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TARGETING TRAF6 FOR CANCER THERAPEUTICAL DEVELOPMENT 

John Kenneth Morrow, B.S. 

Advisor: Shuxing Zhang, Ph.D. 

 Tumor necrosis factor (TNF)-Receptor Associated Factors (TRAFs) are a 

family of signal transducer proteins. TRAF6 is a unique member of this family in 

that it is involved in not only the TNF superfamily, but the toll-like receptor 

(TLR)/IL-1R (TIR) superfamily. The formation of the complex consisting of 

Receptor Activator of Nuclear Factor κ B (RANK), with its ligand (RANKL) 

results in the recruitment of TRAF6, which activates NF-κB, JNK and MAP 

kinase pathways. TRAF6 is critical in signaling with leading to release of various 

growth factors in bone, and promotes osteoclastogenesis. TRAF6 has also been 

implicated as an oncogene in lung cancer and as a target in multiple myeloma. In 

the hopes of developing small molecule inhibitors of the TRAF6-RANK 

interaction, multiple steps were carried out. Computational prediction of hot spot 

residues on the protein-protein interaction of TRAF6 and RANK were examined. 

Three methods were used: Robetta, KFC2, and HotPoint, each of which uses a 

different methodology to determine if a residue is a hot spot. These hot spot 

predictions were considered the basis for resolving the binding site for in silico 

high-throughput screening using GOLD and the MyriaScreen database of 

drug/lead-like compounds. Computationally intensive molecular dynamics 

simulations highlighted the binding mechanism and TRAF6 structural changes 

upon hit binding. Compounds identified as hits were verified using a GST-pull 

down assay, comparing inhibition to a RANK decoy peptide. Since many drugs 
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fail due to lack of efficacy and toxicity, predictive models for the evaluation of 

the LD50 and bioavailability of our TRAF6 hits, and these models can be used 

towards other drugs and small molecule therapeutics as well. Datasets of 

compounds and their corresponding bioavailability and LD50 values were curated 

based, and QSAR models were built using molecular descriptors of these 

compounds using the k-nearest neighbor (k-NN) method, and quality of these 

models were cross-validated.  
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Introduction:  

 TNF-Receptors Associated Factors (TRAFs) are a family of adapter proteins, 

originally identified in humans and rodents by their association to the cytoplasmic tails of 

different members of the TNF-Receptor (TNFR) family [1]. In mammals, TRAFs 

contribute to the regulation of as many as 20 TNFRs [2-5]. TRAFs are primarily involved 

in the signals regulating the inflammatory and immune systems, as well as regulating 

apoptosis. There are seven members (TRAF1 through TRAF7) of the TRAF family, and 

all but TRAF7 are characterized by a conserved, 180 residue fold called the TRAF 

domain (TD). It is the TD that supports the interaction with TNFRs and other adapter 

proteins; as one would expect, TRAF7 does not directly interact with TNFRs [3, 6]. The 

TRAF domain has an α-helix segment followed by eight anti-parallel β-strands (also 

called the TRAF-C domain) which fold into a β-sandwich structure, and usually 

oligomerizes as mushroom-shaped trimers that are stabilized by the coiled-coil 

interactions between the α-helices of each TD monomer [2, 6, 7]. As for the other 

structural features in TRAFs, all contain one to seven zinc finger domains [8] and all but 

TRAF1 have N-terminal RING-finger (Really Interesting New Gene) domain. All 

mammalian TRAFs localize to the cytoplasm except TRAF4 which is found in the 

nucleus. 

Among the TRAF family members, TRAF6 has distinct features and 

physiological functions that are not shared in other TRAFs. TRAF6 was first identified 

by a yeast two-hybrid screen using the cytoplasmic tail of CD40 as bait and 

independently by expressed sequence tag (EST) screening [9, 10]. Protein sequence and 

phylogenetic studies revealed that is the older and less conserved TRAF family member 

despite maintaining all of the structural characteristics of the other members of the 
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family. TRAF6 shares the smallest amount of homology to the prototypical TRAF 

domain, and has the most divergent TRAF-C domain [11].  The unique function of 

TRAF6 is primarily determined by its TRAF-C domain, which does not share the same 

peptide motif interactions as TRAF1, -2, -3 or -5 [12-14]. TRAF6 binds to a consensus 

sequence of: xxPxExx(Ac/Ar) (where the last residue is aromatic or acidic), whereas 

TRAF1, -2, -3, or -5 bind to a (P/S/A/T)x(Q/E)E motif [2, 8, 15-17]. Another 

distinguishing feature of TRAF6 from other TRAFs is its ability to transduce signals 

from the TLR/IL-1R superfamily as well as the TNFR superfamily [18]. TRAF6 does not 

have direct interaction with members of the TLR/IL-1R family. Instead, recruitment of 

adaptors occur upon its activation, such as the myeloid differentiation factors 88 

(MyD88), toll/interleukin-1 receptor adaptor protein (TIRAP), and TRIF-related adaptor 

molecule (TRAM) [1]. Since TRAF6 is a central hub for a wide variety of signals, it is 

not surprising that it can regulate an array of physiologic processes, including adaptive 

and innate immunity, bone metabolism, and the development of structures such as 

mammary glands, central nervous system, and the skin. 

TRAF6 has an N-terminal RING-finger domain, followed by four zinc-finger 

domains, the coiled-coil domain, and finally the C-terminal TRAF domain (Figure 1). 

Again, this TD is comprised of eight anti-parallel β-strands that form a stable sandwich 

structure, and are preceded by a single α-helix segment. The unique sequence specificity 

of TRAF6 does not overlap with other TRAF members; it interacts directly with a subset 

of the TNFR superfamily, two such examples of which are CD40 and Receptor activator 

of nuclear factor-kappa B (RANK, also known as TRANCE-R).  
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Figure 1. Domains of the TRAF6 protein.  

The TRAF6 Protein consists of four parts: a Really Interesting New Gene (RING) 
finger domain, four zinc finger (Zn finger) domains, a coiled-coil domain, and a C-
terminal TRAF-C domain. The RING domain acts as an E3 ubiquitin ligase. 

In addition to the signal transduction of the TNFR superfamily, TRAF6 is also a 

significant transducer for the interleukin-1 receptor (IL-1R)/Toll-like receptor (TLR) 

superfamily. Within the IL-1Rs and TLRs resides a component called the TIR domain; it 

is this domain that recruits a family of TIR-domain containing signaling proteins, 

including MyD88, Mal/TIRAP, TRIF, and TRAM [19]. As a result, these signaling 

complexes recruit Serine/Threonine kinases in the IRAK family (IRAK1, IRAK2, IRAK-

M and IRAK4), which then interact with TRAF6 to activate downstream signal 

transduction [20-23].  

While TRAF6 mediates signaling in a wide spectrum of cellular physiological 

functions, the interaction of TRAF6 and RANK are of special interest. The pair of RANK 

and RANK ligand (RANKL) is essential for bone remodeling by regulation of osteoclasts 

development and function [24] , mammary gland development [25] and lymph node 

organogenesis [26, 27]. Also worthy of mention is the fact that the RANK/RANKL pair 

controls the incidence and onset of progestin-driven breast cancer [28], and plays a 

significant part in migration and metastatic behavior of cancer cells, acting as a fertile 
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soil for metastatic tumors going to the bone [29]. When the RANK/RANKL complex is 

formed, TRAF6 is recruited, which then results in the activation of the NF-κB 

transcription factor, as well as members of the mitogen-activated protein (MAP) kinase 

family, which include: MAPK, c-Jun N-terminal kinase (JNK), and p38. TRAF6-

deficient mice have a defect in osteoclastogenesis, and develop osteopetrosis as a result 

[30-32]. TRAF6 is the critical adapter in RANK-mediated osteoclast differentiation, and 

the TRAF6/RANK interaction is a potential target for inhibition in the treatment of 

various bone diseases, and might have implications in the areas of breast/lymph node as 

well.  

New evidence from copy number alterations shows that TRAF6 is an oncogene in 

lung cancer. Overexpression of TRAF6 results in tumor formation and malignant 

transformation of fibroblasts, and RNA interference (RNAi)-mediated knockdown of 

TRAF6 decreases adenocarcinoma in two lung cell lines that have TRAF6 amplification 

[33]. In these two lung cell lines, RAS required TRAF6 for its oncogenic capabilities. 

This finding provides an explanation for constitutive NF-κB activation in RAS-driven 

cases of lung cancer. 

TRAF6 has been shown to play a major role in the signal transduction of 

inflammation, cell survival and proliferation. Down-regulation of TRAF6 is beneficial in 

a therapeutic setting, since there have been many implications of TRAF6 in different 

disease states. TRAF6/RANK and their neighboring binding partners have been shown to 

contain valid, druggable targets in two notable areas: The RANK/RANKL interaction and 

TRAF6 decoy peptides. The RANK/RANKL portion of this pathway has seen 

monoclonal antibodies against it in the form of Denosumab, which is an anti-RANKL 

human monoclonal antibody developed by Amgen for use in the treatment of bone 
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loss/destruction due to rheumatoid arthritis, or metastatic cancers [34]. It is the first 

RANKL inhibitor to be approved by the FDA, and it is showing promising results for 

multiple myeloma with bone metastases [35]. Although germline deficiencies in 

RANK/RANKL show strong B cell defects and it was suggested that RANKL inhibition 

could trigger immunologic side effects, B cell specific RANK knockout mice in fact did 

not show obvious direct defects in B cell physiology or development [36]. The other 

notable area is that of cell-permeable peptides that bind to TRAF6 (TRAF6 decoy 

peptides, referred to as T6DP) and have been developed that can target the 

TRAF6/binding peptide interaction, and these have been shown to prevent RANK 

signaling [15]. These peptides display specificity for the TRAF6-binding domains, and 

the core motif (RKIPTEDEY) inhibited RANKL-mediated osteoclastogenesis and bone 

resorption. RANKL-dependent activation of NF-κB undergoes a dose-dependent 

inhibition upon pre-treatment with these decoy peptides, and primary mouse monocytes 

differentiation into functional bone resorbing osteoclasts  were blocked as well [37]. 

While these peptides are effective in blocking the interaction in experimental protocols, 

their large size and potential sensitivity to endopeptidases renders them unsuitable as 

clinical therapeutic agents. These decoy peptides might find future use when used in 

liposomal or nanoparticle delivery techniques. 

TRAF6’s role and mechanism in signaling in its diverse pathways becomes clear 

when one examines its ubiquitin ligase activity. Ubiquitin ligases attach a small protein 

called ubiquitin to target proteins; this ubiquitin can then induce either degradation of the 

target protein (via the proteasome) or can promote interactions with other proteins that 

result in signal transduction. Two main factors of ubiquitination allow for the 

discrimination between degradation and signal transduction: the number of ubiquitin 
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proteins added (monoubiquitination versus polyubiquitination), and which specific lysine 

residue that gets modified. Lysine48 (K-48) linked ubiquitination is recognized by the 

26S proteasome and this ubiquitination triggers the protein degradation. Lysine63 (K-63) 

linked ubiquitination is an important post-translational modification that can facilitate 

various biological processes, including: activation of kinase signaling, endocytosis of 

cellular receptors, protein localization and trafficking, and repair of damaged DNA [38-

40]. On TRAF6, the intact RING domain and the first zinc finger are required for K-63 

auto-ubiquitination of TRAF6, and subsequent activation of downstream activation of 

targets such as: IL-1, LPS, IKK, JNK, NF-κB, and osteoclasts differentiation via RANKL 

signaling [41-43]. A recent crystal structure has shown the RING domain interacts with 

the ubiquitin-conjugating enzyme (E2) called Ubc13, and that the first zinc finger has a 

structural role in binding to Ubc13 [44]. Another significant finding in the ubiquitin 

pathway is that Akt (the serine/threonine kinase, also called protein kinase B) 

ubiquitination is triggered by TRAF6 E3 ligase activity. TRAF6 adds ubiquitin to Akt 

and induces Akt ubiquitination in vitro and in vivo and is essential for Akt ubiquitination 

and localization to the membrane where Akt is then phosphorylated and activated [45]. 

This ubiquitination of Akt occurs via the K-63 pathway and does not trigger Akt 

degradation. Other kinases that are activated by TRAF6 K-63 ubiquitination are: 

transforming growth factor-β-activating kinase 1 (TAK1) [46, 47], mixed linage kinase 3 

(MLK3) [48], and interleukin-1 receptor-associated kinase (IRAK1) [49]. 

TRAF6 is a prime drug target candidate to inhibit using rational drug design. To 

date, there are no known small molecule inhibitors of TRAF6 in the C-terminal region. 

This is surprising, as the above data clearly show that TRAF6 is a highly significant and 

valid target for the treatment of bone-related diseases. The discovery of TRAF6 as an 
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oncogene makes its use as a target even more appealing. The availability of high-

resolution crystal structures of the C-terminus of TRAF6 bound to both RANK and CD-

40 and the ineffectiveness of peptide-based treatments calls for the use of small molecule 

inhibitors through structure-based drug design. The effectiveness of potential hits that are 

discovered by this method can have their effectiveness compared to decoy peptides as a 

positive control. From the publication describing the crystal structures, mutational 

analysis was carried out to indicate which residues were required for binding to binding 

peptides. Three residues on TRAF6 have been shown to abolish binding to CD40 (a close 

analog to RANK) that shares the core motif as RANK; Arg392, Phe471, and Tyr473 

(Figure 2); these residues can be considered hot spot residues [15]. These residues are a 

good starting point for which to carry out structure-based drug design, as small molecule 

inhibitors can interact with these hot spots and prevent formation of the TRAF6/RANK 

complex. Using small molecules to inhibit the formation of protein-protein interactions is 

a relatively recent technique, and hot spots have been used successfully to disrupt and 

inhibit protein-protein interactions for a multitude of targets [50]. 
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 Figure 2. Structure of TRAF6 (green) bound to RANK peptide (magenta).  
 
Residues experimentally determined to be hot spots (Arg392, Phe471, and Tyr473) 
are displayed as green sticks. Hydrogen bonds between RANK and TRAF6 
displayed as dashed magenta lines. Figure generated in PyMOL. 
 

In the current study, I will outline the steps that will aid in bringing a TRAF6 

small molecule inhibitor closer to clinical relevance. In the hopes of developing TRAF6 

as a valid target for small molecule therapeutics, computational prediction of hot spots 

was carried out on the protein-protein interaction of TRAF6 and its binding peptides. 

Three methods were used: Robetta, KFC2, and HotPoint, each of which uses a different 

methodology to determine if a residue is a hot spot. These hot spot predictions were 

considered the basis for resolving the binding site for TRAF6 in silico high-throughput 

screening. Screens on the crystal structure of TRAF6 in complex with RANK will be 
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carried out using combined docking programs and our database of 10,000 drug/lead-like 

compounds. Flexibility of side-chains that contribute significantly to the binding will be 

considered. During hit selection, chemical diversity and drug-like properties will be 

considered. Computationally intensive molecular dynamics simulations will be conducted 

using GROMACS to determine the binding mechanism and TRAF6 structural changes 

upon hit binding. Compounds identified as hits will be verified using a GST-pull down 

assay, comparing inhibition to a RANK decoy peptide.  

Since many drugs fail due to lack of efficacy and toxicity, predictive models for 

the evaluation of the LD50 and bioavailability of our TRAF6 hits were developed, and 

these models can be used towards other drugs and small molecule therapeutics as well. 

Datasets of compounds and their corresponding bioavailability and LD50 values were 

curated, and predictive QSAR models were built using molecular descriptors of these 

compounds using the k-nearest neighbor (k-NN) method, and quality of these models 

were cross-validated using leave-one-out cross validation. 

 

Methods:  

1. Computational Hot Spot Predictions of TRAF6  

 Since the three hot spots of the TRAF6/binding peptide interaction have been 

described previously, computational prediction tools were used and compared to the 

actual results, in an attempt to validate these predictions. Additionally, these predictions 

can predict residues that are weak hot spots, or calculate potentials of residues that were 

not biologically tested; these predictions were then used to guide the virtual screening. 

The computational tools were: Robetta [51], an energy based computational alanine 
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scanning technique, HotPoint [52], a simple empirical model based on accessible surface 

area, and KFC2 [53, 54], a knowledge-based and machine learning approach. 

2. Preparation and Analysis of Target Receptor 

 The crystal structures of the C-terminal region of TRAF6 in complex with the 

RANK and CD40 polypeptide were obtained from the Protein Data Bank [55] (1LB5 and 

1LB6, respectively) [15]. These crystal structures display residues Gln347 to Thr501 of 

TRAF6 (the TRAF6 sequence has 522 residues in total). 1LB5 was selected as the target 

for virtual screening since it has the RANK peptide bound to the TRAF6 structure, and 

the A chain was analyzed in complex with the B chain (RANK peptide) for virtual 

screening. Structural water molecules were not considered to be significant to binding, 

and these water molecules along with the B chain were removed from this 1LB5 structure 

using PyMOL [56].  

3. Chemical Library Selection 

 The dataset of compounds to be screened was the 10,000 compound MyriaScreen 

Diversity Collection from Sigma-Aldrich in collaboration with TimTec. This was 

selected for its high diversity and good drug-like and lead-like properties, as well as the 

commercial availability of high-purity compounds. MyriaScreen was assembled from an 

original pool of 300,000 Sigma-Aldrich and TimTec compounds, and TimTec’s 

proprietary software was used to filter this original pool on the basis of diversity. Then, 

additional filters were set to consider MW (>225 and <600), cLogP, H-acceptors, H-

donors, and rotatable bonds. 99.04% of compounds in the MyriaScreen collection satisfy 

all four rules of the Lipinsky rule of 5 [57].  
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 The MyriaScreen chemical dataset (in .sdf file format) was minimized with root 

mean square gradient of 1 x10-6 in MOE software from Chemical Computing Group [58] 

based on MMFF94x (Merck molecular force field 94x) [59] and partial charges. The 

MMFF94x force field is quite suitable for small molecules [60]. Minimization is required 

to reach optimal energy levels for ligands before submitting them to virtual screening. 

4. Virtual Screening 

 The MyriaScreen dataset was docked using GOLD from Cambridge 

Crystallographic Data Centre (CCDC) [61, 62]. Hydrogen atoms were added using 

GOLD program before docking was performed. The protein was treated as rigid, with no 

amino acid side chains considered flexible. The binding site residues were manually 

selected, and formed the cavity file. The residues selected were based on their proximity 

to the RANK peptide co-crystallized with TRAF6: Arg392, Phe410, Met450, Leu456, 

Leu457, Ala458, Phe459, Pro468, Lys469, Gly470, Phe471, Gly472, Tyr473, and 

Val474. Ten genetic algorithm runs were selected for each ligand, and search efficiency 

was set at 200% (double the default efficiency). Early termination of the docking of a 

given ligand was performed (meaning GOLD advanced to the next ligand) if the top 3 

solutions/conformations of a given ligand were within 1.5Å of each other. Although all 

scores were kept, only the top 2000 GoldScore solutions/conformations were written out 

as an SDF file. 

5. Processing of Results 

 The results from the docking were then clustered based on structural MACCS 

(Molecular ACCess System) fingerprints using MOE fingerprint clustering. The top 2000 

GoldScored compounds were entered into MOE, and their molecular fingerprints were 
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calculated. The metric used was the Tanimoto coefficient. Similarity and overlap were set 

at 80% to cluster similar compounds together. The result of this clustering was that 

compounds that shared 80% of their total molecular features with other compounds were 

merged into one cluster. For each cluster, the compound with the highest GoldScore in 

that cluster was selected as the representative for that cluster, and the others in that cluster 

were discarded. This clustering output contained 1619 compounds, indicating that 381 

compounds had at least 80% similar molecular features but lower GoldScores than other 

compounds in a single cluster, and these 381 were discarded. 

 

6. Selection of Compounds for Biological Testing 

 From these 1,619 ligands, the top 300 ligands were selected for individual 

molecular visualization and consideration. Each of the 300 ligands were individually 

visualized (using PyMOL) in their docked conformation on TRAF6, and compounds 

were selected for purchase and experimental testing via both pull-down and fluorescence 

polarization assays.  

 Three main criterions were considered sequentially in this final selection process. 

The first criterion was the degree to which the ligands’ conformation occupied the 

interaction site between TRAF6 and RANK. If the ligands’ conformation primarily 

existed outside of the interaction site, it was no longer considered a candidate. Second, 

the following qualities: conformation, binding affinity, and resulting “fit” within the 

TRAF6 binding site (compared to the corresponding RANK residues) were considered. 

Each ligand, given its orientation in the docked position, was evaluated on its ability to 

potentially block the binding of the RANK peptide. Along with these potential blocking 

effects, we also considered the potential binding affinity of the ligand in its pocket. This 
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included qualities such as hydrogen bonds, static and aromatic effects that could be 

formed from the ligand and TRAF6. The third and final consideration was the 

distinctiveness of the molecular scaffold when compared to other ligands in the result. 

The ligands were partitioned into “classes” based upon the individuality of their 

underlying scaffold and how this scaffold was oriented in the binding site. Ligands that 

shared a similar scaffold and orientation were considered to be in the same class, and 

would then share the same class number. We then assigned a “priority” to each molecule 

which was an aggregate of the second and third factors (conformation in the pocket and 

distinctiveness). This priority was listed as: low, medium or high. The priority then 

became similar to a degree of confidence for each ligand; compounds with “high” 

priority were regarded as most likely to yield good biological activity, and should be 

tested over the other low and medium confidence ligands.  

 

7. Biological Testing 

 To test potential hits for their ability to inhibit TRAF6 functions, a GST-RANK 

competitive inhibition assay was used. The procedure outlined here was provided by and 

performed primarily by Professor Bryant Darnay from the department of Experimental 

Therapeutics in MD Anderson Cancer Center. Human embryonic kidney (HEK) 293 cells 

that stably express FLAG-tagged TRAF6 were harvested and lysed in lysis buffer (20 

mM Tris, pH 7.4, 250 mM NaCl, 1 mM DTT, 1 mM sodium orthovanadate, 2 mM 

EDTA, 1% Triton X-100, 2 µg/ml leupeptin, and 2 µg/ml aprotinin 20 mM) for 30 min 

on ice.  The cell lysate was centrifuged for 15 min and the supernatant was collected and 

protein estimated.  Equal amounts (150-200 µg) of protein lysate in binding buffer (20 

mM Tris, pH 7.4, 150 mM NaCl, 1 mM dithiothreitol, 0.1% Nonidet P-40 and 2 mM 
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EDTA) were mixed with the indicated compounds or TRAF6 decoy peptide 3 (T6DP3) 

and allowed to rotate for 1 h at 4C, after which the samples were centrifuged for 5 min.  

The supernatant was then mixed with bacterial purified GST-RANK-(340-358) bound to 

glutathione-agarose beads for 2 h at 4oC with end-over-end rotation.  The samples were 

washed three times in binding buffer and two times in low salt buffer (20 mM TRIS pH 

7.4, 25 mM NaCl, and 1 mM DTT).  Bound proteins were then eluted in SDS-sample 

buffer and boiled for 5 min, subjected to SDS-PAGE, and immunoblotted with anti-

FLAG [37]. 

 

8. Molecular Dynamics simulations 

 In order to describe the interactions of the hits that were identified in the 

screening, I performed molecular dynamics (MD) simulations of the three hits in 

complex with TRAF6, as well as a simulation of the TRAF6/RANK complex as a 

comparison. GROMACS (version 4.5.3) was the software used, and explicit water was 

used for these simulations [63, 64]. The force field selected was the GROMOS96 43a1 

official distribution [65]. A cubic water box was created for the protein-ligand complex, 

and the distance between the solute and the box was set at 0.9 Å. Charges were added to 

neutralize the system to a formal charge of zero, and then the system was minimized 

when the maximum force of the system was less than 10.0 kJ/mol. PME (Particle mesh 

Ewald) algorithm was used for the long-range electrostatics for all simulations. For the 

NVT (moles, volume, temperature) and NPT (moles, pressure, temperature) equilibration 

the protein and ligand were considered as one entity (coupled together), and the ions and 

water were also coupled together as one entity. This coupling was necessary, as the 

system exploded (became highly unstable) not long after production MD started when 
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this coupling was not present. Temperature was set at 298K, and the modified Berendsen 

thermostat and Parrinello-Rahman were used for NVT and NPT coupling, respectively. 

Periodic boundary conditions were set for x, y, and z directions. For each of these 

production MD simulations, the bound conformations from GOLD were used as the 

starting input, and the PRODRG server was used to generate topology (.itp) files for each 

of the ligands [66]. All simulations were run for 20 nanoseconds. Jobs were run by 

remote SSH terminal from my workstation into the Lonestar computing cluster in the 

Texas Advanced Computing Center (TACC), using 144 cores [67]. Results were 

extracted using VMD, and were analyzed using PyMOL [56, 68]. 

 

9. LD50 Predictive QSAR Modeling 

 A dataset of 7385 compounds and LD50 values for oral rat exposure was collected 

from a previous study by Hao Zhu et al. who were attempting to achieve the same 

endpoint; the details of how that dataset was collected are described in the following 

section [69]. A dataset of more than 8000 compounds and corresponding LD50 (oral rat 

exposure) from the ChemID plus database was collected, and the structures of these 

compounds was verified using an method discussed by Young et al. [70].  Zhu’s group 

removed the inorganic, organometallic compounds, salts, and compound mixtures. They 

also converted the LD50 values from mol/kg to log(mol/kg) values according to standard 

QSAR practices [69]. Various descriptors were calculated including those from the 

Dragon software v5.4 [71], MOE [58], and cxcalc from ChemAxon [72]. These 

descriptors were then used with the kNN-QSAR method to provide the models [73]. The 

kNN-QSAR method was used to generate the predictive models. 
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10. Bioavailability Predictive QSAR Modeling 

 A dataset of 809 compounds was collected from two publications: 768 

compounds from Hou et al. and from Veber et al., these two datasets were merged 

despite having many similar entries [74, 75]. The values were often taken from the 

literature; single values were recorded as-is, whereas when a range of values was 

reported, a simple average was used as the percent bioavailability [76]. For example, if a 

value was reported as 0-20% bioavailability in Goodman and Gilman’s, the value used 

was considered 10%. Descriptors for this data set were calculated in an identical manner 

to the LD50 data set, and the kNN-QSAR method was also used to generate the predictive 

models. 

 

Results: 

1. Computational Hot Spot Predictions of TRAF6 - Results 

 Robetta uses a simple physical model and a computational alanine scanning 

technique that includes various energy and chemical bonding parameters such as: 

Lennard Jones interactions, packing and solvation terms, and hydrogen bonding to 

calculate free energy [51]. Computational alanine scanning involves mutation of a given 

residue involved in a protein-protein interaction to alanine (a non-reactive and non 

charged side chain) of one of the interacting proteins, and computing the resulting change 

in binding energy of the interface. If this mutation results in a significant decrease in the 

binding constant (typically tenfold or greater), this residue is considered a hot spot [77]. 

Robetta mutates the residue to alanine for each residue, and then it locally repacks other 

residues in the structure within 5Å of the mutant residue, maintaining the conformation of 
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the remaining protein residues. The predicted changes in binding energies from this 

computational alanine scanning constitute the foundation for Robetta’s hot spot 

predictions [78].  Robetta provided the most accurate (indeed a perfect score) of the hot 

spots on TRAF6, with all three experimental hot spot residues in the structure having a 

predicted ΔΔG greater than 1 kcal/mol (Table 1). The Arg392 position is predicted to be 

a very active hot spot with a ΔΔG value much higher than the other two correctly 

predicted hot spots; from this prediction, one can infer that rational design around this 

residue is likely to give a better inhibitor of the TRAF6/RANK complex, since it 

contributes the most to binding of the RANK peptide. Values that are positive (or more 

positive) for the ΔΔG of the TRAF6/RANK complex indicate that a destabilization of the 

complex occurs when a residue is replaced by alanine; the other predictions do not show 

such a change in energy; hence they are not predicted to be hot spots. It is interesting to 

note that the next highest (and closest to 1.0 kcal/mol) ΔΔG value predicted by Robetta is 

the Phe410, with a value of 0.76 kcal/mol. This residue was later shown to be important 

to binding by the molecular dynamics results. 
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Num Residue int_id ΔΔG(complex) ΔG(partner) 

374 Val 1 0.36 1.04 

376 His 1 0.44 0.32 

392 Arg 1 3.76 1.51 

410 Phe 1 0.76 3.21 

412 His 1 0.4 2.61 

448 Glu 0 -0.03 -0.12 

450 Met 1 0.13 2.38 

453 Lys 0 -0.12 0.08 

456 Leu 1 0.48 1.34 

466 Arg 1 0.07 0.94 

469 Lys 1 0.62 -0.14 

471 Phe 1 2.05 1.65 

473 Tyr 1 1.73 1.8 

474 Val 0 0.07 0.43 

Table 1. TRAF6 Hot Spot predictions from Robetta. 

Num: residue number. Residue: three-letter code for amino acid. int_id: Binary 
descriptor of if a side chain of a residue is present within 4 Å of another 
partner’s atom (1) or not having a contact directly, but is buried upon binding 
(0); ΔΔG(complex): Prediction of binding free energy change upon mutation of 
alanine; ΔG(partner): Predicted change in stability of protein of the 
corresponding mutated partner complex upon subsequent alanine mutation. 
Residues highlighted yellow are biologically proven hot spots. If ΔΔG(complex) 
is greater than 1.0 kcal/mol, they are considered a hot spot by Robetta.  
 

 KFC2 did not have as successful of a prediction as Robetta. KFC2 is comprised of 

two models, KFC2a and KFCb, each having their own parameters. KFC2a offered no 

predictions for this structure, and KFC2b was adequate in providing correct hot spot 

predictions of Arg392 and Phe471, but provided two false positive results of Phe410 and 

His412. KFC2b also did not label Tyr473. Both KFC2 models label a residue a hot spot 

when the confidence of either method is a non-negative number (Table 2).  
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 Hotpoint’s predictions were identical (in terms of false positives and false 

negatives) to those from KFC2, predicting Arg392 and Phe471 correctly, but not labeling 

the residue Tyr473 and providing a false prediction of Phe410 as a hot spot (Table 3).  

The potential value on Arg392 was the highest among all of the residues that were 

considered interacting. Hotpoint did not predict His412 to be a hot spot, but did predict 

Met450 as one. This Met450 residue lies close to the aromatic residues of Phe471 and 

Tyr473, and is significantly buried. 
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Num Res KFC2-A Class KFC20-A Conf KFC2-B Class KFC2-B Conf 

374 Val 0 -1.78 0 -0.99 

376 His 0 -2.18 0 -0.98 

392 Arg 0 -0.37 Hotspot 0.15 

394 His 0 -1.9 0 -0.95 

410 Phe 0 -0.43 Hotspot 0.23 

412 His 0 -0.63 Hotspot 0.05 

448 Glu 0 -2.31 0 -0.98 

449 Ile 0 -2.39 0 -0.92 

450 Met 0 -1.42 0 -0.26 

451 Asp 0 -2.32 0 -0.96 

453 Lys 0 -1.77 0 -0.96 

456 Leu 0 -1.25 0 -0.83 

457 Leu 0 -2.37 0 -0.94 

458 Ala 0 -0.84 0 -0.76 

466 Arg 0 -1.8 0 -0.79 

468 Pro 0 -0.88 0 -0.8 

469 Lys 0 -0.79 0 -0.56 

470 Gly 0 -0.22 0 -0.46 

471 Phe 0 -0.17 Hotspot 0.28 

472 Gly 0 -0.38 0 -0.59 

473 Tyr 0 -0.87 0 -0.04 

474 Val 0 -1.24 0 -0.95 

475 Thr 0 -1.83 0 -0.99 

Table 2. KFC2 prediction of hot spots on TRAF6. 

Num: residue number. Res: three-letter code for amino acid. Model 
classification and predictions of two KFC models (A or B model); (Conf): 
Confidence of prediction. Residues highlighted in yellow (Arg392, Phe471, 
Tyr473) are experimentally proven hot spots. 
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Num Residue RelCompASA RelMonomerASA Potential Prediction 

374 Val 36.17 50.36 12.38 0 

376 His 29.78 35.89 18.13 0 

392 Arg 1.34 22.39 25.64 Hotspot 

410 Phe 1.94 11.86 28.55 Hotspot 

450 Met 1.76 6.09 33.49 Hotspot 

456 Leu 21.77 35.29 11 0 

457 Leu 61.09 62.37 7.59 0 

458 Ala 2.41 5.39 13.8 0 

468 Pro 37.32 74.16 4.79 0 

469 Lys 25.35 53.96 8.9 0 

470 Gly 0.19 29.14 12.76 0 

471 Phe 1.22 22.9 37.55 Hotspot 

472 Gly 0.45 35.78 16.16 0 

473 Tyr 7.52 27.91 17.22 0 

Table 3. Predictions of TRAF6 hot spots from Hotpoint. 

RelComp ASA: Relative ASA of complex structure. RelMonomer ASA: 
Monomer Relative ASA. Residues in yellow (Arg392, Phe471, Tyr473) are 
experimentally proven hot spots. 

 KFC2 and Hotpoint both were lacking in their prediction of Tyr473 as a hot spot, 

despite both methods having values that were close to the cutoff values to change the 

prediction form non-hot spot to hot spot. The confidence of Tyr473’s prediction in the 

KFC2b model very close to the threshold; this residue had the smallest negative value 

among the other residues in the list. The only reason Hotpoint’s prediction did not 

mention Tyr473 as a hot spot was due to the potential factor; the value was not greater 

than 18.0. The false positives from Hotpoint (residues Met450 and Phe410) stem from 

the relative high potential, and not from the accessible surface area metric. As was 

mentioned before, Phe410 and Met450 were in fact tested at the same time as the other 

residues, and were not proven to be hot spots [15]. This conclusion does not mean that 
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they have no contribution to the complex, but that they do not meet the experimental 

cutoff value of a hot spot. Since both programs scored the Phe410 and Met450 residue 

very close to a hot spot, both these residues should not be ignored as they will likely 

contribute to the binding, albeit not significantly (at least to the RANK peptide). 

2. Virtual Screening 

 In GOLD, the default scoring function is the GoldScore; this is comprised of four 

components from the equation: 

int_int___ vdwhbextvdwexthb SSSSf +++=  

 Where Shb_ext is the protein-ligand hydrogen bonding score and Shb_int is the 

internal hydrogen bonding of the ligand. Svdw_ext and Svdw_int are the scores arising from 

weak external and internal Van der Waals forces, respectively. The scores from the 

virtual screening approached an extreme value distribution (Figure 3) 
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Figure 3. Histogram of TRAF6 virtual screening results (GoldScores) from GOLD.  
 
The highest GoldScore was 75.18 and the lowest was 18.31. The average was 40.30 
for the GoldScore. 

 

3. Selection of Compounds for Biological Testing, and Biological testing 

 The technique described above resulted in 300 compounds for consideration for 

biological testing. The first round of selected compounds was limited in the number of 

compounds that were to be tested, and only seven compounds were selected for testing 

(Table 4). These first seven tested compounds were found to be not active when tested at 

100µM and 300µM (Figure 4).  
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Table 4. First set of selected compounds for biological testing.  

Test ID values were assigned from decreasing GoldScore from the list of 79 compounds. 
GOLD: GoldScore output from GOLD. logP: calculated log of octanol/water partition 
coefficient. All seven of these were shown to be inactive via GST pull-down assay. 
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Figure 4. GST-RANK pull down assay for first round of seven selected compounds.  

DP is the positive control decoy peptide, and C is the negative control (no peptide). 

 After discovery that the first set of compounds were not active, the docking 

results were examined once again, this time with emphasis on the Arg392/Phe410 

binding site. The reasoning was that it was this region (not the Phe471/Tyr473 region) 

that might be more significant to the binding of compounds to TRAF6. The second round 

of compounds were taken from the pool of 79 compounds, but compounds to be selected 

for the second round were those compounds that had a more favorable binding to this 

region. Twenty compounds were selected for the second round of testing (Table 5), 

(Table 6), and (Table 7) using the same technique as the first round of compounds, but 

were to only be tested at 200µM (Figure 5). While the concentration of the ligands was 

high, there does seem to be some reduction in the binding of the compounds SZB-40, 

SZB-45, and SZB-46. 
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Table 5. Second set of compounds to be tested. 

GOLD: GoldScore output from GOLD. logP: calculated log octanol/water partition 
coefficient. Test ID: assigned names from list of 79 compounds. 
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Table 6. Second set of biologically tested compounds (continued).  

GOLD: GoldScore output from GOLD. logP: calculated log octanol/water partition 
coefficient. Test ID: assigned names from list of 79 compounds. 
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Table 7: Second set of biologically tested compounds (continued).  

GOLD: GoldScore output from GOLD. logP: calculated log octanol/water partition 
coefficient. Test ID: assigned names from list of 79 compounds. SZB-40, SZB-45, 
and SZB-46 showed some activity. 
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Figure 5. GST-RANK pull down assay for first round of selected compounds.  

DP is the positive control decoy peptide, and C is the negative control (no peptide). 
Compounds 40, 45, and 46 appeared to have some activity. 

 

 Molecular Dynamics simulations 

 GROMACS simulations were run for 20 nanoseconds compound SZB-40, SZB-

46, and for the RANK peptide (as a control and comparison). SZB-40, which appeared to 

have the best binding score from GOLD, did not have as significant of a binding energy 

when compared with the RANK peptide (Figure 6). This figure shows the short range 

Lennard-Jones energy of the protein-ligand complex. The average energy of the run of 

SZB-40 was -177kJ/mol, while RANK had energy of -257 kJ/mol; standard deviations 

were 20.86 and 28.10 for SZB-40 and RANK, respectively. 
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Figure 6. Lennard-Jones energies for molecular dynamics simulations. 

TRAF6-ligand complex (kJ/mol) of SZB-40 (blue), SZB-46 (red), and RANK 
peptide (green) for the entire 20 nanosecond molecular dynamics simulation. 
Output of energies was performed for each trajectory, and the output was graphed 
in Excel. 
 

 The two simulations produced roughly similar RMSD values, the control RANK 

simulation deviating at an average of 0.239Å from their main chain, and the SZB-40 

RMSD equal to 0.196Å, indicating that the overall stability of the structure was not 

significantly affected by the ligands. The standard deviation of main chain of the 

structures was 0.0399 Å for RANK, 0.0288 Å for SZB-40.  

 The region of the 9,000 to 13,000 picoseconds (9 to 13 nanoseconds) is 

interesting, as it shows better energy values. Output of trajectories at every 2,000 

picoseconds was carried out for the entire simulation, in order to evaluate the differences 

that occur between SZB-40 and the TRAF6 structure throughout the MD run. The 

trajectory at 10 nanoseconds shows a very interesting conformation (Figure 7). It appears 

that the ligand has achieved pi-stacking with the aromatic residues Phe470, and there is 
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also a pi-stacking interaction to the Phe410 residue. There are hydrogen bonds to two 

points on the main chain of Gly469, similar to that of RANK. It is interesting to note that 

many portions of the MD simulation run showed the ligand on the side of TRAF6 closer 

to the Phe471 residue. This conformation was not possible in the GOLD 

screening/docking, as only the side chains are flexible; the GROMACS MD simulation 

shows a more favorable position to those that were seen from the GOLD docking. 
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Figure 7. Sample trajectory conformation at mid-point (10 ns) of MD simulation of 
SZB-40 (pink) and TRAF6 (green). Yellow dashed lines with numerical labels 
denote distances to neighboring aromatic groups. Hydrogen bonds to main chain 
atoms on Gly469 to SZB-40 are shown in unlabeled yellow dashed lines. This 
conformation was close to the average structure over the 9-11 nanosecond range, 
and it shows a more favorable pose to docked positions, with pi-stacking of both 
aromatic ends of SZB-40 to other aromatic groups on TRAF6. The distance from 
SZB-40 to Phe410 is 4.0 angstroms, and Phe410 was predicted as a hot spot by 
HotPoint and KFC2. 
 
 Another sample output was taken at the 12,000 picoseconds (12 nanoseconds), 

which is also in the region of lower energy. One would assume that this lower energy 

state would correspond to a more favorable docked position similar to that of the 10 

nanosecond point, and this is indeed the case (Figure 8.). This is similar to that of the 10 

nanosecond point, but there is additional hydrogen bonding to Gly471 (which lies in 
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between Tyr472 and Phe470. This state should have an even tighter binding to TRAF6, 

and this might explain why SZB-40 was shown to be active. 

 

 
Figure 8. 12 nanosecond sample trajectory of SZB-40 (pink) and TRAF6 (green). 
Yellow dashed lines denote distances to neighboring aromatic groups. Hydrogen 
bonds are shown in yellow dashed lines without distance labels. Note the more 
extensive hydrogen bonding to both Gly469 but also to main chain atoms on Phe471. 
This interaction is also more favorable to docked positions seen from GOLD. 
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4. LD50 Predictive QSAR Modeling 

 A histogram of the compounds shows a good distribution of values, and 

approaches an extreme value distribution (Figure 9). After the kNN-QSAR models were 

generated at various parameters, the predictive model with the best cross validated r2 (q2) 

had eight descriptors and were as follows:  logPWeighted, smallestRingSize, 

acceptorCount, ASAPolar, topologicalPolarSurfaceArea, chainAtomCount, atomCount, 

and hararyIndex. These descriptors are primarily associated with size, logP, and 

accessible surface area. The number of nearest neighbors for this highest rated model was 

three (k = 3), and this model had a q2 value of 0.324 in the training set, and a 

corresponding r2 of 0.6252 for the 385 compounds in the test set. The distribution of the 

actual versus predicted values can be seen when plotted (Figure 10). 
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Figure 9. Histogram of negative log of LD50 values (mol/kg) of 3472 compounds.  

The highest value was that of tetrachlorodibenzo-p-dioxin (TCDD), with a value of 
10.2, while the lowest was 6-methyl uracil, with a value of 0.29. The average value 
was 2.466. Data was transformed and graphed using Excel. 
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Figure 10. Actual vs. Predicted LD50 values from best kNN-QSAR model. 

 

5. Bioavailability Predictive QSAR Modeling 

 While the values for bioavailability were well distributed (Figure 11), the 

bioavailability model did not perform as well. There are 22 descriptors for this model, 

these were all generated from MOE, and they are as follows: randicIndex, FASA_H, 

PEOE_VSA_FPPOS, pmiY, vdw_vol, SMR_VSA2, Q_RPC-, PEOE_VSA_FPOL, 

PEOE_VSA-2, vsurf_HB2, PEOE_VSA+3, b_1rotR, carboRingCountOfSize, 

logDPHYS, SMR_VSA1, aliphaticRingCount, chi1v_C, a_ICM, SlogP_VSA0, 

BCUT_SMR_3, GCUT_SLOGP_2 mr, and BCUT_SLOGP_1. There are four nearest 

neighbors, and the q2 is 0.363177 for 414 compounds, and the r2 is 0.123 for 306 

compounds (Figure 12). 
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Figure 11. Histogram of 809 bioavailability values used in the predictive model.  

The data set has good distribution over the range of possible values with a very 
slight bias towards high values: the average value is 52.0 and median value is 54. 
Graph was generated in Excel. 

 

 

Figure 12. Actual vs. Predicted bioavailability values from kNN-QSAR model.  

This is the r2 test set, with 414 compounds. Values were taken from the output of the 
best quality model, and were graphed in Excel. The low quality of the data used in 
this model adversely affected the predictive quality of the model itself. 
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Discussion: 

1. Computational Hot Spot Predictions of TRAF6 

 The TRAF6/RANK pathway is typical of most biological cellular functions, in 

that a protein-protein interaction is required to retain functionality [79]. Broadly 

speaking, formation of protein-protein interactions necessitate particular contacts and 

interactions which form the foundation for almost all biological functions, most notable 

of these are events are signal transduction events. Protein-protein interactions are seen as 

having locally primed features optimal for the binding of their partners, and they form 

highly conserved and dense networked clusters contributing cooperatively to the 

complex’s stability [80]. The interaction sites of these protein-protein pairings are made 

up of surfaces that contain electrostatic and shape complementarity properties [81-84]. 

Protein-protein interactions can also be drastically influenced by the inherent properties 

of their residues, such as hydrophobicity and flexibility [82-86]. Some protein-protein 

interfaces have been described with relatively small areas, with surfaces as small as 1150-

1200 Å2  for structures such as complexes forming low-stability and short-lived regions. 

So called “standard-size” surfaces of interaction [87] fall into the region of 1600 Å2 (± 

400 Å2) and involve relatively small conformational fluctuations and side-chain 

movements upon forming said complexes[88]. “Large” interfaces involve 2000 to 4600 

Å2 , and  require significant, global changes in the interacting members, and are seen 

primarily in G-protein receptors and family members, as well as information processing 

elements of signaling proteins. Using the DMBL-EBI PDBePISA (Protein Interfaces, 

Surfaces and Assemblies) server [89], the TRAF6/RANK complex is shown to have a 

very small interface area, being only 557.8 Å2 in size. The TRAF6/CD40 complex 

(1LB6), has a slightly larger surface area, with 573.1 Å2. This means that the 
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TRAF6/RANK complex is very small and unstable, and very little changes in either 

structure are expected to occur when binding takes place.  

 The three methods used to predict hot spot residues used a variety of techniques, 

and each has been successful in other test sets of proteins. Robetta achieved a perfect 

score in its prediction of the TRAF6 residues, and in another study, correctly predicted 

79% of residues with a 1.0 kcal/mol cutoff (indicating they are in fact hot spots) with an 

error averaging to the value of 1.06 kcal/mol [78, 90]. While this method was the most 

successful in predicting hot spots of the TRAF6/RANK complex, there is one potential 

source of error in the implicit solvation model used by Robetta and for other predictions: 

hot spots that are mediated from water molecules can potentially compensate for 

particular alanine mutations, and can potentially give a false positive result. Since the 

waters were removed from this complex before submitting to Robetta, this was not an 

issue. 

 HotPoint is based on work that was done by Tuncbag et al. it uses primarily 

accessible surface area (ASA) and includes factors for conservation and pair-wise 

potentials of the residues to form an empirical model. This model has been recorded at 

70% accuracy, when using 150 residues from ASEdb as the training set; this accuracy is 

higher than many machine learning based methods [91]. This technique was implemented 

into a publicly available web server, also named HotPoint, where visitors can register and 

submit a job and easily visualize the output prediction on any compatible browser [52]. 

Accessibilities to the solvent for each residue are computed for each form (bound and 

unbound), and the energetic pair-wise potential contributions from the solvent were 

provided by Keskin et al [92]. If and only if the following two endpoints are satisfied: the 

relative ASA in complex is equal to less than 20%, and the summation of the potential for 



40 
 

a given pair is greater or equal to 18.0, then that residue is classified as a hot spot [52]. 

The mutation of solvent accessible surface area (ΔASA) when a complex is formed for 

two proteins has a high degree of correlation to the energy of solvation. This factor was 

previously identified to be highly predictive versus other factors towards that of the 

binding of protein partners [93]. The same group also developed a database from this 

technique, called HotSprint, and was successful in predicting hot spots on the p53 binder, 

Mdm2. An accuracy of 76% was achieved, which can out-compete many popular 

methods that rely on machine-learning approaches [94]. 

 KFC2 (Knowledge-based FADE and Contacts, by Darnell, Zhu, Page, and 

Mitchell [53, 95] ) uses a support vector machine (SVM) [96], machine-learning method 

to build two models, each of which are decision tree-based. Each model is built on two 

techniques: the first one is named K-FADE, it uses the size of a given residue and the 

specificity of its shape that are calculated by Fast Atomic Density Evaluation (hence the 

name FADE) [97], and K-CON uses the residue’s hydrogen bonds, chemical types, 

interface points, and intermolecular atomic contacts [54]. These features are combined to 

output an answer in binary form to the question of if a residue is a hot spot or not, and 

provide a corresponding confidence score with this binary prediction. KFC2 has two 

models trained on SVM: KFC2a and KFC2b. The KFCa model was shown to have 0.85 

as its rate of predicting hot spots correctly. This value was an improvement from the 

previous KFC method, as well as other predictions from HotPoint, Robetta, and 

FOLDEF, despite KFCa possessing a greater rate of incorrectly labeled hot spots than 

these competitors. KFC2b uses a total of seven features (overlapping two of the features 

from KFCa), and is seen to output a specificity greater than KFCa [53]. It is interesting 

that despite KFC2a’s higher reported sensitivity and accuracy when compared to KFC2b, 
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no hot spots were predicted for the TRAF/RANK complex with KFC2a. It is also 

interesting that while the KFC2a model predicted no hot spots on TRAF6, the KFC2b 

model appears to have had both a high true positive, and a higher false positive rate.  

 

2. Preparation and Analysis of Target Receptor 

 Selection of crystal structures 1LB5/1LB6 was necessary since both have the 

RANK/CD40 peptides bound to them. The remaining C-terminal 21 residues at the end 

of the crystal structure that are not included but exist in the TRAF6 sequence do not lie 

close to the RANK/CD40 binding site. The shortest distance from Thr501 to the RANK 

peptide is 16.4Å. Also, Thr501 ends a β-sheet, so the remaining residues of the structure 

are likely in a loop region that either interacts with the other loop regions in this area, or 

with the long helix that forms in the TRAF6 trimer (Figure13) 
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Figure 13. C-terminal Thr501 residue in TRAF6 1LB5 crystal structure (green).  
 
RANK residue shown in magenta sticks. This threonine residue lies at least 19 
angstroms to the RANK binding site; remaining residues on this tail are unlikely to 
have an effect on the binding site. 

 

 1LB5 was selected as the structure for which to do docking, since it contains the 

RANK peptide bound to TRAF6. [15]. While the TRAF6-CD40 complex of 1LB6 has a 

slightly higher resolution (1.80Å), it is very similar to 1LB5 (resolution of 2.40 Å). The 

RMS of the two structures (when superimposed) is only 0.294 Å, and this difference is 

mainly in the loop regions of the two structures. The only TRAF6 residue in the binding 

site that is significantly different in its conformation is the Arg392 residue (Figure 14). 
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Figure 14. Superimposed overlay of 1LB5 (green) and 1LB6 (blue) structures.  
 
Hotspot residues are displayed in sticks. Tyr473 and Phe471 are nearly identical in 
their conformation, while Arg392 is rotated significantly. 

 

3. Chemical Library Selection 

 The choice of MyriaScreen as the primary ligand screening set ensured that 

adequate chemical diversity was present in the virtual screening, while retaining good 

drug-like and lead-like structures. Additionally, MyriaScreen compounds are easily 

commercially available, making for easy procurement and testing of the selected 

compounds.  
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4. Virtual Screening 

 GoldScore fitness function was selected as the scoring function, as it has been 

created and optimized for small molecule docking into the prediction of ligand binding 

energy. GOLD has proven to be a more than acceptable program for various techniques 

when compared with other docking programs [98-100], and it has been shown to be 

capable of reproducing reliable docked conformations of ligands for many of my other 

projects. The program is able to run on a multi-core environment, which is favorable to 

other methods that are more computationally expensive.  

 

5. Processing of Results 

 The clustering of the GOLD results based on MACCS fingerprints removes 

similar compounds and increases the diversity of the pool of molecules by removing 

structurally similar compounds. Retaining the highest scoring representative structure of 

each cluster ensures the quality of the docked conformations is retained, but repetitive 

structures are discarded. This technique also ensures that the highest scoring 

representatives of each of the compounds is retained and selected as the best 

representative of the respective chemical core and binding pose.  

 

6. Selection of Compounds for Biological Testing 

 As for the selection of the final hits, the technique used here has been used in 

various other projects. The cluster centers were individually visualized by hand in 

PyMOL to maximize the potential of finding ligands that would prove to be active 

biologically. This higher scrutiny at this stage not only ensured that there was more than 
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adequate diversity in the final compounds; it confirmed that the compounds resided in the 

desired interaction site and therefore had a high potential of inhibiting the interaction 

with RANK. Also of note, our analysis was independent of the docking scores obtained; 

this made for our analysis to be more qualitative than quantitative.  

 

Flexible Docking of three active compounds 

 The three compounds that showed affinity (SZB: 40, 45, and 46) were submitted 

to a more rigorous GOLD docking, in which the ten closest residues to their original 

conformation were allowed to have their side chains be fully flexible; this process 

permits a deeper understanding of the potential interactions between the hits and TRAF6. 

For these docking jobs, GOLD was again used as the docking program, and the number 

of operations and population size of the genetic algorithm were doubled from the original 

virtual screening protocol. 

 Although the SZB-40 compound contains a ring structure that can gain stability 

by pi-pi stacking in between Tyr473 and Phe471, the flexible docking did not show such 

a conformation (Figure 15). Instead, there was main chain hydrogen bonding seen 

between Gly470 and His412. But the most significant difference in the side chains (due 

to the flexible docking) is seen in the Arg392 and Arg466 residues. There are two 

hydrogen bonded interactions to the Arg392 and this is stabilized by the pi-stacking of 

the terminal (non-chlorinated) benzene structure of SZB-40 to Arg466. The movement of 

these two structures between the original structures creates a more favorable pocket.  
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Figure 15. Flexible GOLD docking of SZB-40 (pink) to TRAF6 (green).  

Hydrogen bonds are shown as dashed yellow lines. This conformation show a weak 
pi-stacking to the Arg466 residue, and main chain hydrogen bonds to the Gly470 
and Phe471, but no significant interactions to the aromatic Phe410, Phe471, or 
Tyr473 residues.  
 
 
 SZB-45 was similar to SZB-40 in that it also had a moiety by which to mimic the 

proline structure on RANK in the pi-pi stacking interaction between the Tyr473 and 

Phe471 residues, but this conformation was not seen in the docking results (Figure 16). 

This structure had much more extensive binding to the Arg392 and Arg466 structures 

(from the highly charged sulfonamide region) at multiple locations on each of these 
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residues. There is also a hydrogen bonding interaction with the Asn467 main chain. 

There appears to be a pi-stacking interaction with the Phe410 moiety; this somewhat 

validates the prediction of Hotpoint and KFC2, which both predicted this residue as a hot 

spot. Robetta calculated this residue’s ΔΔG of the complex with a value of 0.76 kcal/mol. 

 

Figure 16. Flexible docking of SZB-45 (blue) to TRAF6 (green).  

Hydrogen bonds shown as dashed yellow lines. Main chain hydrogen bonding 
interactions are seen to Asn467 and side chain hydrogen bonds are seen to the 
Arg466 and Arg392 residues. There is also a good pi-stacking interaction with the 
Phe410 residue. 
 

 As for SZB-46, this conformation seems to have a better opportunity for pi-

stacking in between the two aromatic structures, and it also is stabilized by the two 
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arginine groups (Figure 17). Additionally, the hydrogen bonding interactions with the 

Gly470 are similar to that of RANK, and there are two hydrogen atoms on the Lys469 

structure that share hydrogen bonds with two different carbonyl regions of the SZB-46 

ligand. 

 

Figure 17. Flexible docking of SZB-46 (blue). Hydrogen bonds shown in yellow. 

This conformation shows side chain hydrogen bonds to Arf466, Arg392, and main 
chain bonds to Gly470 and Phe471. There is also a good pi-stacking interaction to 
Phe410. 
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7. Biological Testing 

 The GST-RANK pull down assay did manage to show an inhibition of three of 

the hits on the second round of testing, but as this method is more qualitative than 

quantitative, it is difficult to elaborate on the results beyond what is apparent from the 

Western blot. Further testing is required (preferably one that can be quantized) using 

another technique, possibly an ITC or luciferase assay. 

 

8. Molecular Dynamics simulations 

 The choice of GROMACS as the molecular dynamics (MD) package was an easy 

one, as GROMACS is very flexible and widely used software [64]. GROMACS has been 

shown to be much more efficient than other MD programs, and scales very well on large, 

parallel computing clusters [101]. It has been shown that the topologies resulting from the 

PRODRG server can deviate from simulations from GROMOS parameters, and 

reasonable configurations can be achieved using this method [102].  When the average 

back bone structure of the MD simulation is output from the MD simulation and then 

aligned to the original 1LB5 crystal structure, the RMSD is only 1.346Å, and this 

difference lies only in the loop regions, not in the β-sheet region (Figure 18). It is 

reasonable to assume that the stability of the β-sheet sandwich in TRAF6 is highly stable 

in the explicit water solvent used here. Hence, the GROMACS molecular dynamics 

method appears to be a good system on which to compare the result of this and future 

TRAF6 inhibitors. 
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Figure 18. Alignment of cartoon structures of MD simulation of TRAF/RANK.  

Average structure (backbone atoms) of results of MD simulation (blue), 1LB5 
structure TRAF6/RANK complex (green). RMSD of these structures is 1.346Å. The 
three hot spot residues are shown as sticks as a point of reference. Output for the 
simulation was prepared using Gromacs, and the structures were aligned using the 
“align” feature in PyMOL. 

 

9. LD50 Predictive QSAR Modeling 

 The large size of the dataset was a potential hindrance in the production of better 

models, but considering the variability of the data, the models were able to achieve a 

general prediction as to the magnitude of the endpoint which was attempted to be 

modeled. While most of the data is from oral testing of rats, the species and weights of 

these rats is not available. What is interesting (and perhaps contradictory to the previous 

statement) is that selecting only the less toxic compounds (removing the top 10% most 

lethal compounds from the data set) actually produced worse models than the one 
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presented here. The model presented includes highly lethal compounds like several forms 

of polychlorinated dibenzodioxins (dioxins), and the nerve agent O-ethyl-S-(2-

dimethylaminoethyl)-methyl-phosphonothioate (EDMM). Since lethality can manifest in 

different forms (inhibition of protein synthesis, mitochondrial damage, blocking of 

critical ion channels, DNA damage, to name a few), there are many different structural 

cores that are present in the dataset. These different structural cores and their 

corresponding mechanisms of lethality are likely creating confusion in the models. A data 

set that only contained ion channel disruptors is more likely to produce a good model of 

lethality, but would not be representative (or applicable) to other, more diverse 

compounds. Despite the variability of the data, logP is known to be a major factor in 

toxicity, as non-polar structures are much more likely to be metabolized and excreted (as 

well as be handled by the acidic gut) before their toxicity can become apparent. 

 

10. Bioavailability Predictive QSAR Modeling 

 The inconsistencies in the original data set definitely hurt the quality of the 

models generated, it is apparent that there is over fitting of the data, and the number of 

descriptors seen in the model (especially when compared with the LD50 model) backs this 

assumption up. Variability in the dosing, formulation, pharmacogenomics 

(polymorphisms in efficacy and other pharmacokinetic properties), health of the subjects 

and sampling error when recording the bioavailability data will all lead to a 

corresponding decrease of the quality of the models, and this is most likely what is seen 

here. It appears that such a complex endpoint in humans is difficult to model with simple 

tools, and classification schemes will likely lead to better predictive models. The strength 
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of using a kNN based model such as the one that was used here is that it is non-

parametric; there are no assumptions made on the distribution of the data set.  

 

Conclusion: 

 In this study novel inhibitors of the TRAF6/binding peptide interaction site are 

presented that were discovered through a rational design process incorporating various in 

silico techniques. From an initial set of 10,000 compounds, 26 of them were tested. Three 

of these 26 compounds were shown to be biologically active. These results validate the 

virtual screening and biological methodology described here, as well as validates the 

TRAF6/binding peptide interaction as a potential target for small molecule inhibition. 

 The results here lay the framework for future study of inhibition of the 

TRAF6/binding peptide interaction, and further study of the binding mechanism (either 

by crystallization of the inhibitors in complex with TRAF6, or by other biological 

experiments) will reveal means of optimizing the inhibitors for use in clinical settings. 

Future studies of the generation of TRAF6 inhibitors will surely benefit from additional 

assays for which to test the activity and mechanism of binding. Techniques such as a 

luciferase assay or isothermal titration calorimetry (ITC) would bolster the evidence of a 

possible inhibitor from the initial GST assay described above. Once a decent inhibitor has 

been found, optimization of the respective chemical groups can increase the binding 

affinity even further. While the TRAF6/binding peptide protein-protein interaction is a 

very valuable target, it is a difficult one. The binding site is not a prototypical pocket that 

is conducive to traditional drug design efforts, and the interaction site, despite being 

small for protein-protein interactions, is large for small molecule inhibitors to bind to. In 
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general, targeting protein-protein interactions are high-risk and high-reward, but the 

TRAF6/binding peptide interaction is beyond the exemplary target and has even higher 

potential value. Computational techniques such as the ones that I have outlined here (hot 

spot prediction, virtual screening, and molecular dynamics simulations) will help to 

ameliorate the risk involved by guiding the decisions throughout the drug design process. 

  Given that TRAF6 plays many essential roles in immunity and other diverse 

biological functions, TRAF6 inhibitors are most certainly in high demand. Not only will 

they serve to advance the understanding of the TRAF6 pathway, but has the potential to 

improve the lives of patients through controlling inflammation and treating a wide range 

of diseases, such as: osteoporosis, cancer-induced bone lesions and other bone diseases, 

postmenopausal osteoporosis, multiple myeloma, periodontitis, connective tissue 

destruction, bladder outlet obstruction, Paget’s disease, and viral infections [103-105]. On 

the front of cancer therapeutics, it has been postulated that TRAF6 inhibitors should be 

able to inhibit the spread of multiple myeloma and prevent bone loss (the most significant 

clinical manifestation of MM). These inhibitors will mean the inclusion of a new target 

for the treatment of cancer, and will be able to overcome resistance to chemotherapy 

[106]. There are still more questions as to the TRAF6 pathway, most notably the specific 

activation mechanism of TRAF6. It is unknown if TRAF6 is monomeric before 

recruitment to its receptors; additionally it is unclear if it is the TRAF6 oligomerization or 

the resulting conformational changes from oligomerization that guide the subsequent 

activation of TRAF6 [107]. These questions, as well as understanding how ubiquitination 

plays a role in TRAF6 activation, need to be answered to complete the puzzle. As the 

understanding of TRAF6 and its effectors continues to be understood, the use and affinity 

of TRAF6 inhibitors will prove to me more efficacious as our understanding improves. 
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