identifying target antigens.  

First, most antigen-specific T-cell receptors (TCRs) have low affinity for their target MHC-peptide 

complex.  This makes using biochemical techniques relying on high affinities difficult.204  In addition, 

the majority of TCRs are polyspecific and can be activated by the parent peptide as well as similar 

“mimotopes” that have amino acid exchanges.205  Finally, TCRs recognize peptide-MHC complexes that 
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have undergone complex intracellular antigen processing (reviewed by Vyas et al).206  Recently, Siewert 

et al. identified a technology for unbiased identification of antigenic peptides complexed with MHC 

class I molecules that directly addresses some of these difficulties.204  The methodology involves 

plasmid-encoded combinatorial peptide libraries and a single-cell detection system.  Briefly, they use 

COS-7 cells as APCs.  They co-transfect MHC class I cDNA and a plasmid-coded combinatorial 

peptide library into the COS-7 cells thereby overcoming the intricacies of protein processing.  In 

parallel, they cotransfect T hybridoma cells with TCR-α and TCR-β chains207 and super GFP controlled 

by NFAT (nuclear factor of activated T cells).  TCR transfectants are seeded on top of COS-7 APCs and 

only those that contact with a COS-7 cell presenting the correct antigen will light up.  Highlighted APCs 

are isolated and the plasmid coding for the antigenic peptide can be isolated by subcloning.204  They 

validated their approach using the well-characterized TCR JM22 which is specific for HLA-A2 and the 

Flu58-66 peptide.  Purported benefits of this approach are that it is extremely sensitive; able to distinguish 

single mimotope-expressing cells from millions of negative cells.  Because the APCs and T cells are 

kept in contact by gravity, this methodology overcomes the requirement for high affinities of TCRs to 

the peptide-MHC complexes.  In addition, the technique uses immortalized cell lines that can be 

transfected and grown in large quantities.  In theory, this would allow for the investigation of antigens 

for TCRs from single T cells recovered using LCM from tumor specimens rather than requiring T cell 

lines from peripheral blood.204, 207  These investigators have previously reported a method to obtain 

single T cells from archived human tissues. 207  It is possible therefore that T cells could be isolated from 

tissue, their paired TCR α and β chains could be cloned and expressed, and their antigens characterized 

using the approach described above.   

 Uptake of NE by tumors with a significant inflammatory component may cause these 

tumors to express a broad array of neo-antigens not expressed in tumors lacking inflammation.  

Identification of such antigens may allow for the identification and development of immunotherapeutic 

strategies.  One clinical scenario where this may be relevant is high-grade triple-negative breast cancer.  

These tumors have an intense immune cell infiltrate.208  It is possible therefore that uptake of NE from 
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the tumor microenvironment in triple-negative breast cancer may generate neo-antigens that could be 

targeted therapeutically.  This would be an important finding because currently patients with triple-

negative breast cancers have limited therapeutic options beyond standard chemotherapy regimens.  

Despite the fact that these regimens do have clinical activity as evidenced by high pathologic complete 

response rates (35-40%) to neoadjuvant chemotherapy, these patients have a paradoxical shortening of 

progression free- and OS 209 suggesting a need for novel therapeutic strategies. 

Enhanced antigen processing and presentation 

 The first human tumor associated antigen gene to be identified was melanoma-associated 

antigen 1 (MAGE1) which encodes the MZ2E antigen. 210  Since then, hundreds of naturally processed 

and presented tumor antigens have been identified 211 and a list of these antigens is available at the 

cancer immunity peptide database 

(http://archive.cancerimmunity.org/peptidedatabase/Tcellepitopes/htm).   Having shown that NE uptake 

enhanced presentation of the CCNE antigen, we would postulate that it may have a broader impact on 

other known antigens.  There are several mechanisms by which this may happen.  First, NE could 

increase degradation of the antigenic proteins leading to increased generation of peptides.   Second, NE 

cleavage of peptides could create novel protein products that may be cleaved differently than the parent 

proteins, thereby uncovering novel peptides. Third, NE uptake may impact genes associated with 

antigen processing and presentation machinery which would enhance susceptibility to a wide range of 

antigens.   

 We have recently performed experiments looking at the effect of NE uptake on the 

susceptibility of HER2-expressing tumor targets to lysis by HER2-specific CTL.  HER2 is a well 

described tumor antigen in breast cancer.  Several peptides from the HER2 protein have been 

demonstrated capable of inducing HER2-specific CTLs including E75 (HER2369-377:KIFGSLAFL), a 

nonamer derived from the protein’s extracellular domain.212, 213  E75 is the immunodominant epitope 

from the HER2 protein and has been studied extensively in both the laboratory and the clinic.  The 

http://archive.cancerimmunity.org/peptidedatabase/Tcellepitopes/htm
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combination of E75 plus the immunoadjuvant GM-CSF has been evaluated in phase I and II clinical 

trials with reports demonstrating efficacy in appropriately selected patient populations.214, 215 

Interestingly, the vaccine appears to stimulate the most robust immune response in patients whose 

tumors have low to intermediate HER2 expression (versus HER2 overexpression which is the clinical 

standard required for patients to be treated with trastuzumab, the monoclonal antibody targeting HER2).  

We have generated preliminary data from cytotoxicity assays using E75-specific CTL as effectors and 

MDA-MB-231 (HLA-A2+; low HER2 expression) as targets.  MDA-MB-231 cells maintained for 24 

hours in NE-supplemented media were more susceptible to lysis by the E75-specific CTL.  These 

experiments need to be repeated and additional studies performed looking at other TAA (i.e. MAGE, 

WT1).   Further investigation into the mechanism must be undertaken however; these early results 

suggest that the effect of NE uptake on antigen processing and presentation may be more ubiquitous 

impacting the expression of multiple TAA derived-peptides complexed with HLA-A2 molecules on the 

tumor cell surface. 

 Furthermore, we have recently completed experiments using gene expression profiling that 

support the idea that NE uptake more broadly enhances antigen processing and presentation.  Briefly, 

RNA was extracted from MDA-MB-231 cells maintained in standard media and NE-supplemented 

media for 1 and 13 hours.  This was used in gene expression arrays on the Illumina platform, and data 

was analyzed using Ingenuity pathway analysis.  This analysis demonstrated upregulation of 

components of the antigen presentation pathway.  There were 10 genes in the pathway in particular that 

were upregulated after NE uptake: CANX (calnexin); HLA-DMA (MHC class II, DM alpha); HLA-

DMB (MHC class II, DM beta); HLA-DOA (MHC class II, DO alpha); HLA-DPA1 (MHC class II, DP 

alpha 1); HLA-F (MHC class I, F); MR1 (MHC class I-related); PSMB9 (proteasome subunit, beta type, 

9 also known as LMP2, large multifunctional protease 2),; TAP1 (transporter 1); TAPBP (TAP binding 

protein, tapasin). 

 Several of the genes upregulated after NE uptake impact MHC class II presentation, while 

others have critical roles in MHC class I antigen presentation.  Briefly, as reviewed by both Neefjes et 
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al. 189and Cresswell et al.195 and as illustrated in figure 18, the MHC class I heavy chain, a 

transmembrane glycoprotein, binds to the membrane-associated ER chaperone protein calnexin.  At this 

stage, folding and the formation of disulfide bonds occurs.  Once the MHC class I heavy chain 

dissociates from calnexin, it binds β2-microglobulin and is incorporated into the peptide-loading 

complex (PLC).  Other components of the PLC include the two transporter associated with antigen 

processing subunits (TAP1 and TAP2), the transmembrane glycoprotein tapasin, the soluble thiol 

oxidoreductase ERp57 and the ER chaperone calreticulin.  Our gene expression data shows that the 

genes encoding three proteins described thus far, calnexin, TAP1 and tapasin are upregulated after NE 

uptake.  Peptides are transported from the cytosol into the ER via TAP and if necessary, are trimmed by 

an ER-associated peptidase (ERAP) to 8-10 amino acids, the length required for association with MHC 

class I molecules.   If the peptide has the correct sequence, it can bind the MHC class I- β2-

microglobulin heterodimer which is then released from the PLC.  The assembled MHC class I molecule 

leaves the ER and travels to the cell surface via the golgi apparatus.  Ongoing studies in the laboratory 
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are being performed to verify the gene expression data and further investigate the effects of NE uptake 

on these components of the antigen processing and presentation machinery. 

 If we prove that NE uptake has a more general effect on enhancing antigen processing and 

presentation, it would be relevant to determine if this effect extends beyond tumor cells to include 

virally infected cells.  To evaluate this, a viral antigen model system could be used.  Briefly, EBV-

specific T cells have been generated and used clinically in the treatment of EBV-related infections and 

lymphoproliferative disease arising after hematopoietic stem cell transplant.216 EBV-specific T cell 

clones are available and could be used as effectors in cytotoxicity assays versus lymphoblastoid cell 

lines pre- and post-NE uptake.  If NE uptake enhanced presentation of viral antigens in addition to 

enhancing presentation of tumor antigens, this would be a significant observation as it would suggest an 

additional important role for neutrophils and NE in inflammation and infection. 

Naïve T cell infiltration, activation and differentiation 

 Central tolerance occurs during lymphocyte development in either the thymus (T cells) or 

bone marrow (B cells).  In the case of the former, T cells with high affinity receptors for MHC/self-

peptide complexes are eliminated by the process of negative selection.  T cells that survive negative 

selection leave the thymus and migrate to the periphery where they can encounter antigen, become 

activated, and differentiate into effector CTLs.  In order for a T cell to become activated, it must bind 

the MHC/peptide complex via its TCR then receive a co-stimulatory signal from molecules such as 

CD80 or CD86 which are recognized by CD28 on the T cell surface.  Co-stimulatory molecules 

including CD80 and CD86 are limited to APCs.217 Although a full review of co-stimulation is outside 

the scope of this chapter, it should be noted that there are other co-stimulatory molecules on the T cell 

surface including OX40 (CD134) and 4-1BB (CD137), members of the TNFR family, which provide 

co-stimulation when bound by their ligands, OX40L and 4-1BBL respectively, as well as GITR, CD27 

and HVEM. 218-220  T cells also have inhibitory molecules on their cell surface including CTLA-4, which 

is a homologue of CD28 that also binds CD80 and CD86.221, 222 Programmed cell death-1 (PD-1) 
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receptor is another inhibitory molecule on the T cell surface that can bind PD-L1 or PD-L2.223, 224   

CTLA-4 and PD-1 blocking antibodies are being used clinically.225, 226 Other inhibitory receptors 

include LAG-3, TIM-3, BTLA and VISTA.218, 219  Binding of the TCR without adequate co-stimulation 

induces anergy and the T cell subsequently undergoes apoptosis.   

 Although co-stimulatory molecules are critical in immune priming, the immune 

microenvironment where naïve T cells interact with APC is also important. The process of CD8+ T cell 

activation is largely thought to occur in secondary lymphoid organs including lymph nodes.  Naïve T 

cells enter lymph nodes through high endothelial venules. 227  Once in the lymph node, T cells encounter 

APCs presenting peptide-MHC ligands and can become activated.  Several reports describe CD8+ T cell 

activation in tumor-draining lymph nodes.228-230  This is due either to direct priming by tumor cells that 

have migrated to the lymph node from the tumor site or cross-priming by DCs in the lymph node.  

Cross-priming is the initiation of a CD8+ T cell response to a cross-presented antigen; it is critical for 

the initiation of immune responses not only to tumors but to viruses that do not infect APCs.    

 Although relatively few studies have investigated tumors as sites for naïve T cell activation, 

tumors have features that may make them an attractive site for T cell priming.  A tumor has a large 

supply of antigen and contains multiple cells types that function as APCs to include macrophages and 

DCs. 231  There are several reasons that the tumor has not been extensively investigated as a site for 

naïve T cell activation.  One reason may be that, due to the presence of MDSCs, regulatory T cells, 

TGF-β, and indoleamine 2,3-dioxygenase, tumors are considered to be immunosuppressive.  A second 

reason may be that cancer cells lack co-stimulatory molecules which are required for T cell activation.  

Another reason may be the fact that naïve T cells have high CD62L and CCR 7 expression which guides 

their migration to lymph nodes and low expression of adhesion molecules and chemokines that may 

guide them to tumors. 232  There are however studies demonstrating naïve T cell infiltration of peripheral 

tissues.233, 234  There are also studies where tumors engineered to express LIGHT, a member of the TNF 

superfamily, or lymphotoxin α can attract T cells. 235  A more recent study by Thompson et al. used a 

model of C57BL/6 mice bearing B16-cOVA tumors to show that tumors can support activation of naïve 
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CD8+ T Cells.231  Briefly, naïve OT-1 T cells were adoptively transferred into mice and within 24 hours, 

significant numbers of activated T cells were found within the tumors.  Experiments performed in mice 

treated with FTY720, a phingosine 1-phophate analogue that prevents T cell egress from lymph nodes 

or in mice lacking lymph nodes, confirmed that the tumor masses, without contribution from draining 

lymph nodes, supported activation of CD8+ T cells.  The investigators further showed that these CD8+ T 

cells, once activated, could proliferate and had effector function.  They confirmed their findings in a 

second tumor model using Lewis lung carcinoma (LLC) transfected with OVA.  The authors suggest 

that tumor infiltration by naïve T cells may result from normal migration of these naïve T cells through 

nonlymphoid sites or due to their attraction to an inflamed nonlymphoid site.  They further postulate 

that the chronic inflammation in a nonlymphoid site such as a tumor could drive the development of a 

tertiary lymphoid organ (TLO). 231  TLOs have a highly organized structure where T cells can interact 

with APCs. 236  Additional work is needed to better understand the requirements for naïve T cell 

infiltration into tumors.  However, given our findings that uptake of NE by tumor cells enhances antigen 

presentation, it is interesting to consider that the microenvironment required to activate CD8+ T cells is 

one with significant inflammation, to include neutrophils, which can secret NE that enhances antigen 

presentation and in the appropriate microenvironment, may contribute to immune priming. 

Immunotherapy targeting CCNE and PR1  

 In this thesis, we have shown data suggesting increased expression of HLA-A2-restricted 

peptides (CCNE144-152 and PR1) on the tumor cell surface following NE uptake.  This suggests that NE 

uptake makes these cells more attractive targets for antigen specific T cells.  With respect to specific 

immunotherapy strategies, there are active and passive strategies that could be utilized.  For CCNE, our 

group is interested in an active immunization strategy using the CCNE144-152 peptide mixed with an 

immunoadjuvant administered intradermally to elicit a CCNE-specific CTL response.  Working with a 

statistical collaborator, Dr. Peter Thall, we have designed a phase I/II trial that will enroll breast cancer 

patients receiving neoadjuvant chemotherapy.  The standard neoadjuvant chemotherapy regimen 

administered at MD Anderson includes weekly paclitaxel for 12 cycles followed by 4 cycles of 5-
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fluorouracil, adriamycin and cyclophosphamide (FAC) administered every 3 weeks.  The vaccine will 

be given during the FAC portion of their treatment with inoculations occurring 2 weeks after FAC 

dosing to correspond with early recovery of the patients’ white blood cell counts, and therefore optimal 

immune priming.  The trial’s primary endpoints include assessing safety and toxicity as well as an 

immune response – the doubling of CCNE-CTL from baseline as measured by tetramer staining.  

Conduct of the trial will require completion of an Investigational New Drug application. 

 A PR1 vaccine has already been investigated in leukemia.  A PR1 vaccine has already been 

investigated in leukemia.  My advisor, Dr. Molldrem, who developed the PR vaccine showed its 

efficacy in patients with relapsed/refractory acute myeloid leukemia, CML or myelodysplastic 

syndrome.237, 238  In this group of patients (n = 66) with highly refractory disease who were treated with  

the PR1-peptide vaccine, 13 achieved complete remission (CR). Additionally, immunologic response 

(IR) (defined as a ≥2-fold increase in PR1-CTLs) was observed in 25 of 53 patients (47%), and event-

free survival (8.7 months) was longer in these patients than in unvaccinated patients (2.4 months) (P = 

0.03); 9 of the 25 patients with IR showed CR. In a study enrolling 8 patients with myeloid 

malignancies, Rezvani et al. administered a vaccine combining 2 leukemia-associated antigenic 

peptides, WT1 and PR1 in Montanide adjuvant.121  The vaccine was well tolerated with only grade 1 to 

2 toxicity.  It was also effective in eliciting PR1-specific CTL as demonstrated using tetramer staining 

of PBMC after vaccination.  It is possible that a PR1-peptide vaccine would be efficacious in breast 

cancer.  Furthermore, our group is also interested in exploring a passive immunotherapy strategy, 

specifically treatment with 8F4, the monoclonal antibody complex identified in the laboratory of Dr. 

Molldrem that recognizes the PR1/HLA-A2 complex.188  Preliminary data from animal models of 

leukemia suggest therapeutic efficacy of 8F4 in leukemia, therefore we are interested in further 

evaluating the use of 8F4 in solid tumors that cross-present NE and PR3.    

 Animal models of cross-presentation have shown varying results.  Some models have 

demonstrated cross-presentation that remains localized to the tumor-draining lymph node, some show 

cross-tolerance, and others have shown induction of a weak, largely ineffective CTL response.202, 239-241 
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Because many tumors in in vivo animal models lack intense inflammation and do not have the pathogen-

associated molecular patterns that drive a strong CTL response, the weak responses may not be 

unexpected.242  To further evaluate NE and PR3 cross-presentation and the efficacy of the 8F4 antibody 

targeting the PR1/HLA-A2 complex in vivo, my advisor, Dr. Molldrem, in collaboration with Dr. 

Gheath Alatrash, is using an in vivo xenograft mouse model with MDA-MB-231 breast cancer cells in 

NOD-scidIL2Rgammanull mice.  Preliminary studies have shown an inflammatory infiltrate in these 

tumors including granulocytes that secrete NE and P3 within the tumor microenvironment.  In addition, 

further in vivo inflammation will be induced by intra-tumoral injection of lipopolysaccharide and 

recombinant TNF 1 week after tumor establishment.  These reagents have been shown to induce acute 

inflammation with a marked neutrophil infiltrate peaking by 24 hours. 243, 244 Completion of such in vivo 

studies will strengthen 8F4 phase I trials in patients with breast cancer. 

 The data presented in this thesis demonstrating CCNE to be a novel TAA and showing 

cross-presentation of NE and PR3 support the further investigation of such immunotherapeutic 

strategies.  Ongoing work by our group is aimed at translating our findings to the clinic with the design 

and conduct of clinical trials evaluating CCNE- and PR1-targeted immunotherapy. 

Modification of the tumor microenvironment to enhance response to immunotherapy 

 Immunotherapy, such as the strategies discussed above, have the potential to improve 

patient outcomes.  It is possible that immunotherapeutic strategies could be augmented by incorporation 

with other treatments that modulate the tumor microenvironment.  Examples of this include sequencing 

immunotherapy with standard chemotherapy regimens, as suggested above in the proposed CCNE 

vaccine trial, or using known immune stimulating agents such as IFN-α. 

 It was long thought that chemotherapy affected only the tumor cells without impacting other 

components of the tumor microenvironment to include immune cells.  In fact, National Cancer Institute 

guidelines for drug screening, developed in the mid-1970s, have advocated using xenografts of human 

cell lines in immunodeficient mice.245, 246  However, there is now evidence that the immune system 
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contributes to the anti-tumor effects of chemotherapy (reviewed by Zitvogel et al.).245  

Chemotherapeutic agents can elicit anti-tumor immunity in several ways including the induction of 

immunogenic tumor cell death and the stimulation of pro-inflammatory cytokine production.  As an 

example of the former, anthracyclines and platinum-based drugs promote immunogenic cancer cell 

death by calreticulin exposure and high-mobility group box 1 (HMGB1) protein release.247-249  

Calreticulin translocates from the ER of the tumor cell to the surface where it acts as an “eat-me” signal 

for DCs.  HMGB1 is a nuclear protein released from dying tumor cells that is a ligand for TLR4, 

therefore it has a role in DC-mediated cross-presentation of tumors to T cells.  Experiments have shown 

that tumor cells treated with anthracyclines then injected into mice can elicit a specific DC and 

antitumor T-cell response.250  DNA-damaging agents stimulate a complex response that includes 

activation of the p53 transcription factor.  This in turn can promote the release of pro-inflammatory 

cytokines and chemokines that recruit neutrophils, macrophages and natural killer cells to the tumor 

site.251  Put into context with our findings, chemotherapy could contribute to an enhanced response to 

vaccination with a CCNE-derived peptide vaccine in several ways.  First, it could promote tumor cell 

death resulting in release of antigenic proteins including CCNE that are presented by DCs in the tumor 

microenvironment.  Second, it could result in the recruitment of immune cells including neutrophils to 

the microenvironment.  Once there, neutrophils would release NE which could be taken up by tumor 

cells enhancing CCNE antigen processing and presentation. 

 Another strategy to modulate the microenvironment thereby enhancing response to 

immunotherapy would be to administer an immune-stimulating agent such as recombinant IFN-α2b 

which is currently approved for use in patients with high risk melanoma.   In this patient population, 

IFN- α2b has led to improvements in both DFS and OS.252  IFN- α2b has multiple mechanisms of action 

that include upregulation of MHC I molecules.253  It is possible therefore that if administered in patients 

with a tumor that has a significant inflammatory infiltrate, it may enhance response to CCNE- or PR1-

targeted therapy by enhancing presentation of these antigens.  Specifically, the neutrophils present in the 

microenvironment would release NE which could be taken up by the cancer cells thereby increasing 
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substrate availability for presentation on MHC class I molecules which may be  upregulated by IFN- 

α2b. 

Conclusion 

 In conclusion, we have provided evidence for a novel mechanism linking NE, a protease 

secreted by innate immune cells, to adaptive immune responses against novel antigens in breast cancer.  

Specifically, we have shown that after uptake of NE, breast cancer cells become susceptible to killing by 

CCNE- and PR1-targeting therapies.  Importantly, these initial studies evaluating the effects of NE 

uptake in breast cancer, have led to additional experiments which have provided evidence that NE 

uptake may have a more ubiquitous effect on antigen processing and presentation.  Further studies, as 

described above, are required to further evaluate this mechanistically.  This work has identified a line of 

investigation that will have broad applicability to immunotherapy against multiple tumor types.    
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SUPPLEMENTARY FIGURES 

All of the supplementary figures were included in our recently published manuscript (Mittendorf EA, et 

al. Cancer Res 72:3153-3162;2012) and are used with permission. 
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