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 The Radiological Physics Center (RPC) uses both on-site and remote reviews to credential 

institutions for participation in clinical trials.  Anthropomorphic quality assurance (QA) phantoms are 

one tool the RPC uses to remotely audit institutions, which include thermoluminescent dosimeters 

(TLDs) and radiochromic film.  The RPC desires to switch from TLD as the absolute dosimeter in the 

phantoms, to optically stimulated luminescent dosimeters (OSLDs), but a problem lies in the angular 

dependence exhibited by the OSLD.  The purpose of this study was to characterize the angular 

dependence of OSLD and establish a correction factor if necessary, to provide accurate dosimetric 

measurements as a replacement for TLD in the QA phantoms.  A 10 cm diameter high-impact 

polystyrene spherical phantom was designed and constructed to hold an OSLD to study the angular 

response of the dosimeter under the simplest of circumstances for both coplanar and non-coplanar 

treatment deliveries.  OSLD were irradiated in the spherical phantom, and the responses of the 

dosimeter from edge-on angles were normalized to the response when irradiated with the beam 

incident normally on the surface of the dosimeter.  The average normalized response was used to 

establish an angular correction factor for 6 MV and 18 coplanar treatments, and for 6 MV non-

coplanar treatments specific to CyberKnife.  The RPC pelvic phantom dosimetry insert was modified 

to hold OSLD, in addition to the TLD, adjacent to the planes of film.  Treatment plans of increasing 

angular beam delivery were developed, three in Pinnacle v9.0 (4-field box, IMRT, and VMAT) and 

one in Accuray’s MultiPlan v3.5.3 (CyberKnife).  The plans were delivered to the pelvic phantom 

containing both TLD and OSLD in the target volume.  The pelvic phantom was also sent to two 

institutions to be irradiated as trials, one delivering IMRT, and the other a CyberKnife treatment.  For 

the IMRT deliveries and the two institution trials, the phantom also included film in the sagittal and 

coronal planes.  The doses measured from the TLD and OSLD were calculated for each irradiation, 

and the angular correction factors established from the spherical phantom irradiations were applied to 

the OSLD dose.  The ratio of the TLD dose to the angular corrected OSLD dose was calculated for 

each irradiation.  The corrected OSLD dose was found to be within 1% of the TLD measured dose for 

all irradiations, with the exception of the in-house CyberKnife deliveries.  The films were normalized 
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to both TLD measured dose and the corrected OSLD dose.  Dose profiles were obtained and gamma 

analysis was performed using a 7%/4 mm criteria, to compare the ability of the OSLD, when 

corrected for the angular dependence, to provide equivalent results to TLD.  The results of this study 

indicate that the OSLD can effectively be used as a replacement for TLD in the RPC’s 

anthropomorphic QA phantoms for coplanar treatment deliveries when a correction is applied for the 

dosimeter’s angular dependence.  
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Chapter 1 Introduction 

1.1 Statement of Problem  

 The current standard of practice for mailable anthropomorphic quality assurance (QA) 

phantoms for the purpose of remote audits by the Radiological Physics Center (RPC) includes the use 

of thermoluminescent dosimeters (TLD) as an absolute dosimeter within the phantom.  The TLD have 

been shown to be able to identify calibration errors greater than 5%, and to have an accuracy similar 

to ion chamber measurements with a high degree of precision
1
.  There are several downsides to using 

TLD for remote audits, however, including a long wait period following irradiation before being read, 

temperature and humidity dependence, destruction of signal after a single reading, and a long reading 

time.  The RPC has already made the switch from TLD to optically stimulated luminescence 

dosimeters (OSLD) in 2010 for remote external beam output monitoring.  The benefits of OSLD 

include lower cost, a shorter wait period following irradiation, simpler readout procedures, minimal 

energy dependence, they are reusable, can be re-read, and they are not affected by changes in 

temperature and humidity.  The use of OSLD for this purpose has been well studied and validated by 

the RPC, and under reference conditions, has been shown to agree well with both ion chamber and 

TLD measurements for both photon and electron irradiations
2
.  The switch from TLD to OSLD in the 

anthropomorphic QA phantoms is also desirable, for the same reasons as stated above.  However, the 

use of OSLD in the RPC’s anthropomorphic phantoms has not been studied for evaluation of special 

treatment techniques, nor for credentialing of institutions to participate in National Cancer Institute 

(NCI) sponsored clinical trials. 

 The problem with implementing the OSLD in the anthropomorphic phantoms lies in the 

angular dependence exhibited by the dosimeters.  Kerns et al.
3
 demonstrated a decreased response of 

the nanoDot OSL dosimeter of 4% and 3% for 6 MV and 18 MV beams incident parallel to the plane 

of the dosimeter, respectively.  For a radiation treatment with multiple fields at different gantry 

angles, some or all of the beams could be oriented such that the OSLD demonstrate the decreased 

angular response.  The magnitude of the angular response could potentially be important and should 

be accounted for in the calculation of dose.  This observed under-response of the OSLD was 

attributed to the non-uniform geometry of the nanoDot dosimeter.  A lower fluence of the primary 

beam is incident on the disk shaped sensitive volume of the dosimeter from an edge-on orientation, 

which causes the majority of the dose at that orientation to be from scattered photons and low energy 

Compton electrons.  The stopping power ratio of the sensitive material relative to water decreases 



 

with decreasing electron energy, so as compared to the dose deposited in a face
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Figure 1.1 Anthropomorphic QA phantoms: prostate (upper left), thorax (upper right), IMRT head 

and neck (lower left), SBRT spine (upper middle), SRS head (lower middle), and SBRT liver (lower 
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1.3 Optically Stimulated Luminescence
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heat.  The model consists of two energy levels, the valence and conduction bands, which are 

separated by a forbidden region.  Defects purposefully introduced into the crystalline structure of the 

material establish local energy levels within the forbidden region, which are called traps.  Exposure to 

ionizing radiation excites the electrons to the conduction band and the holes left behind move to the 

valence band, creating electron-hole pairs.  The electrons that have been excited to the conduction 

band and the holes in the valence band can move freely within the crystal lattice.  The electrons will 

stay in the conduction band until they move back to the valence band and recombine with a hole, or 

are captured by an energy trap in the forbidden region
5
.  The electrons that have been captured by 

energy traps cannot recombine with a hole without first being stimulated.  Exposing the material to 

light stimulates the trapped electrons back to the conduction band, from where they can recombine 

with holes.  This recombination of an electron-hole pair creates an excited state of the recombination 

center, and results in luminescence.  A process of hole capture can occur, where a hole in the valence 

band can combine with an F-center to create additional recombination sites
6
.  

 Depending on the energy level of the trap within the forbidden region, the trap can be either a 

dosimetric, shallow, or a deep trap.  The dosimetric traps are deep enough to keep charge from 

spontaneously escaping at room temperature, but they are shallow enough that the charge contained 

can escape by exposing the material to visible light.  These dosimetric traps are responsible for the 

luminescence measured in OSL dosimetry.  Ideally, the amount of charge captured within the 

dosimetric traps is proportional to the absorbed dose of the crystal.  Traps that are close in energy to 

either the conduction band or the valence band are called shallow electron traps and shallow hole 

traps, respectively.  Deep electron traps and deep hole traps also exist within the forbidden region, 

further in energy from the conduction band for the electron traps, and further from the valence band 

for hole traps.  Yukihara and McKeever
5
 describe the influence of charge capture by both the shallow 

and deep traps on the OSL signal.  Shallow traps are associated with phosphorescence directly 

following irradiation, as well as after exposure to light.  Directly following irradiation, charges from 

shallow traps escape and recombine, releasing luminescence.  Phosphorescence after optical 

stimulation occurs when charges from dosimetric traps escape, but then are captured by shallow traps.  

Another important process associated with shallow traps is the initial increase in signal intensity when 

the material is exposed to light.  At the beginning of the stimulation, a large number of shallow traps 

are available and can trap charge coming from the dosimetric traps, but as stimulation continues, 

these shallow traps become filled and more of the charges escaping from dosimetric traps will 

recombine and release light.  Deep electron and deep hole traps affect the sensitivity of the material 

by competing with the recombination process, both during irradiation as well as stimulation.  The 
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deep traps may capture charge that has escaped the dosimetric traps, but as the deep traps fill, more 

electrons recombine and contribute to the OSL signal.  This process causes the dosimeter to have a 

dependence on the history of irradiation, due to a residual signal from previous irradiations that can 

be difficult to remove from the crystal. 

       The shape of the luminescence curve versus time can be modeled by an exponential decay, if 

stimulated by a continuous exposure to light of the appropriate wavelength.  The concentration of the 

shallow and deep traps will affect the OSL curve, but the simplest approach is to assume that the 

electrons do not fall into another trap after escaping the dosimetric trap, and they are allowed to 

recombine.  The light resulting from the recombination of the electron-hole pair is collected to create 

the luminescence curve, and the integral of this curve is proportional to the total absorbed dose of the 

material. 

1.3.2 Properties of Al2O3:C Dosimeters 

 The material most commonly used in commercial optically stimulated luminescence 

dosimeters is carbon-doped aluminum oxide (Al2O3:C).  This material was originally investigated as a 

material for thermoluminescence (TL) dosimetry, with approximately 60 times higher TL sensitivity 

than LiF:Mg,Ti
7
, but when it was shown that the TL signal was susceptible to light exposure, the 

material was implemented as an optically stimulated luminescence dosimeter.  A low effective atomic 

number is a desirable characteristic in a material used for dosimetry; however, the higher effective 

atomic number of aluminum oxide, 11.28
8
, leads to an increase in energy dependence of the 

dosimeter, especially at lower energies, that must be accounted for if used to be an accurate radiation 

dosimeter.    

 Al2O3:C can be produced as single crystals, or as powders of varying grain sizes.  The 

crystals are grown in an atmosphere that prevents oxidation keeping the presence of oxygen low, and 

introducing carbon.  This atmosphere creates a high concentration of stable oxygen vacancies and 

defects in the crystal lattice.  When the oxygen vacancy is filled by two electrons, a neutral F-center is 

created.  If the oxygen vacancy is filled with a single electron, a positively charged F
+
-center is 

created.  These F and F
+
 centers contribute greatly to the luminescence sensitivity of the material, and 

are present in aluminum oxide in concentrations of 10
17

 cm
-3

 and 10
15

-10
16

 cm
-3

, respectively
9
.  

Electrons that have escaped traps recombine with the F
+
-centers, creating excited F-centers, which 

then relax back to the ground state by emitting luminescence
5,9

.  F-center emission is centered at 420 

nm with a lifetime of 35 ms at room temperature, and F
+
-centers produce luminescence at 330 nm 

with a much shorter lifetime of less than 7 ns
10

. 
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 An advantage of carbon-doped aluminum oxide is the wide energy forbidden region, 9.5 

eV
10

, which allows the local energy levels in the band gap to be distant enough from the conduction 

band to be thermally stable.  If the gap between the valence and conduction bands is too narrow, the 

traps are too shallow to hold charge at room temperature for any length of time.  Another advantage 

of the material is its uniformity in sensitivity and properties, due to having a homogeneous mixture of 

different crystal sizes
5
.  The main disadvantage of the material is the residual charge that is stored in 

the deep traps, which need more than optical bleaching to be removed.  According to Reft
11

, for 

absorbed doses up to 2 Gy, optical bleaching will remove virtually all the signal without changing the 

sensitivity of the material, but for doses above 2 Gy, annealing with fluorescent lights does not 

remove all trapped charges.  However, annealing with a tungsten-halogen lamp (THL) for 3 minutes 

will remove the signal.  It has also been shown that annealing the dosimeters with high temperatures 

will empty the traps of all charges
12

, but dosimeters enclosed in plastic cannot withstand the high 

temperatures necessary. 

 The response and measured signal is dependent on characteristics of the material and the 

reader system, such as energy dependence, fading, linearity, and depletion.  The Al2O3:C dosimeter 

characteristics have been previously studied, and will be briefly outlined here.  The energy 

dependence of the OSLD was investigated in Viamonte et al.
13

, and it was shown that when 

dosimeters are calibrated using a 
60

Co beam there is a 4% decrease in the sensitivity for higher 

energies, making it necessary to apply a correction factor.  The response of the OSLD has been shown 

to have no dependence on dose rate
13,14

.  Jursinic
15

 investigated the changes in the dosimetric 

characteristics of the OSLD with accumulated dose, finding that dosimeters with greater accumulated 

dose experience a greater degree of supra-linearity.  He suggested that dosimeters that are to be used 

multiple times, repeating the cycle of annealing, irradiating and reading, could make measurements 

with high precision if the individual OSLD are characterized after each annealing to account for 

changes with accumulated dose.  Aguirre et al.
16

 have reported that the characteristics of individual 

dosimeters need not be investigated after each annealing, and is independent of the number of cycles 

it has been irradiated and annealed, provided the accumulated dose to the dosimeter is less than 10 

Gy.  It has been shown that up to an accumulated dose of 20 Gy, the sensitivity of the OSLD remains 

the same, but above 20 Gy the sensitivity decreases by approximately 4% with every 10 Gy additional 

accumulated dose
11,17

.  The linearity of the OSL response for an irradiation has been studied 

extensively, and it has been shown that the response of the dosimeter is linear up to a delivered dose 

of approximately 2 - 4 Gy
11,13,14,17,18

, with supra-linearity observed at higher doses.  An explanation 
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for the observed supra-linearity was given by Jursinic
17

, attributing the response to the competition of 

the deep traps described in Section 1.3.1.   

 An initial rapid decay of the signal that has been observed in OSLD, called the transient 

signal, is due to spontaneously escaping charges from the shallow traps without optical stimulation.  

The decay of the transient response affects the initial intensity of the signal, but does not greatly 

affect the total area under the luminescence versus time curve
19

.  Several studies have shown that 

after 8 minutes, the transient signal has decayed and the signal is stable
11,17,20

.  Perks et al.
20

 reported a 

2% decay in the signal from 10 minutes to 60 hours post-irradiation,  and Jursinic
17

  observed stability 

in the signal to be within 2% at 2.5 days after irradiation.  Viamonte et al.
13

 reported no loss of signal 

within the first six hours after irradiation, a 2 % signal loss within the first five days, and a stable 

signal from five days to 21 days post-irradiation.  Schembri and Heijmen
14

 observed a fading of the 

OSL signal of less than 1.8% over a 3 week time period.  Needless to say, the fading characteristics of 

the OSLD have been studied exhaustively and the conclusion is that this effect should be accounted 

for in the measurement of dose.   

 The temperature dependence of the OSL has also been investigated and was shown to not 

affect the response of the dosimeters for a temperature range of 10° to 40 °C
17

.  Each reading of a 

dosimeter decreases the stored charge by a finite amount.  A depletion of the OSL signal with each 

reading of 0.05% has been reported
17

, and other works have suggested that 0.2% of the signal is lost 

with each reading
13,16

. 

    Jursinic
17

 found that when OSL are used repeatedly, going through many cycles of 

irradiation, reading, and annealing, the measurement uncertainty was 0.6%, demonstrating an 

improvement in the precision over using the dosimeter a single time.  He reported that for the single-

use method, the measurement uncertainty was 0.9%.  Yukihara et al.
18

 reported a similar level of 

uncertainty, 0.7%, for dosimetry in radiotherapy using Al2O3:C dosimeters.  The reported uncertainty 

was for the readout of a single dosimeter, and the uncertainty for the readout of more than one 

dosimeter would decrease with the square root of the number of dosimeters read. 

1.3.3 Measurement of OSL Signal 

 The components necessary to stimulate and capture luminescence in OSLD include a light 

source, filters, and a photomultiplier tube (PMT), as shown below in Figure 1.3.  The light source is 

used to stimulate the trapped charges, and a filter is necessary for the stimulation light to select the 

appropriate wavelengths of light.  The filtered light incident upon the dosimeter provides the energy 
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420 nm
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.  Both the stimulation light and the luminescence from the relaxation of the excited F

pass through another filter prior to entering the PMT in order to remove

component.  The emitted luminescence enters the PMT, where it is multiplied and counted.

Figure 1.3 Diagram of components for measuring OSLD signal.  

 Several stimulation methods have been investigated to induce luminescence, including 

continuous-wave OSL (CW-OSL) and pulsed OSL (POSL).
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constant light intensity while collecting the stimulated luminescence

exposing the material to short pulses of stimulation light with a high pulse frequency.  The emitted 
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before the PMT.  This technique requires an underst

that appropriate timing can be selected in order to detect most of the emitted signal and at the same 

time avoid the stimulation light.  The signal collected from the dosimeter is integrated over many 

pulses, and if this method is performed over a longer period, the luminescence versus time curve 

approximates the luminescence versus time curve for CW

 Measurement of the OSL signal can be made using the initial OSL intensity or the total OSL 

signal.  The initial intensity is determined using only a short exposure to the stimulation light, on the 
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order of a second.  Total OSL signal is determined by stimulating all the trapped charges in the 

material, and this process can take a much longer time.  Yukihara and McKeever
5
 state that the choice 

of measurement technique should not matter, but that the initial OSL intensity is dependent upon the 

stimulation power and is vulnerable to fluctuations in the power.       

1.4 Hypothesis and Specific Aims 

 We hypothesized that the incorporation of OSLDs into the RPC phantoms, regardless of their 

angular dependence, will measure on average equivalent dose measurements as compared to the 

existing TLD measurements within ± 1%.   

 This hypothesis was tested with the following specific aims: 

1. A dosimetry insert for the RPC pelvic phantom was modified to accommodate OSLD and 

TLD adjacent to the planes of film. 

2. Treatment plans of increasing angular beam delivery for the pelvic phantom were developed. 

3. Each developed treatment plan was delivered three times to the pelvic phantom, containing 

two TLD and two OSLD (oriented in the transverse plane) at the center of the PTV, in 

addition to radiochromic film for the IMRT treatments. 

4. The dose measurements from the TLD and OSLD were compared to determine dose 

measurement equivalency, and whether an angular dependence correction factor was needed.   
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Chapter 2 Methods and Materials 

2.1 Phantoms 

2.1.1 Spherical Phantom 

 A spherical phantom was designed and constructed in order to investigate, under the simplest 

of circumstances, the magnitude of the response of the OSLD at varying angles.  The 10 cm diameter 

phantom pictured on the left in Figure 2.1 is made of high-impact polystyrene, with the center of the 

OSLD nano-cassette positioned at the center of the sphere.  A cylinder of 1 cm diameter was milled 

from the base of the sphere, and an insert of the same diameter was made to fit in that space.  The 

cylindrical insert has a slot at the top for holding the OSL at the center of the phantom, and is attached 

to a flat base as shown on the right in Figure 2.1, which has a pin designed to fit into a corresponding 

hole on the phantom for reproducible positioning of the OSL.  

 

Figure 2.1 High-impact polystyrene spherical phantom (left), and phantom base and insert holding 

the OSLD within the spherical phantom (right) 

2.1.2 RPC Pelvic Phantom 

 The RPC’s pelvic phantom was used for this study, which was designed for remote audits and 

credentialing of institutions for participation in clinical trials.  The phantom shell is made of PVC, can 

be filled with water to simulate soft tissue, and is made to estimate the average size and shape of 

patients and organs of interest in the treatment of the prostate as seen in Figure 2.2.   



 

Figure 2.2 Axial CT scans of phantom (left) and patient (right) demonstrating similarity of phantom 

The shell contains polybutylene terephthalate (PBT) 

heads, each containing a hollow tube for the insertion of acrylic femoral head rods.  There are two 

imaging rods made of solid acrylic, and two dosimetric rods, 

for the positioning of a TLD capsule at the level of the target.  At t

large diameter tube allows for the placement of the imaging and dosimetric inserts

place within the tube, as seen in Figure 2.

placed along the large tube for motion tracking

CyberKnife treatments. 

Figure 2.3 RPC pelvic phantom shell (left) with dosimetry (middle) and imaging (right) inserts
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Axial CT scans of phantom (left) and patient (right) demonstrating similarity of phantom 

to patient anatomy 

The shell contains polybutylene terephthalate (PBT) – polyester cylinders to simulate the femoral 

ontaining a hollow tube for the insertion of acrylic femoral head rods.  There are two 

imaging rods made of solid acrylic, and two dosimetric rods, each of which contains

TLD capsule at the level of the target.  At the base of the pelvic phantom, a 

large diameter tube allows for the placement of the imaging and dosimetric inserts, both locking into 

, as seen in Figure 2.3.  For the CyberKnife irradiations, four gold fiducials were 

large tube for motion tracking with the orthogonal x-ray imaging system used during 

RPC pelvic phantom shell (left) with dosimetry (middle) and imaging (right) inserts
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 The imaging insert of the phantom contains both a target and organs at risk, made of 

materials to approximate patient tissue densities and CT numbers.  A spherical nylon ball was used 

for the prostate, a polyethylene ball for the bladder, and a cylinder of wax surrounded by a thin 

polyethylene tube was used for the rectum and rectal wall.  The dosimetry insert is made of high-

impact polystyrene, and the cylinder breaks into four quarters for loading dosimeters as seen below in 

Figure 2.4.  Within the target volume of the dosimetry insert, there are two TLD and it was modified 

to hold an additional two OSLD in the axial plane.  The insert also contains film in both the coronal 

and sagittal planes, which are pricked by pins mounted in the insert in spots unique to the phantom, 

and these pin pricks are used for the registration of the film, discussed later in Section 2.6.2. 

 

Figure 2.4 Dosimetry insert split into posterior and anterior half (left), and posterior half split into 

two quarters to show positioning of OSLD and TLD (red circles) at the center of the target (right) 

2.1.3 Slab Phantom 

 The energy dependence of OSLD in full phantom conditions had not yet been characterized 

by the RPC, so the phantom seen below in Figure 2.5 was used to perform irradiations to determine a 

full phantom energy-dependence correction factor for OSLD.  The phantom is made of 15 x 15 cm
2
 

slabs of high-impact polystyrene, each 2 cm thick, with the exception of one 3 cm thick slab.  One 

slab contained a section in the middle that could slide out and hold a TLD at the center.  A new 

sliding section was made to the exact dimensions of the previous section holding the TLD, but instead 

was made to hold an OSLD nano-cassette centered within the slab.  A piece of high-impact 

polystyrene was then placed on top of the OSLD to eliminate any air gap within the phantom.  A 

single OSLD was placed at a depth of 10 cm.  Beyond the depth of the OSLD, there was 7 cm of 

high-impact polystyrene to provide sufficient backscatter.  Another 2 cm thick section of the phantom 

contained a cylinder bored out of the center to insert an ionization chamber. 
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Figure 2.5 High-impact polystyrene phantom showing section where OSLD placed 

2.2 Treatment Planning 

2.2.1 Phantom Simulation 

 The CT images were acquired using a GE LightSpeed RT16 scanner (GE Healthcare, 

Waukesha, WI).  The phantom shell and dosimetry insert were filled with water, and the acrylic 

imaging rods were placed in the femoral heads.  The phantom was placed on the imaging couch in the 

supine position, in a head first orientation.  The lasers were aligned to place the isocenter near the 

center of the prostate.  The laser lines were marked with tape on the anterior, left, and right sides of 

the phantom.  Radio-opaque markers (bb’s) were placed at the laser crosshairs to mark isocenter.  A 

typical MD Anderson prostate protocol was used for the CT simulation, and the resulting images 

were imported into the Pinnacle treatment planning system for the three co-planar treatments.  The 

pelvic phantom was then imaged on a GE LightSpeed RT16 Xtra scanner at St. Luke’s Episcopal 

Hospital Radiation Therapy and CyberKnife Facility using the same setup procedure and a similar 

scanning protocol, for developing the CyberKnife treatment plan.  The resulting images were 

imported into Accuray’s MultiPlan (Accuray, Sunnyvale, CA) treatment planning system.     



 

Figure 2.6 Axial CT image of prostate phantom at the 

 An axial slice of the phantom at the level of the c

The bb placement, indicating isocenter, can be seen on the anterior, right and left sides of the 

phantom in the image. 

2.2.2 Dose Prescription 

 The dosimetric guidelines for this study are based on the dose 

by the RPC Prostate IMRT credentialing protocol.  The protocol specifies that at least 98% of the 

PTV receives a dose of 6 Gy, and a maximum dose of 6.4 Gy may be delivered to less than 2% of the 

PTV.  The bladder, rectum and femoral heads are the critical normal structures, and must not receive 

more than 6.7 Gy.  The normal structure constraints are listed in Table 2.1.
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Axial CT image of prostate phantom at the level of simulation isocenter

and critical structures as indicated 

An axial slice of the phantom at the level of the center of the target is shown in Figure 2.

The bb placement, indicating isocenter, can be seen on the anterior, right and left sides of the 

The dosimetric guidelines for this study are based on the dose prescription and constraints set 

by the RPC Prostate IMRT credentialing protocol.  The protocol specifies that at least 98% of the 

PTV receives a dose of 6 Gy, and a maximum dose of 6.4 Gy may be delivered to less than 2% of the 

nd femoral heads are the critical normal structures, and must not receive 

more than 6.7 Gy.  The normal structure constraints are listed in Table 2.1. 

 

level of simulation isocenter with the target 

enter of the target is shown in Figure 2.6.  

The bb placement, indicating isocenter, can be seen on the anterior, right and left sides of the 

prescription and constraints set 

by the RPC Prostate IMRT credentialing protocol.  The protocol specifies that at least 98% of the 

PTV receives a dose of 6 Gy, and a maximum dose of 6.4 Gy may be delivered to less than 2% of the 

nd femoral heads are the critical normal structures, and must not receive 
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Structure Dosimetric Constraints 

Bladder 

V5.7 Gy < 50% 

V6.0 Gy < 35% 

V6.3 Gy < 25% 

V6.7 Gy < 15% 

Rectum 

V5.0 Gy < 50% 

V5.7 Gy < 35% 

V6.0 Gy < 25% 

V6.3 Gy < 15% 

Femoral Heads Maximum dose ≤ 6.7 Gy 

Table 2.1 RPC Prostate IMRT normal tissue constraints 

2.2.3 Planning Procedures 

 Treatment planning was performed on Pinnacle v9.0 (Phillips Medical, Madison, WI) and 

MultiPlan v3.5.3 (Accuray, Sunnyvale, CA).  The couch was removed from the images, and the 

treatment isocenter was identified at the intersection of the simulation bb’s.  Contours were created 

for the prostate, bladder, rectum and femoral heads manually using the region of interest (ROI) tool.  

Contours were also created for the TLD in the target and femoral heads, as well as for the OSLD in 

the target.  The external tissue was contoured using the auto-contour function.  Using guidelines set 

by MD Anderson’s Genitourinary (GU) Service, several planning structures were created.  The 

prostate was expanded by 7 mm in all directions, with the exception of a 5 mm posterior expansion, 

to create the PTV.  An additional 5 mm margin was added to the PTV to create a structure called 

‘PTV expand’.  A structure for the normal tissue was created by removing the volume ‘PTV expand’ 

from the external tissue.  Additional planning structures were created, including a 1 cm expansion of 

the PTV, which could be used to achieve coverage of the target, and a rectum avoid structure to bring 

the dose off the anterior wall of the rectum.  The rectum avoid structure was created by subtracting 

the structure ‘PTV expand’ from the contoured rectum.  

 Four treatment plans of increasing angular beam delivery were created for the pelvic phantom 

using common dose prescriptions and constraints described in Section 2.2.2. 
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2.2.3.1 Four Field Box 

 Four coplanar beams were created for this plan, each using 18 MV photons.  The 

anteroposterior (AP) beam had a gantry angle of 0°, a gantry angle of 180° was used for the 

posteroanterior (PA) beam, and gantry angles of 90°and 270° were used for the left lateral and right 

lateral beams, respectively.  The jaws were set to achieve adequate coverage of the PTV, while 

minimizing the dose to the normal tissue.  The couch and collimator angles were set to 0° for all 

beams.  The dose grid encompassed the phantom, and used a resolution of 0.4 cm
3
.  The final dose 

was computed using the collapsed cone (CC) convolution algorithm.      

2.2.3.2 IMRT 

 The typical beam arrangement for prostate IMRT at MD Anderson uses eight 6 MV photon  

coplanar beams, with the following gantry angles: 225°, 260°, 295°, 330°, 30°, 65°, 100°, and 135°.  

The couch and collimator angles were set to 0° for all beams.  The dose grid encompassed the 

phantom and a resolution of 0.4 cm
3
 was used.  Initially, each beam was set to be equally weighted 

and unlocked.  Direct Machine Parameter Optimization (DMPO) was used for the inverse planning, 

and was set to allow the computer to set the field size.  The objectives for the plan focused foremost 

on achieving target coverage, achieving the dose constraints to the critical structures, and finally, the 

normal tissue objective was set to deliver a maximum of half the prescription dose to 1% of the 

volume.  The plan was normalized to 97% of the prescribed dose to achieve PTV coverage.  The final 

dose calculation was computed using the CC convolution algorithm. 

2.2.3.3 VMAT 

 Two arcs were created using the dynamic arc beam type in Pinnacle, allowing for variable 

gantry rate, MLC leaf speed, and dose rate.  The couch angle was set to 0° and 6 MV photons were 

used for both arcs.  The dose grid covered the entire phantom and used a resolution of 0.4 cm
3
.  Each 

beam was given equal weight, with the first arc beginning at a gantry angle of 181° and rotating to 

180° in a clockwise (CW) motion with a 30° collimator angle.  The second arc rotated from 180° to 

181° in a counter-clockwise (CCW) motion with a 330° collimator angle.  SmartArc optimization was 

used, and the computer was allowed to set the field size.  The optimization generated a new control 

point every 4 degrees, and the leaf motion was constrained to prevent the MLC from attempting to 

move too quickly.  The objectives for the plan were similar to those used for the IMRT optimization, 

the most important being target coverage, then trying to meet critical structure dose constraints, and 
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minimizing the dose to the normal tissue.  The plan was normalized to 96% of the prescribed dose to 

achieve PTV coverage.  Final dose was calculated using the CC convolution algorithm.  

2.2.3.4 CyberKnife 

 Using Accuray’s MultiPlan v3.5.3 inverse treatment planning system, a CyberKnife plan was 

created.   The CyberKnife Robotic Radiosurgery System (Accuray, Sunnyvale, CA) utilizes a 6 MV 

compact linear accelerator mounted on a robotic arm, and delivers pencil beams at discrete nodes 

surrounding the patient.  The beam can be collimated by using either a set of interchangeable circular 

collimators, or the Iris™ Variable Aperture Collimator.  The plan for this study used the Iris 

collimator, and limited the cone sizes used from 25 mm up to 60 mm.  The dose grid encompassed the 

phantom, and a high-resolution dose grid was used during the final dose calculation, which performs 

calculations for every voxel in the CT image set.  The objectives for the plan were the same as those 

used for the IMRT optimization, the most important being target coverage and meeting critical 

normal structure constraints.  A minimum number of MU per beam was set.  The ray-tracing 

algorithm was used for the final dose calculation, and the plan was normalized to 90% of the 

prescribed dose.  Sharma et al.
22

 briefly describes the ray-tracing algorithm method.  This dose model 

uses a combination of off-axis ratios (OAR), tissue-phantom ratios (TPR), collimator output factors 

(OF), and central-axis effective depth calculations to correct for the patient geometry and tissue 

heterogeneities. 

2.3 Phantom Irradiations 

2.3.1 Spherical Phantom Irradiations 

 Irradiations were performed using the spherical phantom described in Section 2.1.1, to 

investigate the angular response of the OSLD under the simplest of circumstances for 6 MV and 18 

MV photon beams.  The irradiations were delivered on a Varian 21EX linear accelerator (Varian 

Medical Systems, Palo Alto, CA) calibrated using the AAPM TG-51 protocol
23

 and operated in 

service mode.  The phantom was centered on the central axis (CAX) of the beam, and the top of the 

phantom was set to 95 cm SSD.  The field size was set to 5 x 5 cm
2
, and the collimator angle was 0° 

throughout the irradiation of this phantom.  The monitor units (MU) needed to deliver 100 cGy to the 

OSLD was calculated using Equation 2.1: 
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Equation 2.1 Linac MU calculation 

where D is the prescribed dose per field in cGy, k is the cGy/MU under the reference calibration 

conditions.  DF is the depth factor (PDD for SSD techniques or TMR for SAD techniques), SC and SP 

are the collimator scatter and phantom scatter factors, OAF is the off-axis factor, and AF is an 

attenuation factor, representing any beam attenuators such as wedges or trays. 

 The positioning of the phantom was checked periodically throughout the irradiations.  Three 

sets of irradiations were performed using the spherical phantom, two coplanar irradiations using beam 

energies 6 MV and 18 MV, and one non-coplanar irradiation with a 6 MV photon beam.  

 The dose delivered to each OSLD was calculated using Equation 2.7.  The OSLD calculated 

dose was normalized for all edge-on angles to the face-on angle.  The dose calculated to each 

dosimeter was normalized to the average dose to the dosimeters irradiated at the face-on angle.  A 

statistical analysis of these normalized doses was performed to determine if the response of the OSLD 

at the face-on angle was different from the responses at the edge-on angles.  A one-way analysis of 

variance (ANOVA) test was performed, which is used to compare the means of two or more groups, 

with the normalized dose as the dependent variable and the angle as the factor.  The null hypothesis 

states that the samples in these multiple groups are drawn from the same population.  A p-value less 

than α=0.05 indicated that the null hypothesis could be rejected and the group means were 

significantly different.  After performing the one-way ANOVA, if the null hypothesis was rejected, a 

Fisher’s Least Significant Difference (LSD) test was run to determine which means are statistically 

significantly different from each other.  This test compares the mean of one group with the mean of 

another group using a series of t-tests, the null hypothesis stating that the means of the two groups are 

equal. 

2.3.1.1 Coplanar 6 MV Irradiations 

 The first set of irradiations were delivered with a 6 MV photon beam.  The OSLD response 

with the beam incident normally on the face of the dosimeter (face-on) was compared to the response 

of the dosimeter at varying beam angles in an edge-on orientation around the dosimeter.  The angles 

with respect to the OSLD can be seen below in Figure 2.7.  The edge-on irradiations were done in 45° 

increments around the dosimeter, from 0° to 315°.  For the irradiation of the angles on the inferior 
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half of the dosimeter (225°, 270°, and 315°), the OSLD was rotated 180° within the phantom to 

measure the response of the dosimeter without the influence of the treatment couch and rails.  

 

Figure 2.7 Diagram of OSLD and angles for 6 MV coplanar irradiations.  Angles irradiated continue 

around bottom half of OSLD in edge-on orientation every 45°. 

Three OSLD were irradiated at each angle, and the average response at each angle was normalized to 

the average response at the face-on angle.  For the face-on irradiation, both the gantry and the couch 

were set at 270°.  For all other angles, the couch rotation was set to 0° and the gantry was rotated 

about the phantom.  The setup for the 45° irradiation is shown below in Figure 2.8.   

 

Figure 2.8 Spherical phantom positioned for 45° OSLD irradiations 
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2.3.1.2 Coplanar 18 MV Irradiations 

 The second set of spherical phantom irradiations were performed using an 18 MV photon 

beam, and the response of the OSLD in the face-on orientation was compared to the response of 

several angles around the dosimeter in the edge-on orientation.  The OSLD angles irradiated can be 

seen in Figure 2.9.  The edge-on irradiations were performed every 90° around the dosimeter. 

 

Figure 2.9 Diagram of OSLD and angles for 18 MV coplanar irradiations 

Three OSLD were irradiated at each angle, and the average response for each edge-on angle was 

normalized to the average response for the face-on irradiation.  The gantry and couch angles used for 

the coplanar 6 MV irradiations discussed in Section 2.3.1.1 were also used for this set of irradiations.  

For the angle on the inferior half of the dosimeter (270°), the OSLD was again rotated within the 

phantom to eliminate the effects of the treatment couch and rails.   

2.3.1.3 Non-coplanar 6 MV Irradiations 

 The final set of spherical irradiations was designed to simulate a cone of beam angles similar 

to the angles that might be delivered in a prostate CyberKnife treatment.  The irradiations were 

performed using a 6 MV photon beam.  The response of the dosimeter at varying irradiation angles 

was normalized to the response of the OSLD in the face-on orientation.  The angles irradiated can be 

seen in Figure 2.9.  The angles investigated in the coplanar beam orientation ranged from 0° to 180°, 

as seen on the left in Figure 2.10.  In the non-coplanar beam arrangement, a 90° range of angles 

centered about the top of the OSLD were investigated, with irradiations every 15° as seen on the right 
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in Figure 2.10.  Three OSLD were irradiated at each angle.  The couch rotation was set to 0° for all 

angles, and the gantry was rotated about the phantom. 

 

Figure 2.10 Diagram of OSLD and angles for 6 MV non-coplanar irradiations 

2.3.2 Pelvic Phantom Irradiations 

 To study the angular dependence of the OSLD in full phantom conditions for treatment plans 

of increasing angular beam delivery, the pelvic phantom described in Section 2.1.2 was irradiated.  

The four treatment plans of increasing angular beam delivery are discussed in Section 2.2.3, 

consisting of three coplanar treatments (4-field box, IMRT, and VMAT) and one non-coplanar 

treatment (CyberKnife).  The coplanar treatment plans were delivered on a Varian 21EX linear 

accelerator calibrated using the AAPM TG-51 protocol.  The non-coplanar treatment was delivered 

on the CyberKnife G4 Robotic Radiosurgery System at St. Luke’s Radiation Therapy and CyberKnife 

facility in Houston, TX as shown below in Figure 2.11.  Each plan met the dose prescription and 

critical normal tissue constraints outlined in Section 2.2.2, planned to deliver a target dose of 6 Gy.  

The OSLD batch 06K10 used in this study was only commissioned for linearity corrections up to a 

dose of 3.5 Gy, so the coplanar treatment plans were scaled to deliver a target dose of 3 Gy.  The new 

OSLD batch, 16K12 was then commissioned at the RPC to higher dose levels, allowing the original 

dose prescription to be met.  The CyberKnife treatment and the institution trials, discussed later in 

Section 2.3.2.1, incorporated the new 16K12 OSLD batch, so the original dose prescription of 6 Gy 

was maintained for these deliveries. 
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Figure 2.11 CyberKnife irradiation of pelvic phantom 

 For the treatment plans delivered on the Varian 21EX linacs, the phantom was positioned at 

the head of the couch in the head first, supine orientation.  The lasers were aligned to the simulation 

isocenter using the bb’s and the tape marks, and the positioning of the phantom was checked 

periodically throughout the treatment delivery.  The positioning of the phantom for the CyberKnife 

treatment delivery was accomplished using the fiducials implanted within the phantom shell and the 

CyberKnife’s image guidance system.  The positions of the fiducials are at known coordinates within 

the phantom.  The image guidance system uses two orthogonal fixed x-ray imaging units to image the 

phantom before and throughout treatment delivery, and these images are compared to previously 

generated digitally reconstructed radiographs (DRRs) to determine the positioning and target location, 

and make any necessary adjustments to the phantom position by moving the treatment couch. 

 Each treatment plan was delivered three times, each time loading new dosimeters into the 

phantom before the next irradiation.  The dosimeters included in each treatment deliver varied by 

plan.  For the 4-field treatment, the dosimeters loaded into the phantom included TLD in the target 

and femoral heads, and OSLD in the target volume.  The same dosimeters were loaded into the 
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VMAT and CyberKnife treatments as well.  For the IMRT deliveries, the dosimeters included TLD 

and OSLD loaded in the same manner as the other treatments, as well as radiochromic film in both 

the coronal and sagittal planes through the target volume. 

 During the delivery of the VMAT treatment plans, the rails of the treatment couch were 

moved in and out, as the gantry rotated about the phantom.  For the delivery of the first arc, with the 

gantry rotating about the phantom in the clockwise direction, the rails were out between the angles 

181° and 220°.  At this point, the rails were moved in to the center of the couch as the gantry rotated 

from 220° to 140°.  From 140° to 180°, completing the first arc, the rails were moved back out.  The 

second arc began at 180° and rotated about the phantom in the counter-clockwise direction, and the 

rails were moved in and out during the same angles as for the first arc.  This technique was employed 

to reduce the effect of the rails on the dose delivered to the phantom. 

2.3.2.1 Institution Trials 

 As an additional check, the RPC pelvic phantom was sent to two institutions for irradiation.  

For each institution, the phantom was sent according to RPC credentialing protocol, including 

instructions for simulation, planning, and treatment delivery, and the dosimeters traditionally sent 

(TLD and radiochromic film).  The only change to the standard credentialing process was the 

inclusion of two OSLD, batch 16K12, within the dosimetric insert, as they had been placed during all 

previous irradiations of the pelvic phantom.  One institution performed the RPC credentialing 

protocol for prostate IMRT, and the second institution performed a prostate CyberKnife irradiation.  

Both of these institution trials used the standard RPC prostate dose prescription and normal structure 

constraints. 

2.3.3 Energy Correction Irradiations 

 Using the slab phantom discussed in Section 2.1.3, a set of irradiations was performed to 

investigate the energy dependence of the OSLD in full phantom conditions, and determine an energy 

correction factor.  The irradiations were performed on a Varian 21EX linac using 6 MV and 18 MV 

photon beams.  A TG-51 calibration was performed in a large water phantom.  The surface of the 

water in the phantom was set to 100 cm SSD, with a field size of 10 x 10 cm
2
, gantry angle of 0° and 

collimator rotation of 0°.  After performing the calibration, the water phantom was replaced with the 

slab polystyrene phantom with the same setup conditions as for the calibration.  Both the calibration 

and the slab phantom irradiation measurements were made with an Exradin A12 (Standard Imaging, 

Middleton, WI) ionization chamber calibrated by the MD Anderson Cancer Center ADCL.  Within 
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the slab phantom, the ion chamber was positioned at a depth of 10 cm.  Three readings were taken per 

beam energy, delivering 200 MU per reading. 

 The readings made for each energy by the ion chamber in the slab phantom at a depth of 10 

cm were used to calculate the dose rate (cGy/MU) to muscle at depth using the AAPM TG-21 

protocol
24

.  The protocol calculates the dose rate to water at the depth of dmax from measurements 

made in a non-water phantom.  The dose rate was corrected to dose in muscle using a 0.99 correction, 

and the depth was corrected from dmax to 10 cm using the %dd10 for the Varian 21EX. 

 An estimate of the MU needed to deliver 100 cGy to a depth of 10 cm within the polystyrene 

phantom was made by using the percent depth dose (%dd) in water information for the linac at the 

particular energy.  The desired dose was divided by the %dd10 for both 6 MV and 18 MV.  Using the 

slab with the modification for OSLD, a dosimeter was placed at 10 cm depth within the phantom and 

irradiated to the desired MU.  Irradiations were performed for both batches 06K10 and 16K12 OSLD.  

Five OSLD were irradiated for each batch and energy combination, irradiating 20 nanoDots total.  

The response of the OSLD positioned at 10 cm depth within the slab phantom was measured for each 

dosimeter.  The ratio of the dosimeter response at the investigated energy weighted by the expected 

dose delivered to the response from cobalt-60 weighted by its expected dose was found using 

Equation 2.2 shown below: 

�

Co�� �  
�
�� ���� ��� ·  ��  ·  ���� ��⁄

�
�� ���� ��� ·  ��  ·  ��� !"#$ � !"#$%
 

Equation 2.2 Ratio of dosimeter responses to correct for energy dependence 

The terms Avg Corr Rdg, KF, and KL are the same as defined in Section 2.5.  The term DE is the 

expected dose delivered to the dosimeters at the investigated energies (6 MV and 18 MV), which was 

calculated by multiplying the MU delivered, by the dose rate to muscle at a depth of 10 cm as 

calculated using TG-21.   The terms in the denominator of Equation 2.2 all refer to the OSLD 

previously irradiated in cobalt-60 as standards and read during the same session as the OSLD 

irradiated in the slab phantom to establish system sensitivity.  The expected dose delivered to the 

standard dosimeters, � !"#$ , was calculated using an RPC spreadsheet that accounts for the decay of 

the source, irradiation setup, and length of irradiation.  The linearity correction factor for the 

dosimeters irradiated to 100 cGy (standards) is defined to be one. 

 This ratio was calculated for each irradiated dosimeter.  Considering setup and calibration 

errors, we can assume that the irradiations of two batches per energy were actually like irradiations of 
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the same batch twice.  This assumption is valid based on the RPC OSLD mini-phantom experience.  

The ratios of the dosimeter responses were grouped for the 06K10 and 16K12 batches by energy, and 

an average ratio was calculated per energy (10 dosimeter ratios per energy).  The inverse of the 

averaged ratios for 6 MV and 18 MV was taken to get the energy correction factors for OSLD in full 

phantom conditions. 

2.4 RPC TLD Dosimetry 

 The TLD used in this study were double-loaded cylindrical capsules containing LiF TLD-100 

powder (Quantaflux, LLC, Dayton, OH) from batch B11, each load containing approximately 20 mg 

of powder.  The RPC has already extensively studied the characteristics of this batch of TLD.  The 

correction factors determined by the RPC are used to calculate the absorbed dose to the TLD using 

Equation 2.3:  
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Equation 2.3 TLD dose calculation 

The term Avg Rdg is the average signal measured per unit mass of the powder.  The average reading 

from the powder is multiplied by S, the system sensitivity, and several correction factors unique to the 

TLD batch: KF, KL, and KE.  These factors correct for fading (KF), linearity of the response with dose 

(KL), and the energy dependence (KE) of the dosimeters.   

2.4.1 TLD Batch Correction Factors 

 The fading of the TL signal is corrected using the following equation:  
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Equation 2.4 TLD fading correction factor 

where N = 1.3493, a = 1.2815, b = 0.00010885, c = 0.067810, d = 0.071908, and X is the number of  

days since irradiation.  The TLD are typically read 14 days after irradiation, but no sooner than day 

14. 

 The RPC protocol for calculating the linearity correction is to perform six iterations of the 

calculation to arrive at a final linearity correction value.  The correction for the linearity of the 

response with dose, for a range of doses from 1 to 40 Gy, is calculated using Equation 2.5: 
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Equation 2.5 TLD linearity correction 

For ‘low dose’ irradiations, the response has been shown to be linear, and the constants for �� are as 

follows: a = 0, b = -0.000335, and c = 1.1004995.  For ‘high dose’ irradiations, the response of the 

dosimeter exhibits supra-linearity, and the constants become a = 2.55207e-8, b = -2.22110e-4, and c = 

1.064337.  The raw dose is calculated using Equation 2.6: 
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Equation 2.6 TLD raw dose calculation 

where the terms Avg Rdg, S, and KF are the same as those discussed previously. 

 The energy correction factors have been measured for each batch of TLD for a range of beam 

energies for several of the anthropomorphic QA phantoms by the RPC.  Energy correction factors for 

60
Co, 6 MV, and 18 MV photon beams are 1, 1.03, and 1.07, respectively. 

2.4.2 System Sensitivity 

  The dosimetry system is the combination of the dosimeters, phantom, and the reader.  The 

system must be calibrated for each reading session because the reader may experience changes in 

sensitivity, which is monitored by reading “standards” and “controls”.  The standard dosimeters are 

irradiated to a known dose from a cobalt-60 unit, and these dosimeters are read at the beginning and 

end of a reading to determine the system sensitivity for the session.  The system sensitivity, S, is 

defined as the expected dose delivered to the standard dosimeters, divided by the average reading, as 

well as fading and linearity corrections.  The control dosimeters are also irradiated by a cobalt-60 

unit, to a different known dose, and are read at the beginning, end, and periodically throughout the 

session.  The purpose of reading the controls is to check the constancy of the system, and track 

changes in sensitivity over time. 

2.5 RPC OSLD Dosimetry 

 The OSLD used in this study were nanoDot™ dosimeters from the InLight® OSL system 

(Landauer, Inc., Glenwood, IL).  The nanoDot dosimeter contains a 5 mm diameter disk-shaped 

sensitive volume of Al2O3:C, 0.2 mm thick.  The disk is enclosed in a light-tight plastic case shown in 

Figure 2.12, measuring 10 x 10 x 2 mm
3
.  The position of the sensitive volume is indicated on the 
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case by the circle with the center marked by the cross hairs.  Each dosimeter has a unique barcode 

that is scanned prior to being read, and allows for the recording of the associated counts. 

 

Figure 2.12 nanoDot OSLD from Landauer, Inc. 

 The dosimeters are created in batches, and sent to the RPC where the characteristics of the 

batch and each dosimeter are carefully studied.  The dosimeters used in this study came from batches 

06K10, and 16K12, named according to RPC convention.  The dose to the OSLD is calculated using 

Equation 2.7: 
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Equation 2.7 OSLD dose calculation 

The term Avg Corr Rdg is the average counts from the reader, accounting for depletion of the signal, 

multiplied by the element correction factor (ECF), as shown below in Equations 2.8 and 2.9.  The 

element correction factor is discussed in Section 2.5.1. 
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Equation 2.8 Element corrected average reading 

Each dosimeter is read three times in a row, making n = 3 in Equation 2.9, and all dosimeters from an 

irradiation session are read in the same reading session. 


�� ��� �  
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Equation 2.9 Readings averaged and depletion corrected 
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The system sensitivity, S, described in Section 2.4.2, is determined by the same method for OSLD as 

for TLD.  The average corrected reading is multiplied by the system sensitivity factor, and several 

batch correction factors (KF, KL, and KE).  These batch correction factors are similar in meaning to the 

correction factors used for TLD dosimetry, but the calculation methods differ. 

2.5.1 Element Correction Factor 

 The sensitivity of an individual OSLD varies compared to the population of OSLD within the 

batch of dosimeters, and is corrected for in the dose calculation by the element correction factor 

(ECF).  Each OSLD within a batch are irradiated to a known dose and then read.  The response of a 

single dosimeter at the particular dose level is then divided by the average response of the entire 

population of dosimeters within the batch, resulting in the ECF for that particular OSLD.  The ECF is 

determined at a dose of 25 cGy, and verified at other dose levels.  The sensitivity of OSLD have been 

shown to change with accumulated dose, as discussed in Section 1.3.2, but the RPC has verified that 

for accumulated doses of less than 10 Gy, the average ECF over cycles of irradiation and annealing 

compared to the first ECF determined for the dosimeter are within 0.6% 
25

.  No dosimeter used in this 

study received an accumulated dose greater than 10 Gy. 

2.5.2 OSLD Batch Correction Factors 

 The fading of the OSL signal after irradiation is corrected using Equation 2.10 for both 

batches 06K10 and 16K12: 

�� �  
1

1.005 · �*�.��?1 

Equation 2.10 OSLD fading correction factor 

where d is the number of days since irradiation.  The RPC OSL dosimetry protocol requires that the 

dosimeters be read no sooner than five days post-irradiation. 

 The correction for the linearity of the response is calculated using Equation 2.11, which is the 

same as the equation for TLD, but with different constants and the raw dose is calculated in Equation 

2.12 using the average reading that has been corrected by the ECF.  The RPC protocol for calculating 

the linearity correction is to perform six iterations of the calculation to arrive at a final linearity 

correction value. 
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Equation 2.11 OSLD linearity correction 

�)0 ��&' �  
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Equation 2.12 OSLD raw dose calculation 

As discussed in Section 1.3.2, the linearity of the response of the dosimeter changes with dose.  The 

linearity correction varies between batches.  For the 06K10 batch, the OSLD were commissioned and 

a linearity correction factor was found for doses up to 3.5 Gy.  The response of the dosimeter is linear 

in this dose region, and the constants are a = 0, b = -0.00011579, and c = 1.0116.  The commissioning 

of the OSLD batch 16K12 measured linearity beyond what was studied for the previous batch.  For 

doses up to 15 Gy, the response of the 16K12 dosimeters is supra linear and the constants are a = 

8.34622e-8, b = -2.67355e-4, and c = 1.0259.  

 The energy correction factors have been studied for both batches of OSLD under reference 

point geometry, for use in calculating doses from OSLD irradiated in the RPC mini-phantoms.  The 

energy correction factors for the nanoDot dosimeters have not yet been studied under full phantom 

conditions.  As described in Section 2.3.3, irradiations were performed to determine energy correction 

factors for the OSLD in full phantom. 

2.5.3 microStar™ Reader 

 The microStar™ Reader (Landauer, Inc., Glenwood, IL), shown in Figure 2.13, is currently 

used by the RPC to read OSLD, and was used for this study.  The reader is connected to a computer, 

which is used to control the reader and record data from the dosimeters into a database.  The reader 

uses an array of 38 LED to stimulate the dosimeter, and operates in CW-OSL mode as described in 

Section 1.3.3.  The LED are set to expose the detector for 7 seconds, according to RPC protocol.  A 

‘strong beam’ uses all 38 LED for reading low dose dosimeters, and a ‘weak beam’ uses 6 LED for 

reading dosimeters with high doses; a single LED illuminates the dosimeter before readout to 

determine the dose range
6
.  The signal from dosimeters that have been irradiated to greater than 200 

cGy saturate the optical detector circuits when illuminated with the strong beam, but using the weak 

beam, the dosimeters can receive a dose up to about 15 Gy before the optical detector is saturated
15

.   

 The light produced by the LED bank in the reader is filtered by an OG-515 (Melles Griot, 

Rochester, NY) band-pass filter.  Prior to reaching the PMT, the stimulation and luminescence 

photons are differentiated using a combination of Schott BG-12 (Schott, Mainz, Germany) and Hoya 
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B-370 (Hoya, San Jose, CA) colored glass filters.  The LED and OG-515 filter combination has a 

peak transmission near 530 nm, and the combination of the PMT filters have a transmission peak at 

385 nm
26

.  

 

Figure 2.13 microStar reader, adapter, and control computer 

 Before reading the OSLD, the reader is turned on and allowed to warm up at least 30 minutes 

prior to the session.  Several quality control checks are performed on the reader, measuring the 

electrical noise of the system, the counts measured from just the LED, and the counts measured from 

a calibration source in the detector.  The system sensitivity is determined and monitored according to 

the procedure described in Section 2.4.2.  To begin reading the OSLD, the barcode of the dosimeter is 

scanned and it is inserted into the adapter shown in Figure 2.13.  The adapter holds the nanoDot in 

place within the drawer of the reader, and when the drawer is shut, the adapter opens the dosimeter to 

expose the active volume to the light source.  The counts measured by the PMT are recorded, and the 

OSLD can be removed from the reader. 

2.5.4 Signal Depletion 

 The finite decrease in charge stored by the dosimeter with each reading was referred to in 

Section 1.3.2, and RPC OSL dosimetry includes a correction to account for this signal depletion.  The 

depletion correction for the m
th
 reading (DCm) is calculated using Equation 2.13: 
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Equation 2.13 OSLD depletion correction 

where a = -5.148e-6, b = -1.277e-3, c = 1, and for a dosimeter read three times, m = {0…2}. 

2.5.5 Optical Bleaching 

 The optical bleaching (annealing) of the OSLD at RPC is performed using the cabinet shown 

below in Figure 2.14.  Within the cabinet, there are four 54-watt fluorescent bulbs; two bulbs are 

fixed at the top of the cabinet and two are positioned at the bottom.  To remove any UV photons from 

the light, a filter is placed around each bulb.  Positioned centrally between the top and bottom light 

sources lies a clear acrylic shelf on which the OSLD are placed.  The dosimeters are opened, and the 

active volume is exposed to the light for 24 hours before they are closed and removed from the box. 

 

Figure 2.14 Cabinet for optical bleaching of OSLD at the RPC 

2.6 RPC Film Dosimetry 

 Radiochromic film is favorable for measuring relative dose distributions because of their high 

spatial resolution, insensitivity to visible light, they are nearly tissue equivalent, and they color 

directly, eliminating the need for processing.  The image formation occurs as a dye-forming or 
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polymerization process, and the image is stable over a range of temperatures.  The humidity during 

irradiation also has little impact on the film
27

. 

 Gafchromic EBT2 film (Ashland, Wayne, NJ) was used in this study, from lot number 

A0521102 with an expiration date of May 2013.  The RPC uses radiochromic film as a part of the 

remote audit program, and has already investigated the dose response of this lot of film and 

performed a film calibration for the dose range of 0 to 30 Gy.  The dose-response curve generated by 

the RPC for this batch of film fits the third-order polynomial shown below in Equation 2.14, 

establishing a relationship between dose and optical density (OD): 

��&' �  29.898 ·  ��E F  13.588 ·  ��1 - 6.7634 · �� 

Equation 2.14 Calibration curve for Gafchromic EBT2 film, lot # A05261102 

For each IMRT irradiation in this study, the pieces of film were cut from the same sheet using a 

template, and all sheets of film were from the same film lot.  One piece was cut for the coronal film, 

and the sagittal film was cut in two parts.  Each piece of film was marked for orientation.  The care 

and evaluation of the film was performed according to the recommendations of AAPM TG-55, which 

include storing the film in a dark and dry place at room temperature, visually inspecting the film 

before irradiation, careful handling of the film, and reading the film at least 48 hours after irradiation 

to minimize the effects of self-development
27

. 

 The active layer of the EBT2 film is situated between two polyester layers, making it possible 

to be submerged in water for short time periods, and includes a yellow marker dye to minimize 

differences in film responses due to small variations in thickness of this layer.  This marker dye also 

has the benefit of making the EBT2 film less sensitivity to ambient light.  When the film is irradiated, 

the elements in the active layer react and form a blue polymer that appears green due to the presence 

of the yellow marker dye.  The irradiated film has an absorption peak at 636 nm, and 585 nm.  

According to the manufacturer, the film is designed for a wide dose range (1 cGy to 40 Gy), and has 

an effective atomic number of 6.84, demonstrating a difference in response of about 10% in the keV 

to 6 MV photon energy range.  A recent study investigating the energy dependence and dose response 

of the EBT2 films found that the energy dependence of the film was lower than that suggested by the 

manufacturer, showing that the response of the film varied by approximately 4.5% over an energy 

range of 75 kVp to 18 MeV photons
28

.  This study also reported that the self-development of the film 

was the fastest during the first 48 hours after the film was irradiated. 
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2.6.1 Film Scanning 

 To evaluate the dose distribution measured, the films were scanned using a CCD100 

Microdensitometer (Photoelectron Corporation, Lexington, MA) as shown below in Figure 2.15.  The 

scanner uses an LED light bed, with a wavelength of 665 nm, and a CCD camera placed above the 

film to measure and record the transmission of light.  The height of the CCD was set so that the 

camera focused on a 200 x 200 mm
2
 area where the films would be placed, and the remaining area of 

the light was covered with a black mask.  This system is contained within a cabinet to prevent 

measurement of room light.  A blank piece of film from the same lot was scanned and used to 

measure the ‘flat field’, and then a grid of known size and spacing was scanned to assign a spatial 

calibration.  Following these calibrations, the films from the IMRT irradiations were scanned in a 

consistent orientation.  The coronal film was scanned, and then the two pieces of the sagittal film 

were placed together and scanned.  The images were saved as 16-bit .FIT files. 

 

Figure 2.15 Setup of microdensitometer used for film scanning 
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2.6.2 Registration 

 The measured dose distribution from the film is compared to the reported dose distribution 

from the treatment planning system (TPS), and to do this, the film and the plan must be registered to 

the same phantom coordinate system.  Using a MATLAB (The MathWorks, Inc., Natick, MA) 

program known as the Computational Environment for Radiotherapy Research (CERR) (J.O. Deasy 

and Washington University, St. Louis, MO), the treatment plan can be registered to the phantom 

coordinate system.  From the TPS, the plan, CT image set, composite dose information, and structures 

are all exported in DICOM-RT format into CERR.  On the CT images, a set of registration points are 

identified, which registers the plan to the phantom.  Using another MATLAB program, RPCFILM, 

the films can be registered to the phantom coordinate system.  The .FIT files created after scanning 

the film, as discussed in Section 2.6.1, are opened in RPCFILM.  The phantom type and number are 

identified, and the pinpricks are identified on the image.  The location of the pinpricks are unique to 

each phantom, and this registers the film to the phantom coordinate system.  After both the film and 

the treatment plan have been registered to the phantom coordinate system, RPCFILM evaluates the 

goodness of fit and calculates RMS error values for the film registration and plan registration, called 

‘RMS Error’ and ‘RMS 3D’, respectively.  To minimize error, the RPC prefers an ‘RMS Error’ of 0.3 

mm or less for one piece of film, such as the coronal film in this study, or 0.5 mm or less for two 

pieces of film, such as the sagittal films in this study.  The limit for ‘RMS 3D’ is set at 1 mm.   

 The dose-response curve for the film batch is then used to calculate the measured film dose 

from the OD values.  The film doses are then normalized to the TLD dose measured in the PTV.  For 

this study, film analysis was performed only for the three IMRT irradiations as well as for the two 

institution trials (one IMRT, one CyberKnife).  For each irradiation, the films were normalized to the 

PTV TLD doses, as well as to the corrected PTV OSLD doses and then compared, as discussed in 

later sections.   

2.7 Dosimetric Evaluation 

 To evaluate the ability of the OSLD to measure on average the same dose as the TLD, the 

TLD and OSLD dose measurements from the pelvic phantom irradiations were compared in several 

ways.  The absolute doses from the TLD and OSLD, the dose profiles normalized by the TLD and 

OSLD doses, and the gamma analysis of the film normalized to both TLD and OSLD were compared. 
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2.7.1 Absolute Dose 

 For the pelvic phantom irradiations, the dose measured in the target volume for the TLD and 

the OSLD were compared.  The locations of the TLD and OSLD within the target can be seen below 

in Figure 2.16.  The doses measured by the two TLD within the target were calculated using the 

method described in Section 2.4, and then averaged.  The dose measured by the two PTV OSLD were 

calculated using the method described in Section 2.5, averaged, and then multiplied by a correction 

factor obtained from the spherical phantom for the appropriate irradiation.  The OSLD dose 

multiplied by the correction factor is referred to as the corrected OSLD dose.  The TLD dose was 

compared to the OSLD dose, as stated in the hypothesis.  A ratio of TLD dose to corrected OSLD 

dose for each pelvic phantom irradiation was calculated, and the average TLD to OSLD dose ratio 

was calculated.  The TLD dose within the femoral heads was not compared to any OSLD doses, as 

there were no OSLD placed within the structure.   

 

Figure 2.16 Diagram of inferior view of the dosimetry insert showing positions of TLD and OSLD 

active volumes within the target 
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2.7.2 Dose Profiles 

 Using the RPCFILM program, dose profiles through the PTV were obtained for both the 

coronal and sagittal films.  For the coronal films, dose profiles were recorded in the lateral and 

superior-inferior directions.  The lateral profile was taken through the PTV, and the superior-inferior 

profile was taken through the PTV and the bladder.  On the sagittal films, dose profiles were recorded 

in the anterior-posterior (AP) and superior-inferior directions.  The AP profile was taken through the 

PTV as well as through the rectum.  The superior-inferior profile included the dose through the PTV 

and through the bladder.  The superior-inferior dose profile for the sagittal films was offset from the 

center in the AP direction by 2 mm to avoid the gap where the two pieces of the sagittal film were 

positioned together for scanning.  The film was sampled every 0.3 mm to create the dose profiles, and 

a 3 mm moving average was used to smooth the data obtained for the profiles. 

 The dose profiles were created after the film was normalized to the TLD target doses and the 

corrected OSLD target doses.  Each profile was plotted displaying the dose calculated by the TPS, the 

normalized film dose, and either the TLD dose or the corrected OSLD dose.  The dose profiles 

resulting from both the TLD and OSLD normalized doses were compared. 

2.7.3 Gamma Analysis 

 Gamma analysis is a quantitative method described by Low et al.
29

 for comparing dose 

distributions measured by film to those generated by the treatment plan, using the measured 

distribution as the reference information.  This technique evaluates the dose difference between 

measured and calculated, and the distance to agreement (DTA), combining the comparisons into a 

single numerical index called the gamma (γ) index.  A set of criteria for dose difference and DTA are 

established for acceptance, each having equal significance in the calculation of the index.  The 

acceptance criteria for dose difference and DTA form an ellipsoid surface, with the measurement 

point at the origin.  For each pixel, the dose difference and DTA are calculated and a vector is formed 

from the origin to the calculated point.  If the magnitude of the normalized vector is less than or equal 

to one, the calculated point lies within the ellipsoid, passing the criteria with γ ≤ 1.   

 For this study, the Matlab program RPCFILM was used to perform the gamma analysis for 

each plane of film within the phantom.  The criteria established for the RPC pelvic phantom is 7% 

dose difference and 4 mm DTA (7%/4 mm) for both the sagittal and coronal films, with at least an 

85% pixel pass rate.  RPCFILM includes a masking tool which allows for the designation of areas on 

the film to not be included in the analysis, such as pin pricks, the junction of the two sagittal films, or 
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any other film imperfections or artifacts.  An example of area masking on a sagittal film can be seen 

below in Figure 2.17.  RPC protocol for the pelvic phantom analysis is to use a 10 x 10 cm
2
 area of 

the film for evaluation.  

 

Figure 2.17 Masks applied to a sagittal film before gamma analysis 

 As discussed in Section 2.6.2, the films are normalized to the TLD target dose before analysis 

is performed.  For this study, the films were also normalized to the corrected OSLD target dose and 

an additional gamma analysis was completed.  The gamma results from the TLD normalization and 

OSLD normalization were compared. 
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Chapter 3 Results and Discussion 

3.1 Treatment Planning 

 Four treatment plans of increasing angular beam delivery were developed as discussed in 

Section 2.2, each meeting the dose prescription and normal tissue constraints outlined in the RPC 

prostate IMRT credentialing protocol.  For the three treatment plans developed in Pinnacle, the PTV, 

prostate, bladder, rectum, and femoral heads are represented by the purple, blue, yellow, green, and 

pink contours, respectively.  The CyberKnife plan developed in MultiPlan displays the PTV, prostate, 

bladder, rectum  contours as orange, coral, light blue, and green.  The femoral heads are displayed as 

the pink and dark blue contours, representing the left and right femoral heads.  The four treatment 

plans and their dose-volume histograms (DVH) are displayed below for the same CT slice, at the 

level of the simulation isocenter.  As discussed in Section 2.3.2, the three coplanar treatment plans 

delivered a target dose of 3 Gy, while the CyberKnife plan delivered a target dose of 6 Gy. 

3.1.1 Four Field Box 

 The isodose lines and the DVH generated by the 4-field treatment plan in the pelvic phantom 

can be seen below in Figure 3.1.  The prescription dose of 3 Gy covers 99% of the PTV and 100% of 

the prostate volume.  The normal tissue constraints are met, but the 4-field treatment does deliver a 

higher dose to the critical structures than the subsequent plans.   

 

Figure 3.1 Four field isodose coverage (left) and DVH (right) for the prostate phantom.  The PTV, 

prostate, bladder, rectum, and femoral heads are displayed as purple, blue, yellow, green, and pink, 

respectively. 
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3.1.2 IMRT 

 The IMRT treatment plan for the pelvic phantom isodose plot and DVH can be seen in Figure 

3.2.  The target prescription dose of 3 Gy covers 99% of the PTV and achieves complete coverage of 

the prostate volume.  As seen in the DVH, the dose to the femoral heads, bladder, and rectum are all 

lower than for the 4-field box treatment. 

 

Figure 3.2 IMRT isodose coverage (left) and DVH (right) for prostate phantom.  The PTV, prostate, 

bladder, rectum, and femoral heads are displayed as purple, blue, yellow, green, and pink, 

respectively. 

3.1.3 VMAT 

 The isodose coverage and DVH generated for the pelvic phantom VMAT treatment plan can 

be seen below in Figure 3.3.  The prescription dose of 3 Gy covers 99% of the PTV and 100% of the 

prostate, meeting the dose prescription outlined previously.  Similar to the IMRT treatment, the doses 

received by the normal structures are lower compared to the 4-field treatment. 
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Figure 3.3 VMAT isodose coverage (left) and DVH (right) for prostate phantom.  The PTV, prostate, 

bladder, rectum, and femoral heads are displayed as purple, blue, yellow, green, and pink, 

respectively. 

3.1.4 CyberKnife 

 The isodose lines and DVH generated by the CyberKnife plan developed in MultiPlan for the 

pelvic phantom can be seen below in Figure 3.4.  The prescription dose of 6 Gy covers 99.8% of the 

PTV and 100% of the prostate volume.  The bladder and rectal dose were higher for the CyberKnife 

treatment than for either the IMRT or VMAT treatment plans. 

    

Figure 3.4 CyberKnife isodose coverage (left) and DVH (right) for prostate phantom.  The PTV, 

prostate, bladder, and rectum are displayed as orange, coral, light blue, and green.  The left and right 

femoral heads are represented by the pink and blue contours, respectively. 
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3.2 Phantom Irradiations 

3.2.1 Spherical Phantom Irradiations 

 The irradiations of the spherical phantom were carried out according to the setup described in 

Section 2.3.1.  The MU needed  to deliver 100 cGy to a depth of 5 cm on CAX, for a field size of 5 x 

5 cm
2
 for photon beams of energy 6 MV and 18 MV were calculated using Equation 2.1, and are 

shown below in Equations 3.1 and 3.2, respectively.  For both beam energies, there is no off-axis 

factor (OAF) and there were no trays or wedges attenuating the beam.  The depth factor used for these 

calculations was Tissue Maximum Ratio (TMR), since the phantom irradiation was performed using 

the SAD technique.  The MU necessary to deliver the desired dose at 6 MV was calculated to be 114 

MU, and 101 MU at 18 MV.   

�� �  
100 .KL

1.03 MNO
PQ  ·  0.905 · 0.962 · 0.983

� 114 �� 

Equation 3.1 MU calculation for 6 MV spherical phantom irradiation 

�� �  
100 .KL

1.067 MNO
PQ  ·  1.001 · 0.943 · 0.982

� 101 �� 

Equation 3.2 MU calculation for 18 MV spherical phantom irradiation 

 The dose delivered to each OSLD was calculated using Equation 2.7.  The normalized OSLD 

responses for the coplanar 6 MV spherical phantom irradiations can be seen below in Figure 3.5.  The 

error bars for each data point represent the standard error (SE).  The null hypothesis of the one-way 

ANOVA test was rejected (p-value = 0.000), showing that the mean of at least one angle response 

was different from the other mean responses.  The Fisher’s LSD test determined that the response of 

the dosimeter at the face-on angle was statistically significantly different from all other angles at the 

α=0.05 level 

 An additional ANOVA was performed including only the edge-on angular responses, and the 

resulting p-value of 0.124 shows that the null hypothesis cannot be rejected.  The responses at these 

angles cannot be from different populations, therefore the responses can be grouped together.  

Knowing this, the normalized responses for all edge-on angles were averaged, and the average was 

calculated to be 0.961 and is indicated on the graph as the red horizontal line.   
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Figure 3.5 OSLD response for coplanar 6 MV spherical phantom irradiations 

 For the coplanar 18 MV spherical phantom irradiations, the normalized OSLD responses can 

be seen below in Figure 3.6.  The error bars represent the standard error for each angular response.  

The noticeably larger error for the average dose at 180° is due to one of the three OSLD irradiated at 

that angle being either a bad OSL, or there was an error in the irradiation of the dosimeter, so that 

data was not included in the calculation of the average dose, nor the standard error.  The responses of 

the dosimeters at the varying angles were found to be statistically significantly different (p-value = 

0.006) after running one-way ANOVA.  The Fisher’s LSD test showed that the OSLD response for 

the face-on angle was statistically significantly different from the edge-on angular responses.  A 

second ANOVA test, comparing only the edge-on angular responses showed that there is no 

difference in response between the angles (p-value = 0.425).  The average edge-on normalized OSLD 

response, indicated by the red horizontal line on the graph, was calculated to be 0.981.   
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Figure 3.6 OSLD response for coplanar 18 MV spherical phantom irradiations 

 The normalized OSLD responses from the non-coplanar 6 MV spherical phantom 

irradiations, specific to CyberKnife, can be seen in Figure 3.7.  The error bars for each data point 

represent the standard error.  A statistically significant difference was found between the different 

angles irradiated (p-value = 0.000), and the Fisher’s LSD test determined that the response of the 

dosimeter at the face-on angle was statistically significantly different from the responses for all 

remaining angles.  An additional ANOVA was performed, excluding the face-on response, and the 

resulting p-value of 0.006 shows that the null hypothesis can be rejected and the responses of these 

angles are from different populations and the means of the angular responses are not equal.  The 

average edge-on dosimeter response was still calculated, and found to be 0.963 as shown by the red 

horizontal line on the graph.   
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Figure 3.7 OSLD response for non-coplanar 6 MV spherical phantom irradiations 

 For each spherical phantom irradiation, the average normalized response of the dosimeters in 

the edge-on orientation was determined.  The averaged doses measured by the dosimeters in the edge-

on orientation relative to the doses measured when the beam was incident normally on the face of the 

dosimeter for the coplanar spherical phantom irradiations were 0.961 and 0.981, for 6 MV and 18 MV 

photon beams, respectively.  These results demonstrate an under-response of the OSLD of 

approximately 4% for 6 MV, and 2% for 18 MV.  The coplanar spherical phantom irradiation results 

are in agreement with the data published by Kerns et al.
3
, which demonstrated a decrease in the 

OSLD response of 4% for 6 MV photon beams parallel to the surface of the dosimeter.  The angular 

response at 6 MV of the nanoDot dosimeter normalized to the dosimeter response at 0° reported by 

Kerns can be seen below in Figure 3.8, demonstrating the approximately 4% decrease in response of 

the dosimeter for the edge-on irradiations (90° and 270°).  It is important to note that the orientation 

of the nanoDot within the pelvic phantom for the Kerns study is not the same as the orientation used 

in this study, and as such, only the responses at 0°, 90°, and 270°are applicable for comparison.    
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Figure 3.8 Angular response of OSLD at 6 MV normalized to response at 0°, error bars represent the 

coefficient of variation (Kerns et al.), copied with permission from AAPM. 

 The decrease in response of 2% for the 18 MV coplanar spherical phantom irradiations 

observed in this study is slightly higher than the decrease in response of 3% for the edge-on 

irradiations reported by Kerns, which can be seen below in Figure 3.9.  The increased response 

observed in this study for 18 MV coplanar photon beams compared to the Kerns study, going from an 

under-response of 3% to 2%, could be attributed to differences in the phantoms used.  The decrease in 

response of 2% for the OSLD was measured in the small, spherical phantom from this study, whereas 

the under-response of 3% reported by Kerns was measured in the RPC’s pelvic phantom.  The scatter 

conditions provided by the two phantoms are different, and as discussed in Section 1.1, the scatter 

component is important to the dose deposited in the OSLD.  While the small differences in responses 

observed at 18 MV (2 % vs. 3%) may be due to the phantoms, the responses may be the same within 

experimental uncertainties.  However, the trend of an increase in response from 6 MV to 18 MV 

photon beams that was shown by Kerns is supported by the results of this study.  
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Figure 3.9 Angular response of OSLD at 18 MV normalized to the response at 0°, error bars 

represent the coefficient of variation (Kerns et al), copied with permission from AAPM. 

 The averaged dose measured by the dosimeters normalized to the dose measured in the face-

on orientation for the non-coplanar 6 MV spherical phantom irradiations was 0.963, demonstrating a 

4% under-response of the dosimeter.  However, the ANOVA results indicate that the normalized 

responses at all the investigated non-face-on angles are not from the same population, so averaging 

the responses may not be an appropriate method of determining the angular response of the OSLD.  

 The inverse of the average normalized responses was then taken to determine the angular 

correction factors to be used for adjusting the OSLD measured dose for the pelvic phantom 

irradiations.  The angular correction factors calculated can be seen below in Table 3.1.  These factors 

were applied to the OSLD measured dose from the pelvic phantom irradiations, as shown in Section 

3.3 for the absolute dose, dose profiles, and gamma analysis comparisons. 

 
Angular Correction Stdev 

Coplanar 6 MV 1.040 0.007 

Coplanar 18 MV 1.019 0.004 

Non-coplanar 6 MV 1.038 0.009 

Table 3.1 Angular correction factors and standard deviations from spherical phantom irradiations 
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3.2.2 Pelvic Phantom Irradiations 

 Irradiations of the RPC pelvic phantom were carried out according to the setup discussed in 

Section 2.3.2.  Each treatment plan was delivered three times, and the doses measured from both the 

TLD and the OSLD for each coplanar treatment plan (4-field, IMRT, VMAT) can be seen below in 

Figure 3.10.  The error bars for each data point represent the standard error.  The TLD dose was 

calculated using Equation 2.3, and the dose delivered to the OSLD was calculated using Equation 2.7.  

The doses measured by the two TLD in the PTV were averaged, as well as the doses from the two 

OSLD in the PTV, to represent a single dose delivered to the center of the PTV in the phantom.  The 

OSLD measured dose, not corrected for angular dependence, is shown to be consistently lower than 

the doses measured by the TLD in the pelvic phantom for the coplanar irradiations.  The under-

response of the OSLD compared to the TLD is shown to be greater for the 6 MV IMRT and VMAT 

irradiations, than for the 18 MV 4-field irradiations, consistent with the spherical phantom results 

shown in Section 3.2.1.  The average percent differences between the TLD measured dose and 

uncorrected OSLD measured dose for the 4-field, IMRT, and VMAT irradiations were calculated to 

be 1.9%, 3.0%, and 3.3%, respectively.      

 

Figure 3.10 TLD and OSLD doses from 3 Gy coplanar pelvic phantom irradiations 

 The doses measured by the TLD and OSLD in the PTV of the pelvic phantom for the 
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OSLD doses are offset from each other in the x-direction for clear visualization of the data points and 

their associated errors.  The error bars for each dose represent the standard error.  Again, the TLD and 

OSLD doses were calculated using Equations 2.3 and 2.7, respectively.  The doses measured by the 

two target TLD were averaged to represent a single dose delivered to the center of the prostate.  The 

same averaging was done with the two target OSLD doses.  In the pelvic phantom, the OSLD, not 

corrected for angular dependence, once again under-responded for the non-coplanar treatment as 

compared to the response of the TLD.  The average percent difference between the TLD measured 

dose and uncorrected OSLD measured dose was calculated to be 1.1% for the three CyberKnife 

irradiations.  However, the doses measured by the OSLD, not corrected for angular dependence, for 

the three CyberKnife irradiations were closer to the doses measured by the TLD than expected.  Many 

of the beams in the CyberKnife deliveries were from angles superior and inferior to the edge-on 

angles, so the angular correction is not as great as for the gantry based, coplanar deliveries. 

 

Figure 3.11 TLD and OSLD doses from the three 6 Gy non-coplanar pelvic phantom irradiations 

 As discussed in Section 2.3.2.1, the prostate phantom was sent to two different institutions to 

evaluate the response of the OSLD in the phantom.  One institution delivered a standard prostate 

IMRT treatment, and the second institution delivered a CyberKnife treatment.  The doses measured 

by the target TLD and OSLD in the pelvic phantom for both institution trials can be seen below in 

Figure 3.12.  The error bars for each dose represent the standard error.  The doses measured by the 

TLD were calculated using Equation 2.3, and the dose measured by the OSLD was calculated using 
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Equation 2.7.  The doses from the two TLD were averaged, and the doses from the two OSLD were 

averaged to represent a single dose to the PTV.  For each institution trial, the uncorrected OSLD dose 

was lower than the TLD dose.  The percent differences between the TLD measured dose and 

uncorrected OSLD measured dose were 4.4% and 3.4% for the IMRT and CyberKnife institution 

trials, respectively.  For the CyberKnife trial, the OSLD measured dose was much lower compared to 

the TLD measured dose and consistent with the response expected from the non-coplanar spherical 

phantom irradiations, but contrary to the CyberKnife results shown in Figure 3.11 (1.1% difference as 

compared to 3.4%).  As mentioned previously, the majority of the beam angles for the CyberKnife 

irradiation were incident on the OSLD at angles superior and inferior to the edge-on angles, which 

would result in a lower angular correction than for the coplanar deliveries, but this was not observed 

for the CyberKnife trial. 

 

Figure 3.12 TLD and OSLD doses from 6 Gy institution trials  

 Comparison of the TLD and OSLD measured doses, as well as the corrected OSLD doses 

using the values presented in Table 3.1, is performed later in Section 3.3.1. 
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placed, for the calculation of dose rate and dose delivered to the OSLD.  Three ion chamber readings 

were made for the two beam energies, and the results can be seen below in Table 3.2. 

Beam Energy Reading 1 (nC) Reading 2 (nC) Reading 3 (nC) 

6 MV 26.69 26.68 26.68 

18 MV 31.85 31.84 31.84 

Table 3.2 Ion chamber measurements in slab phantom at depth of 10 cm for 6 MV and 18 MV 

photon beams 

 These ion chamber readings were used to calculate the dose rate to water at a depth dmax using 

the TG-21 protocol, and making corrections for the dose rate to muscle at a depth of 10 cm.  The dose 

rate to water at dmax was calculated to be 1.016 RST
UV

 for 6 MV, and 1.027  RST
UV

 for 18 MV.  The TG-21 

worksheets for the two beam energies can be found in the Appendix, in Section 5.1.  The calculations 

for the dose rate to muscle at a depth of 10 cm for beam energies 6 and 18 MV can be seen below in 

Equations 3.3 and 3.4, respectively. 

�W @XYMZ[�)6 10 .A� � 1.016 
.KL

��
 · 0.99 ·

66.3

100
� 0.667 

.KL

��
 

Equation 3.3 Dose rate to muscle at a depth of 10 cm for 6 MV photon beam 

�W @XYMZ[�)6 10 .A� � 1.027 
.KL

��
 · 0.99 ·

80.7

100
� 0.821 

.KL

��
 

Equation 3.4 Dose rate to muscle at a depth of 10 cm for 18 MV photon beam 

 The MU estimated to deliver 100 cGy to a depth of 10 cm in the phantom was calculated for 

6 MV and 18 MV, and can be seen in Equations 3.5 and 3.6, respectively.  These MU settings were 

used to deliver approximately the desired dose to the OSLD at depth in the polystyrene phantom, as 

the %dd data is specified to water. 

�� �  
100 .KL

66.3 100⁄
� 151 �� 

Equation 3.5 MU calculation to deliver approximately 100 cGy to OSLD for 6 MV photon beam  
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�� �  
100 .KL

80.7 100⁄
� 124 �� 

Equation 3.6 MU calculation to deliver approximately 100 cGy to OSLD for 18 MV photon beam  

 The ratio of the dosimeter response at the designated energy to the response for cobalt-60 was 

calculated as described in Section 2.3.3.  Standard dosimeters were read for both the 06K10 and 

16K12 OSLD batches, for which the expected dose delivered is 100 cGy.  The average corrected 

reading (Avg Corr Rdg) for the 06K10 standards was calculated to be 434,931, which represents the 

raw PMT counts that have been depletion corrected and multiplied by the ECF for each dosimeter, as 

described in Section 2.5.  The average corrected reading for the 16K12 standards was calculated to be 

366,210.  The fading correction factor (KF) was calculated for all OSLD using Equation 2.10, and the 

fading correction factor for the standards from batch 06K10 can be seen below in Equation 3.7.  The 

fading correction factor for batch16K12 standards, which were read 7 days after irradiation, was 

calculated using this same equation to be 1.009064. 

�� �  
1

1.005 · 6*�.��?1 � 1.007945 

Equation 3.7 Fading correction factor for dosimeters read 6 days post-irradiation 

The expected dose delivered to the standard dosimeters was calculated using the RPC spreadsheet, 

and was found to be 100.095 cGy. 

 For each dosimeter irradiated, the average corrected reading, fading correction factor, and 

linearity correction factor was calculated.  The linearity correction factor was calculated using 

Equation 2.11 for both 06K10 and 16K12 dosimeters.  The expected dose delivered to the standard 

dosimeters for 6 MV and 18 MV was calculated as shown below in Equations 3.8 and 3.9, 

respectively. 

�� P\ � 151 �� · 0.667 
.KL

��
� 100.72 .KL 

Equation 3.8 Expected dose delivered to OSLD for 6 MV photon beam 

�8] P\ � 124 �� · 0.821 
.KL

��
� 101.8 .KL 

Equation 3.9 Expected dose delivered to OSLD for 18 MV photon beam 
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 The ratio of dosimeter responses, calculated using Equation 2.2, was calculated for each 

irradiated OSLD.  The ratios of the five 06K10 OSLD irradiated at 6 MV, and the ratios of the five 

16K12 OSLD irradiated at 6 MV were averaged to produce an energy correction factor for the OSLD 

at 6 MV.  The same averaging was done for the five 06K10 dosimeters and five 16K12 dosimeters 

irradiated at 18 MV.  The inverse of the two ratios, one for each of the two beam energies, was taken 

to calculate the energy correction factors.  The energy correction factors for OSLD in full phantom 

conditions, calculated for photon beam energies 6 MV and 18 MV can be seen below in Table 3.3.  

These energy correction factors were used in the calculation of OSLD dose as described in Section 

2.5. 

Beam Energy KE Stdev 

6 MV 1.02 0.010 

18 MV 1.08 0.011 

Table 3.3 Energy correction factors for OSLD in full phantom conditions 

 The calculated energy correction factors for OSLD in full phantom conditions are very close 

to the correction factors for TLD in full phantom, 1.03 and 1.07 for 6 MV and 18 MV photon beams, 

respectively.  A decrease in response of the OSLD for the energies of 6 MV and 18 MV was 

observed, with a higher decrease for the 18 MV beams, as also observed for TLD.  This result is 

consistent with the results of Viamonte et al. 
13

 in that there was a decrease in response of the OSLD 

at higher energies.  Viamonte showed that for dosimeters calibrated in a 
60

Co beam, there was an 

observed decrease in sensitivity of 4%, although a 4% decrease in response was observed in this study 

for neither 6 MV nor 18 MV.     

3.3 Dosimetric Evaluation 

3.3.1 Absolute Dose 

 Four treatment plans were developed and delivered to the RPC pelvic phantom.  The three 

coplanar treatment plans included a 4-field box, IMRT, and VMAT.  The one non-coplanar plan was 

a CyberKnife treatment.  The phantom was irradiated three times for each plan to determine the 

ability of the OSLD to measure an equivalent dose to the TLD dose measurements.  Each delivery 

included two TLD in the femoral heads, two TLD in the PTV, and two OSLD in the PTV.  The 

OSLD in the PTV were located adjacent to the TLD, offset from the center of the target by 

approximately the same distance as the TLD.  Only the average doses measured by the TLD and 
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OSLD in the PTV are reported and compared.  The doses measured by the OSLD were calculated 

using Equation 2.7, and the TLD measured doses were calculated using Equation 2.3.  The ratio of the 

average TLD dose to the average OSLD dose was calculated for each plan.  The ratios of the TLD 

dose to uncorrected OSLD dose for the coplanar treatment plans can be seen below in Table 3.4.  The 

average TLD to OSLD dose ratio and standard deviation for all coplanar deliveries in the table below 

was calculated to be 1.028 ± 0.008.  With the exception of the dose ratio for the treatment delivery ‘4 

field_1’ the OSLD dose differs from the TLD dose by greater than 1%. 

  TLD Dose (cGy) OSLD Dose (cGy) TLD/OSLD 

4 field_1 317.0 313.9 1.010 

4 field_2 317.2 309.2 1.026 

4 field_3 319.3 312.7 1.021 

IMRT_1 297.6 289.7 1.027 

IMRT_2 298.8 289.1 1.034 

IMRT_3 298.0 289.1 1.031 

VMAT_1 320.4 308.3 1.039 

VMAT_2 321.7 311.5 1.033 

VMAT_3 319.4 310.1 1.030 

Table 3.4 TLD to OSLD dose ratios for coplanar treatment plans 

 The angular correction factors determined from the spherical phantom irradiations, shown in 

Table 3.1, were applied to the OSLD calculated doses.  The correction factor for coplanar 18 MV 

treatments of 1.019 was applied to the 4-field measured OSLD doses.  The coplanar 6 MV correction 

factor of 1.040 was applied to the measured doses for the IMRT and VMAT deliveries.  The ratios of 

the TLD dose to angular corrected OSLD dose for the coplanar treatment plans can be seen below in 

Table 3.5.  The average TLD to corrected OSLD dose ratio and standard deviation for the coplanar 

deliveries was calculated to be 0.995 ± 0.006.  For all coplanar treatment deliveries, the corrected 

OSLD dose is within 1% of the dose measured by the TLD, with the exception of ‘IMRT_1’. 
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  TLD Dose (cGy) Corr OSLD Dose (cGy) TLD/Corr OSLD 

4 field_1 317.0 319.9 0.991 

4 field_2 317.2 315.1 1.007 

4 field_3 319.3 318.6 1.002 

IMRT_1 297.6 301.3 0.988 

IMRT_2 298.8 300.7 0.994 

IMRT_3 298.0 300.7 0.991 

VMAT_1 320.4 320.6 0.999 

VMAT_2 321.7 324.0 0.993 

VMAT_3 319.4 322.5 0.990 

Table 3.5 TLD to corrected OSLD dose ratios for coplanar treatment plans 

 The ratio of the TLD measured dose to the OSLD measured dose, without the angular 

correction, for the non-coplanar CyberKnife treatment deliveries can be seen below in Table 3.6.  The 

average TLD to OSLD dose ratio and standard deviation for the non-coplanar treatments was 

calculated to be 1.011 ± 0.003.  Each delivery resulted in an OSLD dose that differed from the TLD 

dose by approximately 1%. 

  TLD Dose (cGy) OSLD Dose (cGy) TLD/OSLD 

CK_1 620.3 612.4 1.013 

CK_2 617.7 613.3 1.007 

CK_3 621.8 613.5 1.013 

Table 3.6 TLD to OSLD dose ratios for CyberKnife treatments 

 From the spherical phantom irradiations, the angular dependence correction factor of 1.038 

for the non-coplanar 6 MV deliveries, specific to CyberKnife treatments, was applied to the OSLD 

doses.  The ratios of the TLD measured dose to the angular corrected OSLD dose for the CyberKnife 

deliveries can be seen below in Table 3.7.  The average TLD to corrected OSLD dose ratio and 

standard deviation was calculated to be 0.974 ± 0.003.  Each CyberKnife treatment delivery resulted 

in a difference between the TLD dose and OSLD dose by greater than 1%. 
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  TLD Dose (cGy) Corr OSLD Dose (cGy) TLD/Corr OSLD 

CK_1 620.3 635.7 0.976 

CK_2 617.7 636.6 0.970 

CK_3 621.8 636.8 0.976 

Table 3.7 TLD to corrected OSLD dose ratios for CyberKnife treatments 

 The response of the OSLD compared to the TLD for the two institution trials was calculated 

by taking the ratio of the TLD dose to the OSLD dose, as done for the previous irradiations.  The 

ratios of the doses for the institution trials, one IMRT delivery and one CyberKnife delivery, can be 

seen below in Table 3.8.  The average TLD to OSLD dose ratio and standard deviation was calculated 

to be 1.040 ± 0.008.  Each trial showed a response difference between the TLD and OSLD of greater 

than 1%. 

 
TLD Dose (cGy) OSLD Dose (cGy) TLD/OSLD 

IMRT 615.6 589.1 1.045 

CyberKnife 675.9 653.5 1.034 

Table 3.8 TLD to OSLD dose ratios for the institution trials 

 Using the angular dependence correction factors employed previously, the corrected OSLD 

doses were calculated.  The OSLD dose for the IMRT trial was multiplied by the angular correction 

factor of 1.040, and the CyberKnife trial OSLD dose was multiplied by the correction factor 1.038.  

The ratios of TLD dose to corrected OSLD dose for the two institution trials can be seen in Table 3.9.  

The average TLD to corrected OSLD dose ratio and standard deviation was calculated to be 1.001 ± 

0.007.  Both the IMRT and CyberKnife institution trials had OSLD angular corrected doses within 

1% of the TLD measured doses. 

  TLD Dose (cGy) Corr OSLD Dose (cGy) TLD/Corr OSLD 

IMRT 615.6 612.1 1.006 

CyberKnife 675.9 679.0 0.995 

Table 3.9 TLD to corrected OSLD dose ratios for the institution trials 

 For each set of irradiations, with the exception of the three CyberKnife irradiations shown in 

Table 3.7, the applied angular correction factors corrected the OSLD dose to within 1% of the 

measured TLD dose, with very low error.  The 6 MV non-coplanar angular correction factor, when 

applied to the OSLD measured dose from the CyberKnife institution trial, adequately corrected the 
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OSLD dose, so it is unclear as to why the correction factor failed to scale the OSLD dose 

appropriately for the other CyberKnife irradiations.  CyberKnife treatments are very non-

homogeneous in nature, so it is possible that even with the TLD and OSLD oriented in the phantom 

to be very close together, there could be large dose differences between the two types of dosimeters, 

making it difficult to compare the angular corrected OSLD dose to the TLD dose.  The films present 

in the phantom at irradiation could be used to determine if large dose differences within the target 

were present, which was not possible for the three CyberKnife treatments in this study as there were 

no films included in the phantom for these irradiations.  Another complication to the CyberKnife dose 

comparison is that the plans between different institutions could vary widely.  The angular delivery of 

the MU from different plans could be very different, and result in differences in dose deposited in the 

OSLD.   

 The outcome of the absolute dose comparisons show that the coplanar 6 MV and 18 MV 

angular correction factors, when applied to the measured OSLD doses, yield equivalent results to the 

TLD measured doses, and can be used for the purpose of credentialing with the RPC’s 

anthropomorphic QA phantoms. 

3.3.2 Dose Profiles 

 The phantom irradiations contained film in the coronal and sagittal planes through the target 

for the three IMRT treatment deliveries, as well as for both institution trials, for the evaluation of the 

agreement between planned and measured doses.  Each film was normalized to the TLD target doses, 

and again for the angular corrected OSLD target doses.  The coronal film is evaluated by taking 

profiles through the PTV in both the lateral and superior-inferior directions.  The sagittal film is 

evaluated by taking profiles through the PTV in the AP and superior-inferior directions.  Selected 

profiles from the second IMRT delivery, ‘IMRT_2’, can be seen in the figures below.  The lateral 

profile taken from the coronal film, normalized to the TLD and corrected OSLD doses can be seen in 

Figures 3.13 and 3.14, respectively.  The AP profile recorded from the sagittal film, normalized to the 

TLD doses can be seen in Figure 3.15, and the profile from the film normalized to the corrected 

OSLD doses can be seen in Figure 3.16.  The drop in measured dose at the center of the AP profile 

from the sagittal film is due to the gap where the edges of the two pieces of the film come together.  

The superior-inferior profiles taken from the sagittal film normalized to the TLD target doses and the 

angular corrected OSLD target doses can be seen in Figures 3.17 and 3.18, respectively.  All other 

profiles for the IMRT and institution trial deliveries can be seen in the Appendix, in Section 5.2.  The 

profiles display the institution reported doses from the TPS, the measured dose from the film 
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normalized to target dosimeter doses, and the point doses from the dosimeters in the target.  These 

dose profiles were not evaluated for quantitative results, but rather as a qualitative analysis of the 

ability of the OSLD to measure equivalent dose to the TLD and provide similar results when 

normalizing film, when an angular dependence correction is made to the OSLD dose. 
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Figure 3.13 Lateral dose profile in coronal plane from IMRT_2 as planned by TPS and measured by 

film normalized to target TLD dose 

 

Figure 3.14 Lateral dose profile in coronal plane from IMRT_2 as planned by TPS and measured by 

film normalized to corrected target OSLD dose 
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Figure 3.15 AP dose profile in sagittal plane from IMRT_2 as planned by TPS and measured by film 

normalized to target TLD dose 

 

Figure 3.16 AP dose profile in sagittal plane from IMRT_2 as planned by TPS and measured by film 

normalized to corrected target OSLD dose 
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Figure 3.17 Superior-inferior dose profile in sagittal plane from IMRT_2 as planned by TPS and 

measured by film normalized to target TLD dose 

 

Figure 3.18 Superior-inferior dose profile in sagittal plane from IMRT_2 as planned by TPS and 

measured by film normalized to corrected target OSLD dose 
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 For each film presented, the films normalized to the angular corrected OSLD target doses 

appear almost identical to the films normalized to the TLD target doses.  While the normalized film 

profiles may not match up well to the institution reported profiles, as seen in the superior-inferior 

profiles from the sagittal films in Figures 3.17 and 3.18, the aim of this study is not to compare the 

OSLD doses or OSLD normalized film to the institution values, but rather to compare the TLD with 

the OSLD.  These results validate that the film can be normalized to the angular corrected OSLD 

target doses for the purposes of credentialing with the RPC’s anthropomorphic QA phantoms. 

3.3.3 Gamma Analysis 

 Another method by which the ability of the OSLD, when a correction for the angular 

dependence is made, to measure equivalent dose to TLD measurements is evaluated was by 

comparing gamma analysis results for film normalized to both TLD doses and OSLD doses, as 

described in Section 2.7.3.  The percent of pixels passing the 7%/4 mm gamma criteria for the three 

IMRT treatment deliveries is shown in Table 3.10.  The pass rates for each film in the phantom 

normalized to the target TLD doses can be seen next to the pass rates for the films normalized to the 

angular corrected OSLD target doses.  The percentage of pixels passing the same gamma criteria for 

the two institution trials can be seen in Table 3.11.  For the purpose of this study, it is not necessary or 

important that the films pass the RPC gamma criteria of greater than 85% of pixels passing, but the 

significance rests in the ability of the OSLD normalized films to pass at the same rate as the TLD 

normalized films.  For the three IMRT deliveries and the two institution trials, the gamma pass rates 

for the films normalized to both the TLD and the corrected OSLD are very close, if not the same.  

The low passing rates for the three IMRT deliveries can be attributed to the low dose delivered to the 

film.  The RPC experience has shown that for a target dose of 3 Gy, the noise properties dominate the 

film, making accurate results difficult to obtain. 
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Film 

TLD Gamma 

Pass Rate 

OSLD Gamma 

Pass Rate 

IMRT_1 Coronal 82% 83% 

  Sagittal 80% 81% 

IMRT_2 Coronal 88% 88% 

  Sagittal 85% 84% 

IMRT_3 Coronal 82% 82% 

  Sagittal 75% 75% 

Table 3.10 Percent of pixels passing gamma analysis for IMRT deliveries in the coronal and sagittal 

films for a criteria of 7%/4 mm for film normalized to TLD dose and corrected OSLD dose 

  
Film 

TLD Gamma 

Pass Rate 

OSLD Gamma 

Pass Rate 

IMRT Coronal 100% 100% 

  Sagittal 99% 99% 

CyberKnife Coronal 93% 93% 

  Sagittal 94% 94% 

Table 3.11 Percent of pixels passing gamma analysis for institution trials in the coronal and sagittal 

films for 7%/4 mm criteria for film normalized to TLD dose and corrected OSLD dose 

 The distribution maps, both color scale and binary, for the sagittal and coronal films with 

pixels passing the 7%/4 mm gamma criteria for the irradiation IMRT_2 can be seen below in Figure 

3.19 through Figure 3.26.  The gamma results are shown for both the TLD normalized films and the 

films normalized by the angular corrected OSLD doses.  The gamma analysis results for the 

remaining IMRT deliveries and the institution trials are shown in the Appendix, in Section 5.3. 

 The gamma results for the coronal films from the second IMRT irradiation can be seen 

below, Figure 3.19 shows the coronal film normalized to the TLD target doses and Figure 3.20 shows 

the same film normalized to the corrected OSLD target doses.  The same results, with the binary 

display of pixels passing can be seen below, Figure 3.21 is the result for the TLD normalized film and 

Figure 3.22 is the result for the angular corrected OSLD normalized film.  The areas of pixels passing 

the gamma criteria for both the TLD and OSLD normalized films appear essentially the same. 
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Figure 3.19 IMRT_2 color scale gamma results for coronal film normalized to target TLD dose 

 

Figure 3.20 IMRT_2 color scale gamma results for coronal film normalized to corrected target OSLD 

dose 
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Figure 3.21 IMRT_2 binary gamma results for coronal film normalized to target TLD dose 

 

Figure 3.22 IMRT_2 binary gamma results for coronal film normalized to corrected target OSLD 

dose 

 The gamma results for the sagittal films from the second IMRT irradiation can be seen below, 

Figure 3.23 shows the sagittal film normalized to the TLD doses and Figure 3.24 shows the same film 

normalized to the corrected OSLD doses.  The sagittal film gamma results shown in the binary 
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display, passing pixels appear blue and failing pixels appear green, can be seen below.  Figure 3.25 is 

the result for the TLD normalized film and Figure 3.26 is the result for the angular corrected OSLD 

normalized film.  The areas of pixels passing the gamma criteria for both the TLD and OSLD 

normalized films appear the same, with few variations. 

 

Figure 3.23 IMRT_2 color scale gamma results for sagittal film normalized to target TLD dose 

 

Figure 3.24 IMRT_2 color scale gamma results for sagittal film normalized to corrected target OSLD 

dose 
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Figure 3.25 IMRT_2 binary gamma results for sagittal film normalized to target TLD dose 

 

Figure 3.26 IMRT_2 binary gamma results for sagittal film normalized to corrected target OSLD 

dose 

 The results from the gamma analysis, comparing the pass rates and pixel distributions of the 

TLD normalized films and the corrected OSLD normalized films, demonstrate that the analysis of the 

films when normalized to the angular corrected OSLD target doses yields equivalent results to the 
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TLD normalized films.  The films normalized to the angular corrected OSLD target doses can be used 

for the purpose of credentialing with the RPC’s anthropomorphic QA phantoms. 
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Chapter 4 Conclusions 

4.1 Conclusion 

 This study investigated the angular dependence of the nanoDot OSL dosimeters in the RPC 

pelvic phantom to effectively utilize the OSLD as a replacement for the TLD in the anthropomorphic 

QA phantoms.  The replacement of TLD in the QA phantoms with OSLD would be beneficial to the 

RPC.  The benefits of OSLD include shorter waiting periods post-irradiation, simpler and quicker 

readout procedures, minimal energy dependence, signal is not destroyed when they are read, allowing 

them to be read multiple times, and they are not affected by environmental changes.  As the mini-

phantom portion of the remote audit system has already made the switch to OSLD, the switch from 

TLD to OSLD in the anthropomorphic phantoms would further streamline the remote audit process 

and greatly improve efficiency.    

 OSLD were irradiated within a small, spherical polystyrene phantom to study the angular 

dependence of the dosimeters under the simplest of conditions for both 6 MV and 18 MV photon 

beams.  The results of these irradiations lead to the determination of angular correction factors of 

1.040 and 1.019 for coplanar treatments with beam energies 6 MV and 18 MV, respectively, and a 

correction factor of 1.038 for non-coplanar treatments at 6 MV, specific to CyberKnife treatments.  

Within the experimental uncertainties, the correction factors at 6 MV for the coplanar and non-

coplanar treatments are essentially the same.  

 The irradiations of the RPC pelvic phantom included TLD, OSLD, and film for the IMRT 

and institution trials.  The film was included in the select treatments in order to validate the use of 

OSLD dose, when the angular dependence has been corrected, to normalize the film for obtaining 

dose profiles or performing gamma analysis, and to show that the OSLD normalized film yields the 

same results as film normalized by the TLD doses.  Comparisons of the absolute doses measured by 

the TLD and OSLD, the dose profiles generated by normalized films, and gamma analysis of the 

normalized films were all performed.  The ratio of the doses measured by the TLD to the corrected 

OSLD measured dose was calculated to be 0.995 ± 0.006 for the coplanar treatment deliveries.  The 

ratio of the TLD measured doses to the angular corrected OSLD doses for the non-coplanar treatment 

deliveries was calculated to be 0.974 ± 0.003.  The institution trials served as a method to verify the 

ability of the angular correction factors established from the spherical phantom irradiations to correct 

the OSLD dose to within 1% of the TLD measured dose.  The average ratio of the TLD to corrected 

OSLD dose for the two institution trials was calculated to be 1.001 ± 0.007.  For all irradiations, the 

angular dependence correction factors determined in this study effectively corrected the OSLD 
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measured dose to within 1% of the TLD measured dose, with the exception of the three CyberKnife 

treatment deliveries.   

 Our hypothesis, that the incorporation of OSLD into the RPC phantom will measure on 

average an equivalent dose measurement as compared to the existing TLD measurements within 

±1%, regardless of the angular dependence of the OSLD, was not supported.  Based on the results of 

the study, the OSLD can be effectively used as a replacement for the TLD in the phantoms and 

measure an equivalent dose within 1%, only if the OSLD angular dependence is first corrected. 

 Caution is advised regarding the use of the angular dependence correction factor for the 

OSLD determined in this study for non-coplanar CyberKnife treatment deliveries.  The discrepancies 

between the data from the three CyberKnife treatments delivered at St. Luke’s compared to the 

CyberKnife irradiation for the institution trial were considerable, and the correction factor that 

worked so well when applied to the trial data, did not yield good results when applied to the original 

CyberKnife data.  In addition, the statistical analysis of the OSLD responses from the non-coplanar 6 

MV spherical phantom irradiations showed that averaging the normalized responses might not be the 

appropriate method of establishing the angular dependence correction factor.  A single correction 

factor for the established angular dependence of the OSLD for CyberKnife irradiations may not be 

possible due to the high dose gradients and inherent inhomogeneities of the treatment, and that 

CyberKnife credentialing may need to be performed according to the current method of using TLD as 

the absolute dosimeter.  If a switch from TLD to OSLD is pursued for CyberKnife credentialing using 

the anthropomorphic QA phantoms, further investigation of an appropriate angular dependence 

correction factor must be performed. 

4.2 Future Work 

 The results of this study indicate that the modification of the collection of pelvic phantoms at 

the RPC could begin to include OSLD as a replacement for the TLD for coplanar treatment deliveries 

in both the PTV as well as in the femoral heads.  An investigation of other anthropomorphic QA 

phantoms for which the inclusion of OSLD would be most appropriate, and how the modifications 

would be made could also be done.  With the incorporation of the OSLD into the phantoms, the 

characterization of the energy correction factors for the OSLD in full phantom conditions must be 

completed for additional beam energies, both photon and electron beams. 

 It is also clear from this study that further research regarding the OSLD response for non-

coplanar treatments, such as CyberKnife, and a possible correction factor for the OSLD angular 
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dependence in these situations, must be pursued.  This further study of the dosimeter response for 

non-coplanar CyberKnife treatments might be more feasible when the RPC has credentialed a greater 

number of CyberKnife treatments using the existing method of mailable phantoms with TLD, but also 

including OSLD in the target volume and collecting data on the measured doses.  
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Chapter 5 Appendix 

5.1 TG-21 Worksheets
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5.2 Dose Profiles 

5.2.1 IMRT_1 

 

Figure 5.1 Lateral dose profile in coronal plane from IMRT_1 with film normalized to TLD dose 

 

Figure 5.2 Lateral dose profile in coronal plane from IMRT_1 with film normalized to corrected 

OSLD dose 
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Figure 5.3 AP dose profile in sagittal plane from IMRT_1 with film normalized to TLD dose 

 

Figure 5.4 AP dose profile in sagittal plane from IMRT_1 with film normalized to corrected OSLD 

dose 
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Figure 5.5 Superior-inferior dose profile in sagittal plane from IMRT_1 with film normalized to TLD 

dose 

 

Figure 5.6 Superior-inferior dose profile in sagittal plane from IMRT_1 with film normalized to 

corrected OSLD dose 
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5.2.2 IMRT_3 

 

Figure 5.7 Lateral dose profile in coronal plane from IMRT_3 with film normalized to TLD dose 

 

Figure 5.8 Lateral dose profile in coronal plane from IMRT_3 with film normalized to corrected 

OSLD dose 
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Figure 5.9 AP dose profile in sagittal plane from IMRT_3 with film normalized to TLD dose 

 

Figure 5.10 AP dose profile in sagittal plane from IMRT_3 with film normalized to corrected OSLD 

dose 
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Figure 5.11 Superior-inferior dose profile in sagittal plane from IMRT_3 with film normalized to 

TLD dose 

 

Figure 5.12 Superior-inferior dose profile in sagittal plane from IMRT_3 with film normalized to 

corrected OSLD dose 
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5.2.3 CyberKnife Trial 

 

Figure 5.13 Lateral dose profile in coronal plane from CyberKnife trial with film normalized to TLD 

dose 

 

Figure 5.14 Lateral dose profile in coronal plane from CyberKnife trial with film normalized to 

corrected OSLD dose 
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Figure 5.15 AP dose profile in sagittal plane from CyberKnife trial with film normalized to TLD 

dose 

 

Figure 5.16 AP dose profile in sagittal plane from CyberKnife trial with film normalized to corrected 

OSLD dose 
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Figure 5.17 Superior-inferior dose profile in sagittal plane from CyberKnife trial with film 

normalized to TLD dose 

 

Figure 5.18 Superior-inferior dose profile in sagittal plane from CyberKnife trial with film 

normalized to corrected OSLD dose 
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5.2.4 IMRT Trial 

 

Figure 5.19 Lateral dose profile in coronal plane from IMRT trial with film normalized to TLD dose 

 

Figure 5.20 Lateral dose profile in coronal plane from IMRT trial with film normalized to corrected 

OSLD dose 
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Figure 5.21 AP dose profile in sagittal plane from IMRT trial with film normalized to TLD dose 

 

Figure 5.22 AP dose profile in sagittal plane from IMRT trial with film normalized to corrected 

OSLD dose 
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Figure 5.23 Superior-inferior dose profile in sagittal plane from IMRT trial with film normalized to 

TLD dose 

 

Figure 5.24 Superior-inferior dose profile in sagittal plane from IMRT trial with film normalized to 

corrected OSLD dose 
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5.3 Gamma Analysis 

5.3.1 IMRT_1 Coronal Films 

 

Figure 5.25 IMRT_1 color scale gamma results for coronal film normalized to TLD dose 

 

Figure 5.26 IMRT_1 color scale gamma results for coronal film normalized to corrected OSLD dose 
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Figure 5.27 IMRT_1 binary gamma results for coronal film normalized to TLD dose 

 

 Figure 5.28 IMRT_1 binary gamma results for coronal film normalized to corrected OSLD dose 
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5.3.2 IMRT_1 Sagittal Films 

 

Figure 5.29 IMRT_1 color scale gamma results for sagittal film normalized to TLD dose 

 

Figure 5.30 IMRT_1 color scale gamma results for sagittal film normalized to corrected OSLD dose 



89 

 

 

Figure 5.31 IMRT_1 binary gamma results for sagittal film normalized to TLD dose 

 

Figure 5.32 IMRT_1 binary gamma results for sagittal film normalized to corrected OSLD dose 
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5.3.3 IMRT_3 Coronal Films 

 

Figure 5.33 IMRT_3 color scale gamma results for coronal film normalized to TLD dose 

 

Figure 5.34 IMRT_3 color scale gamma results for coronal film normalized to corrected OSLD dose 
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Figure 5.35 IMRT_3 binary gamma results for coronal film normalized to TLD dose 

 

 Figure 5.36 IMRT_3 binary gamma results for coronal film normalized to corrected OSLD dose 
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5.3.4 IMRT_3 Sagittal Films 

 

Figure 5.37 IMRT_3 color scale gamma results for sagittal film normalized to TLD dose 

 

Figure 5.38 IMRT_3 color scale gamma results for sagittal film normalized to corrected OSLD dose 
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Figure 5.39 IMRT_3 binary gamma results for sagittal film normalized to TLD dose 

 

Figure 5.40 IMRT_3 binary gamma results for sagittal film normalized to corrected OSLD dose 
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5.3.5 CyberKnife Trial Coronal Films 

 

Figure 5.41 CyberKnife trial color scale gamma results for coronal film normalized to TLD dose 

 

Figure 5.42 CyberKnife trial color scale gamma results for coronal film normalized to corrected 

OSLD dose 
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Figure 5.43 CyberKnife trial binary gamma results for coronal film normalized to TLD dose 

 

Figure 5.44 CyberKnife trial binary gamma results for coronal film normalized to corrected OSLD 

dose 
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5.3.6 CyberKnife Trial Sagittal Films 

 

Figure 5.45 CyberKnife trial color scale gamma results for sagittal film normalized to TLD dose 

 

Figure 5.46 CyberKnife trial color scale gamma results for sagittal film normalized to corrected 

OSLD dose 
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Figure 5.47 CyberKnife trial binary gamma results for sagittal film normalized to TLD dose 

 

Figure 5.48 CyberKnife trial binary gamma results for sagittal film normalized to corrected OSLD 

dose 
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5.3.7 IMRT Trial Coronal Films 

 

Figure 5.49 IMRT trial color scale gamma results for coronal film normalized to TLD dose 

 

Figure 5.50 IMRT trial color scale gamma results for coronal film normalized to corrected OSLD 

dose 
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Figure 5.51 IMRT trial binary gamma results for coronal film normalized to TLD dose 

 

Figure 5.52 IMRT trial binary gamma results for coronal film normalized to corrected OSLD dose 
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5.3.8 IMRT Trial Sagittal Films 

 

Figure 5.53 IMRT trial color scale gamma results for sagittal film normalized to TLD dose 

 

Figure 5.54 IMRT trial color scale gamma results for sagittal film normalized to corrected OSLD 

dose 
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Figure 5.55 IMRT trial binary gamma results for sagittal film normalized to TLD dose 

 

Figure 5.56 IMRT trial binary gamma results for sagittal film normalized to corrected OSLD dose 
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