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ABSTRACT

BAYESIAN ADAPTIVE DESIGNS FOR EARLY PHASE CLINICAL TRIALS

Publication No.

Chunyan Cai, B.S.

Supervisory Professor: Ying Yuan, Ph.D.

My dissertation focuses mainly on Bayesian adaptive designs for phase I and phase II

clinical trials. It includes three specific topics: (1) proposing a novel two-dimensional

dose-finding algorithm for biological agents, (2) developing Bayesian adaptive screen-

ing designs to provide more efficient and ethical clinical trials, and (3) incorporating

missing late-onset responses to make an early stopping decision.

Treating patients with novel biological agents is becoming a leading trend in oncology.

Unlike cytotoxic agents, for which toxicity and efficacy monotonically increase with

dose, biological agents may exhibit non-monotonic patterns in their dose-response

relationships. Using a trial with two biological agents as an example, we propose a

phase I/II trial design to identify the biologically optimal dose combination (BODC),

which is defined as the dose combination of the two agents with the highest efficacy

and tolerable toxicity. A change-point model is used to reflect the fact that the

dose-toxicity surface of the combinational agents may plateau at higher dose levels,

and a flexible logistic model is proposed to accommodate the possible non-monotonic

pattern for the dose-efficacy relationship. During the trial, we continuously update

the posterior estimates of toxicity and efficacy and assign patients to the most appro-
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priate dose combination. We propose a novel dose-finding algorithm to encourage

sufficient exploration of untried dose combinations in the two-dimensional space.

Extensive simulation studies show that the proposed design has desirable operating

characteristics in identifying the BODC under various patterns of dose-toxicity and

dose-efficacy relationships.

Trials of combination therapies for the treatment of cancer are playing an increas-

ingly important role in the battle against this disease. To more efficiently handle

the large number of combination therapies that must be tested, we propose a novel

Bayesian phase II adaptive screening design to simultaneously select among possible

treatment combinations involving multiple agents. Our design is based on formulat-

ing the selection procedure as a Bayesian hypothesis testing problem in which the

superiority of each treatment combination is equated to a single hypothesis. Dur-

ing the trial conduct, we use the current values of the posterior probabilities of all

hypotheses to adaptively allocate patients to treatment combinations. Simulation

studies show that the proposed design substantially outperforms the conventional

multi-arm balanced factorial trial design. The proposed design yields a significantly

higher probability for selecting the best treatment while at the same time allocating

substantially more patients to efficacious treatments. The proposed design is most

appropriate for the trials combining multiple agents and screening out the efficacious

combination to be further investigated. The proposed Bayesian adaptive phase II

screening design substantially outperformed the conventional complete factorial de-

sign. Our design allocates more patients to better treatments while at the same time

providing higher power to identify the best treatment at the end of the trial.
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Phase II trial studies usually are single-arm trials which are conducted to test the

efficacy of experimental agents and decide whether agents are promising to be sent to

phase III trials. Interim monitoring is employed to stop the trial early for futility to

avoid assigning unacceptable number of patients to inferior treatments. We propose

a Bayesian single-arm phase II design with continuous monitoring for estimating the

response rate of the experimental drug. To address the issue of late-onset responses,

we use a piece-wise exponential model to estimate the hazard function of time to

response data and handle the missing responses using the multiple imputation ap-

proach. We evaluate the operating characteristics of the proposed method through

extensive simulation studies. We show that the proposed method reduces the total

length of the trial duration and yields desirable operating characteristics for different

physician-specified lower bounds of response rate with different true response rates.
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CHAPTER 1

Introduction

1.1 Dose-finding Design for Oncology Clinical Trials of Combinational
Biological Agents

The paradigm of oncology drug development is expanding from traditional

cytotoxic agents to biological agents [5, 17, 32]. Examples of biological agents include

biospecimens targeting a specific tumor pathway, gene products aiming for DNA

repair, and immunotherapies stimulating the immune system to attack a tumor.

These novel agents differ from traditional cytotoxic agents in a variety of ways.

For cytotoxic agents, toxicity and efficacy are typically assumed to monotonically

increase with dose level. However, for biological agents, toxicity may increase at low

dose levels and then approximately plateau at higher dose levels. For instance, when

the toxicity of a biological agent is related to the inhibition of a biological pathway,

the toxicity of the agent increases initially with dose since a high dose results in a

high degree of inhibition; once the inhibition is saturated, the toxicity may be (or

approximately) constant within a certain range of dose. In addition, the dose-efficacy

curves for the biological agents may follow a non-monotonic pattern, and efficacy may

even decrease at higher dose levels [17]. Therefore, traditional dose-finding designs

with a focus on finding the maximum tolerated dose (MTD) [3, 35, 46, 59] are not

suitable for trials of biological agents. Novel designs that consider both the toxicity
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and efficacy of these agents are imperative.

Dose-finding designs that jointly model toxicity and efficacy are categorized as

phase I/II designs. Numerous phase I/II designs have been proposed for traditional

cytotoxic agents. Gooley et al. (1994) [16] proposed a phase I/II clinical trial in bone

marrow transplantation to find a dose that balances the risks of two immunologic

complications. Thall and Russell (1998) [49] proposed a phase I/II design to find

a dose satisfying both safety and efficacy requirements based on a trinary outcome.

O’Quigley, Hughes, and Fenton (2001) [33] presented a class of designs aiming to

identify the dose yielding the highest treatment success rate for HIV studies. Thall

and Cook (2004) [47] proposed a Bayesian phase I/II trial design based on trade-offs

between toxicity and efficacy probabilities. Yin, Li, and Ji (2006) [58] developed

a phase I/II Bayesian dose-finding design using toxicity and efficacy odds ratios.

O’Quigley and Zohar (2006) [36] provided a comprehensive review of phase I/II

designs. All of these phase I/II designs focus on single-agent trials and are not

directly applicable to trials evaluating combinational agents.

For drug combination trials, a number of designs have been proposed to find

the MTD of cytotoxic agents. Simon and Korn (1990) [42] described a mathematical

model for the toxicity probability as a function of the weighted sum of the two doses to

select cytotoxic drugs and dosages for a combination regimen. Afterwards, Korn and

Simon (1993) [26] constructed a tolerable-dose diagram based on this simple mathe-

matical model to guide the phase I trial design. Kramar, Lebecq and Candalh (1999)

[27] proposed monotonically ordering of a selected subset of drug combinations which

reduced the dose finding to a one-dimensional space. Thall et al. (2003) [48] devel-

oped a six-parameter logistic regression model of the toxicity probability to identify

an entire “contour” of combinations. Conaway et al. (2004) [10] examined the simple
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and partial orders for drug combinations based on the pool adjacent violators algo-

rithm. Wang and Ivanova (2005) [53] proposed a two-stage Bayesian adaptive design

to identify MTD combinations based on a logistic-type regression for toxicity proba-

bilities. Yuan and Yin (2008) [60] proposed an adaptive two-dimensional dose-finding

design that can accommodate any type of single-agent dose-finding method. They

converted the two-dimensional dose-finding trial to a series of one-dimensional dose-

finding subtrials and conducted the subtrials sequentially. Braun and Wang (2009)

[6] proposed a hierarchical model for the dose-limiting toxicities (DLT) probability

to identify MTD for novel combinations of cancer therapeutic agents which consider

the subject heterogeneity for DLT. Recently, Wages, Conaway and O’Quigley (2011)

[52] extended the continual reassessment method (CRM) to two-dimensional dose

finding by converting a partially ordered two-dimensional dose space into a series of

fully ordered dose sequences. All of these designs focus on phase I dose finding for

cytotoxic agents and do not consider efficacy.

Published research on designs for phase I/II combination trials, in particular

for biological agents, has been very limited. Yuan and Yin (2011) [61] developed a

phase I/II design for drug combination trials, but that design focused on cytotoxic

agents. Mandrekar, Cui and Sargent (2007) [31] proposed a novel phase I/II design

for trials evaluating combinational biological agents based on a continuation ratio

model for trinary outcomes (namely, “no response,” “success” and “toxicity”). Our

approach differs in several aspects: we model toxicity and efficacy as bivariate bi-

nary outcomes, use a change-point model to render the flexibility to consider that

toxicity may plateau at high dose levels, and introduce a novel dose-finding algo-

rithm to stochastically search the two-dimensional dose space, thereby encouraging

the exploration of untried dose combinations.
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Our research is motivated by a drug-combination trial at The University

of Texas MD Anderson Cancer Center for patients diagnosed with relapsed lym-

phoma. The trial combined two novel biological agents, A and B (their names are

masked to maintain confidentiality), that target two different components in the

PI3K/AKT/mTOR signaling pathway. This pathway has been associated with sev-

eral genetic aberrations related to the promotion of cancer [18]. Agent A is a PI3K

kinase inhibitor and agent B is a downstream inhibitor of mTOR kinase within that

pathway. Research has suggested that some types of lymphomas are promoted and

maintained by the activation of the PI3K/AKT/mTOR pathway, making the path-

way an important target for drug development [44]. Both agents A and B have

individually demonstrated a partial inhibition of the pathway and some therapeutic

activity. By combining these two agents, the investigators expect to obtain a more

complete inhibition of the PI3k/AKT/mTOR pathway, and thereby to achieve better

treatment responses. The trial investigates the combinations of 4 dose levels of agent

A with 4 dose levels of agent B, which results in 16 dose combinations. The goal is to

find the biologically optimal dose combination (BODC), defined as the dose combina-

tion with the highest efficacy and tolerable toxicity (e.g., with a toxicity probability

< 0.4). The physicians expect the toxicity of the combinations to increase at low

doses and become (approximately) flat at high doses, and they consider the possi-

bility that the dose-efficacy curve of the combinations may be non-monotonic (i.e.,

the dose with the highest efficacy is not necessarily the highest dose).

We introduce a phase I/II design to identify the BODC for oncology trials

of combinational biological agents. The proposed design explicitly accounts for the

unique properties of biological agents. We propose a change-point model to reflect

the property that the dose-toxicity surface of the combinational agents may plateau
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at higher dose levels, and use a general logistic model with quadratic terms to ac-

commodate the possible non-monotonic pattern of the dose-efficacy relationship. Our

design is conducted in two stages: in stage I, we escalate doses along the diagonal

of the dose combination matrix as a fast exploration of the dosing space; in stage

II, based on the observed toxicity and efficacy data from stages I and II, we con-

tinuously update the posterior estimates of toxicity and efficacy and assign patients

to the most appropriate dose combination. We propose a novel dose-finding algo-

rithm to encourage sufficient exploration of the two-dimensional dose space, which

facilitates the identification of the BODC. Extensive simulation studies show that

the proposed design has desirable operating characteristics in identifying the BODC

under various patterns of dose-toxicity and dose-efficacy relationships.

1.2 Screening Design for Combination Trials Combining Multiple Agents

The use of combination therapies [28, 38, 62] for cancer treatment can lead

to treatment synergies that result in improved patient outcomes. The number of

treatment combinations that must be tested is often quite large, however, which

means that it is often not practical to conduct separate phase II trials on every

possible combination of treatments. We describe a Bayesian adaptive trial design

that facilitates the pooling of information obtained across treatment combinations

by testing efficacy of all treatment combinations in a single trial. Important benefits

of our trial designs include a reduction in the number of patients that must be

recruited in order to evaluate each treatment combination, the assignment of a higher

proportion of patients to efficacious treatments, faster patient accrual and more rapid

completion of trials.

To motivate our design methodology, we consider a recent drug-combination
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clinical trial conducted at MD Anderson Cancer Center to test the effectiveness of

16 combinations of 4 agents, A1, A2, A3 and A4, in reducing the symptom burden

experienced by patients with late stage non-small cell lung cancer (NSCLC) who

have received chemo-radiation therapies. The actual names of the drugs assessed in

the trial are not specified here for reasons of confidentiality. The primary outcome

variable for this trial was the area under the curve (AUC) for five symptoms (pain,

fatigue, drowsiness, sleep disturbance and lack of appetite) measured daily using an

interactive voice recording system (IVR) for 10 days following the onset of radiation

therapy. Each symptom was measured using the MD Anderson Symptom Inventory

(MDASI), which solicits ordinal ratings of symptoms on an 11-point scale ranging

from 0 (“none at all”) to 10 (“worst that can be imagined”) [20]. In contrast to

typical cancer-treating agents, which are generally cytotoxic, the combinations of

four agents tested in this trial were known to have minimal risks of toxicity, and

thus we focused herein on efficacy only. The goal of the trial is to identify the most

efficacious combination to be further investigated in large trials.

A variety of screening designs have been proposed for use in trials of this gen-

eral type. Among these, Thall, Simon and Ellenberg (1988) [50] proposed a two-stage

phase II-III trial design to select the most promising treatment from k treatments in

the first stage, and to compare the selected first stage treatment with the standard of

care in the second stage. Schaid, Wieand and Therneau (1990) [41] presented a simi-

lar two-stage design that used survival data as an endpoint; that design allowed more

than one treatment to be included in the second stage. Yao, Begg and Livingston

(1996) [56] proposed a design to screen new treatments as a continuous process for

identifying promising new therapeutic agents, and determined the optimal sample

size to be used with their design. Yao and Venkatraman (1998) [57], and Wang and
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Leung (1998) [54] extended that design to two-stage and fully sequential designs.

Stout and Hardwick (2005) [45] developed a cost-based and constraint-based deci-

sion theoretic-approach to the design of screening trials. Rossell, Muller and Rosner

(2007) [39] proposed a screening design based on Bayesian decision theoretics that

uses optimal linear boundaries. Ding, Rosner and Muller (2008) [11] developed a

more systematic decision-making optimal phase II screening trial design using a util-

ity function that accounts for sampling costs and possible future payoff. However,

none of these designs focus on screening combinations of multiple agents, a feature

which is central to the designs we proposed in this work.

We model the main and synergistic effects of the treatment agents using a

linear model, which facilitates borrowing information across the combinations. We

cast the screening problem into a Bayesian hypothesis testing problem by construct-

ing a series of hypotheses, each of which appoints one of the combinations as the

most efficacious treatment. We utilize an encompassing prior with non-local prior

constraints [25, 21] to accommodate the complex parameter constraints imposed by

the hypotheses. During the trial conduct, based on the observed data, we continu-

ously update the posterior probabilities of the hypotheses and use them to adaptively

allocate patients to effective combinations and select the best treatment. Extensive

simulation studies show that, compared to the standard (multi-arm) balanced facto-

rial design, the proposed design yields a significantly higher probability of selecting

the best treatment. It also allocates more patients to efficacious treatments.

1.3 Interim Monitoring for Late-onset Responses

Phase II trial studies usually are single-arm trials which are conducted to

test the efficacy of experimental agents and decide whether agents are sufficiently
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promising to be sent to phase III trials. To avoid assigning unacceptable number of

patients to inferior treatments, interim monitoring is employed to stop the trial early

for futility if there is sufficient evidence to determine the inefficiency of experimental

agents. Many phase II trial designs with interim monitoring are proposed to evaluate

the efficacy of the experimental agents[29]. Simon (1988) [43] presented a optimal

two-stage design which minimizes the expected sample size. The early stopping

criteria is applied to make an early stopping decision for futility at the end of first

stage. Thall, Simon and Estey (1996) [51] proposed a new flexible statistical strategy

to continuously monitor both safety and efficacy in single-arm cancer clinical trials.

Wathen et al. (2008) [55] proposed a Bayesian single-arm phase II design to account

for heterogeneity between patient prognostic subgroups. The subgroup-specific early-

stopping rules are applied to allow terminate some subgroups and continue others.

Johnson and Cook (2009) [19] derived a new class of Bayesian designs based on

formal hypothesis tests using nonlocal alternative prior densities with continuous

monitoring.

In general, interim monitoring based on previous responses assumes that the

outcome could be observed shortly after the initiation of treatment such that the

outcomes of the patients enrolled in the trial have been completely observed by

the time of interim monitoring. However, this assumption may not always hold in

practice, for example the case of late-onset responses [4, 8, 9] which may occur long

after the assignment of treatment. Combining with the fast accrual rate, this would

result in large number of missing responses at the time of interim monitoring. To

address such late-onset responses, one possible approach is to suspend the accrual

and wait until the previously enrolled patients are fully followed. Obviously this

approach utilizes all the information and provides a good estimate of response rate.
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However, it leads to an infeasibly long trial and needs to suspend the trial frequently

which is not practical and inconvenient for trial administration. If we do not suspend

the accrual and assign a newly arriving patient to treatment immediately, those

patients under treatment might not have completed the assessment. At the time of

interim monitoring, the early stopping decision will only be made based on the fully

observed data thus far. This approach is also problematic which often overestimates

the response rate and terminates the trial unappropriate.

We propose a Bayesian single-arm phase II design with continuous monitoring

for estimating the response rate of the experimental drug. To address the issue of

unobserved responses at the decision making time, we propose an approach which is

built on missing data methodology. Specifically, we treat the unobserved responses

as missing data and apply standard methods to estimate the response rate. We

propose a piece-wise exponential model to estimate the hazard function of time

to response data and handle the missing responses using the multiple imputation

approach. For the proposed methods, we do not need to suspend patient accrual

to wait for the full observation of the outcomes of patients under treatment. We

evaluate the operating characteristics of the proposed method through extensive

simulation studies. We show that the proposed method reduces the total length

of the trial duration and yields a desirable operating characteristics for different

physician-specified lower bounds of response rate with different true response rates.
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CHAPTER 2

A Bayesian Phase I/II Design for Oncology Clinical Trials of
Combinational Biological Agents

In this chapter, we introduce a phase I/II design to identify the BODC for

oncology trials combining biological agents. Biological agents are playing an increas-

ingly important role in oncology drug development. There are some unique features

for the biological agents. The toxicity of biological agents is usually tolerable within

the therapeutic dose range and may plateau at higher dose levels. In addition, the

dose-efficacy curves for these agents often follow a non-monotonic pattern in which

efficacy may decrease at higher dose levels. For cytotoxic agents, toxicity and ef-

ficacy are typically assumed to monotonically increase with dose level. Therefore,

traditional dose-finding designs with a focus on finding the MTD are not suitable for

trials of biological agents. Novel designs that consider both the toxicity and efficacy

of these agents are in great demand.

We propose a dose-finding design that can explicitly account for the unique

properties of biological agents. A change-point model is proposed to reflect the prop-

erty that the dose-toxicity surface of the combinational agents may plateau at higher

dose levels and a general logistic model with quadratic terms is applied to accom-

modate the possible non-monotonic pattern for the dose-efficacy relationship. Our

design is conducted in two stages: in stage I, we escalate doses along the diagonal
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of the dose combination matrix as a fast exploration of the dosing space; in stage

II, based on the observed toxicity and efficacy data from stages I and II, we contin-

uously update the posterior estimates of toxicity and efficacy and assign patients to

the most appropriate dose combination. To encourage sufficient exploration of the

two-dimensional dose space, we propose a novel dose-finding algorithm which facili-

tates the identification of the BODC. We conducted extensive simulation studies to

evaluate the operating characteristics of our proposed design.

In following sections, we introduce the probability models and the phase I/II

design for finding the BODC. We apply our design to the lymphoma clinical trial and

examine the design’s operating characteristics through extensive simulation studies.

2.1 Methods

2.1.1 Modeling Toxicity and Efficacy

Consider a trial combining J doses of biological agent A, denoted by a1 <

a2 < · · · < aJ , with K doses of biological agent B, denoted by b1 < b2 < · · · <

bK . Without loss of generality, we assume J ≥ K and that the dose values of

the aj’s and bk’s have been standardized to have mean 0 and standard deviation

of 0.5. This standardization is used to anticipate the prior elicitation in Section

2.1.2. Let (aj, bk) denote the combination of dose aj and dose bk, and let pjk and qjk

denote the toxicity and efficacy probabilities of (aj, bk), respectively, for j = 1, 2, ..., J,

and k = 1, 2, ..., K. Here, toxicity and efficacy are two binary events that reflect

the side effects (toxicity) and therapeutic effects (efficacy) of the biological agents.

Therefore, pjk and qjk are simply the probabilities of the toxicity event and efficacy

event, respectively, at dose combination (aj, bk). Specifically, the toxicity probability

indicates the probability that a subject experiences dose-limiting toxicity and the

efficacy probability represents the probability that there exists a direct or surrogate
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marker of efficacy. The efficacy event can be tumor shrinkage or pathological response

given by clinicians. The goal of the trial is to identify the BODC in the J ×K dose

combination matrix.

A change-point model for toxicity

Unlike cytotoxic agents, for which toxicity typically is assumed to monoton-

ically increase with the dose level, the toxicity of biological agents may initially

increase at low doses and then plateau at high doses. To accommodate this prop-

erty of biological agents, we describe pjk, the toxicity probability of (aj, bk), using a

change-point model

(2.1) logit(pjk) = (β0+β1aj+β2bk)I(β0+β1aj+β2bk ≤ ω)+ωI(β0+β1aj+β2bk > ω),

where I(·) is the indicator function and (β0, β1, β2, ω) are unknown parameters.

Under this model, the shape of the dose-toxicity surface initially is monotonic with

the dose level but changes to flat once it passes the threshold defined by β0 + β1aj +

β2bk = ω (see Figure 2.1). We assume that β1 > 0 and β2 > 0 such that the toxicity

probability initially increases with the doses of A and B before it plateaus, at which

time the toxicity probability is given by eω/(1 + eω). We choose the change-point

model for the dose-toxicity surface because of its intuitive interpretation and the

ability to capture the threshold effect that may occur in some biological agents.

Nevertheless, the choice of the toxicity model could be flexible as long as the model

is able to accommodate the non-monotonic dose-toxicity relationship. For example,

an alternative model pjk = ω ∗ logit−1(β0 + β1aj + β2bk) can also provide a good fit

and yield good operating characteristics (results not shown).

In model (2.1), we did not include an interactive effect for the two agents

(e.g., an interaction term β3ajbk) because the reliable estimation of such an interac-
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tion term requires a large sample size (e.g., a few hundreds), which is typically not

available in phase I trials. Note that for the purpose of dose finding, we do not seek

to model the entire dose-toxicity surface but aim to obtain an adequate local fit to

facilitate dose escalation and de-escalation. A model may provide a poor global fit

to the entire dose-toxicity surface; however, as long as the model provides a good

local fit around the current dose, it will lead to correct decisions of dose escalation

and selection. O’Quigley and Paoletti (2003) [34] showed that simple parsimonious

models often yield better operating characteristics than complex models for dose

finding. In addition, In the context of drug combination trials, Wang and Ivanova

(2005) [53] and Braun and Wang (2010) [6] found that a model without interaction

performed as well as one with interaction for dose finding.

A second-order logit model for efficacy

For biological agents, the dose-efficacy curve often follows a non-monotonic

pattern. For example, in immunotherapy trials, the dose-efficacy relationship could

be bell-shaped. That is, the most effective dose may be a dose in the middle of

the therapeutic dose ranges, and when a dose level is lower or higher than the most

effective dose, efficacy decreases. To incorporate such a non-monotonic pattern for

the dose-efficacy relationship, we assume that the efficacy probability of (aj, bk), that

is, qjk, follows a logistic model of the form

(2.2) logit(qjk) = γ0 + γ1aj + γ2bk + γ3a
2
j + γ4b

2
k,

where (γ0, . . . , γ4) are unknown parameters. The quadratic terms render the model

adequate flexibility to capture the non-monotonic shape of the dose-efficacy surface.

In this dose-efficacy model, we exclude the interaction effect ajbk for the same reason

described above.
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2.1.2 Likelihood and Prior Specification

Suppose that at a certain stage of the trial, among njk patients treated at the

paired dose (aj, bk), xjk and yjk patients have experienced dose-limiting toxicity and

efficacy, respectively, where j = 1, · · · , J and k = 1, · · · , K. Let β = {β0, β1, β2} and

γ = {γ0, γ1, γ2, γ3, γ4} denote the regression coefficients in models (2.1) and (2.2).

The likelihood function of the observed data D = {xjk, yjk} can be expressed as

L(D|ω,β,γ) ∝
J∏

j=1

K∏
k=1

p
xjk

jk (1− pjk)
njk−xjk × q

yjk
jk (1− qjk)

njk−yjk .

Let f(ω), f(β), and f(γ) denote the prior distributions for ω, β, and γ, respectively.

Assuming prior independence among ω, β, and γ, we write the joint posterior dis-

tribution as

f(ω,β,γ|D) ∝ L(D|ω,β,γ)f(ω)f(β)f(γ),

from which the full conditional distributions can be obtained. The Gibbs sampler [12,

7] is used to obtain posterior draws of unknown parameters for statistical inferences.

For the prior specification of the efficacy model, we assign γ a weakly infor-

mative default prior f(γ) proposed by [13] for logistic regression. To use this default

prior, we first scale the actual values of the clinical doses to standardized values

{aj} and {bk}, which have mean 0 and standard deviation 0.5, and then assign an

independent Cauchy distribution with center 0 and scale 2.5, Cauchy(0, 2.5), to the

regression coefficients γ1, · · · , γ4, and a Cauchy distribution with center 0 and scale

10, Cauchy(0,10), to the intercept γ0. The advantages of using the weakly infor-

mative priors include (1) these priors are diffuse and provide reasonable coverage

of the plausible values of the parameters, (for example, the prior Cauchy(0, 10) for

the intercept expects the efficacy probability for an average case to be between 10−9

and 1 − 10−9); and (2) these priors are also appropriately regularized such that a
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dramatic change in efficacy probability (e.g., from 0.01 to 0.5) is unlikely when dose

changes by one level, which substantially improves the estimation stability while still

being vague enough to ensure that the data are able to dominate the priors [13].

For the toxicity model, we use the default prior Cauchy(0, 10) for intercept β0. We

assign β1 and β2 a gamma prior distribution with shape 0.5 and rate 0.5 to ensure

the monotonicity before the dose-toxicity surface reaches the change line in model

(2.1). To specify a prior for ω, we assume that the toxicity probability at the plateau

is between 0.2 and 0.8, which corresponds to a value of ω ranging from -1.39 to 1.39.

Thus, we assign ω a normal prior N(0, 4), which provides sufficient coverage for all

plausible toxicity probabilities at the plateau, given by eω/(1 + eω).

2.2 Trial design

The proposed phase I/II design consists of two stages. Stage I is a run-in

period, in which the goal is to explore the dose-combination space quickly and collect

preliminary data so that the proposed probability models can be reliably estimated

in stage II for systematic dose finding. We start stage I of the design by treating the

first cohort of patients at the lowest dose combination (a1, b1), and then escalate the

dose along the diagonal of the dose combination matrix until we encounter a dose

combination that violates the safety requirement

(2.3) Pr(pjk < ϕ|D) > δ,

where ϕ denotes the target toxicity upper limit and δ is a prespecified safety cutoff.

If the dose matrix is not square (i.e., J > K), we first escalate the dose along

the diagonal from (a1, b1) to (a2, b2) and so on until we reach (aK , bK); thereafter,

we escalate the dose by holding the dose level of B at K and increasing the dose

level of A from (aK , bK) to (aK+1, bK) and so on until we reach the highest dose
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combination (aJ , bK). In stage I, only a small fraction of patients are enrolled into

the trial and the observed data are sparse. Therefore, in this stage, we evaluate the

safety requirement based on a simple beta-binomial model rather than the proposed

change-point toxicity model. Specifically, we assume that the number of toxicities

xjk follows a binomial distribution Bi(njk, pjk), and that the toxicity probability pjk

follows a beta distribution Beta(ζ, ξ) with two shape parameters ζ and ξ. To ensure

that the data dominate the posterior distribution, we set ζ=0.1 and ξ=0.2. Under the

beta-binomial model, Pr(pjk < ϕ|D) = B(ϕ|ζ + xjk, ξ + njk − xjk), where B(·) is the

cumulative density function for a beta distribution. In stage I we also collect efficacy

data; however, these data will not be used to determine the dose escalation. The

rationale is that in this initial phase, as long as the doses are safe, we should explore

the two-dimensional dose space as quickly as possible to learn the dose-toxicity and

dose-efficacy surfaces.

Whenever a dose combination (aj, bk) violates the safety requirement, i.e.,

Pr(pjk < ϕ|D) ≤ δ, or we reach the highest dose combination (aJ , bK), stage I is

then complete and the trial moves on to stage II. For this stage of the trial we invoke

the toxicity and efficacy models described in Section 2 for systematic dose finding.

Stage II dose finding is highlighted by two features. First, the proposed algorithm

encourages the exploration of untried dose combinations to avoid the problem of

trapping in suboptimal doses, which is of particular concern for combinations of

biological agents. Because of complex drug-drug interactions and non-monotonic

dose-response patterns, the assumed (simple) dose-response model is not expected

to estimate the true dose-response surface well, especially at the beginning of the trial

when only a few observations are available. Consequently, the resulting estimates

of efficacy and toxicity may substantially deviate from the truth, and the “optimal”
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dose identified based on these estimates may actually be a suboptimal dose. In other

words, the dose with the highest estimate of efficacy is not necessarily the one actually

having the highest efficacy. By intentionally visiting untried dose combinations, the

proposed method increases the chance of finding better combinations and avoids

trapping in suboptimal doses. Second, we introduce a concept of g-degree neighbor

and g-degree admissible neighbor to facilitate the dose finding on the two-dimensional

space, the details of which we describe next.

Assume that the current dose combination is (aj, bk) and define g-degree neigh-

bors of (aj, bk), denoted by Ng, as dose combinations {(aj′ , bk′)} whose dose levels

are different from (aj, bk) no more than g levels, i.e., Ng = {(aj′ , bk′) : |j′ − j| ≤

g and |k′ − k| ≤ g}. Note that the dose set of Ng includes the current dose com-

bination itself. We further define a g-degree admissible dose set Ag = {(aj′ , bk′) :

(aj′ , bk′) ∈ Ng, P r(pj′k′ < ϕT |D) > δ}, which is a subset of the g-degree neighbors

Ng satisfying the pre-specified safety requirement Pr(pj′k′ < ϕT |D) > δ. That is, Ag

contains the safe g-degree neighbors of the dose combination (aj, bk).

Let N denote the prespecified maximum sample size, N1 denote the number

of patients in stage I, and N2 = N − N1 be the total number of patients available

for stage II. Then the proposed dose-finding algorithm for stage II is described as

follows:

1. Based on the accumulated trial data, we determine the dose set Ag∗ , where

g∗ = min{g : Ag ̸= ∅, g ≥ 1}. That is, Ag∗ is the nonempty admissible set

with the smallest degree g∗. If Ag∗ does not exist, i.e., all investigational doses

violate the safety requirement, we terminate the trial.

2. In Ag∗ , we identify the combination (aj∗ , bk∗) that has the highest posterior

mean of efficacy rate q̂j∗k∗ .
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3. If combination (aj∗ , bk∗) has not been used to treat any patient thus far, or all

doses in Ag∗ have been used to treat patients, we assign the next cohort of

patients to (aj∗ , bk∗). However, if (aj∗ , bk∗) has been used to treat patients and

there are some untried doses in Ag∗ , before we decide to assign the next cohort

of patients to (aj∗ , bk∗), we compare q̂j∗k∗ against the following threshold:

(2.4) q̂j∗k∗ >

(
N2 − n2

N2

)α

,

where n2 is the total number of patients that have been treated in stage II and

α is a known tuning parameter controlling how stringent the threshold is. If the

condition (2.4) is not satisfied, (aj∗ , bk∗) will be excluded from the admissible

set Ag∗ and we return to step 2.

4. We continue the above steps until exhaustion of the sample size, and select as

the BODC the dose combination with the highest value of q̂jk and satisfying the

safety requirement Pr(pjk < ϕ|D) > δ.

Remark 1: The threshold (2.4) plays a key role in adaptively encouraging the

exploration of untried doses and avoiding the problem of trapping in suboptimal

doses during dose finding. At the beginning of stage II, when patients have not

yet been treated in that stage, i.e., n2 = 0, the value of {(N2 − n2)/N2}α equals 1.

Consequently, condition (2.4) disallows treating patients at a dose that has been used

previously and supports the exploration of untried doses. This is a sensible action

because at the beginning of stage II the efficacy estimate q̂jk is of large variability,

and we should give high priority to using new doses rather than putting too much

faith in the point estimate q̂jk. Toward the end of the trial (i.e., n2 ≈ N2), we have

more precise estimates of q̂jk based on the accumulated data. As {(N2 − n2)/N2}α
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approaches 0, we essentially assign incoming patients to the dose combination with

the highest value of q̂jk because condition (2.4) is almost always satisfied. In condition

(2.4), the tuning parameter α controls how fast {(N2 − n2)/N2}α decays from 1 to

0. The value of α can be calibrated to obtain desirable operating characteristics.

We summarize both stages of the proposed design as follows.
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The proposed algorithm for finding BODC. The trial starts with the treatment of the

first cohort of patients at the lowest dose (a1, b1). Suppose that patients are being

treated at dose (aj, bk). A dose is safe if Pr(pjk < ϕ|D) > δ; otherwise, the dose is

deemed toxic.

Stage I Run-in Period

I1 If dose (aj, bk) is safe, escalate the dose and treat the next cohort at (aj+1, bk+1).

If j = k = K, escalate the dose to (aj+1, bK). If (a1, b1) is deemed toxic,

terminate the trial.

I2 Stage I is complete when either dose (aj, bk) is deemed toxic or the highest

dose combination (aJ , bK) is reached. Stage II then starts.

Stage II Systematic Dose Finding

II1 Based on the observed data, identify Ag∗ as the nonempty set of safe neighbors

of (aj, bk) with minimum degree g∗. If Ag∗ does not exist (i.e., all experimental

doses are deemed toxic), terminate the trial.

II2 Among the doses in Ag∗ , identify the dose (aj∗ , bk∗) with the highest posterior

mean of efficacy q̂j∗k∗ .

II3 (a) If nj∗k∗ = 0 or nrs ̸= 0 for all (ar, bs) ∈ Ag∗ , treat the next cohort at dose

(aj∗ , bk∗).

(b) Otherwise,



If q̂j∗k∗ >
(

N2−n2

N2

)α

treat the next cohort at (aj∗ , bk∗),

If q̂j∗k∗ ≤
(

N2−n2

N2

)α

remove dose (aj∗ , bk∗) from Ag∗

and go to step II2.

II4 Repeat steps II2-4 until exhaustion of the sample size. Select as the BODC

the dose combination with the highest q̂jk among all safe doses.
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2.3 Numerical Studies

2.3.1 Operating Characteristics

We conducted extensive simulations to evaluate the operating characteristics

of the proposed phase I/II design. Step II3 in our design encourages exploration of

untried dose combinations when sample size is small. This is an important feature

of the proposed dose-finding algorithm. To evaluate the impact of this feature, we

compared the proposed design to a “greedy” design that is otherwise identical except

that it always assigns patients to the dose with the highest estimate of efficacy.

Technically, this means that the greedy design replaces the condition (2.4) with

q̂j∗k∗ > 0 so that the dose with the highest efficacy among admissible dose set Ag∗ is

always selected.

We also compared our design with the phase I/II combination trial design

proposed by Mandrekar, Cui, and Sargent(2007) [31]. For convenience, we refer to

the latter design as the MCS design. The MCS design converts toxicity and efficacy

into a mutually exclusive trinary outcome (namely, “no efficacy and no toxicity,”

“efficacy without toxicity” and “toxicity”) and then uses a continuation ratio model

to describe the relationship between this trinary outcome and the dose. To conduct

a trial, the MCS design continuously updates the posterior estimates of the model

parameters based on the observed data and assigns patients to the dose combination

with the highest estimate of the probability of efficacy without toxicity (i.e., the MCS

design adopts a greedy dose-finding algorithm).

We considered trials combining two biological agents, A and B, with a max-

imum sample size of 45 patients and a cohort size of 3. We investigated 8 different

dose-toxicity and dose-efficacy scenarios (see Table 2.1). The first four scenarios

consider the 4 × 4 combination trials with 4 dose levels for both agents A and B,
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which were (0.075, 0.15, 0.225, 0.3) and (0.08, 0.16, 0.24, 0.32), respectively. We

set the toxicity upper limit ϕ = 0.3. The last four scenarios were taken from the

work of Mandrekar, Cui, and Sargent (2007) [31], which involves the analysis of 5×3

combination trials with 5 doses of agent A, (0.60, 0.75, 0.90, 1.05, 1.35), and 3 doses

of agent B, (0.60, 0.90, 1.20). The toxicity upper limit was ϕ = 0.33.

In the proposed design, we set the safety cutoff δ = 0.4 and the tuning pa-

rameter α = 2, and used 2,000 posterior samples of unknown parameters ω, β, and

γ to make inference after 1,000 burn-in iterations based on the adaptive rejection

Metropolis sampling algorithm [14]. Under each scenario, we carried out 2,000 simu-

lated trials for each of the designs. We used C++ to implement the proposed design;

the simulation code is available upon request.

The simulation results under scenarios 1-4 are summarized in Table 2.2, in-

cluding the selection percentage for each dose combination as the BODC and the

percentage of patients allocated to each dose combination (shown as subscripts). In

scenario 1, the dose-toxicity surface initially increases with the dose levels of agents

A and B and then plateaus in the right upper corner of the dose combination matrix

with a toxicity probability of 0.25; the dose-efficacy relationship is non-monotonic,

characterized by efficacy monotonically increasing with agent A but not with agent B.

The true BODC is (a4, b2). Among the three designs, the proposed design performs

the best with the highest selection probability (31.0%) and allocates the highest per-

centage of patients (15.9%) to the target dose combination. The greedy design is

often trapped in the doses on the diagonal since it does not encourage exploration of

untried dose combinations. As a result, it incorrectly selects the dose combination

(a4, b4) as the BODC with the highest percentage. Moreover, the greedy design only

allocates 10.0% patients to the true BODC, which is more than 1/3 lower than the
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Table 2.1: Eight dose-toxicity and dose-efficacy scenarios for the simulation studies.

The target BODCs are bolded.

Agent B
Scenario Agent Toxicity probability Efficacy probability

A 1 2 3 4 1 2 3 4
1 4 .25 .25 .25 .25 .42 .60 .38 .32

3 .15 .25 .25 .25 .19 .44 .20 .18
2 .10 .25 .25 .25 .12 .29 .15 .10
1 .05 .10 .15 .25 .05 .22 .10 .08

2 4 .25 .25 .25 .25 .10 .29 .29 .42
3 .15 .25 .25 .25 .25 .35 .43 .60
2 .10 .25 .25 .25 .12 .24 .32 .39
1 .05 .10 .15 .25 .05 .14 .28 .32

3 4 .25 .25 .25 .25 .05 .12 .18 .26
3 .15 .25 .25 .25 .10 .15 .25 .30
2 .10 .25 .25 .25 .14 .18 .30 .43
1 .05 .10 .15 .25 .23 .28 .42 .60

4 4 .17 .25 .45 .55 .60 .35 .32 .28
3 .12 .16 .25 .43 .42 .30 .28 .25
2 .08 .10 .19 .22 .35 .28 .22 .20
1 .05 .08 .12 .18 .25 .23 .19 .16

5 5 .07 .09 .11 .48 .53 .64
4 .05 .07 .09 .29 .36 .51
3 .04 .06 .08 .19 .28 .45
2 .03 .05 .07 .13 .22 .40
1 .02 .04 .06 .10 .19 .38

6 5 .51 .52 .53 .19 .28 .45
4 .41 .42 .43 .19 .28 .45
3 .31 .32 .34 .19 .28 .45
2 .16 .18 .19 .19 .28 .45
1 .11 .13 .15 .19 .28 .45

7 5 .41 .42 .43 .15 .24 .42
4 .21 .22 .24 .43 .49 .61
3 .06 .08 .10 .62 .66 .74
2 .04 .05 .07 .43 .49 .61
1 .03 .05 .07 .24 .32 .48

8 5 .80 .81 .81 .15 .19 .19
4 .51 .52 .53 .34 .41 .48
3 .36 .37 .38 .43 .49 .61
2 .21 .22 .24 .53 .58 .68
1 .06 .08 .10 .62 .66 .74
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proposed design. The MCS design does not perform well, selecting the true BODC

only 9.2% of the times. Scenarios 2 and 3 share the same dose-toxicity surface as

scenario 1, i.e., toxicity initially increases and then plateaus, but possesses different

shapes of the dose-efficacy surface. In scenario 2, combination (a3, b4) has the highest

efficacy and is the true BODC. Our proposed design identifies (a3, b4) with the high-

est selection percentage 33.1% and assigns 18.5% patients to that dose combination.

The greedy and MCS designs identify the true BODC 17.9% and 14.5% of the times

and assign only 9.3% and 9.4% of the patients to the target, respectively. In scenario

3, a monotonic dose-efficacy relationship is assumed for agent B but not for agent

A and the highest dose combination (a1, b4) is the true BODC. The proposed design

again outperforms the other two designs. Scenario 4 is constructed to examine the

case in which only toxicity monotonically increases with dose, but not efficacy. The

proposed design yields a selection percentage of 46.3%, which is higher than those of

the greedy design (39.1%) and the MCS design (26.5%).

The simulation results for trials with 5× 3 combinations are shown in Table

2.3, indexed as scenarios 5-8. In scenario 5, toxicity is negligible for all dose combi-

nations and efficacy monotonically increases with dose. The greedy design exhibits

the best performance. This is mainly due to the coincidence that the greedy design

would first escalate from dose combination (a1, b1) to (a3, b3) along the diagonal,

then escalate up to the dose combination (a5, b3) during the run-in period in stage I.

Therefore, after the initial dose escalation the greedy design would quickly identify

(a5, b3) as the most desirable dose without exploring off-diagonal untried doses. Nev-

ertheless, the proposed design exhibits a better performance than the MCS design.

In scenario 6, toxicity monotonically increases with doses of both agents A and B,

whereas efficacy only increases with agent B and is not affected by agent A. The
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selection percentage of the proposed design is lower than that of the MSC design by

6.2%, but higher than that of the greedy design. In scenario 7, the selection per-

centage of the proposed design is higher than that of the MCS design (37.2% versus

30.2%), and in scenario 8, the selection percentage of the MCS design is 9.6% higher

than the proposed design. In addition to the eight scenarios shown in Tables 2.2 and

2.3, we also considered additional scenarios (see Table 2.4) with different shapes of

dose-toxicity and dose-efficacy relationships. The simulation results are summarized

in Table 2.5 and demonstrate that the proposed design performs consistently well.
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Figure 2.1: Surface of the toxicity probabilities for combinational agents using the

proposed change-point model. Toxicity initially increases with dose level

and plateaus after reaching the change line.
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Table 2.4: Additional dose-toxicity and dose-efficacy scenarios for the simulation stud-

ies. The target BODCs are bolded.

Agent B
Scenario Agent Toxicity probability Efficacy probability

A 1 2 3 4 1 2 3 4
9 4 .14 .25 .25 .25 .19 .24 .39 .29

3 .09 .15 .18 .25 .33 .45 .60 .42
2 .04 .08 .13 .18 .14 .29 .37 .28
1 .02 .04 .07 .12 .04 .17 .28 .17

10 4 .14 .25 .25 .25 .42 .60 .38 .32
3 .09 .15 .18 .25 .19 .44 .20 .18
2 .04 .08 .13 .18 .12 .29 .15 .10
1 .02 .04 .07 .12 .05 .22 .10 .08

11 4 .14 .25 .25 .25 .60 .35 .32 .28
3 .09 .15 .18 .25 .42 .30 .28 .25
2 .04 .08 .13 .18 .35 .28 .22 .20
1 .02 .04 .07 .12 .25 .23 .19 .16

12 4 .40 .40 .40 .40 .19 .24 .39 .29
3 .15 .18 .20 .25 .33 .45 .60 .42
2 .08 .12 .16 .20 .14 .29 .37 .28
1 .01 .05 .12 .17 .04 .17 .28 .17

13 4 .40 .40 .40 .40 .10 .10 .18 .24
3 .15 .18 .20 .25 .14 .14 .24 .43
2 .08 .12 .16 .20 .23 .28 .42 .60
1 .01 .05 .12 .17 .08 .10 .29 .42

14 4 .15 .18 .21 .25 .10 .10 .18 .24
3 .10 .15 .19 .23 .14 .14 .24 .43
2 .05 .12 .15 .20 .23 .28 .42 .60
1 .01 .07 .12 .18 .08 .10 .29 .42

15 4 .15 .18 .21 .25 .42 .60 .38 .32
3 .10 .15 .19 .23 .19 .44 .20 .18
2 .05 .12 .15 .20 .12 .29 .15 .10
1 .01 .07 .12 .18 .05 .22 .10 .08
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Table 2.4 continued.

Agent B
Scenario Agent Toxicity probability Efficacy probability

A 1 2 3 4 1 2 3 4
16 4 .15 .18 .21 .25 .19 .24 .39 .29

3 .10 .15 .19 .23 .33 .45 .60 .42
2 .05 .12 .15 .20 .14 .29 .37 .28
1 .01 .07 .12 .18 .04 .17 .28 .17

17 4 .17 .22 .45 .50 .42 .60 .38 .32
3 .12 .16 .25 .43 .19 .44 .20 .18
2 .08 .10 .19 .22 .12 .29 .15 .10
1 .05 .08 .12 .18 .05 .22 .10 .08

18 4 .17 .22 .45 .50 .10 .18 .24 .14
3 .12 .16 .25 .43 .13 .24 .37 .26
2 .08 .10 .19 .22 .24 .38 .60 .37
1 .05 .08 .12 .18 .10 .23 .42 .22

19 4 .17 .22 .45 .50 .10 .10 .18 .24
3 .12 .16 .25 .43 .14 .14 .24 .43
2 .08 .10 .19 .22 .23 .28 .42 .60
1 .05 .08 .12 .18 .08 .10 .29 .42

20 4 .06 .07 .08 .10 .24 .20 .15 .10
3 .05 .06 .07 .08 .60 .43 .35 .25
2 .04 .04 .05 .06 .39 .32 .24 .12
1 .02 .03 .04 .05 .30 .20 .10 .05

21 4 .06 .07 .08 .10 .24 .18 .14 .10
3 .05 .06 .07 .08 .37 .26 .20 .13
2 .04 .04 .05 .06 .60 .37 .30 .24
1 .02 .03 .04 .05 .42 .22 .15 .10

22 4 .25 .25 .25 .25 .24 .20 .15 .10
3 .15 .25 .25 .25 .60 .43 .35 .25
2 .10 .25 .25 .25 .39 .32 .24 .12
1 .05 .10 .15 .25 .30 .20 .10 .05

23 4 .25 .25 .25 .25 .15 .10 .08 .05
3 .15 .25 .25 .25 .24 .18 .14 .10
2 .10 .25 .25 .25 .37 .26 .20 .13
1 .05 .10 .15 .25 .60 .37 .30 .24
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CHAPTER 3

Bayesian Adaptive Phase II Screening Design for
Combination Trials

In this chapter, we propose a Bayesian adaptive screening design for com-

bination trials. There is an increasing trend to use the combination therapies for

cancer treatment. Combination therapies can lead to treatment synergies that result

in improved patient outcomes. Therefore, the number of treatment combinations

that must be tested is often quite large. Conducting separate phase II trials on every

possible combination of treatments is often not practical. Novel designs that can test

the efficacy all combinations in a single trial are imperative.

Toward this goal, we describe a Bayesian adaptive trial design that facilitates

the pooling of information obtained across treatment combinations. We model the

main and synergistic effects of the treatment agents using a linear model, which

facilitates borrowing information across the combinations. We cast the screening

problem into a Bayesian hypothesis testing problem. We construct a series of hy-

potheses, each of which appoints one of the combinations as the most efficacious

treatment. We utilize an encompassing prior with non-local constraints to accom-

modate the complex parameter constraints imposed by the hypotheses. During the

trial conduct, based on the observed data, we continuously update the posterior

probabilities of the hypotheses and use them to adaptively allocate patients to effec-

34



tive combinations and select the best treatment. We conduct extensive simulation

studies to evaluate the performance of the proposed design. The comparison to the

standard (multi-arm) balanced factorial design show that our proposed design selects

the best treatment with a significantly higher probability and allocates more patients

to efficacious treatments.

In following sections, we describe our model, prior specification and trial

design. We examine the operating characteristics of our design using simulation

studies.

3.1 Methods

3.1.1 Probability Model

We consider trials to evaluate the treatment effects of all possible combi-

nations of k treatment agents, A1, A2, · · · , and Ak. We assume that each drug

combination is assigned to one treatment arm, although it is straightforward to ex-

tend our design to trials where some combinations are excluded. Given k agents,

there are
(
k
r

)
different r-agent combinations, r = 0, 1, · · · , k, resulting in a total of

p =
∑k

r=0

(
k
r

)
= 2k combinations, including placebo group, to be evaluated. The goal

of the trial is to identify the most efficacious treatment combination.

The outcome variable in the trial that motivates our research represents the

mean change in the patient-reported symptom score. We assume that the outcome

for the ith patient, yi, is continuous and follows a linear model of the form

(3.1)

yi = β0+β1Ii(A1)+β2Ii(A2)+· · ·+β1,2Ii(A1, A2)+· · ·+β1,2,··· ,kIi(A1, A2, · · · , Ak)+ϵi

where β0 is the intercept of the linear model and Ii(·) is an indicator of whether

patient i receives the given agents. For example, if patient i receives a combination
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of A1 and A2, then Ii(A1) = Ii(A2) = Ii(A1, A2) = 1; whereas all the other indicator

functions are then 0. Model (3.1) is flexible and accounts for the main and interaction

effects of combining agents. Specifically, βk represents the main treatment effect of

Ak, βk,k′ represents the two-way interaction or synergistic effect between Ak and Ak′

when k ̸= k′, and so on. We assume that the residual ϵi follows a normal distribution

with mean 0 and variance σ2. Binary and time-to-event outcomes can be modeled

using a similar linear structure within a generalized linear model framework.

To cast the problem into a hypothesis testing framework, we define the null

hypothesis H0 to assert that no treatment is better than the placebo, and a series

of alternative hypotheses H1, . . . , Hp−1, where Hj asserts that the jth treatment

combination is superior to all others. In our trial, for example, treatment j is superior

to treatment k if it leads to a greater reduction in symptom burden. Let θ0(β) denote

the effect of the placebo and let θj(β), j = 1, . . . , p− 1, denote the net treatment

effect of the jth combination (or treatment arm). Under the linear model (3.1),

the treatment effect, θj(β), is a linear combination of the regression parameters,

β’s. For example, the treatment effect of the combination of A1 and A2 is given by

θj(β) = β0+β1+β2+β1,2; and the treatment effect of the three-agent combination of

A1, A2 and A3 is θj(β) = β0+β1+β2+β3+β1,2+β1,3+β2,3+β1,2,3. To be consistent

with the lung cancer trial described in Section 1.2, we assume that a smaller value of

θj(β) (i.e., less symptom burden) represents a better response. Then the hypotheses

can be formally expressed as

Hj : θj(β) = min(θ0(β), · · · , θp−1(β)), j = 0, · · · , p− 1.

We let πj(β, σ
2) denote the prior distribution assigned to the unknown parameters β

and σ2 under Hj. Further discussion of the prior specification is provided in Section

2.3; for the moment we note that the domain of each prior is restricted to values of
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β that are consistent with the hypothesis under which they are defined [21]. Given

these prior densities, the marginal density of the observed data y under Hj is

(3.2) mj(y) =

∫ ∫
f(y|β, σ2)πj(β, σ

2)dσ2dβ,

and the Bayes factor [23, 15] of Hi to Hj is given by

(3.3) Bij =
mi(y)

mj(y)
.

If p(Hj) denotes the prior probability of Hj, then the posterior probability of Hj

given the data y is

(3.4) p(Hj|y) =
p(Hj)mj(y)∑p−1
i=0 p(Hi)mi(y)

=

[
p−1∑
i=0

p(Hi)

p(Hj)
Bij

]−1

.

If we assume that all hypotheses are equally likely a priori, then the posterior prob-

ability of Hj simplifies to

(3.5) p(Hj|y) =
mj(y)∑p−1
i=0 mi(y)

=

[
p−1∑
i=0

Bij

]−1

.

The value of p(Hj|y) has a very intuitive probability interpretation—the probability

that the jth combination is the best treatment conditional on the observed data.

Meanwhile, the value of p(H0|y) is the probability that the placebo is the best

treatment. Therefore, it provides a natural evidence-based mechanism to adaptively

assign patients to efficacious combinations and select the most promising combina-

tion.

3.1.2 Trial Design

We propose the following adaptive randomization scheme for the conduct of

the trial. We assume that a total of N patients are available for testing, and that

the first m × p patients are equally randomized into the p treatment arms using m
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replications of a complete factorial design, i.e., m patients are randomized to each of

p arms. The advantage of using a factorial design is that it allows us to rapidly obtain

preliminary estimates of the main treatment effects. Following the lead-in factorial

phase of the design, subsequent patients are assigned to a treatment according to

the posterior probability that each treatment is best. The resulting design can be

described as follows.

1. Assign m×p patients to the p treatment arms using m replications of a factorial

design.

2. For i = m× p + 1, . . . , N , randomize the ith patient to the jth treatment arm

with probability p(Hj|y), j = 0, . . . , p − 1, where y = (y1, · · · , yi−1)
′ are the

observed outcomes data from the first i− 1 patients.

3. At the end of the trial, we select the combination j∗ that has the highest pos-

terior model probability, i.e., j∗ = argmaxjp(Hj|y), j = 1, · · · , p− 1.

During the trial, we impose the following futility stopping rule: the trial is terminated

for futility if

max{p(θ0 − θj > δ|y)} < α, j = 1, · · · , p− 1

where δ and α are the prespecified minimal effect size and threshold, respectively.

That is, at any time during the trial, conditional on the observed data, if the proba-

bility of achieving an effect size of δ for the best treatment arm is below the threshold

α, we terminate the trial. In practice, the value of δ can be elicited from investiga-

tors, and the values of design parameters m and α can be chosen by examining the

operating characteristics of the trial in simulation studies.
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3.1.3 Delayed Outcomes

In general, outcome-dependent adaptive randomization, such as the one we

have proposed, assumes that the outcome is quickly ascertainable so that when an

incoming patient is ready for randomization, the previous patients have been as-

sessed and their outcomes are completely observed. This assumption may not hold

in practice. In many cases, the patient outcomes require a long follow-up time to

be assessed (or the accrual is fast), so their outcomes are not available when a new

patient is randomized. To address this delayed outcome issue, one approach is to

suspend accrual and wait until the outcomes of patients treated in the trial are fully

observed. However, this approach is often not practical because it causes lengthy

delays in a trial, wastes patient resources, and causes administrative problems. Al-

ternatively, we propose to base our adaptive randomization scheme only on those

patient outcomes that are available at the time that each new patient is random-

ized. Our simulation studies in Section 3.2.1 show that, with finite samples, this

observed-data approach is competitive to the approach of suspending accrual.

3.1.4 Prior Specification and Derivation of Bayes Factor

We adopt the encompassing prior approach proposed by Klugkist et al. [25]

and Klugkist and Hoijtink [24] to set the prior distributions on β and σ2 under

each hypothesis. In this approach, we first specify a prior distribution for the un-

constrained model, and then based on that prior define prior densities under each

hypothesis. More specifically, we begin by assigning a noninformative prior to σ2 of

the form π(σ2) ∝ 1/σ2. Given σ2 and a hyperparameter g, we assume that β has a

normal prior density of the form π(β|σ2) ∼ N(0, gσ2Ip), where Ip denotes a p × p

identity matrix.
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To modify the unconstrained priors for application to hypothesis Hj, j =

0, . . . , p − 1, we restrict the domain of β under each hypothesis so that it is con-

sistent with the assumptions of the given hypothesis [21]. That is, under hypoth-

esis Hj, the domain of β is restricted to the value space satisfying the condition

θj(β) = min(θ0(β), · · · , θp−1(β)). This leads to the encompassing prior for Hj de-

fined according to

(3.6) πj(σ
2) ∝ 1

σ2
, πj(β|σ2) =

1

cj
N(0, gσ2Ip)Imin(θj(β)),

where Imin(θj(β)) denotes an indicator function of whether θj(β) = min(θ0(β), · · · , θp−1(β)),

and

cj =

∫
N(β|0, gσ2Ip)Imin(θj(β))dβ.

The prior densities used to define each hypothesis are thus non-local with respect to

one another, which enables us to more rapidly exclude hypotheses that are inconsis-

tent with the data [21].

Under model (3.1) and the encompassing prior (3.6), the marginal density of

data y under hypothesis Hj is given by

mj =

∫ ∫
f(y|β, σ2)πj(β|σ2)π(σ2)dσ2dβ

=

∫ ∫
N(y|Xβ, σ2In)

1

cj
N(β|0, gσ2Ip)Imin(θj(β))

1

σ2
dσ2dβ

where

cj =

∫
N(β|0, gσ2Ip)Imin(θj(β))dβ.

Letting β′ = β/σ, it follows that the normalizing constant

cj =

∫
N(β′|0, gIp)Imin(θj(σβ

′))dβ′

Recall that θj(β), j = 0, · · · , p − 1, is a linear function of β, thus Imin(θj(σβ
′)) =

Imin(σθj(β
′)). Since σ > 0, the order of {σθj(β′)} is the same as that of {θj(β′)}.
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Thus

Imin(θj(σβ
′)) = Imin(θj(β

′))

and

cj =

∫
N(β′|0, gIp)Imin(θj(β

′))dβ′.

We can see that cj is independent of σ2 , which greatly simplifies the evaluation of

the marginal density of y. Then it follows that

mj =

∫ ∫
N(y|Xβ, σ2In)

1

cj
N(β|0, gσ2Ip)Imin(θj(β))

1

σ2
dσ2dβ

=
1

cj

∫ ∫
N(y|Xβ, σ2In)N(β|0, gσ2Ip)

1

σ2
Imin(θj(β))dσ

2dβ

=
Γ((n+ p)/2)

cjgp/2π(n+p)/2

∫ (
(y −Xβ)T (y −Xβ) +

1

g
βTβ

)−(n+p)/2

Imin(θj(β))dβ

=
Γ(n/2)

√
|V |

cjgp/2πn/2(yTy − µTV −1µ)n/2

∫
tν(Σ,µ)Imin(θj(β))dβ

Therefore the Bayes factor of Hi to Hj, Bij, is given by

Bij =
mi(y)

mj(y)
=
ri/ci
rj/cj

.

where

rj =

∫
tν(Σ,µ)Imin(θj(β))dβ.

Here tν(·) denotes a multivariate student distribution with degree of freedom ν = n,

scale matrix Σ = V (yTy − µTV −1µ)/n and median µ = V XTy, where V =

(1
g
Ip + XTX)−1, X is the design matrix in model (3.1) and n is the number of

patients who have completed the assessment during the course of the trial.
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3.2 Numerical Studies

3.2.1 Operating Characteristics

We evaluated the operating characteristics of the proposed Bayesian adaptive

screening (BAS) trial design through extensive simulation studies. In the context of

the lung cancer trial, we considered a total of 16 combinational treatments, including

the placebo control, that result from 4 agents (Table 3.1). Two hundred patients were

available for enrollment (i.e., N=200), and we performed m = 2 replications of the

factorial design to obtain preliminary estimates of the treatment effects. The accrual

rate was 12 patients per month, and it took 10 days to obtain the symptoms outcome.

Because the accrual was fast, we faced the delayed-outcome problem, that is, when a

new patient is accrued and ready for randomization, some patients treated in the trial

may have not finished their 10-day assessment and their outcomes are not available

for calculating the randomization probabilities for the new patient. To deal with this

issue, we adopted the observed-data approach described previously and calculated

the randomization probabilities based on observed data when the outcomes of some

patients are not available. Because the observed-data approach supports continuous

accrual, it took approximately 17 months to complete the trial. For this trial, the

approach of suspending accrual apparently is not feasible because it would lead to

an infeasibly long trial lasting at least 4.8 years. Although the accrual-suspension

approach is not useful in practice, it provides a theoretical benchmark for compar-

ison because it represents the optimal case that the complete data are available to

determine treatment assignment. For convenience, we denote the BAS design based

on the accrual-suspension approach as BASsusp. We configured the simulation pa-

rameters, β, to generate 12 different efficacy scenarios. The simulation results of the

selection percentage of each treatment under these 12 different efficacy scenarios are
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displayed in Table 3.2. The total selection percentage of target treatments and the

total percentage of patients assigned to targets are summarized in Table 3.3. Under

each scenario, the most efficacious combination was defined as the combination with

the smallest value of symptom burden, θ(β). We set the residual variance σ2 = 130

based on previous symptom report data. The two parameters involved in the futility

stopping rule, α and δ, were set to 0.35 and 10, respectively. We also compared the

proposed BAS design to a design based on 12 replications of the complete factorial

design on the 16 treatments, randomly allocating the last 8 available patients to

treatments. For the factorial design (FD), the treatment with the lowest value of the

least square estimate of θ(β) was selected as the best treatment at the end of the

trial. We carried out 2,000 simulations for each scenario.

Table 3.1: The 16 combinations of four agents (A1, A2, A3 and A4) investigated in the

lung cancer trial.

Treatment T0 T1 T2 T3 T4 T5 T6 T7

A1 0 1 0 0 0 1 1 1
A2 0 0 1 0 0 1 0 0
A3 0 0 0 1 0 0 1 0
A4 0 0 0 0 1 0 0 1

Treatment T8 T9 T10 T11 T12 T13 T14 T15

A1 0 0 0 1 1 1 0 1
A2 1 1 0 1 1 0 1 1
A3 1 0 1 1 0 1 1 1
A4 0 1 1 0 1 1 1 1
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Scenarios 1 to 4 simulated the cases in which there was a single best treatment.

In scenario 1, the best (or most efficacious) treatment was T1 (i.e., single agent A1),

and the BAS design substantially outperformed FD. The selection probability of

the target treatment T1 under the BAS design was 86.1%, while under FD it was

64.9%. In addition, compared to FD, the BAS design allocated a significantly higher

percentage of patients to the best treatment (6.3% versus 39.3%, respectively). The

performance of the BAS design was rather similar to that of the optimal BASsusp

design. The selection probability of the target treatment under the BAS design

was only 1.1% lower than that of BASsusp design, and the percentage of patients

allocated to the best treatment were almost same in two designs (39.3% versus 39.1%,

respectively), suggesting that randomization based on observed data provided an

efficient way to handle delayed outcomes. In scenario 2, the best treatment was

T5, the combination of agents A1 and A2. In this case, the selection probability of

the BAS design was 21.5% higher than that of FD, and the BAS design assigned

32.8% more patients to the best treatment. In scenarios 3 and 4, the three-drug

combination T11 (i.e., combination of A1, A2 and A3) and the four-drug combination

T15 were defined as the optimal treatments. Comparisons under these scenarios were

similar to those made under scenarios 1 and 2. The selection probabilities of the

BAS design were more than 18% higher than these of FD, and the percentages of

patients assigned to the best treatment under the BAS design were more than 33%

higher than those under FD. Again, we observed that the performance of the BAS

design was rather similar to that of the BASsusp design.

Scenarios 5 to 8 were designed to evaluate the performance of the design when

there were two best treatments that were equally effective. In scenario 5, T1 and T2

were the target treatments with the highest efficacy. The BAS design selected T1 with
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a probability of 46.7% and T2 with a probability of 47.5%; whereas FD selected these

two targets with probabilities of 41.0% and 43.1%, respectively. That is, the total

selection probability of T1 and T2 under the BAS design was 10.1% higher than that

under FD. The percentage of patients assigned to the best treatment using the BAS

design was 38.8% higher than that using FD. For scenarios 6 to 8, the BAS design

again outperformed FD, achieving substantially higher selection probabilities and

assigning higher percentages of patients to the optimal treatments. Scenarios 9 and

10 had three optimal treatments, and scenario 11 had four target treatments. Under

these scenarios, the performance of the proposed BAS design once again dominated

that of FD. Compared to FD, the total selection probabilities of the target treatments

under the BAS design were improved by 0.7-5.9%, and the percentages of patients

assigned to the best treatments were improved by 39.8-44.6%. Scenario 12 represents

the case in which the treatment effects of all combinations are the same as that of

the placebo. Under this scenario, the BAS design and FD terminated the trial due

to futility, with respective probabilities of 85.2% and 90.5%.

As demonstrated in the simulation study, the proposed BAS design achieved

two important clinical goals simultaneously. First, it selected the best treatment

arms with high probability. Second, it allocated more patients to the best treat-

ments. This result seems somewhat surprising because the common notion is that

these two goals are in conflict with each other. That is, it is often assumed that

randomization schemes in which patients are allocated to effective treatments have

less power to detect the best treatment at the end of the trial. This may be the case

in comparisons of only two or three treatments, but in more complicated settings in

which large numbers of treatments and treatment combinations are tested, the BAS

offers significant gains in both power and patient allocation.
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The success of our adaptive randomization scheme in accomplishing both

goals simultaneously in high-dimension settings can be understood by noting that

our design allocates more patients to the subset of treatments that are competitive.

By reallocating patients away from ineffective treatments, we obtain higher power

to distinguish between the top treatments. For example in scenario 1, our design

allocated 39.3 and 10.3 patients to the best and second best treatments (T1 and T15);

in contrast, FD allocated 6.3 patients to both T1 and T15. As a consequence, BAS

had higher power to distinguish between T1 and T15.
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Table 3.2: Operating characteristics of the proposed Bayesian adaptive screening

(BAS) design, BAS design based on the accrual-suspension approach

(BASsusp) and factorial design (FD). The efficacious treatments are bolded.

Treatment Effect
θ0 θ1 θ2 θ3 Selection percentage
θ4 θ5 θ6 θ7 of each treatment
θ8 θ9 θ10 θ11
θ12 θ13 θ14 θ15 BAS BASsusp FD

Scenario 1
0 -25 -13 -12 0.0 86.1 0.0 0.0 0.0 87.2 0.0 0.0 0.0 64.9 0.0 0.0
-11 -20 -19 -18 0.0 2.5 1.4 0.5 0.0 2.4 1.0 0.2 0.0 8.9 4.4 2.6
-14 -15 -12 -10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0
-16 -17 -14 -21 0.2 0.2 0.1 6.2 0.1 0.2 0.0 6.0 0.2 1.6 0.3 16.1

Scenario 2
0 -20 -12 -13 0.0 2.8 0.0 0.0 0.0 2.8 0.0 0.1 0.0 10.0 0.0 0.0
-11 -25 -19 -18 0.0 86.6 1.4 0.5 0.0 85.4 1.5 0.5 0.0 65.1 4.2 3.1
-14 -15 -12 -10 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.5 0.0 0.0
-16 -17 -14 -21 0.2 0.3 0.0 5.5 0.2 0.2 0.0 6.6 0.4 1.6 0.2 14.2

Scenario 3
0 -10 -12 -13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1
-11 -20 -19 -18 0.0 3.3 1.2 0.6 0.0 2.5 1.1 0.7 0.0 8.6 4.5 2.9
-14 -15 -12 -25 0.0 0.0 0.0 86.0 0.0 0.0 0.0 87.5 0.1 0.2 0.1 67.6
-14 -17 -14 -21 0.1 0.1 0.2 6.2 0.0 0.2 0.0 5.7 0.2 1.3 0.1 13.5

Scenario 4
0 -16 -12 -13 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.7 0.0 0.0
-11 -20 -19 -18 0.0 3.5 1.0 0.2 0.0 2.1 1.0 0.5 0.0 9.1 4.1 2.7
-14 -15 -12 -10 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.4 0.0 0.0
-16 -21 -14 -25 0.0 5.7 0.0 86.8 0.1 6.5 0.0 86.5 1.0 14.4 0.1 66.6

Scenario 5
0 -25 -25 -13 0.0 46.7 47.5 0.0 0.0 46.1 48.8 0.0 0.0 41.0 43.1 0.0
-11 -20 -19 -18 0.0 1.0 0.2 0.2 0.0 0.6 0.3 0.0 0.0 4.1 2.0 1.4
-14 -15 -12 -10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-16 -17 -14 -21 0.0 0.1 0.0 2.5 0.0 0.1 0.0 2.3 0.4 0.5 0.1 6.8

Scenario 6
0 -25 -12 -13 0.0 46.2 0.0 0.0 0.0 47.0 0.0 0.0 0.0 43.9 0.0 0.0
-11 -25 -19 -18 0.0 49.1 0.2 0.1 0.0 48.8 0.2 0.2 0.0 43.0 1.8 1.1
-14 -15 -12 -10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-16 -17 -14 -21 0.1 0.0 0.0 1.7 0.0 0.0 0.0 1.5 0.2 0.9 0.0 8.3
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Table 3.2 continued.

Treatment Effect
θ0 θ1 θ2 θ3 Selection percentage
θ4 θ5 θ6 θ7 of each treatment
θ8 θ9 θ10 θ11
θ12 θ13 θ14 θ15 BAS BASsusp FD

Scenario 7
0 -25 -12 -13 0.0 46.3 0.0 0.0 0.0 47.9 0.0 0.0 0.0 42.1 0.0 0.0
-11 -20 -19 -18 0.0 0.8 0.4 0.2 0.0 0.8 0.2 0.2 0.0 4.3 2.1 0.9
-14 -15 -12 -25 0.0 0.0 0.0 48.5 0.0 0.0 0.0 46.8 0.0 0.0 0.0 41.3
-16 -17 -14 -21 0.0 0.0 0.0 1.8 0.0 0.2 0.0 2.0 0.2 0.7 0.0 7.7

Scenario 8
0 -25 -12 -13 0.0 47.5 0.0 0.0 0.0 49.4 0.0 0.0 0.0 43.8 0.0 0.2
-11 -20 -19 -18 0.0 0.8 0.5 0.1 0.0 0.4 0.0 0.2 0.0 5.1 2.5 1.8
-14 -15 -12 -10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0
-16 -17 -14 -25 0.1 0.1 0.0 48.7 0.0 0.0 0.0 48.3 0.2 0.9 0.1 44.5

Scenario 9
0 -25 -25 -13 0.0 31.3 31.5 0.0 0.0 33.4 30.9 0.0 0.0 31.1 32.0 0.0
-11 -25 -19 -18 0.0 34.1 0.3 0.0 0.0 33.4 0.2 0.0 0.0 29.2 1.2 0.5
-14 -15 -12 -10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-16 -17 -14 -21 0.1 0.0 0.0 1.0 0.0 0.0 0.0 0.9 0.2 0.4 0.0 4.7

Scenario 10
0 -25 -25 -25 0.0 30.9 33.7 32.2 0.0 30.6 34.1 31.3 0.0 30.4 30.9 29.6
-11 -20 -19 -18 0.0 0.4 0.5 0.2 0.0 0.6 0.5 0.2 0.0 2.5 1.2 0.4
-14 -15 -12 -10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-16 -17 -14 -21 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.1 0.3 0.0 4.2

Scenario 11
0 -25 -12 -13 0.0 23.5 0.0 0.0 0.0 26.3 0.0 0.0 0.0 25.9 0.0 0.0
-11 -25 -19 -18 0.0 25.7 0.2 0.2 0.0 25.4 0.2 0.0 0.0 22.7 0.8 0.6
-14 -15 -12 -25 0.0 0.0 0.0 24.7 0.0 0.0 0.0 24.6 0.0 0.0 0.0 25.2
-16 -17 -14 -25 0.0 0.0 0.0 24.6 0.0 0.0 0.1 22.7 0.0 0.2 0.0 24.0

Scenario 12
0 0 0 0 0.0 0.9 1.1 0.6 0.0 0.8 1.1 0.9 0.0 0.8 0.5 0.4
0 0 0 0 1.0 0.8 1.5 1.4 1.0 0.8 0.8 1.0 0.4 1.0 0.4 0.8
0 0 0 0 1.0 0.8 0.8 1.1 1.0 1.0 1.2 0.8 0.8 0.5 1.0 0.6
0 0 0 0 0.8 1.1 0.8 1.1 1.1 1.1 1.2 1.1 0.7 0.4 0.4 0.8
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Table 3.3: Summary of the simulation results, including the total selection percent-

age of target treatments and percentage of patients treated at the target

treatments.
Scenario 1 2 3 4 5 6 7 8 9 10 11 12

Total selection percentage of target treatments
BAS 86.1 86.6 86.0 86.8 94.2 95.3 94.8 96.2 96.9 96.8 98.5 85.2*
BASsusp 87.2 85.4 87.5 86.5 94.9 95.8 94.7 97.7 97.7 96.0 99.0 85.1*
FD 64.9 65.1 67.6 66.6 84.1 86.9 83.4 88.3 92.3 90.9 97.8 90.5*

Total percentage of patients treated at target treatments
BAS 39.3 39.0 39.2 39.8 51.3 54.7 51.2 55.9 61.5 58.6 69.6
BASsusp 39.1 38.7 40.4 40.0 51.8 54.6 51.2 56.8 61.6 58.5 69.5
FD 6.3 6.2 6.2 6.3 12.5 12.5 12.5 12.5 18.8 18.8 25.0

* the percentage of trials terminated due to futility.

3.2.2 Sensitivity Analysis

The encompassing prior for β requires pre-specification of the value for hy-

perparameter g. We conducted a sensitivity analysis to check the robustness of the

design to the value of g. Specifically, we considered a tighter (or more informative)

prior with g = 5 and a more diffused (or noninformative) prior with g = 20. Table

3.4 shows the results under scenarios 2, 4, 6, 8 and 10. Under each of these scenarios,

the results with g = 5 or 20 were very similar to these reported in Table 3.2 (with

g = 10), suggesting that the operating characteristics of the proposed design were

not sensitive to the specification of g as long as it was reasonably diffuse. For exam-

ple, in scenario 2, the selection probabilities of the target treatment, T1, were 87.3%

and 87.1% under g = 5 and 20, respectively, which were very similar to that under

g = 10 (86.6%). The percentages of patients assigned to T1 were also very similar

for g = 5, 10 and 20.

We conducted another sensitivity analysis to examine the performance of the

proposed design when the outcome needs a longer assessment period to be evaluated.

We assumed an assessment period of 60 days and an accrual rate of 6 patients per
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month. As shown in Table 3.5, the results were very similar to these reported in

Table 3.2, in which the assessment period was 10 days with an accrual rate of 12

patients per month. This suggests that the proposed design is robust to the length

of the assessment period and delayed outcomes.

Table 3.4: Sensitivity analysis with different values of g under scenarios 2, 4, 6, 8 and 10

for the proposed Bayesian adaptive screening (BAS) design. The efficacious

treatments are bolded.
g = 5 g = 20

Scenario Selection percentage Selection percentage

2 0.0 2.6 0.0 0.0 0.0 2.8 0.0 0.0
0.0 87.3 1.1 0.5 0.0 87.1 1.2 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.2 0.0 5.9 0.2 0.3 0.2 5.1

4 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0
0.0 2.5 0.7 0.2 0.0 2.9 0.8 0.6
0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
0.2 5.0 0.0 88.2 0.2 5.9 0.0 86.2

6 0.0 48.4 0.0 0.0 0.0 45.1 0.0 0.0
0.0 46.5 0.4 0.2 0.0 50.5 0.3 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.1 0.0 1.8 0.0 0.0 0.0 1.7

8 0.0 49.5 0.0 0.0 0.0 48.6 0.0 0.0
0.0 0.8 0.4 0.2 0.0 0.6 0.3 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.2 0.0 47.0 0.0 0.0 0.0 48.6

10 0.0 32.2 32.1 32.1 0.0 32.9 32.1 31.3
0.0 0.4 0.4 0.2 0.0 0.5 0.4 0.1
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.2 0.0 0.0 0.0 1.1
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Table 3.5: Sensitivity analysis for the proposed Bayesian adaptive screening (BAS)

design with an assessment period of 60 days and an accrual rate of 6 patients

per month. The efficacious treatments are bolded.

Selection percentage Selection percentage Selection percentage Selection percentage

Scenario 1 Scenario 2 Scenario 3 Scenario 4
0.0 86.5 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
0.0 3.2 1.1 0.5 0.0 85.3 1.4 0.6 0.0 2.7 1.3 0.2 0.0 2.8 1.1 0.9
0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 86.0 0.0 0.0 0.0 0.0
0.2 0.3 0.0 5.3 0.1 0.3 0.2 5.7 0.0 0.2 0.2 6.6 0.2 6.2 0.0 84.8

Scenario 5 Scenario 6 Scenario 7 Scenario 8
0.0 48.5 45.6 0.0 0.0 47.9 0.0 0.0 0.0 47.2 0.0 0.0 0.0 48.4 0.0 0.0
0.0 0.7 0.3 0.4 0.0 47.0 0.3 0.4 0.0 0.8 0.6 0.4 0.0 0.8 0.2 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46.2 0.0 0.0 0.0 0.0
0.0 0.2 0.0 1.7 0.0 0.0 0.0 1.6 0.0 0.0 0.0 2.6 0.1 0.1 0.0 47.8

Scenario 9 Scenario 10 Scenario 11 Scenario 12
0.0 31.9 31.9 0.0 0.0 32.3 32.0 31.8 0.0 24.2 0.0 0.1 0.0 1.0 1.0 1.2
0.0 32.4 0.2 0.2 0.0 0.6 0.4 0.1 0.0 24.6 0.4 0.2 0.9 1.1 1.2 1.1
0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 25.0 1.2 1.0 1.1 1.1
0.0 0.2 0.0 1.3 0.0 0.0 0.0 1.4 0.0 0.1 0.0 24.5 0.9 1.0 1.1 1.1
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CHAPTER 4

A Bayesian Phase II Design with Continuous Monitoring for
Late-Onset Responses Using Multiple Imputation

In this chapter, we propose a Bayesian single-arm phase II design with contin-

uous monitoring for late-onset responses. The interim monitoring rule is employed

to terminate the trial early for futility if there is sufficient evidence to determine the

inefficiency of experimental agents. The benefits of the interim monitoring include

avoiding assigning an unacceptable number of patients to inferior treatments and

saving resources. In general, interim monitoring based on previous responses as-

sumes that the outcome could be observed shortly after the initiation of treatment.

Therefore, at the decision-making time, the outcomes of previous enrolled patients

have been completely observed. However, this assumption may not hold. For late-

onset responses, patient outcomes may occur long after the assignment of treatment.

With fast accrual rate, the amount of missing responses at the decision-making time

is large.

To address the issue of late-onset responses, we propose an approach built

on missing data methodology to handle the missing responses and apply standard

methods to estimate the response rate. Specifically, we use a piece-wise exponential

model to estimate the hazard function of time to response data and use the multiple

imputation method to deal with unobserved responses. For the proposed methods,
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we do not need to interrupt patient accrual to wait for the full observation of previ-

ously patients that dramatically shortens the trial duration. We conducted extensive

simulation studies to evaluate the operating characteristics of the proposed method.

The comparison with standard, observed and complete methods show that the pro-

posed method reduces the total length of the trial duration and yields a desirable

operating characteristics for different physician-specified lower bounds of response

rate with different true response rates.

In following sections, we introduce the probability models and trial design

with interim monitoring. We propose a multiple imputation method to handle the

missing responses. We examine the operating characteristics of our proposed design

through extensive simulation studies and sensitivity analyses.

4.1 Methods

4.1.1 Probability model

Considering a single-arm phase II trial, we assume that subjects enter the trial

sequentially and each subject will be assessed for a fixed assessment period of T . We

consider a binary response as a primary outcome variable for subject i during the

follow-up time, denoted by yi, where yi = 1 if treatment-related response is observed

in (0, T ) and yi = 0 otherwise. The length of assessment time T is chosen based on

previous knowledge to ensure that a treatment-related response event usually occur

within (0, T ). For different diseases and treatment agents, the evaluation period T

varies from days to months.

During the stage of the trial, suppose that n patients have entered the trial,

and let yi denote the binary response outcome for ith subject. Denoting the observed

response data for n subjects by y = {yi, i = 1, · · · , n}, the likelihood function is given
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by

(4.1) L(y|π) =
n∏

i=1

πyi{1− π}1−yi ,

where π denotes the response rate of the experimental treatment. Letting f(π)

denotes a prior distribution for π, the posterior distribution of π is given by

(4.2) f(π|y) = L(y|π)f(π)∫
L(y|π)f(π)dπ

.

For the conjugate prior specification of response rate π, we set f(π) as a beta distri-

bution with two shape parameters ζ and ξ, then the posterior distribution of π is a

beta distribution with shape parameters ζ +
∑n

i=1 yi and ξ + n−
∑n

i=1 yi. Here, we

suggest to use a vague or non-informative prior for π.

4.1.2 Interim Monitoring and Late-onset Responses

Interim monitoring is usually conducted to stop the trial early for futility if

there is sufficient evidence to demonstrate the inefficiency of experimental drug. The

monitoring rules can be applied to the trial continuously or after a group with a fixed

number of subjects. The advantage of interim monitoring is that if the experimental

treatment is deemed inefficacious, we can stop the trial earlier and assign fewer

patients to the ineffective treatment.

The stopping rule in our trial design is based on a physician-specified lower

bound of response rate for the experimental treatment, denoting by ϕ. If the true

response rate of the experimental treatment is higher than the lower bound ϕ, we

consider the experimental treatment to be efficacious and should continue recruiting

new arriving patients into the trial; otherwise, the trial should be terminated when

sufficient information has been collected to demonstrate its futility. In our trial

design, we conduct continuous monitoring before each new patient entering the trial
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after n0 patients are completely followed. During the course of the trial, suppose that

n (n > n0) patients have entered the trial. If the posterior probability of response

rate achieving the physician-specified lower bound, ϕ, is less than a cut-off value, ψ,

e.g., Pr(π < ϕ) > ψ, we stop the trial due to futility; otherwise the trial continues

recruiting new patients until the exhaustion of the total sample size N and concludes

that the experimental agent is sufficiently promising for further study. The inference

of the posterior estimates of response rate π is made given observed patient data by

the formula (4.2).

As mentioned before, continuous monitoring based on previous patients out-

comes needs outcomes to be assessed quickly after the initiation of the treatment.

However, it may not be the case for late-onset responses which may occur long after

the assignment of treatment. Before we discuss our method to address this issue,

we introduce the missing mechanism of the late-onset responses. In general, for

late-onset responses, the assessment time T usually is longer than the interarrival

time between two consecutive cohorts. Here, the interarrival time is defined as the

interval time between the entering time of two consecutive cohorts. If we denote the

patient interarrival time by τ , it indicates that when τ < T , some patients under the

treatment might have not yet exhibited responses or completed evaluation period

when new patient is ready to enter the trial. Specifically, we denote the time to

response by ti for the ith subject and let ui (0 ≤ ui ≤ T ) denote its actual follow-up

time at the moment of interim monitoring. If the actual follow-up time is less than

the true response time, i.e., ui < ti, it indicates that the patient response could not

be observed at the moment of interim monitoring. Therefore, responses are missing

only when patients have not yet experienced response (ui < ti) and have not fully

followed up to T (ui < T ). If patients either have experienced responses (ti ≤ ui)
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or have completed followed-up (ui = T ) without experiencing responses, patients

outcomes are observed. Yuan and Yin (2012) showed that under this missing data

mechanism, the generated data are non-ignorable missing which means the proba-

bility of missingness of responses depends on the underlying missing outcomes. For

patients who will not experience responses during the whole assessment period, they

are more likely to have missing outcomes at the interim monitoring time compared

to patients who experienced responses.

As we know if the patient accrual rate increases, there would be more missing

responses at the same decision-making time. For example, considering a trial with

an assessment period of 3 months, if the accrual rate is 2 patients per month, i.e., the

interarrival time τ = 1/2 months, there would be at most 6 missing outcomes at the

decision-making time. If we increase the accrual rate to 4 patients per month, i.e.,

the interarrival time τ = 1/4 months, there would be at most 12 missing outcomes

at the decision-making time. Therefore, during the trial of conduct, the amount of

missing data depends on the ratio of of the assessment period T and the interarrival

time τ . We denote this ratio by A/I ratio = T/τ . The larger the value of the ratio

is, the greater the amount of missing data would be.

Comparing with missing completely at random or missing at random, non-

ignorable missing data bring a new challenge to the trial design. To address the issue,

one possible approach is to suspend the accrual and wait until the previously enrolled

patients are fully followed-up. Therefore, the outcomes of all treated patients can

be observed and there is no unobserved response before new patient entering the

trial. Obviously, this method fully utilizes all available information and provides

a precise estimate of response rate at the time of decision-making time. However,

frequently suspension leads to an infeasibly long trial and brings inconvenience for
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trial administration.

If we do not suspend the accrual and assign a newly arriving patient to ex-

perimental treatment immediately, those patients under treatment might not have

completed the assessment period. A simple choice is to make early stopping deci-

sions solely based on the outcomes from patients who have completed the assessment

period or experienced responses during the assessment period. It means only the

complete data thus far are used at the moment of interim monitoring and the data

from the patients who have not completed the assessment period and not yet given

responses are ignored. However, this method has a higher chance to include patients

who would experience responses during the assessment period. The reason is that for

patients who would not experience responses in (0, T ), their responses are more likely

missing at the interim monitoring time compared to patients who would experience

responses in (0, T ). Therefore, this method is problematic and overestimates the

response rate. Another approach which does not suspend the accrual is to make in-

ference based on data from all treated subjects. For patients who have not completed

the assessment period, if there are no responses at the time of interim monitoring,

the current outcomes of no responses will be considered as the final outcomes at the

end of assessment period. Specifically, if the ith subject has not completed the eval-

uation period T and also has not experienced response, his/her response at the end

of assessment period is considered as censored, i.e., yi = 0. Although this approach

includes all the patients under the treatment, it uses current observed information to

replace the final outcomes for the partially observed patients. Due to the property of

late-onset responses, these patients who have not completed the assessment period

are more likely to give responses at the remaining assessment period. The longer we

follow the patient, the higher probability that the patient will experience response
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later. Therefore, this approach is also problematic since it often underestimates the

response rate and terminates the trial unappropriate.

4.1.3 Multiple Imputation Approach

To address the missing-response issue introduced in previous section, we pro-

pose a method to handle the unobserved patient outcomes based on missing data

theory [30]. Different from above simple methods, this method is built on missing

data methodology and systematically treats the unobserved outcomes as missing

data. Intuitively, we first fill in the missing data by the multiple imputation method

and then apply the standard complete-data method to the imputed dataset. Mul-

tiple imputation provides a systematic way to impute the missing response data

and meanwhile account for the sampling uncertainty due to the missing values [40].

Following this route, we replace each missing value with M imputed values, respec-

tively, i.e., we impute the missing data M times to form M filled-in datasets. Then

the standard complete-data methods can be applied to each of the filled-in datasets.

By combining the M complete-data inferences, we take into account the imputation

uncertainty.

To achieve the goal above, we specify a flexible piecewise exponential model

for the time to response data during assessment period. Specifically, we consider a

partition of the follow-up period [0, T ] into a finite number of K disjoint intervals

[0, h1), [h1, h2), · · · , [hK−1, hK = T ] and assume a constant hazard λk in the kth in-

terval. We define the observed time xi = min(ui, ti) and δik = 1 if the ith subject ex-

periences response in the kth interval; and δik = 0 otherwise. Let λ = {λ1, · · · , λK};

when {xi} are completely observed, the likelihood function for n subjects based on
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observed time to response data D = {xi, δik, i = 1, · · · , n, k = 1, · · · , K} is given by

(4.3) L(D|λ) =
n∏

i=1

K∏
k=1

(λk)
δikexp{−λkeik},

where eik = hk − hk−1 if xi > hk; eik = xi − hk−1 if xi ∈ [hk−1, hk); and otherwise

eik = 0. K is the number of intervals defined for the piecewise exponential model.

Large K results in a nonparametric model of hazard function and unstable estimates;

small K lead to inadequate model fitting. In our simulation studies, we conducted

sensitivity analysis with different values of K to check its robustness.

Let f(λ) denote the joint prior distribution for all λi’s. We write the joint

posterior distribution as

f(λ|D) =
L(D|λ)f(λ)∫

L(D|λ)
.

For the prior specification of the piece-wise exponential model, we adopt a correlated

prior approach introduced in Qiou, Ravishanker and Dey (1999) [37]. Specifically,

a discrete-time martingale process [1][2] is assigned to correlate the λi’s in adjacent

intervals, which introduces some smoothness to the estimates. Given (λ1, · · · , λk−1),

we specify that

λk|λ1, · · · , λk−1 ∼ Gamma(ck,
ck
λk−1

), k = 1, · · · , K

where Gamma(ξ, η) represents a gamma distribution with a shape parameter ξ and

a scale parameter η, so that E(λk|λ1, · · · , λk−1) = λk−1. The choice of the value

of λ0 is suggested as follows. We assume a constant hazard function for the whole

assessment period, i.e., λK = λK−1 = · · · = λ0. Then the value of λ0 can be obtained

by setting the response rate at the end of assessment period as the physician specified

lower bound ϕ. The value of ck indicates the amount of information for smoothness

of λk. If ck = 0, λk is independent of λk−1 while if ck → ∞, λk = λk−1.
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The conditional posterior distribution of λk given λ1, · · · , λk−1 and observed

data D is

f(λk|λ1, · · · , λk−1,D) =
L(λ|D)f(λk|λ1, · · · , λk−1)∫
L(λ|D)f(λk|λ1, · · · , λk−1)

.

After we obtained the full conditional distributions for each λ, the Gibbs sampler will

be used to obtain posterior draws of unknown parameters for statistical inferences.

We denote the binary response outcomes for subjects in the trial by y =

(yobs,ymis), where yobs and ymis denote the observed and missing response data,

respectively. To carry out the multiple imputation, we draw the missing binary

responses from its posterior predictive distribution which is given by

f(yi|D) =

∫
f(yi|λ)f(λ|D)dλ

The inference for informative missing responses is based on current observed time

to response data D which is more informative than observed binary data yobs. The

inference using only yobs would lead to biased estimates. Specifically, we can drawM

independent sampling of the unknown parameter λ with respect to its posterior dis-

tribution f(λ|D) given observed data D. Therefore, based on the posterior estimates

of λ, we can calculate the response rate of the experimental treatment at any time

t for 0 < t < T . Generally, if the ith subject has not experienced response at the

decision-making time given the actual follow-up time ui, i.e., t > ui, the conditional

probability that the ith subject would experience response during the assessment

period (0, T ) based on the posterior estimate of λ is

π̂i(λ) = Pr(t < T |t > ui) =
Pr(t < T )− Pr(t < ui)

Pr(t > ui)
=
F (T )− F (ui)

F (ui)

where π̂i(λ) denotes the conditional response rate and F (·) is the cumulative dis-

tribution function of the random variable. In our piece-wise exponential model, the
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estimation of F (s) for any 0 < s < T can be obtained by F (s) = 1−
∑K

k=1 exp(−λkek)

where ek = hk − hk−1 if s > hk; ek = s− hk−1 if s ∈ [hk−1, hk); and otherwise ek = 0.

After we obtain the conditional response rate at the end of assessment period

for subject i, π̂i(λ), we can easily find that the full conditional distribution of binary

response yi ∈ ymis is given by

f(yi|λ) = Bernoulli(π̂i(λ)),

where Bernoulli(·) represents the probability density function of a Bernoulli distribu-

tion. Based on M independent posterior samplings of the parameter λ, we can draw

M independent samplings of yi ∈ ymis from the above posterior distribution f(yi|λ).

Here, the missing value yi generated in this way is drawn from its posterior predic-

tive distribution f(yi|D). We construct M imputed datasets by filling in ymis with

M independent samples y
(m)
mis,m = 1, · · · ,M . Based on the mth imputed dataset

y(m) = {yobs,y
(m)
mis}, we obtain the posterior distribution of the response rate π(m) by

applying the simple Beta-Binomial model (4.1) and get the estimate of Pr(π(m) < ϕ).

Then we combine the estimates of the response rate across M imputed datasets by

average and get the estimate of stopping criteria

Pr(π < ϕ) =
1

M

M∑
m=1

Pr(π(m) < ϕ).

If Pr(π < ϕ) > ψ, we stop the trial due to futility; otherwise, the trial continues

until the maximum sample size N is reached.

4.2 Numerical Studies

4.2.1 Operating Characteristics

In this chapter, we propose a multiple imputation method to handle unob-

served responses at the decision-making time for a single-arm phase II trial design.
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We conducted extensive simulation studies to evaluate the operating characteristics

of the proposed method. A maximum number of N = 50 patients were treated se-

quentially. The assessment period was set as T = 6 months and the interarrival time

between every two consecutive cohorts was τ = 1 month, i.e., the A/I ratio=6. The

number of intervals for piece-wise exponential model used in multiple imputation ap-

proach is assumed as K = 6. Specifically, we partitioned the assessment period [0, T ]

into K equal intervals, i.e., [0, 1
K
T ), [ 1

K
T, 2

K
T ), · · · , [K−1

K
T, T ]. We assigned a beta

distribution with ζ = 0.1 and ξ = 0.2 for f(π). Under each scenario, we simulated

1,000 trials.

We considered three different lower bounds of response rate with ϕ = 0.3, 0.4, 0.5,

respectively. Under each case of different lower bounds, we considered several sce-

narios with various true response rates of experimental treatment, denoted as Ft(T ).

Specifically, for ϕ = 0.3, we considered 5 scenarios with true response rates at 0.1,

0.2, 0.3, 0.4, and 0.5 respectively. For ϕ = 0.4, we considered 5 scenarios with true

response rates at 0.2, 0.3, 0.4, 0.5, and 0.6 respectively. Similarly, for ϕ = 0.5, we

considered 5 scenarios with true response rate as 0.3, 0.4, 0.5, 0.6, and 0.8 respec-

tively.

Under each scenario, we generated time to response data from a Weibull dis-

tribution. To generate the late-onset responses with different degrees of responses

occurring in latter half of the assessment period, (T/2, T ), we specify the Weibull

distribution with different shape and scale parameters. Specifically, we choose the

scale and shape parameters of the Weibull distribution based on the following two

requirements. First, the true response rate at the end of follow-up indicates the value

of cumulative distribution function at t = T , where t is generated from Weibull dis-

tribution. Second, the probability of occurring responses during (T/2, T ) is fixed
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at a pre-specified percentage, which represents the degrees of late-onset responses.

Therefore, based on the true response rate of experimental treatment and degrees

of late-onset responses, we specify the shape and scale parameters of the Weibull

distribution to generate the time to response data under each scenario. In our simu-

lations, we assumed approximately 50%, 70% and 90% responses would occur in the

later half of the assessment period (T/2, T ).

We compared the proposed multiple imputation methods (MI) to the stan-

dard method, complete method, and observed method which will be introduced here.

For convenience, we refer to the latter three methods as SD, CP and OB, respec-

tively. Basically, the simple Beta-Binomial model (4.1) is applied to estimate the

posterior distribution of response rate for these three methods. For SD, we suspend

the accrual and wait until the previously enrolled patients were fully followed-up.

This method utilizes all the information and provides a benchmark for comparison.

For the designs of CP and OB method, both recruit patients as the same rate with

the proposed design using MI method. However, CP and OB methods only use

partial information and lead to biased inferences resulting in terminating the trial

inappropriately. Specifically, CP discards the missing responses and its inference is

solely based on the outcomes of patients who have completed the assessment period

or experienced responses during the assessment period. OB considers outcomes from

all the treated patients, but it uses current outcomes to replace the final outcomes

if they still have not been observed at the decision-making time. As mentioned in

Section 2.2, CP and OB are both problematic with overestimation and underesti-

mation of response rate respectively. For all four designs, continuous monitoring is

conducted after n0 patients have been fully followed-up in the trial. Therefore, we

need to suspend the accrual after the n0th patient enters the trial for designs of MI,
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CP and OB. In our simulation studies, we set n0 = 5.

The simulation results are shown in Table 4.1. We compared MI to SD, CP

and OB in the terms of the average percentage of trial stopping, total number of

patients assigned to the treatment and the total trial duration under each scenario.
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Table 4.1: The percentage of trial stopping, total number of patients assigned to the

treatment and the total trial duration under the standard, complete, ob-

served and multiple imputation methods.

percentage of stop # of patients trial duration
Ft(T ) SD CP OB MI SD CP OB MI SD CP OB MI

Response lower bound ϕ=0.3, 90% response in (T/2, T ), A/I = 6
0.1 99.3 98.8 99.7 98.8 9.5 11.8 8.2 11.1 55.7 16.8 13.2 16.2
0.2 75.3 70.6 89.0 74.5 23.9 27.0 16.6 25.4 136.9 33.5 22.1 31.7
0.3 33.5 29.8 57.6 33.7 37.2 39.1 28.1 37.8 207.7 47.6 35.2 46.1
0.4 10.3 9.7 29.4 10.7 45.8 46.1 38.4 45.8 248.7 55.7 46.9 55.3
0.5 3.0 3.0 11.7 3.3 48.7 48.7 45.2 48.6 256.3 58.5 54.6 58.4

Response lower bound ϕ=0.4, 90% response in (T/2, T ), A/I = 6
0.2 98.7 96.4 99.6 97.5 12.4 16.6 8.8 15.1 70.7 21.8 13.8 20.2
0.3 71.5 64.3 89.1 70.3 26.0 30.2 15.8 27.6 144.9 37.0 21.4 34.1
0.4 30.1 23.8 59.7 29.5 39.0 41.9 27.3 40.1 211.6 50.8 34.3 48.6
0.5 9.0 6.4 32.3 8.8 46.3 47.7 36.9 46.8 244.1 57.3 45.2 56.4
0.6 2.0 1.2 13.0 2.5 49.1 49.5 44.7 49.0 251.4 59.4 54.0 58.9

Response lower bound ϕ=0.5, 90% response in (T/2, T ), A/I = 6
0.3 95.3 92.5 99.1 95.0 15.1 20.3 9.2 16.6 84.0 25.6 14.3 21.9
0.4 63.7 56.3 88.8 67.9 28.7 34.0 15.8 27.8 155.2 41.1 21.4 34.5
0.5 25.2 20.0 63.5 32.7 41.2 44.0 25.1 38.8 217.1 53.0 32.0 47.2
0.6 6.4 4.5 37.3 11.5 47.4 48.4 35.1 45.5 242.3 58.1 43.3 55.0
0.8 0.3 0.2 4.3 0.7 49.9 49.9 48.2 49.7 237.4 59.9 58.0 59.7

Response lower bound ϕ=0.3, 70% response in (T/2, T ), A/I = 6
0.1 99.3 98.5 99.8 98.9 9.8 12.4 8.5 11.4 56.8 17.5 13.5 16.5
0.2 76.2 68.1 87.4 75.9 23.2 27.4 17.1 25.0 128.9 33.9 22.7 31.2
0.3 33.6 27.9 51.4 33.3 37.3 39.5 30.4 38.0 199.1 48.1 37.8 46.3
0.4 9.3 8.7 22.0 9.7 46.1 46.5 41.3 46.1 235.8 56.1 50.2 55.7
0.5 4.5 3.9 10.5 4.5 48.0 48.2 45.6 48.0 235.2 58.1 55.1 57.8

Response lower bound ϕ=0.4, 70% response in (T/2, T ), A/I = 6
0.2 97.7 95.9 99.4 97.4 13.1 18.1 9.5 15.5 72.8 23.3 14.5 20.7
0.3 71.2 60.8 87.6 70.6 25.9 31.8 16.8 28.1 138.5 38.8 22.4 34.6
0.4 28.0 20.3 54.4 28.2 39.4 43.1 28.9 40.4 201.2 52.1 36.1 49.0
0.5 8.5 4.9 26.5 7.1 46.5 48.2 39.3 47.4 228.1 57.9 48.0 57.0
0.6 2.3 1.0 11.2 1.8 49.1 49.6 45.4 49.3 229.6 59.5 54.9 59.2

Response lower bound ϕ=0.5, 70% response in (T/2, T ), A/I = 6
0.3 95.9 92.3 99.2 96.5 14.4 20.9 9.7 15.9 76.9 26.2 14.7 21.1
0.4 65.3 54.7 86.8 67.1 28.5 35.4 17.0 28.9 145.9 42.7 22.7 35.5
0.5 27.5 17.2 59.6 31.7 40.3 44.7 27.1 39.3 197.5 53.9 34.1 47.7
0.6 6.2 3.7 28.9 9.3 47.5 48.6 38.5 46.5 221.7 58.5 47.0 56.0
0.8 0.6 0.2 3.4 0.8 49.8 49.9 48.6 49.7 208.4 59.9 58.4 59.6
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Table 4.1 continued.

percentage of stop # of patients trial duration
Ft(T ) SD CP OB MI SD CP OB MI SD CP OB MI

Response lower bound ϕ=0.3, 50% response in (T/2, T ), A/I = 6,K = 6
0.1 99.7 98.7 99.9 99.4 9.7 12.4 8.7 11.2 55.3 17.5 13.7 16.2
0.2 74.6 65.2 82.8 73.6 23.6 28.3 19.8 25.4 127.0 35.0 25.7 31.7
0.3 32.5 25.3 46.1 30.6 37.6 40.4 32.8 38.8 191.4 49.1 40.5 47.3
0.4 11.1 8.8 19.4 10.5 45.3 46.1 42.1 45.6 217.6 55.7 51.1 55.0
0.5 3.4 2.8 5.7 3.1 48.5 48.7 47.6 48.6 218.9 58.6 57.3 58.5

Response lower bound ϕ=0.4, 50% response in (T/2, T ), A/I = 6,K = 6
0.2 97.2 93.8 98.8 96.3 12.9 18.6 10.2 15.7 69.8 24.0 15.3 20.9
0.3 68.6 55.7 81.4 66.5 26.5 33.8 19.8 29.5 135.0 41.0 25.7 36.2
0.4 28.2 19.5 47.7 26.5 39.4 43.2 31.4 40.8 189.0 52.2 39.1 49.5
0.5 8.1 4.6 21.6 7.9 46.7 48.1 41.3 46.9 211.4 57.9 50.2 56.5
0.6 3.3 1.9 9.6 2.3 48.6 49.2 45.9 49.0 205.4 59.1 55.5 58.9

Response lower bound ϕ=0.5, 50% response in (T/2, T ), A/I = 6,K = 6
0.3 95.9 90.4 98.2 95.4 14.7 22.8 10.7 16.8 75.3 28.2 15.8 22.0
0.4 67.3 51.0 82.4 66.9 28.0 36.6 19.8 28.7 134.8 44.0 25.7 35.3
0.5 24.0 13.7 51.1 26.1 41.3 45.7 30.9 40.8 186.0 55.0 38.3 49.5
0.6 6.5 2.5 21.2 6.9 47.3 49.0 41.5 47.2 199.8 58.9 50.4 56.9
0.8 0.0 0.0 1.2 0.1 50.0 50.0 49.5 50.0 181.9 60.0 59.5 60.0
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First, we considered high skewed late-onset response data, i.e., 90% of re-

sponses would occur in the later half of the assessment period (T/2, T ). For the

scenario of the lower bound of response rate ϕ = 0.3, if the true response rate

Ft(T ) = 0.1, the experimental treatment has lower efficacy and we should terminate

the trial early to avoid assigning more patients to it. Under this scenario, SD termi-

nates 99.3% trials for futility and assigns average 9.5 patients to the treatment. MI,

CP and OB perform very similarly with SD. They terminate the trial for futility at

the percentages of 98.8%, 98.8% and 99.7% and assign 11.1, 11.8 and 8.2 patients to

the treatment, respectively. For SD, because of frequently accrual suspension, the

trial duration is much longer than the other three methods. Considering the scenario

with the same lower bound ϕ = 0.3, if the true response rate Ft(T ) = 0.2, we also

should terminate the trial early and assign fewer patients to the treatment. Under

this scenario, SD terminates 75.3% trials and assign 23.9 patients to the treatment.

Our proposed MI method performs much more closer results with SD, which ter-

minates 74.5% trials and assign 25.4 patients to the treatment. For CP, patients

who would experience responses during the assessment period are more likely to be

included for inference and therefore it overestimates the response rate which results

in low percentage of early stopping. Hence, CP terminates the trials with the per-

centage of 70.6%, which is lower than that of SD, and assigns 27.0 patients to the

treatment, which is higher than that of SD. OB considers the final responses of par-

tially followed-up patients as no response. However, these patients might experience

responses during the remaining assessment period. Therefore, it results in under-

estimation of the response rate and high percentage of early stopping. Comparing

with SD, OB terminates the trials with lower percentage (89.0% versus 75.3%) and

assigns fewer patients (16.6 versus 23.9) to the treatment. When the true response
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rate Ft(T ) = 0.3, SD terminates trials with the percentage of 33.5% and assigns 37.2

patients to the treatment. MI still performs better than CP and OB. Comparing

with SD, its percentage of early stopping (33.5% versus 33.7%) and the number of

patients assigned to the treatment (37.2 versus 37.8) are both very close to the re-

sults of SD. For the scenarios of considering true response rates Ft(T ) = 0.4 and

Ft(T ) = 0.5, MI still has the best performance among all three methods, and has

very comparable results with SD. However, the trial duration of SD is much longer

than MI and results in a fatal implementation problem in the real trial. For all these

five scenarios, CP outperforms than OB on average, since due to the high skewed

late-onset responses, very few patients would experience responses at the early part

of the assessment period which reduces the degree of overestimation for CP method.

Similarly, we considered five scenarios with the lower bound ϕ = 0.4 and another five

scenarios with the lower bound ϕ = 0.5. The same conclusion of MI outperforming

CP and OB is made for all scenarios.

To further evaluate the performance of our proposed method, we consid-

ered different degrees of responses occurring in latter half of the assessment period,

(T/2, T ). Similarly, we considered scenarios combining 70% of responses occurring

in (T/2, T ) with different lower bounds. Taking the case of the lower bound ϕ = 0.4

as an example, we listed 5 scenarios with different true response rates Ft(T ). On

average, MI has very comparable results with SD and outperforms CP and OB.

Specifically, considering Ft(T ) = 0.2, MI terminates the trial for futility with the

percentage of 97.4%, which is very close to the stopping percentage of SD (97.7%).

When the true response rate is set at Ft(T ) = 0.6 higher than the lower bound

ϕ = 0.4, SD terminates only 2.3% of trials for futility. Under this scenario, MI

outperforms CP and OB again with stopping percentage at 1.8%. Meanwhile, MI
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assigns similar number of patients to the experimental drug comparing with SD, but

its trial duration is much shorter than the duration of SD. For the case of 50% of

responses would occur in the later half of the assessment period (T/2, T ), MI still

has very comparable performance with SD under many scenarios with different lower

bounds and true response rates.

4.2.2 Sensitivity Analysis

To further evaluate the performance of MI, we generated the late-onset data

from log-logistic distribution and compared the simulation results with SD, CP and

OB. We considered two cases: in one case setting the lower bound ϕ at 0.4 with 90%

responses occurring in (T/2, T ); in the other setting the lower bound ϕ at 0.5 with

70% responses occurring in (T/2, T ). The simulation results under these settings

are displayed in Table 4.2. From the table, we made the same conclusion comparing

with previous simulations which generate the time to response data from the Weibull

distribution. Specifically, MI performs the comparable results with SD for both two

cases and outperforms CP and OB. Taking the first case as an example, if the true

response rate Ft(T ) = 0.3, MI terminates the trial with 68.2% and assigns 28.1

patients to the treatment, which are very close to the results from SD (71.5% and

26.0).

We conducted sensitivity analyses to check the impact of parameter K and

A/I ratio. The simulation results are displayed in Table 4.3. We considered the case

of setting lower bound ϕ = 0.4 and 90% responses occurring in (T/2, T ). The first

five rows represent the analysis of checking the robustness of parameter K under

different values of Ft(T ). Here, the A/I ratio is still set at 6, which is the same as

the settings of previous simulation results. Specifically, we considered the scenarios

with K = 10, 12 and compared the results with the results in Table 4.1, which set
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K = 6 with the same ϕ and late-onset degree. From the results, we found similar

simulation results for different values of K. For example, considering Ft(T ) = 0.2,

MI terminates the trial for futility with the percentages of 97.5%, 96.8% and 96.2%

for K = 6, 10, 12, respectively. MI also assigns the similar numbers of patients to the

treatment with the similar trial duration for different values of K. The results show

that the number of intervals for piece-wise model has negligible effect on the results

when it is set within a reasonable range.

Table 4.2: Sensitivity analysis for the proposed multiple imputation method with data

generated from log-logistic distribution.

percentage of stop # of patients trial duration
Ft(T ) SD CP OB MI SD CP OB MI SD CP OB MI

Time to event data is generated from log-logistic distribution
Response lower bound ϕ=0.4, 90% response in (T/2, T ), A/I = 6,K = 6

0.2 97.5 95.8 99.8 96.8 12.6 16.9 9.1 15.4 71.8 22.1 14.1 20.6
0.3 69.7 61.9 88.9 68.2 26.6 31.0 15.9 28.1 147.9 37.9 21.4 34.7
0.4 28.4 22.7 60.3 29.2 39.9 42.6 27.2 40.2 215.8 51.4 34.2 48.7
0.5 9.9 7.2 31.1 9.8 46.0 47.3 37.7 46.4 240.7 57.0 46.1 55.9
0.6 1.7 1.0 15.0 1.9 49.3 49.6 43.8 49.3 249.7 59.6 53.1 59.2

Response lower bound ϕ=0.5, 70% response in (T/2, T ), A/I = 6,K = 6
0.3 95.6 91.9 99.1 95.8 15.3 21.9 10.1 16.7 81.8 27.3 15.2 21.9
0.4 63.3 53.8 84.5 65.3 29.1 35.2 18.0 29.2 148.5 42.5 23.8 36.0
0.5 25.8 17.1 57.9 29.4 40.7 44.7 27.7 39.8 199.1 53.8 34.8 48.4
0.6 4.9 2.2 27.8 7.0 48.0 49.2 39.1 47.2 223.0 59.1 47.7 56.9
0.8 0.2 0.1 2.7 0.2 49.9 50.0 48.9 49.9 207.0 60.0 58.8 59.9

The last five rows in Table 4.3 represent the analysis of checking the impact

of A/I ratio. For comparison, the parameter K is set at 6, which is the same with

the simulations in Table 4.1. We considered ϕ = 0.4 and 90% late-onset degrees. We

considered the A/I ratio at larger values of 8, 12 and compared the results in Table

4.1, which set A/I ratio at 6 with the same ϕ and late-onset degree. The larger

value of A/I ratio indicates faster accrual rate and higher percentage of missing

responses at the decision-making time. Therefore, it leads to a difficult case when
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A/I ratio increases. From the simulation results, we found that with higher A/I

ratio, MI incorrectly terminates the trial with a higher percentage for most scenarios.

Considering a scenario with true response rate Ft(T ) = 0.6, the stopping percentages

for A/I ratio at 6, 8, 12 are 2.5, 3.6, 3.9, respectively.

Table 4.3: Sensitivity analysis for the proposed multiple imputation method with dif-

ferent values of K and different values of A/I ratio

Ft(T ) % of stop # of patients trial duration % of stop # of patients trial duration

K=10 K=12
0.2 96.8 15.3 20.5 96.2 15.6 20.8
0.3 69.1 28.0 34.6 69.0 27.9 34.5
0.4 29.9 40.0 48.5 31.7 39.2 47.6
0.5 9.1 46.5 56.1 8.7 46.7 56.3
0.6 1.9 49.2 59.1 2.6 49.0 58.8

A/I=8 A/I=12
0.2 97.7 15.6 17.1 97.1 16.8 14.0
0.3 69.2 28.3 28.1 70.0 28.8 21.5
0.4 30.3 40.0 38.9 32.4 40.0 29.2
0.5 11.4 45.7 44.2 9.9 46.6 33.7
0.6 3.6 48.6 46.7 3.9 48.5 35.0
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CHAPTER 5

Conclusions

To account for the unique properties of biological agents, we proposed a new

Bayesian phase I/II design for trials that evaluate combinational biological agents.

A change-point model is used to capture the feature that the dose-toxicity surface

of biological agents may plateau at high dose levels, and a second-order logistic

model is employed to accommodate non-monotonic patterns for the dose-efficacy

relationship. We proposed a novel dose-finding algorithm that adaptively encourages

the exploration of two-dimensional dose-toxicity and dose-efficacy surfaces during

dose finding. In the early stage of the trial, the algorithm gives higher priority to

trying new doses, and toward the end of the trial it assigns patients to the most

effective dose that is safe. Extensive simulations show that the proposed design

has good operating characteristics with a high probability of selecting the BODC.

The advantage of our proposed design over the greedy design further verifies the

importance of the dose-exploration algorithm incorporated in our design.

The proposed design is appropriate for trials in which toxicity and efficacy

outcomes are observed quickly. If toxicity and particularly efficacy cannot be ascer-

tained in a timely manner, the proposed design may be less useful. To handle delayed

toxicity and efficacy outcomes, we can extend our approach by modeling toxicity and
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efficacy as time-to-event outcomes to accommodate censored observations [22]. In

addition, in the proposed design, we are interested in finding the dose with highest

efficacy and tolerable toxicity as the target BODC. Our design can be easily extended

to the case that the target BODC is defined by a certain toxicity-efficacy trade-off

function. In that case, the main exercise is to elicit a reasonable toxicity-efficacy

trade-off (or utility) function from clinicians [47]. Once the trade-off is defined, our

design can be directly applied by replacing efficacy with the trade-off as the criteria

of dose escalation and selection.

To more efficiently handle the large number of combination therapies that

must be tested, we proposed a Bayesian adaptive phase II screening design for trials

combining multiple agents. Rather than testing each of the combinations indepen-

dently, our design encompasses all the combinations of interest in a large screening

trial. We model the main and synergistic effects of the treatment agents using a linear

model and cast the screening problem into a Bayesian hypothesis testing problem.

By using a factorial lead-in phase, we are able to quickly obtain preliminary estimates

that each treatment combination is optimal, which enables us to quickly move into

the adaptive phase of the algorithm. We utilize the encompassing prior with non-

local constraints to accommodate the complex parameter constraints imposed by the

hypotheses, and we continuously update the posterior probability that each treat-

ment is best. Based on this posterior probability, we adaptively allocate patients to

effective combinations and select the best treatment. The proposed design substan-

tially outperformed a complete factorial design. Our design allocates more patients

to better treatments while at the same time providing higher power to identify the

best treatment at the end of the trial.

To address the unobserved responses for late-onset responses at the decision
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making time, we proposed a Bayesian single-arm phase II design for estimating the

response rate of the experimental drug. We conduct continuous monitoring to termi-

nate the trial early for futility and avoid assigning unacceptable number of patients

to inefficacious treatments. We handle the missing responses using the multiple im-

putation approach by modeling the hazard function of time to response data using

a piece-wise exponential model. Extensive simulations show that the proposed de-

sign yields a desirable operating characteristics for different physician-specified lower

bounds of response rate with different true response rates. The proposed design

dramatically reduces the total length of the trial duration.
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