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DIRECT EFFECTS OF METFORMIN ON PI3K AND RAS SIGNALING IN 

ENDOMETRIAL CANCER 

David A. Iglesias, M.D. 

Thesis Advisor: Karen H. Lu, M.D. 

       

      Metformin has antiproliferative effects through the activation of AMPK and has 

gained interest as an antineoplastic agent in several cancer types, although studies 

in endometrial cancer (EC) are limited.  The aims of this project were to evaluate 

pathways targeted by metformin in EC, investigate mechanisms by which metformin 

exerts its antiproliferative effects, and explore rational combination therapies with 

other targeted agents.   

      Three EC cell lines were used to evaluate metformin’s effect on cell proliferation, 

PI3K and Ras-MAPK signaling, and apoptosis.  A xenograft mouse model was also 

used to evaluate the effects of metformin treatment on in vivo tumor growth.  These 

preliminary studies demonstrated that K-Ras mutant cell lines exhibited a decreased 

proliferative rate, reduced tumor growth, and increased apoptosis in response to 

metformin compared to K-Ras wild-type cells. 

      To test the hypothesis that mutant K-Ras may predict response to metformin, 

murine EC cells with loss of PTEN and expressing mutant K-RasG12D were 

transfected to re-express PTEN or have K-Ras silenced using siRNA.  While PTEN 

expression did not alter response to metformin, cells in which K-Ras was silenced 

displayed reduced sensitivity to metformin. 
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      Mislocalization of K-Ras to the cytoplasm is associated with decreased signaling 

and induction of apoptosis.   Metformin’s effect on K-Ras localization was analyzed 

by confocal microscopy in cells expressing oncogenic GFP-K-RasG12V.  Metformin 

demonstrated concentration-dependent mislocalization of K-Ras to the cytoplasm.  

Mislocalization of K-Ras to the cytoplasm was confirmed in K-Ras mutant EC cells 

(Hec1A) by cell fractionation in response to metformin 1 and 5 mM (p=0.008 and 

p=0.004).  This effect appears to be AMPK-independent as combined treatment with 

Compound C, an AMPK inhibitor, did not alter K-Ras localization.  Furthermore, 

treatment of EC cells with metformin in combination with PI3K inhibitors resulted in a 

significant decrease in proliferation than either agent or metformin alone.   

      While metformin exerts antineoplastic effects by activation of AMPK and 

decreased PI3K signaling, our data suggest that metformin may also disrupt 

localization of K-Ras and hence its signaling in an AMPK-independent manner.  This 

has important implications in defining patients who may benefit from metformin in 

combination with other targeted agents, such as mTOR inhibitors. 
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1. Introduction 

1.1. Overview 

      Metformin is one of the most widely prescribed oral hypoglycemic agents in the 

treatment of type II diabetes mellitus.  The American Diabetes Association and the 

European Association for the Study of Diabetes both recommend metformin as the 

initial pharmacologic therapy for type II diabetes when lifestyle modifications fail (1).  

Benefits to its use include that it is generally well tolerated with minimal or rare 

adverse effects, cost is low, it is widely available, and is rarely associated with 

hypoglycemia.  Recently, the use of metformin has gained interest in cancer 

research by demonstrating antineoplastic effects that are independent of its 

hypoglycemic effects (2).  Furthermore, several clinical studies have demonstrated 

the association between metformin and an improvement in cancer incidence and 

survival (3-12).  However, there has been limited data on the role of metformin 

specifically on endometrial cancer and the studies that have been performed have 

been limited to cell culture.  As such, we sought to evaluate the effect of metformin 

on endometrial cancer in vitro and in vivo and to identify specific genetic alterations 

that may make cancer cells more susceptible to metformin treatment. 

1.2. History of Metformin 

      Metformin and other biguanides were derived from guanidine found in Galega 

officinalis, otherwise known as goat’s rue or French lilac.  This plant was used as a 

treatment for polyuria related to diabetes in medieval Europe (13).  It was not until 

the early 20th century that guanidine was described as the active compound and was 

synthesized for widespread use as an oral hypoglycemic agent.  Metformin was first 
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described in 1922 by Emil Werner and James Bell as a product of the synthesis of 

N,N-dimethylguanidine (14).  Previously, in 1918, guanidine was found to 

demonstrate hypoglycemic activity in animals (15).  Unfortunately, guanidines were 

determined to be too toxic and attention shifted to a less toxic extract of G. officinalis 

called galegine (isoamylene guanidine) (16).  Galegine and its analogs, the 

synthalins, were used sporadically in the 1920s as antidiabetic agents.  However, as 

a result of the increasing availability of insulin in the 1920s and a better 

understanding of the pathophysiology of diabetes, interest in the oral agents waned.  

It wasn’t until the 1940s and 50s that guanidines resurfaced primarily as agents to 

combat infections.  Chloroguanidine hydrochloride was being used in the 1940s as 

an antimalarial agent when it was shown to also have a glucose-lowering effect (17).  

Around the same time, a prominent Philippine physician named Eusebio Garcia 

used a preparation of dimethyl biguanide, which he termed Flumamine, to treat 

influenza.  He published his report in 1950 and noted that Flumamine was non-toxic 

and was associated with a lowering of serum glucose levels (18).  Meanwhile, Jean 

Sterne, a French physician interested in diabetology, was conducting studies using 

galegine in Paris.  Based partially on the observations by Eusebio Garcia, Sterne 

began exploring the antidiabetic properties of dimethyl biguanide, a compound he 

later called “Glucophage” (16).  Sterne went on to publish his findings in 1957 (19).  

Shortly following this, others published trials with the biguanides phenformin and 

buformin (16).  Although, both phenformin and buformin were initially considered 

more potent than metformin, they quickly fell out of favor due to their higher 

association with lactic acidosis and were ultimately discontinued in the 1970s.  In 
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contrast, metformin became available in the United Kingdom in 1958 and was 

approved for use in Canada in 1972.  Metformin was not approved by the U.S. Food 

and Drug Administration for Type II diabetes mellitus until 1994.  Glucophage was 

later produced under license by Bristol-Myers Squibb in the U.S. beginning in March 

1995.  Several generic formulations currently exist. 

1.3. Proposed Mechanisms of Metformin Action in Normal and Neoplastic 

Tissues  

      The principle mechanisms of action of metformin in the management of diabetes 

mellitus include reducing hepatic gluconeogenesis, increasing insulin sensitivity in 

target tissues, and improving glucose uptake by skeletal muscle and adipocytes 

(20).  These actions ultimately lead to decreased circulating glucose and insulin 

levels.  Specifically, metformin has been shown to inhibit mitochondrial respiratory 

chain complex I resulting in decreased adenosine-5’-triphosphate (ATP) generation 

(21), an increase in the AMP to ATP ratio, and subsequent activation of the cellular 

energy-sensing liver kinase B-1 (LKB1) and AMP-activated protein kinase (AMPK) 

pathway.  AMPK activation results in the  downregulation of energy-consuming 

processes such as lipid and protein synthesis in response to energy depletion.  In 

the case of hepatocytes, this results in a decrease in gluconeogenesis and promotes 

glucose uptake.  Glucose can be utilized by cells to generate ATP through oxidative 

phophorylation or glycolysis.  However, following the observations that insulin acts 

as a mitogen in a subset of cancer cells (22) and that AMPK activation also inhibits 

mammalian target of rapamycin (mTOR) signaling, a pathway involved in cellular 
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proliferation and mRNA translation, there has been increasing interest in evaluating 

the potential direct antineoplastic effects of metformin. 

      It has been proposed that metformin exerts its antineoplastic effects through one 

or more of three mechanisms, some of which overlap with the mechanisms of action 

of metformin in normal tissues (23).  In the “indirect” model, the action of metformin 

on hepatocytes results in decreased hepatic glucose secretion and increased 

glucose uptake.  This ultimately leads to decreased circulating glucose and insulin 

levels.  As insulin acts as a mitogen in a subset of cancers, a reduction in serum 

insulin levels may lead to a reduced growth rate of these tumors.  However, it has 

been proposed that this mechanism would primarily benefit patients with baseline 

hyperinsulinemia, tumors that are insulin sensitive, and/or tumors lacking an 

activating mutation downstream of the insulin receptor (24).  While metformin’s 

activation of the LKB1/AMPK pathway in hepatocytes results in decreased 

gluconeogenesis, several early studies also demonstrated that metformin had a 

similar “direct” effect on the LKB1/AMPK pathway in cancer cells, including breast, 

prostate, colon, and endometrial cancer cell lines.  The end product of activation of 

LKB1/AMPK in these cells is inhibition of mTOR signaling resulting in decreased 

protein synthesis and reduced tumor growth (25-27).  Evidence also indicates that 

metformin may inhibit growth of certain tumors by causing a cellular “energy crisis.”  

In this proposed model, tumors with loss of LKB1 or p53 are unable to sense, and 

therefore compensate for, a metformin-induced reduction in ATP resulting in a 

continuation of energy-consuming processes that ultimately leads to an energy crisis 



5 
 

and necrotic cell death (23, 28).  Despite ongoing research, the precise 

mechanism(s) of metformin’s antineoplastic activity has yet to be fully defined. 

      Metformin has also been shown to exhibit cardioprotective effects both in vitro  

and in vivo through increasing expression of AMPK and endothelial nitric oxide 

synthase (eNOS) and decreasing expression of transforming growth factor (TGF)-β1 

in cardiomycotes leading to improved left ventricular function and modeling (29, 30).  

Furthermore, metformin use is also associated with a reduction in fatty acid levels 

and consequently an improvement in lipid profiles.  These actions have translated to 

an improvement in survival in a murine model of heart failure (31).  In humans, the 

United Kingdom Prospective Diabetes Study Group demonstrated that patients with 

type II  diabetes who used metformin had a 36% decrease in all-cause mortality and 

a 39% lower risk of myocardial infarction when compared to other standard 

treatments (32).  As a result of these findings, there are several ongoing clinical 

studies evaluating the role of metformin as a cardioprotective agent (33).  These 

potential cardioprotective effects may contribute to the improvement in survival seen 

in epidemiological studies involving cancer patients. 

1.4. Pharmacokinetics of Metformin 

      The ability of metformin to exert its antidiabetic and antineoplastic effects 

depends greatly on the ability of the drug to access and be taken up by the target 

tissue.  Metformin exists primarily as a hydrophilic cationic molecule at physiologic 

pH levels resulting in low lipid solubility and very limited passive diffusion through 

cell membranes (34).  As a result, uptake of metformin is largely mediated by 

organic cation transporters (OCTs), which are briefly reviewed below.  Metformin is 
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predominantly absorbed from the small intestine through the activity of several 

transporters, notably the plasma membrane monoamine transporter (PMAT) which 

is found on the luminal surface of enterocytes (35).  Peak plasma concentrations of 

metformin occur approximately 3 hours after a single oral dose of an immediate-

release tablet (36).  After multiple doses of 1000 mg twice daily, mean plasma 

concentrations of metformin range between 0.4 and 1.3 mg/L (37).  The mean half-

life is 5.1 hours in healthy patients with adequate renal function (37).  The mean 

bioavailability of metformin has been estimated as 55+/-16% (34); however, there 

appears to be some inter-subject variability which may be a result of differences in 

expression levels of transporters.   Once in the circulation, metformin remains 

unbound to plasma proteins and has a large volume of distribution (estimated at 

approximately 300 L following 2000 mg daily dosing) likely attributable to 

considerable tissue uptake of the drug.  Of note, in animal models, metformin 

concentrations several-fold higher than serum concentrations have been found in 

various tissue types (38, 39).  The primary mode of elimination of metformin is 

through renal excretion of unchanged drug.  As a result, the elimination of metformin 

decreases with worsening renal function.  The estimated mean renal clearance is 

507+/-129 mL/min in healthy subjects with adequate renal function (34).  Although 

approximately 20-30% of metformin is recovered in the feces following oral 

administration, this appears to be drug that was unabsorbed.  Gastrointestinal 

elimination appears to be negligible as no drug has been found in feces following 

intravenous administration (36).   
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      Transport of metformin from the plasma into target tissues is mediated by the 

activity of several OCTs, most notably OCT1 and OCT3.  Both of these OCTs are 

found in many tissues and expressed at varying levels.  As a major site of metformin 

activity, hepatocytes express high levels of both OCT1 and OCT3 (40).  Supporting 

the importance of these transporters for metformin action, OCT1-knockout mice 

demonstrate decreased hepatic uptake of drug (41).  Furthermore, transient 

silencing of OCT1 using siRNA decreased the sensitivity of epithelial ovarian cancer 

cells to metformin treatment (42).  Animal studies have demonstrated that while 

OCT1 is primarily expressed in the liver, kidney, and small intestine it may also be 

expressed in other tissues to a lesser degree (40).  In contrast, OCT3 appears to be 

strongly expressed in tissues of the female reproductive tract, notably the ovaries, 

placenta, and uterus (43).  The high expression of OCTs in the kidneys likely 

explains their role in the elimination of metformin.  Importantly, other basic drugs, 

such as cimetidine and certain antihistamines that are substrates for cation 

transporters, may decrease the renal clearance of metformin and vice versa. 

1.5. Toxicities and Adverse Effects of Metformin 

      The most frequently reported adverse effects associated with metformin use are 

gastrointestinal and include bloating, flatus, and diarrhea.  It is recommended that 

metformin be taken with food and initially administered at a low dose and titrated up 

to minimize these adverse effects.  The most severe and life-threatening adverse 

effect associated with metformin is lactic acidosis.  Prevention and early diagnosis 

and intervention of this condition is essential as it carries a mortality rate of up to 

50% (34).  While lactic acidosis was most frequently associated with the older 



8 
 

generation of biguanides (phenformin and buformin) resulting in their removal from 

the market in the 1970s, this warning has remained for metformin.  Fortunately, this 

complication is rare with an incidence estimated at 3.3 cases per 100,000 patient-

years of treatment (44).  Interestingly, to put this into perspective, the estimated 

incidence of lactic acidosis in sulfonylurea-users is 4.8 cases per 100,000 patient-

years (44).  However, despite this low risk, it is recommended that therapeutic serum 

concentration of metformin not exceed 2.5 mg/L and that metformin doses be 

adjusted for renal impairment (34). 

1.6. Metformin and the Phosphatidylinositol 3-Kinase (PI3K) Pathway 

      To better understand the role that metformin may play as an inhibitor of tumor 

cell proliferation, we must first understand the pathways involved in its mechanism of 

action.  Disruption of the PI3K-AKT pathway is considered central to the role of 

metformin in both normal and neoplastic tissues.  The PI3K pathway is a signal 

transduction pathway critical to a variety of cellular functions including cell 

proliferation and protein synthesis, cell survival, cell cycle progression, cellular 

metabolism, and angiogenesis.   PI3Ks are a family of lipid kinases that function by 

phosphorylating the 3-hydroxyl group of phosphoinositides.  There are three distinct 

classes of PI3Ks that are differentiated by their substrate specificity and regulation 

(45).  Here we will focus on Class IA PI3Ks as these are the best described and 

most commonly implicated in human cancers (46).   

      Class IA PI3Ks are heterodimers consisting of a p110 catalytic subunit (of which 

there are three – p110α, p110β, and p110δ) and a p85 regulatory subunit.  While 

both p110α and p110β are ubiquitously expressed and are involved in cellular 
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proliferation and insulin signaling, p110δ is primarily expressed on leukocytes and 

plays a role in immune function.  At baseline, p85 binds to the N-terminus of the 

p110 subunit inhibiting its catalytic activity (47).  Activation of Class IA PI3Ks can 

occur through one of several mechanisms.  The typical initiating event in the 

activation is the binding of a growth factor ligand (e.g., epidermal growth factor 

(EGF), platelet-derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1), 

insulin, etc.) to its receptor tyrosine kinase (RTK).  This promotes dimerization of the 

receptor and autophosphorylation of tyrosine residues.  Following this, p85 is 

recruited to the plasma membrane and binds either directly or indirectly, through 

adaptor proteins such as insulin receptor substrate-1 (IRS1) or GRB2-associated 

binder (GAB), with the RTK releasing its inhibition of the p110 catalytic subunit.  

PI3K can also be activated via Ras, which directly activates the p110 subunit 

independently of p85 (48).  Of note, the PI3K pathway is one of the best 

characterized downstream effectors of Ras and plays an important role in Ras-

mediated cell survival.  The interplay between the Ras-Mitogen Activated Protein 

Kinase (Ras-MAPK) and PI3K pathways is reviewed in further detail below.  

Activation of PI3K generates phosphatidylinositol 3,4,5-triphosphate (PIP3) from 

phosphatidylinositol 4,5-biphosphate (PIP2), a process that is negatively regulated 

by the tumor suppressor phosphatase and tensin homolog (PTEN) through its lipid 

phosphatase activity, converting PIP3 back to PIP2.  Loss of PTEN function, either by 

mutation or epigenetic silencing, results in uncontrolled PI3K activity which may 

ultimately lead to cancer.  As we will see later, this is clinically important in 

endometrial cancer, which has a high frequency of cases with PTEN loss.  PIP3 
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recruits the serine-threonine kinase, AKT, to the plasma membrane.  Docking of the 

pleckstrin homology (PH) domain of AKT to PIP3 induces a conformational change in 

AKT exposing two amino-acid residues (T308 and S473) that must be 

phosphorylated for full activation of AKT.  Phosphorylation of these residues is 

accomplished by 3-phosphoinositide-dependent protein kinase 1 (PDPK1) and the 

mTOR-rictor (rapamycin insensitive companion of mTOR) complex (mTORC2), 

respectively (49-51).  Once AKT is fully activated it acts as a central node in the 

PI3K pathway, regulating a wide variety of cellular processes involved with cell 

survival, protein synthesis and proliferation, and cellular metabolism (52).  One of 

the key downstream effectors by which AKT regulates protein synthesis is through 

the tuberous sclerosis 1/2 (TSC1/2) complex.  AKT inactivates TSC1/2 which 

releases its inhibition on the mTOR-regulatory-associated protein of mTOR (Raptor) 

(mTORC1) complex.  The mTORC1 complex propagates the growth signal by 

phosphorylating eukaryotic initiation factor 4E-binding protein (4E-BP) and p70 

ribosomal S6 kinase (p70S6K) which promote ribosome biogenesis and protein 

synthesis.  At baseline, this process is also regulated by another variable – the 

energy status of the cell.  That is, at times of energy deprivation, there is an increase 

in the intracellular concentration of AMP relative to ATP.  This increase in the ratio of 

AMP to ATP activates the cellular energy sensor AMPK.  Activated AMPK, in an 

attempt to maintain cellular energy homeostasis, then phosphorylates TSC2 

resulting in inhibition of mTORC1 signaling which down-regulates energy consuming 

processes such as protein synthesis.  This is where metformin is believed to have its 

predominant direct effect on inhibition of cellular proliferation.  As described above, 
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metformin inhibits mitochondrial respiratory chain complex I resulting in decreased 

ATP production, leading to an increase in the ratio of intracellular AMP to ATP, 

activation of AMPK, and ultimately to decreased mTORC1 signaling and decreased 

cellular proliferation. 

1.7. Ras Activation and the MAPK Pathway 

      The Ras-MAPK and PI3K-AKT pathways are two of the best characterized 

intracellular signaling pathways.  When first discovered, both of these pathways 

were thought to be linear pathways that existed in parallel and were even activated 

by different stimuli.  However, as they have been further investigated and 

characterized, it is clear now that there is a high degree of cross-talk between both 

pathways.  Ras has been shown to interact with the different isoforms of class IA 

PI3Ks (53-55).  As such, to understand the role of Ras on PI3K signaling, we must 

first understand how Ras is regulated and activated.  Ras proteins are GTPase 

binary molecular switches that regulate cell proliferation, differentiation, and survival.  

Four distinct Ras isoforms exist – H-Ras, N-Ras, K-Ras4A, and K-Ras4B - which 

exhibit a high degree of sequence homology in approximately the first 169 amino 

acids (56).  The final 23-24 amino acids comprise what is termed the hypervariable 

region (HVR) that defines the isoform and contains the membrane interacting and 

targeting sequences (56).  All Ras isoforms contain a carboxy terminal –CAAX motif, 

where C represents cysteine, A is usually an aliphatic amino acid, and X is any 

amino acid.  This –CAAX motif directs a series of post-translational modifications 

that are necessary for activation and trafficking of the Ras protein to the inner leaflet 

of the plasma membrane which is required for signaling.   
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      Newly synthesized Ras proteins immediately undergo a series of post-

translational modifications, some of which are constitutive and irreversible and 

others that are conditional and reversible (57).  First, -CAAX is constitutively 

processed and modified by three enzymes that appear to work in series resulting in 

polyisoprenylation, endoproteolysis, and carboxyl methylation (58).  The end result is 

that the otherwise hydrophilic Ras proteins become hydrophobic at their C termini 

allowing them to associate with intracellular membranes.  Indeed, endoproteolysis 

and carboxyl methylation are both accomplished on the cytoplasmic surface of the 

endoplasmic reticulum and Golgi apparatus (58).  Once there, a “second signal” is 

required for trafficking of Ras proteins to the plasma membrane from 

endomembranes (56, 59).  In the case of H-Ras, N-Ras, and K-Ras4A, 

palmitoylation of the HVR facilitates this translocation (60, 61).  This process is 

dynamic in which depalmitoylation of H-Ras, N-Ras, and K-Ras4A mediates 

retrograde transport to the Golgi (62).  For K-Ras4B (which will be referred to as 

simply K-Ras), the “second signal” has not yet been clearly defined, but is believed 

to involve diffusion down an electrostatic gradient involving the polybasic domain of 

the HVR (57, 59).  That is, the net negative charge of the plasma membrane attracts 

the positively-charged polybasic domain of K-Ras.  While K-Ras is predominantly 

distributed at the plasma membrane, studies have demonstrated that its association 

with the plasma membrane is also reversible and dynamic (63).   

      At the plasma membrane, in the basal state, GDP-bound Ras is inactive.  Upon 

binding of growth factor ligands to their RTKs, guanine nucleotide exchange factors 

(GEFs), such as Son of Sevenless (SOS), are recruited to the plasma membrane by 
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GRB2 which activate Ras by promoting the release of GDP and allowing GTP 

binding.  Activated Ras can then interact with Ras-binding domains (RBDs) on 

effector molecules, including PI3K among others.  As is apparent, this process is 

similar to, and indeed involves the same growth factors as, that involved in activation 

of PI3K.  The principal effector pathway of Ras is the MAPK pathway.  This kinase 

cascade consists of a GTPase-regulated Ras that phosphorylates and activates 

RAF kinase which, in turn, phosphorylates and activates MEK which then 

phosphorylates and activates the effector kinase, extracellular-signal-related kinase-

1/2 (ERK1/2).  ERK1/2 is involved in promoting cell survival and proliferation and cell 

motility (52).  However, constitutive activation of Ras as a result of oncogenic 

mutations may also lead to uncontrolled activation of the PI3K pathway which results 

in persistent pro-proliferative and pro-survival signaling regardless of the presence of 

growth factors.  Ras activation is negatively regulated by GTPase-activating proteins 

(GAPs) which catalyze GTP hydrolysis to return Ras to the GDP-bound inactive 

state (57).  Loss of GAPs is another mechanism by which Ras proteins may be 

constitutively activated.  In the next section we will review the importance of RAS-

PI3K interactions as it pertains to oncogenic signaling.    

1.8. The Interaction Between Ras and PI3K in Tumorigenesis 

      Several authors have commented and provided preclinical evidence 

demonstrating the importance of PI3K in Ras-dependent oncogenic transformation 

(64-66).  An overview of the key players in these pathways is demonstrated in Figure 

1.   
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      It is also well accepted that Ras plays a critical role in both tumor initiation and 

maintenance.  However, given the presence of multiple Ras effector pathways, it is 

important to identify what role each plays in Ras-dependent tumorigenesis.  What is 

now known is that multiple effector pathways (MAPK, PI3K, and RalGEF) play 

critical roles in Ras-dependent tumor initiation.  However, as tumorigenesis 

progresses, maintenance of Ras-dependent tumor growth seems to specifically 

require PI3K pathway activation (67).  Both pathways appear to be highly integrated 

with mechanisms of cross-talk including cross-inhibition and cross-activation (52).  

The Ras-MAPK and PI3K-AKT pathways can negatively regulate each other.  As a 

result, inhibition of one pathway may lead to activation of the other such as seen 

Figure 1. Overview of the PI3K and Ras-MAPK Pathways 
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with MEK inhibitors and AKT activation (68, 69).  Cross-activation can also occur at 

several points.  As described above, Ras-GTP can directly bind and allosterically 

activate PI3K.  ERK1/2 which is downstream on the Ras-MAPK pathway can 

activate mTORC1 both indirectly by inhibiting TSC2 (70) at sites different than AKT 

which releases its inhibition and promotes mTORC1 activation and directly by 

phosphorylating Raptor (71).  The clinical importance of this extensive cross-talk, 

particularly in endometrial cancer where these pathways are both frequently 

mutated, is the obvious need to target more than one pathway to inhibit cancer cell 

proliferation and tumor growth.  Indeed, this need for dual pathway inhibition has 

been demonstrated by human cancer cells carrying alterations in the PI3K pathway 

which were responsive to the mTORC1 inhibitor RAD001, except when K-Ras 

mutations occurred concomitantly (72).  Furthermore, in this same study, in a cohort 

of metastatic cancer patients, the presence of oncogenic K-Ras mutations was 

associated with lack of benefit after RAD001 therapy (72).  Several authors have 

demonstrated that inhibition of both PI3K and Ras-MAPK pathways results in 

inhibition of tumor growth in prostate and lung cancer mouse models (73, 74) and of 

cellular proliferation in human cancer cell lines (75).  However, these combination 

strategies may be limited in human studies secondary to dose-limiting toxicities.  

Thus, it is important to evaluate the role of more tolerable agents, such as 

metformin, as a potential component of a targeted combination therapeutic strategy.   

This is particularly important in endometrial cancer where both of these tumorigenic 

pathways are commonly aberrant. 
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1.9. Endometrial Cancer and Metformin 

      The importance of identifying novel therapeutic strategies for endometrial cancer 

is warranted due to its stable, if not increasing, incidence as a result of the growing 

worldwide obesity pandemic and associated medical comorbidities, which increase a 

woman’s risk of developing the disease.  Endometrial cancer is currently the most 

common gynecologic malignancy in the United States with an estimated 46,470 

women diagnosed with uterine cancer and 8,120 estimated to have died of the 

disease in 2011 (76).  Based on epidemiological and molecular factors, endometrial 

cancer can be subdivided broadly into two types which have important implications 

on prognosis and treatment options.  Type I endometrial cancers account for 

approximately 80% of cases, are classically of endometrioid histology, and are 

associated with obesity and prolonged estrogen stimulation.  Type II carcinomas are 

often of non-endometrioid histology, typically arise in a background of atrophic 

endometrium, and appear to be unrelated to estrogen stimulation.  Obesity is an 

important risk factor for the development of endometrial cancer.  The relative risk of 

uterine cancer-related death for women considered obese is 2.53, while for morbidly 

obese women it is 6.25 (77).  Furthermore, the association between obesity and 

other medical co-morbidities, such as diabetes mellitus and insulin resistance, also 

contributes to mortality.  The prevalence of diabetes in the general population is 

approximately 7% to 8% and continues to rise (78).   

      Type I and Type II ECs frequently demonstrate distinct molecular alterations that 

may serve to guide therapeutic treatment strategies.  A summary of common genetic 
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alterations associated with Type I and Type II endometrial carcinomas is found in 

Table 1.   

Genetic Alteration 
Type I lesions 

(%)  

 
Type II lesions 

(%) 
 

References 

PTEN loss of function 83 10 (79, 84) 

PIK3CA mutation 36 5 (81, 86, 87) 

Microsatellite Instability 20-30 0-11 (82, 87-89) 

K-Ras mutation 15-26 0-5 (83, 84, 90) 

β-catenin mutation 25-38 3 (86, 91) 

p53 loss of function 10-17 93 (84, 92) 

HER-2/neu 
overexpression 

10 43 (87, 93) 

p16 inactivation 10 45 (87, 92) 

Table 1.  Genetic alterations associated with Type I and Type II endometrial 
carcinomas 

 

      The most common genetic alteration associated with Type I lesions is a loss of 

function of PTEN which can be encountered in up to 83% of cases and 55% of 

precancerous lesions (79).  Mutations in PTEN have been documented in 

endometrial hyperplasia and, thus, have been suspected to be an early event in the 

endometrial tumorigenesis process (80). As described above, PTEN plays a role in 

the regulation of the PI3K-AKT pathway by inhibiting the downstream 

phosphorylation of AKT, but its loss of function has also has been shown to result in 

genomic instability by causing defects in either homologous recombination DNA 
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repair or in cell cycle checkpoints.  Mutations on PIK3CA, the gene coding for the 

catalytic subunit of PI3K, are seen in up to 36% of endometrioid cancers (81) and 

are often found in combination with PTEN mutations.   

      Other common genetic alterations associated with type I endometrial carcinomas 

include: microsatellite instability (MSI) and mutations in K-Ras.  Approximately 20% 

to 30% of type I lesions exhibit MSI (82). Activating mutations in K-ras are observed 

in 15-26% of endometrioid carcinomas (83, 84).  Although, Ras and PI3K pathway 

mutations are found to be mutually exclusive in other cancer types, in endometrial 

cancer, tumors with mutations in both pathways often coexist (48).  In fact, up to 

80% of tumors with a PIK3CA mutation also harbor a K-Ras and/or PTEN mutation 

(85).  In contrast to Type I lesions, the genetic alteration most commonly seen in 

type II lesions is a p53 mutation, which is found in up to 90% of serous carcinomas 

(compared with 10% of type I lesions), and PTEN mutations are less common (84).  

The frequency of potentially targetable genetic alterations associated with 

endometrial carcinomas has resulted in considerable interest in novel therapeutic 

strategies for this malignancy. 

      As described above, metformin is one of the most commonly used hypoglycemic 

agents in the management of type II diabetes mellitus, which is associated with 

insulin resistance and an increased risk for the development of endometrial cancer.  

Several epidemiological studies have demonstrated that diabetic patients being 

treated with metformin have a reduced cancer incidence or improved response to 

chemotherapy when compared to diabetic patients receiving other oral hypoglycemic 

agents or insulin (78, 94, 95).  DeCensi and colleagues completed a meta-analysis 



19 
 

of five observational studies of all cancer types and found that metformin was 

associated with a 31% decrease in CA risk (SRR 0.69, 95%CI 0.61-0.79) (95).  In a 

study of 2,529 patients who received neoadjuvant chemotherapy for early-stage 

breast cancer, Jiralerspong and colleagues, reported that the rate of pathologic 

complete responses was 24% among diabetic patients using metformin compared 

with 8% for diabetic patients not using metformin (p<0.007) (78).  While the effects of 

metformin on hepatocytes, skeletal muscle, and adipocyte metabolism are 

understood, the mechanisms by which metformin exerts these antineoplastic effects, 

have not yet been fully characterized.  

      Given the prevalence of PI3K-AKT pathway alterations associated with 

endometrial cancer and its frequent association with obesity and diabetes mellitus, 

this is a logical site in which to evaluate the role of metformin as a cancer 

therapeutic.  However, to date, published reports on the effects of metformin on 

endometrial cancer are limited.  In a study evaluating the pre-clinical effects of 

metformin, Cantrell and colleagues, using two endometrial cancer cell lines, 

demonstrated that metformin was a potent inhibitor of endometrial cancer cell 

proliferation that was partially mediated by activation of AMPK with a subsequent 

decrease in mTOR signaling (27).  Furthermore, the addition of metform to paclitaxel 

demonstrated significant synergistic anti-proliferative effects through modulation of 

the mTOR signaling pathway (96).  However, all cell lines used in both of these 

studies expressed functional PTEN.  Because metformin is postulated to mediate its 

anti-neoplastic effects through activation of AMPK in opposition to PI3K 

hyperactivation and given the frequency with which PTEN loss occurs in endometrial 
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cancer, our objective was to evaluate and compare the effect of metformin on PTEN 

deficient versus PTEN wild-type endometrial cancer in vitro and in vivo.  

      In addition to alterations in PTEN, K-ras mutations represent another common 

genetic defect found in endometrial cancers.  Activating mutations in K-ras have 

been shown in a mouse model to synergize with PTEN inactivation to accelerate 

tumorigenesis in both endometrial (97) and lung cancer (98).  In light of the growing 

interest in personalized cancer therapy using biologic agents to target specific 

molecular pathways, we further sought to characterize the effects of metformin on 

endometrial tumors in which K-Ras is activated, either in isolation or accompanied 

by loss of PTEN.  

      The identification of differential responses to metformin based on the genetic 

fingerprint of individual endometrial tumors may have important implications in 

defining a subset of patients that will benefit from metformin therapy either alone or 

in combination with other targeted agents.  Furthermore, an understanding of the 

molecular mechanisms underlying metformin’s antiproliferative effect should lead to 

the development of novel combination therapies for the more effective treatment of a 

variety of cancers 

2. Methods 

2.1. Cell Culture  

      Hec1A, a well-differentiated human endometrial carcinoma cell line that 

expresses PTEN and harbors an activating K-Ras mutation were purchased from 

the American Type Culture Collection (ATCC, Manassas, VA).  Hec1A cells were 

cultured in McCoy’s 5A Modified Medium supplemented with 10% fetal bovine serum 
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(FBS), 10,000 U/mL penicillin and 10,000 mcg/mL streptomycin.  Ishikawa, a well-

differentiated human endometrial carcinoma cell line with loss of PTEN expression 

and wild-type K-Ras was purchased from the European Collection of Cell Cultures 

(ECACC, Porton Down, United Kingdom).  Ishikawa cells were cultured in 

Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% FBS, 2 mM 

L-glutamine, 1 mM sodium pyruvate, 0.1 M non-essential amino acids, 10,000 U/ml 

penicillin and 10,000 ug/ml streptomycin.  MecPK, a mouse endometrial carcinoma 

cell line was derived and immortalized from the endometrial tumor of a transgenic 

mouse with homozygous PTEN deletion and a K-Ras mutation (PTEN-/-K-RasG12D) 

(97) and was cultured in RPMI 1640 supplemented with 10% FBS and 10,000 U/mL 

penicillin and 10,000 ug/mL streptomycin.  Cells were incubated at 37oC under 5% 

CO2 to 70% confluence before treatment.   

2.2. Reagents and Inhibitors 

      Metformin (1,1-Dimethylbiguanide hydrochloride) was purchased from Sigma 

(St. Louis, MO) and dissolved in sterile PBS.  BEZ235 (a dual inhibitor of pan-PI3K 

and mTOR) and RAD001 (an inhibitor of mTORC1) were purchased from Selleck 

Chemicals (Houston, TX) and dissolved in sterile dimethyl sulfoxide (DMSO).  

AZD6244 (a MEK inhibitor) was graciously provided by the lab of Dr. Kwong K. 

Wong at the University of Texas, M.D. Anderson Cancer Center. 

2.3. Metformin Treatment Cell Viability Assays 

      To evaluate the effect of metformin on endometrial cancer cells in vitro, cell 

viability assays were performed.  For all cell viability assays, endometrial cancer 

cells were seeded in 96-well plates at a density of 4 x 103 cells/well and were 
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incubated at 37oC under 5% CO2 for 24 hours prior to drug treatment.  The medium 

was then replaced with fresh antibiotic-free medium containing metformin at 

concentrations ranging from 0.5 – 20 mM.  After treatment for 48 hours, cells were 

incubated for 3.5 hours with MTT (3-(5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) dye at 37oC under 5% CO2.  Following the incubation, the MTT reaction 

was halted with the addition of solvent containing 2-propanol, 0.1% NP40, and 4 mM 

HCL.  Following the addition of MTT solvent, 96-well plates were shaken gently in 

the dark for 15 minutes.  The absorbance of the purple formazan product catalyzed 

by metabolically active cells was recorded at a wavelength of 590nm with 620nm as 

a background.  The change in the optical density (ΔOD) measured at these two 

wavelengths was calculated.  Data are expressed as the relative absorbance 

normalized to control PBS-treated cells.  Three independent assays were performed 

in triplicate. 

2.4. Western Blot Analysis Following Metformin Treatment 

      To evaluate the effect of metformin on protein expression and downstream 

signaling in the PI3K and Ras-MAPK pathways, endometrial cancer cells were 

seeded on 6-well plates at a density of 2 x 105 cells/well and were incubated at 37oC 

under 5% CO2 for 24 hours prior to metformin treatment.  The medium was then 

replaced with fresh antibiotic-free medium containing metformin at concentrations of 

1 mM, 5 mM, and 10 mM for 48 hours.  At 48 hours of treatment, the media was 

discarded and whole cell lysates were collected with Mammalian Protein Extraction 

Reagent (M-PER) (ThermoScientific, Rockford, IL) containing phosphatase inhibitor 

(1:100) and protease inhibitor (1:10).   
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      Protein extraction was accomplished by first discarding the media from each 

well.  Wells were then washed with sterile PBS.  Immediately afterwards, 100 uL of 

M-PER, containing protease and phosphatase inhibitors, was added to each well 

and incubated on ice at 40C for 30 minutes.  Cells were then mechanically lysed with 

a spatula and collected into separate, ice-cold 1.5 mL centrifuge tubes.  Tubes were 

centrifuged at 13,000 rpm for 15 minutes at 40C.  Following centrifugation, the 

supernatant from each tube was collected and transferred into new, ice-cold 1.5 mL 

centrifuge tubes and the cell pellets were discarded.  To calculate the protein 

concentration, Bio-Rad Protein Assay Dye Reagent Concentrate (Bio-Rad 

Laboratories, Hercules, CA) was mixed with ddH20 at a ratio of 1:4 (total volume 

depending on the number of samples).  A total of 2 uL of protein sample was added 

to 1 mL of dilute protein assay dye into separate cuvettes.  Samples were vortexed 

thoroughly and allowed to sit at room temperature for 5 minutes before measuring 

the absorbance of each sample at 595nm using Bio-Rad SmartSpecTM 3000 (Bio-

Rad Laboratories, Hercules, CA).  Concentrations were calculated using the 

Bradford formula.   

      Equal amounts of protein (15 ug) were separated by sodium dodecyl sulfate- 

polyacrylamide gel electrophoresis (SDS-PAGE) using a 10% gel at 110V.  Proteins 

were then transferred onto a nitrocellulose membrane using a current of 0.2 amps 

over 2.5 hours.  Membranes were washed briefly with non-sterile 1X PBS with 20% 

Tween-20 (1X PBST) and blocked with 5% nonfat dry milk for 30 minutes and 

incubated overnight with gentle shaking at 40C using a 1:1000-2000 dilution of the 

primary antibody of interest in 5% nonfat dry milk.  Primary antibodies directed 
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against phospho-AMPKα (Thr172), Total AMPK, phospho-Akt (Ser473), Total Akt, 

phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204), and phospho-S6 ribosomal 

protein (Ser235/236) were used.  All antibodies were purchased from Cell Signaling 

(Beverly, MA) unless otherwise indicated.  As a loading control, β-actin expression 

was detected using anti-β-actin IgG (Sigma, St. Louis, MO). Following overnight 

incubation with primary antibody, membranes were washed thrice for 10 minutes 

each using non-sterile 1X PBST and then incubated with a secondary anti-mouse or 

anti-rabbit horseradish peroxidase-conjugated antibody (GE Healthcare UK Limited, 

Buckinghamshire, United Kingdom) for 1 hour.  Secondary antibody was prepared 

by adding 3 uL of either anti-mouse or anti-rabbit horseradish peroxidase-conjugated 

antibody to 5 mL of ddH20 mixed with an additional 5mL of 5% nonfat dry milk.    

Membranes were then washed four times for 15 minutes each in 1X PBST.   

Antibody binding was enhanced using SuperSignal® West Dura Extended Duration 

Substrate (ThermoScientific, Rockford, IL) and developed.  In a similar fashion, the 

PTEN and OCT1 expression status for each cell line was determined by western 

immunoblotting using primary antibodies directed against PTEN (Cell Signaling, 

Beverly, MA) and SLC22A1 (Sigma, St. Louis, MO), respectively. 

2.5. Cell Cycle Analysis Following Metformin Treatment 

      To evaluate the effect of metformin on the cell cycle and apoptosis in 

endometrial cancer cells, flow cytometric analysis was performed.  Endometrial 

cancer cells were seeded on 6-well plates at a density of 2 x 105 cells/well and were 

incubated at 37oC under 5% CO2 for 24 hours prior to metformin treatment.  The 

cells were then treated with fresh antibiotic-free medium containing metformin at 
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concentrations of 1 mM, 5 mM, 10 mM, and 20 mM for 48 hours.  After 48 hours, 

cells were trypsinized, transferred to separate 15 mL sterile culture tubes, washed in 

1X PBS, and centrifuged at 1,500 rpm for 5 minutes.  Cells were then resuspended 

and fixed in 70% ethanol for a minimum of 24 hours at 40C with gentle shaking.  

Cells were then centrifuged at 2,500 rpm for 5 min, washed with 1X PBS, and 

resuspended in staining solution containing: 40 µg/mL propidium iodide, 80 µg/mL 

RNase A in PBS supplemented with 0.1% Triton X-100 and 0.1 mM EDTA.  Cells 

were incubated in the staining solution at room temperature for 30 minutes before 

cell cycle analysis was performed using the Gallios Flow Cytometer (Beckman 

Coulter, Indianapolis, IN)  according to the manufacturer’s protocol.   Kaluza Flow 

Cytometry Analysis v1.1 software (Beckman Coulter) was used to calculate the cell 

cycle distribution from the histogram.  Apoptotic cells were determined on the 

histogram as the percentage of cells in the sub-G1 peak. 

2.6. In Vivo Xenograft Study 

      To validate our in vitro results in a xenograft mouse model, 60 female athymic 

nude mice were purchased from the National Institutes of Health (Bethesda, MD) 

and housed at 5 mice per cage in a specific pathogen-free facility.  Nude mice were 

maintained in accordance with guidelines established by the Institutional Animal 

Care and Use Committee.  At 6-weeks of age, intraperitoneal injections were 

performed on each mouse in the midline lower abdomen with 5 x 106 early-passage 

endometrial cancer cells (20 injected with Hec1A cells, 20 injected with Ishikawa 

cells, 20 injected with MecPK cells).  Tumors were allowed to progress for 7 days 

prior to initiating either control or metformin treatment.  Each group of 20 mice per 
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cell line was divided into two subgroups of 10 mice each.  Ten mice were treated 

with metformin dissolved in drinking water (5 mg/mL) and the remaining ten mice 

were provided untreated sterile drinking water.  Both metformin-treated water and 

control untreated water were changed twice weekly on Tuesdays and Fridays.  

Treatment continued until at least one mouse became moribund, at which time all 

animals in the same endometrial cancer cell line group were euthanized.  Serum 

was collected immediately and was stored at -80oC.  Serum from each mouse was 

sent for analysis of liver chemistries.  Mice were weighed prior to necropsy and all 

visible tumor was carefully dissected from all peritoneal surfaces.  Tumors were then 

weighed, a representative portion of tumor was fixed in formalin, and the remainder 

was flash frozen and stored at -80oC. 

2.7. Immunohistochemical Analysis of Xenograft Tumor Tissues 

      Slides were cut from formalin-fixed, paraffin-embedded tissue blocks for both 

Hec1A and Ishikawa and were then used for immunohistochemical analysis of tumor 

phosphorylated S6 ribosomal protein (pS6rp) expression as a downstream marker of 

PI3K/AKT pathway signaling and Ki-67 staining as a marker for proliferation.  

Immunohistochemistry staining was carried out by first baking slides in a 600C oven 

for 30 minutes.  Slides were then deparaffinized by washing in xylene thrice for 10 

minutes each.  Slides were then rehydrated in serial graded ethanol – 100%, 100%, 

100%, 80%, 80%, ddH2O for 3 minutes each.  Finally, slides were rinsed in 1X PBS 

for 5 minutes.  Antigen retrieval was accomplished by first placing slides in a citrate 

buffer bath (pH 6.0) and bringing the bath to a slow boil.  Slides in the citrate buffer 

bath were then transferred into a pressure cooker and the temperature increased to 
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1200C.  Slides were incubated in the pressure cooker at 1200C for either 9 minutes 

(Ki-67) or 11 minutes (pS6rp).  At the desired antigen retrieval time, the pressure 

cooker was turned off and slides were removed and allowed to cool at room 

temperature in the citrate buffer bath for 30-60 minutes.  Following antigen retrieval, 

slides were submerged in 3% H2O2 for 10 minutes to block endogenous peroxidase 

activity.  After blocking slides with 1% normal goat serum for 15 minutes, primary 

antibody was applied and slides were incubated overnight at 40C in a humidified 

chamber.  The primary antibodies used were phosphorylated S6 ribosomal protein 

(S235/236)  rabbit monoclonal antibody (Cell Signaling Technology, Beverly, MA) at 

1:50 dilution and purified mouse anti-human Ki-67 monoclonal antibody (BD 

Biosciences, San Diego, CA) at 1:50 dilution.  Following overnight incubation, slides 

were washed in 1X PBST twice for 5 minutes to remove the primary antibody.  

Slides were then treated with biotin-labeled affinity isolated goat anti-rabbit and goat 

anti-mouse immunoglobulins in PBS (DakoCytomation, Carpinteria, CA) for 10 

minutes followed by a wash in PBS and then application of streptavidin-horseradish 

peroxidase solution (DakoCytomation, Carpinteria, CA) for 10 minutes.  Slides were 

rinsed in PBS and developed with 3,3’-diaminobenzidine (DakoCytomation, 

Carpinteria, CA) for 1 minute and 45 seconds, rinsed in tap water, counterstained in 

10% hematoxylin, and dehydrated in serial graded ethanol. 

      Phosphorylated S6rp expression was scored as the product of the percentage of 

cells staining positive (0 = <10%; 1 = 10-25%; 2 = 26-50%, 3 = 51-75%, and 4 = 

>75%) and the intensity of the staining (1 = weak; 2 = moderate; 3 = strong).  For the 

proliferation index, the average of the ratio of positive Ki-67 stained nuclei to total 
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nuclei in > 3 representative high-powered fields from each specimen was 

determined. 

2.8. Transfection of MecPK Cells for Stable Expression of PTEN 

      To determine whether the expression of PTEN alters the proliferative or cell 

viability response to metformin treatment, MecPK cells were transfected to stably 

express PTEN.  MecPK cells were seeded on 6-well plates at a density of 2 x 105 

cells/well and were incubated at 37oC under 5% CO2 for 24 hours.  For transfection, 

a pIRES2-EGFP plasmid (Clontech Laboratories, Mountain View, CA) was used to 

construct a vector with and without PTEN inserted that also contained a 

neomycin/kanamycin-resistance domain to allow for stable selection of PTEN 

expressing cells.  A plasmid lacking a neomycin-resistance domain, pCMV5-FLAG-

PTEN, from which we obtained the PTEN gene for our plasmid vector was 

graciously provided by the lab of Dr. Gordon Mills (University of Texas, M.D. 

Anderson Cancer Center). 

      DH5α competent bacteria were thawed on ice and transformed by incubating 

with the pIRES2-EGFP vector diluted 1:10 in sterile ddH2O in vented conical tubes.  

During the transformation, bacteria were placed on ice for 30 minutes followed by a 

heat shock at 420C for 1 minute to promote plasmid uptake by bacteria.  Bacteria 

were then placed on ice for an additional 2 minutes prior to adding 1 mL lysogeny 

broth (LB) to each tube.  Bacteria were then incubated at 370C for one hour and then 

plated on LB Agar Kanamycin-50 100mm plates (Sigma, St. Louis, MO) and 

incubated overnight at 370C.  Following overnight incubation, one colony was 

selected from the plate using a sterile toothpick and placed in a vented 15 mL 
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conical tube in 3 mL of LB and incubated at 370C for 16 hours with vigorous shaking.  

At the completion of the 16 hour incubation, 1 mL of the LB containing transformed 

bacteria was transferred into two separate 1.5 mL centrifuge tubes.  Bacterial cells 

were harvested by centrifugation at 13,000 rpm for 3 minutes at room temperature.  

The supernatant was discarded and a QIAprep Spin Miniprep Kit (Qiagen Sciences, 

Venlo, Netherlands) was used to purify plasmid DNA per the manufacturer’s 

instructions.  The restriction map of pCMV5-FLAG-PTEN demonstrated that the 

PTEN gene is flanked by restriction sites for EcoRI and BamHI restriction enzymes 

(Promega, Madison, WI).  The restriction map of pIRES2-EGFP also demonstrated 

that the multiple cloning site contains restriction sites for both EcoRI and BamH1.  

Both pIRES2-EGFP and pCMV5-FLAG-PTEN plasmids were independently 

digested using a mixture of 10 uL of plasmid DNA, 2 uL 10X E Buffer (Promega, 

Madison, WI), 1 uL BamHI, 1 uL EcoRI, and 6 uL of ddH2O and incubated at 370C 

for 1 hour.  During the last 15 minutes of the digestion for pIRES2-EGFP, 1 uL of 

shrimp alkaline phosphatase was added to the mixture to remove the phosphates 

and prevent re-annealing.  DNA fragments were separated on a 1% agarose gel at 

80V for 1 hour.  The bands corresponding to PTEN (1.3kb) and linearized pIRES2-

EGFP (5kb) were cut out and extracted from the gel using the QIAEX II Agarose Gel 

Extraction Kit (Qiagen Sciences, Venlo, Netherlands) per the manufacturer’s 

instructions.  Ligation of the PTEN gene insert into the linearized pIRES2-EGFP 

vector was accomplished using a mixture of 4 uL 5X ligase, 4 uL linearized pIRES2-

EGFP DNA, 4 uL PTEN gene insert DNA, 1 uL T4 ligase, and 7 uL of ddH2O.  

Following ligation, DH5α competent bacteria were transformed, using methods 
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previously described above, with either pIRES2-EGFP-PTEN, linearized pIRES2-

EGFP, and ligated pIRES2-EGFP and cultured on LB Agar Kanamycin-50 100mm 

plates (Sigma, St. Louis, MO) and incubated overnight at 370C.  Colonies were 

selected from plates containing bacteria transformed with pIRES2-EGFP-PTEN and 

ligated pIRES2-EGFP and transferred to vented conical tubes containing LB with a 

1:1000 dilution of kanamycin and incubated at 370C for 16 hours.  As expected, 

plates seeded with bacteria transformed with linearized pIRES2-EGFP did not 

develop colonies resistant to kanamycin.    Plasmid DNA purification using the 

QIAprep Spin Miniprep Kit was performed as described above followed by digestion 

of plasmid DNA using BamHI and EcoRI restriction enzymes and separation of DNA 

fragments on a 1% agarose gel to confirm insertion of PTEN in the pIRES2-EGFP-

PTEN plasmids and absence of PTEN in the pIRES2-EGFP control plasmids. 

      For transfection, 4 ug of plasmid DNA was used per well of a 6-well plate and 

performed using Lipofectamine 2000 (Invitrogen, Carlsbad, CA).  One day before 

transfection, 2 x 105 MecPK cells were plated per well in 2 mL of antibiotic-free RPMI 

1640 growth medium supplemented with 10% FBS and incubated at 370C overnight 

to reach 80-90% confluence at the time of transfection.    One well was transfected 

with pIRES2-PTEN, one well with pIRES2 vector alone (as a negative control), one 

well with Lipofectamine 2000 alone (mock transfection), and three untransfected 

wells without Lipofectamine 2000.  Media containing Lipofectamine 2000 was 

replaced after 6 hours with fresh media.  After 24 hours, G418-sulfate 750 ug/mL 

(Cellgro, Manassas, VA) was applied to the two transfected wells and the mock 

transfected well.  Concurrently, a titration experiment using G418-sulfate on 
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untransfected MecPK cells found that a concentration of 500 ug/mL to 750 ug/mL 

was sufficient to kill all cells within 5-7 days.  In transfected wells, media with G418-

sulfate was replaced every 3 days until resistant colonies were identified.  Five 

resistant colonies from each well were selected and expanded.  Whole cell lysates 

were collected as per the protocol described above and were analyzed for PTEN 

expression by western blot analysis.  To verify PTEN functionality, expression of 

pS6rp, as a downstream read-out of the PI3K pathway, was evaluated.   

      MecPK cells stably expressing PTEN and negative controls transfected with 

pIRES2-EGFP vector alone were seeded in 96-well plates at a density of 4 x 103 

cells/well and were incubated at 37oC under 5% CO2 for 24 hours.  The medium was 

then replaced with fresh antibiotic-free medium containing metformin at 

concentrations ranging from 0.5 – 20 mM.  After treatment for 48 hours, MTT assays 

were performed as described above to compare differences in relative cell viability 

between MecPK cells expressing PTEN and those with loss of PTEN.  Three 

independent assays were performed in triplicate. 

2.9. Transient Silencing of K-Ras with siRNA 

      To determine whether inhibition of mutant K-Ras signaling reduced the inhibitory 

effects of metformin on cell proliferation and viability, K-Ras expression was 

transiently silenced in MecPK cells using siRNA.  MecPK cells were seeded on 96-

well plates at a density of 4 x 103 cells/well and were incubated at 37oC under 5% 

CO2 for 24 hours.  Equal numbers of wells were transfected with either siGENOME 

SMARTpool K-Ras siRNA (Dharmacon, Lafayette, CO) or siGENOME non–targeting 

siRNA (Dharmacon, Lafayette, CO) using RNAiMax (Invitrogen, Carlsbad, CA) as 
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per the manufacturer’s protocol.  Media was replaced after 6 hours with fresh media 

containing increasing concentrations of metformin (0.5 – 20 mM).  After treatment for 

48 hours, MTT assays were performed as described above to compare differences 

in relative cell viability between MecPK cells expressing mutant K-Ras and those 

with silenced K-Ras.  Three independent assays were performed in triplicate. 

2.10. Transfection of Ishikawa Cells for Stable Expression of Oncogenic K-

RasG12D Mutant 

      To determine whether expression of mutant K-Ras increased the susceptibility of 

a cell to metformin treatment compared to wild-type K-Ras, Ishikawa cells were 

transfected to stably express an oncogenic K-RasG12D mutant.  Ishikawa cells were 

seeded on 6-well plates at a density of 2 x 105 cells/well and were incubated at 37oC 

under 5% CO2 for 24 hours.  For transfection, a pMEV-2HA plasmid vector (Biomyx 

Technology, San Diego, CA) was used with and without oncogenic K-RasG12D 

inserted.  Plasmids were graciously provided by the lab of Dr. Kwong K. Wong at the 

University of Texas, M.D. Anderson Cancer Center.  For plasmid DNA transfection, 

4 ug of plasmid DNA was used per well of a 6-well plate and performed using 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA) as per the manufacturer’s protocol.  

One well was transfected with pMEV-KRAS-G12D, one well with pMEV vector alone 

(as a negative control), and one well with Lipofectamine 2000 alone (mock 

transfection).  Media containing Lipofectamine 2000 was replaced after 6 hours with 

fresh media.  After 24 hours, G418-sulfate 750 ug/mL was applied to transfected 

wells and replaced every 3 days until resistant colonies were identified.  All Ishikawa 

cells in the mock transfection well were killed within 7 days with G418-sulfate 750 
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ug/mL.  Five resistant colonies were selected from each well and expanded and 

ultimately analyzed for K-Ras expression at the mRNA level by quantitative RT-

qPCR.   

      Cells were first trypsinized and transferred to fresh labeled 1.5 mL centrifuge 

tubes.  Tubes were centrifuged at 500 x g for 10 minutes to pellet the cells and the 

supernatant was then discarded.  Cell pellets were resuspended in 500 uL of Trizol 

reagent (Life Technologies, Carlsbad, CA) followed by the addition of chloroform at a 

dilution of 1:5.  Samples were vortexed and incubated at room temperature for 15 

minutes.  Samples were then centrifuged at 13,000 rpm for 15 minutes at 40C.  The 

upper, aqueous phase containing the RNA was transferred to fresh, ice-cold 1.5 mL 

centrifuge tubes.  RNA was precipitated by adding 500 uL of 2-propanol to each 

sample and incubating overnight at -200C.  Following the incubation, samples were 

centrifuged at 13,000 rpm for 15 minutes at 40C to pellet the RNA.  RNA was then 

washed twice in 75% ethanol.   Following centrifugation, the supernatant was 

discarded and the RNA pellets were allowed to air-dry at room temperature for 15 

minutes.  The RNA pellets were then resuspended in approximately 15-30 uL of 

DEPC/RNase-free water (Ambion, Carlsbad, CA).  RNA concentrations were 

quantified using the Bio-Rad SmartSpecTM 3000 (Bio-Rad Laboratories, Hercules, 

CA).  Aliquots from each sample were then treated with DNaseI.  RT-qPCR using 

primers for 18S (Applied Biosystems, Carlsbad, CA) and human KRAS (Applied 

Biosystems, Carlsbad, CA) was performed to determine mRNA expression of KRAS 

in selected clones.  The PCR protocol utilized was as follows: 500C for 10 minutes 
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and 950C for 5 minutes, followed by 950C for 12 seconds and 600C for 30 seconds 

for 40 cycles. 

      The clone demonstrating the greatest expression of K-Ras relative to negative 

controls was selected for viability assays.  Ishikawa cells expressing oncogenic K-

RasG12D and their corresponding negative controls were seeded in 96-well plates 

at a density of 4 x 103 cells/well and were incubated at 37oC under 5% CO2 for 24 

hours.  The medium was then replaced with fresh antibiotic-free medium containing 

metformin at concentrations ranging from 0.5 – 20 mM.  After treatment for 48 hours, 

MTT assays were performed as described above to compare differences in relative 

cell viability between Ishikawa cells expressing the oncogenic K-RasG12D mutant 

and those with wild-type K-Ras expression.  Three independent assays were 

performed in triplicate. 

2.11. Confocal Imaging Analysis of the Effect of Metformin Treatment on 

Subcellular K-Ras Localization  

      As Ras transport to the plasma membrane is critical to its activation and 

intracellular signaling, a series of experiments were performed to evaluate the effect 

of metformin on Ras localization.  Specifically, K-Ras and H-Ras localization was 

analyzed by confocal microscopy using Madin-Darby Canine Kidney (MDCK) cells 

expressing GFP-labeled oncogenic K-RasG12V or H-RasG12V mutants.  These 

experiments were performed in collaboration with the lab of Dr. John Hancock at the 

University of Texas – Houston Medical School.  MDCK cells were cultured in DMEM 

(ThermoScientific, Waltham, MA) supplemented with 10% FBS and 1 mM sodium 

pyruvate and plated at a density of 1 x 105 cells/well on coverslips in 12-well plates 



35 
 

and incubated at 370C, 5% CO2 overnight.  Cells were treated with vehicle (PBS) or 

metformin (0.001 – 2 mM) for 48 hours to allow new protein synthesis and trafficking.  

After treatment, cells were fixed with 4% paraformaldehyde at room temperature for 

30 minutes and quenched with 50mM ammonium chloride for 10 minutes. Coverslips 

were mounted onto slides in Mowiol and imaged by confocal microscopy using a 

Nikon A1R Confocal Laser Microscope (Nikon, Tokyo, Japan).  Three independent 

experiments were performed in which three representative fields from each slide 

were imaged and analyzed using ImageJ software.  The ratios of membrane-bound 

GFP-labeled K-Ras and H-Ras to total (membrane + cytoplasmic) K-Ras and H-Ras 

were calculated.  A similar experiment was performed in Hec1A cells transfected 

with GFP-labeled K-RasG12V and treated with 0.1 to 5 mM of metformin over 48 

hours. 

2.12. Analysis of the Effect of Metformin Treatment on Subcellular K-Ras 

Localization in a Human Endometrial Cancer Cell Line  

      To confirm and validate the results obtained using confocal microscopy on 

human endometrial cancer; subcellular fractionation was carried out in Hec1A cells 

to quantify the proportion of membrane-bound K-Ras compared to total K-Ras as a 

function of metformin treatment.  Hec1A cells were plated at a density of 2 x 106 

cells per plate on 100mm plates and incubated overnight in antibiotic-free medium at 

37oC, 5% CO2.  Cells were then treated with vehicle (1X PBS) or metformin (0.1 mM, 

0.5 mM, 1 mM, and 5 mM) for 48 hrs.  Following treatment, cell fractionation was 

performed using a Subcellular Protein Fractionation Kit (ThermoScientific, Waltham, 

MA) as per the manufacturer’s protocol to extract the membrane and cytoplasmic 
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fractions.   Cells were harvested with trypsin-EDTA and separated by treatment into 

in different 15 mL conical tubes.  Cells were centrifuged at 500 x g for 5 minutes and 

the media supernatant was discarded.  The cell pellet was resuspended in ice-cold 

1X PBS.  Cells were counted and a total of 6 x 106 cells from each treatment group 

were transferred into separate pre-chilled 1.5 mL centrifuge tubes.  Cells were 

centrifuged at 500 x g for 3 minutes.  The supernatants were discarded and the cell 

pellets were resuspended in 350 uL of cytoplasmic extraction buffer (CEB) 

containing a 1:100 dilution of HaltTM Protease Inhibitor Cocktail (ThermoScientific, 

Waltham, MA).  After adding the CEB to the cell pellet, cells were incubated at 40C 

for 10 minutes with gentle mixing.  Following the incubation, cells were centrifuged at 

500 x g for 5 minutes.  The supernatant, representing the cytoplasmic protein 

fraction, was immediately transferred to separate pre-chilled 1.5 mL centrifuge tubes 

and labeled.  The cell pellet was then resuspended in 350 uL of membrane 

extraction buffer (MEB) containing a containing a 1:100 dilution of protease inhibitor, 

vortexed vigorously for 5 seconds, and then incubated at 40C for 10 minutes with 

gentle mixing.  Following the incubation, cells were centrifuged at 3000 x g for 5 

minutes.  The supernatant, representing the membrane protein fraction, was 

immediately transferred to separate pre-chilled 1.5 mL centrifuge tubes and labeled.  

Protein concentrations from the membrane and cytoplasmic fractions were 

determined as described by the methods above and equal amounts of protein (15 

ug) were separated by SDS-PAGE using a 12% gel and transferred onto a 

nitrocellulose membrane.  Membrane and cytoplasmic fractions were run on the 

same gel.  Rabbit monoclonal Na+/K+ ATPase alpha antibody (Epitomics, 
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Burlingame, CA) and total AKT (Cell Signaling, Beverly, MA) were used as loading 

controls and to confirm the purity of membrane and cytoplasmic fractions, 

respectively.  Primary monoclonal anti-c-K-Ras, clone 234-4.2 (Sigma, St. Louis, 

MO) was used to evaluate the expression of K-Ras in each cellular fraction.  

Densitometry analyses of western immunoblots were carried out using ImageJ 

software and the ratio of membrane-bound K-Ras to total (membrane + cytoplasmic) 

K-Ras was calculated.  Three independent experiments were performed in triplicate. 

2.13. Analysis of the Effect of Aminoimidazole-4-Carboxamide Riboside 

(AICAR) Treatment on Subcellular K-Ras Localization  

      AICAR (Cell Signaling, Beverly, MA) is an AMP analog that promotes activation 

of AMPK by increasing the ratio or intracellular AMP to ATP.  As this is a mechanism 

by which metformin is thought to also exert its anti-proliferative effects, we sought to 

evaluate whether AMPK activation by AICAR would affect subcellular K-Ras 

localization.  Hec1A cells were plated at a density of 2 x 106 cells per plate on 

100mm plates and incubated overnight in antibiotic-free medium at 37oC, 5% CO2.  

Cells were then treated with either vehicle (1X PBS), metformin (1 mM and 5 mM), 

or AICAR (0.1 mM and 1 mM) for 48 hours.  Following treatment, cell fractionation 

was performed in a similar manner as described above using a Subcellular Protein 

Fractionation Kit (ThermoScientific, Waltham, MA) to extract the membrane and 

cytoplasmic fractions.  Equal amounts of protein (15 ug) were separated by SDS-

PAGE using a 12% gel and transferred onto a nitrocellulose membrane.  Membrane 

and cytoplasmic fractions were run on the same gels.  Rabbit monoclonal Na+/K+ 

ATPase alpha antibody (Epitomics, Burlingame, CA) and total AKT (Cell Signaling, 
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Beverly, MA) were again used as loading controls.  Primary monoclonal anti-c-K-

Ras, clone 234-4.2 (Sigma, St. Louis, MO) was used to evaluate the expression of 

K-Ras in each cellular fraction.  Densitometry analysis of western immunoblots was 

carried out using ImageJ software and the ratio of membrane-bound K-Ras to total 

(membrane + cytoplasmic) K-Ras was calculated.  Two independent experiments 

were performed in triplicate. 

2.14. Analysis of the Effect of Co-Treatment of Compound C, an AMPK 

Inhibitor, with Metformin or AICAR on Subcellular K-Ras Localization  

      To determine whether changes in subcellular K-Ras localization are AMPK-

dependent, we sought to evaluate whether concurrent treatment with Compound C, 

an inhibitor of AMPK, would abrogate the effects seen with either metformin or 

AICAR.  Hec1A cells were plated at a density of 2 x 106 cells per plate on 100mm 

plates and incubated overnight in antibiotic-free medium at 37oC, 5% CO2.  Cells 

were then treated with either DMSO (control), metformin 5 mM +/- Compound C 10 

uM, or AICAR 1 mM +/- Compound C 10 uM for 48 hours.  Compound C was 

administered 1 hour prior to initiating treatment with either metformin or AICAR.  

Following 48 hours of treatment, cell fractionation was performed in a similar manner 

as described above using a Subcellular Protein Fractionation Kit (ThermoScientific, 

Waltham, MA) to extract the membrane and cytoplasmic fractions.  Equal amounts 

of protein (15 ug) were separated by SDS-PAGE using a 12% gel and transferred 

onto a nitrocellulose membrane.  Membrane and cytoplasmic fractions were run on 

the same gels.  Rabbit monoclonal Na+/K+ ATPase alpha antibody (Epitomics, 

Burlingame, CA) and total AKT (Cell Signaling) were again used as loading controls.  
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Primary monoclonal anti-c-K-Ras, clone 234-4.2 (Sigma, St. Louis, MO) was used to 

evaluate the expression of K-Ras in each cellular fraction.  Densitometry analyses of 

western immunoblots were carried out using ImageJ software and the ratio of 

membrane-bound K-Ras to total (membrane + cytoplasmic) K-Ras was calculated.  

Two independent experiments were performed in triplicate. 

2.15. Combination of Metformin with PI3K inhibitors or MEK inhibitor 

      To evaluate the role of metformin in combination with other targeted agents, a 

series of MTT viability assays and western immunoblots were performed.  MecPK 

cells were seeded on 96-well plates at a density of 4 x 103 cells/well and incubated 

at 37oC under 5% CO2 for 24 hours.  Cells were treated with either DMSO (control), 

metformin alone (1, 5, and 10 mM), an mTOR inhibitor alone (RAD001 10 and 30 

nM), a dual inhibitor of pan-PI3K and mTOR alone (BEZ235 100 and 500 nM), a 

MEK inhibitor alone (AZD6244 2 and 10 uM), or the combination of each targeted 

biologic agent with metformin.  After 48 hours of treatment, MTT assays were 

performed as described above to compare differences in relative cell viability 

between each drug alone or different combinations at their approximate half maximal 

inhibitory concentration (IC50).  Three independent experiments were performed in 

triplicate. 

      To evaluate the effect of combination therapies on the PI3K and Ras-MAPK 

signaling pathways, MecPK cells were seeded on 6-well plates at a density of 3 x 

105 cells/well and were incubated at 37oC under 5% CO2 for 24 hours.  Cells were 

then treated with either DMSO, metformin 5 mM alone, RAD001 10 nM alone, 

AZD6244 6 uM alone, or the combination of RAD001 10 nM plus metformin 5 mM or 



40 
 

RAD001 10 nM plus AZD6244 6 uM.  Cells were treated for 48 hours after which 

whole cell lysates were harvested and total protein concentrations were calculated 

as described above.  Equal amounts of protein (15 ug) were separated by SDS-

PAGE using 10% gels and then transferred onto a nitrocellulose membranes.  

Membranes were incubated overnight at 40C with 1:1000 dilutions of primary 

antibodies directed against phospho-AMPKα (Thr172), Total AMPK, phospho-Akt 

(Ser473), Total Akt, phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204), and phospho-

S6 ribosomal protein (Ser235/236) - all purchased from Cell Signaling (Beverly, MA).  

β-actin expression served as a loading control and was detected using anti-β-actin 

IgG (Sigma, St. Louis, MO).  Three independent experiments were performed.   A 

similar experiment treating MecPK cells with either DMSO, BEZ235 250 nM alone, 

metformin 5 mM alone, metformin 10 mM, and the combination of BEZ235 250 nM 

with either metformin at 5 mM or 10 mM was also completed. 

2.16. Statistical Analyses 

      The values obtained are presented as the mean + SEM and analyzed using the 

Student’s t-test or the Mann-Whitney U test (GraphPad Prism, version 5).  Dose-

response curves were converted into logarithmic curves and IC50 values calculated 

using GraphPad Prism, version 5 software.   For all results, significance was set as p 

< 0.05.  The data presented are the results of three independent experiments 

performed in triplicate unless otherwise indicated.   
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3. Results 

3.1. Metformin Significantly Inhibits Proliferation of K-Ras Mutant 

Endometrial Cancer Cell Lines 

      To study the effects of metformin on endometrial cancer cell viability and 

proliferation, Hec1A, Ishikawa, and MecPK cells were treated with various 

concentrations (0.5–20 mM) of metformin over 48 hours. Metformin significantly 

inhibited the relative viability of MecPK and Hec1A cells in a concentration-

dependent manner with a significant decrease in relative cell viability achieved at 

concentrations of 0.5 mM (p=0.008) and 5 mM (p<0.001), respectively.  The mean 

IC50 was 1.16 mM for MecPK cells and 4.23 mM for Hec1A (Figure 2).  In contrast, 

Ishikawa cell proliferation was significantly inhibited only at the highest metformin 

concentration (20 mM, p=0.015) and the IC50 could not be calculated based on the 

concentrations of metformin administered. 

 

 

 

 

 

 

 

 

 

 Figure 2.  Log-scale dose-response curves for metformin treatment over 48h in 
Hec1A, Ishikawa, and MecPK cells.  Metformin causes a significant concentration-
dependent decrease in relative survival in both MecPK and Hec1A.  In contrast, in 
Ishikawa cells, a significant decrease in relative cell viability was seen only at the 
highest concentration used (20mM). These data represent three independent 
experiments performed in triplicate.  Error bars indicate +/- SEM. 
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3.2. Effect of Metformin on Expression of AMPK, PI3K-AKT and Ras-MAPK 

Pathways  

      To investigate the effect of metformin on AMPK and on downstream signaling 

through the PI3K-AKT and Ras-MAPK pathways, we treated Hec1A, Ishikawa, and 

MecPK cells with metformin (1–10 mM) over 48 hours (Figure 3A).  Immunoblotting 

demonstrated that Hec1A cells expressed PTEN while Ishikawa and MecPK cells 

had lack of PTEN expression and all cell lines expressed OCT1 (Figure 3B).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Western immunoblots following metformin treatment - A) Protein 
expression following metformin treatment after 48 h.  In all cell lines, there is an 
concentration-dependent increase in AMPK activation with metformin treatment.  
There is a concentration-dependent decrease in pS6rp and pERK1/2 expression in 
both K-Ras mutant cell lines (Hec1A and MecPK), but not in K-Ras wild-type 
Ishikawa cells.  B) PTEN is expressed in Hec1A cells, but not in Ishikawa and 
MecPK.  All cell lines express the organic cation transporter-1 (OCT1) that is required 
for metformin transport into cells. 
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      Metformin induced phosphorylation of AMPK in a concentration-dependent 

manner in all cell lines.  We next evaluated the effect on metformin on the 

downstream target of the mTOR pathway, the S6 ribosomal protein (S6rp).  While 

metformin treatment resulted in a concentration-dependent decrease in pS6rp 

expression in Hec1A and MecPK cells, pS6rp expression was not affected by 

metformin in Ishikawa cells even at high (10 mM) concentrations.  ERK1/2 are 

downstream targets of the Ras-MAPK pathway.  Similar to the effect seen on S6rp, 

metformin induced a concentration-dependent decrease in phosphorylation of 

ERK1/2 in Hec1A and MecPK cells, but not in Ishikawa cells indicating that 

metformin may have an effect on Ras-MAPK signaling in K-Ras mutant cells.  

Although AKT is upstream of TSC-2 (the direct target of AMPK), metformin 

treatment resulted in decreased phosphorylation of AKT in both Hec1A and MecPK 

cells indicating that metformin may also have effects upstream in the PI3K pathway 

possibly independent of its activity through AMPK.  This effect was not seen in 

Ishikawa cells.  Total AKT and total AMPK expression were not affected by 

metformin in any of the cell lines tested.  

 

3.3. Effect of Metformin on Apoptosis and Cell Cycle Progression  

      To determine the effect of metformin on apoptosis we evaluated the fraction of 

cells in the sub-G1 phase as a function of metformin treatment using flow cytometry 

(Figure 4A).  Metformin appears to be a potent inducer of apoptosis in Hec1A and 

MecPK cells with significant increases in the fraction of apoptotic cells seen at 
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concentrations of 5 mM (p<0.001) and 1 mM (p=0.048), respectively.  In contrast, 

metformin did not induce apoptosis in Ishikawa cells.   

 

 

 

 

 

 

 

 

 

 

 

 

      We also evaluated the effect of metformin treatment on the cell cycle by 

comparing the ratio of cells in the G1:G2 phase as a function of metformin treatment 

(Figure 4B).  Metformin induces a G2/M arrest in MecPK cells at concentrations as 

low as 5 mM (p<0.001).  In contrast, metformin induces a G1 arrest in Ishikawa cells, 
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Figure 4. Cell cycle analysis following metformin treatment - A) The 
proportion of cells in the sub-GI phase following 48h of metformin treatment at 
increasing concentrations, normalized to control.  Metformin significantly induces 
apoptosis in both Hec1A and MecPK at concentrations as low as 5mM and 1mM, 
respectively.  Metformin does not induce apoptosis in Ishikawa cells. B) The ratio 
of cells in the G1 phase to G2 phase following 48h of metformin treatment at 
increasing concentrations, normalized to control. While metformin induced a G1 
cell cycle arrest in Ishikawa cells at the highest metformin concentration, it 
induced a concentration-dependent G2/M arrest in MecPK cells.  Metformin did 
not produce a cell cycle arrest in Hec1A cells.  These data represent three 
independent experiments.  Error bars indicate +/- SEM.    
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but only at the highest drug concentration (20 mM, p=0.003).  Metformin does not 

appear to affect cell cycle progression in Hec1A cells. 

3.4. Effect of Metformin on In Vivo Tumor Growth 

      Following intraperitoneal injection of EC cell lines into athymic nude mice and 

stratification into metformin-treated and vehicle-treated groups mice were observed 

for symptoms including massive ascites, hunched posture, or abnormal gait 

indicating impending death.  Each cage (housing 5 mice) consistently drank 25 

mL/day regardless of metformin water or control water throughout the course of the 

study.  When at least one mouse in each group was noted to display any moribund 

symptoms, all mice in the group were euthanized.  The time to the development of 

moribund symptoms was 50 days for the Hec1A group, 64 days for the Ishikawa 

group, and 29 days for the MecPK group.  At the conclusion, all 20 (100%) mice 

injected with Hec1A, all 20 (100%) mice injected with Ishikawa, and 17 of 20 mice 

(85%) injected with MecPK developed intraperitoneal tumors.  Table 1 provides a 

summary of results.  Prior to necropsy, all mice were weighed.  Mean body weights 

for control and metformin-treated mice were not significantly different for any of the 

cell lines (Table 1).  Following weight determination and collection of serum, 

necropsy was performed and all visible tumors were collected from all peritoneal 

surfaces.  Metformin-treated mice had a significantly decreased mean tumor weight 

compared to untreated mice (0.22 g vs. 0.40 g, p=0.002) in the Hec1A group and in 

the MecPK group (0.722 g vs. 1.372 g, p=0.024).  In contrast, there was no 

difference in mean tumor weights between metformin-treated and untreated mice 

(0.87 g vs. 1.12 g, p=0.337) in the Ishikawa group.  As markers for toxicity, we also 
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evaluated and compared mean mouse weights at the time of necropsy and serum 

liver enzyme levels.  Mean mouse weights were not significantly different between 

groups (Table 1).  Also, metformin treatment did not adversely affect serum liver 

enzyme levels (Table 1). 

 

 

 

 

 

 

 

 

 

3.5. Effect of Metformin on Tissue Expression of pS6rp and Ki-67 

      Immunohistochemical analysis of tumor pS6rp expression as a downstream 

marker of PI3K/AKT pathway signaling and Ki-67 staining as a marker for 

proliferation was carried out.  The mean percentage of cells staining positive for Ki-

67 was not significantly different between metformin-treated and vehicle control-

treated groups for either Hec1A or Ishikawa tumor tissues (Figure 5A).  However, 

consistent with the in vitro results, expression of pS6rp was significantly decreased 

 

 

Cell 

Line 

Mice 

(n) 

Developed 

Tumor 

n(%) 

Time to 

Moribund 

(days) 

Mean Mouse 

Wt (g) 

Mean Tumor Wt 

(g) 

Mean Serum 

ALT (U/L) 

Hec1A  20  20 (100%)  50 

Control: 27.01 

Metformin: 25.97 

p=0.281  

Control: 0.395 

Metformin: 0.216 

p=0.002  

Control: 17.5 

Metformin: 22.0 

p=0.228  

Ishikawa  20  20 (100%)  64 

Control: 26.28 

Metformin: 26.24 

p=0.971  

Control: 1.119 

Metformin: 0.868 

p=0.337 

Control: 30.0 

Metformin: 37.7 

p=0.616  

MecPK  20  17 (85%)  29 

Control: 26.41 

Metformin: 24.95 

p=0.420 

Control: 1.372 

Metformin: 0.722 

p=0.024 

Control: 13.7 

Metformin: 17.0 

p=0.059  

Table 2. In Vivo effect of metformin on mean tumor weight in nude mouse 
xenografts.  Metformin treatment resulted in significant reductions in mean tumor 
weights in Hec1A- and MecPK-inoculated mice.  
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in metformin-treated Hec1A tumor tissue compared to vehicle control-treated tissue 

(mean IHC score 4.9 vs. 7.8, p=0.009) – (Figure 5B).  In contrast, there was no 

significant difference in the expression of pS6rp in metformin-treated Ishikawa tumor 

tissue compared to vehicle control-treated tissue (mean IHC score 5.8 vs. 5.3, 

p=0.642) – (Figure 5B). 

 

 

 

 

 

 

 

 

 

 

 

 

3.6. Expression of PTEN Does Not Alter Response to Metformin  

      Transfection of MecPK cells with plasmid pIRES2 containing PTEN gene insert 

resulted in stable expression of PTEN.  The functionality of PTEN was confirmed by 

evaluating the activation of downstream signaling pathways; pS6rp expression was 

Figure 5. Immunohistochemical analysis of xenograft tumors - A) There 
were no differences in the percentage of cells staining positive for Ki-67 
between metformin-treated and vehicle control-treated groups for either Hec1A 
or Ishikawa tumor tissues. B) Expression of pS6rp was significantly decreased 
in metformin-treated Hec1A tumor tissue compared to vehicle control-treated 
tissue  

A B 
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down-regulated in PTEN expressing cells as compared to MecPK cells transfected 

with plasmid alone (Figure 6A).  Following metformin treatment for 48 hours at 

varying concentrations, there was no difference in relative cell viability when 

comparing parental MecPK transfected with pIRES2-vector alone to MecPK cells 

transfected with pIRES2-EGFP-PTEN stably expressing PTEN (Figure 6B).  The 

mean IC50 value for control MecPK cells was 3.31 mM and for MecPK cells 

expressing PTEN it was 3.00 mM. 
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Figure 6. Re-expression of PTEN in MecPK cells and dose-response to metformin 
treatment - A) Transfection of MecPK cells with plasmid pIRES2-EGFP-PTEN insert 
demonstrated expression of PTEN which resulted in down-regulation of downstream 
read-out pS6rp compared to MecPK cells transfected with pIRES2-EGFP-vector alone.  
B) Following metformin treatment for 48 h, there were no significant differences relative 
cell viability between parental MecPK and cells expressing PTEN.  These data represent 
three independent experiments performed in triplicate.  Error bars indicate +/- SEM. 
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3.7. Transient Silencing of Mutant K-Ras Decreases Sensitivity to Metformin 

Treatment 

      Transient silencing of K-Ras in MecPK cells using targeted siRNA results in a 

significantly decreased expression of total K-Ras when compared to cells treated 

with non-target siRNA (control) (Figure 7A).  In both groups, metformin treatment at 

5 – 20 mM resulted in significant decreases in relative cell survival compared to 

PBS-treated controls indicating that K-Ras silencing alone is not sufficient to 

abrogate metformin’s effect on proliferation.   However, cells with transiently silenced 

K-Ras demonstrated significantly decreased sensitivity to metformin treatment (5 – 

20 mM) compared to parental MecPK cells transfected with non-targeted siRNA 

(Figure 7B).   

 

 

 

 

 

 

 

 

Total K-Ras 

A B 

Figure 7. Transient silencing of K-Ras in MecPK cells and dose-response to  
metformin treatment - A) Transient silencing of K-Ras in MecPK cells using targeted 
siRNA results in decreased total K-Ras expression.  B) Following treatment for 48 h, 
MecPK cells with transiently silenced K-Ras displayed decreased sensitivity to metformin 
at 5 – 20 mM compared to parental MecPK cells transfected with non-targeted siRNA 
(negative control). These data represent three independent experiments performed in 
triplicate.  Error bars indicate +/- SEM. 
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3.8. Expression of Mutant K-Ras Increases Sensitivity to Metformin 

Treatment 

      Transfection of Ishikawa cells with plasmid pMEV containing an oncogenic 

mutant K-RasG12D insert resulted in a 4-fold increased expression of K-Ras at the 

mRNA level when compared to Ishikawa cells transfected with pMEV vector alone 

(Figure 8A).  Following metformin treatment for 48 hours at varying concentrations, 

cells expressing the mutant K-Ras had slightly increased sensitivity to metformin 

compared to controls expressing wild-type K-Ras.  IC50 values for the controls could 

not be calculated based on concentrations used and the dose-response curve.  

However, a metformin IC50 of 57.7 mM was calculated in Ishikawa cells expressing 

mutant K-Ras (Figure 8B). 
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Figure 8. Expression of mutant K-RasG12D in Ishikawa cells and dose-
response to metformin treatment - A) Transfection of Ishikawa cells with 
plasmid pMEV containing an oncogenic mutant K-RasG12D insert resulted in 
a 4-fold increased expression of K-Ras at the mRNA level.  B) Cells 
expressing the mutant K-Ras had slightly increased sensitivity to metformin 
compared to controls expressing wild-type K-Ras following 48h of treatment. 
These data represent three independent experiments performed in triplicate.  
Error bars indicate +/- SEM.  
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3.9. Metformin Treatment Causes Mislocalization of K-Ras to the Cytoplasm 

      Confocal microscopy analysis was used to evaluate the localization of GFP-K-

RasG12V (Figure 9A) and GFP-H-RasG12V (Figure 9B) in MDCK cells in response 

to increasing concentrations of metformin over 48 hours.  
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Figure 9. Effect of metformin (0.001 – 2 mM) on K-Ras localization analyzed by 
confocal microscopy in Madin-Darby Canine Kidney (MDCK) cells - Expressing A) 
GFP-labeled oncogenic K-RasG12V mutant and B) GFP-labeled oncogenic H-RasG12V 
mutant. 
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MDCK cells expressing GFP-K-RasG12V treated with metformin showed a 

concentration-dependent translocation of K-Ras from the plasma membrane to the 

cytoplasm, with an IC50 of 357 uM (Figure 10).  In contrast, in MDCK cells 

expressing GFP-H-RasG12V, translocation of H-Ras from the plasma membrane to 

the cytoplasm was less sensitive to metformin treatment, with an IC50 of 2.76 mM 

(Figure 10).  The advantage to using MDCK cells for this screening assay is that 

they grow in confluent monolayers allowing for clear imaging and analysis. 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 10. Quantitative analysis of K-Ras and H-Ras localization following 
metformin treatment using confocal microscopy.  Treatment with metformin 
resulted in a concentration-dependent translocation of K-Ras from the plasma 
membrane to the cytoplasm, with a mean IC50 of 357 uM. These data 
represent three independent experiments performed in triplicate.  Error bars 
indicate +/- SEM.  
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      We attempted to validate the results observed above in human endometrial 

cancer (Hec1A) cells transfected with GFP-K-RasG12V (Figure 11).  However, as 

Hec1A cells have a tendency to grow in multiple layers when confluent, this made 

quantification of intracellular localization using confocal microscopy unreliable.   

 

 

 

 

 

 

 

 

 

      As a result, metformin’s effect on K-Ras localization was validated using in 

Hec1A cells by subcellular fractionation studies and western immunoblot analysis.  

To confirm purity of cellular fractions and equal loading of proteins, membranes were 

incubated with antibodies directed against Na+/K+ ATPase (membrane-specific) and 

total AKT (cytoplasm-specific) – (Figure 12A).  Metformin treatment caused a 

concentration-dependent mislocalization of K-Ras from the plasma membrane to the 

Figure 11. Effect of metformin (0.1 – 5 mM) on K-Ras localization 
analyzed by confocal microscopy in Hec1A cells expressing GFP-
labeled oncogenic K-RasG12V mutant. 



54 
 

cytoplasm with significance achieved at 1 and 5 mM of metformin (p=0.006 and 

p<0.001) compared to PBS treatment (Figure 12B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Hec1A subcellular fractionation following metformin 
treatment - A) Na/K ATPase served as the membrane-specific 
antibody and Total AKT served as the cytoplasm-specific antibody to 
confirm purity of fractions.  B) Metformin treatment induced a 
concentration-dependent translocation of K-Ras from the plasma 
membrane to the cytoplasm with significance achieved at 1 and 5 
mM (p=0.029 and p<0.0001) compared to PBS treatment. These 
data represent three independent experiments performed in triplicate.  
Error bars indicate +/- SEM.  
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3.10. The Effect of Metformin on K-Ras Localization is AMPK-Independent 

      Treatment of Hec1A cells with AICAR resulted in a concentration-dependent 

mislocalization of K-Ras from the plasma membrane to the cytoplasm with 

significance at 0.1 mM (p=0.0002) and 1 mM (p<0.0001) – Figure 13A and 13B.  To 

evaluate whether this effect is AMPK-dependent, we pretreated cells with 

Compound C 10 uM for 1 hour prior to and during treatment with metformin or 

AICAR.  The addition of Compound C did not result in a significant difference in K-

Ras mislocalization following treatment with metformin 5 mM (p=0.257) or with 

AICAR 1 mM (p=0.946) – Figure 14B.   
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Figure 13. A) Hec1A subcellular fractionation following 48 h of 
metformin or AICAR treatment.  B) AICAR also induced a 
concentration-dependent translocation of K-Ras from the plasma 
membrane to the cytoplasm compared to PBS treatment. These 
data represent two independent experiments performed in 
triplicate.  Error bars indicate +/- SEM.  
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      To confirm whether compound C had an effect on AMPK activation over this 

extended course of treatment, western immunoblotting was performed during which 

membranes were incubated with antibody directed against phosphorylated AMPKα 

(Thr172) (pAMPKα).  Cells treated with Compound C exhibited decreased 

expression of pAMPKα at both the membrane and in the cytoplasm when compared 

to cells that were not treated with Compound C (Figure 14A).  This indicates that the 

effects of metformin and AICAR on K-Ras mislocalization are AMPK independent. 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Hec1A subcellular fractionation following 48 h of metformin or 
AICAR treatment with and without Compound C – A) Treatment with 
Compound C resulted in decreased expression of pAMPKα.  B) Pre-treatment 
with Compound C 10 uM for 1 hour followed by co-treatment with either 
Metformin 5 mM or AICAR 1 mM did not alter the effect of these drugs on K-Ras 
localization. These data represent two independent experiments performed in 
triplicate.  Error bars indicate +/- SEM. D – DMSO; M – Metformin 5 mM; A – 
AICAR 1 mM; C – Compound C 10 uM 

B 

A 
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3.11. The Combination of Metformin with PI3K Pathway Inhibitors Results   

in an Additive Decrease in Cell Viability 

      The relative cell viability of MecPK cells was determined by MTT assays after 48 

hours of the following treatments: RAD001 10 nM, BEZ235 100 nM, metformin 5 

mM, AZD6244 10uM, and the combinations  of RAD001 10 nM plus metformin 5 

mM, BEZ235 100 nM plus metformin 5 mM, and AZD6244 10 uM plus metformin 5 

mM.  The combination of RAD001 with metformin produced a significant decrease in 

relative cell viability than that achieved with either RAD001 alone (p=0.008) or 

metformin alone (p=0.035) – Figure 15A.  Similarly, the combination of BEZ235 with 

metformin produced a significant decrease in relative cell viability than that achieved 

with either BEZ235 alone (p=0.003) or metformin alone (p=0.029) – Figure 15B.  In 

contrast, the combination of AZD6244 with metformin did result in a significant 

decrease in relative cell viability than that achieved with AZD6244 alone (p=0.201) or 

metformin alone (p=0.661) – Figure 15C. 
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Figure 15. MTT assays representing treatment of MecPK cells with either: A) 
RAD001 10nM or metformin 5mM alone or in combination; B) BEZ235 100nM or 
metformin 5mM alone or in combination; and C) AZD6244 10uM or metformin 
5mM alone or in combination.  For both RAD001 and BEZ235, combination 
treatment with metformin resulted in decreased relative cell viability than with 
either agent alone.  In contrast, combination treatment with the MEK inhibitor 
AZD6244 and metformin did not result in a greater decrease in relative cell 
viability than with either agent alone. These data represent three independent 
experiments performed in triplicate.  Error bars indicate +/- SEM.  
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      The expression of downstream proteins in the PI3K and Ras-MAPK pathways 

were evaluated by western immunoblots following treatment with DMSO, metformin 

5 mM, RAD001 10 nM, AZD6244 6 uM, or the combinations of RAD001 10 nM plus 

metformin 5 mM or RAD001 10 nM plus AZD6244 6 uM.  Treatments and 

immunoblots were performed on MecPK cells and expressed in Figure 16.  

Metformin treatment increased the expression of pAMPKα and decreased the 

expression of pAKT, pS6rp, and pERK1/2.  These effects were more prominent in 

cells treated with the combination of RAD001 and metformin.  Treatment with 

AZD6244 increased the expression of pAKT and pS6rp.  Following the addition of 

RAD001 to AZD6244, pS6rp expression decreased, but pAKT remained 

overexpressed compared to DMSO treated cells.   

 

 

 

 

 

 

 

 

 

Figure 16. MecPK cells treated for 48h with metformin 5 
mM alone, RAD001 10 nM alone, AZD6244 6 uM alone, or 
combinations of RAD001 with either metformin or 

AZD6244. Metformin treatment increased the expression of 

pAMPKα and decreased the expression of pAKT, pS6rp, 
and pERK1/2.  These effects were more prominent in cells 
treated with the combination of RAD001 and metformin. 
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      Similarly, addition of metformin 5 mM to BEZ235 100 nM resulted in decreased 

expression of pS6rp and pAKT (Figure 17).  BEZ235 alone does not appear to affect 

MAPK signaling (pERK1/2 expression).  However, metformin alone and in 

combination with BEZ235 treatment decreases pERK1/2 expression. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 17. Addition of metformin to BEZ235 results in decreased 
phosphorylation of S6rp and AKT. BEZ235 alone does not appear 
to affect pERK1/2 expression (Ras-MAPK pathway).  However, 
metformin alone and in combination with BEZ235 treatment 
decreases Ras-MAPK signaling. 
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4. Discussion 

      The chemopreventive and antineoplastic effects of metformin are currently being 

evaluated for the treatment of a variety of cancers.  Although its mechanism of 

action is not fully understood, metformin is thought to inhibit cell proliferation locally 

via activation of the AMPK signaling pathway, which counteracts the growth-

promoting effects of PI3K pathway hyperactivity.  Activation of the PI3K pathway, as 

a consequence of the inactivating mutation of the PTEN tumor suppressor gene, is a 

commonly observed mutation in type I endometrial cancer.   With this in mind, we 

set out to evaluate the in vitro and in vivo effects of metformin on endometrial cancer 

growth based on PTEN mutational status.  While we demonstrated that metformin is 

a potent inhibitor of cell proliferation and inducer of apoptosis in vitro and of tumor 

growth in vivo; surprisingly its activity appears to be more robust in endometrial 

cancer cell lines that possess an activating K-Ras mutation as compared to those 

lacking PTEN.  These preliminary findings led us to further evaluate the effect of 

metformin on Ras signaling and intracellular localization.   

      First, we confirmed metformin activates AMPK in a concentration-dependent 

manner in all endometrial cancer cell lines used.  A decrease in PI3K pathway 

signaling was observed in Hec1A and MecPK cells, both of which harbor activating 

mutations in K-Ras, but not in Ishikawa cells which express wild-type K-Ras.  

Furthermore, we demonstrated that pERK1/2 expression was decreased in a 

concentration-dependent manner only in Hec1A and MecPK cells and observed that 

metformin is a potent inducer of apoptosis in both of these cell lines.  These in vitro 

findings were further supported by our xenograft model which demonstrated reduced 
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tumor growth in metformin-treated mice that had been inoculated with Hec1A or 

MecPK, but not with Ishikawa.   

      Based on these data, a few other observations can be made.  Metformin can 

produce anti-proliferative effects in vitro indicating that it acts directly on endometrial 

cancer cells and is not solely reliant on reducing serum insulin levels.  It is 

noteworthy that the effects of metformin on in vivo tumor growth mirrored the effects 

seen in vitro.  Certainly, this is not to minimize the proposed indirect mechanism of 

action of metformin, but, rather, indicates that the anti-neoplastic actions of 

metformin on endometrial cancer likely represent a combination of both direct and 

indirect effects.  Importantly, all endometrial cancer cell lines included in this study 

expressed OCT1.  OCT1 or OCT3 have previously been demonstrated to be 

essential for metformin entry into cells.  Indeed, cells that do not express OCT1 are 

immune to the direct effects of metformin (42).  In a recent study evaluating the 

relevance of the OCT1 transporter to the antineoplastic effect of biguanides in 

epithelial ovarian carcinoma (EOC), siRNA knockdown of OCT1 reduced the 

sensitivity of EOC cells and abrogated the activation of AMPK in response to 

metformin in a concentration-dependent manner (42).  

      A frequently cited criticism of preclinical studies involving metformin is that 

concentrations used in vitro are higher than therapeutic serum concentrations 

achieved in clinical practice.  Specifically, across various cancer cell lines, IC50s 

achieved with metformin are in the millimolar range (1-10 mM), while the therapeutic 

serum concentration of metformin in diabetic patients (treated with 500-2000 mg/day 

orally) is approximately 20 mcmol/mL.  Although this appears to be quite a 
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difference, there are a few possible explanations.  First, the media used in tissue 

culture often contains supraphysiologic glucose levels that may limit the response to 

metformin (99).  Also, metformin has been shown to accumulate in tissues at 

concentrations significantly higher than in the serum in both mice (38) and human 

studies (39).  Using a formula for dose translation from human to mouse based on 

body surface area (BSA) (100), a standard human metformin dose of 24.3 mg/kg 

daily (based on 850 mg twice daily by mouth in a 70 kg human) translates to 299.7 

mg/kg daily in a mouse.  In our metformin xenograft study, each mouse was treated 

daily with 5 mg of metformin dissolved in drinking water.  Assuming an average 

mouse weight of 0.02 kg, each mouse received 250 mg/kg of metformin daily which 

is similar, and certainly not higher, to what is expected based on human equivalency 

dosing.  Furthermore, in our xenograft model, metformin did not induce weight 

changes or elevations in serum liver enzymes that would indicate toxicity.   

      While our preliminary data provided some insight into specific genetic alterations 

that may make a cell more sensitive to metformin treatment, we next sought to 

evaluate if metformin’s antiproliferative effects are mediated specifically by opposing 

the Ras-MAPK or PI3K signaling pathways, or both.  Furthermore, we sought to 

determine if the mechanism of inhibition is something other than up-regulation of 

AMPK by disruption of the energy homeostasis of the cell.  First, to investigate the 

role of PTEN expression on the activity of metformin, we stably transfected and re-

expressed PTEN in MecPK cells and compared their response to metformin with 

MecPK cells transfected with vector alone.  As you may recall, MecPK cells are 

derived from a transgenic mouse harboring a K-RasG12D mutation and 
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homozygous loss of PTEN function.  In this cell line, we demonstrated that PTEN re-

expression does not alter response to metformin.  That is, MecPK cells expressing 

PTEN were not more or less sensitive to metformin treatment by cell viability assays 

when compared to control MecPK cells with loss of PTEN.  In contrast, when K-Ras 

is transiently silenced in MecPK cells using siRNA, we demonstrated that these cells 

are less sensitive to metformin at higher concentrations than parental controls.  

These observations indicate that metformin may act to disrupt signaling of the Ras-

MAPK pathway, a well-known pro-survival pathway that is frequently mutated in a 

variety of tumor types.  The next question was: How? 

      As described above, Ras signaling requires a series of post-translational 

modifications with the ultimate goal of facilitating transport of the Ras protein to the 

plasma membrane where, in response to growth signals, it is activated by GEFs and 

can interact with effector molecules to propagate the growth signal.  Mutations in 

Ras lead to constitutive activation and persistent signaling through effector pathways 

which can ultimately lead to malignant transformation.  We have already reviewed 

the extensive cross-talk between the Ras and PI3K pathways and the importance of 

the latter in Ras-dependent tumor initiation and maintenance.  This process is further 

accentuated by frequently encountered activating mutations in the PI3K pathway, 

such as PIK3CA mutations or PTEN loss of function.  Interestingly, while mutations 

in the Ras and PI3K pathways are mutually exclusive in some tumor types such as 

breast cancer, they frequently coexist in endometrial and colon cancer (48, 81, 85, 

101).  Given our preliminary results demonstrating that metformin appeared to have 

the greatest inhibitory effect on cellular proliferation and in vivo tumor growth in 



65 
 

endometrial cancer cell lines harboring activating K-Ras mutations regardless of 

PTEN expression status; we hypothesized that metformin may have a direct effect 

on K-Ras localization and trafficking to the plasma membrane, leading to decreased 

activation and subsequent decreased signaling through effector pathways.  

Following a series of experiments evaluating the subcellular localization of Ras in 

response to metformin treatment, we demonstrated that metformin causes 

mislocalization of Ras from the plasma membrane to the cytoplasmic compartment.  

This effect appears to be specific to the K-Ras isoform as mislocalization of H-Ras to 

the cytoplasm required much higher metformin concentrations.  This indicates that 

metformin acts to disrupt transport of Ras proteins, in other words the “second 

signal,” rather than altering or inhibiting the series of post-translational modifications 

required for all newly synthesized Ras proteins to localize to the Golgi.   

      The interaction between metformin and the Ras-MAPK signaling pathway have 

gained increasing attention recently.  Metformin has been shown to inhibit Ras-

induced reactive oxygen species production and DNA damage; a mechanism that 

may contribute to its effects as a cancer preventive agent (102).  In breast cancer, 

metformin has been demonstrated to induce cancer cell apoptosis by targeting ERK 

signaling (103).  However, what has yet to be reported is the mechanism by which 

metformin disrupts Ras signaling.  Our data suggests that metformin may disrupt 

plasma membrane localization of K-Ras and hence its signaling.  As K-Ras and H-

Ras are transported to the plasma membrane through different mechanisms, 

metformin, through an unclear mechanism, interferes specifically with K-Ras 

transport.  This may possibly occur through disruption of electrostatic interactions 
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between K-Ras and the plasma membrane or through activation of a farnesyl-

electrostatic switch.  In the latter, phosphorylation of the polybasic domain of K-Ras 

by protein kinase C (PKC), or potentially by AMPK, reduces the net positive charge, 

causing K-Ras to lose affinity to the plasma membrane and to accumulate in 

endomembranes (57).  Interestingly, it has been demonstrated that when K-Ras has 

an activating mutation, translocation to endomembranes is associated with 

apoptosis (104).  This may further explain our findings that metformin potently 

induces apoptosis in endometrial cancer cell lines harboring an activating K-Ras 

mutation.  To determine if these effects are related to metformin’s ability to activate 

AMPK, we performed a series of experiments using AICAR, an AMP analog that 

potently activates AMPK, and Compound C, an inhibitor of AMPK.  We 

demonstrated that similar to metformin, AICAR causes concentration-dependent 

mislocalization of K-Ras to the cytoplasm.  However, treatment with Compound C 

and subsequent inhibition of AMPK did not abrogate the effects of either metformin 

or AICAR on K-Ras intracellular localization.  This indicates that metformin’s effects 

on K-Ras localization are AMPK-independent.  Further studies are necessary to 

investigate the precise mechanism by which metformin causes mislocalization of K-

Ras.  It has been demonstrated that interference of electrostatic interactions by a 

cationic amphiphilic drug (chlorpromazine) reduces the association of K-RasG12V 

(but not H-Ras) with the plasma membrane, leading to accumulation in endosomal 

or mitochondrial membranes resulting in growth inhibition and apoptosis (105).  As 

metformin exists primarily as a hydrophilic cationic molecule at physiological pH 

values and has previously been demonstrated to increase the activity of atypical 
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PKC (34, 106), this may be a possible explanation for its effects on K-Ras 

mislocalization.   

      It is also intriguing to speculate on the role of metformin on cancer cell 

metabolism.  Since the 1920s, it has been observed that cancer cells shift from 

mitochondrial oxidative phosphorylation and rely on glycolysis to generate energy 

needed for maintenance of cellular processes and growth, a phenomenon known as 

the “Warburg effect” (107).  Most cells in a multicellular organism under normal 

physiologic conditions rely on mitochondrial oxidative phosphorylation as the energy 

yield in the form of ATP (36 mol per glucose molecule) is significantly greater than 

with glycolysis (2 mol of ATP per glucose molecule).  As such, these cells reserve 

glycolysis for conditions of oxygen deprivation allowing cells to continue ATP 

production.  Why is it then that cancer cells preferentially utilize a less efficient 

metabolic pathway?  For one, many cancer cells in solid tumors are in a chronic 

hypoxic environment demanding that they use anaerobic glycolysis as a means to 

generate energy.  However, even when oxygen is plentiful, cancer cells still 

preferentially utilize aerobic glycolysis.  The reason for this is a shift in their priorities.  

Cancer cells want to divide rapidly which requires that they replicate all of their 

cellular contents, a process that requires significantly more resources (such as 

NADPH and acetyl-coenzyme A) than just ATP alone (107).  As such, cancer cells 

preferentially metabolize glucose and glutamine to generate the precursors needed 

for fatty acid and amino acid synthesis.  Recent work has demonstrated that Ras-

dependent transformation results in an early switch to aerobic glycolysis (108, 109).  

Despite the switch to glycolysis, some cancer cells retain the capacity for oxidative 
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phosphorylation, particularly when nutrients are low (110).  Metformin is known to 

inhibit oxygen consumption and mitochondrial complex I (111, 112).  This inhibition 

of oxidative phosphorylation may lead to ATP depletion and an energy crisis with the 

end result of apoptosis.  This may provide another explanation for the induction of 

apoptosis that we demonstrated following metformin treatment in K-Ras mutant cell 

lines. 

      Our observations have important clinical implications in endometrial cancer, 

particularly endometrioid-type, as up to 26% harbor activating K-ras mutations and 

up to 83% of cases have PTEN loss with subsequent PI3K hyperactivation.  With the 

recent interest in personalizing cancer care, several targeted strategies have been 

developed and evaluated for the treatment of endometrial carcinoma (113).  

Unfortunately, some combination therapies involving PI3K pathway inhibitors with 

MEK inhibitors have proven to be toxic in Phase I studies making their development 

into feasible treatment strategies uncertain.  To evaluate the role of metformin, as a 

possible Ras-MAPK pathway inhibitor, we combined it with either RAD001 (an 

mTORC1 inhibitor) or BEZ235 (a pan-PI3K/mTOR inhibitor) and demonstrated 

decreased relative cell viability on proliferation assays with the combinations than 

with either of the agents alone.  In contrast, when metformin was combined with a 

MEK inhibitor, AZD6244, there was no additive benefit over either agent alone.  This 

indicates that metformin may have therapeutic utility when combined with inhibitors 

of the PI3K pathway.  In an on-going single-arm, open-label phase II trial at M.D. 

Anderson Cancer Center of RAD001 (10 mg daily) in combination with letrozole (2.5 

mg daily), 9 of the 35 evaluable patients on trial were also using metformin (4 were 
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on metformin prior to study entry for diabetes, 5 started metformin while on trial for 

RAD001-induced hyperglycemia).  Interestingly, metformin users had a substantially 

improved clinical benefit rate (CBR) and objective response rate (ORR) (78% and 

44%) compared to the 26 metformin non-users on the study, with a CBR and ORR 

of 39% and 12% in that group.  Of the four complete responders on trial, three 

occurred in the metformin group.  Toxicities in patients taking metformin were not 

significantly different to those not taking metformin.   

      Metformin may also be combined with cytotoxic agents as a potential 

chemosensitizer.  It was recently demonstrated that metformin potentiates the 

effects of paclitaxel in endometrial cancer cells through modulation of the mTOR 

pathway and cell cycle progression (96).  These effects may be due in part to 

metformin’s ability to down-regulate glyoxalase I (GloI) expression, an enzyme 

involved in glycometabolism that is abundant in tumor tissues and has been 

associated with chemoresistance (114). 

      Furthermore, our observations may also provide a rationale for use of metformin 

in several other cancer types that have a high incidence of K-Ras mutations such as 

pancreatic and colorectal cancer.  Indeed, in several retrospective studies, 

metformin use has been associated with a survival advantage in patients with 

pancreatic cancer (115) and colorectal cancer (116).  However, prospective studies 

are needed to validate these findings. 
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5. Conclusions 

      In conclusion, metformin significantly inhibits cell proliferation, induces apoptosis, 

and decreases tumor growth in preclinical models of endometrial cancer. Metformin 

appears to be most effective against mutant K-Ras endometrial cancer cells.  

Metformin inhibits K-Ras signaling by inducing mislocalization of K-Ras from the 

plasma membrane to the cytoplasm through a process that appears to be AMPK-

independent.  Metformin’s effects on K-Ras may provide added benefit when 

combined with other targeted agents, notably mTOR inhibitors, to improve 

responses.  This data provides preclinical support for clinical trials using metformin 

in combination with PI3K targeted agents, specifically in tumors harboring activating 

K-Ras mutations. 
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