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 The RE-1 silencing transcription factor (REST) is an important regulator of normal 

nervous system development. It negatively regulates neuronal lineage specification in neural 

progenitors by binding to its consensus RE-1 element(s) located in the regulatory region of its 

target neuronal differentiation genes.  The developmentally coordinated down-regulation of 

REST mRNA and protein in neural progenitors triggers terminal neurogenesis. 

 REST is overexpressed in pediatric neural tumors such as medulloblastoma and 

neuroblastoma and is associated with poor neuronal differentiation. High REST protein 

correlate with poor prognosis for patients with medulloblastoma, however similar studies have 

not been done with neuroblastoma patients. Mechanism(s) underlying elevated REST levels 

medulloblastoma and neuroblastoma are unclear, and is the focus of this thesis project.    

We discovered that transcriptional and post-translational mechanisms govern REST mis-

regulation in medulloblastoma and neuroblastoma. In medulloblastoma, REST transcript is 

aberrantly elevated in a subset of patient samples.  Using loss of function and gain of function 

experiments, we provide evidence that the Hairy Enhancer of Split (HES1) protein represses 

REST transcription in medulloblastoma cell lines, modulates the expression of neuronal 

differentiation genes, and alters the survival potential of these cells in vitro.   

We also show that REST directly represses its own expression in an auto-regulatory 

feedback loop. Interestingly, our studies identified a novel interaction between REST and 

HES1.  We also observed their co-occupancy at the RE-1 sites, thereby suggesting potential for 

co-regulation of REST expression. 
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 Our pharmacological studies in neuroblastoma using retinoic acid revealed that REST 

levels are controlled by transcriptional and post-transcriptional mechanisms.  Post-

transcriptional mechanisms are mediated by modulation of E3 ligase or REST, SCF
β-TRCP

, and 

contribute to resistance of some cells to retinoic acid treatment.   
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Chapter 1: Introduction 
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Medulloblastoma 

 

 Medulloblastoma is the most common pediatric malignant brain cancer, with an 

incidence of ~0.6 per 100 000 children every year in the United States (1, 2).  It is a primitive 

neuroectodermal tumor (PNET) that occurs in the cerebellum as well as the fourth ventricle and 

dorsal brainstem (3, 4).  The standard treatment remains a combination of surgery, 

chemotherapy, and cranio-spinal radiation.  The overall 5 year survival rate is 75-85%, 

however in high-risk cases survival is lowered to between 50-70% (5).  Recurrence of the 

tumor is noted in 30% of the cases (5).  Furthermore, because the cerebellum is still developing 

at the time of tumor presentation and treatment, neuro-cognitive problems arise and quality of 

life issues can continue even after the original tumor is resolved.  The need for more targeted 

therapeutics with lower toxicity is apparent.  Specific markers to better assess the 

aggressiveness of each individual patient’s disease are also necessary to ensure the delivery of 

more targeted therapeutics while avoiding unnecessary exposure to overly invasive and 

aggressive treatments.   

 

Classification 

 Original classification of medulloblastoma was based on histopathological analysis that 

divided the tumors into 4 general groups: classic, nodular/desmoplastic, anaplastic, and large 

cell anaplastic (LCA) (3).  Although histologically distinct, these subgroups did not reliably 

predict presentation, prognosis, treatment, and deregulated pathways.  Recent efforts by several 

groups towards molecular classification using high throughput DNA and RNA microarray 

analyses of medulloblastoma tumors have yielded four classes of medulloblastoma as well: 

WNT activation, SHH mutations, MYC overexpression, and undefined genetic anomalies, 

ranging from the best to the worst prognosis (2, 6-10).  These classes correlate loosely to 

classic, desmoplastic, nodular, anaplastic, and large cell anaplastic histopathologic subtypes 

respectively although overlap across the histopathological classes still remains (2, 6-10).  Since 

each of the molecular classes is different from the other in terms of  presentation, prognosis, 

survival, and invasiveness, perhaps the molecular signature for each tumor can potentially be 

used to determine the type and aggressiveness of the treatment, thereby leading to a more 

targeted and personalized therapy for each patient.  Mechanisms contributing to deregulation of 
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the pathways implicated in each of the molecular classes remain to be elucidated and provide 

an active area of research. 

 

Origin 

 Although granule precursor cells (GPC) that comprise the external granule layer (EGL) 

of the cerebellum are canonically considered the cells of origin of medulloblastoma, recent 

studies have shown that they account for only the sonic hedgehog (SHH) medulloblastoma 

subtype (3, 9, 11, 12).  The WNT subtype arises from the progenitor cells in the lower rhombic 

lip (LRL) and the dorsal brain stem (4).  Not much is known about the origin of the other 

medulloblastoma subtypes, although recently the progenitors from the white matter have been 

suggested to give rise to the MYC subtype (3).  Because the role of GPCs and SHH is 

extensively studied in medulloblastoma and normal brain development, it will dominate most 

of this section, followed by a brief description of the WNT subtype of medulloblastoma. 

Discovery of the germline mutation of PTCH that is implicated in medulloblastoma, as 

well as the critical role of SHH in cerebellar development has sparked extensive research to 

study this pathway in the context of medulloblastoma pathology.  Understanding the 

contribution of this pathway in normal cerebellar development is important for assessing the 

implications of its deregulation to medulloblastoma.  In mice, cerebellar development begins 

during embryogenesis around E10 (approximately E20-22 in humans) and continues 

postnatally until P15 (second year of life in humans) (3, 11, 12).  There are three germinal 

zones that give rise to distinct populations of cells in the cerebellum, with the second germinal 

zone in the upper rhombic lip (URL) producing the GPCs that form the EGL of the cerebellum 

(3).  At birth, the EGL of the cerebellum is composed of GPCs that proliferate in response to 

the mitogen SHH, secreted by the Purkinje cells located in the layer beneath the EGL.  Decline 

of the SHH pathway activity signals GPCs to stop proliferating and induces cell cycle exit.  The 

GPCs then start differentiating and migrating down to the inner layers of the cerebellum to 

form the internal granule layer (IGL).  As a result, the developed cerebellum does not contain 

an EGL, but a molecular layer which contains the axons of the differentiated neurons that 

migrated to the IGL, a Purkinje cell layer, and an IGL that is composed of the cell bodies of the 

differentiated neurons (11).  However, the maintenance of EGL in a mouse model of 

medulloblastoma with constitutively active SHH signaling suggests that the failure to down-

regulate SHH signaling in a developmentally appropriate manner leads to a bypass of the 
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normal differentiation program as well as continued proliferation EGL, which that may 

contribute to tumor formation (3, 11, 13).   

WNT subtype of medulloblastoma arises from the progenitor cells in the LRL and the 

dorsal brain stem, and has genetic features and presentation that are distinct as compared to the 

SHH subtype (3).  Whereas the SHH subtype mainly infiltrate the cerebellar hemispheres, 

WNT medulloblastomas are noted largely in the fourth ventricle infiltrating the dorsal 

brainstem (3).  Furthermore, mutations in WNT pathway effector catenin (cadherin-associated 

protein) beta 1 (Ctnnb1) led to an aberrant collection of progenitor cells that migrated 

preferentially to the dorsal brainstem, thereby differentiating the normal differentiation 

program (3).  However, no change was observed in GPC proliferation, cell cycle regulation, 

differentiation, or apoptosis in the URL, thereby highlighting the distinct origins and molecular 

pathways of the two tumor subtypes (3, 14).  Disruption of p53 in the background of mutations 

in the SHH pathway has been previously shown to increase the tumor incidence with an earlier 

onset (14).  Similarly, concurrent mutations of p53 and Ctnnb1 leads to tumor formation, but 

only in the fourth ventricle and dorsal brainstem, and not the cerebellum (3).  Furthermore, 

these tumors matched WNT pathway human medulloblastoma tumors in mRNA and DNA 

microarray analyses (3). 

 

Genetic vs. epigenetic mechanisms in medulloblastoma etiology 

 Genetic mutations that may contribute to medulloblastoma were established with the 

discovery of the germline PTCH mutation and mutations in adenomatous polyposis coli (APC) 

in patients with Gorlin syndrome and Turcot syndrome respectively, for in both of these 

diseases the patients have an increased incidence of medulloblastoma as compared to the 

general population (3, 11).  However, these genetic mutations account for only 20-30% of the 

cases (3, 15, 16).  Observed in 30-40% of medulloblastoma patients, deletion of 17p13.2 and 

isochromosome 17q (i17q) is the most common cytogenetic abnormalities reported (2, 15).  

Aberrant regulation and expression of many other molecules such as Notch, c-met, ERB-B, 

IGF, Gli, Mad3, Math1, BMI1 to name a few, have been reported, but exactly how these 

mechanisms contribute to medulloblastoma pathology remains unclear (1).  The latter 

highlights the need to better delineate the individual roles of these molecules as well as their 

combined contribution to medulloblastoma pathogenesis.   
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Several molecules implicated in medulloblastoma have also been shown to be 

epigenetically deregulated.  Epigenetic changes are alterations in gene expression in the 

absence of changes in DNA sequence.  Chromatin consists of repeating nucleosomes, which 

are units of DNA wrapped around proteins known as histones (17).  Nucleosomes can that can 

be arranged in an open conformation, called euchromatin, where DNA is accessible for 

transcription,  or a closed conformation, known as heterochromatin, which is associated with 

gene silencing for the DNA is not available for active transcription (18, 19).  Chromatin can be 

modified in many different mechanisms, for example via the addition or removal of acetyl and 

methyl groups from histones and/or DNA, and the type of modification as well as where the 

modification occurs determines whether it is an active or a repressive mark (18, 19).  In 

general, acetylation is associated with euchromatin, while deacetylation is observed in 

heterochromatin. Types of histone methylation and demethylation, as well as the residues that 

are methylated and demethylated in a cell specific context indicates whether the modification 

signals active, repressive, or poised for transcription (18, 20).  DNA methylation is usually 

associated with gene silencing (18, 20).  Methylation, demethylation, acetylation, and 

deacetylation are some of the most commonly investigated modifications in cancer.  Overall, 

hypomethylation of the genome of a cancer cell is observed as compared to a normal cell, 

which contributes to general genomic instability (21).  In addition, promoter hypermethylation 

of specific genes (several tumor suppressors) occurs, which usually translates into silencing of 

these genes (21).  Indeed altered methylation of 6% of CpG islands have been reported in 

medulloblastoma (21).  Commonly hypermethylated genes in medulloblastoma tumors and cell 

lines include HIC1, RAASF1A, CASP8, p16
INK4a

 , and MGMT to name a few (21).  Research is 

currently underway to determine if these epigenetic modifications can be potentially targeted 

therapeutically using histone deacetylase inhibitors and demethylating agents that have been 

approved as therapy for other cancers as well as novel compounds (22-24).  

 Although several genes have been shown to be epigenetically deregulated in 

medulloblastoma, not much is known about epigenetic regulators of gene expression in the 

brain or their contribution to medulloblastoma.  Research in our laboratory is focused on this 

aspect of medulloblastoma biology, and especially on one specific epigenetic modulator of 

neurogenesis that also plays a role in medulloblastoma pathology called Repressor element-1 

silencing transcription factor or neuron restrictive silencing factor (REST or NRSF) (25-28).  
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The current state of our understanding of REST in normal brain development and its role in 

medulloblastomagenesis is discussed in greater detail in Chapter 1, Section 3. 

 

Mouse models 

 Since SHH remains the most extensively studied pathway in the context of 

medulloblastoma, most models of this disease are based on deregulated SHH signaling either 

by mutagenizing the components of SHH pathway itself, or by introducing other genetic 

alterations.  The degree of penetrance of each model is different as they develop the tumor at 

different ages and rates.  Ptch and ND2:SmoA1, both of which contain mutations in the SHH 

pathway, are the most widely used transgenic models of medulloblastoma. 

The Ptch mouse model involves a heterozygous Ptch deletion, because homozygous 

deletion of Ptch is embryonic lethal.  14-19% of Ptch+/- mice develop medulloblastoma by 5 

weeks to10 months of age (14, 29, 30).  Furthermore, crossing Ptch+/- mice with p53-/- mice 

increases the incidence of medulloblastoma to 95%-100% by 4 weeks to 3 months.  Although a 

p53 mutation is not common in medulloblastoma, mis-regualtion and/or mis-expression p53 

can lead to accumulation of cytogenetic abnormalities, which can synergize with the Ptch 

mutation to create a greater vulnerability for a higher tumor incidence as well as a more 

aggressive tumor.   

ND2:SmoA1 mouse model was created by mutating Smo so that it is constitutively 

expressed under a cerebellar GPC specific NeuroD2 (ND2) promoter, SHH signaling is thereby 

rendered constitutively active independent of the presence of the ligand (31).  Most of these 

mice (80%) displayed granule cell hyperproliferation by 8 weeks, and 48% developed tumors 

by 6-12 months (31).  Recently, a homozygous Smo/Smo model has also been developed where 

the mutagenic Smo is regulated by ND2 promoter, but has a tumor incidence of 94% by 2 

months and is the first model to also show leptomeningeal spread (32).   

In light of the new molecular subgroups, two models of MYC driven medulloblastomas 

in the absence or interference with p53 have been recently developed (33, 34).  These tumors 

have similar gene expression analysis as human MYC medulloblastomas, and differ greatly 

from the other subgroups (33, 34).  Furthermore, SHH antagonists do not affect proliferation 

and tumor forming potential in vitro or in vivo, whereas inhibitors of the PI3K pathway show a 

marked affect, again suggesting that these tumors are indeed distinct from other subtypes of 

medulloblastoma.  This model also highlights the interactions between other molecular 
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pathways underscoring the complexity of medulloblastoma pathology (33, 34).  As described 

previously, concurrent disruption of Ctnnb1and p53 also give rise to a distinct WNT subtype of 

medulloblastoma that is different from other tumors in its presentation as well as its molecular 

signature (4). 

 The mouse models described above highlight the complicated cross-talk between major 

developmental pathways, for perturbations of components Notch and Wnt signaling are 

observed in SHH mouse models of medulloblastoma (31, 35).  For example, up-regulation of 

Notch2 and HES5, which are components of the Notch pathway, was observed in the cerebella 

of ND2:SmoA1 mice relative to control mice (31).  Similarly, cerebella of Ptch
+/-

 mice 

displayed up-regulation of Wnt pathway components, including Wnt1, Wnt8, mFrz3, mFrz4, 

mFrz7, mSfrp1, mSfrp2 and Lef1, relative to control cerebella (35).  Brains of Nestin
Cre

;Smo
n/c

 

mice, a model in which SHH signaling is down-regulated, also showed decreased expression of 

Notch2, Jagged1, HES1, mSfrp1, and mFrz7 (Notch and Wnt signaling) relative to control 

brains (35).  Since our lab focuses on the role of REST in medulloblastoma pathology, it would 

be interesting to study the interactions between REST and SHH, Notch, and WNT.  The 

presence of such cross-talk suggests that targeting multiple pathways may be necessary for 

therapy.   
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Neuroblastoma 

 

 Neuroblastoma is the most common pediatric extra-cranial solid tumor.  With an 

incidence of 10.2 cases per 1million children under 15 years of age every year in the United 

States, it is responsible for 15% of childhood mortality, and has the highest mortality rate for 

infants with cancer (36-38).  These tumors are found in the sympathetic nervous system tissues, 

usually in the adrenal medulla and paraspinal ganglia. With a very varied presentation, ranging 

from essentially asymptomatic tumors that spontaneously regress to severe and metastatic 

disease, the median age of diagnosis is 17 months (37).  Standard of treatment varies over a 

wide range, reflecting the broad range of disease presentation, and includes surgical resection 

and chemotherapy, with the aggressiveness of chemotherapy regimen depending on the severity 

of the disease (36).  The overall 5-year survival has improved with current therapies to 74%, 

but appreciable improvement has not been noted in patients with high risk disease (37) .   

Neuroblastoma has been associated with many chromosomal abnormalities, including 

which gain of chromosomes 2, parts of 17q, deletions of parts of the chromosomes 1p and 11q, 

and triploidy (39, 40).  V-myc myelocytomatosis viral related oncogene, neuroblastoma derived 

(avian) (MYCN) amplification on chromosome 2 remains one of the most significant prognostic 

indicators (39, 41).  Found in 25% of cases, it is a very poor prognostic indicator of the disease, 

correlating with survival rates of only 15-35% even in the presence of other positive prognostic 

indicators (36, 38).  MYCN transgenic mice have been shown to spontaneously develop 

neuroblastoma, but variability in tumor incidence exists depending on the promoter used and 

the site of random integration (42).  Interestingly, retinoic acid, used as maintenance treatment 

for high-risk patients, down-regulates MYCN expression and leads to neuronal differentiation in 

neuroblastoma cell line (38, 41).  However, the mechanism underlying retinoic acid mediated 

differentiation of neuroblastoma remains unknown.  

Activating mutations in Anaplastic lymphoma kinase (Alk) also have been shown to 

have prognostic value in neuroblastoma (41).  Found in all cases of familial neuroblastoma and 

8% of sporadic cases, ALK
F1174L

 is described as the most aggressive activating mutation.  

Interestingly, 8.9% of MYCN amplified tumors also display an activating ALK mutation, 

correlating with very poor survival (41).  Wild-type as well as mutant ALK has been shown to 

increase MYCN transcription in neural and neuroblastoma cells (43).  Furthermore, 
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overexpression of MYCN and ALK
F1174L

 in immortalized neural crest cultures are shown to 

cause tumors in vivo (44).   

 

Classification 

 Current classification of neuroblastoma is based on histological subtypes that fall into 

four of peripheral neuroblastic tumors: neuroblastoma, ganglio-neuroblastoma intermixed, 

ganglioneuroma, nodular ganlioneuroblastoma (36, 37, 45).  Neuroblastoma is Schwannian 

stroma poor, ganglioneuroblastoma intermixed is Schwannian stroma rich (36).  

Ganglioneuroma is Schwannian stroma dominant, and ganlioneuroblastoma is a composite of 

Schwannian stroma rich and poor regions (36).  As with many other cancers, histological 

subtypes alone do not predict the prognosis, survival, or course of the disease, but 

complemented with other factors such as age of diagnosis, degree of differentiation, 

Schwannian stroma content, and mitosis-karyorrehexis index (MKI), they provide more 

predictive value (36).  Degree of differentiation and a younger age of diagnosis are positive 

prognostic factors for neuroblastoma, ganglio-neuroblastoma intermixed, and ganglioneuroma 

(36, 45).  Low to intermediate MKIs are associated with good prognosis, whereas high MKIs 

along with an undifferentiated status predict poor prognosis (36).  Diagnosis under 18 months 

of age is also associated with good prognostic predictors with high overall survival and lower 

rates of remission, whereas tumors diagnosed in older children tend to be more aggressive with 

a worse prognosis (36). As mentioned above, MYCN is one of the few molecular markers that 

reliably correlates with poor prognosis in neuroblastoma, and is taken into account when 

determining the risk stratification of the patient (36).   

 

Origin 

 Although neuroblastoma tumors can occur anywhere along the sympathetic axis, 

adrenal medulla is the most common site of occurrence, accounting for 50% of all tumors, 

while the rest are found in the chest, abdomen, and pelvis (37).  Several lines of evidence have 

implicated neural crest cells as the origin of neuroblastoma.  It occurs at the sites of sympatho-

adrenal lineage specificity of neural crest cells (37, 46).  Tumors that spontaneously regress are 

similar to sympathogonia, and finally, patterns of gene expression of the tumor are consistent 

with those of neural crest cells (37, 46, 47).   
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Neural crest cells are a transient multipotent population of progenitors located at the 

border between the neural plate and the non-neural ectoderm (47).  As the neural plate closes, 

and the neural crest cells form the dorsal end of the neural plate, these cells go through 

epidermal to mensenchymal transition (EMT), where they detach from the neuroepithelium and 

migrate away from the in a rostro-caudal wave throughout the embryo  (47).  Neural tube 

induction is tightly regulated by critical developmental pathways such as fibroblast growth 

factor (FGF), WNT, Notch, and bone morphogenic protein (BMP) signaling (47).  Once these 

cells migrate to their final destination, they give rise to a variety of different types of tissues 

depending on their location along the neuraxis, including dorsal root ganglia, sympathetic 

ganglia, adrenal medulla, cranio-facial cartilage, bone, connective tissue, cranial ganglia, 

pigment cells, enteric ganglia, and smooth muscle cells (47).  The above mentioned 

developmental pathways, along with SHH, NGF mediated Trk receptor signaling, and several 

chromosomal abnormalities have been implicated in neuroblastoma, although the exact 

mechanism as to how these pathways converge to contribute to tumorigenesis remains 

unknown (47).   

Additionally, as with most cancers, epigenetic modulation of 75 genes has been 

described in primary neuroblastoma as well as cell lines (48).  Altered methylation of several 

genes such as RASSF1A, CASP8, TNFRS10D, HOX1A to name a few have been reported in 

primary neuroblastoma tumors (48).  Several studies have attempted to correlate the presence 

of these epigenetic marks with other markers of prognosis discussed above to better predict the 

therapeutic potential and survival, but the results are far from conclusive (48). 
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REST 

  

 The repressor element-1 silencing transcription factor (REST), also known as neuron 

restrictive silencing factor (NRSF), has been described as the master regulator of neuronal gene 

expression (49-53).  It is highly expressed in embryonic stem cells (ESCs) and neural 

progenitor cells (NPCs), where it silences the transcription of neuronal genes, thus inhibiting 

neuronal differentiation (52, 53).  REST also represses expression of neuronal genes in non-

neural cells.  The importance of REST in normal brain development is highlighted by the 

finding that homozygous deletion of REST has been shown to be embryonic lethal at E11.5, 

with gross changes in morphology and apoptosis observed beginning at E9.5 (53).  

Interestingly, REST is overexpressed in medulloblastoma, and has been shown to play an 

oncogenic role.  The overall goal of our laboratory is to understand the molecular mechanisms 

associated with medulloblastoma pathology, with a specific focus on the contribution of REST.    

  

Discovery 

The neuron-restrictive binding factor/repressor element-1 silencing factor 

(NRSF/REST) was first discovered in non-neuronal cells as a DNA binding protein and 

transcriptional repressor (49, 50).  It was shown to bind to a previously described silencer 

region termed neuron restrictive silencer element/repressor element-1 (NRSE/RE-1) that is 

located upstream of the neuronal genes (49, 50).  The RE-1 region  was previously described to 

have cell specific repressive activity of neuronal genes, such as such as sodium channel II 

(NaChII), superior cervical ganglion-10 (SCG10), and synapsin1 (SYN1) noted in non-neural 

cells (L6, rat myoblasts), but not in neural cells (PC12, rat) (50, 54-57).  Consistent with this 

cell-type specific repressive function of REST, higher levels of REST protein were observed in 

non-neural cells (HeLa, 10T1/2, 393T, L6 cells, and dorsal root ganglion cultures (DRG) 

established from newborn rats) while the protein was undetected or present at very low levels is 

neural cells (MAH, SY5Y, PC12) (49, 50).  The ectopic expression of REST in PC12 cells 

conferred a similar repression of the RE-1 driven CAT promoter reporter construct as that 

observed in non-neuronal L6 cells (49).  The latter suggests that while REST is present in non-

neural cells, and can therefore bind to RE-1 sites and repress expression of the RE-1 reporter 

construct, REST is absent in neuronal cells, and thus cannot bind to the RE-1 sites and repress 
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reporter activity.  Finally, ectopic expression of the dominant negative form of REST, 

comprising only of the DNA binding domain (REST-DBD), interfered with the normal activity 

of REST as de-repression of the reporter was noted in L6 cells upon transfection of the mutant 

construct (49).  As expected, no changes were noted in the reporter activity in PC12 cells since 

the protein is absent in these cells (49).  Based on this early seminal work, the canonical role of 

REST is to function as a repressor of neuronal genes in non-neural cells.   

 

Structure  

REST is a 116 kilodalton (kDa) zinc finger protein that belongs to krüppel like family 

of transcription factors (49, 51).  It contains 9 zinc fingers, 8 of which comprise its DNA 

binding domain (DBD), while the last one is located near the carboxy (C-) terminus (52) (Fig. 

1) (52, 58).  REST also has two repression domains located at the amino- (N-) and carboxy (C-) 

termini that associate with two independent chromatin remodeling complexes: the mSin3 and 

Co-REST complexes, respectively (Fig. 1, 2) (58).  Together, the two repression complexes 

allow REST to modify chromatin and epigenetically modulate gene expression of its target 

genes as detailed below (Fig. 2) (58). The C-terminus also contains two degron sequences that 

lead to proteasomal degradation of REST (Fig. 1) (59, 60).  REST also contains lysine and 

proline rich domains, but their functions are not clear  (Fig. 1) (52).  There are two nuclear 

localization signals (NLS), one of which is contained in the lysine-rich region, while the other 

is located in zinc finger 5 (Fig. 1) (61-63).   

  

  

 

Mechanism of REST mediated repression 

REST epigenetically modulates its target gene expression by interacting with the mSin3 

and coREST complexes on the N- and C-termini respectively (Fig. 1, 2A) (58).  These are 

Figure 1:  Structure of REST.  REST is a zinc finger protein that consists of 9 zinc 

fingers, 8 of which comprise the DBD.  There are two repression domains located on N- 

and C- termini, which can interact with two mSin3 and coREST complexes respectively.  

REST also contains lysine and proline rich domain.  One of the NLS is present in the 

zinc finger 5, while the other is located in the lysine rich region.  The two degron 

sequences and the last zinc finger are located on the C-terminus. 
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chromatin remodeling complexes composed of histone deacetylases (HDACs), histone 

methyltransferases (HMTs), and histone demethylases (HDMTs) along with other chromatin 

remodeling molecules that function together to epigenetically silence REST target gene 

expression (58).  DBD of REST recognizes and binds to the RE-1 site on REST target genes 

(Fig. 2B) (58).  Brg1, an ATP-dependent chromatin remodeling enzyme that is usually part of 

the SWI-SNF complex, stabilizes the interaction by recognizing acetylated H4K8 (58).  

Increased H4K8 acetylation leads to increased recruitment of REST at the RE-1 site (58).  Brg1 

complex repositions the nucleosomes in order to further stabilize the interaction of REST with 

RE-1 site (58).  HDAC1 and HDAC2, found in both co-repressor complexes, then deacetylate 

lysine residues on H3 and H4 (Fig. 2C) (58).  Deacetylation of H3K9 stimulates LSD1 activity, 

a HDMT that removes mono- and dimethyl groups from H3K4 (Fig. 1D) (58).  Deacetylation 

of H3K9 also leads to activation of HMT G9a, which then methylates H3K9 (Fig. 2D) (58).  It 

is not clear whether G9a is recruited as part of the coREST complex or independently (58).  Di-

methylation of H3K9 signals the recruitment of heterochromatin protein-1 (HP1), which 

functions to promote chromatin condensation reminiscent of heterochromatin (Fig. 2E) (58).  

DNA methylation by DNMTs as well as binding of MeCP2 to the methylated DNA leads to 

permanent silencing of the target gene (Fig. 2F) (58).  The mechanism behind initial 

recruitment of DNMTs remains to be determined (58).  The overall effect of the REST complex 

on its target gene is generation of a heterochromatic conformation, with repressive marks such 

as H3K9 methylation, DNA methylation, and recruitment of methyl CpG binding protein 

(MeCP2) to methylated DNA (Fig. 2G). 

 

A.    
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B.   

   

 

 

C.  

 

D.   
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G.   

 

 

 

Target genes and function 

As previously stated, REST canonically functions as a master transcriptional repressor 

of neuronal genes, thereby maintaining ESCs and NPCs in an undifferentiated state in various 

rat, mouse, and human cell types (49, 52).  Several screens using non-neural cells were 

performed in search of genes containing RE-1 sites and REST occupancy at these sites to 

identify potential REST target genes (64-66).  Interestingly, several variations of the canonical 

Figure 2:  REST repression complex.  Assembly of the REST repression complex is 

shown on REST target genes.  A.  REST complex consists of two chromatin re-modeling 

complexes, mSin3 and CoREST, associated with N-terminus and C-terminus of REST 

respectively.  HDAC1 and HDAC2 are part of both complexes, while G9a, LSD1, Brg1 

specifically interact with the coREST complex.  REST target genes contain RE-1 element 

to which REST DBD can bind.  B. REST binds RE-1 element on target gene via its DBD, 

and the interaction is stabilized by acetylation of H3K9 which is recognized by BRG1.  

C. HDAC1 and HDAC2 from both complexes deacetylate H3 and H4.  D. Deacetylation 

of H3K9 leads to removal of mono- and di-methyl groups from H3K9 by LSD1, and 

addition of methyl groups to H3K9 by G9a.  E. Dimethylation of H3K9 recruits HP1 F. 

DNA methylation by DNMTs occurs, followed by MeCP2 binding to methylated DNA.  

G. Overall effect of REST repression is stable silencing of its target gene expression via 

epigenetic modulation. Adapted from Oii and Wood, Nature Reviews, 2007. 
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RE-1 binding site exist in the regulatory elements of target genes, and REST has been shown to 

bind these non-canonical sites (64-66).  As expected, many neuronal genes (some of which 

were previously known, while others were novel) involved in various neural-specific functions 

such as synaptic transmission, ion transport, nervous system development, ion channel activity 

were identified by the screens (64-66).  Further experiments examining the repression profiles 

of these genes revealed two classes of REST target neuronal genes (53, 64, 67).  Class I genes 

are occupied and repressed by REST and its complex, and their expression is up-regulated as 

REST levels decline (67).  At the promoter of Class II genes (exemplified by Calbindin and 

BDNF) REST is present at the RE-1 site along with its co-repressor complex (67).  However, 

the coREST co-repressor complex, comprised of coREST, mSin3, MeCP2, and HDAC1, is 

additionally occupies the methylated CpG (mCpG) of these genes independent of REST in 

ESCs and NPCs (67).  As REST levels decline, REST and its repression complexes no longer 

occupy the RE-1 site, but the coREST repressor complex remains bound at mCpGs in cortical 

neurons (67).  It is in response to additional stimuli (such as membrane depolarization) that 

most components (except coREST) are lifted from the mCPGs, thus allowing de-repression of 

these Class II genes (67).  REST has been shown to regulate calcium channel genes in PC12 

cells, thus affecting the calcium influx and responsiveness (68).  Calcium is one of the most 

common second messengers, and calcium signaling is critical in neuronal cells, especially for 

membrane depolarization.  The ability of REST to regulate such an important signaling 

mechanism allows it to regulate many further downstream processes (68).  

 Interestingly, only 40% of all potential REST targets identified in the screen are 

neuronal genes, while other potential REST targets comprise of non-neural genes, such as 

protocadherin-α (Pcdh-α), B-cell lymphoma-2 (Bcl-2), telomeric repeat-binding factor 2 

(TRF2) that are involved in critical cellular functions such as adhesion, apoptosis, and genomic 

stability (49, 50, 64-66, 69).  REST was also shown to directly and indirectly regulate cell cycle 

proteins (MAD2), proliferation, apoptosis, extracellular matrix components (ECM), self-

renewal (27, 59, 64, 70-73).  Furthermore, targeting miRNAs allows REST to potentially 

regulate pathways in the absence of RE-1 sites (71, 72).  Although, REST has also been 

implicated in self-renewal and fate-determination, but its role is heavily debated (73, 74).  

Some groups have reported a decrease in self-renewal genes, such as Oct4, Sox2, Nanog, in 

REST
-/+

 mice and ESCs treated with siREST, and report that this occurs through the negative 

regulation of miR-21 (73).  Other groups have challenged these findings with conflicting data 
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from similar experiments (74).  In vivo models of REST disruption have shown that although 

REST does not switch the fate of a presumptive non-neural cell, it does repress the neuronal 

genes in other cell types (53).  Others groups reported a conversion of myoblasts into neurons 

upon interference with REST using an activating mutant of REST called REST-VP16 which 

contains the activation domains of the VP-16 virus rather than the repression domains of REST 

(75).   

In addition to the transcriptional repression of its target genes, REST has also been 

shown to function as an activator of target genes (76).  This has been attributed to splice 

variants of REST, mainly REST4/5 in neural cells (76-78).  REST4/5 is a C-terminus 

truncation mutant that contains zinc finger 1-5, and a neural specific exon leading to its neural-

specific expression (77-79).  It is responsible for induction of glucocorticoid response that full-

length and C-terminus REST repress (76).  The latter suggests a domain and context specific 

role of REST at promoters of various target genes.  Together, these findings suggest that 

depending on the target gene itself as well as the cellular context, REST regulates its target 

differently, thus establishing REST as an important regulator of many critical cellular processes 

as they highlight the immense complexity of REST regulatory network within and across 

various cell types and across different stages of development (64, 66). 

 

Expression 

During development, REST is ubiquitously expressed until E11.5.  At E13.5 specific 

expression of REST has been observed only in areas of proliferating cells such as the 

mesodermal structures along the neural tube, germinal layer of the hindbrain, cranial glia, and 

in the inner proliferative layer of the forebrain (53).  REST protein is not detected in 

differentiated neurons of the hindbrain or the outer layer of the forebrain (49).  As previously 

indicated, homozygous deletion of REST is embryonic lethal at E11.5, with gross changes in 

morphology and apoptosis beginning at E9.5 (53).   

 Consistent with its expression profile in development, REST levels are highest in ESCs, 

and as these cells differentiate into NPCs, a decrease in REST protein is noted, while the 

transcript remains high (67).  The decline in REST levels along with the transition of ESCs to 

cortical progenitors is blocked upon MG132 treatment, thereby implying the involvement of 

the proteasome in this process (67).   Transcriptional down-regulation of REST is observed as 

NPCs transition into fully differentiated neurons (67).  In non-neuronal cells, REST levels are 
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maintained, and are regulated via proteasomal degradation of REST in a cell-cycle dependent 

manner (59, 60, 67), as well as through changes in sub-cellular localization of REST for REST 

is degraded in the cytoplasm (80, 81).   

 

Regulation 

Emerging evidence suggests that REST is regulated differentially by both 

transcriptional and post-transcriptional mechanisms.  As stated previously, REST is highly 

expressed in ESCs.  As these cells acquire lineage specificity, REST protein levels decline, 

while REST transcription is maintained.  Depending on the neuronal subtype under 

consideration, REST expression can be regulated by multiple pathways (67, 82-85).   In cortical 

neurons, REST transcription is repressed by the presence of unliganded retinoic acid receptor 

(RAR) and its co-repressor complex on the retinoic acid response element (RARE) that is 

located on the REST promoter (67).  This represents one mechanism by which REST is down-

regulated in neural cells.  In the developing cerebellum and mice teratoma cells (P19), 

NeuroD2, a component of the neuroD family which plays a role in neurogenesis as well as 

maintenance of neurons, has been shown to indirectly modulate REST by Zfhx1a (84).  β-

catenin, a transcription factor involved in WNT signaling, has been shown to directly bind to 

exon1a of REST and up-regulate REST transcription, in the developing chick spinal cord (83).  

REST itself promotes β-catenin activity by negative regulation of tuberous sclerosis complex 2 

protein (TSC2, a component of the mTOR pathway that promotes turnover of β-catenin) in 

both rat (PC12) and human (NT2/D1) models of neural cells (85).  This positive modulation of 

β-catenin in turn leads to an increase of β-catenin target genes, including REST, thereby 

implying the presence of a feed-forward loop (85).  Interestingly, a ChIP seq genome wide 

screen performed in lysates from non-neural Jurkat cells revealed that REST binds a RE-1 site 

in its own intragenic region (0.5 kb downstream from transcription start (TS)), thus presenting a 

mechanism for another potential auto-regulatory loop (65).  In non-neural HeLa cells, the 

Notch signaling effector, Hairy enhancer of split-1 (HES1), has also been shown to bind to the 

REST promoter and repress its expression (82).   

 As stated above, REST is regulated by proteasomal degradation in NPC and non-neural 

cells (59, 60, 67).  REST contains two phospho-degron sequences at the C-terminus to which 

the E3 ligase β-Transducing Repeat-Containing Protein (β-TRCP) can bind, thereby targeting 

REST for proteasomal degradation (59, 60).  Mutating the degron sequence stabilizes REST 
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and knockdown of β-TRCP both block the differentiation of NPCs into neurons, thus 

establishing the importance of proteasomal degradation of REST in the neurogenic program 

(60).  In non-neural cells, REST degradation occurs in a cell cycle dependent manner, where 

REST accumulates during G1-S and is degraded during the G2 phase (59).  REST in turn 

regulates the spindle assembly checkpoint, by transcriptional repression of MAD2, a critical 

component of this checkpoint.  In fact, ectopic expression of a mutant non-degradable REST in 

these cells, leads to untimely repression of MAD2 and cell cycle defects characteristic of mis-

regulation of the spindle assembly checkpoint (59). 

Regulation of REST through changes in sub-cellular localization of REST has also been 

noted, and is controlled via an interaction between REST and RILP (80, 81).  RILP interacts 

directly with REST and dynactin p150
Glued

, and dynactin p150
Glued

 also interacts directly with 

huntingtin (80, 81).  Huntingtin-associated protein (HAP) is expressed predominantly in neural 

cells, and its overexpression in HeLa leads to the breakdown of the (RILP)- dynactin p150
Glued

-

huntingtin complex followed by only cytoplasmic localization of REST and an up-regulation of 

REST target gene reporters (80).  Analogously, HAP knockdown in neural cells in NT2 cells 

led to mis-localization of REST into the nucleus (80).   

Finally, REST can also be regulated by differential splicing in various cell types.  

REST-4/5, a neural-specific splice variant, contains a neuron-specific exon that is skipped in all 

non-neural cells, and introduces a stop codon in the beginning of exon 4, thereby lacking four 

zinc fingers and C-terminal repression domain (77, 78, 80).  REST-4/5 can hetero-oligomerize 

with full-length REST to prevent full-length REST from binding to the RE-1 site, thus 

promoting activation of REST target genes (61, 76-78).  Cell specific expression of REST-4/5 

is achieved by strictly restricting expression of nSR100, the splicing factor responsible for this 

splicing event, to neural cells (86, 87).  Furthermore, full length REST represses nSR100 

expression in non-neural cells, again indicating the existence of a feedback loop (86, 87).  

Regulation of REST protein and mRNA involves careful coordination of several factors that 

are involved in this intricate process depending on the type of cell and the stage of 

development. 

 

REST in neural tumors 

 REST protein has been shown to be overexpressed in medulloblastoma cell lines and 

patient samples (28).  Furthermore, a recent study from our lab indicated that high levels of 
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REST protein in medulloblastoma patient samples correlate with poor patient overall and event 

free survival (28).  Introduction of REST-VP16, an activating mutant of REST constructed  by 

replacing both of the repression domains with the activation domains of the herpes simplex 

VP16 virus (HSV-VP16), led to up-regulation of differentiation markers, such as β-tubulinIII, 

Synapsin, glutamate receptor, as well as apoptosis in medulloblastoma cell lines (25, 26).  In 

vivo, this construct abrogated the tumor forming potential of medulloblastoma cell lines DAOY 

and D283 (25, 26).  Although REST is known to contribute to other pre-neoplastic events such 

as uncontrolled cell proliferation, expression of REST alone in NSCs appeared to be 

insufficient for tumor formation in vivo (27).  In human tumors elevated REST expression is 

frequently associated with high N-Myc or c-Myc expression (27). The constitutive expression 

of REST and c-Myc in NSCs promoted tumor formation in mouse orthotopic models, 

suggesting that REST and Myc co-operate in tumorigenesis.  Furthermore, this tumorigenesis 

was countered by infecting REST-VP16 into the tumor promoting myc-immortalized NSCs 

overexpressing REST, thus implicating the importance of REST activity in 

medulloblastomagenesis (27).  However, the specific contribution of REST to tumor formation 

is not fully understood. 

 The role of REST remains largely unexplored in neuroblastoma.  Although 

neuroblastoma cell lines have been used to study the contribution of REST to neurosecretion, 

neurite outgrowth, and eplilepsy, studies regarding its role in neuroblastoma pathology have not 

been conducted (88, 89).  REST-4 has been shown to be the major form of REST present in 

neuroblastoma cell lines, NEI115 and NS2OY, as compared with non-neural NIH3T3 cells, and 

an activator role for the variant has been suggested (62).  Retinoic acid is a differentiation 

agent, and a mainstay of neuroblastoma treatment.   

 

REST in non-neural tumors 

REST has been shown to have a tumor suppressor role in epithelial tumors of colon, breast, 

ovarian, prostate, and lung among others (60, 90-92).  These non-neural tissues normally 

express REST to silence neuronal genes, however decreased REST transcription has been noted 

in these cancers, along with expression of neuronal genes.  Indeed, REST is deleted in one-third 

of colorectal tumors, and a frame-shift deletion mutants, hREST-N62 and REST-FS, which can 

potentially interfere with full-length REST function, have been observed in small cell lung 

cancer (SCLC) and colorectal cancer respectively (59, 60, 90-92).  REST aberration is 
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associated with a more aggressive phenotype in prostate cancer cells.  An RNAi screen also 

identified REST as a validated candidate tumor suppressor in mammary epithelial cells (TLM-

HMECS) (60).  Overexpression of REST E3 ligase, SCF
β-TRCP

, in TLM-HMECS led to 

increased proliferation and a transformation phenotype, which was countered by full-length 

REST and stabilized degron-mutant REST, thereby implicating a tumor suppressor role for 

REST (60).  However, the latter finding was challenged by another study which showed that 

the effects of chromosomal instability upon introduction of REST-FS were indistinguishable 

from introduction of a non-degradable form of REST (REST E1009A/S1013A), which suggests 

that REST functions as an oncogene in these tumors (59).  REST clearly appears to be 

important in non-neural tumors, although further studies are needed to delineate its exact role.  

These studies reinforce the tissue and tumor specific roles of REST.  It may potentially be 

targeted as a therapeutic target if it indeed has a tumor suppressor function in non-neural cells.   
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Aim of the Study 

 

  REST is critical for neuronal differentiation, and down-regulation of REST 

transcription is required for the differentiation of NPCs into neurons (49, 51, 52).  REST is 

overexpressed in medulloblastoma, where current evidence suggests that it has an oncogenic 

function (25-28).   

In medulloblastoma, which arise from NPCs of the EGL of the cerebellum and 

hindbrain, REST maintenance is associated with a blockade of neuronal differentiation and in 

increase in proliferative potential of medulloblastoma cell lines (3, 4, 11, 27).  Ectopic 

expression of REST is known to promote tumor formation in vivo, which is abrogated upon 

interference with REST activity (27).  Mechanisms underlying the elevated levels of REST in 

medulloblastoma are not understood.  Since REST has been shown to be transcriptionally 

regulated in NPCs, the cells of origin of medulloblastoma, we hypothesize that REST is 

transcriptionally mis-regulated in medulloblastoma.  Based on previous studies and bio-

informatic evidence, we speculate that: 

1. Transcription factor HES1 regulates REST expression, 

2. REST regulates its own expression in an auto-regulatory feedback loop, and 

3. HES1 and REST co-regulate REST expression. 

 

 In a separate study, we investigated the regulation of REST in neuroblastoma, where its 

role remains unexplored.  Neuroblastoma occurs in the sympathetic tissues, and NSCs from the 

developing neural crest are considered to be the cells of origin.  Retinoic acid is a 

differentiating agent, and is a mainstay for neuroblastoma treatment, but the mechanism by 

which retinoic acid mediates the differentiation of neuroblastoma cells remains unknown.  

Given the critical role of REST in neural differentiation as well as negative regulation of REST 

in cortical progenitors by retinoic acid, we hypothesize that retinoic acid promotes 

differentiation of neuroblastoma tumors through transcriptional regulation of REST. 
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Chapter 2: REST is transcriptionally mis-regulated in medulloblastoma patient samples 
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Rationale 

 

Medulloblastoma is characterized by the bypass of normal differentiation and 

hyperproliferation of the NPCs of the EGL of the cerebellum, which contribute to the aberrant 

maintenance of the EGL in patient samples and well-characterized SHH mouse models of 

medulloblastoma (13, 31).  REST is an important regulator of neuronal differentiation, and it 

maintains proliferation of NPCs while repressing the expression of neuronal differentiation 

genes (49-53).  REST protein has been previously shown to be elevated in medulloblastoma 

patient samples and cell lines, and high REST levels correlate with poor patient overall survival 

and event-free survival (25-28, 92) (28).  Interfering with REST function in medulloblastoma 

cell lines leads to up-regulation of its target genes, many of which are neuronal differentiation 

markers, such as β-tubulinIII, SynapsinI, Synaptophysin, as well as apoptosis in vitro (25-27).  

REST activity has been shown to contribute to tumorigenesis in xenograft models in vivo (27, 

93).  Although previous studies implicate a role for REST in medulloblastoma pathology, the 

mechanism by which REST is maintained in medulloblastoma tumors and cell lines remains 

unknown.  Because medulloblastoma arises from progenitor populations of the cerebellum and 

hindbrain, and REST has been previously shown to be regulated transcriptionally in cortical 

progenitors, we want to determine whether or not REST is transcriptionally mis-regulated in 

medulloblastoma (25-28, 67, 92).  We hypothesize that REST is transcriptionally mis-

regulated in medulloblastoma patient samples.  
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Results 

 

REST is transcriptionally mis-regulated in medulloblastoma patient samples 

To determine the status of REST transcript in medulloblastoma patient samples, we 

analyzed two independent sets of medulloblastomas tumor samples for REST expression. The 

first set consisted of RNA from 37 snap-frozen medulloblastoma samples and 5 non-tumor 

brain samples (kindly provided by Dr. Charles Eberhart, Johns Hopkins University School of 

Medicine).  RNA from these samples was analyzed via quantitative reverse transcriptase 

polymerase chain reaction (qRT-PCR) for REST expression.  Samples were normalized to 

RPS18 mRNA (internal control).  REST transcript was elevated in 38% (13/37) of the samples 

as compared to the non-tumor samples, while it was comparable to normal cerebellar control in 

62% (24/17) of the samples (Fig. 3A).  To determine whether or not REST expression was 

significantly different from normal brain tissue in high REST expressing tumors, we divided the 

tumor samples into high and low REST expressing groups, and statistical analysis was 

performed by applying the T-Test (non-parametric) followed by Mann-Whitney post-hoc 

analysis using the program GraphPad Prism (Fig. 3B).  Indeed REST expression in the 14/37 

high REST expressing tumors is significantly  higher as compared to the normal brain tissue 

(p=0.0014), whereas REST transcript in the rest of the tumors are not significantly different 

from the normal brain tissue (Fig. 3B).   

These findings were validated by analysis of REST expression in an independent second 

set of 27 paraffin embedded medulloblastoma tumors and 4 non-tumor normal brain samples 

(kindly provided Dr. Martin Hasselblatt, University Children’s Hospital, Munster, Germany).  

RNA was extracted from these samples, and analyzed by qRT-PCR and normalized to RPS18 

as previously described.  REST expression is higher as compared to normal brains in 62% 

(17/27) of the samples (Fig. 3C).  As with the previous set, we divided the tumor samples into 

high and low REST expressing groups to determine whether REST expression was significantly 

different from normal brain tissue in high REST expressing tumors (Fig. 3D).  A comparison of 

17/27 high REST expressing tumors to normal brain yielded that REST is significantly elevated 

(p=0.003), whereas REST transcript in the low REST expressing group is not significantly 

different from the normal brain samples (Fig. 3D).  Overall, our analysis of two independent 
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patient samples suggests that REST is transcriptionally aberrant in a subset medulloblastoma 

tumors.  
 

    

  

  

A. 

B. 
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Figure 3:  REST expression is aberrant in medulloblastoma patient samples.  A. RNA 

was prepared from 37 snap-frozen tumor samples and 5 normal brain samples, analyzed by 

qRT-PCR for REST expression, and normalized to RPS18.  B.  Data from A represented as 

a scatter plot of high and low REST expressing groups and compared with normal brain 

controls C. RNA was prepared from 27 snap-frozen tumor samples and 4 normal brain 

samples, analyzed by qRT-PCR for REST expression, and normalized to RPS18.  D. Data 

from A represented as a scatter plot of high and low REST expressing groups and compared 

with normal brain controls.  T-Test (non-parametric) followed by Mann-Whitney post-hoc 

analysis using GraphPad Prism was conducted to determine statistical significance 

(*p<0.05, **p<0.01, ***p<0.001).   

D. 
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Summary 

 

 Consistent with previous results that REST protein is over-expressed in 

medulloblastoma patient samples, our data from two independent sets of medulloblastoma 

patient samples suggests that REST transcript is also elevated in a subset of the tumors as 

compared to non-tumor normal brain samples (25-27).  Our findings indicate that REST is 

transcriptionally mis-regulated in a subset of medulloblastoma patient samples.  Further 

analysis to determine if elevated REST transcription corresponds to a particular subtype of 

medulloblastoma and if REST mRNA could serve as a prognostic indicator would be 

interesting.  
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Chapter 3: HES1 regulates REST expression 
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Rationale 

 

Current evidence suggests that both REST and Hairy Enhancer of Split-1 (HES1) are 

critical for normal brain development and neurogenesis (53, 94-96).  Both proteins are required 

for the maintenance of NSCs as they function to promote NSC proliferation while inhibiting 

their differentiation into neurons (53, 94-96).  HES1 and REST have overlapping time frames 

of expression during development, and homozygous deletion of these genes leads to embryonic 

lethality at E10.5 and E13.5 respectively (53, 94, 96).   

Several studies have shown that HES1 is over-expressed in medulloblastoma patient 

samples and some SHH mouse models (31, 32, 97, 98).  Canonically downstream of Notch 

signaling, other developmental pathways that have been implicated in medulloblastoma 

etiology, such as a SHH and WNT, have also been shown to regulate and interact with HES1 

(35, 99-101).  The latter suggests that perhaps HES1 serves as a convergence point for several 

developmental pathways in medulloblastoma pathology.  Although these studies have 

implicated HES1 in medulloblastoma pathology, its exact role remains to be delineated (31, 32, 

97, 98).   HES1 has been previously shown to bind to N-boxes on the REST 5’ upstream region 

and regulate REST expression in non-neural HeLa cells (82).  However, the biology of REST is 

different between neural and non-neural cells, and the role of HES1 in REST regulation has not 

been studied in a neural context.   

Since HES1 and REST are both implicated in normal brain development and 

medulloblastoma pathology, and HES1 has been previously shown to regulate REST in non-

neural HeLa cells, we wanted to determine whether this regulatory pathway is operational in 

medulloblastoma.  HES1 is a transcription factor that binds to N-boxes, so we manually 

searched the -7 kb of 5’ upstream region of REST for N-boxes, and discovered five, three of 

which have been previously described (Fig. 4).  Presence of N-boxes on the REST 5’ upstream 

region represents potential for HES1 to regulate REST expression.  We hypothesize that HES1 

represses REST in medulloblastoma cell lines.   
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Figure 4:  Location of N-boxes on the 5’ upstream region of REST.  Previous studies and 

manual analysis revealed the presence of 5 N-boxes on the REST 5’ upstream region.  Three 

of these N-boxes, located -3.7 kb, -4.4 kb, and -6.5 kb from TS, have been previously 

described. 
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HES1 

 

HES1 is one of the seven genes that comprise the HES family of proteins (HES1-7) 

(95).  Originally discovered as the mammalian homolog of Drosophila Hairy (h) and Enhancer 

of Split (E(spl)), which were previously known to inhibit neurogenesis in Drosophila ,  HES1 

shares the greatest homology (81%) of any HES proteins with the Drosophila h protein, and 

significant portions of the protein correspond to the HLH domain of the Drosophila  E(spl) 

protein as well (102-108).  HES1 is a basic helix loop helix (bHLH) protein that functions 

canonically as a transcriptional repressor (95).  Although HES1, 3, and 5 are important in brain 

development and neurogenesis, we have focused on HES1 because of its role in 

medulloblastoma pathology (95).   

 

Structure 

HES1 is comprised of bHLH, orange, proline, and WRPW domains (Fig. 5) (95, 102).  

The basic (b) portion of bHLH domain is important for DNA binding, while the helix-loop-

helix (HLH) part is important for homo- and heterodimerization (95, 102).  The orange domain 

functions in protein-protein interaction.  It, along with bHLH domain, has been specifically 

shown interact with PARP which is associated with an activation function for HES1 (109, 110).  

The proline domain has been shown to interact with the chromatin modifying mSin3 complex 

which includes HDACs.  The WRPW domain, comprised of tryptophan-arginine-proline-

tryptophan residues, is located on the C-terminus, and is critical for recruitment and binding of 

co-repressor complex (53, 111, 112).  

                              

 

   

Mode of repression 

HES1 is a downstream effector of canonical Notch signaling that functions largely to 

transcriptionally silence its target genes, which are pro-neural differentiation genes, thereby 

Figure 5: Structure of HES1.  HES1 is comprised of basic, HLH, orange, proline, and 

WRPW domains.  Basic and HLH domains are important for DNA binding and 

dimerization.  Orange domain is important for protein-protein interaction.  Proline and 

WRPW domains bind mSin3 and Transducin-like enhancer protein 1 (TLE-1) complexes 

respectively. 

HES1 
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promoting proliferation of NPCs (94, 95).  It can function through two types of consensus DNA 

sequences, N-boxes and E-boxes, located on the regulatory regions of its target genes.  

Depending on which of these sequences is present at the regulatory region, either an active or a 

passive mode of repression can be employed (94, 95, 113).  If an N-box is present, then HES1 

represses via an active mode, where it homo- or heterodimerizes with another HES molecule, 

and binds to the bHLH region, leading to the recruitment of a co-repressor complex at the 

WRPW domain of the protein (94, 95, 113).  This results in silencing of target gene expression 

(94, 95, 113).  HES1 binding activity is critical to its function as a transcriptional repressor, and 

it is inhibited by phosphorylation of two adjacent serine residues in the basic domain by protein 

kinase C (PKC).  PKC is activated in response to neurogenic signals such as nerve growth 

factor (NGF).  Mutation of these serine residues leads to constitutively active HES1 (114).  The 

presence of an E-box on the regulatory elements mandates a passive mode of repression, where 

HES1 forms a non-functional dimer with an activator type bHLH molecule, such as E47 (95, 

113).  Activator type bHLH molecules (Mash1, Math1, Neurogenin) normally dimerize with 

each other to turn on neuronal gene expression (94, 113).  Thus, the HES-E47 non-functional 

dimer acts in a dominant negative fashion by sequestering the activator molecules, thereby 

repressing target gene expression (95, 113).  HES proteins can potentially bind E-boxes, but 

they have a much greater affinity for N-boxes, which is atypical of other bHLH factors (95).  A 

conserved proline residue in the basic domain may be responsible for its preferential binding to 

an N-box versus an E-box (94).   

 

Figure 6:  Two modes by which HES1 represses its target gene expression.  A.  If an 

N-box is present in the regulatory region of the target gene, then HES1 represses by an 

active mode, where it homo- or heterodimerizes with another HES molecule, and binds to 

the bHLH region, leading to the recruitment of a co-repressor complex at the WRPW 

domain of the protein.  B.  The presence of an E-box on the regulatory elements of HES1 

target gene mandates a passive mode of repression, where HES1 forms a non-functional 

dimer with an activator type bHLH molecule, such as E47, thus preventing the activator 

type bHLH molecule from dimerizing with another activator type bHLH molecule to turn 

on target gene expression.   
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Function in the Brain   

HES1 is expressed in most precursor cells during development, and its over-expression 

leads to an inhibition of differentiation in many tissues (94).  HES1 deficient mice show 

precocious differentiation of several tissues, including pancreas, eyes, and brain (94).  The most 

pronounced phenotype is observed in the brain, where HES1 functions to maintain NSC 

population and cellular diversity, and is critical in controlling the timing of neuronal 

differentiation during development (94, 96).  Because of premature neuronal differentiation, 

70% of HES1 deficient mice have defects in neurulation (96).  Neurulation is the process of 

closing the neural tube, which a structure that is composed largely of NPCs.  This leads to 

excencephaly, anenchephaly, and embryonic lethality at E10.5 (96).  The remaining 30% that 

do not display morphological defects still do not survive after birth (96).  As seen with most 

other critical developmental molecules, some degree of functional redundancy is apparent 

between the HES proteins.  For example, although mice lacking HES1, HES3, or HES5 show a 

partial phenotype of precocious differentiation and decreased glial cells and NPCs, 

simultaneous knockout of all three HES genes is required for excessive neuronal differentiation 

of radial glia at the cost of glial differentiation (95).  An exceptionally early differentiation of 

neuroepithelial cells at E8.5 in the triple knockout mice (95).  However, the striking phenotype 

of HES1 deficient mice (as well as other single knockouts) while other HES proteins are intact 

attests that each HES protein still maintains its unique function (95). 

 

Cross-talk between HES1 and other pathways 

Although HES1 is canonically downstream of Notch signaling, its expression can be 

regulated by other developmental pathways as well.  In the neuroepithelial stage of 

development, Notch signaling is not active, yet HES1 is expressed (95).  In the latter instance, 

LIF may be responsible for HES1 expression in the absence of Notch signaling (95).  SHH 

signaling has also been shown to up-regulate HES1 transcription independent of Notch 

signaling in mouse multipotent mesodermal C3H10T1/2 cells as well as multipotent rat neural 

MNS70 cells (99).  Cyclopamine, an SHH pathway antagonist, inhibited SHH-mediated 

increase of HES1 mRNA (99).  Disruptions in the SHH pathway in mouse models have been 

shown to contribute to HES1 mis-regulation as well, although alterations in other Notch 
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proteins are also observed (35).  HES1 in turn can modulate other developmental pathways.  

For example, HES1 has is shown to directly bind and regulate the expression of SHH 

downstream effector, Gli1, in glioma cells (100).  The latter appears to be a Notch signaling 

dependent function of HES1, since treatment with γ-secretase inhibitor, MRK-003, leads to 

decreased HES1 mRNA and protein levels along with the de-repression of Gli1 (100).  Some 

evidence suggests that ectopic expression of HES1 in NPCs from the mouse sub-ventricular 

zone (SVZ) leads to increased protein levels of WNT signaling molecules, β-catenin and GSK-

3β (101).  Indirect regulation of HES1 by β-catenin through direct interaction with Notch 

intracellular domain (NICD) and modulation of Notch signaling has been reported in HEK293 

and MEF cells (115).  Such intricate cross-talk between HES1 and other pathways in 

development as well as multiple disease processes suggests that perhaps HES1 serves as a 

convergence point of multiple developmental pathways. 

 

HES1 and medulloblastoma 

HES1 has been implicated in medulloblastoma but its exact role remains unclear.  In 

patient samples, HES1 mRNA is up-regulated in 46% of patient samples, and high HES1 

protein is associated with poor patient survival (31, 97).  Decrease in colony formation 

potential of the medulloblastoma cell line, DAOY, upon knockdown of HES1 via siRNA has 

been reported (97).  Similar results were seen upon treatment of DAOY with the notch 

inhibitor, γ-secretase inhibitor-18 (GSI-18), which also leads to an 80% decrease in HES1 

mRNA and protein (116).  The latter effect on in vitro and in vivo tumorigenic potential was 

rescued by ectopic expression of NICD2, which is important for EGL maintenance during 

cerebellar development (116, 117).  However, interpretation of these findings have been 

complicated by the fact the presence of an auto-regulatory loop that leads to oscillation of 

HES1 mRNA and protein in synchronized cell lines in vitro and in post-mitotic somites in vivo 

(118, 119).  This auto-regulation involves transcriptional repression as HES1 binds to its own 

promoter, as well as a post-translational mechanism via temporal regulation of proteasomal 

degradation of HES1 (118, 119).  Additionally, the involvement of other unknown HES1 

binding partners in the regulation of HES1 transcription and protein stability has been 

speculated because the system does not fall into equilibrium as would be expected if it was only 

regulated by HES1 (119).  The existence of this auto-regulatory loop of HES1 cautions against 

concluding that HES1 mRNA expression necessarily correlates with its protein levels, thus 
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necessitating independent measurements of both in order to ensure an accurate interpretation of 

results of HES1 modulation experiments.  In the light of these observations, additional 

experiments may be needed to more accurately interpret findings of studies wherein HES1 

transcript has been knocked down.  The latter also cautions against making conclusive 

statements regarding the role of HES1 in medulloblastoma pathology.from the measurement of 

HES1 transcript alone in patient samples.   

In mouse models of medulloblastoma, Ptc+/- mice with overactive SHH signaling, 

display increased transcription of WNT and Notch signaling components, including HES1 (35).  

However, the latter finding is not recapitulated in ND2-SMOA1 model of medulloblastoma 

which also has overactive SHH signaling, but no significant alteration of HES1 was observed 

(31).  In vivo modulation by Notch inhibitors as well as deletion of the Notch component RbpJ, 

a convergent point of most canonical Notch signaling, showed that Notch signaling itself may 

not be necessary for medulloblastoma tumor formation because no change in tumor growth, 

size, and presentation is observed upon these treatments (120).  However, HES1 transcription 

continued to be maintained in the absence for Notch signaling, thereby suggesting that it 

continues to be a key player in medulloblastoma biology independent of Notch pathway 

potentially through its regulation by other pathways (120). 

 

In the light of the background presented above, the rationale for exploring the role of 

HES1 in regulation of REST is re-emphasized blow.  HES1 and REST are both implicated in 

normal brain development and medulloblastoma pathology (53, 82, 94-96).   REST is 

transcriptionally mis-regulated in medulloblastoma, and the 5’ upstream region of REST 

contains N-boxes, some of which HES1 has been shown to occupy in non-neural HeLa cells 

(Fig. 4) (82).  However, the biology of REST is different in neural and non-neural cells, and we 

want to determine whether HES1 contributes to aberrant maintenance of REST in 

medulloblastoma by regulating its transcription.  We hypothesize that HES1 represses REST 

in medulloblastoma cell lines.   
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Results 

 

HES1 levels in MB tumor samples and cell lines 

We first determined the levels of HES1 mRNA and protein in a panel of 

medulloblastoma cells.  We used established medulloblastoma cells lines (DAOY and D283) 

and primary cultures derived from patient samples (UW426, UW228, MB0110, MB020, and 

MB003).  Normal cerebellum served as the negative control.  Whole cell RNA and protein 

lysates were prepared and subjected to qRT-PCR and Western blot analysis for detection of 

HES1 mRNA and protein respectively.  HES1 mRNA and protein levels show a reciprocal 

trend, which suggests that the HES1 auto-regulatory feedback loop is intact in all the 

medulloblastoma cells tested (Fig. 7).  Low HES1 mRNA and high HES1 protein levels were 

observed in most medulloblastoma cells relative to normal cerebellum.  Interestingly, 

MB01110 did not follow the same trend as the other medulloblastoma cells, and had the highest 

HES1 transcript expression but no detectable 37 kDa form of HES1 protein (Fig. 7).  Since we 

are concerned with the transcriptional activity of HES1 protein on REST 5’ upstream region, 

we decided to use DAOY and D283 (high HES1 protein) for our loss of function analyses, and 

MB01110 (no detectable HES1 protein) for gain of function assays.   

  

A. 
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HES1 binds to REST 5’ upstream region 

HES1 is a transcription factor that primarily regulates the expression of its target genes 

by binding to N-boxes located on the regulatory regions of those genes, so we wanted to 

determine whether HES1 directly occupied the N-boxes located on REST 5’ upstream region.  

Nuclear lysates were prepared from HES1 protein expressing DAOY and D283 cells, and 

subjected to chromatin immunoprecipitation (ChIP) assay using rabbit anti-HES1 antibody or 

control serum immunoglobulins (IgG) (Fig. 8).  Immunoprecipitated DNA was analyzed via 

qPCR using primers specific to N-boxes located  -3.7 kb, -4.4 kb, and -6.5 kb from the TS 

(previously validated sites for HES1 binding in HeLa cells (82)).  Relative HES1 binding to the 

region of interest was determined by comparing the non-specific control values (IgG) with the 

specific sample values (HES1).  The p27 N-box was previously reported to be positive for 

HES1 occupancy and was used as a positive control in both cell lines, while CDK4 and p63 

served as negative controls in DAOY and D283 respectively (121).  A statistically significant 

difference in relative HES1 binding with the specific antibody pull-down as compared to IgG is 

seen, suggesting that HES1 associates with REST 5’ upstream region in both DAOY and D283 

cells (Fig. 8).   

 

Figure 7: HES1 mRNA and protein levels in medulloblastoma cells compared to 

normal cerebellum.  Whole cell lysates prepared from medulloblastomas cell lines and 

normal cerebellar lysate were subjected to A. qRT-PCR analysis for HES1.  Samples are 

normalized to the internal control RPS18, and scaled relative to the highest value.  

Experiments were done in triplicate.  B. Western blot analysis to determine HES1 protein 

level.  Actin was used as a loading control.  Experiment was done in duplicate, and the 

image above is a representative of the duplicate.  

B. 
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HES1 represses REST expression in medulloblastoma cells 

In order to determine whether HES1 regulates REST expression in medulloblastoma cell 

lines, we interfered with endogenous HES1 activity and measured changes in REST transcript.  

Full length HES1 construct (MigR1-HES1-GFP), or two mutants of HES1 (MigR1-∆BHLH-

Figure 8: HES1 binds to 5’ upstream region of REST in medulloblastomas cells.  A. 

DAOY and B. D283 cells were subjected to ChIP assay by immunoprecipitation with 

rabbit anti-HES1 antibody or control IgG, followed by qPCR analysis using primers 

specific to N-boxes located  -3.7 kb, -4.4 kb, and -6.5 kb from the TS.    Experiments 

were done in triplicate.  One-way ANOVA followed by Fisher least significant difference 

(LSD) post-hoc analysis using Statistica 6.0 was conducted to determine statistical 

significance (*p<0.05, **p<0.01, ***p<0.001). 

A. 

B. 
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OR-GFP and MigR1-∆WRPW-GFP) kindly provided by Dr. Zweidler-McKay were employed 

for these assays (Fig. 9) (109).  All constructs contain the retroviral backbone of the murine 

stem cell virus (MigR1) vector, with the viral long term repeat (LTR) driving the expression of 

the transgene and green fluorescent protein (GFP) sequence (122).  The transgene and GFP 

sequences are separated by an internal ribosomal entry site (IRES) (122).  MigR1-HES1-GFP 

contains full length flag-tagged HES1 transgene.  MigR1-∆bHLH-OR-GFP is a 154 aa C-term 

deletion mutant of HES1 in which the proline and WRPW domains have been deleted.  Both of 

the tryptophan residues (W) were mutated to glycine residues (G) to make MigR1-∆WRPW-

GFP.  Both mutants are designed to abrogate the recruitment of the co-repressor complex to 

HES1, and have been shown to interfere with endogenous HES1 activity in a dominant 

negative capacity. 

 

 

 

 

In HES1 expressing cell line, DAOY, we interfered with HES1 activity by infecting the 

cells with retrovirus containing either the HES1 mutants or control MigR1-GFP vector.  

Conversely, HES1 was ectopically expressed using infection with MigR1-HES1-GFP in 

MB01110, where HES1 protein was not detected (as depicted in Fig. 7).  GFP expression as 

detected by fluorescence activated cell sorting (FACS) was used as an indicator of transgene 

expression.  GFP positive cells were collected at 72 hour post-infection, and further processed 

to prepare total RNA and whole cell protein extract.   

RNA was analyzed by qRT-PCR using primers specific for human HES1, REST, p27, 

and RPS18 transcripts.  HES1 has been previously shown to repress p27, which is used as a 

Figure 9: Structure of HES1 constructs.  HES1-GFP contains full length HES1.    

MigR1-∆bHLH-OR-GFP is a 154 aa C-term deletion mutant of HES1 that lacks proline 

and WRPW domains.  MigR1-∆WRPW-GFP contains two tryptophan to glycine point 

mutations in the WRPW domain.  All are retroviral constructs with a MigR1 backbone. 
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positive control in all cases (121).  Relative HES1, REST, and p27 mRNA expression was 

determined, and RPS18 was used as the internal control for each sample.  We first wanted to 

ensure that HES1 constructs were indeed expressed upon infection in the two cell lines.  We 

designed primers specific to the bHLH region of the HES1 mRNA which is common to all the 

HES1 constructs.  As expected, an increase in total HES1 (endogenous and exogenous) was 

observed in samples infected with HES1 constructs as compared to control infected samples 

(Fig. 10A).  Interfering with endogenous HES1 activity in DAOY cells increased REST 

expression as compared to vector control, whereas ectopic expression of HES1 in MB01110 led 

to decreased REST transcription (Fig. 10B, C).  Together, these results suggest that HES1 

functions as a repressor of REST transcription in medulloblastoma cells.   

  

   

A. 

B. 
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HES1-dependent modulation of REST transcription alters REST target gene expression. 

 We next determined whether HES1 mediated changes in REST transcription altered the 

expression of canonical REST-target neuronal differentiation genes.  RNA prepared from 

DAOY cells infected with either control virus or virus expressing HES1 mutants, as well as 

MB01110 cells infected with control virus or HES1 expressing virus, was analyzed via qRT-

PCR to measure Synapsin (SYN1) and Superior cervical ganglion-10 (SCG10) mRNA using 

RPS18 as the internal control.  Both SYN1 and SCG10 are previously validated REST targets 

(50, 57, 123).  An inverse correlation is observed between REST transcript and its target gene 

expression in both cell lines (Fig. 11). 

Figure 10:  Modulation of HES1 affects REST transcription in medulloblastoma 

cells.  A. Total HES1 expression in DAOY cells infected with MigR1-GFP empty vector, 

MigR1-∆BHLH-OR-GFP, or MigR1-∆WRPW-GFP, and in MB01110 cells infected 

with MigR1 empty vector or MigR1-HES1-GFP.  B.  REST and p27 expression in B. 

DAOY cells C. MB01110 cells infected with above mentioned constructs.  Total RNA 

was extracted and subjected to qRT-PCR analysis to measure HES1, REST, and p27.  

Samples are normalized to the internal control RPS18, and scaled relative to the highest 

value.  Experiments were done in triplicate.  One-way ANOVA followed by Fisher LSD 

post-hoc analysis using Statistica 6.0 was conducted to determine statistical significance 

(*p<0.05, **p<0.01, ***p<0.001). 

C. 
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An increase in REST protein was observed upon interference with HES1 activity in 

DAOY cells at some but not all time points across the time course (48-96 hours).  Furthermore, 

Figure 11: Modulation of REST via HES1 affects expression of differentiation genes 

in medulloblastomas cells.  A. DAOY cells infected with either MigR1-GFP empty 

vector, MigR1-∆BHLH-OR-GFP, or MigR1-∆WRPW-GFP.  B. MB01110 cells infected 

with MigR1-GFP empty vector or MigR1-HES1-GFP.  Total RNA was extracted and 

subjected to qRT-PCR analysis to measure SYN1 and SCG10.  Samples are normalized to 

the internal control RPS18, and scaled relative to the highest value.  Experiments were 

done in triplicate.  One-way ANOVA followed by Fisher LSD post-hoc analysis using 

Statistica 6.0 was conducted to determine statistical significance (*p<0.05, **p<0.01, 

***p<0.001). 

A. 

B. 
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the change (increase or decrease) in protein was transient and inconsistent when same time 

points were compared across triplicates.  For example, in one of the triplicates REST protein 

was elevated relative to control infected cells at 48 hours, but decreased at 72 hours, while in 

another set REST protein levels were lower compared to control at 48 hours, followed by an 

increase at 72 hours, and a decline at 96 hours.  Because of inconsistency in REST protein 

across triplicates, a representative image is not available.  The pattern of transient elevation of 

REST protein followed by a decline relative to control infected cells suggests either a 

compensatory mechanism by the cell lines, or differential regulation of REST on a 

transcriptional and post-transcriptional level so that REST transcript does not necessarily 

correlate with REST protein.  In cortical progenitor cells previous studies have shown that 

REST protein is down-regulated while REST transcription remains high, thus providing 

evidence for differential transcriptional and post-translational regulation of REST in neural 

cells (52).  A separate study investigating the role of REST in retinoic acid mediated 

differentiation of neuroblastoma cells from our laboratory also reported independent 

transcriptional and post-translational regulation of REST transcription and protein levels.  

While REST transcription increases in response to retinoic acid treatment in both retinoic acid 

sensitive and insensitive cells, REST protein levels declined in retinoic acid sensitive cells but 

were maintained in the insensitive cells (Fig. 34, 35) (124).  This disparity in the two cell lines 

was because of up-regulation of SCF
β-TRCP

 transcript and protein, the E3 ligase that 

ubiquitinates REST thereby promoting its proteasomal degradation, in the sensitive cells, while 

SCF
β-TRCP

 mRNA and protein were down-regulated in the insensitive cells (Fig. 37) (124).  

 

Interference with HES1 activity provides a survival advantage to DAOY cells 

 Since we observed a change in the expression of differentiation genes upon HES1 

modulation in medulloblastoma cells, we wanted to determine if HES1 modulation also 

affected survival of these cells.  We did a competitive proliferation assay with DAOY cells.  

We infected DAOY cells with either control MigR1-GFP vector, or HES1 mutants as well as 

full-length HES1.  Cells were analyzed for GFP expression via flow cytometry at either day 3 

or 4 post-infection, and analyzed again at day 8, 12, 16, and 23.  Percentage of GFP positive 

cells were calculated for each construct at each time point, and normalized to the first day of 

flow cytometric analysis (day 4) to provide the change in percentage of GFP positive cells for 

each construct over time relative to day 4 post-infection.  An increase in GFP positive cells 

over time is considered a survival advantage, while a decrease in GFP positive cells over time 
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is considered a survival disadvantage.  A steady decline in control infected GFP positive cells 

was observed over time culminating in a 10% decrease at day 23 post-infection (Fig. 12).  The 

latter reflects the effect of the treatment and/or GFP expression itself, and suggests that GFP 

may be toxic to DAOY cells.  Cells infected with ∆BHLH-OR-GFP displayed an positive 

change in percentage of GFP positive cells at all the time points as compared to control infected 

cells, thereby suggesting a proliferative advantage over the control infected group (Fig. 12).  

However, a steady increase in proliferation over time was not observed as indicated by a lack 

of significant change in GFP positive ∆BHLH-OR-GFP cells at day 4 as compared to other 

subsequent days.  It appears that slight increases in GFP positive cells for the ∆BHLH-OR-GFP 

group (observed at day 8 and day 16) are quickly adjusted back to the value measured on first 

day of flow cytometric analysis (day 4), so that overall GFP positive ∆BHLH-OR-GFP cells 

are maintained at similar percentages across various time points (Fig. 12).  The trend noted 

above may be either because of GFP toxicity to the cells, so that the cells can only maintain 

GFP positivity for a finite amount of time, or because of up-regulation of compensatory 

changes by the cells to the modulation of HES1 activity and increase in REST protein.  

Interestingly, change in the percentage of GFP positive cells  from cells from cells infected 

with ∆WRPW-GFP group appear are maintained at a percentage close to the percentage 

measured on first day of flow cytometric analysis (day 4) with slight decrease and increase 

observed at various time points (Fig. 12).  No significant difference was observed in the 

percentage of GFP positive cells over time were between the control infected cells and the cells 

infected with the ∆WRPW mutant.  Since the ∆BHLH-OR mutant lacks the proline and the 

WRPW domains, while ∆WRPW mutant is a point mutant, the pro-survival effect of the former 

construct as compared to the latter construct may represent a domain specific contribution of 

HES1 activity to survival of medulloblastoma cells. 
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Anchorage independent growth assay 

 Since a change in the survival of medulloblastoma cells was observed upon HES1 

modulation of REST expression, we next investigated the effect of altering REST expression by 

interfering with HES1 activity on the ability of medulloblastoma cells to grow in an anchorage 

independent manner.  Potential for anchorage independent growth is a hallmark of transformed 

cells.  We used the cell line MB01110 for anchorage independent growth assays, because it is a 

recently derived cell line from a primary tumor, and therefore may more faithfully recapitulate 

patient tumor behavior as compared to an established cell line.  Data regarding the potential of 

these cells to display anchorage independent growth is unavailable, so we first determined 

whether untreated MB01110 were capable of anchorage independent growth.  To this end, we 

plated 5x10
2
, 1x10

3
, 5x10

3
, 1x10

4
, 2.5x10

4
, and 1x10

5
 cells in 0.4% agar (top) in 24-well plate, 

and placed the cells at 37
o
C with 5% CO2.  Significant colony growth was observed at ~10-12 

days after plating in wells with 5x10
3
-2.5x10

4
 cells, with 5x10

3
 cells yielding ~250-300 

colonies (Fig. 13).  We plated 5x10
3
 cells in each of the 24 wells for all subsequent 

experiments.  MB01110 cells appear to be sensitive to the process of infection as well as the 

subsequent increase in PSF concentration (from 1% to 4%) necessary after sorting to avoid 

Figure 12:  HES1 interference provides a survival advantage, while HES1 

overexpression is disadvantageous to cell survival.  DAOY cells were infected with 

either MigR1- ∆bHLH-OR-GFP, MigR1-∆WRPW-GFP, MigR1-HES1-GFP, or MigR1-

GFP vector control.  Change in the number of GFP expressing cells was determined over 

time as compared to vector control, and scaled relative to the number of GFP positive 

cells observed on the first day of measurement. 
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contamination.  Treatment with control plasmids and reagents caused increased cell death, 

morphological changes, and a decreased cell growth rate.  We wanted to know if these changes 

would affect the capacity for anchorage independent growth of these cells, so we compared the 

untreated with control MigR1-GFP infected and sorted cells after increased PSF treatment.  

While only 5x10
3
 cells of untreated MB01110 were plated, MigR1-GFP infected cells were 

plated at varying densities of 5x10
3
, 1x10

4
, 2.5x10

4
, and 1x10

5
 cells (Fig. 13).  Cells were 

plated, and scanned starting at day 7 at indicated time points.  Total colony number (>80 µm) 

and approximate colony volume (total biomass in µm
3
) were determined using Gel Count 

software.  The data shown below is for 5x10
3
 and 1x10

5
 MigR1-GFP infected cells.  Indeed our 

results show a stark decrease in capacity for anchorage independent growth in MigR1-GFP 

infected PSF-treated cells (700-820 versus 8-20 at day 23) (Fig 13).  As of now, because of the 

sensitivity of this cell line, meaningful analysis across various treatment groups is not feasible.  

The assay was attempted with sorted cells that were not treated with PSF, but were terminated 

because of contamination issues.  A feasible alternative may be to altering REST expression by 

interfering with HES1 activity in DAOY cells, and measuring the change in the potential for 

anchorage independent growth between cells infected with mutants and control infected cells.   

 

A. 
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Figure 13:  Treatment with reagents lead to a decrease in anchorage independent 

growth potential of MB01110 cells. Infection of MB01110 cells with vector alone 

followed by increased PSF exposure leads to a drastic decrease in soft agar growth 

potential of these cells as compared to untreated cells as measured by A. Total biomass 

and B. Number of colonies.   

B. 



50 

 

Summary 

 

We have shown that HES1 binds to the REST 5’ upstream region in both DAOY and 

D283 cell lines.  Interference of HES1 activity using mutagenic HES1 constructs in DAOY 

cells, which express HES1 protein, led to an increase in REST and p27 transcription, whereas 

overexpressing HES1 in MB01110, a cell line with no detectable HES1 protein, led to a 

decrease in REST and p27 expression.  These findings are consistent with the function of HES1 

as a repressor of its target genes, as well as its previously published role in regulation of REST 

expression in non-neural cells (82).  Furthermore, HES1-mediated modulation of REST also 

leads to changes in the expression of REST target genes, SCG10 and SYN1.  Transcriptional 

repression of REST by HES1 perhaps serves to counterbalance REST overexpression observed 

in a subset of medulloblastoma tumors.  Given the previously published oncogenic role of 

REST in medulloblastoma as well as the increase in HES1 protein in some medulloblastoma 

samples, down-regulation of REST transcription by HES1 may partially counter the oncogenic 

capacity of REST, thereby providing an anti-tumorigenic role for this mechanism (25-27).  The 

latter interpretation is supported by the results from our survival analysis of DAOY cells which 

reveal that interfering with HES1 activity using a C-terminus deletion mutant of HES1 

(MigR1-∆bHLH-OR-GFP) provides a survival advantage over time to DAOY cells as 

measured by a competitive proliferation assay, while a decrease in proliferation is observed 

upon overexpression of HES1.   
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Chapter 4:  REST regulates its own transcription by an auto-regulatory loop 
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Rationale 

 

To evaluate if factors other than HES1 contribute to the transcriptional regulation of 

REST in medulloblastoma, we analyzed REST 5’ upstream region for potential binding sites of 

various transcription factors using transcription factor search tool, 

http://mbs.cbrc.jp/research/db/TFSEARCH.html.  We validated the search results with our own 

detailed analysis of specific sequences based on an extensive literature search.  These analyses 

identified binding sites to additional transcription factors, of which some were novel, while 

others were previously known to regulate REST expression.  Since medulloblastoma is a 

developmental tumor, and REST regulates lineage specificity during development, we focused 

on the molecules that were relevant to these processes.   

Interestingly, the REST 5’ upstream region contains three RE-1 sequences located 0.8 

kb downstream of TS, and -6.2 kb and -6.8 kb upstream of TS (Fig. 14).  A ChIP screen for 

REST binding in the non-neural Jurkat cells identified the RE-1 site located 0.8 kb downstream 

of TS, thereby providing potential for self-regulation (65).  The latter provided more 

confidence to our analysis, which revealed three potential binding sites.   

A recent study demonstrated a feedback loop involving REST, beta-catenin, and 

tuberous sclerosis-2 (TSC-2) in the regulation of REST transcription in both rat (PC12) and 

human (NT2/D1) neural cells (83).  However, to our knowledge, direct regulation of REST 

transcription by REST has not been explored and is the focus of this section.  We hypothesized 

that REST can bind to RE-1 sites located in its own 5’ upstream region, and regulate its 

own expression in an auto-regulatory loop. 

                            

Figure 14:  RE-1sites on the 5’ upstream region of REST.  Shown here is the -7 kb 

region of REST 5’ upstream region containing the three RE-1 sites.  The consensus site 

located +0.8 kb from TS was previously identified in a ChIP-seq screen. 
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Results 

 

REST binds to the RE-1 sites on REST 5’ upstream region 

We first determined whether REST binds to the RE-1 sites discovered on its 5’ 

upstream region in medulloblastoma cell lines.  DAOY and D283 cells, which have been 

previously shown to have high levels of REST protein, were used for this experiment (25).  

Nuclear lysates from the two cell lines were subjected to ChIP using with rabbit anti-REST 

antibody or control serum IgG, and immunoprecipitated DNA fragments were analyzed by 

qPCR using primers specific to RE-1 sites located  -6.2 kb and -6.8 kb from TS (Fig. 15).  High 

GC content of the region surrounding the RE-1 site located +0.8 kb from TS precluded its 

analysis by qPCR despite multiple attempts.  Relative REST binding to the region of interest 

was determined by comparing the non-specific control values (IgG) with the specific sample 

values (REST).  REST occupancy at RE-1 located at SYN1 promoter was used at a positive 

control as before.  Regions within p27 and p63 5’ upstream regions that lack RE-1 sites were 

used as the negative controls for DAOY and D283 cells respectively.  A statistically significant 

difference in relative REST binding with the specific antibody pull-down as compared to IgG 

was seen, suggesting that REST associates with REST 5’ upstream region in both DAOY and 

D283 cells. 

 

A. 
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REST directly represses its own expression via an auto-regulatory feedback loop 

To determine if REST regulated its own expression by an auto-regulatory feedback 

loop, we interfered with endogenous REST activity by using a mutant of REST (MigR1-DBD-

GFP).  This mutant contains only the DBD of REST (73-542 aa), but not the two repression 

domains, thereby allowing REST to bind to its target site, but abrogating its repressive function 

(Fig. 16).  MigR1-DBD-GFP was a modified from pcDNA3.1-DBD, by moving the DBD 

region from pcDNA3.1 to MigR1-DBD.  As with the HES1 constructs, it contains the retroviral 

backbone of the MigR1-GFP.   

 

 

Figure 15: REST binds to 5’ upstream region of REST in medulloblastomas cell 

lines.  ChIP was performed in A. DAOY and B. D283 with rabbit anti-REST antibody or 

control IgG, followed by qPCR analysis using primers specific to N-boxes located  -3.7 

kb, -4.4 kb, and -6.5 kb from the TS.    Experiments were done in triplicate.  Experiments 

were done in triplicate.  One-way ANOVA followed by Fisher LSD post-hoc analysis 

using Statistica 6.0 was conducted to determine statistical significance (*p<0.05, 

**p<0.01, ***p<0.001). 

B. 
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DAOY cells were infected with either retrovirus expressing empty vector or REST-DBD.  GFP 

expression was used as an indicator of transgene expression, and the GFP positive cells were 

sorted by FACS at 72 hours post-infection, and further processed for extracting total RNA.  

RNA was analyzed via qRT-PCR using primers specific for human REST, SYN1, SCG10, and 

RPS18 transcripts.  SYN1, a known REST target gene, is used as a positive control in all cases 

as before.  Relative REST, SYN1, and SCG10 mRNA expression was determined, and RPS18 

was used as the internal control for each sample.  Interfering with endogenous REST activity in 

DAOY cells increased REST expression as compared to vector control, thereby suggesting that 

REST regulates its own transcription via a feedback loop (Fig. 17).   

 

 

 

Figure 16:  Structure of full-length REST and REST-DBD.  Top diagram shows the 

structure of full length REST, while the bottom shows the structure of MigR1-DBD-

GFP.   Lacking both repression domains, MigR1-DBD-GFP contains 73-542 aa.  It is a 

retroviral construct with a MigR1-GFP backbone. 
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 To test whether the effect of REST regulation of its own expression was directly 

modulated by REST binding to the RE-1 sites, we performed a luciferase assay with either 

wildtype RE-1 sites or mutagenized RE-1 sites.  We used pGL4.15 which contains a 

mammalian selection marker (hygromycin), so that stable lines containing the luciferase 

construct could be generated.  Because we were unable to clone the entire REST 5’ upstream 

region, we decided to clone only the -6.2 kb to -6.8 kb piece with the RE-1 sites.  However, 

pGL4.15 does not have a minimal promoter, which is necessary since the entire REST 

promoter could not be used.  We therefore introduced an sv40 minimal promoter from pGL3 

promoter vector upstream of the luciferase gene to yield pGL4.15-sv40.  Genomic DNA 

extracted from DAOY cells was used as the template to PCR the 5’ upstream region from -7 kb 

to -6 kb using specific primers flanked with unique restriction sites, and further cloning was 

done to ensure the validity of the piece.  The insert was then ligated into pGL4.15-sv40 

immediately upstream of the sv40 promoter to yield pGL4.15--7to-6-sv40 (hereby called pGL-

sv40-WT) (Fig. 18).  Since the consensus sequence for RE-1 is not very well conserved, careful 

Figure 17: Countering REST activity represses REST transcription in 

medulloblastoma cells.  Endogenous REST, SYN1, and SCG10 expression in DAOY 

cells infected with above mentioned constructs. Total RNA was extracted and subjected 

to qRT-PCR analysis to measure total REST, endogenous REST, SYN1, and SCG10.  

Samples are normalized to the internal control RPS18, and scaled relative to the highest 

value.  Experiments were done in triplicate.  One-way ANOVA followed by Fisher LSD 

post-hoc analysis using Statistica 6.0 was conducted to determine statistical significance 

(*p<0.05, **p<0.01, ***p<0.001). 



57 

 

consideration was taken to ensure that the mutated sequence did not match any RE-1 of the 

potential RE-1 sequences.  Below are the RE-1 sequences for each of the RE-1 sites on the 

REST 5’ upstream region as well as the mutagenized sequence (Table 1).  The luciferase 

construct with mutagenized RE-1 sites was generated using specific primers (hereby called 

pGL-sv40-RE-1mut) (Fig. 18). 

 

Table1:  Sequence of RE-1 sites and mutated RE-1  

RE-1 site Wild-type Mutated 

-6.8 kb 

from TS 

5’- 

TTAGCTGGGCGTGGTGGTGTG 

-3’ 

5’-

CAGTTAAAACCGCGGTTAATT -

3’ 

-6.2 kb 

from TS 

5’- 

CCAGCTACTCGGGATGCTGAA 

-3’ 

5’-

CAGTTAAAACCGCGGTTAATT -

3’ 

 

              

 

 

 

Both pGL4.15-sv40 and pGL4.15-6.8to-6.2-sv40 were transfected into DAOY cells and 

selected with hygromycinB (0.3µg/mL) to generate stable expression of the luciferase 

construct.  Cells were lysed, and luciferase activity of cells infected with both wildtype and 

mutagenized construct was measured using a luminometer (Fig. 19).  Luciferase activity 

increases upon mutagenizing the RE-1 site as compared to the wildtype construct, thus 

suggesting that REST directly represses its own expression in an autoregulatory feedback loop 

(Fig. 19).  

Figure 18: Structure of REST luciferase constructs:  pGL4.15-sv40-WT and  

pGL4.15-sv40-RE-1mut  used in our analyses.   
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Interference with REST activity does not provide a survival advantage to DAOY cells 

 Since REST has been shown to have a tumorigenic effect in medulloblastoma cells, we 

to know if disrupting the auto-regulatory mechanism contributing to REST regulation would 

alter survival potential of these cells.  We infected DAOY cells with either control MigR1-GFP 

vector or MigR1-REST-DBD and performed a competitive proliferation assay as previously 

described.  Flow cytometric analysis to determine percentage of GFP positive cells was done at 

the times indicated.  As described previously, a steady decline in control infected GFP positive 

cells was observed over time culminating in a 10% decrease at day 23 post-infection (Fig. 20).  

The latter reflects the effect of the treatment and/or GFP expression itself, and suggests that 

expression of GFP may be toxic to these cells.  Overall, no change in percentage of GFP 

positive cells was detected between control and vector treated cells (Fig. 20).  This is consistent 

with what we expected since REST appears to be auto-regulating its transcription.  These 

results corroborate our mRNA findings upon REST modulation (Fig. 20).  

 

Figure 19: Mutating RE-1 sites leads to increased luciferase activity.  Luciferase 

constructs with either wildtype RE-1 sites or mutated RE-1 sites were stably expressed in 

DAOY cells and luciferase expression was measured, and scaled from 0 to 1.  

Experiments were done in triplicate.  One-way ANOVA followed by Fisher LSD post-

hoc analysis using Statistica 6.0 was conducted to determine statistical significance 

(*p<0.05, **p<0.01, ***p<0.001). 



59 

 

  

 

Figure 20:  No change in cell survival is observed upon REST interference.  DAOY 

cells were infected with either control MigR1-GFP vector or MigR1-DBD-GFP.  Change 

in the number of GFP expressing cells was determined over time as compared to vector 

control, and scaled relative to the number of GFP positive cells observed on the first day 

of measurement.   



60 

 

 

Summary 

 

 In this section we have shown that REST binds to the RE-1 sites located -6.2 kb and -

6.8 kb upstream of TS on the 5’ upstream region of REST.  Interference with REST activity 

using a mutant of REST (REST-DBD) leads to an increase in REST transcription and a 

reciprocal up-regulation of other REST target genes, thus suggesting that REST represses its 

own transcription through an auto-regulatory loop.  The repressive function of REST on its 

own transcription is consistent with the canonical role of REST as a repressor of its target 

genes.  Our findings are further supported by the increase in the luciferase expression of the 

cells containing the luciferase construct with mutagenized RE-1 sites as compared to those with 

the wildtype luciferase construct, which indicated that the effect of REST on its expression was 

directly mediated by its binding to the RE-1 sites.  No change in survival was observed upon in 

the cells expressing mutant REST construct as compared to the control construct.  Since 

expression of REST-DBD leads to an increase in REST expression, the presence of increased 

REST protein can potentially compete with REST-DBD for binding to the RE-1 site, thereby 

restoring the REST levels back to baseline, so that no significant change would be observed in 

survival between REST-DBD and control vector expressing cells.  It would be interesting to 

determine whether increased REST transcription correlates with decreased REST protein in 

patient samples. 
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Chapter 5: HES1 and REST co-regulate of REST transcription 
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Rationale 

 

Interestingly, we noticed that the previously validated N-box for HES1 binding located -

6.5 kb upstream of TS was in close proximity to the two RE-1 sites (-6.2 and -6.8 kb upstream 

of TS) (Fig. 21).  Both HES1 and REST interact with mSin3 and HDAC 1 and HDAC2, which 

are important in their co-repressor function, and as mentioned before, HES1 and REST are both 

implicated in medulloblastoma and normal brain development.  Since we have shown both 

proteins independently bind to the REST 5’ upstream region, and repress REST expression, we 

wanted to determine whether the HES1 and REST could potentially function together to co-

regulate REST transcription.  We hypothesized that REST and HES1 co-regulate REST 

expression.  

                                 

 

 

 

 

 

 

 

 

 

  

Figure 21:  RE-1 sites and N-boxes on the 5’ upstream region of REST.  Shown here 

is the -7 kb region of REST 5’ upstream region containing the two RE-1 sites and three N-

boxes.  The RE-1 sites located -6.8 kb and -6.2 kb from TS are in close proximity to the 

N-box located -6.5 kb from TS.   
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Results 

 

HES1 and REST bind to RE-1 sites in REST 5’ upstream region. 

To study whether HES1 and REST could potentially co-regulate REST expression, we 

first determined whether HES1 occupied the two RE-1 sites located at -6.2 kb and -6.8 kb in 

close proximity to the N-box located at -6.5 kb from TS (previously validated for REST binding 

as show in Fig.15), as well as the status of REST occupancy at N-boxes located -3.7 kb, -4.5 kb, 

and -6.5 kb from TS (previously validated for HES1 binding as shown in Fig. 8).  We subjected 

immunoprecipitated DNA from HES1 and REST ChIP assays performed in D283 and DAOY 

cells to qPCR with primers specific to the RE-1 sites and N-boxes respectively (Fig. 22).  A 

statistically significant difference in relative HES1 binding with the specific antibody pull-

down as compared to control serum IgG was seen, thus suggesting that HES1 binds to the RE-1 

sites in D283 cells (Fig. 22A).  No occupancy of REST is observed at any of the N-boxes in 

either cell line (Fig. 22B, C).  The latter suggests that perhaps HES1 and REST may potentially 

co-occupy the two RE-1 sites, and that HES1, in conjunction with REST, may modulate REST 

expression at these sites.   

  

A. 
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HDAC1 and HDAC2 are part of REST as well as HES1 repressor complexes (HDAC1 

is associated more consistently with HES1 as compared to HDAC2), so we determined whether 

HDAC1 and HDAC2 occupied our sites of interest as indicators of REST and HES1 occupancy 

and repressive function.  ChIP assays was done by immunoprecipitating with mouse anti-

Figure 22: HES1 binds to the RE-1sites in 5’ upstream region of REST in 

medulloblastomas cells.  HES1 ChIP samples from A. D283 were analyzed by qPCR 

using primers specific to N-boxes located RE-1 site located -6.2 kb and -6.8 kb from TS.  

REST ChIP samples from B. DAOY and C. D283 cells were analyzed by qPCR using 

primers specific to -3.7 kb, -4.4 kb, and -6.5 kb from the TS.  Experiments were done in 

triplicate.  One-way ANOVA followed by Fisher LSD post-hoc analysis using Statistica 

6.0 was conducted to determine statistical significance (*p<0.05, **p<0.01, ***p<0.001). 

B. 

C. 
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HDAC1 and anti-HDAC2 antibodies or control sera IgG followed by incubation with rabbit 

anti-mouse linker incubated beads.  Immunoprecipitated DNA was analyzed by qPCR using 

primers specific to -3.7 kb, -4.4 kb, -6.5 kb, and -6.2 kb and -6.8 kb from the TS (Fig. 23).  

Based on the statistically significant difference in relative HDAC1 and HDAC2 binding with 

the specific antibody pull-downs as compared to control IgG, both HDAC1 and HDAC2 appear 

to be bound to the two RE-1 sites, whereas neither is bound at the N-box located at -6.5 kb 

upstream of TS (Fig. 23).  Only HDAC1 occupancy was detected to N-boxes located at -3.7 and 

-4.4 kb upstream of TS (Fig. 23).  Differential HDAC1 and HDAC2 occupancy at the sites 

tested indicates unique regulation of these sites, with HES1 and REST perhaps co-regulating 

gene expression via the two RE-1 sites.  The absence of both HDACs, despite the presence of 

HES1, at -6.5 kb region suggests that either HES1 is bound but not functional at this site, or 

that HES1 is regulating gene expression but not by its canonical function as a repressor at this 

site.  A luciferase with each site of interest mutagenized individually as well as in combination 

would be required to better understand the significance of presence and absence of these 

complexes at individual sites.  Furthermore, HES1 or REST may be required for the other one 

to bind at these sites and ChIP experiments with deletions of each would be needed to evaluate 

this.  
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HES1 and REST co-occupy RE-1 sites in REST 5’ upstream region. 

Thus far we have shown that HES1 and REST independently occupy the two RE-1 

sites, and HDAC1 and HDAC2 occupancy at these sites suggests the presence of REST and 

HES1 repression complexes.  To determine whether HES1 and REST simultaneously co-

occupy the RE-1 sites, nuclear lysates prepared from DAOY cells were subjected to a  

sequential ChIP assay (SeqChIP) by immunoprecipitating first with the rabbit anti-HES1 

antibody or control serum IgG, and then with rabbit anti-REST antibody or control serum IgG.  

The immunoprecipitated DNA was analyzed by qPCR using primers specific to the -6.2 kb and 

-6.8 kb (RE-1 sites), and -3.7 kb, -4.4 kb, -6.5 kb (N-boxes) from TS.  Relative HES1-REST 

binding to the region of interest was determined by comparing the control values (IgG/IgG) 

from the sample values (HES1/REST) (Fig. 24).  A statistically significant difference using 

HES1 and REST co-occupancy using specific antibodies as compared to control sera IgG is 

seen at the RE-1 sites located at -6.2 kb and -6.2 kb from TS, thus suggesting that HES1 and 

REST co-occupy the two RE-1 sites.   No co-occupancy was detected at the N-boxes located -

3.7 kb, -4.4 kb, and -6.5 kb upstream of TS (Fig. 24).  Co-occupancy of REST and HES1 

suggests that HES1 could potentially cooperate with REST to regulate REST transcription at 

the RE-1 sites.  

Figure 23: HDAC1 and HDAC2 bind to the RE-1 sites in 5’ upstream region of 

REST in medulloblastomas cells.  ChIP was performed in DAOY with mouse anti-

HDAC1 and anti-HDAC2 antibodies or control IgG, followed by qPCR analysis using 

primers specific to RE-1 sites and N-boxes located -3.7 kb, -4.4 kb, -6.2 kb, -6.5 kb, and -

6.8 kb from the TS.  Experiments were done in triplicate.  One-way ANOVA followed 

by Fisher LSD post-hoc analysis using Statistica 6.0 was conducted to determine 

statistical significance (*p<0.05, **p<0.01, ***p<0.001). 
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HES1 and REST interact in DAOY cells. 

 Since the SeqChIP data suggests that REST and HES1 co-occupy RE-1 sites on the 

REST 5’upstream region in medulloblastoma cell lines, we wanted to determine whether REST 

and HES1 form a complex in these cells.  We did a co-fractionation experiment in which whole 

cell lysate prepared from DAOY cells were subjected to a sephadex column, and separate 

fractions were collected every 5.5 minutes.  Fractions were analyzed by Western blot analysis 

for REST, HDAC1, Huntingtin (HTT), HES1, TLE-1, Poly adenosine diphosphate (ADP) –

ribose polymerase (PARP), and histone H3 (Fig. 25A).  HTT has been shown to interact with 

REST, whereas TLE-1 and PARP have been shown to complex with HES1, and were used as 

positive controls for interaction with each protein (80, 81, 109, 110, 112).  HDAC1 has been 

shown to interact with both REST and HES1.  We consolidated two adjacent fractions into one 

to allow visualization of all fractions on one SDS-PAGE gel (in order to avoid variability from 

one gel to another).  Detection of proteins in the same fraction suggests potential interaction 

between them.  REST and HES1 were detected in the some of the same fractions, although both 

Figure 24:  HES1 and REST co-occupy RE-1 sites in DAOY cells.    Sequential ChIP 

was performed in DAOY by immunoprecipitating first with rabbit anti-HES1antibody or 

control IgG, and subjecting the eluents to a second immunoprecipitation with rabbit anti-

REST antibody or control IgG.  Samples were analyzed by qPCR analysis using primers 

specific to RE-1 sites and N-boxes located -3.7 kb, -4.4 kb, -6.2 kb, -6.5 kb, and -6.8 kb 

from the TS.  Experiments were done in triplicate.  One-way ANOVA followed by 

Fisher LSD post-hoc analysis using Statistica 6.0 was conducted to determine statistical 

significance (*p<0.05, **p<0.01, ***p<0.001). 
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proteins appear independently of one another in other fractions as well (Fig. 25A).  The latter 

suggests that a portion of REST and HES1 proteins may interact together in DAOY cells.  

Positive controls for HES1 and REST also appear in the same fractions as each protein 

respectively, thereby validating our findings.  Histone H3 was not observed in the fractions, 

which suggests that the potential HES1-REST interaction maybe independent of DNA binding 

of HES1 and REST, although further experiments are necessary to conclusively exclude the 

necessity of DNA to the HES1-REST interaction.  

 To verify the results of the co-fractionation experiments, we did a co-

immunoprecipitation (co-IP) experiment using lysates prepared from DAOY transfected with 

either MigR1-FlagREST-GFP or MigR1-FlagHES1-GFP, and performed co-IP by 

immunoprecipitating with the anti-flag antibody, and subjecting the immunoprecipitated lysates 

to Western blot analysis for HES1 and REST (Fig. 25B).  HES1 and REST were both detected 

in immunoprecipitates from DAOY cells overexpressing REST and HES1 respectively, thereby 

suggesting an interaction between that the two proteins in DAOY cells (Fig. 25B).   

  

A. 
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Interfering with REST activity in the absence of HES1 increases REST transcription 

To study the effect of interference with REST activity in the absence of HES1 on REST 

transcription, we infected MB01110 (a cell line that does not have any detectable HES1 

protein) with retrovirus expressing REST-DBD or control vector.  GFP positive cells were 

sorted by FACS at 72 hours post-infection, and further processed for extracting total RNA.  

qRT-PCR was performing using primers specific for human REST, SYN1, SCG10, and RPS18 

transcripts.  As mentioned above, REST has been previously shown to repress SYN1 and 

SCG10, which were used as a positive control in all cases.  Relative REST, SYN1, β-TUBB3, 

and SCG10 mRNA expression was determined, and RPS18 was used as the internal control for 

each sample.   Interfering with endogenous REST activity in MB01110 cells increased REST 

expression as compared to vector control, which suggests that REST represses its own 

transcription in the absence of detectable HES1 protein (Fig. 26).  Modulation of REST activity 

also increased REST transcription in DAOY cells where HES1 protein is present (Fig. 17B).  

However, a trend towards a greater increase in REST transcription is observed in MB01110 (~ 

10 fold) as compared to DAOY (~ 5 fold).  The latter trend may suggest the potential for co-

repressor function for HES1 and REST.  Luciferase experiments described below were used to 

validate this possibility. 

Figure 25:  HES1 and REST interact in DAOY cells.  A. Lysates from DAOY cells 

were subjected to a co-fractionation assay by passing through a Sephadex column 

followed by analysis of samples by Western blot analysis.  B.  Lysates prepared from 

DAOY cells transfected with either control MigR1-GFP vector, MigR1-HES1-GFP, or 

MigR1-REST-GFP were immunoprecipitated with anti-Flag antibody or control IgG, and 

analyzed by Western blot analysis.  Both dark (D) and light (L) exposures are shown. 

B. 

(D) 

(L) 

(D) 

(L) 
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REST does not bind to RE-1 sites in the REST 5’ upstream region in the absence of HES1. 

Thus far we have shown novel HES1-REST co-occupancy of the RE-1 sites in DAOY 

cells, and that a greater increase in REST transcription is observed upon interfering with REST 

activity in MB01110 cells (a cell line in which no HES1 protein is detected) as compared to 

DAOY cells (high levels of both proteins).  Next, we determined whether the latter effect of 

increased REST transcription upon REST modulation in MB01110 was because of altered 

REST binding to the RE-1 sites in the absence of HES1.  Nuclear lysates were prepared from 

MB01110 and subjected to ChIP assay by immunoprecipitating with rabbit anti-REST antibody 

or control serum IgG, and immunoprecipitated DNA was analyzed by qPCR using validated 

primers specific to RE-1 sites located at -6.2 kb and -6.8 kb and N-box located -6.5 kb from TS.  

No REST occupancy at the RE-1 sites or the N-box was detected in MB01110 cells, which 

suggests that perhaps HES1 is required for REST binding at these regions (Fig. 27A).  This was 

unexpected, because modulation of REST activity leads to increase in REST transcription in 

these cells, thus leading us to speculate that perhaps the effect of REST interference by the 

Figure 26:  Countering REST activity represses REST transcription in the absence 

of HES1.  A. Total REST expression in MB01110 cells infected with either MigR1-GFP 

empty vector or DBD-GFP.  B.  Endogenous REST, SYN1, and SCG10 expression in 

MB01110 cells infected with above mentioned constructs. Total RNA was extracted and 

subjected to qRT-PCR analysis to measure total REST, endogenous REST, SYN1, and 

SCG10.  Samples are normalized to the internal control RPS18, and scaled relative to the 

highest value.  Experiments were done in triplicate.  One-way ANOVA followed by 

Fisher LSD post-hoc analysis using Statistica 6.0 was conducted to determine statistical 

significance (*p<0.05, **p<0.01, ***p<0.001). 
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DBD on REST transcription is indirect, or perhaps that REST binds to and represses the RE-1 

site located +0.8 kb from TS (which could not be tested).   ChIP assay to detect HES1 binding 

was also done as a negative control since HES1 protein was not detected in these cells (Fig. 

27B).  Surprisingly, the -6.2 kb and -6.8kb RE-1 sites were positive for HES1 binding, but the 

binding was significantly lower compared to that observed in the HES1-expressing DAOY and 

D283 cells (p<0.02 and p<0.004 for each site as compared to D283 HES1 ChIPs).  Indeed a 

possibility remains that very low amounts of HES1, undetectable by Western blot analysis, may 

be present and may bind to the RE-1 sites, but the lack of HES1 occupancy at the regulatory 

region of Mash1 (used as the positive control for our experiments) in MB01110 precludes clear 

interpretation of HES1 occupancy at the RE-1 site.  It would be interesting to determine 

whether ectopic expression of HES1 in MB01110 would lead to increased REST occupancy at 

the RE-1 sites as compared to vector control. 

  

A. 
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HES1 and REST co-repress REST transcription 

To gain further insight into the roles of REST and HES1 as potential co-repressors of 

REST  transcription, we designed luciferase constructs with both of the RE-1 sites located -6.8 

and -6.2 as well as the N-box located at -6.5 kb upstream of TS mutagenized (Fig. 28).  

Mutating the RE-1 sites and N-box abrogates the ability REST and HES1 to bind to these 

particular sites respectively, thus allowing us to study the unique and combined contribution of 

each of RE-1 sites and N-box on REST transcription, as measured by luciferase activity.  The 

following luciferase constructs were used:  pGL4.15-sv40, pGL4.15-sv40-WT, pGL4.15-sv40-

RE-1mut (both RE-1 sites mutagenized), pGL4.15-sv40-Nboxmut (-6.5 N-box mutagenized), 

and pGL4.15-sv40-RE-1mut-Nboxmut (both RE-1 sites and N-box mutagenized). 

 

 

 

Figure 27: REST does not bind to 5’ upstream region of REST in the absence of 

HES1.  ChIP was performed in MB01110 with A. rabbit anti-REST antibody or control 

IgG, B. rabbit anti-HES1 followed by qPCR analysis using primers specific to RE-1 sites 

and N-boxes located -6.2 kb, -6.5 kb, and -6.2 kb from the TS.    Experiments were done 

in triplicate.  One-way ANOVA followed by Fisher LSD post-hoc analysis using 

Statistica 6.0 was conducted to determine statistical significance (*p<0.05, **p<0.01, 

***p<0.001). 

B. 
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Luciferase constructs were stably transfected into DAOY cells, followed by hygromycinB 

selection, and measurement of luciferase activity (Fig 29).  The baseline luciferase activity was 

assessed by the control pGL-sv40-WT construct by measuring luminescence using a 

luminometer as described above.  Consistent with the repressive function of both HES1 and 

REST, an increase in luciferase activity was observed upon mutagenizing the two RE-1 sites (-

6.2 kb and -6.8 kb from TS) and N-box (-6.5 kb from TS) independently relative to the 

luciferase activity of the control construct.  Concurrent mutations of both RE-1 sites and N-box 

led to a statistically significant increase in luciferase activity relative to mutations of either the 

RE-1 sites or the N-box alone, thus suggesting that REST and HES1 function as co-repressors 

of REST transcription in medulloblastoma cells.   

Figure 28:  Structure of the REST luciferase constructs: pGL4.15-sv40-WT, 

pGL4.15-sv40-RE-1mut, pGL4.15-sv40-N-boxmut, pGL4.15-sv40-RE-1mut-N-boxmut. 
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Figure 29:  Mutating N-box and RE-1 sites leads to increased luciferase activity as 

compared to either mutation alone.  Luciferase constructs with either wildtype RE-1 

sites, mutated RE-1 sites, mutated N-box, or mutated RE-1 sites and N-box were stably 

expressed in DAOY cells and luciferase expression was measured, and scaled from 0 to 

1.  Experiments were done in triplicate.  One-way ANOVA followed by Fisher LSD 

post-hoc analysis using Statistica 6.0 was conducted to determine statistical significance 

(*p<0.05, **p<0.01, ***p<0.001). 
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Summary 

 

 HES1 occupancy was detected at the RE-1 sites previously validated for REST binding, 

but REST did not occupy the N-boxes tested.  We further showed that HES1 and REST co-

occupy the RE-1 sites located at -6.2 kb and -6.8 kb from TS in the REST 5’ upstream region, 

while no co-occupancy was not observed at the sites containing N-boxes.  Both HES1 and 

REST are known to associate with HDACs, and the presence of HDAC1 and HDAC2 at both 

RE-1 sites suggests that the presence of repressive complexes at these sites.  The latter, along 

with our preliminary data indicating that the two proteins interact in DAOY cells, presents 

potential for co-regulation of REST transcription.  We interfered with REST activity using 

REST-DBD in MB01110 cells, which do not have any detectable HES1 protein, and observed 

an increase in REST transcription.  This result is consistent with DAOY cells, which have high 

levels of HES1.  However, a greater increase in REST expression is noted in MB01110 cells as 

compared to DAOY upon interference with REST activity.  The latter suggests the possibility 

that HES1 may cooperate with REST to further repress REST expression, and since HES1 is 

not detectable in MB01110, a greater de-repression of REST expression is observed upon 

interfering with REST activity.  The lack of REST occupancy in the absence of HES1 as 

observed in MB01110 cells suggests that HES1 may be required for REST binding to RE-1 

sites.  Change in REST transcription observed upon modulation of REST activity in the 

absence of REST binding suggests that perhaps the effect of REST-DBD on REST expression 

may be indirect, or it may be mediated by REST occupancy RE-1 box located +0.8 kb of TS.  

To determine the contribution of the RE-1 sites and N-box to REST transcription, luciferase 

assay was performed using constructs with either wildtype or mutated consensus sequences for 

RE-1, N-box, or both.  Mutagenizing both RE-1 sites and N-box concurrently results in a greater 

de-repression of luciferase activity as compared to mutating either RE-1 sites of N-box alone, 

thus suggesting that REST and HES1 function as co-repressors of REST transcription in 

medulloblastoma cells.  
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Chapter 6:  Retinoic acid regulates REST protein by modulation of SCF
β-TRCP 
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Rationale 

 

 Retinoic acid, a differentiation agent, is a mainstay for neuroblastoma treatment, and 

leads to differentiation of a subset of tumors, while other tumors show resistance to the 

treatment.  The mechanism behind retinoic acid mediated differentiation remains unknown.  A 

better understanding of this mechanism may provide insight into the factors that contribute to 

the resistance and sensitivity of various neuroblastoma tumors and cell lines to retinoic acid 

treatment.   

REST is a critical mediator of normal neurogenesis as it functions to repress neuronal 

differentiation genes, and it has been previously shown to be regulated by unliganded RAR-α.  

We wanted to determine whether REST plays a role in retinoic acid mediated differentiation of 

neuroblastoma cell lines.  We hypothesize that retinoic acid promotes differentiation of 

neuroblastoma tumors through transcriptional regulation of REST. 
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Results 

 

Maintenance of REST protein in neuroblastoma patient samples and cell lines. 

 Given that REST is overexpressed and has been associated with an oncogenic role in 

medulloblastoma, we first wanted to determine the status of REST protein in neuroblastoma 

tumors.  We stained 41 paraffin embedded neuroblastoma patient samples  for REST protein 

via immunofluorescence analysis (obtained from Children’s Oncology Group and the 

Biopathology Center, Columbus, Ohio) (Fig. 30A).  Indeed, REST protein was detected in 

97.5% (40/41) of patient samples (Fig. 30A).  Normal cerebellum, which is known to lack 

REST protein, served as the negative control, while medulloblastoma tumor served as the 

positive control (27).  Similar results were recapitulated by Western blot analysis of REST 

protein in lysates prepared from additiona1 13 snap-frozen tumor samples (Fig. 30B) (125).  

REST protein was elevated in 92% (12/13) tumor samples analyzed.  Protein levels of 

Synapsin1, a differentiation marker and a previously validated target of REST, were also 

examined (Fig. 30B).  Low levels of synapsin1 correlated to maintenance REST protein in 

some but not all samples.  Actin served as a loading control for Western blot analysis. 

We next wanted to know if neuroblastoma cell lines showed a similar trend with respect 

to REST protein, so we examined lysates prepared from a panel of neuroblastoma IMR-32, SK-

N-AS, SHEP, SK-N-SH, SK-N-SY5Y, NBL-S, and NGP for REST protein by Western blot 

analysis.  REST was maintained in all neuroblastoma cell lines, albeit at various levels.  

Synapsin1 was either not detected or very faintly detected in these cell lines in accordance with 

maintenance of REST protein, and actin was used as a loading control (FIG. 30C). 
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Differential expression of REST is observed in retinoic acid sensitive, SK-N-SH, versus 

retinoic acid insensitive, SK-N-AS, cells. 

 SK-N-SH and SK-N-AS cells have been previously characterized as retinoic acid 

sensitive and retinoic acid insensitive cells respectively (126, 127).  From our initial analysis, it 

appears that although REST protein is detected in both cell lines, the levels are different 

between the two, with SK-N-SH cells showing significantly lower levels as compared to SK-N-

AS cells.  To further characterize the status of REST in these neuroblastoma cell lines, lysates 

were prepared from both cell lines for RNA and protein analysis.  RNA was extracted, and 

subjected to qRT-PCR for REST and SYN1 transcripts.  REST transcript shows a similar trend 

as the protein displaying lower transcript levels in SK-N-SH as compared to SK-N-AS cells 

(Fig. 31A).  Accordingly SYN1 expression was higher in the SK-N-SH as compared to SK-N-

AS.  Immunofluorescence and Western blot analyses confirmed our initial findings regarding 

differential levels of REST in both cell lines, concurrent with lower levels of β-tubulinIII 

(immunofluorescence) and Synapsin1 (Western blot) observed in SK-N-AS cells as compared 

to SK-N-SH cells (Fig. 31B).  Actin was used as the loading control for Western blot analysis, 

whereas the RPS18 served as the internal control for qRT-PCR analysis.  Overall, we have 

shown that retinoic acid sensitive SK-N-SH cells had lower levels of REST mRNA and protein 

with greater expression of differentiation markers, whereas the retinoic acid insensitive SK-N-

AS cells displayed higher levels of REST mRNA and protein with poor expression of 

differentiation markers.    

Figure 30:  REST protein is overexpressed in neuroblastoma patient samples and 

cell lines.  A. 41 neuroblastoma patient samples were evaluated for REST levels by 

immunofluorescence analysis.  B. Protein lysates from an independent set of 13 tumor 

samples were subjected to Western blot analysis for REST and Synapsin1.  C.  Lysates 

were prepared from neuroblastoma cell lines and analyzed by Western blot analysis for 

REST protein levels.  Actin was used as a loading control for Western blot analyses. 

C. 
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Retinoic acid treatment leads to decreased REST protein levels in SK-N-SH, but not SK-

N-AS cells 

Because REST is critical in neuronal differentiation, and has been previously shown to 

be transcriptionally repressed via binding of unliganded RAR to the RARE element located 

upstream of REST TS, we wanted to determine if REST played a role in retinoic acid mediated 

differentiation of certain neuroblastoma cell lines, thereby contributing to their retinoic acid 

sensitivity or insensitivity (67).  To this end we used previously published retinoic acid 

sensitive, SK-N-SH, and retinoic acid insensitive, SK-N-AS cells (124, 125). 

SK-N-SH and SK-N-AS cells were treated with 10 µM retinoic acid for 24 hours to 120 

hours, and neurite like morphological changes, reminiscent of differentiation, were noted in 

SK-N-SH, but not SK-N-AS, cells (Fig. 32). Cell cycle analysis via flow cytometry was used to 

examine the changes in sub-G1 content, an increase in which would indicative of cell cycle 

arrest and apoptosis.  Percentage of cells in each phase of the cell cycle was calculated for both 

vehicle (DMSO) and retinoic acid cells.  No significant changes in sub-G1 population were 

observed between DMSO treated and retinoic acid treated cells, thereby excepting the cell-

cycle arrest and apoptosis as major mechanisms behind sensitivity to retinoic acid treatment of 

some cells lines and not others (Fig. 33).   

 

Figure 31:  SK-N-SH cells have lower levels of REST mRNA and protein as 

compared to SK-N-AS cells.  Lysates were prepared from SK-N-SH and SK-N-AS 

cells, and analyzed for A. mRNA expression of REST and SYN1 expression  RNA was 

converted to cDNA and analyzed via qRT-PCR, with RPS18 serving as the internal 

control   B.  Protein levels of REST, Synapsin1, and β-tubulinIII were analyzed via 

Western blot and immunofluorescence analyses.  Actin was the loading control. 

B. 
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Figure 32:  Differentiation like morphological changes observed in retinoic acid 

treated SK-N-SH but not SK-N-AS cells.  SK-N-SH and SK-N-AS cells were treated 

with 10 µM retinoic acid for 24 hours to 120 hours, morphological changes were 

detected via light microscopy.  The image above is a representative image of three 

separate trials. 
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Figure 33:  No significant changes in Sub

SK-N-SH and SK-N-AS cells.  

retinoic acid and analyzed via flow cytometry for cell cycle analysis.

done in triplicate with similar results.  

  

 

DMSO and retinoic acid treated SK-N-AS and SK-N-SH cells were used for protein 

analysis, and levels for REST, RAR-α, N-MYC, SKP2, and Synapsin1 were determined via 

Western blot analysis and immunofluorescence.  A decline in REST protein was observed upon 

retinoic acid treatment at 72 hours post-treatment and maintained through the remaining length 

of the treatment, while no such change was noted in SK-N-AS cells (Fig. 34

protein appeared to increase slightly at 24 and 48 hours and declined back to baseline through 

significant changes in Sub-G1 DNA content of retinoic acid treated 

AS cells.   SK-N-SH and SK-N-AS cells were treated with 

retinoic acid and analyzed via flow cytometry for cell cycle analysis.  Experiment was 

with similar results.   
 

SH cells were used for protein 

MYC, SKP2, and Synapsin1 were determined via 

e in REST protein was observed upon 

treatment and maintained through the remaining length 

AS cells (Fig. 34A).  In fact, REST 
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Experiment was 
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the remaining length of the treatment (Fig. 34A).  RAR-α is known to decline upon retinoic 

acid treatment, and thus serving as a control for the treatment.  As expected, RAR-α protein 

levels declined in both cell lines upon treatment as compared to vehicle treated cells.  Similarly, 

retinoic acid treatment has also been previously correlated with decreased N-Myc levels. SK-

N-SH cells express MYCN, and the observed decrease in N-Myc protein upon retinoic acid 

treatment is consistent with previously published data.  SK-N-AS cells are not MYCN 

amplified, and accordingly no changes in the protein were noted.  Consistent with a 

differentiation phenotype, increase in Synapsin1 protein was detected in retinoic acid treated 

SK-N-SH cell, but not in SK-N-AS cells (Fig. 34A).  Furthermore, immunofluorescence 

analysis was conducted at 120 h after treatment, and corroborated the findings of the Western 

blot analysis, for an increase in β-tubulinIII levels, concomitant with a decline in REST protein, 

was observed in retinoic acid treated SK-N-SH, but not in SK-N-AS cells (Fig. 34B).  In SK-N-

SH cells showed REST translocation from the nucleus to the cytoplasm, where it is known to 

be degraded, while no such change was noted in SK-N-AS cells (Fig. 34B).  These results 

suggest that retinoic acid treatment leads to a decrease in REST protein levels and an increase 

in REST targets (many of which are differentiation proteins) in SK-N-SH, but not SK-N-AS 

cells. 

 

   

 

A.
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REST transcription increases upon retinoic acid treatment in both SK-N-SH and SK-N-

AS cells. 

Since REST mRNA has been previously shown to be transcriptionally modulated by 

RAR-α, we wanted to determine if the decline in REST in response to retinoic acid treatment in 

neuroblastoma was due to transcriptional down-regulation of REST (67).  Lysates were 

prepared from DMSO and retinoic acid treated SK-N-SH and SK-N-AS cells for 24-120 hours, 

and analyzed by qRT-PCR analysis for REST, RAR-α, and SYN1.  RPS18 was used as the 

internal control.  Surprisingly, an increase in REST transcription was observed in both SK-N-

SH and SK-N-AS cells upon retinoic acid treatment (Fig. 35).  However, as noted in above, 

treated cells show differential effect on  protein levels in SK-N-SH versus SK-N-AS cells, thus 

implicating a post-transcriptional contribution to the changes in REST protein observed in the 

two lines.  Accordingly, Syn1 transcription, which is negatively regulated by REST, increases 

in SK-N-SH and decreases in SK-N-AS cells, thereby mirroring the trend in REST protein  

rather than mRNA (Fig. 35). 

 

Figure 34:  Retinoic acid treatment leads to decline in REST protein and increased 

differentiation in SK-N-SH, but not SK-N-AS cells.  SK-N-SH and SK-N-AS cells 

were treated with 10 µM retinoic acid for 24-120h.  A. Protein lysates were analyzed for 

REST, RAR-α, N-MYC, SKP2, and Synapsin1 via Western blot analysis.  GAPDH 

served as a loading control.  B.  Treated cells were subjected to immunofluorescence 

analysis for REST and β-tubulinIII levels.  The images above are representative images 

of three separate experiments. 

B. 
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To better distinguish between the transcriptional and post

REST in response to retinoic acid treatment, we treated SK

cyclohexamide (10 µg/ml), an agent that block

in the presence or absence of retinoic acid (data not shown).  Protein extracts were then 

prepared and analyzed by Western blot analysis, and analyzed for REST and RAR

Figure 35:  Retinoic acid treatment leads to up

both SK-N-SH and SK-N

µM retinoic acid for 24-120h.  A. RNA was converted to cDNA, and analyzed via qRT

PCR for REST, RAR-α, and 

experiment was done in triplicate.

To better distinguish between the transcriptional and post-transcription modulation of 

REST in response to retinoic acid treatment, we treated SK-N-SH and SK

g/ml), an agent that blocks translation of mRNA into protein, for 2 hours 

in the presence or absence of retinoic acid (data not shown).  Protein extracts were then 

prepared and analyzed by Western blot analysis, and analyzed for REST and RAR

Retinoic acid treatment leads to up-regulation of REST transcription in 

N-AS cells.  SK-N-SH and SK-N-AS cells were treated with 

120h.  A. RNA was converted to cDNA, and analyzed via qRT

, and Syn1.  RPS18 was used as the internal control.  The 

experiment was done in triplicate. 

 

 

 

transcription modulation of 

SH and SK-N-AS cells with 

s translation of mRNA into protein, for 2 hours 

in the presence or absence of retinoic acid (data not shown).  Protein extracts were then 

prepared and analyzed by Western blot analysis, and analyzed for REST and RAR-α with 

transcription in 

AS cells were treated with 10 

120h.  A. RNA was converted to cDNA, and analyzed via qRT-

rnal control.  The 
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GAPDH as the loading control.  However, perhaps because of the short duration of treatment, 

our results were inconclusive (data not shown).   

 While increased transcription may partially explain the increase in REST protein 

observed up on retinoic acid treatment, mechanism leading to decrease in REST protein in SK-

N-SH cells despite increased transcription remains unknown.  REST regulation via the 

proteasome has been previously reported in cortical progenitors, where REST transcription 

remains high, while the protein is degraded (67).  We wanted to determine the contribution of 

the proteasome to regulation of REST protein in response to retinoic acid treatment.  To 

determine if the proteasome was involved, we treated the SK-N-SH and SK-N-AS with 

proteasomal inhibitor, MG132, in the presence or absence of retinoic acid as well as retinoic 

acid alone.  Again, because of toxicity to MG132 (5 µM), cells could only be treated with it for 

4 hours, which may not be sufficient to detect the more striking changes in REST protein 

observed with 24-120 hours of retinoic acid treatment.  Maintenance of higher levels of REST 

protein upon MG132 in the presence of retinoic acid as compared to retinoic acid treatment 

alone indicates that there is a proteasomal contribution to retinoic acid mediated decline in 

REST protein (Fig. 36).   

 

 

 

 

 

Figure 36:  MG-132 treatment in the presence of retinoic acid leads to an 

accumulation of REST protein in SK-N-SH and SK-N-AS cells.   SK-N-SH and SK-

N-AS cells were treated with 10 µM retinoic acid, MG-132 alone, or with both agents for 

4 h.  Protein lysates were prepared and analyzed via Western blot analysis for REST and 

RAR-α while GAPDH served as a loading control.  Experiments were repeated in 

duplicate, and the image above is a representative image. 
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Retinoic acid treatment leads to an increase in SCF
β-TRCP

 mRNA and protein in SK-N-SH 

cells, but not SK-N-AS cells. 

 SCF
β-TRCP

 is the E3 ligase that has been shown to bind to REST and promote its 

degradation via the proteasome in several epithelial tumors as well as HMECs (59, 60).  To 

explore the role of the proteasome further, we wanted to examine the status of β-TRCP in 

response to retinoic acid treatment.  To assess this, we examined β-TRCP expression in the 

cDNA prepared from previously described retinoic acid treated SK-N-SH and SK-N-AS cells.  

It appears that SCF
β-TRCP

 expression as well as protein increased in SK-N-SH cells at 24-96 

hours followed by a decline back to vehicle treated controls in protein level at 120 hours (while 

higher SCF
β-TRCP

 mRNA levels are maintained) (Fig. 37).  A decline in both that SCF
β-TRCP

 

expression and protein was noted in SK-N-AS cells at 48-120 hours after a transient increase at 

24 hours, in response to retinoic acid (Fig 37).  Overall, our data suggests that while retinoic 

acid functions to increase SCF
β-TRCP

 transcription which would subsequently translate into 

REST degradation in the retinoic acid sensitive SK-N-SH cells, the same treatment in the 

retinoic acid insensitive line leads to the opposite effect of decreasing SCF
β-TRCP

 transcription, 

thereby functioning to promote the maintenance of REST.   

  

 

A. 
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SCF
β-TRCP 

protein in maintained in a subset of neuroblastoma patient samples. 

We analyzed the levels of SCF
β-TRCP

 in patient samples to ensure that our findings in 

neuroblastoma cell lines are relevant to the patient samples by subjecting the previously 

described patient samples to immunofluorescence and Western blot analysis.  54% of the 

patient samples (22/41) analyzed by immunofluorescence either had no or low levels of SCF
β-

TRCP
 (Fig. 38A).  Furthermore, 73% of the samples with no or low SCF

β-TRCP
 (16/22) also had 

high REST protein levels (Fig. 38B).   

 

 

Figure 37:  Retinoic acid treatment leads to increased SCF
β-TRCP 

mRNA and protein 

in SK-N-SH, but not SK-N-AS cells.  SK-N-SH and SK-N-AS cells were treated with 

10 µM retinoic acid for 24-120h.  A. RNA was extracted, and analyzed via qRT-PCR for 

SCF
β-TRCP

.  RPS18 was used as the internal control.  B.  Protein lysates were prepared 

and subjected to Western blot analysis to detect SCF
β-TRCP

 protein, and GAPDH was the 

loading control.  The experiments were done in triplicate. 

B. 

A. 
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Ectopic expression of SCF
β-TRCP 

in SK-N-AS cells leads to increased interaction with 

REST, REST ubiquitination, and decreased REST protein. 

 To determine whether down-regulation of SCF
β-TRCP

 indeed contributed for the 

maintenance of REST protein in addition to transcriptional up-regulation of REST in SK-N-AS 

cells, we transfected SK-N-AS cells with either the control plasmid, pQCXIP, or with a 

plasmid containing e-GFP-β-TRCP (kindly provided by Dr. Westbook).  To ensure that SCF
β-

TRCP
 was ectopically expressed, transfected cells were collected 48h post transfection, and 

lysates were prepared for Western blot analysis.  GFP tagged β-TRCP migrated at a slightly 

higher molecular weight as compared to the endogenous (Fig. 39).  Accordingly, increased 

REST protein and decreased levels of Synapsin1 were observed, thereby indicating that 

increased expression of SCF
β-TRCP

 in SK-N-AS cells can lead to REST degradation.  These 

results further validate our previous findings, and suggest that increase and decrease in SCF
β-

TRCP
 levels noted in SK-N-SH and SK-N-AS cells respectively upon retinoic acid treatment, 

may indeed contribute to degradation or maintenance of REST (respectively) in response to 

retinoic acid treatment in both cell lines. 

 

Figure 38:  SCF
β-TRCP 

protein is overexpressed in a subset of neuroblastoma patient 

samples.  A. 41 neuroblastoma patient samples were evaluated for SCF
β-TRCP

 levels by 

immunofluorescence analysis.  B. Protein lysates from an independent set of 13 tumor 

samples were subjected to Western blot analysis for REST and Synapsin1.   

B. 
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Proteasomal degradation of a protein involves ubiquitination by an E3 ligase, thereby 

tagging the protein for degradation.  Indeed SCF
β-TRCP

 has been shown to tag REST with 

ubiquitin leading to proteasomal degradation (60).  To see if an increase in REST 

ubiquitination was observed upon overexpression of SCF
β-TRCP

 in SK-N-AS cells, lysates from 

vector or SCF
β-TRCP

 transfected cells, collected 24 hours post-transfection, were 

immunoprecipitated with anti-ubiquitin antibody and subjected to Western blot analysis with 

anti-REST antibody to determine the amount of ubiquitinated REST (Fig. 40).  Indeed 

increased ubiquitinated REST is observed in SK-N-AS cells overexpressing SCF
β-TRCP

.  

Accordingly, more SCF
β-TRCP

 was also detected in these immunoprecipitated lysates in SCF
β-

TRCP
 transfected cells.  These findings suggests that down-regulation of SCF

β-TRCP
, in addition 

to transcriptional up-regulation of REST, contributes to maintenance of REST in retinoic acid 

treated SK-N-AS cells (Fig. 40). 

Figure 39:  Ectopic expression of SCF
β-TRCP 

in SK-N-AS cells leads to decreased 

REST levels.  SK-N-AS cells with either the vector control or with a plasmid containing 

e-GFP-β-TRCP.  Protein lysates were prepared and analyzed via Western blot analysis 

for REST, SCF
β-TRCP

, and Synapsin1 levels.  GAPDH was the loading control.  

Experiment was done in triplicate, and the image above is a representative image. 
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Next, we did co-immunoprecipitation experiments where we immunoprecipitated of the 

above mentioned lysates (24 hours) with SCF
β-TRCP

, and probed for REST by Western blot 

analysis.  Analysis of specific pull-down indicates that increased amount of REST protein 

immunoprecipitates with SCF
β-TRCP

 in lysates prepared from SK-N-AS cells overexpression 

SCF
β-TRCP

 (Fig. 41A).  The converse experiment was also done in which the 

immunoprecipitation was done using anti-REST antibody or control IgG, and SCF
β-TRCP

 levels 

were analyzed by Western blot analysis.  Again, increased SCF
β-TRCP

 interaction with REST is 

observed in lysates prepared from SK-N-AS cells overexpression SCF
β-TRCP

 (Fig. 41B).  The 

latter confirms that regulation of REST by retinoic acid is at least in part mediated by changes 

in levels of SCF
β-TRCP

, which then either lead to increased or decreased proteasomal 

degradation of REST. 

 

Figure 40:  Ectopic expression of SCF
β-TRCP

 leads to increased ubiquitination of 

REST in SK-N-AS cells.  SK-N-AS cells with either the vector control or with a plasmid 

containing e-GFP-β-TRCP.  Lysates were immunoprecipitated with either anti-ubiquitin 

antibody or control IgG, and analyzed via Western blot analysis for REST and SCF
β-TRCP

 

levels.  Experiment was done in duplicate, and the image above is a representative image. 
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Figure 41:  Ectopic expression of SCF
β-TRCP

 leads to increased SCF
β-TRCP

 -REST 

interaction in SK-N-AS cells.  SK-N-AS cells with either the vector control or with a 

plasmid containing e-GFP- SCF
β-TRCP

.  Samples were collected 24 hour post-transfection.  

Cross-linked lysates were immunoprecipitated with A. either anti-SCF
β-TRCP

 antibody or 

control IgG, B. either anti-REST antibody or control IgG, and analyzed by Western blot 

analysis for REST and SCF
β-TRCP

 levels.  Experiment was done in duplicate, and the 

image above is a representative image.   

A. 

B. 
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Summary 

 

 Although a subset of neuroblastoma tumors and cell lines are sensitive to differentiation 

by retinoic acid treatment, the mechanism underlying retinoic acid mediated differentiation was 

unknown.  REST is an important regulator of neuronal differentiation, and has been shown to 

play an oncogenic role in medulloblastoma.  We have shown that REST is maintained in a 

subset of neuroblastoma tumors and cell lines.  Lower REST protein and transcript are 

observed in retinoic acid sensitive SK-N-SH cells as compared to retinoic acid insensitive, SK-

N-AS cells.  Although both cell lines display an increase in REST expression in response to 

retinoic acid treatment, REST protein declines in SK-N-SH cells, while it is maintained in SK-

N-AS cells after treatment with retinoic acid.  This led us to speculate that perhaps retinoic acid 

regulated REST transcriptionally as well as post-transcriptionally.  Maintenance of REST 

protein upon co-treatment with retinoic acid and MG132 in both cell lines suggested the 

contribution of the proteasome to maintenance of REST protein observed upon retinoic acid 

treatment.  Analysis of SCF
β-TRCP

 mRNA and protein in retinoic acid treated SK-N-SH and SK-

N-AS cells revealed an increase SCF
β-TRCP

 mRNA and protein in retinoic acid treated SK-N-SH 

cells, while a decrease was noted in SK-N-AS cells treated with retinoic acid.  Ectopic 

expression of SCF
β-TRCP

 in SK-N-AS cells led to increased SCF
β-TRCP

-REST interaction, 

increased REST ubiquitination, and a decline in REST protein concomitant with an increase in 

Synapsin1 as compared to vector control transfected cells.  A subset of patient samples do 

indeed show an inverse correlation between REST and SCF
β-TRCP

 levels, therefore further 

validating our findings as a potentially relevant mechanism in patient samples.  Our results 

suggest that retinoic acid treatment functions to increase SCF
β-TRCP

 transcription which then 

translates into REST degradation in the retinoic acid sensitive SK-N-SH cells, while the same 

treatment in the retinoic acid insensitive line leads to the opposite effect of decreasing SCF
β-

TRCP
 transcription, thus functioning to promote the maintenance of REST levels.  Overall, 

retinoic acid regulates REST levels in neuroblastoma cell lines by both transcriptional (increase 

in REST) and post-transcriptional (regulation of SCF
β-TRCP

) mechanisms.  
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Chapter7:  Discussion, conclusions, and future directions 
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Discussion 

 

REST is important for normal neurogenesis and medulloblastoma pathology. 

REST is critical for normal brain development, and is an important regulator of NSC 

proliferation and differentiation into neurons as it promotes the proliferation of NSCs while 

repressing the expression of differentiation genes (49-53, 104).  The requirement of REST 

during embryonic development is highlighted by the fact that REST knockout mice display 

premature neurogenesis and embryonic lethality by E13.5.  Consistent with its role as a 

negative regulator of neurogenesis, its levels are highest in ESCs (67).  As ESCs go through 

lineage specificity, REST is proteasomally degraded in cortical progenitors, while its 

transcription remains high (128).  Down-regulation of REST transcription is required for NPCs 

to fully differentiate into neurons concomitant with expression of REST target neuronal genes 

(67).   

REST is overexpressed in medulloblastoma tumors and cell lines, and countering REST 

activity in medulloblastoma cell lines leads to decreased proliferation and tumor forming 

potential in xenograft models (25-27).  Although, REST alone is not sufficient for tumor 

formation, overexpression of REST with v-MYC (another oncogene commonly overexpressed 

in medulloblastoma) in NSCs, leads to tumor formation in vivo (27).  Furthermore, the tumor 

forming potential of NSCs overexpressing REST and v-MYC was abrogated by countering 

REST activity, thus indicating that the tumor formation is a REST-dependent effect (27).  A 

recent study from our lab has shown that high REST protein levels correlate with poor overall 

survival and event free survival in patients across all medulloblastoma subgroups (28).  

Although the REST plays a role in medulloblastoma pathology, mechanism underlying 

maintenance of REST levels unexplored. 

 

REST is transcriptionally mis-regulated in medulloblastoma patient samples. 

Since NPCs from the cerebellar EGL and dorsal brainstem are considered the cells of 

origin of medulloblastoma, and REST has been previously shown to be transcriptionally 

maintained NPCs of the cortex, we examined whether REST transcription was aberrant in 

medulloblastoma patient samples (67).  Our analysis of two independent sets of patient samples 

showed that REST expression is higher as compared to normal brain tissue in a subset of 

medulloblastoma samples, thus suggesting that REST is transcriptionally mis-regulated in a 
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subset of medulloblastoma.  To our knowledge, our study is the first to show maintenance 

REST transcript in medulloblastoma patient samples.  Although a previous study analyzed 

snap-frozen medulloblastoma patient samples for REST expression, it was to correlate REST 

mRNA with MYC mRNA in the tumors, and the samples were not normalized to non-tumor 

normal brain tissue (27).  Without the context of REST mRNA in normal brain, the status of 

REST transcript in these tumors remains unclear. 

As exemplified by cortical progenitor cells, where REST transcription remains high, 

while the protein is degraded, REST is regulated differentially both by transcriptional and post-

transcriptional mechanisms (67).  We focused on the mechanisms contributing to 

transcriptional mis-regulation of REST because our analysis of medulloblastoma patient 

samples revealed increased REST transcription relative to normal brains in a subset of the 

tumors. 

 

HES1 represses REST expression in medulloblastoma cells.  

Although, several molecules have been implicated in regulation of REST transcription, 

such as RAR-α, NeuroD2, and β-catenin-TSC2 complex in neural cells, we focused our 

attention on HES1 because it is critical for normal brain development, serving a similar 

function as REST by maintaining NSCs population and cellular diversity, and is expressed 

during a similar developmental time frame as REST (67, 83-85, 95, 96, 113).  HES1 has also 

been implicated in medulloblastoma pathology, although its exact role remains unclear.  Given 

that HES1 is a transcription factor that generally functions to silence its target gene expression 

by binding to its consensus sequences (N-boxes) in the regulatory regions of the target genes, 

we analyzed -7 kb of the REST 5’ upstream region which yielded the presence of five N-boxes, 

three of which have been previously validated for HES1 binding in non-neural HeLa cells (82).  

ChIP assays in DAOY and D283 cells, which have high levels of HES1 protein as compared to 

cerebellar lysate, revealed that HES occupies the N-boxes described above, thus providing a 

potential for regulation of REST in medulloblastoma.   

We performed loss of function experiments by interfering with HES1 activity in DAOY 

cells, where HES1 protein is overexpressed, while gain of function experiments by ectopic 

expression of HES1 were done in MB01110 cells, where HES1 protein was not detected.  This 

analyses revealed that HES1 represses REST expression in medulloblastoma cells, which is 

consistent with its role as a repressor of target gene expression.  To our knowledge ours is the 
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first study to report regulation of REST expression by HES1 in the context of medulloblastoma.  

Our findings are supported by previous reports of HES1 binding to and repressing REST 

transcription in non-neural in HeLa cells (82).   

Despite the changes in REST transcription observed upon HES1 modulation, changes in 

REST protein in response to modulation by HES1 were transient and inconsistent across 

triplicates at the same time points.  This may occur either because of a compensatory 

mechanism by the medulloblastoma cells, or because differential regulation of REST on a 

transcriptional and post-transcriptional level so that REST transcript does not necessarily 

correlate with REST protein.  Indeed, previous studies have shown that REST is regulated 

separately at both transcriptional and post-translational levels, which may account for our 

inconclusive protein data (67, 124).  Cancer cells are known to up-regulate compensatory 

pathways as a survival mechanism in response to agents that modulate key cellular processes.  

It is possible that increase in REST transcription does not reliably translate into REST protein 

because of up-regulation of degradation machinery.  A previous study from our lab showed that 

while retinoic acid treatment led to increased REST transcription in both retinoic acid 

insensitive and sensitive cell lines, a decrease in REST protein was noted in the sensitive cell 

line, while REST levels were maintained in the insensitive cell line (124).  We discovered that  

the insensitive cell line down-regulated SCF
β-TRCP

 mRNA and protein in response to retinoic 

acid treatment, which then translated into decreased REST protein and a lack differentiation of 

the cell line, despite the observed increase in REST transcription.  This mechanism contributed 

to retinoic acid insensitive phenotype of the cells, for it was not seen in retinoic acid sensitive 

cell-line SK-N-SH, where an increase in the transcription of SCF
β-TRCP

 is observed in response 

to retinoic acid treatment (124).  Our findings are further corroborated by previously described 

down-regulation of REST protein by proteasomal degradation in cortical progenitor cells, while 

REST transcription is maintained (67) .  It would be interesting to see if increase in SCF
β-TRCP

 

mRNA and protein occurs in response to HES1 modulation in medulloblastoma cell lines.  

Increased apoptosis also remains a possibility as various cancer cells have been reported to 

increase apoptosis of certain cells in order to avoid undergoing differentiation.  Regulation of 

HES1 mRNA and protein upon modulation of HES1 may also be occurring because of the 

existence of a HES1 feedback loop, thereby further complicating our interpretation of the 

results (118, 119). 
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HES1 modulation of REST led to reciprocal changes in REST target genes, many of 

which are neuronal differentiation genes, which is consistent with the function of REST as a 

repressor of its target genes.  This was unexpected because conclusive protein data for REST 

upon HES1 modulation was unavailable.  However, the changes in REST target genes may 

indeed be because of transient changes in REST protein, for western blot analyses did show an 

increase in REST protein at some time points in DAOY cells upon HES1 modulation (but as 

stated before, the changes were not reproducible across triplicates for the same time points).  

Alternatively, a possibility remains that the changes in differentiation genes are independent of 

REST, and may occur in response to HES1 modulation, since HES1 itself is a pro-proliferative 

anti-differentiation protein, and has been previously shown to repress pro-differentiation genes. 

Interestingly, interference of HES1 activity using the C-terminus deletion mutant of 

HES1 (MigR1-Bhlh-OR-GFP) appeared to provide a survival advantage to DAOY cells over 

time as measured by the competitive proliferation assay.  Accordingly, overexpression of HES1 

into these cells led to decreased survival over time as much a fewer percentage of GFP positive 

cells remain as compared to control infected cells.  These results were surprising because Fan et 

al., 2006 have previously reported a decrease in anchorage independent growth potential of 

DAOY cells upon HES1 knockdown.  One reason for these seemingly disparate results may be 

because HES1 knockdown was measured by mRNA expression of HES1 in this study.  Our 

data suggests that HES1 feedback loop is intact in medulloblastoma cells, so that a change in 

mRNA expression may not necessarily correlate with a similar change in HES1 protein, thus 

necessitating independent measures of both.  Alternatively, the possibility remains that in a 

subset of medulloblastoma tumors, where HES1 represses REST expression, HES1 

overexpression is disadvantageous to survival, while in another medulloblastoma subtype, 

where this mechanism is not functional, HES1 may serve a pro-proliferative function.  

Correlation of HES1 protein and REST transcript in medulloblastoma tumor samples with 

patient survival would be instrumental for determining whether the contribution of HES1 to 

survival is dictated by medulloblastoma subtype.  Interestingly, the increase in survival of 

DAOY cells observed upon introduction of the C-terminus deletion mutant of HES1 (MigR1-

Bhlh-OR-GFP) was not recapitulated upon infection of point mutant of HES1 (MigR1-WRPW-

GFP).  The deletion mutant of HES1 (MigR1-bHLH-OR-GFP) lacks the proline and WRPW 

domains, while the point mutant of HES1 (MigR1-WRPW-GFP) contains only two point 

mutations in the WRPW domain.  The pro-survival effect of the deletion mutant as compared to 
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the point mutant may represent a domain specific contribution of HES1 activity to survival of 

medulloblastoma cells.  Perhaps the lack of the proline domain of HES1, which has been 

shown to bind the mSin3 complex, promotes survival of medulloblastoma cells.   Detailed 

analysis by mutagenizing various domains of HES1 would be required to determine the 

differential effect of each of the HES1 mutants observed on medulloblastoma cell survival.   

We wanted to know whether the change in the survival of the medulloblastoma cells in 

response to HES1 modulation could potentially translate into a change in tumor forming 

potential in vitro.  To explore this, we did an anchorage independent growth assay with 

MB01110 since it is a recently derived patient line, and therefore may more faithfully represent 

patient tumors.  Although we successfully established that MB01110 cells do indeed display 

anchorage independent growth, technical difficulties because of sensitivity of the cells to our 

treatment, precluded conclusive analysis of the effect of HES1 overexpression on their 

anchorage independent growth capacity.  Alternatively, we could modulate HES1 activity in 

DAOY cells using mutants of HES1, which would provide useful information regarding the 

effect of modulating HES1 activity on anchorage independent growth potential in vitro.  

DAOY cells have been previously shown used to study the effect of various treatments on the 

anchorage independent growth (116). 

Thus far we have shown that HES1 binds to and regulates REST expression in 

medulloblastoma cell lines.  Despite the fact that changes in REST protein are transient and 

inconsistent, modulation of HES1 leads to changes in the differentiation genes, many of which 

are REST target genes.  We further showed that modulation of HES1 leads to a change in 

survival of medulloblastoma cells, and we are currently in the process of determining whether 

this change in the survival translates into to an altered tumor formation potential in vitro.  To 

our knowledge, our study is the first to show that HES1 regulates REST expression in 

medulloblastoma cells, and that HES1 is disadvantageous to the survival of these cells.    

 

REST represses its own transcription in an auto-regulatory loop 

 Interestingly, our search for potential transcription factor binding sites to the REST 5’ 

upstream region yielded three RE-1 sites, thereby suggesting the possibility for an auto-

regulatory mechanism.  Our findings were corroborated by the discovery of one of these RE-1 

sites discovered in the ChIP-seq screen for REST binding sites in non-neural Jurkat cells (65).  

We tested REST occupancy of the RE-1 sites in medulloblastoma cell lines, DAOY and D283 
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cells, which have been previously shown to have high REST protein (25).  Although we could 

not amplify the previously described RE-1 site because of high GC content of the amplicon, 

REST was found bound to the other two sites, thereby providing a potential for auto-regulation.   

Interfering with REST activity in DAOY cells by using a mutant of REST (MigR1-

REST-DBD-GFP, which contained DNA binding domain of REST, while lacking the two 

repression domains), led to increased REST transcription, along with consistent changes 

observed in other previously validated REST target genes, such as SYN1 and SCG10, thus 

suggesting that REST indeed regulates its own transcription.  To ensure that REST repressed its 

expression by binding to the RE-1 sites directly, rather than an indirect mechanism, was 

because of an indirect mechanism, we designed luciferase constructs with either wildtype or 

mutagenized RE-1 sites.  Stable expression of the constructs into DAOY cells, followed by 

measurement of the luciferase activity, indicated increased luciferase expression in cells with 

the mutagenic luciferase construct as compared to the cells with the wildtype construct, thus 

supporting our mRNA findings.  These experiments led us to conclude that REST indeed 

regulates its own transcription in medulloblastoma cells in an auto-regulatory loop, and that this 

effect is specifically mediated through REST binding to the RE-1 sites.   

Consistent with the presence of a feedback loop, no global changes in survival potential 

upon interference with REST DBD were observed.  Although, the increase in previously 

validated REST target differentiation genes upon interference with REST activity lends 

credence to our novel finding of REST regulating its own transcription, it once again 

demonstrates that changes in REST mRNA do not necessarily correlate with REST protein and 

activity.  It remains to be determined if changes in REST transcription translate into REST 

protein, but the presence of REST-DBD may mask any effect that increased REST protein may 

be having on its target genes.  It is also possible that increased REST transcription leads to 

increased REST protein, but the protein is degraded by the proteasomal machinery.  Finally, 

differential transcriptional and post-transcriptional regulation of REST may also be responsible 

for changes noted in REST target genes.  Further experiments would be needed to distinguish 

between these possibilities.   

 We have shown that REST binds to the RE-1 sites located -6.2 and -6.8 of TS of REST 

5’ upstream region, and represses its own transcription.  Although a feed-forward loop 

involving β-catenin-TSC2-REST has been previously described, to our knowledge, this is the 

first time that REST has been shown to directly regulate its own transcription by a feedback 
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loop (85).  The implications for our results in the context of previously described separate 

REST feed-forward loop are unclear as of now.  It would be interesting to determine if the 

REST feedback loop is implicit to certain subtypes of medulloblastoma.  Elevated REST 

protein has been previously correlated with poor patient overall survival and event free survival 

across multiple subtypes (28).  If the REST feedback loop is functional in these tumors, 

increased REST transcription may be a positive prognostic indicator.   

 

REST-HES1 co-repress REST transcription 

 The N-box located at -6.5 kb of the 5’ REST upstream region is in close proximity to the 

-6.2 and -6.8 RE-1 elements, and all that three sites have been validated for HES1 and REST 

binding respectively as shown above.  Given the previously described seminal role of REST 

and HES1 in normal development as well as implication of both proteins in medulloblastoma 

pathology, we wanted to study if HES1 and REST could potentially co-regulate REST 

expression in medulloblastoma.  We first assessed the presence of HES1 and REST 

independently at the previously validated RE-1 sites and N-boxes respectively by ChIP assay, 

which confirmed HES1 binding to both RE-1 sites in both cell lines, while REST occupancy 

was not detected at any of the N-boxes tested.  ChIPs for HDAC1 and HDAC2 indicated 

occupancy of both HDACs at the RE-1 sites, thus further corroborating our results, for both 

HDACs are part of the REST repressive complex, while HDAC1 is associated with the HES1 

repression complex.  This suggested that both REST and HES1 are potentially functional at 

these sites.  Interestingly, despite previous HES1 binding observed at the N-box located at -6.5 

kb from TS, no HDAC occupancy was detected, which may indicate that either that HES1 is 

present but not functional, or that perhaps HES1 displays differential regulation at this 

particular site.  Indeed, presence of HDAC1, which can either associate directly with TLE-1 or 

can be recruited as part of the mSin3 complexes (which also associates with TLE-1), is not 

observed as HES1 switches to an activator (110).  The activation role of HES1 is mediated by 

parylation of several components of the HES1 complex, including HES1 itself, and dismissal of 

the repressive components of the complex, including TLE-1 (110).  Further experiments would 

be necessary in order to delineate between these possibilities.    Sequential ChIP to test for 

simultaneous co-occupancy of REST and HES1 at our sites of interest also indicated the co-

occupancy of both REST and HES1 only at the RE-1 sites, thus supporting the results of single 

HES1 and REST ChIPs as well as HDAC1 and HDAC2 ChIP.   
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Preliminary co-fractionation and co-IP experiments to determine whether the HES1 and 

REST could interact together in medulloblastoma cells indicated the existence of the complex.  

Both proteins were detected in the same fraction along with the positive controls, thus implying 

that at least a fraction of endogenous REST and HES1 interact with one another.  

Immunoprecipitation with anti-Flag antibody and western blot for HES1 and REST using 

DAOY expressing exogenous REST and HES1 respectively, further showed that REST and 

HES1 interact with one another further corroborated the findings of the co-fractionation 

experiment.  Although preliminary, the interaction of HES1 and REST has not been shown 

before.  Further experiments would be needed to understand the functional significance of this 

complex, and its contribution to regulation of REST expression.   

Since HES1 and REST co-occupy the RE-1 sites, and the two proteins appear to 

complex together, we wanted to know whether one protein was required for the binding and/or 

repressive activity of the other.  To determine whether HES1 was required for the repressive 

activity of REST on the RE-1 sites, we interfered with REST activity using REST-DBD in 

MB01110, a cell line with no detectable HES1.  An increase in REST transcription was 

observed along with increase in other REST target genes, which is consistent with our findings 

in DAOY cells, where both HES1 and REST proteins are expressed.  However, the change in 

REST transcription in MB01110 cells upon modulation of REST activity is greater than that 

observed in DAOY cells.  Further experiments are needed to determine whether the greater 

increase in REST transcription in MB01110 cells as compared to DAOY cells is an artifact of 

two different cell lines, or a specific effect of lack of HES1 on REST transcription in 

MB01110.  If a specific effect, it would suggest that perhaps HES1 further contributes to the 

repressive activity of REST in DAOY cells, thus leading to less of an increase in REST 

transcription upon modulation of REST activity, as HES1 may still be present at that site.  

Further experiments to determine the mechanism underlying recruitment of HES1 and REST to 

the RE-1 sites, and if the presence of one protein is necessary for the other to bind would be 

interesting to pursue.  Interestingly, a REST ChIP assay in MB01110 cells revealed no REST 

occupancy in this cell line, thus suggesting that perhaps HES1 is important for recruitment of 

REST to these sites.  To conclusively determine that HES1 is indeed required for REST 

binding to RE-1 sites, analysis of REST occupancy to the RE-1 sites by ChIP assay from 

lysates prepared from MB01110 with ectopic expression of HES1 would be necessary.  The 

increase in REST mRNA observed upon modulation of REST activity in the absence of RE-1 
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binding led us to conjecture that perhaps the effect of REST-DBD on REST expression is 

indirect.  We cannot exclude the possibility that REST may still be binding to the RE-1 site 

located at +0.8 downstream of TS because we were unable to amplify that specific site as 

previously indicated.     

To determine whether HES1 and REST co-regulate REST expression we designed the 

following luciferase constructs: wildtype luciferase construct, luciferase with RE-1 sites 

mutagenized, luciferase with -6.5 N-box mutagenized, or luciferase with all three sites 

mutagenized.  These constructs were stably transfected into DAOY cells and a luciferase 

activity was measured.  A greater increase in luciferase activity was observed upon 

simultaneously mutating both of the RE-1 sites and N-box as compared to mutating either the 

RE-1 site or the N-box alone, thus providing conclusive evidence that REST and HES1 co-

repress REST expression and DAOY cells.  It would be interesting to repeat the luciferase 

experiment in MB01110 cells in the presence and absence of DBD and HES1 to determine if 

the effect of REST-DBD on REST expression is indirect.   

Overall, we have shown that REST and HES1 co-occupy the RE-1 sites, and co-repress 

REST expression in medulloblastoma cells.  A model summarizing our findings regarding the 

contribution of HES1 and REST on the transcriptional regulation of REST is presented below 

(Fig. 42).  In the presence of both HES1 and REST, as is observed in DAOY cells, HES1 and 

REST both co-occupy RE-1 sites, along with HDAC1 and HDAC2 (Fig. 42A).  N-boxes are 

occupied by HES1 and associated HDAC1, but not REST and HDAC2, thus suggesting the 

occupancy of HES1 independent of REST at those sites (Fig. 42A).  Our luciferase data 

suggests that when both HES1 and REST are present, then greater repression of REST 

expression is observed as compared with the presence of either protein alone.  In the absence of 

HES1, observed in MB01110 cells, neither REST nor HES1 occupancy is detected at N-boxes 

or RE-1 sites, thus indicating that HES1 may be required for REST occupancy at the RE-1 sites 

(Fig. 42B).  Our luciferase experiments performed in DAOY cells with simultaneous mutations 

in RE-1 sites and N-box lead us to hypothesize that REST transcription should be higher in 

MB01110 cells, for occupancy of REST and HES1 is not detected at the  RE-1 site.  

Preliminary transcript data indeed shows lower levels of REST transcription in DAOY cells as 

compared to MB01110, however, further experiments are needed in order to confirm our 

preliminary findings.  It would be interesting to determine if overexpressing HES1 in MB01110 

would lead to occupancy of REST at the RE-1 sites.  Similarly, the effect of simultaneous 
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interference with both HES1 and REST activities in DAOY cells on REST expression remains 

to be determined.  We have also shown HES1 and REST form a novel complex, and that HES1 

appears to be required for REST binding to RE-1 site, but further experiments are required to 

conclusively assess the requirement of HES1 for REST binding, or versa-visa.  Our studies 

indicate that, HES1 and REST, two proteins that have been previously shown to publish in an 

oncogenic capacity, co-operate to repress the expression of REST.  This may be one mechanism 

by which medulloblastoma cells maintain REST expression within a threshold necessary for 

their survival.  It would be interesting to determine the contribution of post-translational 

regulation to the co-operative mechanism by which HES1 and REST control REST expression.  

Prognostic and therapeutic impact of this mechanism remains to be determined.   

      
  

      

      

 

 

Retinoic acid regulates REST protein via modulation of SCF
β-TRCP 

 

 Neuroblastoma occurs in the sympathetic tissues, and NSCs from the developing neural 

crest are considered the cells of origin.  Retinoic acid is a differentiating agent, and is a 

mainstay for neuroblastoma treatment, but the mechanism behind retinoic acid mediated 

differentiation remains unknown.  A better understanding of this mechanism will provide 

Figure 42:  Model of HES1 and REST co-repression of REST expression.  

A.  In the presence of HES1 and REST (DAOY cells), RE-1 sites are co-

occupied by both REST and HES1, along with HDAC1 and HDAC2.  These 

components function to co-repress REST transcription.  B.  In the absence of 

HES1 (MB01110), neither N-boxes nor RE-1 sites are occupied by HES1 or 

REST.   The lack of repression by HES1 and REST leads to up-regulation of 

REST transcription.  

In the presence of HES1 

In the absence of HES1 

A. 

B. 
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insights into the mechanism behind retinoic acid sensitivity and resistance of neuroblastoma 

cells lines and tumors, which can potentially translate into improved therapeutics.  Given the 

critical role of REST is normal neurogenesis, where it suppresses neuronal differentiation, we 

wanted to determine if REST contributed to retinoic acid mediated differentiation of 

neuroblastoma cell lines. 

 Since the role of REST is neuroblastoma had not yet been explored, we first wanted to 

determine the status of REST in neuroblastoma patient samples and cell lines.  Analysis of two 

separate sets of patient samples revealed that REST is maintained in many neuroblastoma 

patient samples.  REST was also detected in several neuroblastoma cell lines, albeit at different 

levels.  This is consistent with overexpression of REST observed in medulloblastoma patient 

samples and cell lines, another neural tumor.   

 To explore the mechanism behind retinoic acid mediated differentiation of 

neuroblastoma cell lines, all subsequent studies were done in previously published retinoic acid 

sensitive SK-N-SH and retinoic acid insensitive SK-N-AS cell lines (126, 127). We further 

characterized REST expression in these cells, and saw that while SK-N-SH cells display lower 

levels of REST mRNA and protein concomitant with higher levels of REST targets SynapsinI 

and β-tubulinIII, as compared to SK-N-AS cells.  The latter is consistent with the more 

differentiated phenotype of SK-N-SH cells as compared to SK-N-AS cells.  To assess the effect 

of retinoic acid treatment on REST, we treated both cell lines with retinoic acid, and analyzed 

REST and REST target mRNA and protein levels via qRT-PCR, Western blot, and 

immunofluorescence analyses.  Although increase in REST expression upon retinoic acid 

treatment in both cell lines was observed, SK-N-SH cells showed a decline in REST protein, 

while SK-N-AS cells displayed the expected increase in REST levels (consistent with increased 

transcription).  Protein and mRNA levels of Synapsin1 and tubulin were consistent the changes 

in REST protein in both cell lines, with an increase in target genes observed in SK-N-SH cells, 

while a decrease was observed in SK-N-AS cells.  Our findings are supported by a previous 

study which showed that unliganded RAR-α can bind to and repress REST transcription in 

cortical progenitors.  It is interesting that in the presence of retinoic acid (a differentiation 

agent), and thereby a liganded RAR-α, an increase in REST transcription is observed.  The 

same study also showed that REST is regulated by different mechanisms both transcriptionally 

and post-transcriptionally in cortical progenitors, thereby lending credence to our REST 

disparate mRNA and protein findings in response to retinoic acid treatment in SK-N-SH cells 
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(67).  Lack of change in the Sub-G1 population of both cell lines upon retinoic acid treatment 

excluded apoptosis and cell cycle arrest as major contributing mechanisms.   

 To delineate between the transcriptional and post-transcriptional mechanisms by which 

retinoic acid may be regulating REST, we attempted a co-treatment of cyclohexamide and 

retinoic acid.  However, our results were difficult to interpret, perhaps because of the limited 

duration of treatment (2 hours).  Alternatively, to determine if proteasomal degradation may be 

involved in regulation of REST in response to retinoic acid, both cell lines were co-treated with 

MG132 and retinoic acid.  A limitation of this experiment is the toxicity of cell lines to MG132 

treatment, which allowed only 4 hour treatments with MG132 and retinoic acid.  Since we have 

treated cells with retinoic acid for at least 24 hours, some of the effects of retinoic acid may be 

masked by the significantly decreased treatment times.  Despite these limitations, analysis of 

REST protein in these samples showed that a block of retinoic acid mediated decline was 

indeed observed n SK-N-SH cells.   

SCF
β-TRCP 

has been previously shown to interact with, and ubiquitinate REST, thereby 

promoting its proteasomal degradation (59, 60).  Since the MG132 experiment implicated the 

involvement of proteasome as a potential mechanism for retinoic acid mediated changes in 

REST, we wanted to know if retinoic acid treatment led to changes in SCF
β-TRCP 

levels in SK-

N-SH and SK-N-AS cells.  Differential mRNA and protein levels of SCF
β-TRCP 

were observed 

in retinoic acid treated SK-N-SH and SK-N-AS cells.  Retinoic acid functions to increase SCF
β-

TRCP 
mRNA and protein which may subsequently translate into REST degradation in the 

retinoic acid sensitive SK-N-SH cells, but the same treatment in the retinoic acid insensitive 

SK-N-AS cells leads to the opposite effect of decreasing β-TRCP mRNA and protein, thereby 

potentially promoting the maintenance of REST levels.  Ectopic expression of SCF
β-TRCP

 in SK-

N-AS cells led to increased interaction REST and SCF
β-TRCP

 as well as increase in REST 

ubiquitination and degradation, concomitant with increase in SynapsinI levels.   

 Overall, our study has shown that REST is a key player in determining the differential 

response of retinoic acid sensitive and insensitive cells lines upon retinoic acid treatment.  

Although retinoic acid treatment leads to an increase in REST mRNA in both cell lines, 

retinoic-acid sensitive SK-N-SH cells up-regulate β-TRCP expression to promote degradation 

of REST, thus promoting differentiation.  However, retinoic acid insensitive cells down-

regulate β-TRCP upon retinoic acid treatment, which along with the increased REST 
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transcription, promotes maintenance of REST, thereby contributing to the retinoic acid 

insensitivity of these cells. 
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Conclusions 

 

We have demonstrated that: 

1.  REST is transcriptionally mis-regulated in medulloblastoma patient samples.   

This was demonstrated via qRT-PCR analysis of two separate sets of snap-frozen and 

paraffin embedded patient samples, where 35% and 65% of tumor samples displayed 

increased expression of REST as compared to non-tumor normal brain. 

2. HES1 binds to N-boxes in REST 5’upstream region. 

HES1 occupancy of N-boxes located -3.7 kb, -4.4 kb, and -6.5 kb from TS was 

determined by ChIP assay in DAOY and D283 cells. 

3. HES1 regulates REST transcription.  

This was demonstrated by modulating with HES1 activity via various HES1 constructs, 

and measuring REST expression via qRT-PCR.  Interfering with HES1 activity in 

DAOY cells led to an increase in REST expression, while ectopic expression of HES1 

in MB01110 cells led to a decrease in REST transcription.    

4. Modulation of HES1 activity leads to change in expression of neuronal differentiation 

genes. 

This was demonstrated by modulating HES1 activity via various HES1 mutant and 

wild-type constructs, and measuring Syn1 and SCG10 transcription via qRT-PCR.  

Interfering with HES1 activity in DAOY cells led to a decrease in SCG10 expression, 

while ectopic expression of HES1 in MB01110 cells led to an increase in Syn1 

transcription.    

5. Modulation of HES1 activity leads to altered change in survival potential of DAOY 

cells. 

This was demonstrated by modulating HES1 activity via various HES1 mutant and 

wild-type constructs, and performing a competitive proliferation assay, where 

interfering with HES1 activity with MigR1-bHLH-OR-GFP led to an increase in the 

percentage of cells expressing the construct, whereas a decrease in percentage of cells 

expressing MigR1-HES1-GFP construct was observed.    

6. REST binds to RE-1 sites discovered in REST 5’ upstream region. 

REST occupancy of RE-1 sites located -6.2 kb and -6.2 kb from TS was determined by 

ChIP assay in DAOY and D283 cells. 
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7. REST regulates its own expression in an auto-regulatory loop. 

This was demonstrated by interfering with REST activity via a mutant of REST, and 

measuring REST expression via qRT-PCR.  Interference with REST activity led to an 

increase in REST expression.   

8.  HES1 and REST co-occupy the REST 5’ upstream region. 

HES1 and REST co-occupancy of RE-1sites located -6.2 kb and -6.8 kb, and - was 

determined by ChIP assay in DAOY cells.  We also found that HES1 occupancy was 

detected at two RE-1 sites in HES1 ChIP samples from DAOY and D283 cells.  

HDAC1 and HDAC2 were also detected at both RE-1 sites in DAOY cells. 

9. HES1 and REST interact in DAOY cells. 

This was demonstrated by co-fractionation and Co-IP experiments in DAOY cells.  Co-

fractionation  

10.  REST modulates REST expression in the absence of HES1. 

This was demonstrated by interfering with REST activity via a mutant of REST in 

MB01110 cells, which do not express any detectable HES1 protein, and measuring 

REST expression via qRT-PCR.  Interference with REST activity led to an increase in 

REST expression, and this increase was greater than that noted in DAOY cells. 

11.  REST does not bind to RE-1 sites in the absence of HES1.  

REST occupancy of RE-1 sites located -6.2 kb and -6.2 kb from TS in MB01110 cells, 

which lack any detectable HES1 protein, was determined by ChIP assay.  No REST 

occupancy was detected at the RE-1 sites. 

12.  REST is overexpressed in neuroblastoma patient samples and cell lines. 

This was demonstrated by analysis of two separate set of patient samples by 

immunofluorescence and Western blot analyses.   

13.  Retinoic acid treatment leads differential regulation of REST mRNA and protein in 

retinoic acid sensitive SK-N-SH and retinoic acid insensitive SK-N-AS cells.   

This was demonstrated by qRT-PCR, Western blot, and immunofluorescence analyses 

of both cell lines upon retinoic acid treatment.  Retinoic acid treatment leads to an 

increase in REST transcript in both SK-N-SH and SK-N-AS cells.  A decline in REST 

protein is observed in SK-N-SH cells, while SK-N-AS cells display increased REST 

levels. 
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14.  Retinoic acid modulates REST levels in SK-N-SH and SK-N-AS cells by regulating 

SCF
β-TRCP 

expression. 

This was demonstrated by qRT-PCR and Western blot analyses of both cell lines upon 

retinoic acid treatment.  SK-N-SH cells showed up-regulation of β-TRCP expression, 

whereas down-regulation of β-TRCP mRNA was observed in SK-N-AS cells.  Inverse 

correlation between REST and β-TRCP was also observed in patient samples. 

15.  Ectopic expression of β-TRCP in SK-N-AS cells leads to increased REST- SCF
β-TRCP 

interaction, increased REST ubiquitination, decreased REST protein, and increased 

Synapsin1 levels. 

This was demonstrated by overexpressing β-TRCP in SK-N-AS cells, and analyzing the 

lysates via co-IP for REST- β-TRCP interaction and performing ubiquitin IP to detect 

change in REST ubiquitination.  Western blot was done for REST and Synapsin1 

protein levels. 
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Future Directions 

 

Determining if modulation of HES1 activity translates into a change in tumorigenic 

potential of medulloblastoma cell lines.   

 We showed that interfering with HES1 activity leads to an increase in REST expression, 

while ectopic expression of HES1 leads to a decrease in REST transcription in medulloblastoma 

cell lines.  Concomitant changes in REST target differentiation genes were also observed 

consistent with changes in REST.  Furthermore, interference with HES1 using MigR1-bHLH-

OR-GFP, the c-terminus deletion mutant, appears to provide a proliferative advantage over 

time to cells expressing the construct, while HES1 overexpression led to a decrease in 

proliferative potential of transgene expressing cells.  We would next like to determine if 

modulation of HES1 in medulloblastoma cell lines would lead to an altered tumorigenic 

potential.  Although our initial studies with the use of MB01110 have been unsuccessful in 

providing a clear answer because of technical problems, we continue to address these issues by 

use of more suitable equipment which would soon be available to the MD Anderson sorting 

facility.  We also would like to repeat similar experiments in a different medulloblastoma cell 

line, DAOY.  We would like to further determine if an altered tumorigenic potential upon 

HES1 modulation is also noted in vivo using xenograft models.  If the technical issues are 

resolved, we would like to use MB01110 cells for the in vivo experiments, since it is a more 

recently derived primary cell line it may better reflect the patient tumors as compared to 

established cell lines.  Although we have established that this cell line displays anchorage 

independent growth in vivo, we would first have to determine the tumorigenic potential of this 

cell line in vivo. 

Determine the effect of HES1 modulation upon REST protein.                                 

 Although a significant change in REST transcription is observed upon HES1 modulation 

in medulloblastoma cell lines, a consistent change in REST protein is not reproducible at the 

same time points.  The latter suggests differential mechanisms of regulating REST transcript 

and protein in these cells.  We would like to determine how REST protein is regulated upon 

HES1 modulation.  Since REST has been previously shown to be regulated via proteasomal 

degradation, we would first like to determine the involvement of the proteasome by treating 

cells expressing various HES1 construct with either cyclohexamide, which is an inhibitor of 
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translation, or MG-132, a proteasomal inhibitor.  This would allow us to distinguish between 

the contributions of transcriptional and post-translational mechanisms on REST protein under 

our treatment conditions.  If either of these possibilities is implicated, then further studies 

regarding mechanism regulating would be of interest.   

Determine the status of REST protein in response to modulation of REST activity.        

 Our results show that interference with REST activity using REST DBD resulted in 

increased REST expression.  Expression of other REST target genes, such as Syn1 and SCG10 

was also observed.  The latter leads us to speculate that either increased REST expression is not 

translated into increased REST protein, for the target gene expression remains low, or that the 

presence of REST DBD does masks the effect of increased REST protein.  We would like to 

distinguish between these possibilities by doing a western blot for REST protein to determine if 

REST is indeed being expressed.  Again, as proposed above, if increase in REST protein is not 

detected, then the contributing mechanism would be explored protein is detected.   

Determine if HES1 is necessary for REST to bind to the RE-1 sites located on the REST 5’ 

upstream region.                                                                                                      

 We showed that REST binds to the RE-1 site located on the REST 5’ upstream region in 

DAOY and D283 cells, and that HES1 and REST co-occupy the two RE-1 sites in DAOY cells.  

In D283 cells, although SeqChIP experiments were not performed, occupancy of HES1 was 

observed at the RE-1 sites.  REST ChIP experiments in MB01110, a cell line with no detectable 

levels of HES1 protein, did not reveal REST occupancy at the RE-1 sites, thereby suggesting 

that perhaps HES1 is required REST binding to the RE-1 sites in medulloblastoma cell lines.  

We would like to explore this possibility further by subjecting MB01110 cells overexpressing 

HES1 to ChIP assay to determine if a change in REST occupancy at the RE-1 sites is observed.  

If REST is indeed binding to the RE-1 sites under these conditions, then we would like to 

abrogate REST binding via REST-DBD, and determine if HES1 continues to bind, as well as 

the effect on REST transcription.   

Determine the nature of HES1-REST complex in medulloblastoma cell lines.                                           

 Our preliminary data suggests that HES1 and REST form a complex in DAOY cells.  

Since both associate with co-repressor complexes with several components in common, such as 

mSin3, HDAC1, and HDAC2, it would be interesting to determine if REST and HES1 interact 

directly of via their co-repressor complexes.  Co-IP and co-fractionation experiments conducted 
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on lysates from medulloblastoma cells expressing various domain mutants of REST, HES1, or 

both would be necessary to better characterize this interaction.  We expect that since different 

domains of both proteins are associated with various complexes, deletion/mutation of these 

domains would abrogate HES1-REST complex.  ChIP experiments with the use of these 

construct may further shed light on the functional significance of this interaction.  Since REST 

has been previously implicated in an oncogenic role in medulloblastoma, and HES1 and REST 

appear to regulate REST expression, therapeutic implications of abrogating REST-HES1 

interaction would also be interesting to explore. 

 

Determine if the regulation of REST via these various mechanisms is consistent in normal 

neurogenesis. 

 We have shown different mechanisms via which REST expression can potentially be 

regulated in medulloblastoma cell lines.  Since both HES1 and REST are critical for normal 

brain development as well as neurogenesis, perhaps the most interesting and meaningful 

extension of our studies in medulloblastoma cell lines would be to determine if these 

mechanisms are also relevant in normal neurogenesis.  To this end, similar experiments to the 

ones we have performed in medulloblastoma cells would be repeated in NPC extracted from 

the cerebellum.  Indeed, inconsistencies if different mechanisms are observed in NPCs, then the 

possibility arises that the mechanisms that we have discovered here may be contributing to the 

tumorigenic behavior of the medulloblastoma cell lines, and can potentially be targeted 

therapeutically.   

 

Determine if overexpression of REST in SK-N-SH cells would lead to retinoic acid 

insensitivity 

 We have shown that SK-N-SH cells decrease REST protein in response to retinoic acid 

treatment.  We would like to determine if stable ectopic expression of REST in SK-N-SH cells 

would lead to a retinoic acid insensitive phenotype in these cells.  If shown, this would 

establish REST as a critical modulator of retinoic acid insensitivity in neuroblastoma cells.  

Therapeutic targeting of REST could potentially provide an opportunity for improved 

treatment. 

 

Mechanism behind retinoic acid regulation of SCF
β-TRCP 
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 Our studies show that retinoic acid treatment led to change SCF
β-TRCP 

expression in both 

SK-N-SH and SK-N-AS cells.  It would be interesting to determine the mechanism behind 

regulation of SCF
β-TRCP 

in these cell lines.  Since a change in SCF
β-TRCP 

transcription is 

observed, the presence of a RARE element in regulatory regions of SCF
β-TRCP

.  Furthermore, 

exploring the specific modulation of SCF
β-TRCP 

regulation by retinoic acid sensitive and 

insensitive cells in response to retinoic acid treatment would further shed light on the 

mechanism contributing to retinoic acid insensitivity of certain cells and tumors.   

 

Determine if ectopic SCF
β-TRCP 

expression leads to a change in tumor forming potential of 

SK-N-AS cells  

 Our results show that ectopic expression of SCF
β-TRCP 

leads to increased decreased 

REST protein levels as well as an increase in differentiation proteins.  It would be interesting to 

know determine if this decrease in REST upon introduction of ectopic SCF
β-TRCP 

translates into 

altered tumor growth potential in vitro and in vivo.  To assess this anchorage independent 

growth assays and tumor formation via xenograft models could be done.  If a decrease in tumor 

forming potential is indeed observed, then perhaps increase SCF
β-TRCP 

could potentially be 

targeted therapeutically with agents that increase SCF
β-TRCP

. 
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Chapter 8:  Materials and Methods 
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I. Cell Culture 

 DAOY and D283 cell lines were purchased from American Type Culture Collection 

(ATCC).  Both cell clines were cultured in medium containing Minimal Essential Medium 

(MEM), 10% fetal bovine serum (FBS), 2% L-glutamine, 1% sodium pyruvate, 1% non-

essential amino acids, and 1% antibiotic solution (penicillin-streptomycin) (all from Invitrogen, 

Carlsbad, CA). UW426, UW228, MB01110, MB002, MB003 is a primary semi-adherent MB 

cell line.  UW426 (from University of Washington) was cultured in DMEM with 10% FBS , 2 

mM l-glutamine, 1% non-essential amino acids, and 1% PSF.  UW228 (University of 

Washington) were cultured in the same conditions as DMEM but with 15% FBS.  MB01110 (a 

kind gift from Dr. James Olson, Fred Hutchinson Cancer Research Center, Seattle, WA) was 

cultured in were cultured in neurobasal media containing, 1% L-Glutamine, 1% 

antibiotic/antimycotic solution (PSF), supplemented with EGF (R&D, Emeryville, CA), and 

FGF (R&D, Emeryville, CA ) (all others Invitrogen, Carlsbad, CA).  MB003 and MB002 were 

cultured using DMEM-F12 with growth factors (EGF, FGF, LIF (Chemicon La Jolla, CA), N-2 

(Invitrogen, Carlsbad, CA)) ((provided by Dennis Hughes, MD Anderson Cancer Center, 

Houston, TX).  Dr. Zweidler-McKay (MD Anderson Cancer Center, Houston, TX) provided 

the HEK293-GP2 cells, are human embryonic kidney cells that have been modified to produce 

virus.  These cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM), 10% FBS, 

5% heat inactivated horse serum (HS), 2 mM l-glutamine, 1% non-essential amino acids, and 

1% PSF (all from Invitrogen, Carlsbad, CA).  All cells were cultured in 5% carbon dioxide and 

at 37°C, and maintained at approximately 70% confluency.   All neuroblastoma cell lines were 

kindly provided by Dr. Zweidler McKay, and cultured in RPMI media (REF) (prepared the 

same as MEM).    

 Trypsin (Invitrogen, Carlsbad, CA ) was used to displace DAOY, UW426, UW228, 

HEK293-GP2, and all neuroblastoma cells from surface of tissue culture dishes/flasks (Becton, 

Dickinson, and company (BD), Franklin Lakes, NJ).  D283 and MB01110 were displaced using 

cell scrapers (BD, Franklin Lakes, NJ) and accutase (Sigma-Aldrich, St. Louis, MO).  Standard 

cell culture techniques were followed to thaw, maintain, and freeze all cell lines.  For 

collection, cells were displaced as described above and pelleted via centrifugation at 1500 rpm 

for 3 minutes (as per the cell splitting protocol).  Cell pellets were then re-suspended in D-PBS 

(MD Anderson Media Prep Facility, Houston, TX), and centrifuged again at 3500 rpm for 10 

minutes.  Supernatant was discarded, and pellets were stored at -80°C. 
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Retinoic acid treatment:  Cells were treated with ALL-trans retinoic acid (prepared as per 

manufacturer’s instructions) (Sigma-Aldrich, St. Louis, MO). 

Cyclohexamide treatment: Cells were treated with 10 µg/ml of cyclohexamide (Sigma-Aldrich, 

St. Louis, MO) in the presence or absence of retinoic acid for 2 hours.   

MG-132 treament: Cells were treated with 5 µM of cyclohexamide (Sigma-Aldrich, St. Louis, 

MO) in the presence or absence of retinoic acid for 4 hours.   

II. Infection 

Producing virus: HEK293-GP2 cells were used to make all viral supernatants.  Cells were 

plated in 10 cm
2
 tissue culture dishes at 100% confluency in complete medium.  Following 

manufacturer’s protocol, Lipofectamine 2000 (Invitrogen, Carlsbad, CA) was used in a 1:3 

DNA to Lipofectamine 2000 ratio to transfect the cells with retroviral plasmid DNA (21ug) 

along with pMD2G (4ug, a plasmid coat protein necessary for viral production).  Cells were 

placed at 5% carbon dioxide and at 34°C to promote virus production.  Transfection media was 

changed for fresh complete media 6 h post-transfection.  Cells were maintained at 5% carbon 

dioxide and at 34°C. 

 

Collecting viral supernatant:  Media that the transfected HEK293-GP2 cells were cultured in 

contains the virus.  It was collected in a 50 ml conical tube (Corning, Corning, NY) and 

centrifuged at 2450 rpm for 15 min to remove all debris (pellet).  The supernatant (viral 

supernatant) was transferred to a new tube and stored at -80°C, while the pellet containing 

cellular debris was discarded.  Viral supernatant was collected every 72 hours for up to 2 

weeks, and was replaced by fresh media after each collection.  The cells continued to be 

maintained at 5% carbon dioxide and at 34°C. 

 

Cells in log phase of growth were used for retroviral infection.  All infections were done in 

suspension in a 6 well format, and cells were plated at 30% confluency post-infection.   

Cell preparation: Cells were displaced, centrifuged, and re-suspended in fresh media.  A 

hemocytometer was used to count cells. 

 

Infection:  Viral supernatant was thawed in a 37°C water bath.  To infect one well of a 6-well 

plate, 3x10
4
 DAOY cells and 3x10

5
 MB01110 cells were added to 750 µl of viral supernatant.  

16 µg/ml and 8 µg/ml of hexadimethrine bromide (stock was 4 mg/ml, prepared as per 
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manufacturer’s protocol (Sigma-Aldrich, St. Louis, MO) was added for DAOY and MB01110 

respectively.  Respective complete media were added until total volume was 2.5 ml in each 

well.  The mix was vortexed, and added to the well, followed by centrifugation at 1000 G for 1 

hour.  Cells were then placed in the incubator and cultured as previously described.   

 

Determination of appropriate hexadimethrine bromide concentration: Hexadimethrine bromide 

concentration for each cell line was determined empirically, by adding between 2-20µg/ml of 

hexadimethrine bromide to media or viral supernatant, and infecting cells as described above.  

Percent cell death and infection efficiency (as measured by GFP expression) were analyzed via 

flow cytometry.  Lowest hexadimethrine bromide concentration with the greatest infection 

efficiency and least cell death was selected for each cell line. 

  

Cell sorting: At 48 h and 72 h post-infection, cells were sorted via FACS at the MD Anderson 

South Campus Flow Cytometry Lab (MD Anderson Cancer Center, Houston, TX), and GFP 

positive were collected as described above.  For further culturing of sorted cells, PSF 

concentration was increased to 4% for 16-72 hours to avoid contamination, and standard cell 

culture techniques described above were followed. 

 

III. Transfections:  

Lipofectamine 2000 (Invitrogen, Carlsbad, CA):  DAOY cells were transfected according to 

manufacturer’s instructions with either control MigR1-GFP vector or MigR1-DBD-GFP using 

a DNA to reagent ratio of 1:2 in MEM.  Media was changed to complete MEM media after 6 

hours. 

 

Fugene HD (Roche, San Francisco, CA):  SK-N-AS cells were transfected according to 

manufacturer’s instructions with either control vector pQCXIP or the plasmid pQCXIP-SCFβ-

TRCP (kindly provided by Dr. Thomas Westbrook, Baylor College of Medicine, Houston, TX) 

using a DNA to reagent ratio of 3:2 in MEM.  Media was changed to complete RPMI media 

after 6 hours. 

 

IV. Competitive Proliferation Assay 
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MigR1-GFP control and plasmid infected medulloblastoma cells were cultured as normal, and 

analyzed by flow cytometry for GFP expression.  Percentage of positive cells was calculated 

for all samples, and normalized as per the first day of flow analysis (usually 3 or 4 days).  

 

V. Anchorage Independent Growth Assay 

Bottom layer was composed of 0.4% low-melting agarose, while top layer contained 0.3% low 

melting agarose.  The assay was done in a 24 well format.  Untreated and treated MB01110 

cells (500-100000) were plated in the top layer, and maintained at??.  Colonies were visualized 

by a Gelcount  scanner, counted using Gelcount software starting at 7 days after plating, and 

visualized every other day until day 27.  We would like to thank Dr. Oliver Bogler for allowing 

us to use his equipment, and Laura Gibson, B.S. for the technical advice and guidance. 

 

VI. Western blot analysis (WBA):   

Making extract: Pellets were taken out of -80°C and thawed on ice.  They were re-suspended in 

50µl-100µl western blot (WB) lysis buffer (50mM potassium chloride (KCL), 10mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (pH 7.5), 5mM Tris-Chloride (Tris-

Cl) (pH 7.5), 10% glycerol, 2mM ethylenediaminutesetetraacetic acid (EDTA), 1mM DTT, 1% 

Triton X-100, 0.4% octylphenoxypolyethoxyethanol (Igepal), 1% protease inhibitors (Halt, 

Thermo Scientific, Rockford, IL) diluted in water), and sonicated for 1 min at a power setting 

of 0.5 every 2 seconds (Misonix Sonicator 3000, Misonix Incorporated, Farmingdale, NY).  

Samples were submerged in iced ethanol while sonication to prevent protein denaturation.  

Sonicated samples were then centrifuged at 14000 rpm for 10 min at 4°C to pellet debris.  The 

supernatant was transferred to a new 1.7 ml eppendorf tube (Corning, Corning, NY) on ice, 

while the pellet was discarded. Protein concentration was determined using a 1x Commassie 

blue reagent (6x stock was diluted 1:6 in water) (Bio-Rad Protein Assay Dye-Reagent 

concentrate, Bio-Rad Laboratories, Hercules, CA) by mixing 995 µl of 1:6 diluted Commassie 

blue reagent with 5 µl of protein extract and measuring the OD by spectrophotometric analysis 

at 600 nm (Genesys 10-S, Thermo Electron Corporation, Waltham, MA).  Equation used to 

calculate protein concentration from the OD was determined by doing a standard curve for 

protein concentration using protein Albumin. 
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Preparation of samples for loading: Total volume of each sample to be loaded was 15 µl.  Equal  

µg of protein extract were added across treatments to 2.5 µl of 6x loading dye (final 

concentration of the dye was 1x) and water was added for a total volume of 15µl.  The samples 

were heated at 100°C for 3 min, followed by brief centrifugation at 14000 rpm. 

 

SDS-PAGE electrophoresis:  Samples were loaded on to a pre-cast gradient denaturing sodium 

dodecyl sulfate (SDS) polyacrylamide gel (Bio-Rad, Hercules, CA) for electrophoresis 

(PAGE).  The gel was electrophoresed in running buffer (10x Tris/SDS (Bio-Rad, Hercules, 

CA) diluted 1:10 in water) at 100 V until the loading dye ran off the gel or until the desired 

separation was attained.  Electrophoresed proteins were transferred to a Hybond-P membrane 

(GE Healthcare, Little Chalfont, UK) in transfer buffer (3.03 g tris, 14.4 g glycine, 100 ml 

methanol, and 900 ml water) at 100 volts (V) for 1 hour (all from Sigma-Aldrich, St. Louis, 

MO).  Membranes were incubated in blocking buffer (5% nonfat dry milk (Nestle HealthCare 

Nutrition, Florham, NJ) prepared in D-PBS with 0.1% Tween (Bio-Rad, Hercules, CA) (PBS-

T)) for 1 hour at RT while shaking.  Primary antibody were diluted in blocking buffer as 

follows: Rabbit anti-REST (1:1000, Millipore, Waltham, MA), Rabbit anti-HES1 (1:2000 

Millipore, Waltham, MA), anti-ActinHRP (1:20,000 Cell Signaling, Danvers, MA), anti-

GAPDH HRP (Abcam, Cambridge, MA), anti- synapsin (1:2000 Millipore, Waltham, MA), 

anti-RAR-α (1: 1000 Santa Cruz Biotechnology, Santa Cruz, CA), N-Myc (1:1000 Santa 

Cruz Biotechnology, Santa Cruz, CA), anti-TUJ-1 (1:2000 Covance, Princeton, NJ), anti-β-

TRCP (1:2000 Invitrogen, Carlsbad, CA); Ki-67 (1:500 BD Biosciences, San Jose, CA) 

The membrane was incubated overnight at 4°C while shaking with primary antibodies.  

Membrane was washed 5 times with blocking buffer for 10 minutes at RT while shaking, 

followed by incubation with peroxidase conjugated secondary antibodies (also prepared in 

blocking buffer) against rabbit immunoglobulins (IgGs) (1:10000) or against mouse IgGs 

(1:5000) for 1 hour at RT.  Membranes were then washed 5 times with PBS-T for 10 minutes at 

RT while shaking, and immunocomplexes were visualized using Super Signal West Dura 

Enhanced Chemiluminscence (ECL) reagent (Thermo Scientific Pierce, Rockford, IL), Film 

(thermocientific) and a Kodak film developer (Eastman Kodak).  Exposure time of the film 

varied for each antibody.  

 

VII. SYBR Green qRT-PCR 
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RNA preparation:  

Patient samples: RNA was extracted using FFPE RNA mini kit following manufacturer’s 

protocol (Qiagen, Valencia, CA). 

 

Cell lines: RNA was extracted using RNA mini kit following manufacturer’s protocol (Qiagen, 

Valencia, CA). 

 

RT-PCR:  RNA was converted to cDNA using cDNA synthesis kit (Bio-Rad, Hercules, CA) 

following manufacturer’s protocol.  <1µg of RNA was added. 

 

Preparing Mix:  SYBR Green mix (2x Sensimix, Bioline, Taunton, MA) was used for qRT-

PCR and qPCR analyses.  cDNA was diluted 1:10, and the reaction was set up as described 

below in the 96 well PCR plates (Midsci, St. Louis, MO).  All primers were ordered from 

Integrated DNA Technologies (IDT, Coralville, Iowa), and listed in Table 4 .  All preparations 

were done on ice. The PCR mix was made as follows, and total volume was 15 µl/well:  

  Table 2: Syber Green PCR mix  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A master mix, consisting of all components except the DNA, for each primer set was prepared 

in a 1.7 ml eppendorf tube (Corning, Corning, NY), and 13 µl of the master mix was loaded 

Mix 1X (15 µl) 

SYBR Green PCR 

master mix 

7.5 µl 

FWD primer (10 µM) 1 µl 

REV primer (10 µM) 1 µl 

Water 3.5 µl 

Total 13.00 µl 

  

Add to each well  

Mix 13 µl 

DNA or water 2 µl 

Total 15 µl 
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into the appropriate well of the PCR plate.  2 µl of 1:10 dilution of cDNA was then added to the 

appropriate well, while 2 µl of water was added to the blank wells.  Each sample was loaded 

thrice on the PCR plate to assess pipetting error.  The Microamp Optical Adhesive Film B was 

placed over the plate, and the plate was centrifuged at 2000rpm for 1 minute.  Plate was loaded 

into the iCycler (Bio-Rad, Hercules, CA). 

 

Data Analysis: Data was analyzed using Microsoft excel (Microsoft, Redmond, WA).  Cycle 

threshold (CT) values that are greater than one cycle different from others in the triplicate were 

considered outliers, and removed from analysis.  ∆∆ct method was used to analyze the data 

(REF).  RSP18 served as the internal control for all experiments.  All values were first 

normalized to the internal control RPS18 by subtracting the average CT (average of three CT 

values) for RPS18 from the average CTs of other genes for the corresponding samples.  

Relative mRNA expression was determined calculating the power of the normalized values 

using the formula =power(1.9, -normalized value).  Samples were scaled from 0 to 1 relative to 

the highest value.  Experiments were done in triplicate.  
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Table 3: List of qRT-PCR Primers 

Gene Forward Primer Reverse Primer 

RPS18  5′- 

GTGGTGTTGAGGAAAGCAGA

CATTG -3′ 

5′-

CATCCTTCTGTCTGTTCAAGAAC

CAGT C -3′ 

REST  5'- 

GTAGGAGCAGAAGAGGCAGA

TGAGAG -3' 

5'- 

GCTTCACGTTCTTCTACTGCTGA

AGG -3' 

 

p27 5’- 

TCTCTGCAGTGCTTCTCCAA -

3’ 

5’-  

AGATGTCAAACGTGCGAGTC -3’ 

SYN1 5′- 

GTCTGACAGATACAAGCTGTG

GGTG -3′ 

 5′- 

GACCACGAGCTCTACGATGAGC

TG -3′ 

HES1 

total 

5'- 

CAGCATCTGAGCACAGAAAG

TCATCAAAGC -3' 

 

5'- 

GGAATGCCGCGAGCTATCTTTCT

TCAG -3' 

 

HES1 

endogeno

us 

5'- 

CAGGGACTTGCCTCACTGTGT 

CC -3' 

5'- 

CTGATCAGGAGGCTTGCAAACC -

3' 

TUBB3 5’- 

GGAAGGAGTGTGAAAACTGC

GACTG -3’ 

5’- 

CACGACGCTGAAGGTGTTCATG

ATG -3’ 

RAR-α 5’- 

CATCCCCAGCCACCATTGAGA

C -3’ 

5’- 

GACAGACAAAGCAAGGCTTGTA

GATG -3’ 

 

VIII. Chromatin Immunoprecipitation (ChIP) 

Cross-linking and sonication: 1 million cells were used for ChIP assay.  Cells were pelleted as 

described before by centrifugation at 3500 rpm for 10 minutes.  Cells were re-suspended in 
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crosslinking and homogenization buffer (50 mM HEPES pH 8.0, 140 mM NaCl, 1 mM EDTA 

pH 8.0, 0.8% Igpel CA-630, 0.4% Triton X-100, 10% protease inhibitors (HALT, Thermo 

Scientific, Rockford, IL) diluted in water) and cross-linked by addition of 1% formaldehyde, 

followed by inverting the tube to mix 10 times, and a 10 minute incubation at RT while 

shaking.  1/10 of the total volume of 1.4 M glycine was added to neutralize the crosslinking, 

and incubated for 5 minutes while shaking at RT.  Nuclei were pelleted via centrifugation at 

14000 rpm for 1 minute at 4°C, followed by re-suspension in crosslinking and homogenization 

buffer and another 4°C centrifugation at 14000 rpm for 1 minute.  Next, the pellet was washed 

twice with nuclear wash buffer (20 mM Tris-Cl pH 8, 150 mM NaCl, 1 mM EDTA pH 8, and 

1% protease inhibitors diluted in water) interspersed by 4°C centrifugation at 14000 rpm for 1 

minute.  Nuclei were prepared for sonication by re-suspending them in sonication buffer (50 

mM Tris-Cl pH 8, 10 mM EDTA pH 8, 1% SDS, 10% protease inhibitors), and sonicated at 1.5 

power level setting as per instructions. Sonicated extract was centrifuged two times at 14000 

rpm for 1 minute at 4°C to remove debris.   

 

Pre-clearing and immunoprecipitation: 10% of each set of IgG and specific pull-down was 

saved as input DNA and the remaining 90% was diluted 10 fold using ChIP dilution buffer 

(16.7 mM Tris-Cl pH 8, 1.2 mM EDTA pH 8, 16.7 mM NaCl, 1.1% Triton X-100, 10% 

protease inhibitors diluted in water).  Lysates were pre-cleared using Protein G magnetic beads 

(DAOY and D283) for 2 hours at 4°C with shaking  

Magnetized stand was used to pellet the magnetic beads, whereas beads were collected via 

centrifugation at 3000 rpm for 1 minute at 4°C.  The pre-cleared supernatant was incubated 

with either 5µg of specific antibody (REST, HES1) or 5µg control IgG 

for 12 hours at 4°C with shaking.  Simultaneously, beads were incubated with 4.4 µg of salmon 

sperm DNA.  Beads incubated with salmon sperm DNA were then incubated with lysates 

immunoprecipitated with control or specific antibody for 2 hours while shaking at 4°C.  

Magnetized stand was used to pellet the magnetic beads, whereas protein A/G beads were 

collected via centrifugation at 1000 rpm for 1 minute at 4°C.   

 

DNA elution and purification: Beads were then subjected to two low salt washes (20 mM Tris-

Cl, pH 8, 2 mM EDTA pH 8, 150 mM NaCl, 0.10% SDS, 1% Triton X-100, 10% protease 

inhibitors diluted in water), two high salt washes (20 mM Tris-Cl, pH 8, 2 mM EDTA pH 8, 
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500 mM NaCl, 0.10% SDS, 1% Triton X-100, 10% protease inhibitors diluted in water) , two 

lithium chloride (LiCl) washes (10 mM Tris-Cl, pH 8, 1 mM EDTA pH 8, 250 mM LiCl, 1% 

Igepal CA630, 1% sodium deoxycholate, 10% protease inhibitors diluted in water), and two 

washes with TE interspersed by centrifugation at 1000 rpm for 1 minute at 4°C.  To elute the 

immunoprecipitated DNA from beads by adding 2x elution buffer (EB) (2% SDS, 0.2 M 

sodium bicarbonate diluted in water) followed by vortexing for 10 minutes, and centrifugation 

at 14000 rpm at RT for 2 minutes.  Supernatant was moved to a new tube, and the beads were 

re-eluted with 1X EB (1% SDS, 0.1 M sodium bicarbonate diluted in water) followed by 

vortexing for 15 seconds, and centrifugation at 14000 rpm at RT for 2 minutes.  The 

supernatant was added to the previous eluent, and centrifuged at 14000 rpm at RT for 2 minutes 

to remove all beads.  Supernatant was moved to a new tube, and equal volume of 2x dilution 

buffer (20 mM Tris-Cl, pH 8, 2 mM EDTA pH 8 diluted in water) is added to the eluents.  135 

µl of 1x EB was added to inputs, and volume was adjusted with 2x dilution buffer so that the 

total volume of inputs is equal to the eluent volume.  DNA was extracted by adding 0.3 M 

NaCl to all samples followed by an overnight incubation in a 65°C water bath.  Qiaquick PCR 

purification columns were used to purify DNA as per manufacturer’s instructions (Qiagen).   

 

SeqChIP:   Similar protocol was used as described above.  First ChIP was done as before with 

anti-HES1 or IgG and eluted with elution buffer (50 mM Tris-Cl pH 8.0, 10 mM EDTA pH 

8.0, 1% SDS, 1% protease inhibitors diluted in water).  Elution1 was adjusted to concentrations 

of IP buffer1.  Second ChIP was done with anti-REST or IgG, followed by elution with EB as 

described in the ChIP protocol. 

 

Analysis of samples: Samples were analyzed using SYBR green qPCR.   Mix was prepared 

using the same protocol as described for qRT-PCR.  ChIP and DNA were diluted 1:10.  Primers 

used are indicated in Table 5. 

 

Data Analysis: Data was analyzed using Microsoft excel (Microsoft, Redmond, WA).  We first 

searched each set of three CT values for each sample for outliers and removed them from the 

analysis. The average of input CT values was subtracted from the average of corresponding 

sample (specific antibody) and control (IgG) CT values. Relative binding was determined 

calculating the power of the latter values using the formula =power(1.9, -((sample or control)-
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input).  Samples values were then compared to control values, and scaled from 0 to 1 relative to 

the highest value.  Experiments were done in triplicate.   

 

Validating primers: To validate primer sets, a serial dilution was prepared by combining several 

cDNA samples for a standard curve (1:10, 1:100, 1:1 000, 1:10 000).    

 

Table 4: List of ChIP primers. 

Site Forward Primer Reverse Primer 

REST N-box  

-3.7 kb 

5’-

CTGATGCGTGAAATCAGGA

ATGTGC  -3’ 

5’-

CTGCCTCCTTGAATCTCCCTAATAAC

TAC -3’ 

REST N-box  

-4.4 kb 

5’-

GAGTCATGGGTCCTACCTCC

ATCTGTG -3’ 

5’- 

GCCTCTCTCTTCTCTGGCCTTTACCAT

TG -3’ 

REST RE-1  

-6.2 kb 

5’- 

GTCGTACATGTAGTCCCAGC

TACTCG -3’ 

5’- 

CAATGCGACAAAGATACTGAGCACC 

 -3’ 

REST N-box 

-6.5 kb 

5’- 

GACACCTCCCATTTGGGTCT

TTAGG -3’ 

5’-  

GAACCGCCTGCCTAGCCTATG   

-3’ 

REST RE-1  

-6.8 kb 

5’-

GAGGTTGTGGTGAGCCAAG

ATCATG -3’ 

5’-  

CCATGTTCAAGCGATTCTTCTGCCTC 

-3’ 

p27 

(positive 

control) 

5’- 

GTGCAATGGCATGATCATA

GCTCACTG -3’ 

5’-  

GTCAGAGTCCTTGCCTGTGGG  

-3’ 

p27 

(negative 

control) 

5’-

GAGCTTCAGGATCCGGAAA

CTGAAGAG -3’ 

5’-  

CTTCAGCCCATGTGTGATGAAGATGC

AG -3’ 

Syn1 5’-  

CAACACTACAAACCGAGTA

TCTGC -3’ 

5’-  

GCCTCATCCTGGTCCTAAAA 

-3’ 
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IX.  Immunoprecipitation 

Lysates from transfected SK-N-AS cells were denatured by heating at 95°C for 5 minutes.  

Lysates were pre-cleared as described above with protein G magnetic beads (Millipore, 

Billerica, MA), followed by immunoprecipitation with mouse anti-ubiquitin antibody (Abcam, 

Cambridge, MA), as described above.  Immunoprecipitated proteins were eluted using 2x 

sodium SDS buffer.  Immunoprecipitants as well as inputs (1% and 3%) were then subjected to 

western blot analysis as described before (anti-REST 1:1000). 

 

X.  Co-immunoprecipitation 

Lysates from transfected DAOY or SK-N-AS cells were pre-cleared and immunoprecipitated 

with specific antibodies or IgGs described above (rabbit anti-Flag or mouse anti-β-TRCP 

respectively), followed by elution as described above (immunoprecipitation protocol).  

Immunoprecipitated proteins and input material (1% or 3%) were then subjected to Western 

blot analysis for detection of REST (anti-REST 1:1000), HES1 (anti-HES1 1:2000, Abcam, 

Cambridge, MA), and β-TRCP (anti-β-TRCP Cell Signaling, Danvers, MA) 

 

XI. Co-fractionation 

DAOY cells were lysed by sonication in sedimentation lysis buffer (5 mM Tris-Cl pH 7.5, 2 

mM EDTA pH 8.0, 50 mM KCl, 10 mM HEPES pH 7.5, 10% glycerol, 1% Triton X-100, 

0.4% Igpel CA-630, 1% protease inhibitors diluted in water).  Sonicated extract was then 

subjected to centrifugation at 14000 rpm for 1 minute, and supernatant was transferred to a new 

tube, while the pellet was discarded.  Protein concentration was determined via 

spectrophotometric analysis as described before.  The Superdex200 column (GE Healthcare 

Biosciences, Pittsburgh, PA) was equilibrated with lysis buffer.  2 mg of protein was loaded 

onto the column which was run with a pump flow rate of 0.45.   Eluents were collected in 1.7 

ml eppendorf tubes containing protease inhibitors every 5.5 minutes.  Reference standards for 

the column are F22-668 kDa and F29-232 kDa.  Samples were combined in 2X2 samples and 

analyzed by Western blot analysis. 

 

XII. Immunofluorescence Assay  
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Cells were plated in Lab-Tek II Chamber Slides (Thermo Fisher Scientific, Rochester, NY), 

fixed using 2%buffered paraformaldehyde, and followed by three 1minute PBS washes. After 

blocking, the cells were incubated anti-REST (1:500), TujI (1:1000), and SCFβ-TRCP   

(1:1000 ) overnight at 4°C.  Next, we the samples were subjected to three 3 minute washes with 

D-PBS.  Next, the fixed cells were incubated with fluorophore-conjugated secondary antibodies 

for 1h while shaking, followed by three 3 minute D-PBS washes. Slides were then covered with 

40,6-diamidino-2-phenylindole (1 lg/mL), and observed under a Nikon fluorescence 

microscope (Nikon Inc., Melville, NY).  Data was analyzed via MetaMorph software 

(MolecularDevices, Downington, Pa). Initial deparaffinization preceded the procedure 

described above for staining patient samples.   

 

XIII. Statistical Analysis:  

Criteria for statistical significance for all analyses is as follows: *p<0.05, **p<0.01, 

***p<0.001)  

 

Patient samples: Non-parametric T-test was used to analyze patient samples and non-tumor 

normal brain tissue using GraphPad Prism5 (GraphPad Software, La Jolla, CA).  Scatter plots 

were generated using GraphPad Prism5, while Microsoft Excel was used to make the bar 

graphs.   

 

Interference experiments: One way analysis of variance (ANOVA), and Fisher LSD post-hoc 

test were conducted for statistical analyses using Statistica 6.0 (Statsoft, Tulsa, OK).  Relative 

transcripts (REST, p27, Syn1, SCG10 normalized to RPS18) of cells specific construct (mutant 

HES1 constructs, full-length HES1 construct, or REST-DBD construct) were compared to 

those of control MigR1 infected cells.  

 

 

ChIP:  One way analysis of variance (ANOVA), and Fischer least significant difference post-

hoc test (LSD) was conducted for statistical analyses using Statistica 6.0.  Control (IgG) values 

(normalized to input) were compared to control values (normalized to input).    

 

XIV. Cloning: Overview 
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1. PCR  2. agarose gel electrophoresis 3. cut and purify band of interest 4. TOPO ligation 5. 

bacterial transformation 6. picking colonies 7. miniprep I 8. restriction digest  9. miniprep II 10. 

sequencing 11. cutting out of TOPO vector 12. ligation into vector of interest 13. bacterial 

transformation 14. picking colonies 15. miniprep I 16. restriction digest 17. midiprep 18. 

sequence 

  

REST-DBD: 

The DNA binding domain of REST (REST-DBD) was cloned out of previously published 

pcDNA3.1-DBD, and cloned into retroviral vector MigR1-GFP and MigR1-mKate.  REST-

DBD was flanked with XhoI and EcoR1 on 5’ and 3’ end respectively, and stop codons were 

introduced to the 3’ end.  The following primers were used: DBD FWD and DBD REV (Table 

6).  PCR was done using PFU Turbo was used as per manufacturer’s protocol (Roche, San 

Francisco, CA) 

All subsequent cloning steps were followed as described above. 

 

REST luciferase: 

5’ upstream region of REST 

Genomic DNA was extracted from DAOY and D283 cells using genomic extraction kit as per 

manufacturer’s protocol (Qiagen, Valencia, CA).  Several attempts were made to clone -7 kb of 

5 upstream region of REST relative to TS, using numerous PCR reagents with DAOY, D283 

genomic DNA, and fosmids as template, as well as fosmid digestion, but the attempts were 

unsuccessful.   

5’ upstream region of REST ranging from -6.8 kb to -6.2 kb relative to TS was amplified from 

DAOY genomic DNA.  NheI and XhoI restriction sites were introduced into 5’ and 3’ ends 

respectively using the following primers: REST -7 FWD and REST -6 REV 

5'-  

 

Advantage GC Genomic LA Polymerase Mix (Clontech, Mountain View, CA) was used to 

amplify genomic DNA, and the reaction was set up as per manufacturer’s instructions. 

 

All subsequent cloning steps were done as described above to ensure the presence and validity 

of the cloned region.  The piece was then digested with NheI and XhoI and ligated into 
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pGL4.15-sv40 (described below) as previously described to generate pGL4.15-sv40-hREST-

6.8 to -6.2.  All subsequent cloning steps were followed as described above to ensure the 

presence and validity of the cloned region.   

pGL4.15-sv40: 

Fragment containing sv40 minimal promoter, was cut out of pGL3 promoter vector using BglII 

and HindIII, and was then ligated into pGL4.15 as described above to generate pGL4.15-sv40.  

The new construct was sequenced to ensure the presence and validity of the sv40 promoter. 

 

Mutating REST luciferase: 

RE-1 sites located -6.8 and -6.2 kb from TS and N-box located -6.5 kb from TS were mutated 

as follows in pGL4.15-sv40-hREST-6.8 to -6.2.  SacII and MluI restriction sites were 

introduced in the middle of mutated RE-1 and N-box sequences respectively. NheI was 

introduced at -7 kb and BglII and XhoI sites were introduced at -6 kb to facilitate further 

cloning.  pGL4.15sv40-WT as template for all PCRs unless otherwise specified. 

 

The following PCR reactions using PFU Turbo (Roche, San Francisco, CA) were carried out as 

per manufacturer’s protocol 

 

To mutate RE-1 located  -6.8 kb upstream of TS: 

PCR1: from -6.8 mutated RE-1 to -6 

PCR2: from -7 to -6.8 mutated RE-1 

PCR products were ligated into TOPO vector, and all subsequent cloning steps were followed 

as described above to ensure the validity of the piece.  Digestion with XhoI and SacII, followed 

by ligation as described below was done to mutate the RE-1 site located at -6.8 kb upstream of 

TS.  All subsequent cloning steps were followed as described above to ensure the validity of 

the piece 

 

Similarly, RE-1 located at -6.2 kb upstream of TS: 

PCR1: from -6.2 kb mutated RE-1 to -6 kb 

PCR2: from -7 kb to -6.8 kb mutated RE-1 

PCR products were ligated into TOPO vector, and all subsequent cloning steps were followed 

as described above to ensure the validity of the piece.  Digestion with XhoI and SacII, followed 
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by ligation as described below was done to mutate the RE-1 site located at -6.2 kb upstream of 

TS.  All subsequent cloning steps were followed as described above to ensure the validity of 

the piece 

 

Similarly, N-box located at -6.5 kb upstream of TS: 

PCR1: from -6.5 kb mutated N-box to -6 kb  

PCR2: from -7 kb to -6.5 kb mutated N-box  

PCR products were ligated into TOPO vector, and all subsequent cloning steps were followed 

as described above to ensure the validity of the piece.  Digestion with MluI and XhoI, followed 

by ligation as described below was done to mutate the N-box site located at -6.5 kb upstream of 

TS.  All subsequent cloning steps were followed as described above to ensure the validity of 

the piece. 

 

To mutate both RE-1 sites: 

Both constructs were digested with NheI and HpaI, followed by ligation as described below.  

All subsequent cloning steps were followed as described above to ensure the validity of the 

piece. 

 

To mutate both RE-1 sites and N-box located -6.5 kb upstream of TS: 

PCR1: From -6.5 kb mutated N-box to -6 kb with -6.2 kb mutated RE-1 construct as template 

PCR2: from -7 kb to -6.5 kb mutated N-box with -6.8 kb mutated RE-1 construct as template 

Both constructs were digested with NheI and HpaI, followed by ligation as described below.  

All subsequent cloning steps were followed as described above to ensure the validity of the 

piece. 
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Table 5: List of Cloning Primers 

Primer Forward Sequence Reverse Sequence 

REST-

DBD 

REST-DBD 

5'- 

CATCGTCTCGAGAAGGATGA

CGACGATAAGATGGCAGAAC

TGATGCCGGTTGGGGATAAC -

3' 

 

REST-DBD 

5'-

CCGCGCGAATTCTCATCACTATCATC

ATTTTGTTGAAGATTCCTCATCATTCA

CAGGAC -3' 

 

hREST-6.8 

to -6.2 

REST -7  

5'-  

AGT AGA GCT AGC GGA GAT 

GCG GAG GTT GTG GTG AGC 

CAA GAT CAT GCC GTT GCA 

TTT CAA -3' 

 

REST -6  

5'-  

CCG TGC CTC GAG CAA TGC GAC 

AAA GAT ACT GAG CAC CTG GAA 

TTC TCT CTC TCT TTT CC -3' 

 

hREST-6.8 

Mut PCR1 

REST -6.8mut 

GAATATGCTAGCCAGTTAAA

ACCGCGGTTAATTCGCCTGTA

GTCCCAGCTACTCAGGAGG 

 

REST -6  

5'- CCG TGC AGATCT CTC GAG CAA 

TGC GAC AAA GAT ACT GAG CAC 

CTG GAA TTC TCT CTC TCT TTT CC -3' 

 

hREST-6.8 

Mut PCR2 

REST -7  

AGT AGA GCT AGC GGA GAT 

GCG GAG GTT GTG GTG AGC 

CAA GAT CAT GCC GTT GCA 

TTT CAA  

 

REST -6.8mut 

GCGGGCAGATCTAATTAACCGCGGTT

TTAACTGTTTTTGTGTTTTTTGTGTTTT

TTGAGATGAAGT 

 

hREST-6.2 

Mut PCR1 

REST -6.2mut 

GAATATGCTAGCCAGTTAAA

REST -6 

5'- CCG TGC AGATCT CTC GAG CAA 
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ACCGCGGTTAATTGGGGGAG

GATCGCTTGAGTCCAGGAGG 

 

TGC GAC AAA GAT ACT GAG CAC 

CTG GAA TTC TCT CTC TCT TTT CC -3' 

 

hREST-6.2 

Mut PCR2 

REST -7 

5’- AGT AGA GCT AGC GGA 

GAT GCG GAG GTT GTG GTG 

AGC CAA GAT CAT GCC GTT 

GCA TTT CAA -3’ 

 

REST -6.2mut  

5’- 

TCGCGGAGATCTAATTAACCGCGGTT

TTAACTGGACTACATGTACGACCTAC

CACACCCA -3’ 

 

hREST-6.5 

Mut PCR1 

REST -6.5mut 

TGGCCCGCTAGCACGCGTTAA

ATATCTAGGAATGTGATGACT

GGATTATATGCTAAGTGT 

 

REST -6 

CCGTGCAGATCTCTCGAGCAATGCGA

CAAAGATACTGAGCACCTGGAATTCT

CTCTCTC -3’ 

 

hREST-6.5 

Mut PCR2 

REST -7 

AGT AGA GCT AGC GGA GAT 

GCG GAG GTT GTG GTG AGC 

CAA GAT CAT GCC GTT GCA 

TTT CAA  

 

REST -6.5mut 

5'- 

TCCGTGAGATCTACGCGTAGAACTGA

AAACCTGTGGTACCTAAAGACCCAAA

TGGGAGGT -3' 

 

 

Common Cloning Protocols 

Agarose gel electrophoresis:  

Gel preparation: Appropriate percentage agarose gel was prepared by dissolving xg of agarose 

in 100ml of 0.5x Tris Boric acid Ethylenediaminetetraacetic (EDTA) (TBE) buffer in a weight 

to volume ratio (5x TBE stock (56 g tris-Cl, 27.5 g Boric, 20 ml 0.5M EDTA pH 8 diluted in 

water) was diluted 1:10 in water to make 0.5x).  The mix poured into the agarose gel 

electrophoresis apparatus, and 10 µl of ethidium bromide was added and mixed to uniformity.  

A comb was placed in the gel to form the appropriately sized wells, and the mix was allowed to 

polymerize for 1 hour.  The samples were prepared by adding appropriate amount of 6x loading 

buffer (bromophenol blue, xylene cyanol, glyercol in water), and electrophoresed in 0.5x TBE 
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buffer at 100 volts (V) until desired separation was attained.  The bands were visualized under 

UV light using Chemidoc. 

 

Purification of product from agarose gel:   

The band of interest was cut out using a blade and purified using a gel extraction kit following 

manufacturer’s protocol. 

  

Bacterial transformation via heat-shock: 

NEB10 competent cells were thawed on ice.  The DNA was placed on ice and allowed to cool 

before the transformation.  In a cool 1.7 ml microcentrifuge tube, 1 µg of DNA were mixed 

with 40 µl of competent cells, and incubated on ice for 20-45 minutes.  The mix was then 

placed into a 42
o
C water bath for 20-25 seconds, and then placed back on ice for 1-2 minutes.  

250 µl of SOC, prepared as per manufacturer’s instructions, was added to the transformation 

reaction followed by 1 hour incubation at 37
o
C in a bacterial incubator while shaking.  10 µl of 

the transformation reaction was plated on an agar plate containing the appropriate antibiotic, 

and placed at 37
o
C in the bacterial incubator overnight (12-16 hours).  For transforming the 

ligations, the entire 250 µl SOC culture was centrifuged at 1500 rpm for 15 minutes to pellet 

the bacteria.  The supernatant is discarded, and cells are re-suspended in 50 µl of LB and plated 

on the appropriate antibiotic plate.  Ampicillin was used at 100 µg/ml concentration (Sigma, 

prepared as per manufacturer’s instructions), while kanamycin concentration was 50 µg/ml 

(Sigma prepared as per manufacturer’s instructions). 

 

Picking bacterial colonies from agar plates:  

Colonies were picked using sterilized toothpicks, and allowed to grow in 2 ml of LB broth 

(Invitrogen, prepared as per manufacturer’s instructions), containing the appropriate antibiotic 

at 37
o
C overnight.  The cultures were pelleted via centrifugation at 3500 rpm for 20 minutes.  

The supernatant was discarded, and pellet was either stored at -80
o
C or used for further 

experiments. 

 

Miniprep I:  

Colonies were picked using sterile toothpicks into 2 ml of LB with appropriate antibiotic, and 

allowed to grow overnight at 37
o
C overnight while shaking.  1 ml of the culture was transferred 
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in to a 1.7 ml eppendorf tube, and the bacteria were pelleted by centrifugation at 3500 rpm for 

20 minutes.  The supernatant was removed and discarded, while the pellet was re-suspended in 

300 µl of STET.  To release the plasmid from the bacteria, 25 µl of lysozyme (10 mg/ml in 1x 

Tris-Cl EDTA (TE) (10mM Tris-Cl pH 8, 1mM EDTA pH8 diluted in water)) was added to the 

sample and incubated for 3 min, followed by heating the samples at 100ºC for 1 minute 20 

seconds.  The samples were then centrifuged at 14000 rpm for 10 min, and the pellets 

containing the lysed bacterial particles were removed with a toothpick.  The samples were then 

incubated with 325µl of isopropanol at room temperature (RT) for 5 minutes to precipitate the 

DNA, followed by centrifugation at 14000 rpm for 10 minutes to pellet the plasmid DNA.  The 

supernatant was discarded and the tube was allowed to air dry for 15 minutes.  The pellet was 

then re-suspended in 50-100 µl of 1xTE.  

 

Restriction digest:   

All restriction enzymes were purchased from New England Biolabs (NEB).  The following 

components were added together in a 1.7 ml eppendorf tube, and incubated in a 37
o
C water 

bath for 1 hour:  1/10 of the total reaction volume was the appropriate buffer, 1/20 of the total 

volume of restriction enzyme, appropriate amount of DNA (typically, 1µg for 50 µl reaction or 

5 µl of miniprepped (miniprep I) DNA in 10µl reaction), and water to make up the remaining 

volume.  The digests were subjected to agarose gel electrophoresis using an appropriate 

percentage gel.   

 

Sequencing: 

1 µg of DNA (diluted to 100 ng/µl as per the core facility’s instructions) was sent for 

sequencing to MD Anderson DNA core facility to verify the presence and validity of the insert.  

Some common sequencing primes were provided by the core facility, and any specific 

sequencing primers were sent to them (10 pmol/µl as per core facility’s instructions).   

 

Ligations  

For ligation, 1 µg of vector and 5 µg of plasmid containing insert were subjected to restriction 

digests with the appropriate restriction enzymes in a 50µl reaction.  The cut vector was then 

treated with 1 µl of calf-intestine phosphatase for 1 hour incubation 37
o
C.  The reactions were 

subjected to agarose electrophoresis, and band of interest was cut and purified.  Ligations were 
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then set up using T4 ligase as per manufacturer’s instructions in the following vector to insert 

ratios based on size and intensity ratios of the digested pieces:  1:0, 1:1, 1:3, 1:6, 1:maximum.  

The ligations were incubated either at RT for 1 h or 14
o
C overnight in iCycler.  

 

Midiprep: A 50 ml bacterial culture was grown overnight (or grown to the recommended 

optical density (OD)) while shaking at 37
o
C under appropriate antibiotic selection.  Bacteria 

were pelleted via centrifugation at 3500 rpm for 20 min at 4
o
C.  Supernatant was discarded, and 

pellets were either stored at -80
o
C, or midiprepped using Plasmid plus midi kit (Qiagen, 

Valencia, CA) following manufacturer’s protocol. 
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