
Texas Medical Center Library
DigitalCommons@The Texas Medical Center

UT GSBS Dissertations and Theses (Open Access) Graduate School of Biomedical Sciences

8-2012

Targeting AKT/mTOR Signaling Pathways During
Murine Skin Tumor Promotion and the Impact of
Dietary Energy Balance Manipulation
Laura A. Checkley

Follow this and additional works at: http://digitalcommons.library.tmc.edu/utgsbs_dissertations

Part of the Laboratory and Basic Science Research Commons, and the Nutrition Commons

This Dissertation (PhD) is brought to you for free and open access by the
Graduate School of Biomedical Sciences at DigitalCommons@The Texas
Medical Center. It has been accepted for inclusion in UT GSBS
Dissertations and Theses (Open Access) by an authorized administrator of
DigitalCommons@The Texas Medical Center. For more information,
please contact laurel.sanders@library.tmc.edu.

Recommended Citation
Checkley, Laura A., "Targeting AKT/mTOR Signaling Pathways During Murine Skin Tumor Promotion and the Impact of Dietary
Energy Balance Manipulation" (2012). UT GSBS Dissertations and Theses (Open Access). Paper 290.

http://digitalcommons.library.tmc.edu?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/uthgsbs?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/812?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/95?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.tmc.edu/utgsbs_dissertations/290?utm_source=digitalcommons.library.tmc.edu%2Futgsbs_dissertations%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laurel.sanders@library.tmc.edu


 
 

TARGETING AKT/mTOR SIGNALING PATHWAYS DURING MURINE SKIN TUMOR 
PROMOTION AND THE IMPACT OF DIETARY ENERGY BALANCE MANIPULATION 

 
 

By 

Laura Allyson Checkley, B.S.   

 

APPROVED:  
 
 

John DiGiovanni, Ph.D. 
Supervisory Professor 
 

 

Ellen Richie, Ph.D. 
 
 

 

Gary Johanning, Ph.D. 
 
 
 

Karen Vasquez, Ph.D. 
 

 

Rick Wood, Ph.D. 
 
 
 
 
APPROVED:  
 

 

Dean, The University of Texas 
Graduate School of Biomedical Sciences at Houston 
 

 
 



 
 

TARGETING AKT/mTOR SIGNALING PATHWAYS DURING MURINE SKIN TUMOR 
PROMOTION AND THE IMPACT OF DIETARY ENERGY BALANCE MANIPULATION 

 
 

A 
 

DISSERTATION 
 
 

Presented to the Faculty of 
The University of Texas 

Health Science Center at Houston 
and 

The University of Texas 
M.D. Anderson Cancer Center 

Graduate School of Biomedical Sciences 
 

in Partial Fulfillment 
 

of the Requirements 
 

for the Degree of 
 

 
DOCTOR OF PHILOSOPHY 

 
 

By  
 

Laura Allyson Checkley, B.S. 
Houston, TX 

 
 

August, 2012 
 
 

 
 
 



iii 
 

Dedication 
 
 
 
I dedicate this to my wonderful husband TJ who has stood by my side for the past four and 

a half years. You have kept me motivated and encouraged through the ups and downs of 

graduate school.  I appreciate all the rides you have given me to the lab, animal facility, and 

library, food on days in the lab when I didn’t have time to get lunch and your infinite ability to 

listen. Thanks for all your love and support.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iv 
 

Acknowledgements 
 

First and foremost, I would like to express my deepest gratitude to my mentor, Dr. John 

DiGiovanni for taking me on as a graduate student and allowing me the opportunity to work 

on such an exciting project. Throughout my time in graduate school, he has given me so 

many wonderful opportunities to work on manuscripts, attend meetings and present our 

work. He has been a true inspiration to me and encouraged me in my scientific endeavors. I 

would not be where I am today without him.  

I would also like to thank my committee members, both past and present, Dr. Ellen 

Richie, Dr. Gary Johanning, Dr. Karen Vasquez, Dr. Rick Wood, Dr. Stephen Hursting, and 

Dr. Sue Fischer for all their helpful scientific suggestions and all of the time they dedicated 

to attend my meetings. I would also like to thank Becky Brooks, Lauren Pascale, and Linda 

Beltran for all of their help with the administrative aspects of graduate school. 

Special thanks to the members of the DiGiovanni Lab. I am very grateful for the 

training provided by Steve Carbajal and Tricia Moore in the early stages of my graduate 

studies. In addition, I offer much thanks to lab member Okkyung Rho. She has provided me 

with many valuable discussions regarding my research and offered many helpful 

suggestions in addition to being a wonderful friend.  I would also like to thank my “support 

team” in the lab, Ron Bozeman and Dharanija Rao, two of my GSBS fellow graduate 

students and desk mates. Throughout the ups and downs of lab life and graduate school 

they have provided help when needed with experiments as well as much needed break 

time and laughs. I would also like to thank Jiyoon Cho, Everardo Macias, Alex McClellan, 

and Jorge Blando for their technical support in the lab and friendship. I have enjoyed the 

days spent in the lab with this great group of scientists.  

 

 



v 
 

TARGETING AKT/mTOR SIGNALING PATHWAYS DURING MURINE SKIN TUMOR 
PROMOTION AND THE IMPACT OF DIETARY ENERGY BALANCE MANIPULATION 

 
 

Publication Number: 
 
 

Allyson Checkley, B.S. 
 

Supervisory Professor: John DiGiovanni, Ph.D. 
 

 
 

The prevalence of obesity has continued to rise over the last several decades in the 

United States lending to overall increases in risk for chronic diseases including many types 

of cancer. In contrast, reduction in energy consumption via calorie restriction (CR) has been 

shown to be a potent inhibitor of carcinogenesis across a broad range of species and tumor 

types. Previous data has demonstrated differential signaling through Akt and mTOR via the 

IGF-1R and other growth factor receptors across the diet-induced obesity (DIO)/CR 

spectrum. Furthermore, mTORC1 is known to be regulated directly via nutrient availability, 

supporting its role in the link between epithelial carcinogenesis and diet-induced obesity. In 

an effort to better understand the importance of mTORC1 in the context of both positive and 

negative energy balance during epithelial carcinogenesis,  the use of specific 

pharmacological inhibitors, rapamycin (mTORC1 inhibitor) and metformin (AMPK activator) 

was employed to target mTORC1 or various components of this pathway during skin tumor 

promotion. Two-stage skin carcinogenesis studies demonstrated that mTORC1 inhibition 

via rapamycin, metformin or combination treatments greatly inhibited skin tumor 

development in normal, overweight and obese mice. Furthermore, mechanisms by which 

these chemopreventive agents may be exerting their anti-tumor effects were explored. In 

addition, the effect of these compounds on the epidermal proliferative response was 

analyzed and drastic decreases in epidermal hyperproliferation and hyperplasia were 

found. Rapamycin also inhibited dermal inflammatory cell infiltration in a dose-dependent 
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manner. Both compounds also blocked or attenuated TPA-induced signaling through 

epidermal mTORC1 as well as several downstream targets.  In addition, inhibition of this 

pathway by metformin appeared to be, at least in part, dependent on AMPK activation in 

the skin.    

Overall, the data indicate that pharmacological strategies targeting this pathway 

offset the tumor-enhancing effects of DIO and may serve as possible CR mimetics. They 

suggest that mTORC1 contributes significantly to the process of skin tumor promotion, 

specifically during dietary energy balance effects. Exploiting the mechanistic information 

underlying dietary energy balance responsive pathways will help translate decades of 

research into effective strategies for prevention of epithelial carcinogenesis.  
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Chapter 1: Introduction and Background 

1.1    Dietary energy balance and cancer 

Dietary energy balance refers to the relationship between calories consumed and calories 

expended. A positive state of energy balance occurs when the ratio of calories consumed is 

higher than those expended, and a negative state of energy balance occurs when more 

calories are expended than consumed. A chronic state of positive energy balance leads to 

overweight and obesity and is associated with “metabolic syndrome” or a cascade of 

metabolic disorders leading to the development of cardiovascular disease, type II diabetes 

as well as many types of human cancer. Estimates from the Cancer Prevention Study II, 

suggest that 14% of all cancer deaths in men, and 20% of all cancer deaths in women can 

be attributed to excess body weight, and this is relevant for a range of cancer types (1). 

Obesity has risen drastically over the past several decades in the United States and, 

according to 2010 estimates from the Centers for Disease Control and Prevention, more 

than one third (35.7%) of US adults and a startling 17% of children and adolescents are 

obese (2). In addition, many animal models also support this association between obesity 

and cancer. Chronic consumption of an ad libitum high fat diet, in which 45-60% of Kcal are 

from fat, leads to diet-induced obesity (DIO) and is associated with many chronic diseases 

including type II diabetes and many types of cancer in rodents, some of which include 

pancreas, breast, colon, liver, ovarian and lung (3-6). In addition, two-stage murine skin 

carcinogenesis model studies have also demonstrated a role for a high-fat diet in 

accelerating the rate of tumor development during epithelial carcinogenesis, and when the 

high fat diet was administered in an isocaloric manner, (diet high in corn-oil but isocaloric) 

papilloma multiplicity and incidence in SENCAR mice were significantly increased (7). 

However, these studies did not specifically evaluate the effects of DIO (weight gain and 

adiposity) on susceptibility to tumorigenesis, and effects and mechanisms underlying 

positive energy balance are thus less well studied.  
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 On the opposite spectrum, negative energy balance, achieved by calorie restriction 

(CR) has been shown to universally inhibit carcinogenesis and other chronic diseases 

across species, as well as extend lifespan (8). CR is an experimental mode in which total 

energy intake is restricted. Typically, test subjects receive a 15-40% reduction in calories 

(fat and/or carbohydrates) as compared to an ad libitum control fed group but still maintain 

isonutrient conditions (9). Consistently, CR has been shown to be a potent inhibitor of 

carcinogenesis in animal models and acts broadly with respect to type of tumor affected as 

well as mode of induction. 

 

1.2    Mechanisms of energy balance effects on carcinogenesis 

CR is considered to be one of the most potent dietary manipulations used to suppress the 

carcinogenic process, and many key studies in animal models have supported this notion. 

With more and more of the US population’s accession to obesity, it is becoming ever more 

important to translate knowledge from animal models into human chemoprevention 

strategies. In order to achieve this, understanding the underlying mechanisms responsible 

for the differential effects of CR and DIO on tumorigenesis is critical. Current studies have 

shown that these effects are multifaceted and thus are achieved through the combined 

effects of numerous cellular and biochemical processes, some of which affect hormones 

and growth factor signaling as well as inflammation.  

 

Globally Active Circulating Proteins  

It is thought that a primary mechanism of action responsible for dietary energy 

balance effects on tumorigenesis is through variations in serum-related hormones and 

growth factors that regulate many physiological processes. Some of these include but are 

not limited to appetite, energy expenditure and metabolism, and thermoregulation. Recent 

evidence from the literature suggests that primary mediators include insulin, insulin-like 
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growth factor-1(IGF-1), and glucocorticoids as well as the adipokines, leptin and 

adiponectin (Figure 1-1) (10).  

CR has been shown to reduce circulating insulin levels, while obesity increases 

them. During conditions of chronic hyperinsulinemia and insulin resistance in particular, 

insulin has been shown to increase cancer risk at several organ sites (11). Additionally, it is 

unclear if increases in tumorigenesis can be primarily attributed to the direct effects of 

insulin receptor activation and subsequent downstream signaling, or if indirect effects on 

IGF-1 synthesis or other hormones are primarily responsible. Circulating levels of IGF-1 are 

determined by hepatic synthesis which is regulated by variations in overall insulin and 

growth factor levels due to variations in energy and nutrient intake. High circulating levels of 

insulin also decrease the availability of IGF binding protein-1, subsequently providing more 

bioavailable IGF-1. There is also recent evidence of crosstalk between the insulin receptor 

and many hormonal pathways thus further complicating its role in energy balance effects 

(12, 13).  

Consistently, in vitro studies have provided evidence that IGF-1 enhances cellular 

growth in a variety of cancer cell lines (14). In addition, it has been identified as a cell cycle 

progression factor through its activation of the phosphoinositide-3-kinase (PI3K)/Akt signal 

transduction pathway and subsequent stimulation of G1 to S phase progression (15, 16). 

This is also supported in vivo as studies using LID (reduced circulating IGF-1) mice showed 

reductions in tumor burden in both an orthotopic model of pancreatic cancer (17) as well as 

in a two-stage chemical skin carcinogenesis model (18). It is important to note that in each 

of these studies, while there was a 75% reduction in circulating IGF-1, insulin levels 

remained high, thus making it hard to discern the primary mediator of energy balance 

effects. 

 Adipokines, which are cytokines secreted from adipocytes, have also been identified  
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as mediators in energy balance effects. Leptin, a 16 kDa adipocyte derived cytokine 

regulates metabolism and satiety by acting in the hypothalamus to send a cascade of 

neuroendocrine signals (19). Leptin is differentially regulated by DIO and CR, and levels 

strongly correlate to overall body weight and fat mass. In normal weight individuals, 

increases in leptin result in decreased appetite while an obese state has consistently been 

shown to increase overall circulating levels of leptin to a point of causing leptin resistance 

(20-22).  It is thought that this resistance causes the exogenous leptin to lose its ability to 

prevent weight gain (22). In addition, this rise in circulating leptin is associated with 

increased cancer risk for many types of cancer most notably colorectal and prostate cancer 

with limited data supporting a role for leptin in breast and endometrial cancers (23-25).  In 

vivo studies have shown that leptin may increase tumor invasion and support angiogenesis 

(26), and in vitro studies have shown leptin to increase proliferation of neoplastic but not 

“normal” cells (27). Leptin is a product derived from the Ob gene, and its major actions are 

mediated primarily through the transmembrane leptin receptor (ObR) whereby the Janus 

Kinase 2/signal transducer and activator of transcription 3 (Jak-STAT) signaling cascade is 

subsequently activated. These pathways have been shown to be critical signaling pathways 

during tumor development (19, 28). There is also further evidence that the importance of 

leptin during energy balance modulation and cancer development could also be due to the 

ratio of leptin to adiponectin in contrast to the independent effect of leptin as they act in 

opposition of one another to influence carcinogenesis (29, 30). Adiponectin is a 28 kDa 

adipokine insulin sensitizer that plays a key role in glucose and lipid metabolism. 

Concentrations of adiponectin increase as overall weight declines and decrease in obese 

and diabetic states as well as other conditions classified as “metabolic syndrome”(31). 

Metabolic syndrome is the name given to a set of risk factors which include insulin 

resistance, hyperglycemia, excess body weight around the waist, high blood pressure, high 

triglycerides, and low HDL cholesterol levels that collectively lead to increased heart 
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disease, type II diabetes and stroke. Extreme weight loss through CR and surgery has been 

shown to reverse these effects (10). Although the role of adiponectin in cancer is not well 

characterized, recent data suggest that levels of adiponectin may inversely correlate with 

cancer development (27, 29, 32, 33).  Possible mechanisms include adiponectin mediated 

activation of AMP-activated protein kinase (AMPK) and subsequent inhibition of mTORC1 

signaling as well as its attenuation of Stat signaling (10).  

 Previous CR studies have also suggested a possible role for adrenal glucocorticoids 

in mediating some of the anti-cancer effects of CR. Marked increases in corticosterone 

have been observed in rodents undergoing CR > 30%, and this increase was associated 

with a decrease in tumor development in the two-stage skin carcinogenesis model (34). 

There are several proposed mechanisms by which corticosterone may be exerting anti-

tumor effects which include reductions in inflammation, inhibition of cell cycle progression 

via p27 activation and inhibition of PKC and subsequent ERK signaling (34, 35). 

Adrenalectomy studies further complicate the role of corticosterone during CR, as removal 

of the adrenal gland abolished the anti-cancer effects of CR during skin tumor promotion in 

mice; in contrast, adrenalectomy had no impact on CR mediated tumor growth inhibition in 

rats in a chemically induced model of mammary carcinogenesis (35, 36). Additionally, 

studies in a rat mammary carcinogenesis model also showed that supplementation of 

corticosterone in a non-CR state inhibits tumorigenesis, but also results in dose-dependent 

reductions in circulating IGF-1 levels (37).  

 Chronic inflammation is associated with cancer development, and more recently, 

obesity (38). Increases in white adipose tissue (WAT) cause increased flux in the number of 

circulating inflammatory cytokines as well as at the local or tissue level,  some of which 

include interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant 

(MCP-1) as well as C-reactive protein (39). A cascade of events then occurs, beginning 

with increased macrophage infiltration and further adipose-derived increases in 
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inflammatory cytokines. This is followed by increased signaling through inflammatory 

pathways such as NF-ҡB, STAT3, and JNK leading to a low-grade but chronic inflammatory 

state giving rise to a tumorigenic environment (40). 

 

 

Figure 1-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1 Differential effect of DIO and CR on globally active circulating proteins  
DIO or positive energy balance increases circulating levels of leptin, IGF-1, TNF-α and IL-6 
and decreases levels of adiponectin. The opposite effect is seen with CR or negative 
energy balance and increases in corticosterone and adiponectin occur. Changes in 
circulating levels of these serum hormones and cytokines affect activation of corresponding 
receptors leading to differential effects on cellular growth, proliferation and survival. 
Reprinted by permission from Wiley and Sons: [Annals of the New York Academy of 
Science] (10), copyright 2011 
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There is also recent evidence to suggest that differential signaling through the 

PI3K/Akt/mTOR pathway across the DIO/CR spectrum may provide a potential mechanism 

by which dietary energy balance modulates tumorigenesis (Figure 1-2). An ad libitum diet or 

consumption of a high fat diet inhibits the TSC complex, and subsequently activates 

mTORC1 enabling an increase in cellular growth and proliferation. Recent data suggest 

that this occurs through increases in ATP, glucose and amino acids caused by high energy 

conditions. In contrast, nutrient deprivation via CR has been shown to inhibit mTORC1. It is 

thought that one mechanism through which this may occur is through the LKB1/AMPK 

pathway. When ATP/AMP ratios become low, AMPK is activated and phosphorylated by 

LKB1 and subsequently mTORC1 is inhibited. In addition, this activation reduces energy 

expenditure by the cell thus limiting stress inspired apoptosis (41). It should be noted 

however that this mechanism appears to be tissue specific as CR was found to activate 

AMPK in liver, skeletal muscle, and fat tissue but did not appear to be differentially 

activated by DIO or CR in skin epidermis or dorsolateral prostate (42, 43). Recent studies 

have also shown CR to reduce IGF-1R activation and subsequently downstream activity 

(Akt, mTORC1 and downstream substrates) in a variety of epithelial tissues including skin 

epidermis, liver and prostate while DIO increased activation in both steady-state conditions 

as well as after TPA treatment (43). Furthermore in this study, dietary energy balance 

modulation was also found to differentially modulate epidermal growth factor receptor 

(EGFR) contributing to the observed differences in Akt and mTORC1 status with DIO and 

CR. Another study found similar decreases in serum IGF-1 levels and decreased protein 

activation of mTOR and p70S6K in mammary tumors and mammary fat pads using MMTV-

TGF-α mice undergoing intermittent calorie restriction (ICR) (44). Studies in LID mice also 

show reductions in TPA-induced epidermal activation of Akt and mTORC1 comparable to 

those undergoing CR thus further supporting the role of IGF-1 in mediating dietary energy 

balance effects (18). 
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Figure 1-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1-2 Summary of dietary energy balance manipulation on epithelial growth 
factor signaling.  Illustration representing the proposed mechanism by which dietary 
energy balance (calorie restriction and diet-induced obesity) modulates susceptibility to skin 
tumor promotion. DIO increases while CR decreases circulating levels of IGF-1 which in 
turn differentially regulate activation of IGF-1R and subsequently EGFR due to potential 
receptor crosstalk.  Akt, mTOR and other downstream targets including cell cycle regulatory 
proteins such as cyclin D1, cyclin E and cyclin A are differential regulated. Dotted lines 
represent potential changes supported by preliminary data. Black arrows represent 
changes in epidermal signaling in obese mice, and white arrows indicate changes seen in 
epidermis of CR mice.  
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Additional studies have used A-ZIP/F-1 mice, which lack WAT and display low 

levels of adipokines but are still insulin resistant and diabetic to enable a distinction to be 

made from the effects of adiposity (leptin, adiponectin, etc.) and various hormonal factors 

and signaling pathways that have been linked to obesity and tumorigenesis. These mice 

were found to remain highly susceptible to tumor development in both the two-stage skin 

carcinogenesis model as well as in the C3(1)/T-Ag transgenic mouse mammary model in 

the absence of obesity thus further supporting the hypothesis that insulin, IGF-1 and 

downstream signaling pathways as well as inflammation are the primary mediators in the 

link between obesity and cancer (45).  

 

1.3 PI3K/Akt/mTOR signaling pathway 

It is well established that the PI3K/Akt/mTOR signaling pathway is a major element of IGF-1 

and insulin responses that are involved in cellular metabolism and growth and that this 

pathway may be a major contributor to IGF-1’s effects on tumorigenesis (15, 46, 47). 

Evidence from the literature also suggests that this pathway is one of the most commonly 

altered pathways found in human tumors (48, 49). Akt has been shown to regulate cell 

cycle progression and cell survival via phosphorylation of many downstream effectors 

including Bad, Foxo1, and GSK3β and thus mediates or promotes cellular transformation 

when signaling is aberrant. IGF-1 and/or insulin bind to the IGF-1R and IR respectively and 

in turn, these activated receptor tyrosine kinases and Ras, activate PI3K via scaffolding 

adaptors such as insulin receptor substrate I (IRS-1) or through direct phosphorylation (1-

1). PI3K produces phosphatidyl-inositol-3,4,5-triphosphate (PIP3) which is then bound to 

Akt and PDK1, with Akt representing its primary substrate. PDK1 phosphorylates Akt at 

T308 which is the activation loop (50).  

 Elevated levels of Akt activation have also been associated with increases in 

mammalian target of rapamycin (mTOR) activity. mTOR is a highly conversed 
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serine/threonine protein kinase that integrates energy sensing and nutrient status to growth 

factor signaling in order to regulate multiple critical cellular processes including cellular 

growth and proliferation, protein translation and autophagy (51). mTOR is composed of two-

distinct complexes, mTORC1 and mTORC2. mTORC1 is composed of mLST8 and raptor 

and is primarily driven by nutrient status (Figure 1-3). mTORC1 is known to be rapamycin 

sensitive. External signals such as growth factor signaling via nutrient status and availability 

regulate activation or repression of tuberous sclerosis complex (TSC) which is the primary 

regulator of mTORC1 activation. TSC binds to and relieves G-protein Rheb from mTORC1, 

subsequently inhibiting mTORC1. However, when TSC is phosphorylated it is inactivated, 

and the released Rheb, in a GTP-bound state can then activate mTORC1. In addition, 

PRAS40, a proline-rich Akt substrate and binding partner of raptor is a negative regulator of 

mTORC1 that is released in response to insulin (52).  
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Figure 1-3 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-3 Mammalian Target of Rapamycin (mTOR) signaling schematic.  Illustration 
representing key regulators of the mTOR signaling pathway. mTOR is a 289 kD protein 
composed of two functionally distinct complexes: mTORC1 and mTORC2. Growth factors 
including insulin and IGF-1 and environmental stressors such as hypoxia and energy 
promote mTORC1 mediated cellular growth and proliferation through downstream targets 
S6K1 and 4E-BP1 and inhibit the induction of autophagy. mTORC1 is the rapamycin-
sensitive complex. mTORC2 is rapamycin insensitive and activated via RTKs by an 
unknown mechanism. The mTORC1/S6K1 negative feedback loop suppresses activation of 
mTORC2/Akt.  [Reprinted from (53) under the Creative Commons Attribution Non-
commercial License] 
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Primary processes of mTORC1 are carried out by downstream targets, ribosomal 

S6 kinases (S6Ks, p70S6K) and 4E-binding protein-1 (4E-BP1) which are translational 

regulators (54). The S6Ks have been shown to increase ribosome biogenesis and lead to 

increased cellular growth although complete understandings of the mechanisms of action 

behind this remain unclear. Of particular interest is S6K’s negative regulation of insulin 

signaling through phosphorylation of IRS-1 and subsequent decreases in signaling through 

Akt/mTOR. Because this signaling pathway is stimulated by nutrients, this negative 

feedback loop may play a role in obesity related diseases (52). Further downstream of S6K, 

this will be referred to hence forth as p70S6K, is Programmed Cell Death Receptor 4 

(PDCD4). Emerging evidence suggests that transcription as  well as translation is greatly 

influenced by levels of PDCD4 which in turn modulate signaling pathways thus potentiating 

PDCD4’s role as a tumor suppressor (55).  During skin tumor promotion, a recent study 

found tumor promoter TPA to stimulate proteasomal degradation of PDCD4 in mouse 

epidermis and skin tumors, and levels inversely correlated with tumor response. Both Akt 

and p70S6K were found to phosphorylate PDCD4 and target it for ubiquitylation via E3-

ubiquitin ligase (56). mTORC1 also regulates protein synthesis via the 4E-BPs. The 4E-BPs 

inhibit protein synthesis by binding to eIF4E to prevent it from interacting with 

eIF4G1/eIF4G2 and thus inhibit its function in mRNA translation, though it’s thought that 

these translational repressors only affect certain mRNAs (52).   

Additional downstream targets of mTORC1 include many autophagy-related genes 

(ATGs). Macroautophagy is an important component of the cellular stress response, 

designed to maintain cellular homeostasis. It is a catabolic process that involves the 

breakdown of a large variety of cellular material and debris via delivery of these cytoplasmic 

proteins and organelles by specific membranous vesicles known as autophagosomes to 

lysosomes (57).  The process is crucial to maintaining cellular homeostasis by eliminating 

damaged proteins and organelles, as well as playing a key role in many other physiological 
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processes including immunity, cellular apoptosis, and metabolism (58, 59). Deregulation of 

this process has been linked to increases in susceptibility to a variety of diseases including 

cancer (59, 60). Many alterations have been found in autophagic signaling pathways during 

various stages of tumorigenesis. However, it is important to note that autophagy’s role in 

cancer is an environment-dependent process.  Autophagy maintains cellular homeostasis 

which can limit the availability of a microenvironment that promotes tumor growth. 

Particularly, if irregularities are present that decrease autophagic processing such as 

various disease states, this may give rise to a microenvironment that is able to promote 

tumorigenesis (58). In contrast, established solid tumors may actually exploit autophagy to 

stimulate tumor growth and promote metastases (59). 

Most pro-autophagic events including initiation and nucleation converge on the 

mammalian Target of Rapamycin (mTOR) which as aforementioned serves as a critical 

sensor of energy and nutrient status and a subsequent regulator of protein synthesis. 

Nutrient rich states cause a complex formation between mTORC1, ULK1/2, FIP200 and 

mAtg13 due to interactions between raptor and ULK1 (61). ULK1 and ULK2 are mammalian 

homologs of the yeast autophagy related gene 1 (Atg1) serine/threonine protein kinase 

critical for autophagic regulation (62). Phosphorylation of ULK1 and Atg13 by mTORC1 

prevents the pro-autophagic kinase activity of these proteins (58).This  is accompanied by 

an mTORC1 mediated increase in protein synthesis. Nutrient starvation or treatment with 

mTOR inhibitors reverses this negative regulation of autophagy and allows for the ULK 

complex to localize to the newly forming phagophore (58, 62) (Figure 1-4).  

  mTORC2 associates with rictor, mLST8 and SIN1 and is activated by RTKs that 

respond to stimuli that have yet to be elucidated and overall understanding of its functions 

are greatly limited (15, 51). It is thought to be rapamycin-insensitive, and it primarily targets 

Akt for phosphorylation at serine 473 (51). Finding specific inhibitors of mTORC2 kinase 

activity will aid greatly in the understanding of control and cellular function of mTORC2.  
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Figure 1-4 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4 Schematic of mTOR/AMPK mediated regulation of ULK1 in response to 
nutrient availability. Under glucose rich conditions, AMPK is inactivated and mTOR is 
activated. Activated mTORC1 phosphorylates ULK1 on Serine 757 disturbing its interaction 
with AMPK and subsequent activation. When nutrient availability is limited, AMPK remains 
activated and thus phosphorylates TSC and inactivates mTORC1. Subsequently, AMPK 
can phosphorylate ULK1 on Serine 317 and Serine 777 thereby initiating autophagy 
through its activation. Reprinted by permission from Macmillan Publishers Ltd: [Nature Cell 
Biology] (63), copyright  2011 
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1.4  Calorie restriction mimetics: Targeting mTORC1 
 
A new chemopreventive approach may lie in the identification or development of natural or 

synthetic agents to appropriately “mimic” the protective effects generated by CR as 

previous findings regarding CR and anti-cancer properties are vast. Drastic lifestyle 

changes which include long-term CR are difficult for the general population to maintain. As 

discussed earlier, much data supports the hypothesis that the IGF-1R and Akt/mTOR 

pathways are important mediators in CR effects during tumorigenesis thus making them 

front line targets for mimetic drug development. Current drugs under development have 

targeted IGF-1 with small-molecule inhibitors (64) as well as with anti-sense inhibitor 

approaches (65) and anti-IGF-1 antibodies (66). In addition retinoids and flavonoids which 

are widely used as chemopreventive agents have also demonstrated inhibition of the IGF-1 

pathway (67-69). More recent studies have begun to explore further downstream of IGF-1 

with Akt and mTOR inhibitors as potential CR mimetics. As previously discussed, mTOR, a 

target of Akt, has been shown to be a key component in mediating some of the effects of 

aberrant Akt signaling that occur during tumorigenesis (70, 71). 

 

1.4.1  Rapamycin  

Rapamycin is a macrolide found in the soil originating as a product from the bacterium 

Streptomyces hygroscopicus. Rapamycin is a powerful immunosuppressant, and it is 

primarily used to prevent organ transplant rejection, especially in kidney transplant patients. 

However, its anti-proliferative properties have also generated a large amount of interest in 

rapamycin as an anti-cancer or chemopreventive agent. Additionally, rapamycin has been 

shown to extend lifespan in mice thus exerting similar effects to CR (72). Importantly, 

rapamycin is a well-established mTORC1 inhibitor. It has been shown to exert this effect by 

binding to its intracellular receptor, immunophilin FKBP12, forming an inhibitory complex. 

This is turn, destabilizes mTORC1 by binding to a C-terminus region on mTOR thus 
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preventing mTOR interaction with raptor (73-75).  mTORC2 is thought to be “rapamycin-

insensitive” as acute treatment has shown no effect on mTORC2 substrates, however 

chronic treatment in vitro did demonstrate possible mTORC2 inhibition via decreases in 

AKT/PKB which is a primary downstream target of mTORC2 (76).  

 Rapamycin has been shown to suppress tumorigenesis in a variety of tumor model 

systems. It was found to inhibit growth of mammary lesions, both pre-malignant and 

malignant transplanted from Tg (MMTV-PYV-mT) mice (77). In addition, in a xenograft 

model of highly metastatic human hepatocellular carcinoma, rapamycin was found to inhibit 

primary tumor growth as well as metastasis (78). Rapamycin, administered in the diet also 

inhibited tumor growth in primary skin tumors induced by chronic exposure to UV (79) as 

well as induced regression of late-stage skin tumors in the chemically-induced two-stage 

model of skin carcinogenesis in mice (80). Chemopreventive properties of rapamycin were 

demonstrated in A/J mice with carcinogen induced lung cancer as these mice displayed 

marked decreases in tumor size and multiplicity (81, 82). Furthermore, several transgenic 

mouse models including a head and neck SCC mouse model based on a K-rasG12D and p53 

loss in the oral epithelium (83) as well as an erbB2-dependent breast cancer mouse model 

(84) have demonstrated rapamycin’s potent anti-cancer properties through decreases in 

tumor growth, angiogenesis and survival.  

 

1.4.2  Metformin 

Metformin is a biguanide derived from guanidine, the active ingredient in Galega officinalis 

(goat’s rue). It is the most commonly prescribed oral hypoglycemic agent today with over 

120 million users worldwide (85). Its primary use is in the treatment of diabetes mellitus 

type 2 whereby it inhibits hepatic glucose production and induces an overall reduction in 

insulin resistance. This also stimulates glucose uptake in peripheral tissues thereby 

reducing overall circulating blood glucose levels. Primary mediators in these insulin and 
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glucose lowering effects include AMPK activation via activation of liver-kinase B1 (LKB1). 

This activation occurs through metformin’s primary mechanism of action whereby it 

interferes with respiratory complex I in the mitochondria reducing overall adenosine 

triphosphate levels (ATP) (86). AMPK is a central energy and nutrient sensor that responds 

to variations in the ratio of AMP to ATP. Nutrient deprivation leads to activation of AMPK 

and subsequent inhibition of energy consumption and related processes such as protein 

translation regulated via mTOR and its various downstream targets, and fatty acid synthesis 

via acetyl CoA Carboxylase (ACC) and fatty acid synthase (FASN) (Figure 1-5). Activation 

of AMPK helps partially reverse the metabolic deregulation present in type II diabetes.     
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Figure 1-5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-5 Schematic of LKB1/AMPK signaling. Various downstream effectors mediate 
LKB1/AMPK’s regulation of cellular growth and metabolism. Metabolic stress induces 
increases in cellular AMP thus forming the AMPKα complex which can then be activated by 
LKB1. The AMPK complex can also be phosphorylated by calcium/calmodulin-dependent 
protein kinase (CaMKK). PP2A and PP2C inhibit its phosphorylation. Activation of AMPK 
causes translocation of GLUT4 to the plasma membrane whereby it stimulates glucose 
uptake and regulates downstream signaling involved in cellular gene transcription and 
cellular metabolism. Reprinted by permission from Macmillan Publishers Ltd: [Oncogene] 
(87), copyright 2011 
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There is increasing evidence from case-control and prospective cohort studies that 

type II diabetes is associated with increased cancer risk; however, there remains large 

overlap in cause since there are various other cancer risk factors associated with type II  

diabetes such as obesity, sedentary lifestyle, and a high-fat diet (88). With the elucidation of 

AMPK’s role in metabolism, as well as all the metabolic abnormalities linked with increased 

cancer risk, there is great interest in pursuing metformin as an anti-cancer/chemopreventive 

agent. Population-based studies have provided evidence that patients with type II diabetes 

treated with metformin have reduced cancer incidence as well as reduced mortality than 

patients receiving other types of diabetes treatment (89, 90). In addition, this appears to be 

true for a variety of solid tumor types. Recent epidemiological studies show a reduced 

incidence of colorectal cancer in diabetic patients receiving metformin (91). Patients taking 

metformin with pancreatic cancer and colorectal cancer displayed a 30% improvement in 

overall survival (91, 92). A retrospective study showed that breast cancer patients taking 

metformin in addition to systemic therapy, displayed an increase in the overall effectiveness 

of the chemotherapy (93). 

 In addition, the possible anti-tumorigenic properties of metformin have been 

supported in a variety of in vitro and in vivo experimental systems. Several studies in 

cancer cell lines have provided evidence that metformin inhibits neoplastic growth (94, 95). 

In A/J mice exposed to a tobacco carcinogen 4- (methylnitrosamino)-1-(3-pyridyl)-1-

butanone (NNK), both oral and intraperitoneal administration of metformin reduced lung 

tumor burden. With oral administration there were modest decreases in mTOR activity in 

lung tumor tissue, however upon IP injection, signaling through the IGF-1R/IR was 

decreased as well as mTOR, Akt and ERK, in an AMPK independent fashion (96). In HER-

2/neu mice, metformin treatment via the drinking water (100 mg/kg bw per day) reduced the 

size and incidence of mammary adenocarcinomas as well as prolonged lifespan (97). 

Metformin administered in a basal powdered diet form (250 mg/kg bw per day) in APCmin/+ 
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mice was shown to reduce polyp growth as well as activate AMPK and reduce signaling 

through mTOR in tumor tissue (98). Since most epidemiological studies have been 

obtained from type II diabetic populations which present metabolic disorders including 

obesity, hyperglycemia and hyperinsulinemia, a few studies have explored metformin’s 

effect in mice receiving a high-energy vs. normal control diet on tumor growth. One study 

found that oral administration via the drinking water (50 mg/kg bw per day) blocked the 

stimulatory effect of a high-energy diet on growth of an in vivo model of colon carcinomas 

using MC38 carcinoma cells. Metformin attenuated high-energy associated effects on tumor 

growth including a reduction in insulin levels, a reduction in Akt activation in the tumor 

tissue, and a reduction in expression of Fatty Acid Synthase (FASN) in tumor tissue (99). 

This same group also showed that in a lewis lung LLC1 carcinoma cancer model in 

C57BL/6J mice, the effect of a high-energy diet on lung tumor growth was greatly 

attenuated with oral administration of metformin and was associated with reduced signaling 

through the IR. Both the high-energy and control groups of mice displayed activation of 

AMPK in tumor tissue, but only the high-energy group displayed significant reductions in 

tumor growth suggesting AMPK independent mechanisms (100).  

Thus the potential anti-tumorigenic properties of metformin may be attributed to both 

“direct” and “indirect” mechanisms. Indirect mechanisms of action include overall reductions 

in systemic insulinemia, bringing both glucose and insulin to physiologically normal plasma 

levels. This could attenuate signaling through the insulin receptor and attenuate growth of 

insulin responsive tumors. A primary “direct” class of proposed mechanisms requires 

activation of LKB1 and downstream target AMPK in neoplastic cells. A simplified model of 

this mechanism involves activation of this pathway and a subsequent suppression of 

protein synthesis through inhibition of mTOR, though the downstream effectors of AMPK 

are vast, and AMPK mediates many inhibitory effects on multiple signaling pathways. An 
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interesting question lies in whether or not non-diabetic patients will have the same reduction 

in cancer risk as their diabetic counterparts with metformin treatment.  

 

1.5   Two-stage murine model of skin carcinogenesis and PI3K/Akt/mTOR pathway 

The multistage or “two-stage” model of chemical carcinogenesis in mouse skin is a well-

established in vivo tumor model system used to evaluate the consecutive or step-wise 

process that gives rise to tumor development in the skin (Figure 1-6). Many epithelial 

cancers (e.g. colon, breast, prostate) found in humans result from a multistage process 

(101) making it relevant to address tumor development in a sequential, stage-oriented 

manner. Strengths of the model include its ability to distinguish between initiation, 

promotion, and progression phases of tumor development as well as the convenient ability 

to visualize tumor growth throughout the lifespan of the mouse. Due to a highly reproducible 

tumor response, the model is particularly useful for studying the effects of dietary energy 

balance manipulation as well as pharmacological intervention via various chemopreventive 

agents (both synthetic and natural) on tumor development. These pharmacological 

inhibitors can also be used to determine the importance of specific signaling pathways 

during each stage. The model may also be super-imposed on genetically engineered 

mouse models (GEMMs) to help identify proto-oncogenes and tumor suppressor genes as 

well as to determine susceptibility. 

This multistage process begins with an irreversible single sub-carcinogenic topical 

dose of a mutagenic agent. While a large range of “initiating” agents are used, currently the 

most common agent employed is the polycyclic aromatic hydrocarbon 7-12-

dimethlybenz[a]anthracene (DMBA). This stage is referred to as the “initiation” stage and 

gives rise to genetic lesions found in both follicular and interfollicular stem cells in the skin 

(102, 103). The Hras1 gene has been found to be the primary target gene during this stage, 

although there is evidence for mutations in Kras as well after exposure to DMBA and 
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initiating agent N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) (101). Following the initiation 

stage, promotion then occurs through clonal expansion of the mutated population of cells 

via repeated topical application of chemical agents that cause overall increases in 

proliferation and result in epidermal hyperplasia. In addition, initiated cells are thought to 

have a growth advantage allowing for their selective expansion (104, 105). Common tumor 

promoting agents include phorbol ester compounds of which the most frequently used is 

12-O-tetradecanoylphorbol-13-acetate (TPA). TPA activates Protein Kinase C (PKC) which 

mediates signaling through the Epidermal Growth Factor Receptor (EGFR) and has been 

shown to induce cellular proliferation through activation of the Akt signaling cascade (106). 

Promoting agents can also stimulate a host of pathways including PKC leading to increases 

in cellular growth and proliferation through stimulation of EGFR and may also influence 

inflammatory cell infiltration and oxidative stress. Repeated application of tumor promoting 

agents eventually results in exophytic growths on the skin referred to as “papillomas” which 

consist of a stromal core and are surrounded by hyperplastic tissue. Promoting agents are 

usually applied two or more times per week and must be consistent as promotion at this 

stage can be reversible causing papillomas to regress if treatment is not maintained. 

Although timing is dependent upon the strain of the mouse used, papillomas can generally 

be seen after 10 weeks of promotion. Eventually these benign outgrowths may progress to 

the highly vascularized, downward invading malignant squamous cell carcinomas (SCCs) 

as early as 20 weeks after promotion due to the additional accumulation of genetic 

alterations which include trisomies of chromosomes 6 and 7 and mutations in p53 in these 

small tumors (101).  

While this model has several advantages over “complete” skin tumor models in 

which a single carcinogen is used or continuous UV exposure is applied, there are a few 

limitations to this model system that must be addressed.  In this protocol, the mice present 

a Hras driven model of tumorigenesis, whereas p53 appears to be the most important 
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target gene in non-melanoma skin cancer in humans (107). Primary gene targets of this 

model system appear to be more relevant to other human epithelial cancers some of which 

include cancers of the lung, pancreas and colon (108). Additionally, there is no direct 

human equivalent for a “papilloma.” However, SCCs that arise from malignant conversion 

histologically favor those seen in humans as they are highly vascularized and invasive 

(101).  And lastly, this model has very low rates of metastasis, making it only useful for 

studying primary tumors (109). 

 

Figure 1-6 

 

 
 
 
 
 
 
 

Figure 1-6 Schematic of two-stage murine model of skin carcinogenesis. Initiation 
occurs with a single, topical sub-carcinogenic dose of a mutagenic agent followed by 
repeated topical applications of a promoting agent two weeks after initiation. Promotion 
continues for the entirety of the study. Papillomas begin to development 6-12 weeks after 
promotion begins and a small fraction eventually converts to SCCs beginning approximately 
20 weeks after promotion. This panel shows representative H&E stains of normal epidermis 
followed by hyperplastic epidermis, a papilloma and a SCC. Reprinted by permission from 
Macmillan Publishers Ltd: [Nature Protocols] (101), copyright 2009 
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There is much evidence to suggest that signaling downstream of IGF-1R and 

various other growth factor receptors to Akt and mTOR are primary mediators of tumor 

promotion during epithelial carcinogenesis in mouse skin. In the BK5.IGF-1 transgenic 

mouse model in which the bovine keratin 5 (BK5) promoter drives IGF-1 overexpression in 

the epidermis, increased susceptibility to two-stage skin carcinogenesis, and spontaneous 

tumor formation occurred. This was also associated with increased signaling through 

PI3K/Akt and progression through the cell cycle as seen through upregulation of cell cycle 

regulatory proteins in the epidermis (110, 111). The PI3K inhibitor LY294002 inhibited the 

observed changes in this signaling pathway in the epidermis, and furthermore, it inhibited 

skin tumor promotion in a dose dependent manner upon topical application (110). These 

IGF-1 transgenic mouse studies support the role of PI3K and Akt in IGF-1’s role during skin 

tumorigenesis. Additional studies further support a role for Akt during skin carcinogenesis. 

Segrelles et al., reported that epidermal Akt activation was sustained through the duration 

of the two-stage protocol in mouse skin (112). Additional studies have further confirmed the 

importance of Akt signaling and cellular proliferation during skin tumor promotion using 

transgenic mice that overexpress Akt1wt or Akt1myr in the epidermis under control of the BK5 

promoter and found that deregulation of Akt expression and subsequent altercations in 

related signaling pathways significantly heightened tumor response and resulted in the 

generation of spontaneous tumors in both transgenic mouse models (113). The Akt1myr 

mice have a permanently activated form of Akt through a myristoylation sequence located 

in the basal layer of the epidermis while the Akt1wt mice express wildtype Akt in the basal 

layer of the epidermis (113).  In addition to enhanced tumorigenesis through activation of 

the IGF-1/PI3K/Akt pathway, a marked increase in downstream target mTORC1 was also 

observed in these mice in response to TPA treatment (106, 113). These data suggest that 

mTORC1 activation may represent an important downstream Akt target and event during 

skin tumor promotion.  
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1.6   Hypothesis and Specific Aims 

The overall goal of this project was to determine the contribution of mTORC1 to epithelial 

carcinogenesis, specifically during skin tumor promotion using the two-stage model of 

epithelial carcinogenesis in mouse skin across a range of weight phenotypes. Previous 

published work from our lab has demonstrated that deregulation and overexpression of Akt 

in the epidermis leads to enhanced susceptibility to chemical carcinogenesis in mouse skin 

and generation of spontaneous tumors. Aberrant Akt activity in the epidermis also leads to 

activation of many downstream effectors of Akt including GSK3β, Bad, and mTORC1 (113). 

In addition, published data from our lab have shown that DIO and CR differentially modulate 

the activity of Akt and mTOR in several tissues including the epidermis, and  liver-specific 

IGF-1 deficiency (LID), which results in decreased circulating levels of IGF-1, has been 

shown to inhibit skin tumor promotion by TPA  in mice (18, 43). These data suggest that the 

differential effects of DIO/CR on Akt and mTOR signaling pathways are mediated partially 

through IGF-1 and insulin responses. While previous data have shown aberrant activation 

of Akt during skin tumor promotion and differential regulation of this pathway across the 

DIO/CR spectrum, specific studies have not been completed to evaluate the independent 

impact of mTORC1 during tumorigenesis across the spectrum of dietary energy balance in 

the two-stage model of epithelial carcinogenesis.  In this project, we used pharmacological 

approaches to target mTORC1 in this well-characterized model to test our hypothesis that 

mTORC1 signaling plays an important role in tumor promotion and plays an 

important role in dietary energy balance effects on tumor promotion. mTORC1 is a 

key target for preventing/controlling obesity related cancers. Selectively targeting 

mTORC1 will offset the tumor-enhancing effects of obesity and produce calorie 

restriction mimetic effects. 
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Specific Aim 1: To determine the effect of rapamycin in control, overweight, and 

obese mice during TPA skin tumor promotion. Two-stage skin carcinogenesis 

experiments were completed to examine the impact of mTORC1 inhibition via rapamycin on 

skin tumor promotion across a range of weight phenotypes via dietary manipulation to test 

the hypotheses that pharmacological strategies targeting mTORC1 can inhibit skin tumor 

promotion and offset the effects of overweight and obesity. The findings in this aim will 

support future translational studies targeting this pathway for the prevention and control of 

human epithelial cancers.  

 

Specific Aim 2: To determine the impact of metformin on skin tumor promotion by 

TPA.  The effects of AMPK activation and mTORC1 inhibition via anti-diabetic drug 

metformin on skin tumor promotion were evaluated during two-stage skin carcinogenesis 

experiments. Metformin was administered via the drinking water during the skin tumor 

promotion stage to overweight and obese mice either alone or in combination with 

rapamycin. The goal of this aim was to find an agent that could be administered either 

alone or in combination with rapamycin to target the mTORC1 pathway without dose 

limiting toxic effects such as drastic deregulation of carbohydrate metabolism. The findings 

in this aim are significant as they provide evidence that metformin may be more effective in 

an obese rather than a normal weight population.  

 

Specific Aim 3: To determine the mechanisms for the effects of rapamycin and 

metformin on skin tumor promotion by TPA. The effects of both compounds on TPA-

induced epidermal hyperproliferation and inflammation were evaluated as well as TPA-

induced epidermal signaling through the Akt/mTORC1 pathway as well as other relevant 

pathways. In addition, the effects of metformin on circulating serum levels of energy 

balance related hormones and glucose tolerance were evaluated. 
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Chapter 2: Materials and Methods 

Antibodies, Chemicals and Reagents 

A complete list of antibodies used is located in Table 1. Antibodies were supplied from BD 

Biosciences (San Diego, CA), CalBioChem (EMD Millipore) (Darmstadt, Germany), 

Cayman Chemical Co. (Ann Arbor, MI), and Cell Signaling Technologies (Danvers, MA).  

Chemiluminescence detection kits were purchased from Pierce (Rockford, IL).  7,12-

dimethylbenz(a)anthracene (DMBA), Bromodeoxyuridine (BrdU), Metformin (1-1-

Dimethylbiguanide hydrochloride), proteinase inhibitor cocktails, phosphatase inhibitor 

cocktails, anti-actin as well as anti-mouse and anti-rabbit secondary antibodies were 

purchased from Sigma-Aldrich (St. Louis, MO). TPA was purchased from Alexis 

Biochemicals (Plymouth Meeting, PA). Rapamycin was purchased from LC Laboratories 

(Woburn, MA) (114). 

 

Mouse Housing and Animal Care 

All housing and mouse procedures were carried out in accordance with the guidelines 

established by the Institutional Animal Care and Use Committee. Mice were fed ad libitum 

and group housed for the duration of these studies.  

 

Dietary Regimens 

For preliminary studies, to achieve a normal weight range, mice were placed on a regular 

chow diet. For dietary energy balance studies, diets were purchased in pellet form from 

Research Diets, Inc. (New Brunswick, NJ) (Table 2). Upon arrival, mice were placed on the  

semipurified control diet (10 kcal% fat, # D12450B) for a one week equilibrium period after 

which they were randomized into one of two dietary treatment groups: control/overweight 

(10 kcal% fat), fed ad libitum, or DIO (60 kcal% fat, # D12492), fed ad libitum. The precise 

compositions of these diets are found in table 2. Before treatment protocols began, mice 
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remained on diet for 8 weeks, or until statistically significant weight differences between the 

groups were achieved. 

 

Table 1 

Protein Company  Catalog # 

4E-BP1 (Ser65), phospho Cell Signaling Technologies 9451 

4E-BP1 (Thr37/46), phospho Cell Signaling Technologies 2855 

Acetyl-CoA Carboxylase  Cell Signaling Technologies 3662 

Acetyl-CoA Carboxylase (Ser79), phospho Cell Signaling Technologies 3661 

Akt Cell Signaling Technologies 9272 

Akt (Thr308) (D9E)XP®, phospho Cell Signaling Technologies 4056 

Akt (Ser473) (D9E)XP®, phospho Cell Signaling Technologies 4060 

AMPKα Cell Signaling Technologies 2532 

AMPKα (Thr172), phospho Cell Signaling Technologies 2531 

Beclin-1  Cell Signaling Technologies 3738 

COX-2 Cayman Chemicals 160126 

LC3B XP® Cell Signaling Technologies 3868 

LKB1 Cell Signaling Technologies 3050 

mTOR  Cell Signaling Technologies 2971 

mTOR (Ser2448), phospho Cell Signaling Technologies 2976 

NFҡB p65                                                           Cell Signaling Technologies         3034 

NFҡB p65 (Ser536), phospho                                                      Cell Signaling Technologies         3033 

p27/kip1 BD Biosciences 610242 

p70S6K Cell Signaling Technologies 9202 

p70S6K (Thr389), phospho Cell Signaling Technologies 9234 

PDCD4 XP® Cell Signaling Technologies 9535 

PRAS40 XP® Cell Signaling Technologies 2691 

PRAS40 (Thr246)  Cell Signaling Technologies 2997 

S6 Ribosomal Protein (Ser235/236), phospho Cell Signaling Technologies 2211 

S6 Ribosomal Protein (Ser240/244), phospho Cell Signaling Technologies 2215 

ULK1 (Ser555), phospho Cell Signaling Technologies 5869 

ULK1 (Ser757), phospho Cell Signaling Technologies 6888 

 

Table 1 List of Antibodies Used 
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Research diets D12450B D12492

Control DIO

gram% (kcal%) gram% (kcal%)

Protein 19.2          (20)  26.2           (20)

Carbohydrate 67.3          (70)  26.3           (20)

Fat   4.3          (10)  34.9           (60)

kcal/g 3.85 5.24

Ingredient gram% gram%

Casein, 80 Mesh 200 200

L-Cystine 3 3

Corn Starch 315 0

Maltodextrin 10 35 125

Sucrose 350 68.8

Cellulose, BW200 50 50

Soybean Oil 25 25

Lard 20 245

Mineral Mix S10026 10 10

DiCalcium Phosphate 13 13

Calcium Carbonate 5.5 5.5

Potassium Citrate, 1 H2O 16.5 16.5

Vitamin Mix V10001 10 10

Choline Bitartrate 2 2

FD&C Yellow Dye #5 0.05 0.05

Table 2 

 

 

 
 
 
 
 

Table 2 Nutritional composition of diets used. Distribution of protein, carbohydrate, fat 
and ingredient content across the two dietary groups used in dietary energy balance 
studies. Adapted from Research Diets Inc. product information, 2006.  
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Treatment Regimens 

Female FVB/N mice 6-8 weeks of age were obtained from the National Cancer Institute and 

group housed for the duration of the study in all experiments. For normal weight mice, 

treatment protocols began immediately. For dietary energy balance studies, treatments 

began after 7-8 weeks on various diets. In order to evaluate various protein markers and 

signaling in the epidermis, groups of 5-6 mice each were dorsally shaved and treated twice 

weekly for two weeks (i.e. 4 treatments total) with acetone vehicle (0.2 ml), 6.8 nmol of 

TPA, or various doses of pharmacological inhibitors, rapamycin or metformin. Similar single 

treatment experiments were also conducted. Rapamycin was dissolved in 0.2 ml of acetone 

vehicle at doses ranging between 1000 nmol and 2 nmol. For metformin treatment 

experiments, metformin was administered via the drinking water at the start of the two-week 

treatment period at doses of 50, 250 or 350 mg/kg body weight per day. It was assumed 

that each mouse consumed approximately 5 ml of water per day. The metformin treated 

water was replaced twice weekly and adjusted for changes in body weight every two 

weeks. Mice were sacrificed 6 hours after final acetone or TPA treatment and pooled 

epidermal protein lysates were prepared. To histologically evaluate short term markers of 

skin tumor promotion including epidermal hyperplasia and labeling index (LI), as well as 

immune cell infiltration, the dorsal skin of mice was shaved and treated. BrdU was 

administered via i.p. injection (100 g/g body weight) in 0.9% NaCl 30 min prior to sacrifice. 

Mice were sacrificed 48 hours after the last treatment. Dorsal skin samples were fixed in 

10% neutral buffered formalin, stored in 70% ethanol, embedded in paraffin and then 

sectioned.  Sections were cut and stained with H&E, anti-BrdU, or antibodies against LY6G, 

S100A9, or CD3. Epidermal thickness and labeling index were determined as described 

previously (115). Dermal immune cell infiltration was determined by the number of positive 

stained cells per 200 µm2 field (24 fields per slide) (114). 
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Two-Stage Skin Carcinogenesis (Normal Weight) 

Groups of 15-20 female FVB/N mice between 7-9 weeks of age on a regular chow diet 

were used. 48 hours prior to initiation, the dorsal skins of mice were shaved. Mice were 

initiated with either a topical application of 25 nmol of DMBA dissolved in 0.2 ml acetone 

applied to the dorsal skin, or received 0.2 ml vehicle (acetone). Two-weeks after initiation, 

mice received treatment with various doses of rapamycin administered topically (2 nmol- 

200 nmol) in 0.2 ml acetone or vehicle (acetone) 30 min prior to promotion with 6.8 nmol of 

TPA in 0.2 ml acetone. This treatment protocol was continued twice weekly until tumor 

multiplicity plateaued ( i.e.25 weeks). For regression tumor studies, groups of mice did not 

receive inhibitor treatment for 15 weeks, in which time skin tumors were generated. Mice 

were then treated with various doses of topical rapamycin (20 nmol and 100 nmol) with or 

without continued TPA treatment. Tumor incidence (percentage of mice with papillomas), 

tumor multiplicity (average number of papillomas per mouse), and mouse weight were 

recorded weekly for the entirety of the studies (114). 

 

Two-Stage Skin Carcinogenesis (Overweight and Obese) 

For diet based tumor studies, mice were initiated with 25 nmol of DMBA or acetone as 

previously described and were placed on a 10 kcal% fat diet for a two-week equilibrium 

period and then either continued on this diet, or were placed on the DIO diet (60 kcal % fat), 

fed ad libitum. After 6-8 weeks on the experimental diets mice began treatment with various 

doses of topical rapamycin dissolved in 0.2 ml acetone or began metformin treatment 

administered in the drinking water. This was followed by promotion for 25 weeks with 6.8 

nmol of TPA twice weekly. Tumor multiplicity, tumor incidence, and mouse weight were 

recorded each week for the duration of the study. To evaluate the effect of inhibitors on 

progression (conversion of papillomas to squamous cell carcinomas) treatment protocols 
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were continued until week 50. During this time carcinoma number and conversion ratios 

were recorded. Counts were verified histologically by a blinded pathologist.  

 

Preparation of Epidermal Lysates 

Upon sacrifice, a depilatory agent was applied to mouse dorsal skin for 30 s and removed 

under cool, gently running water. The skin was then excised, and the epidermal layer was 

removed by scraping with a razor blade into prepared lysis buffer (50 mM Tris-HCl pH 7.4, 

150 mM NaCl, 1 mM EDTA, 1 mM sodium orthovanadate, 1% NP-40, phosphatase inhibitor 

cocktail 1 and 2, proteinase inhibitor cocktail) and then homogenized using an 18-gauge 

needle. Epidermal scrapings were pooled from 3-6 mice to generate an epidermal protein 

lysate. These lysates were spun at 14,000 RPM for 15 min, and supernatant was removed. 

This process was repeated, and the collected supernatant was snap frozen in liquid 

nitrogen and stored at -80°C until analysis (114).  

 

Western Blot Analysis and Immunoprecipitation  

Protein concentration was determined using the DC (detergent compatible) protein assay 

from Bio Rad (Lowry). For western blot analysis, 50-75 µg of protein lysate per lane was 

used. Epidermal protein lysate was electrophoresed in 4-15% SDS-PAGE gels and then 

transferred onto nitrocellulose membranes (BioRad, Hercules, CA). The criterion precast 

gel system was utilized (BioRad, Hercules, CA). Membranes were blocked for 1 h in 5% 

bovine serum albumin (BSA) in TBS with 1% tween (TTBS) and incubated overnight at 4C 

with designated antibodies found in Table 1. The membranes were then washed 3 times for 

10 min each in TTBS prior to incubation with secondary antibodies for 1 h at room 

temperature. Additional washes (3 washes, 10 min each) were done to remove unbound 

secondary antibody, and protein bands were then visualized using a chemiluminescence 

detection kit (Pierce ECL Western Blotting Substrate, Rockford, IL) (114). For experiments 
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requiring quantitation, film was scanned manually and densitometry was performed using 

AlphaView Software: Protein Simple (Santa Clara, CA). Westerns were normalized by 

dividing the phosphorylated protein density by the total protein density or total actin, and the 

acetone control was set to 1. For co-immunoprecipitation experiments, epidermal lysates 

were prepared from CHAPS lysis buffer (30 mM Tris-Cl, pH 7.5, 150 mM NaCl, 1% 

CHAPS) and were precipitated with raptor (cell signaling) antibody using Dynabead Protein 

G IP kit (Invitrogen, Carlsbad, CA), and blots were probed for mTOR and raptor (Cell 

Signaling, Danvers, MA).  

 

Serum Analysis 

Blood was collected from individual mice immediately following CO2 asphyxiation via 

cardiac puncture (7-8 mice per treatment/diet group). Blood was allowed to sit at RT for 2 

hours and then spun at 7,500 rpm for 7 min. Supernatant was collected and spun again 

under the same conditions. Serum was then collected and flash frozen in liquid nitrogen 

and stored at -80° until analysis. Serum levels of insulin and leptin were measured using a 

10 µl sample with a Milliplex MAP Mouse Serum Adipokine panel multiplex Luminex Assay 

(Millipore, Darmstadt, Germany). Serum adiponectin levels were measured using a 10 µl 

sample with a Milliplex MAP Mouse Serum single plex Luminex Assay (Millipore, 

Darmstadt, Germany).  

 

Glucose Tolerance Test 

Glucose tolerance tests were performed at week 20 during a diet based tumor study from a 

randomly selected subset of mice from each treatment/diet group (n=10). Mice were fasted 

for 12 hours and 20% glucose (2 g/kg body weight via IP) was administered. Blood samples 

were taken from the tails, and glucose levels were determined at baseline, 30, 60, 90, and 
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120 min after injections of glucose using the Ascencia Elite XL 3901G Glucose Analyzer 

from Bayer Corporation (Pittsburgh, PA).  

 

Statistical Analyses 

Labeling index (% BrdU positive cells), epidermal thickness (m), and dermal immune cell 

infiltration (positive cells per field) were presented as the mean + the standard error of the 

mean, and mean differences were analyzed with the Mann-Whitney U-test. To determine 

minimal sample size for two-stage skin carcinogenesis and diet studies, power calculations 

were completed using GraphPad Statmate (Lo Jolla, CA).To compare tumor incidence in all 

two-stage studies, the 2 test was used. For comparison of tumor multiplicity in two-stage 

studies, the Mann-Whitney U-test was again used. Differences in serum levels were 

analyzed using the Mann-Whitney U-test. GraphPad prism was used for all tests unless 

otherwise noted, and significance was set at P<0.05 in all cases.  
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Chapter 3-Rapamycin Potently Inhibits Skin Tumor Promotion by TPA in Normal 
Weight, Overweight, and Obese Mice 
 
As previously discussed in the Introduction, earlier work from our lab as well as others, 

suggest that signaling through the PI3K/Akt/mTOR pathway plays a crucial role during 

epithelial carcinogenesis, specifically during skin tumor promotion by 12-O-

tetradecanoylphorbol-13-acetate. During this process, activation of epidermal Akt occurs as 

well as many downstream Akt effectors including mTORC1. In addition, differential 

signaling through this pathway across the CR/DIO spectrum has been revealed in a variety 

of epithelial tissues further supporting  the hypothesis that pathways activated in diabetic 

and high IGF-1 states (such as in DIO) may be the key targets for preventing obesity-driven 

cancers. While it is clear that deregulated Akt signaling is associated with development and 

progression of many types of human cancers, Akt’s downstream effectors mediating much 

of these effects has not been as well defined. Because of mTORC1’s central role in linking 

energy and nutrient status to growth factor signaling and subsequent protein synthesis, it 

was hypothesized that mTORC1 plays a primary role during skin tumor promotion, and its 

activation and/or repression might be a key mediator between dietary energy balance 

effects during skin tumorigenesis. In addition, it was hypothesized that pharmacological 

disruption of mTORC1 may block the harmful effects of DIO and a high-energy diet as well 

as replicate the benefits associated with CR. In order to address this question, initial 

experiments were carried out to assess the ability of established mTORC1 inhibitor, 

rapamycin to block skin tumor promotion by TPA. These experiments utilized female wild-

type mice (FVB/N) that were either a normal weight (regular chow diet), overweight (10 

kcal% fat), or obese (DIO, 60 kcal% fat). FVB/N mice were chosen as an appropriate strain 

for these studies. Using an inbred strain helps reduce variability in tumor development. In 

addition, this strain of mice is moderately sensitive to TPA as a skin tumor promoting agent, 

typically reaching between 20-100% tumor incidence and up to 11.8 papillomas per mouse 
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when using DMBA (19.5 to 390 nmol) and TPA (0.8 to 8.0 nmol) (101). In all cases, female 

mice were used to reduce aggressive behavior and allow for group housing.  

 

3-1 Effect of rapamycin on skin tumor promotion in normal weight mice 

 Two-stage skin carcinogenesis experiments in FVB/N mice were completed to 

assess inhibitory effects of rapamycin on skin tumor promotion in normal weight mice. 

These studies were designed to establish baseline effects of rapamycin on skin tumor 

promotion as well as provide appropriate doses of rapamycin to be applied topically for use 

in subsequent dietary energy balance studies.  

Groups of female FVB/N mice 7-8 weeks of age were initiated with 25 nmol 
of DMBA, and then 2 weeks later, treated topically with various doses of rapamycin 
(5-200 nmol) or acetone vehicle followed 30 min later by 6.8 nmol of TPA. All 
treatments were given twice weekly for the duration of the experiment (25 weeks). 
Tumor incidence (percentage of mice with papillomas) and tumor multiplicity were 
measured weekly for each group. As shown in Figure 3-1A, rapamycin exerted a 
powerful anti-promoting effect. Treatment groups receiving topical application of 
200, 100, or 50 nmol of rapamycin 30 minutes prior to application of TPA, had 
complete inhibition of papilloma development (Figure 3-1A). In addition, there was 
also a significant reduction in papilloma development in the groups receiving 20 
nmol and 5 nmol doses of rapamycin compared to the DMBA-TPA only control 
group. In this regard, at week 25 a 92% inhibition of papilloma development was 
observed in the group receiving 20 nmol of rapamycin prior to TPA, and a 49% 
inhibition of papilloma development was observed in the group receiving 5 nmol of 
rapamycin prior to TPA (P<0.05, Mann-Whitney U ) (see again Figure 3-1A). No 
papillomas developed in the groups initiated with DMBA followed by twice weekly 
treatments with either acetone or 200 nmol of rapamycin. In addition, we did not 
observe a significant number of SCCs in any of the groups at the end of the tumor 
experiment, consistent with previous studies from our laboratory that used an even 
higher initiating dose of DMBA (116). These studies showed that most SCCs 
developed in FVB/N mice after 25 weeks of promotion.  

Tumor latency was also affected in groups treated with 20 nmol and 5 nmol 
of rapamycin prior to treatment with TPA.  The time to 50% incidence of papillomas 
in the TPA promotion control group was 10-11 weeks versus 16-17 weeks in the 5 
nmol rapamycin treated group (Figure 3-1B). Mice in the 20 nmol rapamycin 
pretreated group reached only 32% tumor incidence as determined at week 25 

(Figure 3-1B). Differences in tumor latency were statistically significant (P<0.05, 2 

test). These data clearly show that rapamycin was a potent inhibitor of TPA skin 
tumor promotion, dramatically reducing both tumor multiplicity and tumor incidence 
and altering latency in a dose-dependent manner. 

On the basis of the data in Figures 3-1A and 3-1B showing that rapamycin 
dramatically inhibited the promotion of skin tumors, an experiment was conducted to 
determine whether topical treatments of rapamycin would inhibit growth of existing 
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papillomas generated by the two-stage protocol. For this experiment, female FVB/N 
mice 7-8 weeks of age were initiated with 25 nmol of DMBA and promotion was 
begun two weeks later with 6.8 nmol of TPA. Promotion was continued twice-weekly 
for 15 weeks. At week 15, mice were randomized into groups that received topical 
applications of 100 nmol or 20 nmol of rapamycin alone, acetone alone, or 
rapamycin treatments (100 nmol and 20 nmol) 30 minutes prior to continued 
promotion with 6.8 nmol of TPA. All treatments continued until week 25. Tumor 
multiplicity and tumor incidence were determined each week. As shown in Figure 3-
1C, topical treatment of rapamycin induced regression or inhibited growth of existing 
skin tumors. All groups receiving acetone or a dose of rapamycin with or without 
continued promotion with 6.8 nmol of TPA had statistically significant reductions in 
tumor multiplicity compared to the group that continued with just 6.8 nmol TPA 
treatments alone (P< 0.05, Mann Whitney U). At week 25 there was a 48% 
reduction of papilloma development in the acetone treated group compared to the 
6.8 nmol treated group (Figure 3-1C). There was a 74% inhibition in the group 
receiving 100 nmol of rapamycin alone and a 67% inhibition in the group receiving 
100 nmol of rapamycin prior to 6.8nmol of TPA (Figure 3-1C). There was a 75% 
inhibition of papillomas in the group receiving 20 nmol of rapamycin alone and a 
49% inhibition in the mice receiving 20 nmol of rapamycin prior to treatment with 6.8 
nmol of TPA (Figure 3-1C). There were no statistically significant differences in 
tumor incidence (data not shown). These data indicate that, in addition to 
dramatically preventing the formation of skin tumors, topically applied rapamycin 
inhibited growth and/or induced regression of existing papillomas even in the 
presence of continued TPA treatment. [Reprinted from (114)] 
 
 
The experiment in Figure 3-1A and B was repeated using similar doses of 

rapamycin and promoted with 6.8 nmol of TPA for 23 weeks (Figure 3-2A). Results were 

close to those found in Figures 3-1A and 3-1B. Time to 50% incidence was 10-11 weeks in 

the TPA control group versus 15-16 weeks in the 5 nmol rapamycin treatment group (Figure 

3-2C). There was an 85% inhibition of papilloma development in the 5 nmol rapamycin 

treatment group and complete inhibition at 200,100, and 50 nmol of rapamycin (Figure 3-

2B). Mouse weight gain was recorded every two weeks for the duration of the study to 

monitor for any possible toxicity present with rapamycin treatment. Topical rapamycin 

treatment had no effect on body weight gain in any of the experimental treatment groups for 

the duration of the study (Figure 3-3). 
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Figure 3-1 

 

 

                                

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-1 Effect of rapamycin treatment on skin tumor promotion by TPA in normal 
weight mice. Female FVB/N mice 7-8 weeks of age were initiated with 25 nmol of DMBA.  
Two weeks following initiation, mice were treated topically twice weekly with various 
rapamycin doses or acetone, followed by promotion with 6.8 nmol TPA for 25 weeks.  A) 
Tumor multiplicity: Differences in the average number of papillomas per mouse at 25 weeks 

between 20 nmol (●), 5 nmol (▲) rapamycin treated groups and the corresponding 6.8 nmol 

TPA () treated group were statistically significant (*P<0.05,***P<0.001, respectively, 
Mann-Whitney U). B) Differences in tumor incidence at 25 weeks between the 20 nmol (●) 

rapamycin group and the 6.8 nmol TPA () group were statistically significant (**P<0.01,2-
test).  C) Female FVB/N mice 7-8 weeks of age were initiated with 25 nmol of DMBA and 
two weeks following initiation, promotion began with 6.8 nmol of TPA. After 15 weeks of 
promotion, mice were randomized to receive either 100 or 20 nmol of rapamycin or acetone 
either alone or followed by treatment with 6.8 nmol TPA.  Differences in tumor multiplicity 
were statistically significant between the rapamycin treated groups and TPA treated group.  
Acetone (●) and 20 nmol rapamycin + TPA () groups (*P<0.05), 100 nmol rapamycin + 
TPA () (**P<0.01), 20 nmol rapamycin () and 100 nmol rapamycin (---) (***P<0.0001; 
Mann-Whitney U).  [Reprinted from (114)] 
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Figure 3-2 
 
 

 

 

Figure 3-2 Confirmation of rapamycin’ s potent inhibitory effects on skin tumor 
promotion by TPA. A two-stage skin carcinogenesis study was repeated to confirm the 
previous potent reductions seen after topical administration of rapamycin on tumor 
development. A) Treatment protocol: Mice were initiated with 25 nmol of DMBA. Treatment 
with rapamycin and promotion with TPA began two weeks later. Treatment protocols 
continued for 23 weeks. B) Tumor multiplicity: Differences in the average number of 
papillomas per mouse at week 23. C) Tumor Incidence: Differences in the percent of mice 
with papillomas at week 23.  
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Figure 3-3 Weight gain of mice during two-stage skin carcinogenesis experiments 
with topical rapamycin treatment. There were no significant differences in weight gain 
across the various acetone, TPA and rapamycin treatment groups for the duration of the 23 
week study.  
 

3.2 Effect of rapamycin on skin tumor promotion in overweight and obese mice 

The previous experiments provided substantial evidence supporting mTORC1’s contribution 

to the process of skin tumor promotion, as rapamycin exerted a powerful anti-promoting 

effect. Therefore, the ability of rapamycin to reverse the effects of overweight and obesity 

on tumor development and augment the anticancer benefits of CR in the two-stage model 

of murine skin carcinogenesis was examined.  Inhibition of tumor development with 

rapamycin in these dietary manipulated groups would also complement previous data from 

our lab supporting mTORC1’s importance in dietary energy balance effects during skin 

tumorigenesis. For these experiments female FVB/N mice 7-8 weeks of age were initiated 

with 25 nmol of DMBA. After a two week equilibrium period on control diet, they either 

continued on this control diet (10 kcal % fat ) fed ad libitum or began DIO via the high fat 

diet (60 kcal %  fat) fed ad libitum for the duration of the studies. While Research Diets  

AVG: 

29.74 g 
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DI2450B semipurified diet is noted as a “control” diet, previous studies in our lab as well as 

others (117) have noted that this diet leads to overweight female FVB/N mice as well as 

C57BL/6nCr based on appropriately corresponding Body Mass Index.  

Promotion during these two-stage studies began after 6 weeks on each 

experimental diet, after which differences in body weights between the two diet groups had 

reached statistical significance (Figure 3-4D). Mice were treated topically with 20 nmol or 5 

nmol of rapamycin 30 min prior to promotion with 6.8 nmol of TPA. All treatments were 

administered twice weekly for the duration of the experiment. Tumor incidence (percentage 

of mice with papillomas) and tumor multiplicity (average number of papillomas per mouse) 

were measured weekly for each group. As shown in Figure 3-4B, rapamycin potently 

inhibited skin tumor promotion by TPA in the overweight mice. In this regard, groups 

receiving 5 nmol of topical rapamycin treatment prior to TPA, displayed an 88% reduction in 

papilloma development at week 25 as compared to the DMBA-TPA control group (P< 0.05; 

Mann –Whitney U). In addition, the 20 nmol rapamycin treatment + TPA group had a 97% 

reduction in papilloma development (P< 0.05; Mann –Whitney U). The 20 nmol rapamycin 

treatment + TPA group only resulted in 23% incidence, and the 5 nmol rapamycin treatment 

+ TPA group reached just 43% incidence (Figure 3-4C). Additionally, this diet group was 

carried out to the progression phase of skin carcinogenesis. Carcinomas were counted 

weekly, and the average number of carcinomas and conversion ratios were recorded. 

Treatment protocols continued as previously conducted during promotion and continued 

until week 50. However, it should be noted that in contrast to papilloma development, the 

development of SCCs during progression will likely cause mice to die. Thus, for this portion 

of the tumor study SCC multiplicity and incidence were calculated cumulatively.  All SCCs 

from the tumor bearing mice were carried forward even after sacrifice.  As expected, 

rapamycin inhibited the conversion of papillomas to squamous cell carcinomas in a dose 
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dependent manner corresponding to decreases in papillomas during skin tumor promotion 

(Figure 3-5). Carcinoma development was verified histologically by a blinded pathologist.  

 

Figure 3-4 
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Figure 3-4 Effect of rapamycin treatment on skin tumor promotion by TPA in 
overweight/control mice. Female FVB/N mice 7-8 weeks of age were initiated with 25 
nmol of DMBA. A) Treatment protocol: At week 2, mice were placed on the 10 kcal% fat 
diet, fed ad libitum. After 6 weeks on diet to allow for weight gain, topical rapamycin 
treatment began followed 30 min later by promotion with 6.8 nmol TPA. Treatment protocol 
was continued for 25 weeks. B) Tumor multiplicity: Differences in the average number of 

papillomas per mouse at 25 weeks between 20 nmol (-), 5 nmol (●) rapamycin treated 

groups and the corresponding 6.8 nmol TPA () were statistically significant, 
(**P<0.01,*P<0.05, respectively, Mann-Whitney U). C) Differences in tumor incidence at 25 

weeks between 20 nmol (-), 5 nmol (●) rapamycin group and the 6.8 nmol TPA () group 

were statistically significant (***P<0.001,2-test). D) There were no statistically significant 
differences in weight gain between any of the treatment groups.  
 
 
 

 

Figure 3-5 
 

 
Figure 3-5 Rapamycin decreases squamous cell carcinoma development in 
control/overweight mice (10 kcal % fat). 1Data taken at 27 weeks of promotion with 6.8 
nmol TPA after which the papilloma response had reached a plateau.2Ratio of the average 
number of SCCs at 49 weeks to average number of papillomas at 27 weeks 
aDenotes significantly different from DMBA/TPA control; P<0.05, Mann Whitney U). 
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In the obese mice, there were dramatic decreases in papilloma development and 

tumor burden. In a similar protocol with the exception of the high-fat diet in place of 

control/overweight diet, (Figure 3-6A), two-stage studies revealed potent inhibition of tumor 

development in the obese mice. In addition, rapamycin appeared to be slightly more 

effective in the obese mice with a 98% inhibition of tumor development in the 20 nmol 

rapamycin + TPA treatment group and a 94% inhibition in the 5 nmol rapamycin + TPA 

treatment group as compared to the DMBA-TPA control group (Figure 3-6B). In terms of 

tumor incidence, there were also dramatic responses as the 20 nmol rapamycin treatment 

group was just under 7% incidence at week 25, and the 5 nmol rapamycin treatment group 

was just under 29% incidence (Figure 3-6C). 

 Rapamycin caused no significant decreases in overall body weight throughout the 

duration of the study. There were however significant differences in overall body weight 

between the overweight (33.9 + 1.90) and obese mice (44.9 + 0.84) as expected (P< 0.05, 

Mann Whitney U), (Figure 3-4D and 3-6D).  

The results presented in this chapter support previous findings that mTORC1 plays 

an important role in skin tumor promotion. Data from previous two-stage carcinogenesis 

experiments in our lab using transgenic Akt and IGF-I mice, overexpressing these proteins 

in the epidermis support the hypothesis that Akt levels elevated in the epidermis increase 

susceptibility to epithelial carcinogenesis. These mice displayed heightened epidermal 

hyperproliferation as well as increases in mTORC1 activation in response to TPA treatment  

(111, 113, 118). Lu and colleagues reported that activation of mTORC1 activator, Rheb led 

to spontaneous skin tumor development in a DMBA-induced tumorigenesis model (119) 

lending to additional overall support of this hypothesis. In addition, this data also support a 

role for mTORC1 activation in the link between obesity and epithelial carcinogenesis 

consistent with previous data. In terms of dietary energy balance, Moore and colleagues 

demonstrated that dietary energy balance modulation results in differential signaling 
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through the cell surface receptors, IGF-1R and EGFR and downstream substrates. In a 

variety of epithelial tissues, DIO enhanced, while CR reduced signaling through these 

receptors and downstream to Akt and mTOR (43). Another study showed that LID mice with 

a 75% reduction in circulating levels of IGF-1 reduced skin tumor development in the two-

stage model of skin carcinogenesis and reduced activation of Akt and mTOR (18).  

 Overall, these findings show that rapamycin on a molar basis, is one of the most 

effective inhibitors of skin tumor promotion to date. When rapamycin is topically applied to 

mouse skin prior to promotion with TPA, it potently inhibits this stage in a dose-dependent 

manner as well as inhibits growth of existing skin tumors. In addition, rapamycin appears to 

reverse the effects of overweight and obesity on skin tumorigenesis and may be more 

effective in these dietary energy balance groups.  
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Figure 3-6 
 
 
 
 

 

 

 

 

 

 

 

 

 
 

Figure 3-6 Effect of rapamycin treatment on skin tumor promotion by TPA in obese 
mice. Female FVB/N mice 7-8 weeks of age were initiated with 25 nmol of DMBA. A) 
Treatment protocol: At week 2, mice were placed on the high fat diet, DIO (60 kcal% fat 
diet, fed ad libitum. After 6 weeks on diet, topical rapamycin treatment began followed 30 
min later by promotion with 6.8 nmol TPA. Treatment protocol was continued for 25 weeks.  
B) Tumor multiplicity: Differences in the average number of papillomas per mouse at 25 

weeks between 20 nmol (-), 5 nmol (●) rapamycin treated groups and the corresponding 

6.8 nmol TPA () were statistically significant, (**P<0.01,*P<0.05, respectively, Mann-

Whitney U). C) Differences in tumor incidence at 25 weeks between 20 nmol (-), 5 nmol (●) 

rapamycin group and the 6.8 nmol TPA () group were statistically significant 

(***P<0.001,2-test). D) There were no statistically significant differences in weight gain 
between any of the treatment groups.  
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Chapter 4- Metformin Given in the Drinking Water Attenuates Skin Tumor Promotion 
in Overweight and Obese Mice 
 
The class of pharmacological agents targeting PI3K, Akt, and mTOR are not expected to be 

highly tumor-specific and thus inhibition of this pathway in normal tissue as well as tumor 

tissue is expected to occur in response to use of these therapies. Thus targeting PI3K or 

signaling nodes downstream of this pathway has been associated with large systemic 

effects including deregulation of carbohydrate metabolism and insulin signaling. This can 

result in hyperglycemia due to decreases in glucose uptake by the muscles and 

hyperinsulinemia (120). The subsequent insulin resistance that occurs may limit the efficacy 

of the many PI3K and downstream inhibitors, including mTORC1 inhibitor rapamycin. In 

addition, treatment with mTORC1 inhibitors such as rapamycin has been associated with 

inhibition of the p70S6K-IRS-1 negative feedback loop. This mTORC1 dependent feedback 

loops acts to inhibit activation of the PI3K/Akt pathway as IRS-1’s inhibitory sites are bound 

by mTOR and p70S6K (70, 121). When pharmacological doses of mTORC1 inhibitors are 

great enough to interrupt this feedback loop, activation of Akt occurs resulting in a limitation 

of the antineoplastic effects of this class of inhibitors.  

In the previous two-stage skin carcinogenesis experiments performed, rapamycin 

was utilized as a topical treatment applied directly to the epidermis resulting in limited 

systemic effects. In addition, despite the possibility of negative feedback loop inhibition, all 

doses of rapamycin used caused significant decreases in tumor development as previously 

shown in Chapter 3. However, other treatment options were explored targeting this pathway 

that could be administered orally or in combination with rapamycin without efficacy 

interference or dose-limiting toxicity. In addition, when using rapamycin, there was a large 

decrease in inflammation associated with use of TPA possibly accounting for much of 

rapamycin’s anti-cancer effects, thus studies were conducted to explore another mTORC1 

inhibitor that might not have such dramatic effects on TPA-induced inflammation making it 
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easier to attribute decreases in tumor burden to mTORC1 inhibition. The data displaying 

rapamycin’s mechanisms of action are shown and discussed in more detail in Chapter 5. 

The effect of the type II diabetes drug, metformin administered via the drinking water on 

skin tumor promotion by TPA was investigated next. Many population based studies have 

provided evidence that patients with type II diabetes treated with metformin have reduced 

cancer incidence as well as reduced mortality (89, 90). In addition, a variety of in vitro and 

in vivo studies have also supported this association.  

As discussed in the Introduction, metformin inhibits gluconeogenesis and thus 

lowers overall circulating levels of glucose and subsequently insulin, thereby treating 

diabetes. It does this through activation of the LKB1/AMPK pathway in the liver. In contrast 

to PI3K and downstream inhibitors, metformin’s mode of action should not interfere with 

efficacy or disrupt normal metabolic function. In fact, it should attenuate the hyperglycemia 

and insulinemia associated with PI3K/Akt/mTOR inhibitors and contribute to antineoplastic 

activity either indirectly through its insulin lowering effects or directly through AMPK 

activation and subsequent mTORC1 inhibition in cancer cells. Metformin treatment has also 

been associated with decreases in Akt activation in many tumor types lending to its overall 

efficacy (95, 96). This could further support its promising role as a monotherapy or in 

combination therapies with the PI3K and downstream class of inhibitors.  

Because most epidemiological data supporting metformin’s antineoplastic activity 

was obtained from a diabetic population displaying high rates of hyperinsulinemia and 

obesity, studies were designed specifically to evaluate the effectiveness of metformin in the 

two-stage skin chemical carcinogenesis model system in obese mice. Obesity was 

generated via administration of a high-fat diet (DIO, 60 kcal % fat) that elevated insulin 

levels and caused dramatic weight gain. The control diet (10 kcal % fat) was considered to 

cause mice to become modestly overweight.   In addition, a dual targeting therapy was 

designed in which metformin was administered in combination with rapamycin to test for an 
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additive effect. Ideally, the effectiveness of this combination would be achieved with very 

low doses of each compound.   

 

 
4.1 Metformin administered via the drinking water attenuates TPA skin tumor 
promotion in overweight mice 
 
To evaluate the effect of oral administration of metformin via the drinking water on skin 

tumor promotion by TPA in overweight mice, female FVB/N 6-7 weeks of age were initiated 

with 25 nmol of DMBA.  They continued on the overweight/control diet (10 kcal % fat) fed 

ad libitum to generate an overweight phenotype for the duration of the studies. After a 6 

week period on diet, metformin was added to the drinking water at doses of 50 mg/kg body 

weight per day or 250 mg/kg body weight per day. Thus it could be assumed that a 30 g 

mouse drinking approximately 5 mls of water per day would receive 1.5 mg of metformin 

administered as 5 mls of a 0.30 mg/ml solution. These doses were chosen based on 

previous data from the literature that demonstrated doses ranging from  50 mg/kg body 

weight per day to 350 mg/kg body weight per day in the drinking water or diet was sufficient 

to demonstrate antineoplastic effects in vivo (98-100, 122, 123). Additionally, in vivo data 

also showed that much higher doses used actually had the opposite effect on tumor growth. 

Phoenix and colleagues reported that metformin administered at 750 mg/kg body weight 

per day increased tumor growth and angiogenesis in a xenograft model using ERα negative 

MDA-MB-435 cells (124). This dose is about 45 fold the recommended human dose 

administered (125). Promotion with 6.8 nmol of TPA applied topically was also begun at this 

time (Figure 4-1A). Promotion with TPA was continued twice weekly for the duration of the 

experiment and metformin was replaced fresh in the drinking water twice weekly. Tumor 

incidence and tumor multiplicity were measured weekly for each diet/treatment group. As 

shown in figure 4-1B, metformin at both doses significantly attenuated skin tumor promotion 

in a dose dependent manner.  
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Figure 4-1 

 

 

 

 

 

 
Figure 4-1 Metformin alone and in combination with rapamycin attenuates skin tumor 
promotion in overweight mice. A) Female FVB/N mice 7-8 weeks of age were initiated 
with 25 nmol of DMBA. Mice were then placed on the overweight/control diet (10 kcal % 
fat). After 6 weeks on diet, mice were administered metformin via the drinking water and 
promotion began with TPA.  In experiments with combination treatments, 2 nmol of 
rapamycin was applied topically 30 min prior to TPA. B) Differences in tumor multiplicity at 
25 weeks between the metformin + TPA treated groups and the DMBA-TPA control group 
were significantly different at both doses (*, P<0.05, Mann-Whitney U).C) Differences in 
tumor incidence at 25 weeks were not statistically significant between any treatment 
groups. D) Both the 50 mg/kg metformin + TPA group (--) and the combination treatment 
group (ο) were statistically significant from the DMBA control group (■) in terms of tumor 
multiplicity. E) Differences in tumor multiplicity between the combination treatment group (ο) 

and the DMBA-TPA (■) control group were statistically significant (**, P<0.01, 2-test). 
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In this regard, a 72% inhibition of papilloma development in the 250 mg/kg body weight per 

day dose and a 36% inhibition in tumor development in the 50 mg/kg body weight per day 

dose were observed after metformin treatment. While tumor latency was not affected with 

either dose of metformin, there was a modest decrease in tumor incidence at the highest 

dose used (Figure 4-1C). The DMBA-TPA control group displayed 91% tumor incidence as 

compared to 69% incidence for the 250 mg/kg dose of metformin and 89 % incidence for 

the 50 mg/kg dose of metformin. This tumor study was also carried out to carcinomas to 

evaluate metformin’s effect on the conversion of papillomas to carcinomas and conversion 

ratios. As expected, metformin decreased the number of squamous cell carcinomas in both 

treatment groups in a dose dependent manner that corresponded to the average number of 

papillomas recorded. Metformin also had no effect on the malignant conversion ratio 

(Figure 4-2).  

 

 

Figure 4-2  

 

Figure 4-2 Metformin decreases the number of SCCs and does not alter the rate of 
malignant conversion in overweight mice 1Data taken at 27 weeks of promotion with 6.8 
nmol TPA after which the papilloma response had reached a plateau.2Ratio of the average 
number of SCCs at 49 weeks to average number of papillomas at 27 weeks. aDenotes 
significantly different from the DMBA/TPA control group. ( P<0.05, Mann Whitney U) 
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This study was followed by a repeat two-stage skin carcinogenesis study with the 

addition of a rapamycin/metformin combination treatment group. For this tumor experiment, 

the effects of low doses of metformin and rapamycin alone or in combination on skin tumor 

development were evaluated. There was approximately 52% inhibition of papilloma 

development with the rapamycin/metformin + TPA combination treatment group compared 

to the DMBA-TPA control group. This was more effective than either compound alone as 50 

mg/kg metformin + TPA, similar to the initial experiment, displayed 34% inhibition, and the 2 

nmol rapamycin + TPA displayed 19% inhibition of papilloma development (Figure 4-1D).  

As in the previous tumor experiment, there were modest effects on tumor incidence with 

each treatment regimen. There was 82% tumor incidence in the 2 nmol rapamycin + TPA 

treated group, 89% incidence in the 50 mg/kg metformin + TPA treated group, and 72% 

incidence in the combination treated group compared to 100%  tumor incidence in the 

DMBA-TPA control group (Figure 4-1E).  

 
4.2 Metformin administered via the drinking water potently inhibits skin tumor 
promotion by TPA in obese mice 

 
During this experiment, a high fat diet group was also included to determine whether 

metformin was more highly effective in the obese mice. In a similar treatment protocol 

outlined in figure 4-4A, mice were initiated with 25 nmol of DMBA and then placed on the 

control diet (10 kcal% fat) for a two week equilibration period. They were then placed on the 

high fat diet (DIO, 60 kcal% fat) for the duration of the study. Weight distributions of both 

the control/overweight 10 kcal% diet and the high fat, DIO 60 kcal % diet can be found in 

Figure 4-3. The differences in average body weight between the two diet groups were 

statistically significant as expected (P<0.05, Mann-Whitney U). However, within a given 

diet, neither metformin nor rapamycin caused any significant differences in body weight 

gain between treatment groups. After 6 weeks on diet, mice began metformin treatment in 

the drinking water at doses of 250 and 50 mg/kg body weight per day or received a very low 
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dose of rapamycin (2 nmol) alone or in combination with the low dose of metformin (50 

mg/kg).  Promotion with 6.8 nmol of TPA was also begun at this same time point and was 

continued for the duration of the study (25 weeks). In all treatment groups, there was 

greater inhibition in the DIO group in terms of tumor multiplicity (Figure 4-4B). There was 

42% inhibition of papilloma development in the DIO, 2 nmol rapamycin + TPA group 

compared to just 19%  in this same treatment group in the control/overweight mice. The 

DIO, 50 mg/kg metformin + TPA treatment group displayed 44% inhibition versus 34% in 

the control/overweight group, and the combination group displayed 62% inhibition as 

compared to 52% inhibition in the control/overweight group. Tumor multiplicity and percent 

inhibition in each diet/treatment group are summarized in Figure 4-5. In terms of tumor 

incidence, there were modest decreases with each treatment group as compared to the 

DMBA-TPA control group as the 2 nmol rapamycin + TPA treatment group reached 84% 

incidence, the 50 mg/kg metformin + TPA group reached 93% incidence and the 250 mg/kg 

metformin + TPA group reached 83% incidence as compared to 100% incidence in the 

DMBA-TPA control group (Figure 4-4C). In addition, there were differences in tumor latency 

between the treatment groups and the DMBA-TPA control group. Time to 50% incidence 

was 13-14 weeks in the single compound treatment groups (i.e. 250 mg/kg or 50 mg/kg met 

+ TPA, 2 nmol rapamycin + TPA) compared to 8-9 weeks in the DMBA-TPA control group. 

In addition, the combination treatment group did not reach 50% incidence until week 16 

(Figure 4-4C).  
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Figure 4-3 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-3 Metformin and rapamycin did not significantly alter weight gain in mice on 
control (overweight) or obesity inducing diets A) Weight gain throughout 30-week 
period for mice receiving DIO, high fat diet (60 kcal % fat). Mice were weighed weekly for 
duration of experiment. Differences in weight between treatment groups were not 
significant. B) Weight gain throughout 30-week period for mice receiving control/overweight 
diet (10 kcal% fat). Mice were weighed weekly for the duration of experiment. Differences in 
weight between treatment groups were not significant. C) The differences between body 
weights between the two diet groups were statistically significant (31.6 + 0.86 vs. 45.2 + 
0.63, P < 0.05, Mann-Whitney U). 
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Figure 4-4 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-4 Metformin given in the drinking water is a potent inhibitor of skin tumor 
promotion by TPA in obese mice. A) Female FVB/N mice 7-8 weeks of age were initiated 
with 25 nmol of DMBA. Mice were then placed on the control diet (10 kcal % fat). After a 2 
week period to equilibrate, mice were placed on the high fat diet (DIO, 60 kcal % fat). After 
6 weeks on diet, mice were administered metformin via the drinking water, and promotion 
began with 6.8 nmol of TPA. In experiments with combination treatments, 2 nmol of 
rapamycin was applied topically 30 min prior to TPA. B) Differences in tumor multiplicity at 
25 weeks between the 250 mg/kg metformin + TPA (--) or 50 mg/kg metformin + TPA (●) 
and the DMBA-TPA control group (■) were statistically significant. In addition, differences in 
tumor multiplicity between 2 nmol rapamycin + TPA (▲) or the combination group, 2 nmol 
rapamycin, 50 mg/kg metformin + TPA (○) were statistically significant (*, P<0.05, Mann-
Whitney U). C) Differences in tumor incidence at 25 weeks between  2 nmol rapamycin + 
TPA (▲), 250 mg/kg metformin + TPA (--), or 2 nmol rapamycin, 50 mg/kg metformin + 
TPA (○) and the DMBA-TPA control group (■), were statically significant (**, P<0.01,***, 

P<0.001, 2-test).  
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Figure 4-5 

 

Figure 4-5 Summary of the effects of metformin and rapamycin on skin tumor 
promotion in overweight and obese mice. Figure represents data collected at 27 weeks 
of tumor promotion with 6.8 nmol of TPA after which papilloma response had reached a 
plateau. Metformin, rapamycin and combination treatments appeared to be more highly 
effective in the obese mice (60 kcal % fat).  
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4.3 Metformin and rapamycin reduce skin tumor size in overweight and obese mice 
 

In addition, the impact of diet and metformin or rapamycin treatment on tumor growth was 

analyzed. As shown in Chapter 3, treatment with rapamycin to existing skin tumors led to 

decreases in the size of pre-existing papillomas in mice of a normal weight, so a similar 

effect on tumor growth with rapamycin and possibly metformin in the context of dietary 

energy balance was expected. During week 23 of the two-stage study, a representative 

subset of papillomas (approx. 25) from each treatment and diet group was measured to 

determine average surface area. The DIO, high fat diet DMBA-TPA control group was 

associated with an increase in tumor growth and overall tumor size as compared to the 

DMBA/TPA, overweight/control group (tumor size of 30 + 3.2 mm2  for DIO vs 20 + 2.6 mm2 

for control diet, P < 0.05, Mann-Whitney U) (Figure 4-6). In response to treatment with 

either rapamycin or metformin, tumor size was reduced in both dietary groups. In addition, 

the effect appeared to be additive with the combination treatment group. While there were 

reductions in tumor size with each diet and treatment regimen, the effect was more 

pronounced in the obese mice, with significant differences seen in all treatment groups. In 

terms of the percent of reduction in tumor size, groups receiving 2 nmol rapamycin + TPA 

displayed 46% reduction in tumor size in the DIO diet as compared to just 18% in the 

control/overweight diet. In groups receiving 50 mg/kg metformin + TPA, the DIO group 

displayed a 60% decrease in tumor size versus 43% decrease in the control/overweight diet 

group. The combination treatment groups in both diet groups had similar percentages of 

reductions in tumor growth (69% in DIO group vs. 67% in control/overweight group). This 

data further shows the inhibitory effects of both rapamycin and metformin on skin tumor 

promotion during dietary energy balance effects. Furthermore, this data also provides 

evidence to suggest that each of these compounds may be more highly effective in an 

obese state.  
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Figure 4-6 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4-6 Metformin and rapamycin treatment reduced the size of skin tumors in 
both overweight and obese mice. Impact of diet and metformin and/or rapamycin 
treatment on tumor growth in mice. A) Average surface area of a random subset of 
papillomas taken at week 23 during two-stage study from overweight mice. Graphs 
represent the average surface area + SEM. The combination treatment group’s papilloma 
size (2 nmol rapamycin, 50 mg/kg metformin + TPA) was significantly smaller than the 
DMBA-TPA control group papilloma size (***, P>0.001, Kruskal Wallis Test). B) Average 
surface area of a random subset of papillomas taken at week 23 during two-stage study 
from obese mice. Graph represents the average surface area + SEM. Differences in tumor 
size in all treatment groups were statistically significant from the DMBA-TPA control group. 
(*,P >0.05, ***,P >0.001, Kruskal Wallis Test). 
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Chapter 5: Mechanisms Associated with the Inhibitory Effects of Rapamycin and 
Metformin on Skin Tumor Promotion by TPA 
 

After obtaining promising, highly reproducible skin tumor data from two-stage skin 

carcinogenesis experiments demonstrating the inhibitory effects of both rapamycin and 

metformin on skin tumor promotion by TPA, the underlying mechanisms behind the efficacy 

of these chemopreventive agents were explored. The two-stage skin carcinogenesis model 

has proven very useful in defining various stages of epithelial carcinogenesis as well as 

biochemical events that are associated with each stage (126).Thus a number of short term 

markers are available that enable us to study the underlying molecular mechanisms of 

various modifying factors (i.e. compounds, dietary energy balance manipulation) on tumor 

response. For instance, the tumor promotion stage is associated with the selective clonal 

expansion of initiated cells. Furthermore, this stage is characterized by heightened and 

sustained hyperplasia prior to the development of small exophytic skin tumors referred to as 

papillomas. Previous, published data has also well characterized the expression of many 

proteins during both the promotion and progression phases of skin tumorigenesis some of 

which include γ-glutamyltransferase, keratin-8, keratin-1, E-cadherin and loricrin (101). In 

addition, tumor promoter activation of several PKC isoforms is critical for the induction of 

proliferation and inflammation. Particularly, their activation results in the secretion of several 

pro-inflammatory molecules from keratinocytes which result in further recruitment of 

macrophages, leukocytes, and lymphocytes involved in the innate immune response into 

the dermal compartment. These activated cells are then able to further promote cellular 

proliferation, angiogenesis, and suppression of adaptive immunity through secretion of 

various cytokines, chemokines and growth factors thus facilitating skin tumor promotion 

(127).  

 Furthermore, in the context of dietary energy balance, more recent data has 

emerged elucidating possible mechanisms through which CR or DIO may affect the 
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carcinogenic process. In this section, mechanisms associated with the differential effects of 

these compounds or agents on dietary energy balance manipulation during skin tumor 

promotion are studied. 

 

5-1 Rapamycin inhibits TPA-induced epidermal hyperproliferation 

Sustained cellular proliferation in the epidermis leads to chronic hyperplasia which is a 

hallmark of skin tumor promotion. In addition, short term markers of this including  BrdU 

incorporation (labeling index) and epidermal thickness have become reliable predicators of 

tumor promoting capabilities of compounds as well as the effectiveness of inhibitor 

compounds (126). After the dramatic effects of rapamycin on skin tumor promotion by TPA 

were witnessed, the effect of rapamycin on TPA-induced epidermal hyperproliferation and 

hyperplasia in mice of a normal weight was explored. 

  
For these experiments, groups of female FVB/N mice 7-8 weeks of age were treated 
topically with acetone (vehicle) or various doses of rapamycin (5-200 nmol) followed 
30 min later by 6.8 nmol of TPA. This treatment regimen was continued twice-
weekly for two weeks (i.e. 4 treatments total), and mice were sacrificed 48 hours 
after the final treatment. After sacrifice, the skin was removed and processed for 
histological examination. Whole skin sections were evaluated for epidermal 
hyperplasia (as measured by epidermal thickness) and epidermal LI (as measured 
by BrdU incorporation). Figure 5-1A shows representative H&E and BrdU stained 
sections of dorsal skin after multiple treatments with either acetone, 6.8 nmol TPA, 
or 200 nmol of rapamycin followed by 6.8 nmol of TPA. Visual inspection of the 
sections revealed that rapamycin significantly reduced epidermal hyperplasia as 
well as LI when applied 30 minutes prior to TPA application.  Quantitative analyses 
of the effect of rapamycin on TPA induced epidermal hyperplasia and LI are 
summarized in Figures 5-1B and 5-1C, respectively.  All doses of rapamycin used 
(200, 100, 50, 20 and 5 nmol) produced statistically significant reductions in 
epidermal thickness and labeling index (LI) induced by TPA treatment (*, P<0.05, 
Mann Whitney U). These data demonstrate that rapamycin effectively blocked TPA-
induced epidermal hyperproliferation and that this effect may explain its ability, at 
least in part, to inhibit skin tumor promotion by TPA. [Reprinted from (114)] 
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Figure 5-1 

Figure 5-1 Rapamycin inhibits TPA-induced epidermal hyperplasia in a dose-
dependent manner A) Representative sections of H&E and BrdU stains of dorsal skin 
collected from female FVB mice after multiple treatments with either acetone, 6.8 nmol of 
TPA, or 200 nmol (rapa) followed by 6.8 nmol of TPA (twice a week for 2 weeks). B) 
Quantitative evaluation of the effects of rapamycin on TPA-induced epidermal hyperplasia 
(epidermal thickness) C) Quantitative evaluation of the effects of rapamycin on TPA –
induced epidermal hyperproliferation (labeling index: LI). Values represent the mean + 
SEM. (*, P< 0.05; Mann-Whitney U). [Reprinted from (114)] 
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5-2 Rapamycin reduces TPA-induced inflammation in mouse skin 

Another short term marker and chronic feature of skin tumor promotion is inflammatory cell 

infiltration (101, 127). Hence, the effects of rapamycin on TPA-induced inflammation were 

studied to provide a potential mechanism by which rapamycin could be exerting its potent 

inhibitory effects in addition to inhibition of mTORC1 in mice of a normal weight.  

 
During the course of analyzing skin sections from rapamycin-treated mice, a 
significant decrease in dermal inflammation and dermal inflammatory cell numbers 
was observed. Therefore, the effect of topical treatments of rapamycin prior to TPA 
on dermal inflammatory cell infiltration was further examined. For these 
experiments, groups of female FVB/N mice, 7 to 8 weeks of age, were treated 
topically with acetone (vehicle) or various doses of rapamycin (5–200 nmol) followed 
30 minutes later by 6.8 nmol of TPA. This treatment regimen was continued twice 
weekly for 2 weeks, and mice were sacrificed 48 hours after the final treatment for 
histochemical and immunohistochemical analysis of various inflammatory cells. 
Whole skin sections were processed and stained for the following markers including 
CD3 (T cells), S100A9 (macrophages), LY6G (neutrophils), and toluidine blue (mast 
cells). As noted above, visual inspection of skin sections revealed that rapamycin 
dramatically reduced infiltration of all 4 types of inflammatory cells as seen in Figure 
5-2 for the 200 nmol dose of rapamycin (A–D, respectively). Quantitative analyses 
of each cell type at 2 different doses of rapamycin (200 and 5 nmol) are shown 
in Figure 5-3. Rapamycin at both doses presented produced statistically significant 
reductions in the number of all inflammatory cell types examined (*, P < 0.05; 
Mann–Whitney U). [Reprinted from (114)] 
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Figure 5-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2 Visual representation of the inhibition of TPA-induced dermal 
inflammation by rapamycin A) Representative sections of CD3-stained (T cells) dorsal 
skin sections collected after multiple treatments of acetone, 6.8 nmol of TPA, or 200 nmol 
rapamycin (rapa) + TPA. B)  Representative sections of S100A9-stained (macrophages)  
dorsal skin sections collected after multiple treatments of acetone, 6.8 nmol of TPA, or 200 
nmol rapamycin (rapa) + TPA. C)  Representative sections of LY6G-stained (neutrophils) 
dorsal skin sections collected after multiple treatments of acetone, 6.8 nmol of TPA, or 200 
nmol rapamycin (rapa) + TPA. D) Representative sections of toluidine blue-stained (mast 
cells) dorsal skin sections collected after multiple treatments of acetone, 6.8 nmol of TPA, 
or 200 nmol rapamycin (rapa) + TPA. [Reprinted from (114)] 
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Figure 5-3 

 

 
Figure 5-3 Quantitative analysis of the effect of rapamycin on TPA-induced dermal 
inflammation A) Average number of positive cells per 24 fields (200 µm2) for CD3-stained 
sections in acetone, 6.8 nmol TPA, 200 nmol rapamycin + TPA, and 5 nmol rapamycin + 
TPA treated skins. B) Average number of positive cells per 24 fields (200 µm2) for S100A9-
stained sections in acetone, 6.8 nmol TPA, 200 nmol rapamycin + TPA, and 5 nmol 
rapamycin + TPA treated skins. C) Average number of positive cells per 24 fields (200 µm2) 
for LY6G-stained sections in acetone, 6.8 nmol TPA, 200 nmol rapamycin + TPA, and 5 
nmol rapamycin + TPA treated skins. D) Average number of positive cells per 24 fields (200 
µm2) for Toluidine blue-stained sections in acetone, 6.8 nmol TPA, 200 nmol rapamycin + 
TPA, and 5 nmol rapamycin + TPA treated skins. Values represent the mean + SEM. (*, P< 
0.05; Mann-Whitney U). [Reprinted from (114)] 
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Because there were dramatic reductions in dermal inflammatory cell infiltration, the 

anti-inflammatory effects of rapamycin during skin tumor promotion were further explored.  

The enzyme cyclooxygenase 2 (COX-2) is a critical mediator of inflammation and serves as 

the catalyst for the rate limiting step in the conversion of arachidonic acid into 

prostaglandins (128). It is inducibly expressed in many different tissues by, but not limited 

to, tumor promoting agents. COX-2 is also induced by various growth factors, oncogenes 

and pro-inflammatory cytokines (129). As shown in Figure 5-4, TPA applied directly to the 

skin potently induced COX-2 expression at 6 h post treatment in mouse epidermis. 

Previous data also support this activation in mouse skin after TPA is topically applied (130).  

 

Figure 5-4 

  

  

 

 

 

 

 

 

 

Figure 5-4 Rapamycin inhibits TPA-induced expression of COX-2 in the epidermis. 
Pooled protein lysates were prepared from the epidermal scrapings of female FVB/N mice 
undergoing a multiple treatment regimen of acetone, 6.8 nmol of TPA, 200 nmol rapamycin 
(rapa), or various doses of rapamycin (2-200 nmol) prior to 6.8 nmol TPA. Western blot 
analyses were then conducted to determine the effect of topical rapamycin treatment on 
inflammatory signaling pathways in the epidermis.  
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Consistent with the observed reduction in dermal inflammatory cells, topical rapamycin 

treatment also produced potent decreases in epidermal COX-2 expression after a multiple 

treatment protocol in which female FVB/N mice 7-8 weeks of ages received treatment with 

either acetone, 200 nmol rapamycin, 6.8 nmol of TPA, or various doses of rapamycin (2-

200 nmol) prior to treatment with 6.8 nmol of TPA (Figure 5-4).  

Eukaryotic transcription factor NFҡB critically regulates the expression of many 

genes including COX-2, as the cox-2 promoter contains an NFҡB binding site. Prior to 

activation, NFҡB dimers are retained in the cytoplasm by binding to the members of the IҡB 

(IKK) inhibitory complex. Cellular stimulation of IKK stimulates rapid degradation via 

polyubiquitination of this complex allowing for the freed NFҡB dimers to translocate to the 

nucleus to coordinate the transcription of hundreds of target genes including COX-2 (131). 

While the upstream signaling cascade proceeding NFҡB activation is quite complex, there 

is evidence that kinases involved include mitogen-activated protein (MAP) kinases, such as 

p38, c-Jun and ERK (132). Additional data from our lab has also found that topical 

application of rapamycin at a dose of 50 nmol decreased TPA-induced activation of NFҡB 

subunit p65 or RelA as indicated by a decrease in phosphorylation of this protein at Ser536 

in the epidermis (Data not shown). In addition, in this experiment, there was attenuation of 

signaling through p38 (Figure 5-4). On a molecular basis, this preliminary signaling data 

suggest that one facet of rapamycin’s anti-tumor action may be through inhibition of TPA-

induced inflammation through decreases in expression of COX-2.  Specifically, this may 

occur through suppression of signaling through p38 and subsequent inhibition of NFҡB. 

Further experiments are necessary to confirm the exact mechanism by which rapamycin 

exerts these potent anti-inflammatory effects.  

 Overall, these data provide another possible mechanism by which rapamycin might 

exert its potent inhibition of skin tumor promotion. At the start of this project, the primary 

hypothesis comprised a situation in which rapamycin exerted its anti-tumor effects primarily 
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through inhibition of mTORC1 and subsequent downstream signaling to which included 

many cell cycle regulatory proteins. However, this data provides an interesting scenario by 

which rapamycin may exhibit dual inhibitory effects. There are however conflicting results in 

terms of the effect of rapamycin on inflammation in cancer. Previous studies from Granville 

and colleagues reported that there were no significant changes in macrophage content of 

skin tumors from mice collected after treatment with rapamycin compared to tumors treated 

with the control (vehicle treated) (81). Amornphimoltham et al. also reported no change in 

T-cell or macrophage content in tumors after rapamycin treatment (80). However, in both of 

these studies, the route of administration of rapamycin was different (IP injection), and each 

study evaluated the effect of rapamycin on inflammation in pre-existing tumors. In our 

protocol, rapamycin’s effect on skin tumor promotion was evaluated via a short term 

mechanistic study which represents the early phases of skin tumor promotion before skin 

tumors developed. Therefore, the current data suggest that the anti-inflammatory effects of 

rapamycin may have been exerted earlier in the skin carcinogenesis process during the first 

few weeks of skin tumor promotion thus contributing to its anti-tumorigenic effects.  

 

5-3 Rapamycin inhibits TPA-induced activation of mTORC1 and downstream 
signaling in mouse epidermis 

 
To further explore the potential mechanisms by which rapamycin inhibited TPA-
induced epidermal hyperproliferation and skin tumor promotion, experiments were 
conducted to evaluate changes in epidermal Akt and mTOR signaling pathways. For 
these experiments, female FVB/N mice, 7 to 8 weeks of age, were treated topically 
with either acetone or various doses of rapamycin (5–1,000 nmol) 30 minutes prior 
to treatment with 6.8 nmol of TPA twice weekly for 2 weeks (total of 4 treatments). 
Note that a higher dose of rapamycin (1,000 nmol) was used in initial Western blot 
experiments (Figure 5-5A). However, in subsequent experiments, it was not used, 
as doses of 50, 100, and 200 nmol rapamycin completely inhibited skin tumor 
promotion by TPA. Mice were sacrificed 6 hours after final treatment and epidermal 
protein lysates were prepared for Western blot analyses of Akt, mTOR, and several 
mTORC1 downstream effector molecules. Topical application of TPA using this 
protocol led to phosphorylation of mTOR (Ser2448), and downstream effectors of 
mTORC1 including p70S6K (Thr389), p4E-BP1 (Thr37/46 and Ser65), and pS6 
ribosomal (Ser240/244); (Figure 5-5A and B) as well as phosphorylation of Akt 
(Thr308 and Ser473); Figure 5-5C and D as expected on the basis of previous studies 
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(106, 113). Although the phosphorylation of mTOR (Ser2448) was reduced somewhat 
at several doses of rapamycin, the most dramatic effects were seen on 
phosphorylation of p70S6K and S6 ribosomal protein (Figure 5-5A and B). In this 
regard, phosphorylation of the mTORC1 downstream effectors p70S6K (Thr389) and 
p-S6 ribosomal protein (Ser240/244) was decreased in the rapamycin-treated groups 
in a dose-dependent manner. In addition, at the 1,000-nmol dose, p4E-BP1 
(Thr37/46 and Ser65) was decreased as compared with the TPA-treated group. 
Rapamycin given at a dose of 200 nmol in this multiple treatment regimen appeared 
to increase Akt phosphorylation at Ser473 as well as increase phosphorylation at the 
Thr308 site (again see Figure 5-5C and D). None of the other doses of rapamycin 
appeared to affect Akt phosphorylation at either site. Figure 5-5B and D show the 
quantitation of the Western blot analyses shown in Figure 5-5A and C, respectively. 
Similar results were obtained in a separate, independent experiment. The Western 
blot analyses shown in Figure 5-5A and C are representative of both experiments. 
The quantitation shown in Figure 5-5B and D represent an average from both of 
these experiments. Collectively, these data suggest that treatment with rapamycin 
led to inhibition of TPA-induced mTORC1 downstream signaling, particularly 
through the p70S6K and S6 ribosomal protein pathway. Furthermore, at higher 
doses (≥200 nmol per mouse), rapamycin also appeared to increase Akt 
phosphorylation at Thr308. [Reprinted from (114)] 
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Figure 5-5 

 
 
Figure 5-5 Rapamycin inhibits TPA-induced signaling through mTORC1. Effect of 
rapamycin on TPA-induced mTOR signaling in mouse epidermis using a multiple treatment 
protocol. Pooled protein lysates were prepared from the epidermal scrapings of FVB/N mice 
undergoing a multiple treatment regimen of acetone, 6.8 nmol TPA, 200 and 1000 nmol 
rapamycin (rapa), or various doses of rapamycin (5-1000 nmol) prior to 6.8 nmol TPA. 
Western blot analyses were then conducted to examine activation of Akt and mTOR and 
downstream targets. A) Western blot analysis of mTOR and downstream signaling 
molecules. B) Quantification of Western blot analyses in A. C) Western blot analysis of Akt 
phosphorylation status. D) Quantification of Western blot analysis in C. These experiments 
were repeated with nearly identical results. Note that the quantitation shown in B and D 
represent an average of the two experiments, whereas the Western blot analysis in A and C 
are from a single representative experiment. [Reprinted from (114)] 
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In addition, even after a single topical application of rapamycin to the skin, 

rapamycin potently inhibited signaling through mTORC1 (data not shown). Furthermore, 

there was inhibition of mTORC1 and downstream signaling through disruption of mTOR 

and raptor after topical administration of rapamycin prior to TPA treatment. As shown in 

figure 5-6, multiple treatments with rapamycin at doses of 1000 and 20 nmol effectively 

disrupted interactions between raptor and mTOR. This effect also appeared to be dose 

dependent.  

 

Figure 5-6 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 5-6 Multiple treatments with rapamycin at higher doses prevent mTOR 
complex I formation. Female FVB/N mice were treated topically with either acetone, 
rapamycin, 6.8 nmol TPA or 1000 nmol or 20 nmol of rapamycin prior to TPA treatment. 
Epidermal lysates were prepared as previously described. Panel shows co-
immunoprecipitation with raptor and subsequent western blot analyses of mTOR and 
raptor.  
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Overall, this data is consistent with previous published reports that attribute the anti-

tumor effects of rapamycin to its ability to reduce signaling through mTORC1 and further 

downstream as assessed by levels of pS6 (80). As demonstrated in Figure 5-5A and B, 

rapamycin applied topically 30 min prior to treatment with 6.8 nmol of TPA, inhibits TPA-

induced mTORC1 activation in the epidermis as evidenced by decreased phosphorylation 

of mTOR (Ser2448) and its downstream targets p70S6K (Thr389) and pS6 ribosomal protein 

(Ser240/244). In addition, another downstream target of mTORC1, translation repressor 4E-

BP1 was evaluated.  Interestingly, rapamycin only appeared to effect phosphorylation of 

4E-BP1 at the highest dose of rapamycin tested (1000 nmol). At lower doses used, there 

appeared to be much less inhibition of this protein. As discussed in the Introduction chapter, 

4E-BP1, when unphosphorylated, binds to initiation factor eIF4E, and inhibits cap-

dependent translation. Our observation is consistent with previous reports that show full 

inhibition of p70S6K and pS6, but only partial inhibition of 4E-BP1 after rapamycin 

treatment (133, 134). However, it should be noted that the phosphorylation of 4E-BP1 is 

quite complex and requires phosphorylation from various other kinases for release from 

eIF4E to inhibit translational activation. Previously published data showed that 

phosphorylation at the Thr37 and Thr46 sites of 4E-BP1 by mTORC1 did not eliminate its 

binding to eIF4E and that other kinases are required for eIF4E’s release and subsequent 

translation activation (135). In summary,  the current data indicate that the inhibitory effects 

of rapamycin on mTORC1 signaling appear to be primarily mediated through downstream 

targets p70S6K and pS6, and effects through downstream target 4E-BP1 appear to be less 

important in terms of inhibition of skin tumor promotion (114).  

 In terms of Akt status in the epidermis, interestingly rapamycin at a dose of 200 

nmol increased activation of Akt as evaluated by phosphorylation at Thr308. This activation 

was not apparent at the lower doses of rapamycin used (100, 50, 20 and 5 nmol) as shown 

in Figure 5-5C and D.  The increase in activation in this multiple treatment regimen was 
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attributed to a partial inhibition of the mTORC1-dependent negative feedback loop in which 

p70S6K and pS6 negatively regulate insulin signaling through phosphorylation of IRS-1 

causing subsequent attenuation of signaling through PI3K/Akt. This conclusion is also 

supported by previous published data that have shown an increase in Akt activity after 

treatment with mTOR inhibitors due to reductions in feedback inhibition of the PI3K/Akt 

pathway (121). In addition, phosphorylation of Akt at Ser473 at a dose of 200 nmol may have 

also been slightly increased (Figure 5-5C and D). However, further experiments in our lab 

have demonstrated decreased phosphorylation of PRAS40 at Thr246 which is the Akt-

specific phosphorylation site when rapamycin was applied topically to the skin prior to TPA 

(data not shown). Consonant with this observation, Sarbassov and colleagues (76) reported 

that rapamycin inhibited mTORC2 assembly after subsequent Akt activity in vitro after 

prolonged treatment. Further investigations will be necessary to determine whether the 

mTORC2 complex is disrupted in response to rapamycin at higher dose, multiple treatment 

regimens. Nonetheless,  lower doses of rapamycin (i.e. 100, 50, 20 and 5 nmol) effectively 

inhibited epidermal mTORC1 signaling and complex formation without any effects on 

phosphorylation status of Akt at either Ser473 or Thr308 and this inhibition appears to be a 

primary mechanism and biochemical altercation associated with inhibition of murine skin 

tumor promotion (114). 

These initial finding demonstrate the importance of Akt downstream substrate 

mTORC1 in mediating the effects of rapamycin on skin tumor promotion by TPA via 

reduction of signaling through p70S6K and pS6 as well as a through reduced TPA-induced 

inflammation. Next, a possible mechanism through which rapamycin exerts its potent anti-

tumor effects via induction of autophagy was explored. It is possible that some of the 

chemopreventive actions of rapamycin demonstrated in our model are a concerted effort 

between a reduction in protein synthesis, a reduction in inflammation as well as increases 

in pro-autophagic pathways. Most pro-autophagic events including initiation and nucleation 
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converge on the mammalian Target of Rapamycin (mTOR).  Activation of these pathways 

may provide a less hostile microenvironment via reductions in damaged proteins and 

organelles and subsequent reductions in overall inflammation.   

 Preliminary data gathered showed that topical application of rapamycin induced 

pro-autophagic or autophagic proteins in mouse epidermis after TPA treatment.  Initial 

results have demonstrated increases in specific protein markers that have been validated 

as visual markers for autophagosome formation including LC3B II as well as autophagic 

initiator beclin-1. Autophagy Marker Light Chain 3 (LC3B) is cleaved at the C-terminal end 

by Atg5 into a cytoplasmic form of LC3B-I.  If autophagy is present, then cytosolic LC3B-I is 

cleaved into LC3B-II and is then recruited to the autophagosomal membrane (58). Beclin-1 

is involved in the initiation step of autophagy and acts as a platform for binding activators 

such as UVRAG or repressors such as Bcl-2 depending on external signaling and nutrient 

stimuli, rather than possessing its own enzymatic activity (136).    

Consistent with previous data that demonstrated PKC activation to downregulate 

autophagy (137), topical treatment with 6.8 nmol of TPA down-regulated beclin-1 and 

LC3B-II (Figure 5-7).Treatment with rapamycin at various doses (1000 nmol, 100 nmol and 

20 nmol) prior to TPA treatment reversed the reduction in autophagic markers seen with 

TPA treatment alone in mouse epidermis.  Expression of LC3B-II and beclin-1 was 

increased in rapamycin treated groups compared to the TPA only treated group which 

primarily expressed the uncleaved form, LC3B-I (Figure 5-7). Ongoing studies in the lab are 

also evaluating the effect of rapamycin treatment on autophagy regulators directly 

downstream of mTORC1, such as ULK1. Preliminary Western blot analyses showed 

phosphorylation of ULK1 at Ser757, which is the mTORC1 phosphorylation site, after TPA 

application to the skin (Figure 5-7). Phosphorylation of ULK1 by mTORC1 at this site 

inactivates the ULK1/FIP200/ATG13 complex, inhibiting its release from mTOR and raptor 

thus preventing the association between AMPK and ULK1 and the induction of autophagy 



74 
 

(63). However, in skins treated with rapamycin at doses of 100, 20 and 2 nmol prior to 

treatment with 6.8 nmol of TPA, phosphorylation of ULK1 at this site was abolished (Figure 

5-7). Interestingly, the highest dose of rapamycin used caused an increase in 

phosphorylation at this site comparable to the increases in phosphorylation seen with TPA. 

We hypothesized that this increase could be due to a novel negative feedback loop 

involving mTOR, raptor and ULK1 described by Dunlop et al. They provided evidence that 

ULK1 promotes phosphorylation of raptor at multiple sites thus hindering substrate binding 

to this complex causing inhibition of mTORC1. Upon overexpression, ULK1 promoted 

increases in mTORC1 kinase activity through the autophosphorylation site (Ser2481) 

despite continued inhibition of mTORC1 mediated phosphorylation of p70S6K and 4E-

BP1(138). It’s probable that higher doses of rapamycin may affect ULK1’s interactions with 

raptor thus altering mTORC1 activity. 

 A summary of our findings on the impact of rapamycin on Akt/mTOR 

phosphorylation and downstream effectors following rapamycin treatment in mouse 

epidermis can be found in Figure 5-8. 
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Figure 5-7 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 5-7 Effect of rapamycin on the induction of autophagy in the epidermis using 
a multiple treatment protocol. Pooled protein lysates were prepared from the epidermal 
scrapings of FVB/N mice undergoing a multiple topical treatment regimen of acetone, 6.8 
nmol TPA, 1000 nmol  or 200nmol of rapamycin, or various other doses of rapamycin (20-
1000 nmol) prior to 6.8 nmol of TPA. Western blot analyses were conducted to examine the 
activation of autophagic markers LC3B, beclin-1 and ULK1.  
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Figure 5-8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-8 Summary of the impact of rapamycin treatment on Akt/mTOR 
phosphorylation in mouse epidermis following TPA treatment. Impact of low dose 
rapamycin treatment represented in blue. Impact of high dose rapamycin treatment 
represented in red. High doses of rapamycin used (200 and 1000 nmol) affected mTORC1-
dependent negative feedback inhibition of PI3K/Akt as well as inhibited mTORC1. 
Rapamycin at low doses (5-100 nmol) that inhibited skin tumor promotion primarily affected 
downstream targets p70S6K, pS6 and ULK1. 
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5-4 Metformin attenuates TPA-induced epidermal hyperproliferation 
 
 
After obtaining exciting results from two-stage skin carcinogenesis experiments 

demonstrating anti-carcinogenic effects  of metformin during the tumor promotion stage 

when administered via the drinking water, the potential mechanisms by which this anti-

diabetic drug and apparent anti-neoplastic agent was exerting these effects was examined. 

First, to further examine the ability of metformin to reduce proliferation in the epidermis, 

short term markers of skin tumor promotion, hyperproliferation (BrdU incorporation) and 

hyperplasia (epidermal thickness) were evaluated after TPA treatment. For these 

experiments, groups of normal weight female FVB/N mice 7 to 8 weeks of age were 

topically treated with either acetone or 6.8 nmol of TPA twice a week for two weeks with or 

without the addition of metformin in the drinking water at doses of 350, 250 or 50 mg/kg 

body weight per day for the duration of the study. Mice were sacrificed 48 hours after the 

final acetone or TPA treatment, and skin sections were removed for histological 

examination. Figure 5-9A displays representative H&E and BrdU stained skin sections from 

the acetone, TPA, and 250 mg/kg metformin + TPA treatment group. Visual inspection 

revealed modest decreases in both epidermal thickness and labeling index in response to 

metformin administration in the drinking water. Upon quantitative evaluation as shown in 

Figure 5-9B the range of doses of metformin used significantly reduced each parameter 

measured compared to the TPA control group. The reductions also appeared to be dose-

dependent (*, P<0.05, Mann-Whitney U). Overall, this data shows metformin’s ability to 

inhibit, a least partially, TPA-induced hyperproliferation. This may help explain how it 

inhibits skin tumor promotion.  

 

 
 
 



78 
 

 
Figure 5-9 
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Figure 5-9 Metformin inhibits TPA-induced hyperplasia and hyperproliferation. A) 
Representative sections of H&E and BrdU stains of dorsal skin collected from female 
FVB/N mice after multiple treatments with either acetone, 6.8 nmol of TPA twice a week for 
two weeks with or without metformin in the drinking water at the representative dose of 250 
mg/kg body weight per day. B) Quantitative evaluation of the effects of metformin on TPA-
induced epidermal hyperplasia (epidermal thickness and labeling index: LI). Values 
represent the mean + SEM. (*, P< 0.05; Mann-Whitney U).  
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5-5 Metformin activates epidermal AMPK and attenuates TPA-induced signaling 
through mTORC1 
 

As discussed in the Introduction, metformin acts by inhibiting oxidative phosphorylation thus 

increasing intracellular levels of AMP and subsequently activating the LKB1/AMPK pathway 

(139, 140). This action, when occurring in the liver, impairs gluconeogenesis thus lowering 

glucose production and subsequent circulating insulin levels. Current data has revealed that 

this activation of AMPK in neoplastic cells can result in decreased cellular proliferation 

(141). Thus, the anticancer effects of this drug may be a result of either an indirect insulin 

lowering effect due to activation of AMPK in the liver, and/or a direct effect by activation of 

AMPK and further alterations in cell signaling and gene expression in transformed cells. 

Distinguishing between direct and indirect mechanisms behind the anticancer effects of 

metformin is important, as most epidemiological data show metformin’s anticancer effects in 

type II diabetes populations which tend to be obese and display chronic hyperinsulinemia. 

Our initial experiments explored the baseline effects (independent of diet) of short term 

administration of metformin in the drinking water (two weeks) on AMPK activation and 

subsequent signaling through mTORC1 and further downstream in female FVB/N mice on a 

regular chow diet in response to treatment with tumor promoter, TPA. During this period, 

mice received topical treatments with either acetone (vehicle) or 6.8 nmol of TPA with or 

without metformin in the drinking water at doses of 250 and 50 mg/kg body weight per day. 

Mice were sacrificed 6 h after the final acetone or TPA treatment, and epidermal protein 

lysates were prepared. Activation of AMPK has been shown to inhibit signaling through 

mTORC1, therefore it was hypothesized that metformin inhibits the growth of skin tumors 

via activation of AMPK and a subsequent decrease in signaling through mTORC1/p70S6K 

resulting in limitations in protein synthesis. Western blot analyses showed abundant 

activation of AMPK in the epidermis in groups receiving both doses of metformin as 

compared to the TPA-control treated group (Figure 5-10A).  
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As previously shown, topical TPA treatment to the skin resulted in potent activation 

of mTORC1 as shown though increases in phosphorylation of p70S6KT389, pS6rS240/244, 

pS6rS235/236, and p4E-BP1S37/46, as well as degradation of mTORC1 downstream target, 

PDCD4. In treatment groups receiving metformin, there was a dose-dependent reduction in 

p70S6K T389 as well as pS6rS235/236 (Figure 5-10A and B). In addition, translational repressor 

PDCD4 was partially protected from degradation at the higher dose of metformin used (250 

mg/kg). In this short term administration protocol, metformin had no apparent effect on 

mTORC1 mediated phosphorylation of 4E-BP1. Figure 5-10B shows the quantification of 

these blots with graphs displaying the mean and SEM from three independent experiments. 

It should be noted that while there was a dose-dependent response, only the highest dose 

used (250 mg/kg) had statistically significant differences in protein activation from the TPA-

control treated group. Graphs without error bars represent the average from two 

independent experiments.  

 The data thus far supports an AMPK dependent mechanism for the inhibition of skin 

tumor development in the two-stage skin carcinogenesis model. It is well established that 

one of the primary pharmacological mechanisms of action of metformin is activation of 

AMPK (142). Activation of the LKB1/AMPK pathway activates a host of downstream 

effectors that modulate cellular growth and metabolism and helps regulate energy balance 

in the cell during times of stress (87). In short term mechanistic studies, metformin partially 

inhibited signaling through mTORC1. Furthermore, this inhibition was confirmed to be 

associated with AMPK activation as evidenced by increases in phosphorylation of AMPK at 

activation site Thr172 in the presence of metformin. Another downstream target of AMPK 

that might be of interest to explore is Acetyl CoA carboxylase. Acetyl CoA carboxylase, 

when activated causes the carboxylation of acetyl-CoA to produce malonyl-CoA, which is 

the rate limiting step in de novo fatty acid synthesis (99).  This may also represent another 

downstream mechanism by which metformin exhibits anti-neoplastic effects, as many 
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human cancers have been associated with fatty acid synthase (FASN)  increases (143). 

Further work will be necessary to explore these downstream signaling pathways in more 

detail.  

It should also be noted that there is additional evidence that metformin might 

mediate its anti-cancer effects independently of LKB1 and AMPK. Kalender and colleagues 

demonstrated metformin to inhibit signaling through mTORC1 independent of the 

LKB1/AMPK axis by inhibiting Rag GTPase activation of mTOR (144). In addition, 

metformin induced cell cycle arrest through REDD1 mediated inhibition of mTOR in 

prostate cancer cell lines (145). Furthermore, the ability of metformin to inhibit 

gluconeogenesis in the liver was not impaired in the absence of LKB1 and AMPK and 

instead was initiated in response to flux in energy levels (146). Despite these interesting 

observations, AMPK activation and subsequent mTORC1 inhibition remain the primary 

proposed mechanism by which metformin exerts antineoplastic effects.  

 

 

 

 

 

 

 

 

 

 

 

 

 



82 
 

   Multiple (4X) Treatment Protocol  

0

2

4

6

8

pS6rS235/236

F
o

ld
 P

h
o

s
p

h
o

ry
la

ti
o

n

0.0

0.5

1.0

1.5

PDCD4

F
o

ld
 P

h
o

s
p

h
o

ry
la

ti
o

n

0

1

2

3

4

5

p-p70S6KT389

F
o

ld
 P

h
o

s
p

h
o

ry
la

ti
o

n

Figure 5-10  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

A 

B 

* 

* 

* 

 

0.0

0.5

1.0

1.5

p27

F
o

ld
 P

h
o

s
p

h
o

ry
la

ti
o

n

0

1

2

3

4

pAMPKT172

F
o

ld
 P

h
o

s
p

h
o

ry
la

ti
o

n

0.0

0.5

1.0

1.5

2.0

2.5

p-4E-BP1
37/46

F
o

ld
 P

h
o

s
p

h
o

ry
la

ti
o

n

0

2

4

6

8

pS6r
240/244

F
o

ld
 P

h
o

s
p

h
o

ry
la

ti
o

n

 



83 
 

Figure 5-10 Metformin activates epidermal AMPK and attenuates TPA-induced 
activation of mTOR and downstream targets. Pooled protein lysates were prepared from 
the epidermal scrapings of FVB/N mice undergoing a multiple treatment regimen of either 
acetone, 6.8 nmol of TPA with or without the addition of metformin in the drinking water at 
doses of 250 and 50 mg/kg body weight per day. Western blot analyses were conducted to 
examine activation of AMPK, mTORC1 and downstream targets. A) Western blot analyses 
of AMPK and mTORC1 substrates. B) Quantification of Western blot analysis in A. Graphs 
with error bars represent quantitation from three independent experiments (*, P<0.05, 
Mann-Whitney U). 
 

 In preliminary experiments, the effects of low dose combinations of metformin and 

rapamycin on epidermal mTORC1 signaling were explored to further characterize the 

mechanisms of the additive effect of these two compounds that were witnessed in the two-

stage skin carcinogenesis protocol. As shown in Chapter 4, a combination of 50 mg/kg 

body weight per day of metformin administered via the drinking water accompanied by 

topical treatment with 2 nmol of rapamycin prior to promotion with 6.8 nmol of TPA was 

sufficient in both overweight and obese mice to cause statistically significant reductions in 

tumor development as compared to either compound alone. An additive effect was also 

observed through the reduction of phosphorylation of p70S6K (Thr389) in the combination 

group compared to either single agent alone in mouse epidermis. There was also dramatic 

inhibition of the degradation of translational repressor PDCD4 in the combination treatment 

group. (Figure 5-11).  
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Figure 5-11 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-11 Combination treatments of metformin and rapamycin are more effective 
than either agent alone at inhibiting TPA-induced mTORC1 signaling in the 
epidermis. Pooled protein lysates were prepared from the epidermal scrapings of FVB/ N 
mice undergoing a multiple topical treatment regimen of acetone, 6.8 nmol TPA,  2 nmol of 
rapamycin or 50 mg/kg metformin, or these treatments alone or in combination prior to 6.8 
nmol of TPA. A) Western blot analyses from a single representative experiment B) 
Quantitation from western blots in A 
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5-6 Effect of metformin on body weight, serum hormones, and glucose tolerance 

As previously shown in Chapter 4, dietary intervention via administration of either the 10 

kcal % fat, overweight/control diet or the 60 kcal % fat, DIO diet generated two different 

weight phenotypes.  In the last few weeks of the tumor study, after which mice had been on 

diet for 30 weeks, the mean body weight of the DIO diet group was 45.2 + 0.63 g and the 

mean body weight of the overweight/control diet group was 31.6 + 0.86, and differences 

were statistically significant (*, P< 0.05, Figure 5-12D). As expected, there were also altered 

levels of energy balance-related hormones in the overweight mice in the DMBA/TPA control 

group as compared to the DIO mice in the DMBA/TPA control group as fasting insulin levels 

on average in the DIO group were approximately 7-fold higher than the overweight control 

group (P< 0.05; Figure 5-12A). Serum leptin levels were approximately 20-fold higher in the 

DIO DMBA/TPA control group as compared to the overweight DMBA/TPA control group 

(P<0.05; Figure 5-12B). However, differences in serum adiponectin levels were not 

statistically significant in these two groups (Figure 5-12C). To determine whether or not 

metformin exerts its anti-tumor effects in the two-stage model through indirect insulin 

lowering effects or decreases in various other serum adipokines, serum hormones in the 

metformin treated mice were evaluated. Metformin at a dose of 50 mg/kg body weight per 

day in the drinking water reduced the elevated levels in insulin in the DIO, hyperinsulinemic 

mice but had no effect on the insulin levels of mice receiving the overweight control diet 

(DIO DMBA-TPA control: 4,828.9 + 1128.3 pg/ml versus DIO 50 mg/kg MET + TPA: 

1,914.7 + 338.8 pg/ml; *, P< 0.05, Mann-Whitney U) (Figure 5-12A). In addition, adiponectin 

levels were modestly higher in the DIO 50 mg/kg MET +TPA group compared to the DIO 

DMBA-TPA control group, but there were no differences between the metformin and 

DMBA-TPA treated groups in the overweight/control diet groups (DIO DMBA-TPA control: 

6272.9 + 783.2 pg/ml versus DIO 50 mg/kg MET + TPA: 8,812.9 + 1018.4 pg/ml; *, P< 

0.05, Mann-Whitney U) (Figure 5-12C). The addition of metformin in the drinking water had 
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no apparent effect on circulating serum leptin levels (Figure 5-12B). This data is consistent 

with previous published data that showed that while there were statistically significant 

increases in leptin levels in mice receiving a high-energy diet vs the control diet, metformin 

had no significant effects on leptin levels in either diet group (139)  

Our findings show that metformin reduced increases in circulating insulin levels in 

obese mice consuming the high fat diet (60 kcal % fat) suggesting that the antitumor effects 

of metformin in the skin carcinogenesis model may partially occur via LKB1/AMPK 

activation in the liver and subsequent inhibition of gluconeogenesis.  While there was 

reduced signaling in the epidermis through mTORC1 via AMPK activation after metformin 

administration in both diet groups, maximal antitumor effects were seen in the diet-induced 

obesity group suggesting that the indirect effect of metformin on circulating metabolic 

hormones may play an important role as well. Genetic approaches will be necessary to 

absolutely discern whether metformin exerts it effects primarily directly and/or indirectly. 
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Figure 5-12 Effect of metformin and diet on energy balance related serum hormones. 
At week 26 of promotion and metformin treatment during a two-stage study, mice were 
sacrificed and serum was collected via cardiac puncture from a subset of mice from each 
diet/treatment group (n=7). A) Insulin B) Leptin C) Adiponectin D) Average weight of each 
dietary group (including all treatments) after 30 weeks on each ad libitum fed diet. Graphs 
represent the mean + SEM. (*, P<0.05, Mann-Whitney U) 
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In addition, the effect of metformin on glucose tolerance was examined. Female 

FVB/N mice from an ongoing two-stage skin carcinogenesis experiment from a subset of 

each diet and treatment group were used for glucose tolerance tests at week 20.  The DIO 

group, relative to the overweight/control group, as assessed by the GTT, displayed a 

modest decrease in glucose tolerance. At 20 weeks of tumor promotion, the DIO DMBA-

TPA control group peaked at 30 minutes and averaged 387.8 + 39 mg/dl versus 340 + 30 

mg/dl for the overweight/control DMBA-TPA control group. After these peaks were 

achieved, blood glucose levels were consistently lower for the remainder of the time course 

in the overweight/control group (Figure 5-13). However, metformin did not greatly improve 

glucose tolerance in either diet group as there were not significant differences between 

metformin and the DMBA-TPA control groups in either diet administered. It was surprising 

that there were not significant improvements in glucose tolerance in the DIO mice, however, 

these mice are not considered diabetic, and the differences between glucose tolerances in 

the overweight/control versus the DIO are not all that dramatic. It should also be noted that 

these readings were taken later into the tumor study at week 20 at which time the tumor 

burden of mice increased as well as stress levels which could have diminished the ability to 

distinguish differences in tolerance. 
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Figure 5-13 Effect of metformin and diet on glucose tolerance. 
After 20 weeks of tumor promotion and metformin treatment during two-stage skin 
carcinogenesis experiments, GTTs were performed on a subset of mice from each 
diet/treatment group (n=10). A) Results from GTT performed on mice receiving the 10 kcal 
% fat, overweight/control diet in each treatment group (DMBA-TPA control, 250 mg/kg MET 
+TPA, and 50 mg/kg MET + TPA B) Results from GTT performed on mice receiving the 60 
kcal % fat diet, DIO in each treatment group (DMBA-TPA control, 250 mg/kg MET +TPA, 
and 50 mg/kg MET + TPA) 
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Chapter 6-Summary, Significance and Future Studies 

Summary and Significance  

The prevalence of obesity has drastically increased in the US over the past 30 years and is 

associated with increases in various cancer risk as well as increased cancer mortality. 

While DIO has consistently been shown to increase cancer risk, CR has been shown to be 

an effective intervention, inhibiting carcinogenesis and increasing lifespan in a variety of 

animal models. CR acts broadly and potently in chronic disease prevention and 

strengthens the notion that the identification, development and study of both natural and 

synthetic compounds mimicking the anticancer effects of CR should be explored. Initial 

studies in this project found mTORC1 inhibitor rapamycin to be a potent inhibitor of TPA-

induced skin tumor promotion. To date, this data demonstrates on a molar basis, rapamycin 

to be one of the most highly potent inhibitors of skin tumor promotion by phorbol esters 

(114). In addition, this inhibition by rapamycin was associated with attenuation of mTORC1 

and downstream signaling in keratinocytes and inhibition of TPA-induced epidermal 

hyperproliferation.  Rapamycin also inhibited TPA-induced dermal inflammatory cell 

infiltration as well as reduced signaling through inflammatory pathways in the epidermis. 

The observed effects of rapamycin on these parameters are very similar to previous 

observed effects in CR mice during two-stage skin carcinogenesis studies providing support 

for rapamycin as CR mimetic agent. Furthermore, in the context of dietary energy balance, 

rapamycin counteracted the effects of overweight and obese states on skin tumor 

promotion and progression. Mice placed on either a 10 kcal % fat or 60 kcal % fat diet 

corresponding to overweight and obese phenotypes respectively, displayed highly 

significant reductions in tumor multiplicity and incidence. In this regard, tumor inhibition was 

slighter more effective in the obese mice. This project has provided new insights into the 

therapeutic and preventive potential of rapamycin for a range of weight phenotypes in 

environmentally induced skin cancer.  In addition, these studies provide the first published 
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evidence for the importance of mTORC1 as a critical mediator of skin tumor promotion by 

TPA, independent of Akt.  

 mTORC1 activity can be regulated via Akt or AMPK signaling pathways, and energy 

balance has been shown to influence both pathways of activation. In addition to high serum 

levels of IGF-1 and insulin and subsequent increases in cellular signaling through their 

receptors to PI3K and Akt, obese states are also associated with elevations in amino acids, 

glucose and ATP levels. Flux in energy metabolism can lead to activation or repression of 

mTORC1 through the LKB1/AMPK pathway. Additional experiments in this project explored 

the anti-cancer effects of antidiabetic drug metformin in the context of dietary energy 

balance. Metformin’s primary mechanism of action is through activation of AMPK. Two-

stage skin carcinogenesis studies demonstrated that metformin, when administered via the 

drinking water, partially blocked skin tumor promotion in both overweight and obese mice, 

though it appeared to be more highly effective in the obese mice. Furthermore, this 

inhibition was associated with activation of epidermal AMPK and inhibition of mTORC1. 

Serum analyses also revealed metformin to decrease circulating levels of insulin and 

increase adiponectin in the obese mice suggesting a dual direct/indirect mechanism of 

cancer prevention in this model system.  However, metformin had no effect on serum 

hormone levels in the overweight mice lending to a common hypothesis that metformin may 

be more effective in an obese or diabetic population. Metformin and other biguanides have 

tolerable associated risks and are already widely used in the treatment of type II diabetes. 

In these studies, we have provided for the first time, evidence that oral administration of 

metformin in the drinking water decreases tumor development in a chemically induced 

model of non-melanoma skin cancer. In addition, we have shown metformin to be slightly 

more effective in obese mice due to possible dual inhibitory effects of mTORC1 inhibition as 

well as reduced circulating insulin levels. There are very few studies in the literature to date 

that have evaluated host metabolic status as a variable to study the anticancer effects of 
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metformin. Data from this project will help fill a gap in knowledge regarding the 

effectiveness of metformin in a range of weight phenotypes. These data are highly relevant 

for future clinical trials as they help define target populations that will benefit most from 

metformin.  

 Growing evidence from CR studies throughout the last few decades suggests that 

the inhibitory effects of CR are multifaceted and clearly, one single pathway is not 

responsible for all the anticancer effects. In addition to the IGF-1/Akt/mTOR pathway, CR 

has been shown to effect components of adipokine signaling, inflammatory signaling as well 

as sirtuin signaling pathways (9). Hence, combination chemoprevention strategies that 

target multiple pathways are most likely to result in success at preventing cancer with 

increased efficacy.  While there is promise of increased efficacy with dual inhibitor 

treatments, a risk of toxicity is also a concern as there is evidence of deregulation of 

carbohydrate metabolism when administering PI3K, Akt, or mTOR inhibitors resulting in 

hyperinsulinemia and hyperglycemia.  Thus using metformin with inhibitors of the IR 

pathway may prevent dose limiting toxicities. The current study demonstrated that a 

combination treatment approach with a very low dose of topical rapamycin (2 nmol) and a 

low dose of metformin in the drinking water resulted in an additive effect that was more 

effective than either single compound alone at preventing the development of skin tumors. 

Current data in the literature have not explored the effects of combination treatments with 

rapamycin and metformin. 

Overall, the current data support the hypothesis that elevation of mTORC1 and 

subsequent activation of downstream signaling pathways is a highly important event during 

skin tumor promotion and targeting this pathway alone or in combination may be an 

effective chemoprevention strategy. While this project demonstrates the effectiveness of the 

compounds in the context of overweight and obesity, mechanistic data obtained provides 
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strong implications for chemoprevention on a broader spectrum which includes a non-

diabetic, normal weight population.  

 

Ongoing and Future Studies 

 Ongoing experiments in the lab are currently exploring the differential effects of an 

overweight versus obese phenotype on epidermal signaling through AMPK and mTORC1 

and downstream substrates after treatment with inhibitor compounds. Completing these 

studies will help better elucidate the underlying mechanisms responsible for the increase in 

efficacy of these inhibitors in the obese mice. In addition, we are exploring activation of 

other substrates of AMPK in addition to mTORC1. Of particular interest, is AMPK’s 

inhibition of de novo fatty acid synthesis and cholesterol synthesis. AMPK was initially 

identified as a kinase that inhibits acetyl CoA carboxylase through phosphorylation thus 

preventing the conversion of acetyl CoA to malonyl CoA subsequently inhibiting the 

synthesis of fatty acids. It also phosphorylates HMG-CoA to inhibit de novo cholesterol 

synthesis (147). These enzymes required for the synthesis of fatty acids and cholesterol are 

highly expressed in many types of cancer (148).  In addition, metformin has also been 

shown in vivo to mediate some of its anticancer effects via activation of AMPK and 

subsequent inhibition of ACC (100) as well as through decreased expression of FASN (99). 

Because the effects of metformin in our model system on mTORC1 and p70S6K inhibition 

in the epidermis are somewhat modest, it is possible that metformin may be exerting its 

inhibitory effects via AMPK activation and inhibition of fatty acid synthesis or cholesterol 

synthesis.  

 In addition, interest lies in further clarifying the effects of rapamycin downstream of 

mTORC1 on the induction of autophagy in the epidermis. As presented in Chapter 5, 

preliminary data gathered have presented a potential mechanism by which rapamycin 

induces autophagy via mTORC1 inhibition. Future planned studies include 
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immunofluorescence (IF) and immunohistochemical (IHC) staining to identify the formation 

of LC3B puncta which are indicative of autophagosome formation, after rapamycin 

treatment. Skin tumor samples from previous two-stage studies in each treatment group will 

also be evaluated for expression of autophagic markers by western blot analysis as well as 

IF and IHC.  

 Future work beyond the scope of this research project would likely entail delving into 

pharmacokinetic/pharmacodynamic considerations of metformin use in cancer 

chemoprevention and treatment. Much of the current literature as well as data from this 

project suggest that some of the anticancer effects of metformin may be due to direct 

mechanisms on cancer cells whereby AMPK is activated and mTORC1 is inhibited leading 

to decreases in protein synthesis. Hence, there is a clear need for PK/PD studies to identify 

optimal doses of metformin to be administered as well as to identify which extrahepatic 

tissues will respond to treatment and to what extent. In order for metformin to be taken up 

by cells, the cells have to express organic cation transporter 1 or 2 (OCT 1) (OCT 2) (149). 

An interesting pharmacokinetics research question would be whether or not keratinocytes 

isolated from normal epithelial tissue, papillomas, or squamous cell carcinomas express 

transcripts for genes that encode organic cation transporter 1, 2, and 3. Experiments could 

be carried out to confirm expression of these genes at various doses of metformin 

administered via the drinking water to determine the potential for the accumulation of 

metformin. Experiments could also be done to evaluate whether dietary energy balance 

modulation has any effects on expression of these transporter genes. Completing these 

experiments could provide valuable information on the dose of metformin that will result in 

optimal response in our model system and provide further information about target 

populations for which metformin should be tested in the clinic.  Additionally, 

pharmacodynamic experiments could be completed to evaluate the expression of 

metformin’s primary target in cells, mitochondrial complex I as long as previous PK data 
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from metformin ensured metformin uptake is occurring in our target cells. This research 

plan would be novel, as few studies have specifically evaluated PK/PD.  Understanding the 

pharmacokinetics behind metformin as well as other biguanides will provide valuable 

biologically based criteria for eligibility in clinical trials.  
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