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ABSTRACT 

IDENTIFICATION AND ANALYSIS OF A NOVEL ROLE FOR THE 

TOUSLED-LIKE KINASE IN REGULATING  

MITOTIC SPINDLE DYNAMICS 

 

Publication No. _____ 

Jason R. Ford, Ph.D. 

Supervisory Professor: Jill M. Schumacher, Ph.D. 

 

Deregulation of kinase activity is one example of how cells become cancerous by 

evading evolutionary constraints. The Tousled kinase (Tsl) was initially identified in 

Arabidopsis thaliana as a developmentally important kinase. There are two mammalian 

orthologues of Tsl and one orthologue in C. elegans, TLK-1, which is essential for embryonic 

viability and germ cell development. Depletion of TLK-1 leads to embryonic arrest large, 

distended nuclei, and ultimately embryonic lethality. Prior to terminal arrest, TLK-1-depleted 

embryos undergo aberrant mitoses characterized by poor metaphase chromosome alignment, 

delayed mitotic progression, lagging chromosomes, and supernumerary centrosomes.  

I discovered an unanticipated requirement for TLK-1 in mitotic spindle assembly and 

positioning. Normally, in the newly-fertilized zygote (P0) the maternal pronucleus migrates 

toward the paternal pronucleus at the posterior end of the embryo. After pronuclear meeting, the 

pronuclear-centrosome complex rotates 90° during centration to align on the anteroposterior axis 

followed by nuclear envelope breakdown (NEBD). However, in TLK-1-depleted P0 embryos, 
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the centrosome-pronuclear complex rotation is significantly delayed with respect to NEBD and 

chromosome congression, Additionally, centrosome positions over time in tlk-1(RNAi) early 

embryos revealed a defect in posterior centrosome positioning during spindle-pronuclear 

centration, and 4D analysis of centrosome positions and movement in newly fertilized embryos 

showed aberrant centrosome dynamics in TLK-1-depleted embryos.  

Several mechanisms contribute to spindle rotation, one of which is the anchoring of 

astral microtubules to the cell cortex. Attachment of these microtubules to the cortices is 

thought to confer the necessary stability and forces in order to rotate the centrosome-pronuclear 

complex in a timely fashion. Analysis of a microtubule end-binding protein revealed that TLK-

1-depleted embryos exhibit a more stochastic distribution of microtubule growth toward the 

cell cortices, and the types of microtubule attachments appear to differ from wild-type 

embryos. Additionally, fewer astral microtubules are in the vicinity of the cell cortex, thus 

suggesting that the delayed spindle rotation could be in part due to a lack of appropriate 

microtubule attachments to the cell cortex. Together with recently published biochemical data 

revealing the Tousled-like kinases associate with components of the dynein microtubule motor 

complex in humans, these data suggest that Tousled-like kinases play an important role in 

mitotic spindle assembly and positioning.  
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Forgive me my nonsense 
 as I also forgive the nonsense of those who think they talk sense 

 
~Robert Frost 

 
 

The whole problem with the world is that fools and fanatics are always so certain 
of themselves, but wiser men so full of doubts.  

 
~Bertrand Russell 
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Chapter I: Introduction and Background 
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BACKGROUND 

 

Cænorhabditis elegans as a system to study cellular dynamics 

 
Model organisms have been used for decades to study how multicelluar organisms 

develop and to test hypotheses in vivo. In 1965, Sydney Brenner began using the soil nematode 

Cænorhabditis elegans as a model organism to research molecular and developmental biology, 

which he recognized as a useful tool for research due to its genetic tractability (Wood, 1988, 

Altun, 2002-2006, Basto et al., 2008, Zhang et al., 2009). C. elegans are approximately one 

millimeter in length with a simple anatomy, thus making it an ideal system for analyzing 

features such as cell biology, neuroscience, and aging (Altun, 2002-2006). C. elegans has two 

sexes: self-fertilizing hermaphrodites (XX) and males (XO). Hermaphrodites can produce on 

average 300 genetically-identical progeny by self-or cross-fertilization that develop quickly and 

have a relatively short lifespan of around three weeks. Fertilized eggs develop into adult worms 

in approximately three days at ambient temperatures. Males arise at a frequency of 0.1% by 

spontaneous nondisjunction of the X chromosome during oogenesis. In addition, they arise at a 

much higher frequency in male-hermaphrodite mating due to the lack of a paternal X 

chromosome. In addition, male sperm out-compete hermaphrodite sperm, resulting in greater 

genetic diversity in this species (Altun, 2002-2006).  

The sequencing of the C. elegans genome increased the usefulness of the nematode as 

an easily-accessible genetic asset; all 100,291Mbs and ~19,735 protein coding genes were 

thoroughly detailed (Hillier et al., 2005). Additionally, this system has a repertoire of 

advantages for studying metazoan cell division, including genetic tractability, translucent 

embryo cytology, and ease of maintenance. The entire somatic cell lineages of both sexes are 
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amazingly invariant and have been precisely mapped: adult hermaphrodites have 959 somatic 

nuclei versus 1,031 male somatic nuclei (Altun, 2002-2006). Apropos its usefulness as a 

genetic model, C. elegans is amenable to both forward and reverse genetic techniques, in 

particular RNA-mediated interference (RNAi) (Timmons and Fire, 1998). The ease with which 

forward genetic screens are employed in C. elegans largely drove its acceptance as a powerful 

model organism. A variety of screens are routinely employed by C. elegans researchers to 

identify mutations that disrupt or alter particular biological processes of interest (Jorgensen and 

Mango, 2002). Conversely, the powerful reverse genetic technique of RNA-mediated 

interference (RNAi) was first described in C. elegans, and this unbelievably useful technique 

has been extrapolated and is now applied regularly to biological research in a number of 

different model organisms (Timmons and Fire, 1998, Maddox et al., 2006). RNAi in C. elegans 

is largely facilitated by one of two methods: feeding the worms Escherichia coli expressing 

specific double-stranded RNAs (dsRNAs) (Timmons and Fire, 1998) or via microinjection of 

the dsRNA directly into the hermaphroditic gonad (Maddox et al., 2006, Oegema and Hyman, 

2006). Additionally, C. elegans is particularly well-suited for RNAi-based studies, as 

introduction of gene-specific dsRNA to the syncytial gonad reproducibly depletes oocytes of 

>95% of the target gene product and also persists to interfere with the zygotic contribution as 

well (Timmons and Fire, 1998, Poulin et al., 2004, Oegema and Hyman, 2006).  

Another advantage for using C. elegans to study development is that cellular structures 

are easily discerned in their large embryos, especially in the newly-fertilized single-cell zygote. 

A single nematode embryo is approximately 50µm in length, 30µm in width, and 15µm in 

height (Goldstein and Hird, 1996), and maintains these approximate dimensions throughout 

embryonic development (Oegema and Hyman, 2006). This fascinating property allows for the 
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ready observation of the nuclear envelope, mitotic spindle, chromatin, cytoskeleton, and other 

organelles in the very early embryo. Furthermore, the rapid and invariant nature of the early 

mitotic divisions within the embryo provide an excellent resource for quickly assessing and 

exploring the nature of novel genes vis-à-vis cell cycle functions.  Many in vivo techniques, 

such as Normarski/brightfield or fluorescence microscopy, have been developed to 

quantitatively study cellular events during embryonic development, including pronuclear 

migration (Albertson, 1984, O'Connell, 2000), anaphase chromosome segregation, spindle 

elongation (Grill et al., 2001, Cheeseman et al., 2004, Labbe et al., 2004), and asymmetric 

positioning of the spindle (Tsou et al., 2002, Colombo et al., 2003, Labbe et al., 2004, Oegema 

and Hyman, 2006). Several recent landmark genome-wide RNAi-based screens utilizing the 

beauty and power of confocal microscopy have unearthed thousands of essential genes 

necessary for accurate execution of the early mitotic divisions (Gonczy et al., 2000, Piano et al., 

2000, Sonnichsen et al., 2005, Green et al., 2011). 

To more closely study C. elegans embryos and their cellular structures during 

development, fixed immunofluorescence analysis or live-cell imaging of C. elegans embryos 

are indispensible resources for visually observing cellular processes at specific time points or 

through development. Microscopy has become especially useful as the number of transgenic 

worm strains expressing proteins tagged with fluorescent reporters (e.g, green fluorescent 

protein (GFP)) continues to increase since the development of the microparticle bombardment 

(Praitis et al., 2001) and Mos transposase single-copy insertion (Frokjaer-Jensen et al., 2008) 

methods of transgenesis. These strains are useful for following embryonic development and for 

testing developmental defects after employing RNAi against genes of interest. Additionally, 
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many genes are highly conserved from C. elegans to humans, including important 

developmental pathways whose dysfunction can lead to human disease (Beitel et al., 1990). 

Altogether, these are several reasons why C. elegans is suitable for use as a genetic 

model for studying embryogenesis and development. The work presented in this dissertation 

utilizes the advantages of the C. elegans embryo to study and further elucidate the regulatory 

events required for embryonic development. 

 

Meiosis in Cænorhabditis elegans 

 
An important characteristic of sexual reproduction is the ability of an organism to 

produce haploid gametes, canonically through the process of meiosis. As male and female 

gametes proceed through meiosis, they are regulated in different ways and often vary between 

organisms. Spermatogenesis occurs through uninterrupted meiosis, while oocytes typically 

arrest at various points during meiosis depending on the species (Greenstein, 2005a). The 

distinct mechanisms by which each type of gamete develops and matures have been extensively 

studied in C. elegans, leading to a greater understanding of mechanics involved in sexual 

reproduction in hermaphroditic species. Since the wild-type C. elegans hermaphrodite harbors 

both sperm and oocytes – thus making it capable of self-fertilization – it is an extraordinarily 

useful model by which to study gonad formation and structure, gamete development and 

maturation, and ultimately embryogenesis. 

 In the hermaphrodite, the sex-determination cascade specifies gamete sex in the distal 

germline, while physiological sperm signaling activates MPK-1/ERK in the proximal germline 

to control oocyte maturation. Recently, it was reported that repeated utilization of a self-

contained negative regulatory module consisting of NOS-3 translational repressor, FEM-CUL-
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2, and TRA-1 (Gli transcriptional repressor) is responsible for coordinating both of these 

processes (Arur et al., 2009, Arur et al., 2011). Both sets of gametes in the C. elegans 

hermaphrodite come from a common set of germline precursor cells. Proliferation of these 

germ cell precursors takes place in the distal mitotic region of the hermaphroditic germline 

(Hubbard and Greenstein, 2005). Many different factors affect the outcome of whether these 

cells differentiate into sperm or oocytes, a process dubbed the sperm-oocyte switch, including 

the fem-3, puf-8, fbf-1/2, and nos-1/2/3 genes (Ahringer and Kimble, 1991, Kuwabara, 1998, 

Kraemer et al., 1999, Crittenden et al., 2002, Bachorik and Kimble, 2005). Additionally, there 

are four key regulators that control entry into meiosis – GLD-1/2/3 and NOS-3 – primarily by 

overseeing a complex network of translationally-controlled gene products (Kadyk and Kimble, 

1998, Eckmann et al., 2004, Hansen et al., 2004a, Hansen et al., 2004b).  

In C. elegans, chromosomes are subject to the classically-described phases of meiotic 

prophase I. Upon commitment to meiosis, homologous recombination of chromosomes and 

synaptonemal complex (SC) formation occur in the transition zone of the gonad and is typically 

finished by the pachytene phase of meiosis (Hubbard and Greenstein, 2005).  During this phase 

homologues are aligned and chromosomes localize to the nuclear periphery. Hermaphrodite 

(XX) pachytene nuclei contain six tripartite SCs while males (XO) only have five since their 

univalent X chromosome exists in a highly condensed heterochromatic state (Goldstein, 1982, 

Goldstein and Slaton, 1982). Advancement through pachytene to diplotene requires signaling 

from the mitogen-activated protein kinase (MAPK) pathway, which has pleiotropic activities 

during germline development (Church et al., 1995, Hsu et al., 2002, Arur et al., 2009), as well 

as the daz-1 and skr-1/2 genes (Karashima et al., 2000, Nayak et al., 2002).  
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During diplotene, condensed chromosomes bound together by their chiasmata begin to 

desynapse, and eventually detach from the nuclear envelope to condense further as they move 

into diakinesis (Villeneuve, 1994, Albertson et al., 1997). Six bivalents are readily observed in 

oocytes at diakinesis, but in spermatocytes individual chromosomes or bivalents are difficult to 

distinguish (Villeneuve, 1994). At diakinesis, oocytes enter diapause. They resume meiosis and 

complete meiotic maturation and ovulation of the oocytes are triggered by major sperm protein 

(MSP) released from the sperm stored in the spermatheca (Wood, 1988, Greenstein, 2005b). As 

the oocyte passes through the spermatheca, it is fertilized and ejected into the uterus. 

Interestingly, anteroposterior (AP) polarity in the one-cell C. elegans embryo is 

determined at fertilization when PAR proteins establish both the anterior (PAR-3/6) and 

posterior (PAR-1/2) cortical domains (Wallenfang and Seydoux, 2000, Zonies et al., 2010). 

Prior to fertilization, the C. elegans oocyte is unpolarized, and determination of the AP axis is 

set by the sperm entry point, which ultimately demarcates the posterior pole of the embryo 

(Goldstein and Hird, 1996). After fertilization, the maternal nucleus completes two meiotic 

divisions, generating a haploid pronucleus. Concomitantly, a sperm-donated centrosome 

duplicates, separates, and begin to nucleate microtubules to set up the mitotic spindle 

(O'Connell, 2000, O'Connell et al., 2000, Singson, 2001, Tsai and Ahringer, 2007). The 

proteins SPD-2, ZYG-1, and AIR-1 recruit γ-tubulin and constituents of the pericentriolar 

material to the centrioles and mediate centrosome maturation; ultimately, these will become the 

spindle asters during the first mitotic division of the embryo (Schumacher et al., 1998a, Hannak 

et al., 2001b, Kemp et al., 2004, Pelletier et al., 2004, Pelletier et al., 2006). The ability of 

mature centrosomes to nucleate spindle microtubules results from the presence of γ-tubulin and 

associated proteins, (Hannak et al., 2002); importantly, the centrioles/centrosomes are required  
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Figure 1: The first embryonic C. elegans mitotic division. 

Maternal and paternal pronuclear migration occur post-fertilization concomitant with mitotic 

spindle nucleation. After pronuclear meeting, the chromosomes condense and the mitotic 

spindle begins to rotate and chromosomes align near the center of the cell. After nuclear 

envelope breakdown, kinetochores are attached to microtubules and sister chromosomes align 

at the metaphase plate before separating at anaphase. As chromosome decondense and nuclear 

envelope reassembly takes place in telophase, cleavage furrow ingression ensues and results in 

cell separation. 
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to initiate the  anterior-posterior polarity of the embryo but not to maintain it (Cowan and 

Hyman, 2004).  

 

The first mitotic division in Cænorhabditis elegans 

 

Cellular diversity is achieved in multicellular organisms when cells of different 

developmental potential arise by asymmetric cell division (Hyman and White, 1987, Skop 

and White, 1998, Pearson et al., 2004). Establishment of cellular polarity, accurate 

localization of cellular determinants, and correct positioning of the mitotic spindle prior to 

cytokinesis all are part of the recognized multifaceted paradigm for asymmetric cell division 

(Betschinger and Knoblich, 2004, Gonczy, 2008). In C.elegans, the first embryonic division 

is asymmetric and culminates in a larger anterior blastomere and a smaller posterior 

daughter cell (Figure 1). This difference in size is determined by the position of the mitotic 

spindle, which ultimately defines the cleavage plane during cytokinesis (Galli and van den 

Heuvel, 2008).  Placement of the mitotic spindle is organized by microtubules nucleating 

from centrosomes and their associated motor proteins, which together act as generators and  
facilitators of the forces necessary for their accurate placement within cells, and centrosome 

positioning ultimately influences the positioning of the mitotic spindle. 

Following fertilization by sperm and completion of meiosis by the oocyte nucleus, 

the paternal and maternal pronuclei form at the posterior and anterior poles of the embryo, 

respectively (Figure 2). These pronuclei begin migrating towards one another, with the 

maternal pronucleus moving significantly farther and faster than the paternal pronucleus, 

and eventually meet in the posterior half of the cell. During this time, both pronuclei begin 

to condense their chromosomes, hence this event is the first mitotic prophase (Wood, 1988). 
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The migration of the pronuclei is a result of microtubule-dependent spindle positioning and 

cytoplasmic reorganization. Internal cytoplasm begins to convect posteriorly, while cortical 

cytoplasm flows anteriorly (Goldstein et al., 1993, Hird and White, 1993) aiding in the 

overall process of pronuclear migration. Prior to completion of pronuclear migration, the 

anterior cortex undergoes actomyosin rearrangement as evidenced by wave-like cortical 

contractions, resulting in the formation of a pseudo-cleavage furrow (Kemphues and Strome, 

1997). Concomitantly, embryonic polarity, which is discussed in more detail apropos 

cortical force generation and mitotic spindle positioning in a later section, is also established 

in this early phase of the first division (Cuenca et al., 2003).   

The molecular motor dynein-dynactin complex has numerous important roles 

throughout cell division, including meiosis, centrosome separation, and pronuclear 

migration (Gonczy et al., 1999); two nuclear envelope-associated proteins required for the 

attachment of the centrosome to the nucleus, ZYG-12 and SUN-1, are necessary for 

recruitment of dynein to the sperm pronucleus (Malone et al., 2003). In addition, these 

centrosomal asters nucleate microtubules that interface with dynein on the surface of the 

oocyte pronucleus (Gonczy et al., 1999, O'Connell and Wang, 2000, O'Connell et al., 2000, 

Hamill et al., 2002, Schmidt et al., 2005). Dynein-mediated mechanical tension applied to 

the centrosomal microtubule asters is required for pronuclear migration toward the center of 

the zygote and accelerates the speed at which the pronuclei are pulled (Skop and White, 

1998, Severson and Bowerman, 2003, Kimura and Onami, 2005). Upon successful 

culmination of pronuclear migration, pronuclear meeting (PNM) occurs slightly posterior to 

the center of the zygote while, simultaneously, chromosomes in each pronucleus are 

compacted under the direction of the condensin II complex, klesins, and topoisomerase 

enzymes responsible for decatenating DNA (Gassmann et al., 2004, Hirano, 2005).  
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Figure 2: Pronuclear migration after fertilization 

Embryos expressing GFP::H2B;GFP::γ-tubulin subjected to live-cell spinning disc confocal 

microscopy. After fertilization (t=-330s), the maternal pronucleus migrates from the anterior 

to the posterior to meet with the paternal pronucleus. Times are relative to pronuclear 

meeting (PNM). Scale bar = 8µm 
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After PNM and the first embryonic mitotic prophase, the cell enters into 

prometaphase where the pronuclear envelopes are broken down and the bipolar mitotic 

spindle continues to form (Wood, 1988). Spindle microtubules emanating from centrosomes 

infiltrate the (pro)nuclear space to seek out kinetochores on each sister chromatid. 

Kinetochores are large proteinaceous structures harboring a trilaminar morphology 

(Cheeseman and Desai, 2008). They are highly ordered structures that are assembled on the 

region of the chromosome defined by the presence of the histone H3 variant CENP-AHCP-3, 

which defines the centromere (Dernburg, 2001, Oegema et al., 2001, Maddox et al., 2004).  

The C. elegans kinetochore is holocentric, which means that it is distributed along 

the entire outer face of sister chromatids, and consists of electron-dense inner and outer 

layers with an interceding electron-lucent middle layer, all of which cover the pole-ward 

face of each sister chromatid; importantly, the nematode kinetochore harbors many of the 

same structurally and functionally conserved properties as monocentric kinetochores 

(Kitagawa, 2009). As mentioned previously, the holocentric C. elegans kinetochore is a 

gigantic cellular structure, consisting of a vast array of members. Several outer kinetochore 

proteins serve as functional microtubule binding sites and can be classified into three 

groups: the kinetochore-null (KNL) proteins required for kinetochore assembly, one of 

which, KNL-1, interacts directly with microtubules plus-ends; the MIS12 complex, of which 

the namesake member MIS-12 interacts with KNL-1 to generate a binding site for the final 

complex, NDC80, which subsequently interacts with both KNL-1 and MIS-12 to anchor 

microtubules to the assembled kinetochore (Cheeseman et al., 2004, Cheeseman and Desai, 

2008, Kitagawa, 2009).  
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Attachment of microtubules (MT) to kinetochores (K) is a stochastic process 

whereby incorrect attachments are mitigated by the chromosomal passenger complex (CPC); 

the CPC is composed of the Aurora B kinase (CeAIR-2), the inner centromere protein 

INCENP (CeICP-1), Survivin (CeBIR-1), and Borealin (CeCSC-1) (Ruchaud et al., 2007). 

A lack of mechanical tension across and within sister kinetochores is a hallmark of syntelic 

attachments, where both sister kinetochores attach to microtubules from the same spindle 

pole. The Aurora B kinase is most likely not directly regulated by this lack of tension; rather 

a lack of tension allows substrates to remain in the vicinity of an active CPC (Cheeseman 

and Desai, 2008, Pilyugin et al., 2009). Bipolar K-MT attachments (amphitelic) generate 

tension across and within kinetochore pairs, thus satisfying the mitotic Spindle Assembly 

Checkpoint (SAC) (Musacchio and Salmon, 2007). 

Unattached or incorrect K-MT attachments activate the SAC and prevent mitotic 

progression into anaphase (Encalada et al., 2005). However, chromosomes align in a dense 

metaphase plate once all sister kinetochores are properly attached to spindle microtubules. 

At this point, separase is activated and recruited to mitotic chromosomes where it cleaves 

the cohesin subunit SCC1 (Hauf et al., 2001, Sun et al., 2009). Since C. elegans 

chromosomes are holocentric, the mechanisms by which cohesin is regulated are not well 

understood; however, they are likely to be analogous to higher eukaryotes given that cohesin 

subunits are conserved in the nematode (Mito et al., 2003). Separase initiates cohesin 

degradation after being released from securin by the Anaphase Promoting Complex and 

Cyclosome (APC/C) (Hagan et al., 2001), leading to anaphase onset where a host of proteins 

are necessary for faithful chromosome segregation, including the nematode condensin I 

complex (Csankovszki et al., 2009, Ford and Schumacher, 2009). Sister chromosomes are 
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then directed to their respective spindle poles by cortical and midzone spindle forces 

(Oegema et al., 2001).  

As anaphase progresses into telophase, chromosomes begin to decondense 

concomitant with reformation of the nuclear envelope, centrosomes dissociate, and the 

spindle fibers begin to dissipate (Oegema and Hyman, 2006) (Figure 1). The process of 

cytokinesis occurs after anaphase onset and on into telophase; it is driven by the formation 

of an actomyosin contractile ring that is regulated by the CPC, the central spindle midzone, 

and microtubule-based signaling (Lewellyn et al., 2011). Cytokinesis is a highly 

orchestrated process involving many factors that can be conceptualized in five broad 

categories: the central spindle, the RhoA pathway, non-muscle myosin II, actin assembly 

into filaments, and the plasma membrane machinery (Glotzer, 2005). In C. elegans, early 

mitotic divisions are asymmetrical due to cortical forces positioning the microtubule asters 

toward the posterior pole; this positioning determines the site of cytokinesis that ultimately 

results in an asymmetric division (Labbe et al., 2004). 

The central spindle is a set of antiparallel microtubules bundled between the 

separating chromosomes during anaphase and is regulated spatially by the CPC 

(Schumacher et al., 1998b, Fraser et al., 1999, Kaitna et al., 2000, Speliotes et al., 2000, 

Bishop and Schumacher, 2002, Romano et al., 2003) and the centralspindlin complexes 

(CeZEN-4/MKLP1 and CeCYK-4/MgcRacGAP) (Powers et al., 1998, Raich et al., 1998, 

Jantsch-Plunger et al., 2000, Severson et al., 2000, Mishima et al., 2002). After cytokinesis 

is completed, the mother cell has successfully generated two daughter cells; importantly, in 

C. elegans, the molecular compositions of the two daughter cells generated after the first 

mitotic division differ in that the posterior cell (P1) inherits germline-specific factors such as 
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P-granules and the transcriptional regulator PIE-1 (Pellettieri and Seydoux, 2002, Labbe et 

al., 2004). The nascent two-cell embryo follows a pattern stereotypical for early C. elegans 

embryonic divisions. During the transient interphase following the first mitotic division, the 

DNA is rapidly replicated followed by a subsequent M-phase, essentially transitioning from 

S-phase to M-phase with no intermittent gap phases (Kipreos, 2005). However, the rapid 

transitions from M-phase to S-phase in the early C. elegans embryo remain poorly 

understood. 

 

Cellular Polarity Determinants 

 

As mentioned previously,  the first embryonic division in C.elegans is asymmetric 

and culminates in a larger anterior blastomere and a smaller posterior daughter cell. This 

difference in size is determined by the position of the mitotic spindle, which ultimately 

defines the cleavage plane during cytokinesis (Galli and van den Heuvel, 2008). Several 

mechanisms are known to contribute to spindle orientation and positioning, one of which is 

correct establishment and distribution of cortical polarity cues (Cheng et al., 1995, Grill et 

al., 2001, Tsou et al., 2002, Schneider and Bowerman, 2003), and the anchoring of astral 

microtubules to the cell cortex.  

Anteroposterior (AP) polarity in the one-cell C. elegans embryo is determined at 

fertilization. At this point, PAR proteins establish both the anterior (PAR-3/6) and posterior 

(PAR-1/2) cortical domains (Wallenfang and Seydoux, 2000, Zonies et al., 2010) (Figure 3). 

The anterior PAR domain consists of the conserved PAR-3/PAR-6/PKC-3 complex, while 

PAR-1/PAR-2 establish the posterior domain (Cuenca et al., 2003). After polarity cues are 
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set up, microtubule-dependent forces promote the migration of the maternal pronucleus 

posteriorly, where it ultimately meets with the paternal pronucleus near the posterior pole 

(Strome and Wood, 1983).  

Recent work has defined a “three domain model” for cortical forces in the one-cell 

C. elegans embryo (Krueger et al., 2010), which includes the anterior domain (0% to ~50% 

embryonic length), the posterior-lateral band (~50%-75% EL), and the posterior domain 

(~75%-100% EL) (Figures 3 and 4). The forces that align the spindle to the AP axis are 

regulated in part by the PAR proteins, which comprise a pathway that also includes Gα 

subunits, their regulators GPR-1/2 (homologous to Pins, LGN, AGS-3), LIN-5 (homologous 

to Mud and NuMA), and the DEP domain-containing protein LET-99 (Zwaal et al., 1996, 

Gotta and Ahringer, 2001, Tsou et al., 2002, Colombo et al., 2003, Gotta et al., 2003, 

Srinivasan et al., 2003, Tsou et al., 2003, Goulding et al., 2007, Park and Rose, 2008) 

(Figure 3). Cortical levels of GPR-1/2 and LIN-5 are higher at the anterior cortex than the 

posterior during NCC rotation (Park and Rose, 2008), but this pattern switches by metaphase 

so that the posterior cortex has the highest enrichment of these proteins (Figure 3) (Colombo 

et al., 2003, Tsou et al., 2003, Park and Rose, 2008). However, GPR-1/2 and LIN-5 are not 

distributed along the posterior cortex uniformly, but instead exhibit lower levels at the 

lateral-posterior domain where LET-99 accumulates and is restricted to throughout the entire 

first cell division (Tsou et al., 2002). Thus, the strongest pulling forces emanate from the 

anterior and posterior domains where GPR-1/2 and LIN-5 levels are the highest, while 

accumulation of LET-99 at the lateral-posterior domain results in a net inhibition of force 

generation between astral microtubules and the cell cortex at this central posterior region 

(Tsou et al., 2002, Krueger et al., 2010) (Figure 3).   
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Figure 3: Representation of polarity-determining protein complexes in the single 

embryo 

The localization of PAR proteins demarcate the anterior and posterior domains of the newly-

fertilized embryo. Additional regulators of polarity are also pictured, including LET-99, and 

GPR-1/2 during the first mitotic division. In this, and all subsequent figures, 0% embryo 

length marks the anterior pole, and embryos are oriented with the anterior to the left. 
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Figure 4: Schematic of the “three-domain” model of cortical force generation 

The three force domain model for spindle positioning during the first asymmetric division is 

shown. Previous models predicted only two domains: the anterior and the posterior domains. 

Recent work has described a three-domain model instead, which is made up of the anterior 

domain (0-50% embryonic length), the posterior-lateral domain (50-75% EL) demarcated by 

accumulation of the LET-99 protein, and the absolute posterior domain (75-100% EL). 
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Figure 5: Cortical Forces generation in early mitotic dynamics 

Three force domain model for spindle positioning during the first asymmetric division. 

The thickness of the arrows indicates magnitude of force acting on microtubules from the 

corresponding cortical region. Embryos from PNM through centration and rotation to 

posterior spindle displacement and anaphase onset are depicted.  
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Depletion of members of the Gα pathway results in reduced centration and rotation rates, as 

well as perturbed spindle displacement during anaphase. In let-99 mutants, GPR-1/2 levels 

are uniformly distributed along cortical domains suggesting that restriction of GPR-1/2 

localization to the anterior during rotation is regulated by LET-99 (Tsou et al., 2003, Park 

and Rose, 2008). Additionally, LET-99 is necessary for accurate NCC rotation and 

subsequent anaphase spindle displacement toward the posterior, as let-99 mutants undergo 

abnormal hyperactive NCC rocking during prophase and do not rotate correctly (Krueger et 

al., 2010).  

 

Mitotic spindle positioning 
 

The cytoskeleton forms the basis for the internal stability and architecture of cells, 

and is dependent on microscopic fibres such as microtubules and actin filaments. These 

fibres are surprisingly mechanical in nature, and can withstand pico-Newtons of force 

exerted on them without being destroyed (Howard, 2001). However, these structures, in 

particular microtubules, are generated by the non-covalent assembly of α- and β-tubulin 

dimers and thus can be assembled and broken down quickly, which is an important factor in 

overall microtubule dynamics. Microtubule filament plus-ends can grow, shrink, or rapidly 

alternate between the two states in a process called dynamic instability (Desai and 

Mitchison, 1997, Garner et al., 2004). 

 Structurally, the monomers in microtubules assemble head to tail in a regular 

manner, and on the resulting lattice structures, molecular motors (e.g., kinesins or dynein) 

use chemical energy to move directionally (Howard, 2001) or to spatially organize the 

microtubules. Additionally, specific enzymes control nucleation, assembly/disassembly, or 
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severing of the microtubules (Nedelec and Foethke, 2007). The cytoskeleton is involved in 

multiple cellular processes such as mitosis, polarity establishment, and motility of 

intercellular organelles (Skop and White, 1998, Severson and Bowerman, 2003). In this 

way, a set of dynamic microtubules form a stable larger assembly, the most obvious 

example of which is the mitotic spindle (Wittmann et al., 2001). The mitotic spindle is 

positioned by microtubules nucleating from centrosomes and their associated motor 

proteins, which together act as generators and facilitators of the forces necessary for their 

accurate placement within cells. Centrosome positioning ultimately influences the 

positioning of the mitotic spindle. Centrosomal abnormalities, defects in spindle-nuclear 

positioning, or failures in spindle rotation can lead to disruptions in embryonic polarity and 

cell fate differentiation (Basto et al., 2006, Basto et al., 2008), leading to embryonic lethality 

(Pihan et al., 1998, Lingle et al., 2002, Basto et al., 2008, Castellanos et al., 2008), and 

diseases such as cancer, microcephaly, or lissencephaly in humans (Bond et al., 2002, Tsai 

et al., 2007, Kumar et al., 2009, Nigg and Raff, 2009).  

After pronuclear meeting (PNM), this (pro)nuclear-centrosome complex (NCC) 

migrates back anteriorly toward the center of the cell (centration) while rotating 90° to align 

itself with the AP axis (rotation). The orientation of the spindle during PNM, centration, and 

rotation is determined by cortical force generators that act on astral microtubule plus-end 

attachments to the cell cortex, while microtubule minus-ends remain embedded in the 

centrosomes (Kemphues et al., 1988, Cheng et al., 1995, Grill et al., 2001, Tsou et al., 2003, 

Gonczy and Rose, 2005). The resulting cortical pulling from these interactions act on 

centrosomes and determine their spatial positioning (Figure 5). During centration, stronger 

forces from the anterior pull the NCC away from the posterior, while differential pulling 
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forces on each centrosome are the major impetuses for rotation (Siller and Doe, 2009). After 

rotation and alignment of the mitotic spindle along the AP axis, nuclear envelope breakdown 

and metaphase alignment occur, followed by chromosome separation, spindle elongation 

and displacement to the posterior cortex, resulting in an asymmetric division. The entire 

spindle also oscillates rapidly during elongation and anaphase, which is due to inhibition of 

laterally-directed forces over the central portion of the posterior cortex (Tsou et al., 2002) 

(Figure 5). 

 

The cell cycle 

 
The sequence of events that generate genetically-identical daughter cells from a 

mother cell is appropriately referred to as the “cell cycle”. The cell cycle classically 

comprises four phases demarcated by the molecular activities occurring during each specific 

phase, and a plethora of regulatory events oversee faithful cell cycle progression. Ultimately, 

the raison d’être of the cell cycle is to reliably and stably transmit genetic information to 

allow for continued propagation of life. Deregulation of the cell cycle has dire 

consequences, one of which is the inappropriate distribution of DNA during cell division, 

called aneuploidy. Aneuploidy contributes to maladies ranging from embryonic lethality to 

tumor formation and developmental defects in humans and other organisms. 

In order to progress through the cell cycle and cell division in a timely manner, DNA 

must be tightly packaged from its nascent decondensed form to a highly ordered structure 

called chromatin. During chromatin packaging in eukaryotes, 147 basepairs of DNA is 

wrapped around an octamer of histone proteins comprised of two copies each of histone 

H2A, H2B, H3 and H4. The resulting structure is called a nucleosome, which is further 



	
   28 

compacted to form higher-order chromatin structures (Margueron and Reinberg, 2010). 

Chromatin can be thought of as a dynamically-adjusted structure that adapts to cellular 

regulatory cues depending on what particular functions need to be carried out at a certain 

point during the cell cycle – an ideal example of the structure-function paradigm so often 

seen in biology. Each histone has an amino(N)-terminal tail that protrudes from the so-called 

globular domain of the nucleosome and can be subject to post-translational modifications 

(PTMs), including but not limited to acetylation, methylation, phosphorylation and 

monoubiquitylation (Trojer and Reinberg, 2006, Berger et al., 2009, Margueron and 

Reinberg, 2010). These various modifications act as a so-called “histone code”, altering 

chromatin structure and conferring new functions to it. Location-specific chromatin can also 

be defined by the presence of histone variants, nucleosome spacing, or the nuclear position 

of chromatin (Eitoku et al., 2008, Margueron and Reinberg, 2010). An elaborate and 

appropriate example of this is the deposition of the histone H3 variant CENP-A at specific 

sections of condensing chromosomes that ultimately define the centromere, a site upon 

which a key mitotic structure – the kinetochore – will be built (Sullivan, 2001, Van Hooser 

et al., 2001). Amazingly, histones, chromatin, and PTMs are highly conserved throughout 

evolution, showcasing the importance of studying histone function and chromatin structure.  

In the G1 phase of the cell cycle, a multiprotein complex that coordinates the 

condensation of genetic material called condensin is distributed onto chromosomes to 

facilitate this process (Nasmyth and Haering, 2005). Chromosome condensation is an 

important facilitator of chromosome segregation during cell division and involves many 

different protein-protein or DNA-protein interactions (Hirano, 2005). Next, the replication 

of both the host DNA and activation of cohesin to maintain cohesion of replicated 
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chromosomes – called sister chromatids – occur during the synthesis (S-) phase of the cell 

cycle (Nasmyth and Haering, 2005). If the DNA is damaged prior to or during this 

replicative phase, specific molecular checkpoints inhibit progression until the damage is 

repaired or mitigated. The cell then enters a preparatory phase for cell division, G2, during 

which a period of rapid growth occurs and culminates in a cell cycle checkpoint that 

prevents cells from entering mitosis if problems with the replicated DNA are detected. 

Mitosis is the phase during which the duplicated DNA is actually parsed into nascent cells 

and is further partitioned into five sub-phases: prophase, prometaphase, metaphase, 

anaphase, and telophase.  

 

Protein kinases as regulators of mitosis 

 
Mitosis exists to accurately segregate condensed sister chromatids to their respective 

daughter nuclei. Therefore, it consists of many highly-regulated molecular processes. 

Controlling the intricacies of the cell cycle is an important task and requires the coordination 

of multiple cellular events. Protein kinases are recognized as guides that ensure the cell 

progresses through each phase correctly. The activity of cyclin-dependent kinases (CDKs), 

their binding partners, and the activity of downstream effectors oscillate temporally 

throughout the C. elegans cell cycle to ensure timely entry and exit from each phase (Boxem 

et al., 1999, Park and Krause, 1999, Boxem and van den Heuvel, 2001). Of particular 

importance are mitotic kinases, including those of the Aurora, Polo, and NIMA families 

(Nigg, 2001)  
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Cyclin-dependent kinases (CDKs) and cyclins 

 
Cyclin-dependent kinases (CDKs) are small serine/threonine kinases that are activated by 

phosphorylation and binding to cyclin partner proteins. Association of one CDK with 

various cyclins can confer different regulatory functions upon the CDK. In Saccharomyces 

cerevisiae, there is a single CDK, p34CDC28, that acts in concert with different cyclins to 

promote progression through the various cell cycle phases (van den Heuvel, 2005).  In 

mammals, there are several CDKs responsible for driving the cell cycle, including 

interphase-specific CDKs – CDK2, CDK4, and CDK6  - and the mitotic CDK, CDK1 (also 

known as cell division control protein 2 (CDC2), as well as ten cyclins that are grouped into 

four different classes – the A-, B-, D-, and E-type cyclins (Malumbres and Barbacid, 2009) – 

whose binding to the CDKs occurs in distinct cell cycle phases; for instance, CDK1 

(CeCDK-1/NCC-1) binding to cyclin B1 promotes mitotic entry and progression (Norbury 

and Nurse, 1991, Boxem et al., 1999, Jackman et al., 2003, van den Heuvel, 2005). In 

metazoa, both CDK4 or CDK6 complexed with cyclin D and CDK2 in complex with cyclin 

E are required for the G1-to-S transition; however, C. elegans has only one CDK4/CDK6 

homologue, CDK-4, and one each of cyclin D (CYD-1) and cyclin E (CYE-1) (Park and 

Krause, 1999, Boxem and van den Heuvel, 2001, Kipreos, 2005). To further promote S-

phase, CDK-4/CYD-1 phosphorylates the transcriptional repressor retinoblastoma protein 

(Rb) (CeLIN-35), thus exhibiting the elaborate control and signaling potential of the CDKs 

(Kipreos, 2005). The activity of CDK1/cyclin B1 promotes mitotic entry, while the 

subsequent degradation of multiple cyclin B proteins after mitosis ensures the inactivation of 

this complex before the next cell cycle. Interestingly, in C. elegans and other organisms, the 
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maturation promoting factor (MPF) – a complex of CDK1 and cyclin B – is also necessary 

for oocyte maturation (Burrows et al., 2006). 

Importantly, the CDKs are highly regulated, primarily by binding to their cyclin 

partners. However, complete activation of CDKs requires threonine phosphorylation by the 

CDK-Activating Kinase (CAK) and dephosphorylation of inhibitory phosphorylated 

residues by specific phosphatases (Coleman and Dunphy, 1994); the activated CDK-cyclin 

complexes can also be constrained by CDK inhibitory subunits (CKIs) or inhibitory 

phosphorylation of the CDK N-terminus (Morgan, 1997). The phosphorylation/ 

dephosphorylation crosstalk is intricately illustrated in the modulation of CDK1/cyclin B 

activity prior to and during mitosis. The inactive form of CDK1/cyclin B is present in 

interphase and is eventually phosphorylated at one site by CAK and at two adjacent sites by 

an inhibitory kinase, MYT1 (CeWEE-1.3). At the G2-to-M transition, the dual-specificity 

phosphatase CDC25 dephosphorylates the inhibitory phosphorylation sites to allow mitotic 

entry via active CDK1/cyclin B (Burrows et al., 2006). The sophisticated coordination of 

these regulatory events allows for these protein complexes to accurately control the cell 

cycle. 

 

Polo-like kinases 

 
In a screen for Drosophila melanogaster mutants that fail to undergo normal mitoses, 

the laboratory of David Glover discovered a group of serine/threonine kinases required for 

normal spindle poles and faithful mitotic progression, which they christened as the Polo 

family of kinases (PLKs) (Sunkel and Glover, 1988, Llamazares et al., 1991). PLKs are 

necessary for mitotic entry, bipolar spindle formation, chromosome segregation, and 
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cytokinesis. They harbor an N-terminal catalytic domain and a hallmark C-terminal polo-

box domain (PBD) that binds phosphorylated serines or threonines of target proteins (Barr et 

al., 2004). While D. melanogaster and yeast have one Polo kinase each, DmPolo (Sunkel 

and Glover, 1988) and ScCdc5 (Kitada et al., 1993) /SpPlo1p (Ohkura et al., 1995), 

respectively, vertebrates have several PLKs with PLK1 carrying out most of the functions of 

Polo, Cdc5, and Plo1p (Barr et al., 2004). C. elegans has multiple PLKs, and the PLK1 

orthologue, PLK-1, is essential for the timing of M-phase entry (Budirahardja and Gonczy, 

2008).  

Polo plays an important role in the regulation of CDK1 (CeNCC-1) by 

phosphorylation of the inhibitory MYT1 kinase to inactivate it, as well as phosphorylation 

of the CDC25 phosphatase to activate it, which, when taken together, activate CDK1 and 

promote mitotic entry (Chase et al., 2000, Budirahardja and Gonczy, 2008). Interestingly, in 

C. elegans, plk-1(RNAi) oocytes fail to undergo nuclear envelope breakdown, a phenotype 

reminiscent of ncc-1(RNAi) during early embryonic mitotic divisions (Boxem et al., 1999). 

The Pierre Gönczy group recently showed that after the first C. elegans asymmetric mitotic 

division, the amount of PLK-1 is greater in the anterior cell (AB) vis-à-vis the posterior cell 

(P1). This difference contributes to the decreased latency of mitotic entry in the AB cell 

compared to the P1 cell (Budirahardja and Gonczy, 2008).  

 PLK1 localizes to the centrosomes at the G2/M transition and allows for their 

maturation via phosphorylation of the ninein-like protein, NLP, which plays a role in γ-

tubulin recruitment (Zhang et al., 2009). During prometaphase and metaphase, PLK1 is 

localized to the sister kinetochores via binding of the chromosomal passenger INCENP. 

CDK1 phosphorylates INCENP at two sites, creating a docking site for the PBD of PLK1 
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(Goto et al., 2006). INCENP then transports PLK1 to the kinetochore where it has important 

functions in chromosome separation. Impairment of PLK1 results in a delay of the 

metaphase-to-anaphase transition, most likely due to a failure to phosphorylate key APC/C 

substrates (Kotani et al., 1998, Kotani et al., 1999, Golan et al., 2002, Kraft et al., 2003); one 

of the many important substrates of Polo is cohesin, which must be phosphorylated by PLK1 

in order to be cleaved by separase, allowing sister chromatids to separate (Alexandru et al., 

2001). PLK1 also targets spindle assembly checkpoint proteins to the kinetochore prior to 

anaphase onset. The lack of tension resulting from microtubules incorrectly binding to 

kinetochores leads to the phosphorylation of BUBR1, and generates the epitope recognized 

by the 3F3/2 antibody, which has long been used as a marker of SAC activity (Wong and 

Fang, 2005, 2006, 2007). In mammalian cell culture, the 3F3/2 kinetochore phosphoepitope 

is correlated with the lack of tension created by treatment with the MT stabilizer taxol (Nigg 

and Raff, 2009); however, once tension is achieved through correct bipolar attachments, the 

3F3/2 epitope is dephosphorylated and cells progress through anaphase. During anaphase 

and telophase, PLK1 relocates to the central spindle where it functions in cytokinesis. PLK1 

also triggers the mitotic exit network before it is degraded in an APC/C-CDH1-dependent 

manner (Barr et al., 2004, Lindon and Pines, 2004) 

 

Aurora kinases 

 
Coincidently, the same screen that identified Polo as an important kinase for mitotic 

events also uncovered another important kinase, aurora (Sunkel and Glover, 1988, Glover et 

al., 1995). The S. cerevisiae aurora orthologue Increase-in-ploidy 1, Ipl1, was identified in a 

separate screen for mutants defective in chromosome segregation (Chan and Botstein, 1993). 



	
   34 

Further study and characterization of D. melanogaster aurora and S. cerevisiae Ipl1 lead to 

the identification of aurora orthologues in other species, including two paralogous auroras in 

Xenopus laevis, AurA (Giet and Prigent, 2000) and AurB (Vagnarelli and Earnshaw, 2004); 

the two C. elegans Aurora-/Ipl1-related protein kinases AIR-1 (Aurora A) (Schumacher et 

al., 1998a) and AIR-2 (Aurora B) (Schumacher et al., 1998b); and three aurora paralogues in 

mammals, STK15 (Aurora A), STK12 (Aurora B), and STK13 (Aurora C) (Adams et al., 

2001, Nigg, 2001) 

Taken together, the aurora kinases comprise a family of conserved serine/threonine 

kinases required for both meiotic and mitotic processes. The aurora paralogues within 

species share a highly similar C-terminal kinase domain, while their N-termini harbor 

divergent sequences. However, overall they share a very high sequence similarity (Carmena 

and Earnshaw, 2003). Interestingly, overexpression of the Aurora kinases has been 

implicated in tumorigenesis and has been found in high levels in several human tumors and 

cancer cell lines, thus making them attractive drug targets for the development of new 

cancer therapies (Andrews, 2005). 

Despite their homology, the Auroras have distinct functions and subcellular 

localizations. Aurora A is associated with centrosomes slightly prior to and throughout 

mitosis and is required for proper spindle assembly (Schumacher et al., 1998a, Hannak et al., 

2001a). C. elegans AIR-1 is important for centrosome maturation via recruitment of γ-

tubulin and the PCM components ZYG-9 and CeGrip, as well as the maintenance of 

centrosome separation whilst the mitotic spindle is being assembled (Hannak et al., 2001b). 

While air-1(RNAi) embryos have bipolar spindles, they exhibit shorter microtubules than 

wild-type, as well as a terminal phenotype of severe aneuploidy propagated by incomplete 
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pronuclear migration, chromosome bridges during anaphase, and polyploid cells 

(Schumacher et al., 1998a). AIR-1 is also necessary for post-embryonic cell divisions and 

germline development (Furuta et al., 2002), suggesting that AIR-1/Aurora A is 

indispensable for mitosis throughout the lifetime of C. elegans.  

Similarly, loss of AIR-2/Aurora B results in embryonic lethality with grotesque 

meiotic and mitotic defects. AIR-2 is initially associated with meiotic chromosomes in the 

prophase I-arrested oocytes prior to fertilization; after passing through the spermatheca, 

AIR-2 remains chromosome-associated throughout the subsequent meiotic divisions with 

the exception of anaphase when AIR-2 is localized between the separating chromosomes 

(Schumacher et al., 1998b). As mentioned previously, AIR-2 is the enzymatic crux of the 

highly conserved CPC whose activity is necessary in both meiosis and mitosis (Ruchaud et 

al., 2007). The C. elegans CPC is composed of AIR-2, ICP-1, BIR-1, and CSC-1. During 

mitosis, the CPC displays a well-defined localization pattern: in prophase, the CPC is found 

along the chromosome arms and begins to accumulate at the inner centromere between sister 

kinetochores during prometaphase; upon complete alignment at the metaphase plate, the 

CPC is spatially restricted from kinetochore targets due to tension (Liu et al., 2009); after 

chromosome separation during anaphase, the CPC relocates to the spindle midzone prior to 

concentrating at the cytokinesis midbody at telophase (Ruchaud et al., 2007) . The CPC is 

essential for cytokinesis: the cleavage furrow in air-2 loss-of-function mutants initiates 

cytokinesis but is unable to complete the process and ultimately regresses (Severson et al., 

2000); the same phenotype is observed when any of the other chromosomal passengers are 

depleted (Fraser et al., 1999, Kaitna et al., 2000, Romano et al., 2003).  
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Interestingly, RNAi knockdown of any CPC member delocalizes the entire complex 

and causes aberrant mitosis (Ruchaud et al., 2007), except in C. elegans where the non-

enzymatic CPC units are not targeted in an AIR-2-dependent fashion (Romano et al., 2003). 

Importantly, Aurora B and the CPC are required for the mitotic phosphorylation of histone 

H3 (pH3), which coincides with DNA condensation during prophase and requires the AIR-

2/Ipl1 kinase in C. elegans, S. cerevisiae, and in humans (Hsu et al., 2000). Additionally,  

AIR-2 is required for association of the condensin I and II subunits MIX-1 and SMC-4 with 

mitotic chromosomes (Hagstrom et al., 2002). 

A mechanism that confers the spatial and functional differences of the Aurora 

kinases is their ability to bind to and be influenced by substrate activators. During G2, prior 

to mitosis, inactive Aurora A binds to and phosphorylates the LIM domain-containing 

protein AJUBA and becomes activated; this interaction is required for recruitment of CDK1-

cyclin B to the centrosomes to promote mitotic entry (Hirota et al., 2003). Aurora A is 

further activated by the microtubule-associated protein TPX2. The C. elegans TPX2 

homologue, CeTPXL-1, is necessary to localize activated AIR-1 to mitotic spindles (Siller 

and Doe, 2009); this is also true in other organisms. Additionally, the protein kinase A 

(PKA) is also an in vitro activator of Aurora A (Walter et al., 2000), while the PP1 

phosphatase negatively regulates both Aurora A and Aurora B (Schroer, 2004).  

Because one Aurora B modi operandi is to correct erroneous K-MT attachments in 

early mitosis, the CPC is subject to precise regulation through a variety of means. Aurora B 

kinase activity is increased by Aurora B-dependent phosphorylation of the C-terminus of its 

fellow CPC protein INCENP (Bishop and Schumacher, 2002, Honda et al., 2003), by 

interacting with the CPC-associated protein TD-60 (Rosasco-Nitcher et al., 2008), through 
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local chromosomal clustering of the CPC (Kelly et al., 2007), and via phosphorylation of 

Borealin by the MPS1 kinase in mammals (Jelluma et al., 2008). Work from our lab also 

detailed the interaction of C. elegans AIR-2 with TLK-1, a substrate activator of AIR-2 

(Han et al., 2005). The role of mitotic TLK-1 will be discussed in greater detail in a 

subsequent section.  

The DNA damage checkpoint kinase, CHK1 phosphorylates Aurora B and increase 

its kinase activity in vitro (Zachos et al., 2007). As mentioned previously, Aurora B is also 

subordinate to negative regulation by the PP1 and PP2 phosphatases (Sugiyama et al., 2002, 

Emanuele et al., 2008), post-translational modifications of key substrates (Zhang et al., 

2005, Rosasco-Nitcher et al., 2008), and CDH1-dependent proteosomal degradation via the 

APC/C pathway during telophase. Additionally, our group found that a C. elegans 

AFG2/SPAF-like AAA ATPase, CDC-48.3, binds to and inhibits the kinase activity of AIR-

2, and regulates AIR-2 stability at mitotic exit (Heallen et al., 2008). 

The exact mechanism of how cells translate the physical forces generated by K-MT 

attachments into centromeric signaling has yet to be elucidated. An attractive model is that 

the CPC must be relocated from the inner centromere to the central spindle in a timely 

fashion to disrupt the interaction between the CPC and its substrates at the kinetochore 

(Fuller et al., 2008). Recent experiments utilizing in vivo fluorescent sensors of Aurora B 

activity have illustrated an intracellular activity gradient that may impart signaling for the 

latter part of mitosis (Fuller et al., 2008), and have also revealed that constitutively tethering 

Aurora B at the kinetochore disrupts K-MT attachments and may cause persistent SAC 

activation; this problem is overcome by anaphase segregation of separated sister 

kinetochores, and thus CPC substrates, away from Aurora B (Liu et al., 2009). Regardless, it 
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is clear that Aurora B, the CPC, and their regulators play an intricate and integral role 

throughout mitosis; thus, understanding the consequences of their spatial and temporal 

localization is of significant importance to elucidating the molecular mechanisms governing 

mitosis. 

 

Tousled-like kinases 

 
The Tousled kinase (Tsl) was initially described in Arabidopsis thaliana as a 

mutation responsible for aberrant floral organ and leaf development. Tsl mutants exhibited 

flowering time defects and altered leaf morphology, implicating Tousled as a 

developmentally important gene (Roe et al., 1993, Roe et al., 1997). Tsl is a serine/threonine 

kinase with a C-terminal catalytic domain and an N-terminal regulatory domain, as well as 

two alpha helical segments that are necessary for oligomerization (Roe et al., 1997). 

Originally called PKUβ, human Tlk1 was found in a screen of a bacteriophage expression 

library for novel protein kinases along with Tlk2, dubbed PKUα. TLK1 and TLK2 share 

79% sequence identity; their catalytic domains share 94% identity (Yamakawa et al., 1997). 

In a subsequent study, database searches for Tsl homologues again revealed two human 

proteins with significant sequence similarity, TLK1 and TLK2 (Sillje et al., 1999). These 

kinases were shown to be nuclear proteins with their maximal activity tied to ongoing DNA 

replication during S-phase (Yamakawa et al., 1997, Sillje et al., 1999). Importantly, TLK1 is 

ubiquitously expressed and TLK1 protein levels remain consistent throughout the cell cycle.  

TLK1 is capable of autophosphorylation and only the phosphoisoform of TLK1 is 

catalytically active (Yamakawa et al., 1997, Sillje et al., 1999). Very few substrates of TLK 

have been described with the most reported being the chromatin assembly factor ASF (Sillje 
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and Nigg, 2001, Carrera et al., 2003, Ehsan et al., 2004, Han et al., 2005, Pilyugin et al., 

2009). Additional, albeit less reported, TLK substrates include histone H3 serine 10 (Li et 

al., 2001, Ehsan et al., 2004), the DEAD-box RNA helicase p68 (Kodym et al., 2005, 

Sunavala-Dossabhoy et al., 2005a), and the RAD9 DNA repair chaperone (Sunavala-

Dossabhoy and De Benedetti, 2009).  

Curiously, the kinase activity of TLK is inhibited in the presence of DNA double-

stranded breaks, UV-induced DNA damage, and after blocking ongoing DNA replication 

(Sillje and Nigg, 2001, Groth et al., 2003, Krause et al., 2003). Direct phosphorylation of 

TLK by the DNA repair checkpoint kinase CHK1 results in TLK inhibition, and this 

phosphorylation is dependent on the upstream ATM checkpoint kinase rather than the 

canonical CHK1 activator, ATR (Groth et al., 2003). The Nijmegen Breakage Syndrome 

protein, NBS1, is also part of the signaling cascade leading to transient suppression of TLK 

activity in the presence of DSBs, blockage of DNA replication, or UV irradiation (Krause et 

al., 2003). Interestingly, overexpression of TLK1 both enhanced double-stranded break 

repair of UV-damaged DNA and bestowed resistance to ionizing radiation in a manner not 

requiring TLK1 kinase activity (Li et al., 2001, Sunavala-Dossabhoy et al., 2005b, Sen and 

De Benedetti, 2006, Sunavala-Dossabhoy and De Benedetti, 2009). Additionally, AtTsl is 

required for maintenance of transcriptional gene silencing in plants (Wang et al., 2007) and 

C. elegans TLK-1 is necessary for appropriate transcription elongation (Han et al., 2003). 

Post-translational modifications correlating with transcriptional elongation are markedly 

reduced in tlk-1(RNAi) embryos, including phosphorylation of RNA polymerase II 

(RNAPII) at serine 2 and methylation of histone H3 at lysine 36, providing evidence for an 

additional role of TLK-1 (Han et al., 2003). 
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The mammalian Tousled-like kinase is reported to be a histone H3 serine 10 kinase 

(H3S10), but studies in other organisms have suggested a non-direct mechanism of H3S10 

phosphorylation. In C. elegans, TLK-1 does not directly phosphorylate H3S10, but instead 

acts as a substrate activator of AIR-2, a bona fide H3S10 kinase (Han et al., 2005). Our 

laboratory isolated TLK-1 in a yeast two-hybrid screen for AIR-2 interacting proteins. 

Utilizing a purified AIR-2/ICP-1 holoenzyme, we showed that AIR-2 phosphorylates TLK-1 

at serine 634 [pTLK-1(S634)] and increases AIR-2 kinase activity in vitro. Furthermore, this 

activation is independent of TLK-1 kinase activity, which supports a novel non-catalytic 

function for TLK-1 (Riefler et al., 2008). This mechanism is reminiscent of the activation of 

AIR-2 by its chromosomal passenger partner, INCENP/ICP-1. Prior to mitosis TLK-1 is 

localized to the nucleus (Figure 6), while the AIR-2-phosphorylated TLK-1 

phosphoisoform, pTLK-1(S634), as well as an AIR-2-independent TLK-1 phosphoisoform, 

pTLK-1(T610), are surprisingly different from that of nuclear-localized unmodified TLK-1 

(Figure 7). Immunostaining experiments in C. elegans heterozygous for a tlk-1 deletion 

allele (tm2395) combined with tlk-1(RNAi) further confirmed that the subcellular 

localization of AIR-2-mediated pTLK-1(S634) is specifically localized to the kinetochore. 

Indeed, the localization of pTLK-1(S634) in embryos from tlk-1+/Δ hermaphrodites was 

markedly reduced in a tlk-1(RNAi) background (Han et al., 2005).  

Due to the interaction of TLK-1 with AIR-2 and the subsequent AIR-2-dependent 

phosphorylation of TLK-1 at serine 634 (Han et al., 2005), as well as the established role of 

AIR-2 in chromosome segregation, we hypothesized that TLK-1 may also influence this 

process. Several phenotypes were observed in the tlk-1(RNAi) embryos. My Master’s thesis 

work showed that TLK-1-depleted cells exhibited a significant delay at prometaphase 
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concomitant with chromosome congression defects, severe chromosome segregation defects 

(e.g., chromosome bridges at anaphase) (Figure 8), cells stalling at metaphase before 

transitioning to a pseudo-anaphase coupled with chromosome decondensation (i.e., 

chromosomes do not segregate as they do in controls, but attempt to pull apart and begin the 

decondensation process while still in close proximity to one another) (Figure 9), and cells 

that appear to be arrested in interphase with polyploid and distended nuclei. Additionally, I 

found that TLK-1 is required for the timely completion of mitosis (Figure 10).  

Consistent with these findings, TLKs have been shown to have mitotic functions in 

other systems. The Trypanosoma brucei homologue, TbTlk1, localized to centrosomes in an 

Aurora kinase-dependent fashion and loss of either Aurora or Tlk1 culminated in both 

chromosome segregation and cytokinesis problems (Li et al., 2007). Expression of 

catalytically-inactive Tlk1B in breast epithelial cells resulted in multiple mitotic spindles in 

a single cell, failure of chromosomes to attach to microtubules, and ultimately chromosome 

segregation defects (Sunavala-Dossabhoy et al., 2003). More recently, reduction of tlk-1 

expression in Drosophila melanogaster enhanced the chromosome segregation defects 

observed with the downregulation of a protein necessary for faithful chromosome 

segregation, mars, presumably due to an inability to correctly polymerize microtubules (Li 

et al., 2009).  

Clearly, depletion of TLK-1 affects chromosome segregation and is necessary for 

faithful transmission of chromosomes to daughter cells. The mechanism by which TLK-1 

affects chromosome segregation remains elusive. Further analysis of TLK-1 functions in 

upstream cellular events is necessary to determine the source of the chromosome 

segregation defects in the absence of TLK-1. In this dissertation, I will provide evidence for 
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an unexpected role for TLK-1 in the regulation of spatial and temporal centrosome 

positioning and movement, mitotic spindle positioning, and regulation of microtubule 

dynamics during the first asymmetric cell division in the C. elegans embryo.
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Figure 6: TLK-1 exhibits nuclear localization. 

Wild-type embryos were fixed and stained with an antibody against full-length, recombinant 

TLK-1 and counterstained with an α-tubulin antibody to visualize the mitotic spindle. TLK-

1 was localized to the nucleus in prophase and telophase, as well as in interphase 

(multicellular panel). A faint halo can be seen in metaphase, and no specific staining is 

detected at anaphase. Scale bar = 5µm 
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Figure 7: Localization of pTLK-1(S634). 

Embryos were fixed and stained with antibodies against α-tubulin and pTLK-1(S634). 

pTLK-1(S634) is localized clearly to the kinetochore, spindle microtubules, and 

centrosomes at prophase and metaphase (Ford, 2009). Scale bar = 10µm. 
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Figure 8: TLK-1 is required for chromosome congression and segregation.  

Live-cell imaging of embryos from a tlk-1Δ/+ hermaphrodite showed obvious mitotic 

defects when treated with tlk-1(RNAi). Control embryos progressed normally through a 

timely mitosis, condensed chromosomes were more clearly defined than in tlk-1(RNAi) 

embryos (arrowheads). Wide metaphase plates were also observed in tlk-1(RNAi) embryos 

(arrows), as well as chromosome segregation defects in the form of anaphase bridges (open 

arrowheads) (Ford, 2009). Scale bar = 5µm. 
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Figure 9: TLK-1 promotes timely and faithful chromosome segregation. 

Live-cell imaging of metaphase alignment in embryos from  tlk-1Δ/+ hermaphrodites 

subjected to control or tlk-1(RNAi) revealed that TLK-1 is required for timely and accurate 

chromosome segregation. Control embryos progressed normally through mitosis, and 

condensed chromosomes formed more clearly defined metaphase plates than in tlk-1(RNAi) 

embryos (arrowheads). Wide metaphase plates were consistently observed in late tlk-

1(RNAi) embryos. Additionally, TLK-1-depleted embryos attempted chromosome 

segregation much later than controls, ultimately decondensing chromosomes before 

complete separation (Ford, 2009). 
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Figure 10: TLK-1 is required for timely mitotic progression. 

Live-cell imaging of early embryos from tlk-1Δ/+ hermaphrodites subjected to control or 

tlk-1(RNAi) revealed that tlk-1(RNAi) embryos experience a significant delay from NEBD to 

metaphase versus controls, as evidenced here in both the anterior and the posterior cell 

(Ford, 2009). Scale bar = 10µm 
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INTRODUCTION 

 

Given that TLK-1 has pleiotropic effects during development, including roles in DNA 

replication (Krause, Jonnalagadda et al. 2003), DNA repair (Groth, Lukas et al. 2003), 

transcription (Han, Saam et al. 2003), chromatin assembly (Sillje and Nigg 2001) and 

condensation (Yeh, Yang et al. 2010), and chromosome segregation (Han, Riefler et al. 2005), I 

sought to further elucidate the precise contributions of TLK-1 to the cell cycle and 

embryogenesis in C. elegans. Depletion of TLK-1 by RNA interference (RNAi) leads to 

embryonic arrest at the 50-100 cell stage with large, distended nuclei and ultimately embryonic 

lethality. Prior to terminal arrest, TLK-1-depleted embryos undergo aberrant mitoses 

characterized by poor metaphase chromosome alignment, delayed mitotic progression, lagging 

chromosomes and chromosome bridging, and supernumerary centrosomes (our unpublished 

data). However, these striking tlk-1(RNAi) phenotypes are most obvious in late stage embryos, 

which makes the accurate comparison of affected cells between different embryos much more 

difficult. To unearth the contributions of TLK-1 during embryogenesis, I focused on the earliest 

observable phenotype in Cænorhabditis elegans embryos depleted of TLK-1 by RNA-

interference. 

 

RESULTS 

Chromosome condensation does not require TLK-1 during the first mitotic prophase  

 

TLK-1 is essential during embryogenesis and there are severe mitotic defects in TLK-1-

depleted embryos. Therefore, to elucidate the effects of TLK-1 in the early C. elegans embryo, 
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I performed live-cell spinning disk confocal microscopy to monitor early mitotic events, 

including pronuclear migration, chromosome condensation, pronuclear meeting (PNM), 

nuclear envelope breakdown (NEBD), and NCC centration and rotation in developing single-

cell tlk-1(RNAi) embryos expressing GFP::histone H2B and GFP::γ-tubulin (Maddox, Portier et 

al. 2006). Previous reports implicate TLK-1 in AB lineage-specific chromosome condensation 

(Yeh, Yang et al. 2010), which led to the hypothesis that TLK-1 was affecting the process of 

chromosome condensation during embryogenesis. Given the chromosome segregation defects 

observed in tlk-1(RNAi) embryos at later stages, I posited that early defects in correctly 

condensing chromosomes could be contributing to phenotypes observed in later-stage embryos. 

An inability for chromosomes to align well at prometaphase to metaphase due to inappropriate 

or incomplete condensation could be contributing to the perturbed kinetochore structure and 

severe chromosome segregation defects I previously observed (Ford 2009).  

To quantitatively address whether TLK-1 affected chromosome condensation, I imaged 

GFP::H2B by live-cell confocal microscopy, collecting a z-series over time of the paternal 

pronucleus through the first mitotic prophase (from pronuclear migration to NEBD, Figure 11). 

I then generated maximum intensity projections for each time point, followed by analysis of a 

square region of interest inside of male pronucleus (Figure 12). In the sperm pronucleus, the 

chromatin is decondensed and replicated after fertilization, followed by subsequent 

condensation during the first mitotic prophase. This is strikingly different than the chromatin in 

the female pronucleus, which undergoes meiotic segregation twice prior to S-phase and the first 

mitotic division (Maddox et al. 2006).  Thus, chromosome condensation was assessed in the 

male pronucleus to quantitate any differences in control and tlk-1(RNAi) embryos. 
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Figure 11: Examples of time-points measured to quantitate chromosome condensation. 

Live-cell spinning disk confocal imaging of GFP:H2B in the paternal pronucleus through the 

first mitotic prophase (from pronuclear migration through NEBD) was used to quantitatively 

assess the contribution of TLK-1 to chromosome condensation. Shown are representative 

images that were used to measure the level of chromosome condensation. Scale bar = 10µm 
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Figure 12: Chromosome condensation is not differentially affected by TLK-1 depletion 

during the first asymmetric division 

(A) Live-cell spinning disk confocal imaging of GFP:H2B in the paternal pronucleus 

through the first mitotic prophase.  

(B) Kinetic plots of the percentage of pixels below each threshold (the condensation 

parameter) as a function of time in control (n=10) and tlk-1(RNAi) (n=10) embryos. 

The control(RNAi) plot is overlaid on the tlk-1(RNAi) plot. smc-4(RNAi) was used as a 

control for aberrant chromosome condensation. Error bars are ± standard deviation.  
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The images of the paternal chromatin were individually scaled from 0 to a maximum of 255 

using custom macros (Maddox, Portier et al. 2006). A priori, fluctuations in the distribution 

of fluorescence intensity of the pronuclear GFP::H2B signal over time can serve as a read-

out for chromosome condensation dynamics. When the chromatin is decondensed, the 

GFP::H2B signal is uniform throughout the pronucleus; however, the fluorescence signal 

shifts and accumulates to distinct areas of the pronucleus during chromosome condensation. 

This shift in fluorescence intensity over time was quantified as previously described by 

plotting the pixel flux at several intensity thresholds, specifically 80%, 65%, 50%, 35%, and 

20% of the maximum intensity of the image (Maddox, Portier et al. 2006). Times were 

calculated with respect to NEBD, and for control and tlk-1(RNAi) the condensation 

parameters measured from time-aligned sequences of 10 different embryos were averaged 

and plotted (Figure 12).  Depletion of SMC-4, a member of the condensin complexes 

necessary for chromosome condensation, was used as a negative control (Hagstrom, Holmes 

et al. 2002; Maddox, Portier et al. 2006; Csankovszki, Collette et al. 2009). 

Quantitative analysis of chromosome condensation in TLK-1-depleted embryos did 

not reveal a significant difference in the flux of pixel intensity compared to control. Thus, I 

conclude from this experiment that TLK-1 under these conditions at this level of TLK-1 

depletion is not differentially affecting chromosome condensation during the first mitotic 

prophase. However, another group using DAPI analysis did implicate TLK-1 in 

chromosome condensation in the AB lineage starting at the 16-32 cell cycle stage (Yeh, 

Yang et al. 2010). Thus, taken together these data imply two possibilities: that TLK-1 is 

required for condensation but was not depleted enough in these assays to cause a quantative 
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difference in chromosome condensation prior to the 16-32 cell stage, or that TLK-1 is not 

required for early chromosome condensation. 

 

TLK-1 is required for timely mitotic spindle rotation in the one-cell C. elegans embryo 

 

While analyzing 1-cell tlk-1(RNAi) embryos for chromosome condensation defects, 

strikingly, I found there was a significant delay in the rotation of the nuclear/centrosome 

complex (NCC) in approximately 50% of TLK-1-depleted embryos (Figure 13). Both 

control and tlk-1(RNAi) embryos proceeded through pronuclear migration, PNM, and 

centration in a timely fashion; there was no significant difference in the rate of maternal 

pronuclear migration or positioning (Figure 14). In addition, the timing of PNM relative to 

NEBD (Figure 14, asterisks) in control or tlk-1(RNAi) was not significantly different. 

However, in 47% of the tlk-1(RNAi) embryos analyzed (n=15), an obvious defect in spindle 

rotation was observed (Figure 13). Spindle rotation eventually occurred in these affected 

embryos after NEBD, whereas rotation in control(RNAi) embryos occurred prior to or 

during NEBD (Figure 13). Some embryos exhibiting the TLK-1-dependent aberrant rotation 

phenotype did undergo a slight rotation before NEBD; however, all tlk-1(RNAi) embryos 

completed rotation before anaphase onset.   

To quantify this phenotype, videos of individual embryos were aligned with the 

anterior end on the left and spindle rotation occurring in a counterclockwise manner. These  
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Figure 13: TLK-1 promotes timely rotation of the nuclear/centrosome complex (NCC) 

in the one-cell C. elegans embryo. 

One-cell embryos dissected from control and tlk-1(RNAi) treated adult hermaphrodites 

expressing GFP::histone H2B;GFP::γ-tubulin (TH32) were subjected to live imaging using 

spinning disk confocal microscopy. PNM:  pronuclear meeting; NEBD:  nuclear envelope 

breakdown. Anterior is to the left in each embryo.  Time 0 = NEBD.  Arrowheads and 

arrows point to the differences in spindle rotation in control vs. tlk-1(RNAi) embryos at 

NEBD and metaphase respectively.   Scale Bar = 10µm 
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Figure 14: Pronuclear migration, pronuclear meeting, and centration occur normally 

in tlk-1(RNAi) embryos. 

One-cell embryos dissected from control (n=9) and tlk-1(RNAi) (n=7) treated adult 

hermaphrodites expressing GFP::histone H2B;GFP::γ-tubulin (TH32) were subjected to live 

imaging using spinning disk confocal microscopy. A plot of the distance from the center of 

the maternal pronucleus to the posterior pole from pronuclear migration to NEBD is shown. 

The shaded area represents the centration event, where the NCC migrates towards the center 

of the embryo after PNM. Plot lines are average %EL ± SEM. * = average time PNM 

occurred for either control (t = -173.33 ± 16.41 seconds, n=9) or tlk-1(RNAi) (t = -158.57 ± 

21.20 seconds, n=7) embryos. 
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embryos were temporally aligned with NEBD being time-zero. To measure the rate of 

rotation, the angle between the two centrosomes and the anteroposterior axis over time was 

determined (Figure 15A). The affected tlk-1(RNAi) embryos had a significant delay (p < 

0.05) in NCC rotation compared to control embryos from 70 seconds prior to and after 

NEBD (Figure 15B). On average, NEBD occurred in control embryos when the NCC was at 

149 ± 7.60° (degrees) relative to the AP axis, whereas in tlk-1(RNAi) embryos NEBD 

occurred when the NCC was at 114 ± 8.76° (p < 0.03) (Figure 15B). Calculation of the 

average times at which PNM and anaphase onset occurred relative to NEBD in each sample 

revealed that PNM occurred at -173.33 ± 16.41 seconds (s) in control(RNAi) and at -158.57 

± 21.20s in tlk-1(RNAi) embryos, while anaphase onset occurred at +152.50 ± 3.66s in 

control(RNAi) and at +157.14 ± 7.78s in tlk-1(RNAi) embryos, revealing that timing of these 

mitotic landmarks were not perturbed when TLK-1 was depleted (Table 1). 

 

            Table 1: Average times of PNM and Anaphase Onset relative to NEBD  
 

 

 

 

In addition, the control(RNAi) embryos exhibit a significantly different rotation 

profile than the TLK-1-depleted embryos during the first mitotic division (Figure 15B). To 

quantitate the rate of spindle rotation for each sample set, the slopes between data points 

were calculated to provide the speed of rotation in degrees per second. During the interval 

from pronuclear meeting to NEBD (-150 seconds to 0), control(RNAi) embryos rotate 

significantly faster (2.5 fold) than tlk-1(RNAi) embryos (0.414 vs 0.163 degrees/second) 

 PNM Anaphase Onset 
control(RNAi) -173.33 ± 16.41s +152.50 ± 3.66s 

tlk-1(RNAi) -158.57 ± 21.20s +157.14 ± 7.78s 
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(Table 2, Figure 16), with control embryos averaging a 57.90 ± 5.45° rotation and tlk-

1(RNAi) embryos averaging a 22.77 ± 6.05° rotation by NEBD (Figure 15B). However, 

during the interval from NEBD to anaphase onset (0 to 110 seconds), tlk-1(RNAi) embryos 

rotate twice as fast as control(RNAi) embryos (0.343 vs. 0.171 degrees/second) (Table 2, 

Figure 16), with control embryos averaging a 18.84 ± 5.26° rotation and tlk-1(RNAi) 

embryos averaging a 37.77 ± 11.03° rotation by anaphase onset (Figure 15B). Embryos 

subjected to tlk-1(RNAi) did not exhibit a significant change in overall rotation rate 

compared to control(RNAi) embryos from PNM to anaphase onset. These overall 

comparable rates of spindle rotation in control versus tlk-1(RNAi) embryos are due to TLK-

1-depleted embryos significantly speeding up rotation after NEBD in order to compensate 

for their significantly delayed rotation prior to NEBD, thus allowing tlk-1(RNAi) embryos to 

correctly align the mitotic spindle along the AP axis by anaphase onset (Figures 15 and 16). 

Calculation of the instantaneous velocities between each individual data point in the 

two data sets revealed that control(RNAi) embryos move more quickly and smoothly in a 

constant direction than their tlk-1(RNAi) counterparts (Figure 17). TLK-1-depleted embryos 

show a generally slower rate of rotation and reverse their rotation direction temporarily 

several times prior to NEBD (Figure 17, tlk-1(RNAi) at t=-100s, t=-60, and t=-10). Whereas 

control(RNAi) velocities start out fast and gradually slow down during the rotation event, 

tlk-1(RNAi) embryos speed up their rotation velocities in a lurching manner only after 

NEBD, when the control embryos are slowing down (Figure 17). This suggests that TLK-1 

is required for maintenance of speed and direction of the NCC during rotation from PNM to 

anaphase onset.  
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Figure 15: NCC rotation is significantly delayed in tlk-1(RNAi) embryos. 

(A) Schematic of spindle angle measurement over time. θ: angle between the centrosome 

complex and the anterior-posterior axis (A: anterior; P:  posterior).  

(B) Plot of spindle angle (θ) over time in embryos imaged as in Figure 13. Left and right 

grey shading represents the respective time frames in which PNM and anaphase onset 

occurred.  Time 0 = NEBD.   Error bars: ± standard error of the means (SEM). * p < 

0.05, Student’s t-test. 
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Figure 16: TLK-1 affects the rate of spindle rotation 

(A) Quantitation of spindle rotation rates in control and tlk-1(RNAi) embryos. Rate of 

spindle rotation (degrees/second) from i) PNM to NEBD, ii) NEBD to anaphase 

onset, iii) PNM to anaphase onset. Error bars = ± SEM calculated from the 

individual slopes between each data point. * p < 0.05, Student’s t-test. 

(B) Plot of spindle angle (θ) over time in control and tlk-1(RNAi) embryos from Figure 

15B with slope lines for distinct time periods drawn in for reference. Lines A (red) 

and D (orange) represent the slopes from PNM to NEBD in control and tlk-1(RNAi) 

embryos, respectively. Lines B (red) and E (orange) represent the slopes from 

NEBD to anaphase onset in control and tlk-1(RNAi) embryos, respectively. Lines C 

(red) and F (orange) represent the overall slopes from PNM to anaphase onset in 

control and tlk-1(RNAi) embryos, respectively. 

(C) Table of the rates of NCC rotation (degrees/second) and the total amount of spindle 

rotation (degrees) from PNM to NEBD, NEBD to anaphase onset, or overall rotation 

(PNM to anaphase onset) as measured from (B). 
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Figure 17: Instantaneous velocity of overall spindle rotation. 

The velocity of rotation was calculated as the first derivative, or change in slope, between 

each data point for control(RNAi) and tlk-1(RNAi). This parameter is a measure of the speed 

and direction of spindle rotation, and can thus be used to further visualize the difference in 

rotation rate between wild-type and TLK-1-depleted embryos. t = 0 is NEBD. 
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TLK-1 impacts the trajectory of centrosome movement and their positioning in the one-

cell embryo 

 

Accurate spindle positioning depends on the interaction of astral microtubules with 

the cell cortex (Tsou, Hayashi et al. 2002; Nguyen-Ngoc, Afshar et al. 2007). Since astral 

microtubules are nucleated from centrosomes, precise centrosome positioning is critical for 

timely and correct execution of developmentally-programmed spindle rotation events.  To 

assess the role of TLK-1 in centrosome positioning, GFP::H2B; GFP::γ-tubulin-expressing 

embryos were subjected to control or tlk-1(RNAi) and aligned temporally at NEBD. The 

distances from the anterior and posterior centrosomes to a single spot on the posterior end of 

each embryo were calculated over the duration of the first mitotic cycle (Figure 18A). 

Kymographs of these centrosome positions over time were then generated (Figure 18B).   

Anterior displacement between the anterior and posterior centrosomes in 

control(RNAi) embryos initiates at approximately 140 seconds prior to NEBD, and is 

statistically significant by 50 seconds prior to NEBD. In TLK-1-depleted embryos, anterior 

displacement begins at approximately -80 seconds and is statistically significant by 70 

seconds prior to NEBD. To determine whether the length of the mitotic spindle was altered 

in control versus tlk-1(RNAi) embryos, I calculated the physical distance between the 

anterior and posterior centrosomes in control and tlk-1(RNAi) embryos. There was no 

significant difference in the distance between the anterior and posterior centrosomes from 

PNM to cytokinesis (Figure 19). However, our data did show that the posterior centrosomes 

in TLK-1-depleted embryos undergo a statistically significant anterior displacement 

compared to controls during the time interval from 80 seconds to 20 seconds prior to NEBD. 
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Figure 18: TLK-1 impacts the positioning of posterior centrosomes 

(A) Schematic of the measurements of centrosome positions over time. The distances 

from each centrosome to a point at the posterior end of the embryo were measured 

and calculated as a percentage of total embryo length from the anterior to the 

posterior.  A: Anterior, 0%; P: Posterior, 100%.   

(B) One-cell embryos dissected from control- and tlk-1(RNAi)-treated adult 

hermaphrodites expressing GFP::histone H2B;GFP::γ-tubulin (TH32) were 

subjected to live imaging using spinning disk confocal microscopy. The distance of 

each centrosome from the posterior was measured as in (A) and displayed as a 

kymograph of % embryo length over time.  Time 0 = NEBD.  Error bars: ± SEM, * 

p < 0.05, Student’s t-test. 
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Table 2: Position of the Posterior Centrosomes in control and tlk-1(RNAi) embryos 
Time before 
NEBD (sec) 

Position of the Posterior 
Centrosome (%EL) 

control(RNAi)     tlk-1(RNAi) 
      (n=10)                  (n=5) 

Δ% 

-80 64.1±2.17% 55.5±1.95% 8.6% 
-70 62.7±2.80% 54.4±1.25% 8.3% 
-60 60.8±1.62% 52.8±1.79% 8.0% 
-50 61.1±2.62% 51.5±2.00% 9.6% 
-40 60.7±2.72% 51.0±1.75% 9.7% 
-30 60.1±2.82% 50.1±1.97% 10.0% 
-20 60.0±2.70% 49.8±2.13% 10.2% 

Average 61.4±2.49% 52.2±1.83% 9.2% 
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Figure 19: Spindle length is not altered during the aberrant NCC rotation in TLK-1-

depleted embryos. 

Plot of the distance between the anterior and posterior centrosomes through pronuclear 

migration, PNM, centration, and rotation. Plot lines are distance (µm) between centrosomes 

± SEM (a readout of spindle length during the first asymmetric division (Jaensch, Decker et 

al. 2010)). There was no significant difference in spindle length between control and tlk-

1(RNAi) embryos. * = average time of anaphase onset with respect to NEBD in control (t = 

+152.50 ± 3.66 seconds, n=9) or tlk-1(RNAi) (t = +157.14 ± 7.78 seconds, n=7) embryos. 

 

 

 

 

 

 

 

 



	
   79 

 

 

 

 

 

 

 

 

 



	
   80 

Posterior centrosomes in tlk-1(RNAi) embryos are an average of 9.2% embryonic length 

more anteriorly displaced than control posterior centrosomes during this time period  (Table 

3). These results suggest that TLK-1 affects posterior centrosome positioning prior to 

nuclear envelope breakdown.  

While these data allowed me to determine the movement of centrosomes with 

respect to one another and the anterior-posterior axis, I sought to assess centrosome behavior 

in three-dimensional space over time.  Hence, four-dimensional live-cell spinning disk 

confocal microscopy was performed with C. elegans embryos co-expressing plasma 

membrane and centrosome markers (GFP::PHPLC1δ1 and GFP:: γ-tubulin) (Toya, Iida et al. 

2010). Videos of control and tlk-1(RNAi) embryos were taken from pronuclear migration 

through completion of the first mitotic division. All videos were temporally aligned using 

anaphase onset as a reference point; this time point was chosen since it was not possible to 

reliably demarcate the precise time at which NEBD occurred.  

Five control and five affected tlk-1(RNAi) embryos (i.e., those exhibiting aberrant 

spindle rotation) were subjected to imaging and analysis as described in Materials and 

Methods. Initial centrosome positions at approximately PNM (Figure 20), while somewhat 

stochastic prior to centration, were more tightly organized overall in control versus tlk-

1(RNAi) embryos, as observed in both top-down and side-on views. The positions of 

centrosomes in anaphase (Figure 20) were also less spatially organized in tlk-1(RNAi) 

embryos but less so than at PNM. The paths of centrosomes movement were traced over 

time in Imaris to generate individual tracks for the anterior and posterior centrosomes in 

control (n=5) and tlk-1(RNAi) (n=5) embryos. The paths of five anterior and five posterior 

centrosomes were then overlaid. During the first asymmetric division, the positioning  
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Figure 20: TLK-1 affects the spatial positioning of centrosomes during NCC rotation. 

Centrosome positions at PNM (-300 seconds from anaphase) and anaphase onset (t=0, as 

assessed by posterior spindle displacement) in control (n = 5) and tlk-1(RNAi) (n = 5) 

embryos. Top panels are a top-down view and bottom panels are a side-on view. Anterior is 

to the left and NCC rotation occurred in a counter-clockwise manner. Anterior and posterior 

centrosomes from the same embryo are the same color. Scale bar = 10µm 
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and movement of centrosomes from TLK-1-depleted embryos were radically different than 

control(RNAi) centrosomes. The paths traveled by the anterior centrosomes in control(RNAi) 

embryos (Figure 21) follow a similar path in a characteristic smooth arcing pattern. The 

anterior tracks of tlk-1(RNAi) embryos also follow an arcing pattern, but these traces do not 

overlap as in controls. The posterior centrosome tracks (Figure 21) in tlk-1(RNAi) embryos 

typically extend farther anteriorly than control embryos, following markedly different, 

chaotic paths. When all anterior and posterior tracks are overlaid onto a single embryo, the 

smooth, stereotypical overall rotation paths are clearly different for control versus tlk-

1(RNAi) embryos, with the tlk-1(RNAi) rotation paths being extremely disorganized and 

stochastic in all dimensions (Figure 21). These results suggest that TLK-1 regulates 

centrosome movement and positioning spatially and temporally in the early C. elegans 

embryo. 

 

Polarity is established normally and does not contribute to aberrant TLK-1-dependent 

spindle rotation  

 

A priori, the NCC rotation phenotype and disrupted spindle positioning seen in tlk-

1(RNAi) embryos could result, in part, from defects in polarity establishment. To assess 

polarity, I performed live-cell spinning disk microscopy on control and tlk-1(RNAi) embryos 

expressing either GFP::PAR-6, which demarcates the anterior cortex, or GFP::PAR-2, which  

demarcates the posterior cortex. Neither GFP::PAR-6- nor GFP::PAR-2-expressing control 

or tlk-1(RNAi) embryos showed any obvious defects in polarity establishment from 

pseudocleavage through cytokinesis (Figure 22). GFP::PAR-6 was more intense in  
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Figure 21: TLK-1 affects the spatial movement of centrosomes during NCC rotation. 

Tracking of the paths the anterior and posterior centrosomes (from (A)) followed during 

NCC rotation in control and tlk-1(RNAi) embryos. Track colors correspond to 

analogously-colored centrosome pairs in (A). Top panels are a top-down view and 

bottom panels are a side-on view.  Scale bar = 10µm 
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tlk-1(RNAi) embryos along the anterior cortex than in controls, but otherwise was in a 

similar distribution in both samples from PNM through cytokinesis and formation of the 

cleavage furrow (Figure 22). Posterior polarity as determined by GFP::PAR-2 localization 

also appeared normal in TLK-1-depleted embryos compared to controls (Figure 22). 

Although, PAR-2 was more intense in tlk-1(RNAi) embryos. While the cortical localizations 

of both GFP::PAR-2 and GFP::PAR-6 in tlk-1(RNAi) embryos were normal, there was a 

visual difference in intensity between TLK-1-depleted embryos and controls. The live-cell 

imaging presented here precludes quantitative analysis of GFP::PAR-2/6 proteins levels in 

tlk-1(RNAi) embryos, but the disparity in intensity when TLK-1 is depleted could be 

biologically significant since members of the polarity-establishment pathway are also 

cortical force determinants (Tsou, Hayashi et al. 2002; Severson and Bowerman 2003; Tsou, 

Hayashi et al. 2003; Nguyen-Ngoc, Afshar et al. 2007). Depletion of TLK-1 could have 

affected the GFP::PAR-2/6 transgenes in the same manner, although such a difference is not 

observed with other transgenes such as GFP::β-tubulin. To assess this difference in intensity, 

antibody staining against the PAR-2 and PAR-6 proteins can be performed and their protein 

levels quantitated, and other cortical proteins (i.e., PAR-1//3, GPR-1/2) can be assessed as 

well.  
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Figure 22: Normal anterior polarity is established in TLK-1-depleted embryos. 

(A) Still images from live-cell videos of control (n=4) and tlk-1(RNAi) (n=3) embryos 

expressing GFP::PAR-6. Anterior localization of GFP::PAR-6 at pseudocleavage, 

PNM, and cytokinesis is similar between control and tlk-1(RNAi) embryos. Scale bar 

= 10µm 

(B) Still images from live-cell videos of control (n=4) and tlk-1(RNAi) (n=3) embryos 

expressing GFP::PAR-2. There is no discernible difference in posterior localization 

of GFP::PAR-2 immediately before cleavage furrow ingression or at cytokinesis 

between control and tlk-1(RNAi) embryos. Scale bar = 10µm 
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TLK-1 is required for LET-99 localization and restriction to the posterior-lateral cortical 

domain 

 

Differential pulling forces emanating from defined regions of the cell cortex are 

responsible for spindle rotation during centration (Siller and Doe 2009). Stronger pulling 

from the anterior cortex centrate the NCC while diminished forces from the lateral posterior 

domain allow astral microtubule attachments at the anterior and posterior cortices to rotate 

the NCC as it moves anteriorly. Inhibition of the cortical pulling forces at the lateral 

posterior domain by LET-99 is essential for NCC rotation to occur in a timely manner to 

align the mitotic spindle along the AP axis prior to chromosome segregation (Tsou, Hayashi 

et al. 2002). Therefore, I sought to determine if LET-99 was differentially localized in tlk-

1(RNAi) embryos.  

Using live-cell spinning disk microscopy, I imaged RL238 YFP::LET-99-expressing 

embryos subjected to control and tlk-1(RNAi) undergoing the first mitotic division. Embryos 

were temporally aligned at NEBD, which was defined as the first frame in which a distinct 

influx of cytoplasmic YFP::LET-99 into the former pronuclear space could be reliably 

observed.  In both control and tlk-1(RNAi) embryos, there was an intense YFP::LET-99 

signal at the polar bodies, hence for the purposes of assessing the cortical localization of 

YFP::LET-99, I masked the polar bodies on the anterior and disregarded the strong 

YFP::LET-99 signal emanating from the polar bodies. Control embryos exhibited 

YFP::LET-99 maxima around 45%-75% embryonic length during NCC rotation, increasing 

in intensity and spreading toward the posterior to around 80% EL after NEBD and up until  
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Figure 23: LET-99 is differentially distributed throughout the cell cortex TLK-1-

depleted embryos. 

Still images from videos of RL238 (let-99(dd17);YFP::LET-99) control or tlk-1(RNAi) 

embryos from 180 seconds prior to and 60 seconds after NEBD. The polar bodies were 

masked in these panels due to their brightness. Depletion of TLK-1 results in a more intense 

and broader cortical accumulation of YFP::LET-99 from PNM through NCC. Scale bar = 

8µm 
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metaphase (Figure 23, n=4). However, tlk-1(RNAi) embryos showed a strikingly higher 

intensity of YFP::LET-99 throughout the entire cortex from PNM through metaphase, 

especially localizing more anteriorly than in controls (Figure 23, n=4).  

Recognizing the limitations of quantifying protein levels using live-cell imaging, I 

performed fixed-cell immunofluorescence of TH73 (YFP::LET-99) embryos subjected to 

control or tlk-1(RNAi) in order to more precisely quantitate the aberrant YFP::LET-99 

localization and intensities from PNM through NCC rotation. Previous in situ 

immunolocalization showed maximal LET-99 protein localization from approximately 50-

75% embryonic length at PNM (Tsou, Hayashi et al. 2002). I found that intensity of 

YFP::LET-99 was significantly higher in tlk-1(RNAi) embryos versus controls at or shortly 

after PNM from 32% to 52% embryonic length, with YFP::LET-99 being ≥1.5x brighter in 

TLK-1-depleted embryos over this range (Figures 24 and 25). These data suggest that there 

is an increase in and less cortical restriction of YFP::LET-99 protein levels at PNM in TLK-

1-depleted embryos (Figures 24 and 25).   

I also analyzed tlk-1(RNAi) embryos post-PNM that were undergoing NCC rotation 

and found that levels of YFP::LET-99 were significantly higher throughout the anterior 

cortex (0% EL) to the posterior lateral cortical domain (75% EL). From the anterior cortex 

to about 44% EL, YFP::LET-99 was between 2.0-2.5x brighter in TLK-1-depleted embryos 

compared to controls (Figure 26 and 27). A sharp increase of YFP::LET-99 in tlk-1(RNAi) 

embryos was observed after 44% EL, which was anterior of the YFP::LET-99 domain in 

control embryos, beginning at approximately 53% EL. YFP::LET-99 levels peaked in both 

control and tlk-1(RNAi) embryos at 60% EL, but YFP::LET-99 was 2.8x brighter in TLK-1-

depleted embryos (Figures 26 and 27). Taken together, these data indicate that TLK-1 



	
   93 

affects the amount and cortical position of LET-99 from PNM through centration and NCC 

rotation. Thus, I conclude that TLK-1 plays an unexpected role in regulating LET-99-

positioning during the first asymmetric division. 

Because LET-99 is known to inhibit cortical pulling forces in the posterior-lateral 

domain of the embryo, I next assessed how microtubule dynamics and attachments were 

differentially affected when TLK-1 was depleted. Quantitative analysis of embryos stained 

with anti-α-tubulin revealed that tlk-1(RNAi) embryos had significantly fewer microtubules 

reaching within 2µm of the cell cortex during NCC rotation (Figure 28A). This implies that 

less cortical force is being generated overall in TLK-1-depleted embryos due to attenuation 

of these astral microtubule attachments. Additionally, I performed live-cell spinning disk 

confocal imaging of GFP::EBP-2 (end-binding protein 2), which is localized to the plus-

ends of microtubules being nucleated from the centrosomes and can be used as a readout of 

microtubule polymerization (Srayko, Kaya et al. 2005). Tracking of GFP::EBP-2 particles 

after NEBD in control and tlk-1(RNAi) embryos revealed that control microtubules nucleate 

to consistent, distinct areas of the cell cortex during rotation with microtubule attachments 

appearing to be generally more “end-on”. No discernible pattern for the directionality of 

microtubule nucleation in tlk-1(RNAi) microtubules was observed except that more 

microtubules appear to be nucleating toward the inhibitory posterior-lateral cortex than in 

controls (Figure 28B (red domain)); however, generally the GFP::EBP-2 comets displayed a 

chaotic distribution throughout the cell and aberrant localization to the cell cortex. 

Microtubules in TLK-1-depleted embryos also appeared to slide along the cortex more than 

in control embryos (Figure 28B). Together, these data show that TLK-1 is necessary for 
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regulating the direction of microtubule nucleation during NCC rotation, as well as efficient 

nucleation of microtubules and their attachment to the cell cortex. 
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Figure 24: TLK-1 affects the level and cortical position of LET-99 during NCC 

rotation. 

Fixed-cell quantitation of TH73 (YFP::LET-99) control (n=9) and tlk-1(RNAi) (n=8) at 

PNM. Raw data were normalized from 0 to 1 with respect to the minimum and maximum 

raw intensities for (B) and (C). Example embryos are shown in the right panels. The polar 

bodies were not considered part of the embryo. Graph represents average cortical intensities 

± SEM. Shaded area = p < 0.05, Student’s t-test. Scale bar = 8µm  
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Figure 25: Quantified raw intensities of YFP::LET-99 levels at PNM. 

Raw, non-normalized fixed-cell quantitation data of TH73 (YFP::LET-99) control (n=9 

embryos, 18 cortices) and tlk-1(RNAi) (n=8 embryos, 16 cortices) at PNM. The polar bodies 

were not considered part of the embryo. Graph represents average raw cortical intensities ± 

SEM. Shaded area = p < 0.05, Student’s t-test.  
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Figure 26: TLK-1 affects the level and cortical position of LET-99 during NCC 

rotation. 

Fixed-cell quantitation of TH73 (YFP::LET-99) control (n=5) and tlk-1(RNAi) (n=5) having 

undergone NEBD. Raw data were normalized as in Figure 24. Example embryos are shown 

in the right panels. Graph represents average cortical intensities ± SEM. Shaded area  = p < 

0.05, Student’s t-test. Scale bar = 8µm 
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Figure 27: Quantified raw intensities of YFP::LET-99 levels at NEBD-rotation 

Raw, non-normalized fixed-cell quantitation data of TH73 (YFP::LET-99) control (n=5 

embryos, 10 cortices) and tlk-1(RNAi) (n=5 embryos, 10 cortices) at NEBD-rotation. The 

polar bodies were not considered part of the embryo. Graph represents average raw cortical 

intensities ± SEM. Shaded area = p < 0.05, Student’s t-test.  
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Figure 28: Quantitation of astral microtubule at the cell cortex. 

(A) Immunofluorescent analysis of astral microtubules in tlk-1(RNAi) embryos. TLK-1-

depleted embryos exhibit fewer microtubules reaching to within 2µm of the cell 

cortices, suggesting that less microtubule attachments may also be contributing to 

the aberrant NCC rotation phenotype (n=5 for both conditions). Error bars = ± SEM. 

* = p < 0.05, Student’s t-test. 

(B)  Tracking of GFP::EBP-2 particles after NEBD in control and tlk-1(RNAi) embryos. 

Control microtubules nucleate to consistent, distinct areas of the cell cortex during 

rotation with microtubule attachments appearing to be generally more “end-on”. No 

discernible pattern for the directionality of microtubule nucleation in tlk-1(RNAi) 

microtubules was observed, with the GFP::EBP-2 comets displaying a chaotic 

distribution throughout the cell and aberrant localization to the cell cortex. 

Microtubules in TLK-1-depleted embryos also appeared to slide more when they 

reached the cortex than control embryos. Cortical domains are indicated in their 

respective colors. Images represent a 40s time from PNM through rotation. Arrow = 

“end on” microtubule attachments in control(RNAi); arrowheads = microtubule 

cortical sliding in tlk-1(RNAi) 
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CHAPTER III: DISCUSSION AND SIGNIFICANCE 
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DISCUSSION  

Here I report that the C. elegans TLK-1 kinase has a role in the timing of nuclear core 

complex rotation, centrosome movement, mitotic spindle positioning and microtubule 

dynamics during the first asymmetric cell division. This is the first report demonstrating a 

critical role for a Tousled-like kinase in spindle dynamics in any organism. Human Tlks were 

initially described as functioning in S-phase, with implied roles in DNA replication (Krause et 

al. 2003), DNA repair (Groth et al. 2003), and chromatin assembly (Sillje and Nigg 2001). 

Work from our laboratory and others have also demonstrated a role for TLKs during mitosis, 

including chromosome condensation (Yeh et al. 2010) and chromosome segregation (Han et al. 

2005). Tlks in humans and other organisms are necessary for survival and to maintain ploidy, 

and my work implicating TLK-1 in directly influencing microtubule-spindle dynamics suggests 

additional mechanisms through which Tlks are likely contributing to cellular maintenance. 

During the asymmetric division of the early one-cell embryo, AP polarity is established 

and maintained by cues from the asymmetrically-localized PAR proteins. These polarity cues 

regulate cortical pulling forces on astral microtubule attachments at the cell cortex and are 

required for NCC rotation, posterior spindle displacement, and anaphase separation (Galli and 

van den Heuvel 2008). We show that depletion of TLK-1 does not affect establishment of 

polarity as represented by correct localization of PAR-6 to the anterior cortex and PAR-2 to the 

posterior cortex. Therefore, the aberrant spindle positioning and rotation observed in tlk-

1(RNAi) embryos is not likely due to perturbed polarity. However, non-muscle myosin II 

(NMY-2) is necessary both for centration and for limiting PAR-3 to the anterior cortex during 

polarity establishment (Severson and Bowerman 2003), and is dynamically influenced by Gα 

proteins and LET-99 (Goulding et al. 2007); importantly, a regulatory subunit of non-muscle 
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myosin II has been reported to be a substrate of mammalian Tlk1 (Hashimoto et al. 2008). 

Therefore, it is possible that TLK-1 is indirectly affecting polarity establishment and 

downstream cortical force generation through regulation of NMY-2, but future analyses will be 

needed to determine what, if any, effects TLK-1 has on NMY-2 localization and function. 

Attachment of astral microtubules to the cell cortex are necessary for generating the 

stability and forces necessary to drive spindle movement and rotation. Hence, a reduction in the 

amount of astral microtubules able to reach the cortex would result in less force and defects in 

spindle rotation. Accurate localization of LET-99 to the posterior-lateral cortex is also required 

for the inhibition of cortical pulling in this domain, thus allowing cortical pulling from the 

anterior and posterior domains to successfully rotate the NCC complex in a timely manner 

(Figure 29) (Krueger et al. 2010; Tsou et al. 2002). Thus, I posit that the striking increase of 

LET-99 protein levels and its broader distribution in tlk-1(RNAi) embryos is causing ectopic 

inhibition of cortical pulling during centration, which leads to delayed NCC rotation. In TLK-

1-depleted embryos at PNM, I found significantly increased levels of LET-99 spreading into 

the anterior cortical domain of the embryo. Attenuation of cortical pulling in this area could 

explain why centration occurs in a timely manner without concomitant NCC rotation in tlk-

1(RNAi) embryos: sufficient pulling enables the anterior cortex to centrate the NCC anteriorly, 

but there are insufficient forces emanating from the lateral anterior cortex to create the 

necessary rotational torque to rotate the NCC to lie along the AP axis. One model predicts that 

centrosome positions relative to the LET-99 band at PNM, when the centrosomes are 

positioned transversely to the AP axis, are key to determining the directionality of astral 

microtubules specifically towards the anterior, thus resulting in a greater net pulling force on 

that centrosome from the anterior (with a similar net posterior force acting on the other 
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centrosome), driving timely NCC rotation (Tsou et al. 2002). This model is consistent with our 

centrosome tracking experiments showing that TLK-1 is required for accurate spatial and 

temporal centrosome positioning during the first mitotic division.   

One puzzling aspect of the TLK-1-dependent delayed NCC rotation is that the spindle 

eventually “catches up” to fully rotate along the AP axis by anaphase onset. By our model, this 

would suggest that the cortical force attenuation by aberrant LET-99 localization to the anterior 

cortex is eventually resolved, yet we observed significantly increased levels of LET-99 in tlk-

1(RNAi) embryos compared to controls through the anterior domain during and after NEBD, as 

well as during the late rotation (Figures 26 and 27). However, in the TLK-1-depleted embryos, 

we also noticed a steep decrease in LET-99 intensity after a peak in the posterior-lateral 

domain. LET-99 intensity reaches its maximum at similar points in both control and tlk-

1(RNAi), but LET-99 intensity in  control(RNAi) embryos decreases approximately 6.7x more 

gradually than tlk-1(RNAi) embryos. There was little significant difference in LET-99 levels 

between control and tlk-1(RNAi) embryos in the absolute posterior domain, suggesting that 

TLK-1 is not necessarily regulating LET-99 localization there. These data imply that the rapid 

reduction of LET-99 levels in TLK-1-depleted embryos observed at the posterior-lateral 

domain satisfy a putative LET-99 threshold, whereby once achieved the level of LET-99 force 

attenuation from the posterior-lateral domain is less than the remaining cortical pulling from 

the absolute posterior cortex (i.e., LET-99 is no longer counteracting pulling forces at the 

posterior-lateral domain to sufficiently compete with posterior cortical pulling), resulting in the 

significantly faster posterior centrosome rotation observed during the aberrant NCC rotation 

phenotype in tlk-1(RNAi) embryos (Figure 29, bottom).  
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Another possibility for the ability of TLK-1-depleted embryos to eventually properly 

align spindles to the AP axis, as well as why I do not observe severe chromosome segregation 

phenotypes in early tlk-1(RNAi) embryos, is that tlk-1(RNAi) is not fully penetrant in the early 

embryo, suggesting that different thresholds of TLK-1 are required for different cellular 

functions (e.g., chromosome condensation and/or segregation). Thus, it remains possible that 

residual TLK-1 protein persists in the early embryo and aiding in the correction of the delayed 

NCC rotation. Unfortunately, homozygous tlk-1(tm2395) hermaphrodites are sterile, which 

precludes analyzing the first asymmetric division in the total absence of TLK-1. It could also be 

that TLK-1 is not required until later stages of development, or that it is functioning 

redundantly with other factors during early embryogenesis to allow for initial stages of 

development without generating aneuploidy.  

A second mechanism through which TLK-1 could be affecting spindle rotation is a 

functional relationship with the CLASP family of microtubule regulatory proteins. Our lab has 

discovered that TLK-1 is associated with the outer kinetochore and is required for the 

kinetochore association of both CLASP-2 (CLS-2) and LIS-1 (De Orbeta and Schumacher, 

manuscript in preparation), a component of the dynein complex that is also required for spindle 

rotation (Cockell et al. 2004; Siller and Doe 2008).  Interestingly, Espiritu and Kreuger et al. 

demonstrated that in addition to regulating kinetochore microtubule attachments, CLS-2 

functions redundantly with the other two C. elegans CLASP proteins to regulate mitotic spindle 

positioning during the first asymmetric division (Espiritu et al. 2012). Co-depletion of CLS-2 

with either CLS-1 or CLS-3 resulted in a significantly delayed spindle rotation strikingly 

similar to the TLK-1-dependent aberrant NCC rotation I describe here. Strikingly, data from 

our laboratory indicates that TLK-1 is required for CLS-2 localization to the kinetochore, and 
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we also find that co-depletion of TLK-1 and CLS-2 displays significant chromosome 

congression and segregation errors in the early embryo (De Orbeta and Schumacher, 

manuscript in preparation). We posit that TLK-1 and CLS-2 may also be acting in concert to 

regulate astral microtubule dynamics by influencing downstream regulators of astral 

microtubule attachments to the cell cortex. One such regulatory complex is the dynein-dynactin 

complex, a well-established driver of early embryonic dynamics, including pronuclear 

migration, NCC rotation, and spindle positioning (Nguyen-Ngoc et al. 2007; Severson and 

Bowerman 2003; Skop and White 1998). Additionally, LIS-1, a component of the dynein 

complex, is also necessary for NCC rotation and interacts with GPR-1/2 and LIN-5, proteins 

which promote the presence of dynein at the cell cortex (Nguyen-Ngoc et al. 2007; Siller and 

Doe 2008). Thus, TLK-1 and LIS-1 may also be functioning together to promote timely NCC 

rotation. Furthermore, a recent large-scale project utilizing combined functional genomics, 

proteomics, and chemical biology approaches to determine interactions between mitotic 

proteins (Hutchins et al. 2010; Neumann et al. 2010) revealed that human orthologues of TLK-

1 (Tlk1 and Tlk2) co-purified with multiple subunits of the dynein complex and other known 

microtubule-associated proteins, further corroborating our hypothesis that TLK-1 is influencing 

cortical force generation and regulation during asymmetric cell division. 

Altogether, I provide evidence for an unexpected role for TLK-1 in regulating spindle 

positioning in mitosis. That TLK-1 depletion does not mimic all defects often associated with 

impaired microtubule-based mitotic processes (i.e., reduction of dynein activity or impaired 

astral microtubule cortical attachments) (Galli and van den Heuvel 2008; Nguyen-Ngoc et al. 

2007; Skop and White 1998; Tsou et al. 2002), including pronuclear migration, centration, and 

posterior spindle displacement at anaphase onset, likely reflects a specific requirement for 
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TLK-1 in the microtubule regulatory hierarchy. One simple explanation for this hypothesis is 

that TLK-1 could phosphorylate key cortical force generators, including non-muscle myosin II 

(Hashimoto et al. 2008), components of the dynein/dynactin complex such as LIS-1, or 

regulators of these forces (e.g., CLS-2). Since fewer astral microtubules reach the cell cortex 

when TLK-1 is depleted, TLK-1 may regulate microtubule polymerization or the overall 

stability and rigidity of the astral microtubule lattice. Interestingly, CLS-2 regulates 

microtubule polymerization (Cheeseman et al. 2005), thus corroborating this hypothesis. Since 

Tlks appear to have kinase-independent scaffolding functions (De Benedetti 2010; Riefler et al. 

2008b), perhaps TLK-1 acts as a scaffold at the kinetochore and/or centrosomes that organizes 

loading of the dynein/dynactin cargo that is necessary for wild-type microtubule dynamics. 

Additionally, Gary Deyter from our lab showed that cyclin B3, CYB-3, is a dynein regulator 

that also binds TLK-1 (Deyter et al. 2010), thus providing another potential mechanistic link 

through which TLK-1 could be functioning to regulate mitotic microtubule dynamics. Further 

biochemical and genetic analyses to address potential substrates and/or functions of TLK-1 that 

may affect cortical forces and microtubule dynamics in the early embryo are important 

considerations for future investigations.  

  

SIGNIFICANCE 

The research I presented in this Dissertation offers insight into a novel function of a 

Tousled-like kinase during the cell cycle. Tlks have primarily been implicated as S-phase 

kinases, but work from our lab has untousled a mitotic role for TLK-1 (Han et al. 2005). That I 

found TLK-1 to be influencing cytoskeletal processes is intriging, as defects in spindle-nuclear 

positioning, failures in spindle rotation, or aberrant centrosome positioning and mutations can 
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lead to disruptions in embryonic development leading to embryonic lethality, tumor formation, 

and diseases such as cancer, microcephaly, or lissencephaly in humans (Basto et al. 2008; 

Basto et al. 2006; Bond et al. 2002; Castellanos et al. 2008; Kumar et al. 2009; Lingle et al. 

2002; Nigg and Raff 2009; Pihan et al. 1998; Tsai et al. 2007). In humans, Tlks are rapidly and 

transiently inhibited following the generation of DNA double-stranded breaks during S- phase; 

this is cell cycle checkpoint- and ATM-pathway dependent, and appears to regulate processes 

involved in chromatin assembly, most likely by phosphorylating the chromatin assembly factor 

ASF1. Tlks also protect cells from ionizing radiation by facilitating the repair of double 

stranded DNA breaks. Additionally, Tlks are overexpressed in triple negative breast cancer (J. 

Schumacher, unpublished), a group of neoplasms that are not candidates for current, target-

specific therapies making patients’ only option systemic chemotherapy (Flowers et al. 2009). 

Thus, elucidating the mechanisms by which Tlks regulate the cell cycle and accurate cellular 

division is vital for the generation of new treatments and therapies for patients in whom Tlk 

expression and/or function is perturbed. Through my research, I have provided exciting new 

insight into understanding TLK-1 function in cellular dynamics, thus generating new 

hypotheses to be tested in the future about how TLK-1-dependent spindle positioning, 

centrosome movements, and cytoskeletal dynamics contribute to aneuploidy, chromosome 

missegregation, and the ultimate demise of cells. 
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Figure 29: Model for TLK-1-dependent aberrant NCC rotation. 

Cortical forces are tightly regulated to ensure timely and accurate spindle positioning. LET-99-

dependent attenuation of forces at the posterior-lateral domain of the one-cell embryo allow for 

forces emanating from the anterior and posterior poles to rotate the NCC complex to align with 

the AP axis, an important step in generating the asymmetry needed for development. TLK-1 is 

necessary for restriction of LET-99 to the posterior-lateral domain, and may result in counter-

acting forces that inhibit NCC rotation. Additionally, loss of TLK-1 results in fewer astral 

microtubules reaching the cell cortex during the time when NCC rotation should occur, which 

also could contribute to the disruption of cortical pulling throughout the entire cortex. 

Eventually, correct cortical forces are resolved in tlk-1(RNAi) embryos, allowing the NCC to 

rotate rapidly and align along the AP axis.  
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CHAPTER IV: MATERIALS AND METHODS 
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Worm strains and growth 

C. elegans strains were grown using standard techniques as previously described (Brenner 

1974). The following strains were used: N2 [wild-type, Bristol]; JS604 dpy-17(e164) tlk-

1(tm2395) III/hT2 [qIs48] (I, III); JS857 dpy-17(e164) tlk-1(tm2385) III/hT2 [qIs48] (I, III); 

gfp::tba-21;mCherry::his-58; TH32 (provided by the Cænorhabditis Genetics Center, 

University of Minnesota) ddIs6[tbg-1::gfp unc-119(+)] ruIs32[unc-119(+) Ppie-1::gfp::his-

58] (Maddox et al. 2006);  SA164 (provided by A. Sugimoto, Tōhoku University, Sendai, 

Japan) ltIs38 [pAA1; Ppie-1::gfp::PHPLCδ1 unc-119(+)] ddIs6[tbg-1::gfp::unc-119(+)] (Toya 

et al. 2010); TH73 (provided by L. Rose, University of California, Davis, David, CA, and H. 

Bringmann, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany) unc-

119(ed3)III; ddIs64[Ppie-1::yfp::let-99(genomic);unc-119(+)] (Bringmann et al. 2007); 

RL238 (unpublished, a gift from L. Rose, University of California, Davis, David, CA) unc-

22(e66) let-99(dd17); unc-119(ed3)III; ddIs64[Ppie-1::yfp::let-99(genomic);unc-119(+)]; 

TH66 unc-119(ed3); ddIs14[Ppie-1::ebp-2::gfp] (Srayko et al. 2005); JH1380 axEx1094 

[pMW1.03 Ppie-1::par-2::gfp pRF4] (Wallenfang and Seydoux 2000); TH25 pddIs8[gfp::par-

6(cDNA); unc-119(+)] (Schonegg and Hyman 2006) (TH25, TH66, and JH1380 were provided 

by A. Hyman, Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, 

Germany). N2 and JS604 were maintained at 20°C and GFP or YFP transgenic strains were 

maintained at 25°C to optimize transgene expression.  

 

The JS604 strain was generated from the FX2395 strain containing tlk-1(tm2395) allele 

(Gengyo-Ando and Mitani 2000). tm2395 contains a 678bp deletion from exon 5 to 6 and was 

detected using the primers 5’-GGATCCAATCAAGGATCACCGAAGAGG-3’, 5’-
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TCTCAAGTGCTCCCTGCGCAG-3’, and 5’-CTCGAGTTACTTATCGATAAGTAATCGC-

3’. Heterozygous tm2395 was crossed in with dpy17 unc32/++ males, and from heterozygous 

tm2395/dpy17 unc32 recombinants were isolated, then backcrossed twice and balanced with 

hT2[qIs48]. Homozygous tm2395 hermaphrodites are sterile, so the strain is maintained as 

heterozygotes. The strain was  created by Tokiko Furuta. 

 

Table 3: C. elegans strains used in this study 

Name Genotype  
N2 wild-type          
JS604 dpy-17(e164) tlk-1(tm2395) III/hT2 [qIs48] (I, III) 
JS857 dpy-17(e164) tlk-1(tm2385) III/hT2 [qIs48] (I, III); gfp::tba-

21;mCherry::his-58 
SA164 ltIs38 [pAA1; Ppie-1::gfp::PHPLCδ1 unc-119(+)] ddIs6[tbg-

1::gfp::unc-119(+)]  
TH73 unc-119(ed3)III; ddIs64[Ppie-1::yfp::let-99(genomic);unc-119(+)]  
RL238 unc-22(e66) let-99(dd17); unc-119(ed3)III; ddIs64[Ppie-1::yfp::let-

99(genomic);unc-119(+)] 
TH66 unc-119(ed3); ddIs14[Ppie-1::ebp-2::gfp] 
JH1380 axEx1094 [pMW1.03 Ppie-1::par-2::gfp pRF4]  
TH25 pddIs8[gfp::par-6(cDNA); unc-119(+)]  

 

RNA interference 

The feeding method of RNAi delivery was used to inhibit TLK-1 expression (Timmons and 

Fire 1998).  L4440 vector alone or full-length tlk-1 cDNA/L4440 constructs were transformed 

into HT115 (DE3) chemically competent E. coli bacteria, and grown in 5 mL LB media 

supplemented with 100 µg/µl ampicillin at 37°C with shaking overnight. These cultures were 

diluted 1:100 in 50 mL LB/amp and grown for six hours before being spread onto nematode 

growth (NG) plates supplemented with 100 µg/µl ampicillin and 20% β-lactose and placed at 

25°C for 72 hours. The plates were then seeded with L4-stage hermaphrodites and incubated at 
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25°C for 24 hours (Arur et al. 2009). The L4440 RNAi vector alone was used as a control 

(control(RNAi)).  

 

Live-cell imaging and quantification 

For live-cell spinning disk confocal microscopy, embryos were dissected from control- and 

RNAi-treated C. elegans hermaphrodites into 10µl PBS on a 22mm2 1.5 coverslip, placed onto 

a 2% agarose pad on a 22x40cm glass slide, and then sealed. Embryos were imaged using an 

Ultraview spinning disk confocal (Perkin Elmer, Waltham, MA) attached to a Nikon TE2000U 

inverted microscope.  Images were acquired using an ORCA-ER digital camera (Hamamatsu, 

Bridgewater, NJ). A 60x 1.45 NA Plan Apo VC oil immersion lens was used for all 

experiments, except that a 60x 1.2 NA Plan Apo water immersion lens was used for imaging 

the centrosome tracking experiments (Figures 20 and 21).  An additional 1.5x auxiliary 

magnification was used for imaging the TH32 strain. The confocal microscope and camera 

were controlled by Ultraview software (Perkin Elmer).  Images were processed using Adobe 

Photoshop. 

 

Chromosome Condensation Assay 

Embryos from TH32 were subjected to live-cell spinning disk confocal microscopy as 

described above, using a 60x 1.45 NA Plan Apo VC oil immersion lens and additional 1.5x 

auxiliary magnification. Images were captured as 15 x 1 µm z-sections at 250 ms exposure over 

10-second intervals through the first mitotic division and then exported using Ultraview (Perkin 

Elmer) as 16-bit raw projections of the z-plane. These images were then imported into 

MetaMorph and subjected to custom macros (provided by Dr. Paul Maddox, University of 
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Montreal, Montreal, Canada) to calculate the condensation parameter as previously described 

(Maddox et al. 2006). Data was exported to MS Excel for analysis, and kinetic plots of the 

condensation parameters were generated. 

 

Spindle Rotation and Centrosome Positioning Measurements 

For quantification of spindle movement and rotation and centrosome positions (Figures 14-19), 

images were captured as 15 x 1 µm z-sections at 250 ms exposure over 10-second intervals 

through the first mitotic division. The Angle Tool in ImageJ was used to measure the angle 

between the centrosomes and the anteroposterior axis over time. The Line Tool was used to 

measure the distance of each centrosome to a single point on the posterior end of the embryo. 

Data were exported from ImageJ and kymographs, standard error of the means (SEM), and 

significance were generated in MS Excel. For TH25 (GFP::PAR-6), images were captured as 

15 x 1 µm z-sections at 250 ms exposure over 10-second intervals; for JH1380 (GFP::PAR-2), 

images were captured as 7 x 1 µm z-sections at 800 ms exposure over 10-second intervals. For 

RL238 (let-99(dd17);YFP::LET-99), images were captured as 5 x 1µm z-sections at 350 ms 

exposure over 10-second intervals. All live-cell spinning disk confocal experiments utilized 2 x 

2 binning.  

 

Centrosome Tracking 

For the centrosome tracking experiment in Figures 20 and 21, SA164 embryos were prepared 

and mounted as above. To capture the entire embryo, 36 x 1 µm z-sections were imaged at 150 

ms exposure over 10-second intervals. Acquisitions from each time-point and z-slice were 

exported as 16-bit raw TIFF images in Ultraview software (Perkin Elmer) and imported into 
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Imaris (Bitplane) as a time-lapse series. Embryos were oriented spatially so that the anterior 

was always to the left and spindle rotation occurred in a counter-clockwise manner. To view 

the image series in four-dimensions, the voxel size based on acquisition (0.226 µm x 0.226 µm 

x 1.0 µm) was entered into Imaris, and embryos were cropped to be the same size as one 

another. The bottom leftmost (x,y,z) position of each cropped embryo in the workspace was 

normalized to (0,0,0). Isosurfaces were built over the ellipsoid centrosome pairs of each 

embryo and their paths were traced over time using the Surface and Track tools, respectively. 

Centrosome isosurfaces and tracks from control and tlk-1(RNAi) embryos were exported as 

Matlab objects using the Object Manager interface and then their paths overlayed in a single 

control or tlk-1(RNAi) embryo for comparison. Anterior and posterior tracks were parsed 

separately using the Track Duration module.  

 

Immunostaining and image acquisition 

TH73 (YFP::LET-99) L4 hermaphrodites were seeded onto control or tlk-1(RNAi) plates and 

incubated at 25°C for 24 hours. The following day, nematodes were picked onto a 10 µL spot 

of egg buffer on a Poly-L-Lysine coated glass slide (Sigma, St Louis, MO). A 22x40 mm 

coverslip was placed over the animals and light pressure was applied to free the embryos from 

the hermaphrodites. Slides were placed on an aluminum sheet over dry ice for 60 minutes, and 

coverslips were snapped off to crack the embryo cuticle.  Specimens were then fixed briefly in  

-20°C methanol followed by paraformaldehyde, as described previously (Seydoux and Dunn 

1997) and then washed in PBS with 0.1% Triton and 0.1% BSA (PBSTb).  Samples were 

incubated overnight with primary antibody diluted in PBSTb at 4°C (anti-GFP [1:100] (rabbit 

polyclonal, Invitrogen, Eugene, OR) and anti-α-tubulin [1:1,000] (mouse monoclonal DM1α, 
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Sigma). Samples were then washed with PBSTb and secondary antibodies were applied (goat-

anti-mouse IgG AlexaFluor 488 [1:1,000] and goat-anti-rabbit IgG AlexaFluor 555 [1:1,000] 

(Invitrogen) for 60 minutes at 25°C. Specimens were washed and then mounted in Prolong 

Gold with DAPI (Invitrogen). Immunofluorescent images were acquired on a Nikon 2000U 

inverted microscope equipped with a Photometrics Coolsnap HQ camera controlled by 

Metamorph software using a 60x 1.49NA Plan Apo oil immersion objective. 

 

YFP::LET-99 quantitation 

Images from fixed TH73 embryos were acquired on a Nikon 2000U inverted microscope 

equipped with a Photometrics Coolsnap HQ camera with all functions controlled by 

Metamorph software.  For all TH73 embryos, three channel images were acquired as 11 z-

sections at 0.2-µm steps centered at a mid-embryo focal plane with a 60x 1.2 NA water 

immersion objective. For quantification of YFP::LET-99, all images were acquired on the same 

day using the same below-saturation exposure parameters. All z-stacks were imported into 

Autodeblur (Autoquant Media Cybernetics, Bethesda MD) and deconvolved for 10 iterations. 

Raw deconvolved files were then imported into Metamorph, and sum projections of all 11 z-

planes were created using the Stack Arithmetic function. Projected 16-bit images were then 

aligned along the anteroposterior axis using the polar body as a landmark for the anterior. 

 

Metamorph software was used to quantify YFP::LET-99 cortical fluorescence intensity as 

previously described (Bringmann et al. 2007). Manually-drawn region-of-interests were traced 

along both the upper and lower cortices of each embryo, starting at the anterior pole and ending 

at the posterior pole (the polar body was excluded). A linescan width of nine pixels was 

produced and the maximum intensity was measured for all points in the ROI, with the first 
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point at 0% and the last point at 100% embryonic length (%EL). Maximum intensity profiles 

for all embryo cortices were exported to MS Excel. For both control and tlk-1(RNAi) 

conditions, the upper and lower cortical measurements corresponding to the same %EL of each 

embryo were averaged together and plotted along with their respective SEM for each data 

point. The data were then normalized with the maximum raw intensity set to 1.0 and the 

minimum raw intensity set to 0.0 using the formula xnorm = (xi – Xmin) / (Xmax – Xmin); SEMs 

were normalized by dividing by the maximum raw intensity of the data set. For Figures 24 and 

25 [fixed-cell quantitation of YFP::LET-99 at PNM], nine control (18 cortices) and eight tlk-

1(RNAi) embryos (16 cortices) were averaged; for Figures 26 and 27 (rotation-NEBD) five 

embryos (ten cortices) of each condition were averaged. The average YFP::LET-99 intensities 

from all cortices are shown ± SEM.  

 

To quantitate the number of astral microtubules within close proximity of the cell cortex in 

control and tlk-1(RNAi) embryos, the λ:488 nm metadata (corresponding to the α-tubulin 

signal) from the TH73 image acquisition used in Figures 26 and 27 described above were 

imported into Metamorph. Two regions-of-interest (RoI) were drawn at 1 µm and 2 µm away 

from the cell cortex throughout and within the embryos, and the histogram/LUT for each 

embryo was adjusted manually so that microtubules could be reliably visualized. Microtubules 

crossing the 1 µm  or 2µm RoI were manually counted and scored depending on from which 

centrosome they had clearly emanated. Data were entered into MS Excel for graphing and 

statistical analysis.  
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GFP::EBP-2 imaging and tracking 

To image GFP::EBP-2, embryos were prepared and mounted as above, and imaged via 

spinning disk confocal microscopy using a 60x 1.45NA Plan Apo oil immersion lens. Embryos 

were exposed to 488 wavelength for 400 ms at a single focal plane during the first mitotic 

division. Videos of the acquisitions were produced in Ultraview as AVIs and imported into 

ImageJ for analysis. The MOSAIC particle tracker (ETH, Zurich) (Sbalzarini and 

Koumoutsakos 2005) was used to detect GFP::EBP-2 comets and then divided into 40 second 

intervals relative to NEBD for analysis. Maximum z-projections of GFP::EBP-2 comets over 

100 frames (40s) were generated in ImageJ. 
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