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Thoracic Aortic Aneurysms and Dissections (TAAD) are the fifteenth leading cause 

of death in the United States. About 15% of TAAD patients have family history of the 

disease. The most commonly mutated gene in these families is ACTA2, encoding smooth 

muscle-specific α-actin. ACTA2 missense mutations predispose individuals both to TAAD 

and to vascular occlusive disease of small, muscular arteries. 

Mice carrying an Acta2 R258C mutant transgene with a wildtype Acta2 promoter 

were generated and bred with Acta2-/- mice to decrease the wildtype: mutant Acta2 ratio. 

Acta2+/+ R258C TG mice have decreased aortic contractility without aortic disease. Acta2+/- R258C 

TG mice, however, have significant aortic dilatations by 12 weeks of age and a 

hyperproliferative response to injury. We characterized smooth muscle cells (SMCs) from 

both mouse models under the hypothesis that mutant α-actin has a dominant negative effect, 

leading to impaired contractile filament formation/stability, improper focal adhesion 

maturation and increased proliferation. 

Explanted aortic SMCs from Acta2+/+ R258C TG mice are differentiated - they form 

intact filaments, express higher levels of contractile markers compared to wildtype SMCs 



  vii 

and have predominantly nuclear Myocardin-Related Transcription Factor A (MRTF-A) 

localization. However, ultracentrifugation assays showed large unpolymerized actin 

fractions, suggesting that the filaments are brittle. In contrast, Acta2+/- R258C TG SMCs are less 

well-differentiated, with pools of unpolymerized actin, more cytoplasmic MRTF-A and 

decreased contractile protein expression compared to wildtype cells. Ultracentrifugation 

assays after treating Acta2+/- R258C TG SMCs with phalloidin showed actin filament fractions, 

indicating that mutant α-actin can polymerize into filaments. 

Both Acta2+/+ R258C TG and Acta2+/- R258C TG SMCs have larger and more peripheral 

focal adhesions compared to wildtype SMCs. Rac1 was more activated in Acta2+/+ R258C TG 

SMCs; both Rac1 and RhoA were less activated in Acta2+/- R258C TG SMCs, and FAK was 

more activated in both transgenic SMC lines compared to wildtype. Proliferation in both cell 

lines was significantly increased compared to wildtype cells and could be partially 

attenuated by inhibition of FAK or PDGFRβ. These data support a dominant negative effect 

of the Acta2 R258C mutation on the SMC phenotype, with increasing phenotypic severity 

when wildtype: mutant α-actin levels are decreased. 
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CHAPTER ONE: Introduction 
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Thoracic Aortic Aneurysms and Aortic Dissections (TAAD) 

 

Epidemiology 

 Thoracic aortic aneurysms and dissections (TAAD) are the eighteenth leading cause 

of death in the United States (thirteenth leading cause in people over 65 years of age), and 

they account for approximately 15,000 deaths every year  (1). Aortic dissections are medical 

emergencies – if left untreated, they cause death in about ⅓ of all patients within 24 hours of 

the onset and 75% of patients within two weeks (2), with a death rate of approximately 1% 

per hour from the onset of the dissection (3; 4). 

An aortic aneurysm is an enlargement of the vessel wall, which can progress to a 

dissection – a tear in the wall that creates a false lumen and diverts the blood flow away 

from the main channel (2-3; 5-6). Aortic aneurysms are classified based on the region of the 

aorta where they form - the aortic root, ascending aorta, aortic arch, descending aorta, or 

abdominal aorta (1; 3; 5-6). Ascending, descending and aortic arch aneurysms are also 

commonly referred to as thoracic aortic aneurysms. Aortic dissections, on the other hand, 

have two separate classification systems that are commonly used – the Stanford system and 

the DeBakey system. A Stanford type A dissection is one of the ascending aorta, the aortic 

arch or the descending aorta, which originates in the ascending aorta or aortic arch. Stanford 

type B dissections originate in the descending aorta (1-4). A DeBakey class I dissection is an 

expansive dissection that originates in the ascending aorta; class II, on the other hand, is a 

more localized dissection of the ascending aorta. Class III is dissection of the descending 

aorta, which also tends to lead to extensive tearing along the aortic wall (Fig. 1.1) (1-3). 
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Figure 1.1: Thoracic Aortic Aneurysms and Dissections. A. a. Illustration of the locations 
along the aorta where aneurysms commonly occur and b. the Stanford and DeBakey aortic 
dissection classification systems. Republished with permission of Annual Reviews, from 
[Genetic basis of thoracic aortic aneurysms and dissections: Focus on smooth muscle cell 
contractile dysfunction. Milewicz, D. M., Guo, D. C., Tran-Fadulu, V., Lafont, A. L., Papke, 
C. L., Inamoto, S., Kwartler, C.S. & Pannu, H. 9, 2008]; permission conveyed through 
Copyright Clearance Center, Inc. 

 

Symptoms of aortic dissection include, but are not limited to, sharp chest pain, which 

may radiate as the dissection spreads, sudden drop or, conversely, increase in blood pressure 

(distal dissections would cause an increase in blood pressure, while proximal dissections 

could lead to either an increase or a decrease), sweating, difficulty breathing, numbness of 

limbs, fainting and loss of consciousness (2; 5). Aortic dissections are often misdiagnosed as 

heart attacks because of the similarities in the clinical presentation (2; 5). Because 

dissections can severely compromise the aortic function and progress to complete rupture 

and death, they are treated as medical emergencies, requiring timely surgical intervention 

and repair. 

The current standard of care for patients with TAAD is a repair surgery (2). The 

aorta can be surgically repaired either at the aneurysm stage or after a dissection is found (2; 
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5-6). If the aneurysm is discovered early, patients can undergo preventive surgery. However, 

as the disease progresses to dissection, the surgery becomes emergent, and survival rates 

decrease. Only about 50% of patients with acute dissections make it to the emergency room, 

and even fewer are diagnosed in time because of the overlap of the symptoms with other, 

more frequent conditions, such as myocardial infarction, heartburn, pulmonary embolism or 

pericarditis (2). A simple X-ray cannot rule out the possibility of a dissection; the most 

accurate tests for diagnosing an aortic dissection are computer tomography and 

transesophageal echocardiograms (2; 4). Even after a dissection is diagnosed and surgery is 

recommended, the survival rate remains low because a large proportion of patients who 

undergo the repair surgery do not survive the procedure (3). Therefore, it is imperative to 

identify patients at risk for a dissection before the onset of the acute event so that they can 

be monitored and treated in a timely manner.   

Major risk factors for TAAD include hypertension, bodybuilding, and smoking/drug 

use (1-3; 5-7). Therefore, lifestyle adjustments and anti-hypertensive drugs such as the beta-

blocker metoprolol are commonly prescribed to patients at risk of aneurysm development 

(1-2; 5). If patients cannot tolerate beta-blockers, they are often administered calcium 

channel blockers, which also help reduce blood pressure in these patients (1-2). Additional 

risk factor is male gender (1-5).  There are genetic risk factors as well, such as syndromic 

mutations as in Marfan, Loeys-Dietz and vascular Ehlers-Danlos syndromes, and also 

congenital abnormalities such as bicuspid aortic valve (BAV). Finally, an aortic dissection 

can be a complication as a result of vasculitis, coronary artery bypass graft or cardiac 

catheterization (2-3).  
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 Much work has been done by our lab and others to improve awareness of this 

condition and help identify populations, families and individuals who may be at risk of 

aortic aneurysms and dissections. The ultimate goal is to be able to diagnose a patient early 

and monitor and manage their aneurysm progression so that it cannot proceed to dissection.   

 

Arterial Structure  

 

The walls of all arteries are made up of three layers – the intima, media and 

adventitia (2; 5-6; 8). The intima is an endothelial cell monolayer that makes up the 

innermost portion of the aortic wall and lines the lumen of the vessel. The media is the 

middle layer, and it is made up of elastic fibers and smooth muscle cells arranged in 

concentric circles around the lumen (6; 8-9). Between the intima and the media lies an 

elastin layer termed “internal elastic lamina,” and between the media and adventitia lies the 

“external elastic lamina” (8-9).  The adventitia is made up of large amounts of extracellular 

matrix components, fibroblast cells and nerve endings (Fig. 1.2A, top). The arterial wall is 

further held together by a network of collagens, which provides rigidity to the vessel (8).  

There are two kinds of arteries found in the body – small muscular arteries and large 

elastic arteries. The carotid arteries are one example of muscular arteries. In these vessels, 

the medial layer between the internal and external elastic laminas is entirely composed of 

smooth muscle cells without any additional elastin (9). The aorta, on the other hand, is an 

example of an elastic artery. It is the largest vessel in the human body, and it carries blood 

directly out of the left ventricle of the heart. The aorta’s media is composed of multiple 

single-cell-thick layers of smooth muscle cells, lying between layers of elastin fiber. Each 
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unit composed of a layer of SMCs between two elastin fibers is called a “lamellar unit” (Fig. 

1.2B) (8; 10). The smooth muscle cells (SMCs) are attached to the lamellae via fibrillin 1-

rich microfibrils and other extracellular matrix proteins such as fibronectin or vitronectin (6;   

8). The points of contact of the microfibrils with the SMC plasma membrane are called 

dense plaques (or focal adhesions when the cells are grown in culture). Finally, due to its 

large size the aorta uniquely has its own network of vessels bringing nutrients to the 

adventitial fibroblasts, called the vasa vasorum (8).  

Unlike in muscular arteries, the additional elastin in large vessel walls allows these 

vessels to resist pulsatile blood flow by providing elastic recoil and by aiding tensile force 

generation across the wall. Elastic lamellae are laid during development and remain 

unchanged during adulthood regardless of the accumulation of insults to the vessel wall. The 

number of elastic lamellae varies depending on the specific region of the vessel – for 

example, there are fewer lamellar units in the abdominal aorta compared to the ascending 

aorta (8). 

Pathological examinations of dissected patient aortas consistently show three 

“hallmark” features of the diseased aorta: medial degeneration, loss of elastic fibers and 

accumulation of proteoglycans in the medial space (Fig. 1.2A, bottom). Medial 

degeneration refers to the disarray of smooth muscle cells in the medial wall. There may be 

regions of focal loss of SMCs present in the vessel as well, but it has not been ascertained 

yet whether there is a loss of smooth muscle cells with aortic disease progression or, to the 

contrary, a gain (5-6; 8). In patients with aortic dissections, the elastic lamellae appear 

fragmented, distended or may be missing. Proteoglycans, which are heavily glycosylated 

proteins secreted by nearby cells, accumulate in diseased aortas because they serve to fill 
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spaces left as a result of the matrix fragmentation and cellular disorganization (5-6; 8). 

Proteoglycans usually appear at the very early stages of aneurysm formation, and can serve 

as an early marker for disease (11). 

 

Figure 1.2: Structure and Organization of the Aorta A. Hematoxylin and Eosin staining 
and Movat staining of aortic tissue from control (a,c) and TAA patients (b,d) shows the 
three-layer organization of the aortic wall. In control patients, cells are neatly arranged 
in layers (a) in-between elastic fibers (c, elastin shown in black). In TAA patients, cells 
are disorganized (b), and there is a loss of elastin fibers and accumulation of 
proteoglycans (c, proteoglycans appear blue). Republished with permission of Annual 
Reviews, from [Genetic basis of thoracic aortic aneurysms and dissections: Focus on 
smooth muscle cell contractile dysfunction. Milewicz, D. M., Guo, D. C., Tran-Fadulu, 
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V., Lafont, A. L., Papke, C. L., Inamoto, S., Kwartler, C.S. & Pannu, H. 9, 2008]; 
permission conveyed through Copyright Clearance Center, Inc. B. Illustration of a 
lamellar unit, composed of elastin fibers, single layer of smooth muscle cells and 
microfibrils linking the cells to the fibers. Inset illustrates the smooth muscle contractile 
unit.  Adapted with permission of Annual Reviews, from [Genetic basis of thoracic 
aortic aneurysms and dissections: Focus on smooth muscle cell contractile dysfunction. 
Milewicz, D. M., Guo, D. C., Tran-Fadulu, V., Lafont, A. L., Papke, C. L., Inamoto, S., 
Kwartler, C.S. & Pannu, H. 9, 2008]; permission conveyed through Copyright Clearance 
Center, Inc.  

 

Finally, studies of TAAD consistently point towards an increase in matrix 

metalloproteinases (MMPs), which are Zn ion-dependent enzymes that cleave extracellular 

matrix proteins, contributing to the end-stage pathology. Recent work suggests that MMPs 

play a key role in the pathogenesis of TAAD, and that treatment of aortas with the non-

specific MMP inhibitor doxycycline can reverse the aneurysm phenotype in rodent models 

of disease (7-8; 12).  

Taken together, the current understanding of aneurysm pathogenesis is that 

accumulation of risk factors, a genetic predisposition, or both, can send stimuli to the SMCs, 

causing them to secrete more extracellular matrix proteins, as well as MMPs. This early 

change leads to a dysregulation of the extracellular matrix, cleaving of the elastic fibers and 

disarray of the SMCs as a result of compromised lamellar units. In the later stages there is 

also accumulation of macrophages in the adventitia and potentially, an increase in oxidative 

stress, which may cause SMC apoptosis and further increases in MMP activity. Once the 

aortic wall integrity is compromised and the elasticity is lost, aneurysms progress even more 

rapidly and ultimately proceed to dissection (6; 8). 
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Vascular Smooth Muscle Cells (VSMCs)   

 

 Research on TAAD has highlighted the importance of the medial layer of the aorta in 

disease onset and progression, with a special focus on vascular smooth muscle cells 

(VSMCs) because of their contractile and secretory properties, which contribute to the 

TAAD pathology (6). 

 Quiescent smooth muscle cells are spindle-shaped, and they express high levels of 

contractile genes and proteins. Unlike skeletal myocytes and cardiomyocytes, smooth 

muscle cells do not contain sarcomeres, but instead they have crisscrossing actomyosin 

units, each of which is structured similarly to that in other muscle, with two myosin 

molecules sliding along actin filaments with the aid of ATP  (13). Each contractile unit is 

connected to the others via dense bodies within the cells or via dense plaques at the plasma 

membrane. Quiescent smooth muscle cells make up the medial layer of the aorta. They are 

able to contract in unison, together with the elastic lamellae, in response to blood flow. 

While the elastic lamellae are key to withstanding high stress and strain on the aorta, the 

smooth muscle cells are master organizers and serve to guide the contractile response and 

force generation in the vessel wall (6; 8; 14). 

Smooth muscle cells are unique among muscle cells in that, upon stimulation from 

mechanical forces or a range of cytokines, they are able to switch from their quiescent 

phenotype to a less contractile but more migratory, secretory and proliferative phenotype 

(Fig. 1.3) (14). When smooth muscle cells receive a signal to become dedifferentiated, they 

undergo a switch that leads to low contractile gene and protein expression but an increase in 

proliferation, migration and the synthesis of collagens and other extracellular matrix 
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proteins. This transition is extremely important in response to vascular injury, for example, 

because it allows smooth muscle cells to migrate into the damage site, proliferate to produce 

more cells and also secrete the necessary factors and extracellular matrix proteins to help 

rebuild the injured area of the vessel (14-16). Dysregulation of the smooth muscle 

phenotypic switch contributes to a range or pathologies, such as post-angioplasty restenosis 

and atherosclerosis (8). In fact, work in our lab suggests that increased smooth muscle cell 

proliferation as a result of genetic mutations in a range of genes contributes to diverse 

occlusive vascular diseases, such as ischemic stroke, Moyamoya disease or fibrotic early-

onset carotid artery disease (9; 17). Together, these observations have been termed 

“hyperplastic vasculomyopathy” (9).  

 

 

Figure 1.3: Smooth Muscle Cell Phenotypic Plasticity. Reprinted by permission from 
Macmillan Publishers Ltd: Genetics in Medicine, (9), copyright (2010). 
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SMC phenotype switching 

The current paradigm in smooth muscle cell biology is that the SMC phenotype is 

controlled by one major signaling axis, the Serum Response Factor (SRF):  Myocardin- 

Related Transcription Factor (MRTF) axis, which integrates mechanical and cytokine cues 

and directs the transcriptional changes that induce the subsequent phenotypic switch (14; 18-

19). SRF is a highly promiscuous and ubiquitously expressed transcription factor, which 

binds one or more CArG box elements in the promoter region to activate transcription of 

over 200 genes (14; 19-20). SRF interacts with a range of transcriptional cofactors to confer 

specificity. One such family of transcription factors that is specific to cardiomyocytes and 

smooth muscle cells is the family of myocardin-related transcription factors (MRTFs), 

which includes myocardin, MRTF-A (also known as MKL1, which stands for acute 

megakaryoblastic leukemia factor 1/ MAL1), and MRTF-B (MKL2) (21). These three co-

factors have overlapping but also distinct sets of target genes. Knockout mouse models of 

each of the three members of the MRTF family have been generated to help identify the 

differences between the three co-factors. Myocd-/- mice exhibit embryonic lethality at day 

10.5, due to defects in heart development compounded by additional profound loss of SMCs 

in the vasculature (22). MRTF-B-/-mice also die prenatally due to a defect in pharyngeal arch 

development; they additionally show a defect in SMC differentiation in the ascending aorta, 

specifically in cells of neural crest origin (19; 23-24).  MRTF-A-/- mice, on the other hand, 

are viable but the mothers cannot nurse their young (19; 24-25).  

Two of the three members of the MRTF family, MRTF-A and MRTF-B, have been 

found to be able to translocate from the cytoplasm to the nucleus (19; 26). In fact, this 

‘shuttling’ of MRTF plays a key role in the regulation of contractile gene expression.  
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Monomeric (G) actin can bind to MRTFs in the cytoplasm, sequestering it outside of the 

nucleus. When MRTF is out of the nucleus, SRF is free to bind other co-factors such as 

ternary complex factor (TCF) or Elk-1 (19; 21; 27), and drive the expression of growth-

related genes. In order for differentiation to be induced, actin polymerization triggered by 

the small G-protein RhoA is required; this triggers the translocation of MRTFs to the 

nucleus (19; 21; 26; 28-29). Once in the nucleus, MRTFs bind SRF and promote the 

expression of contractile and cytoskeletal markers, causing a positive feedback loop to 

reinforce the differentiation signal. Importantly, while myocardin also binds SRF and drives 

contractile gene expression, it is constitutively nuclear (26; 30) and does not respond to Rho-

activated actin polymerization (30), but is regulated by the ubiquitin proteasome system 

(31). 

 

Regulation of actin polymerization 

 There are six types of actin in the human body, and four of those are found in smooth 

muscle cells, which together make up approximately 40% of total smooth muscle protein: 

smooth-muscle specific α-actin, cytoskeletal β-actin, and both smooth-muscle specific and 

non-muscle γ-actin, all of which share over 95% homology (32). Smooth muscle-specific α-

actin the most abundant of all forms – approximately two thirds of all actin in SMCs is α-

actin, compared to β-actin (21%) and γ-actin (12%), and it localizes with myosin in the 

smooth muscle contractile units (32, 33). Cytoskeletal filaments, on the other hand, are 

predominantly composed of γ-actin, and β-actin is most frequently cortically localized (32). 

Actin polymerization plays a key role in mounting the SMC response to tension, and 

it involves both cytoskeletal changes and contractile filament formation (32; 34). According 
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to the classical understanding, actin polymerization is initiated when actin monomers bind 

ATP, which activates them and promotes the formation of oligomers first and then a cluster 

of actin molecules, or a nucleus. This nucleus of polymerization recruits more ATP-bound 

actin and elongation occurs. As actin is stabilized in the filament, ATP hydrolysis occurs 

and actin remains ADP-bound (35). A filament usually remains stable with the aid of 

capping and stabilizing proteins like calponin, or tropomyosin, and it is considered that the 

ADP-bound, older actin filaments are less stable than the younger, ATP-bound filaments 

(36-37). Interestingly, Kueh and colleagues (2008) suggest that that the ADP-bound form is 

in fact more stable because it allows for a canonical helix to form. The mature filament, 

however, is targeted much more frequently by cofilin, the binding of which reintroduces 

disorder in the helix and causes an increase in the filament shrinking rates (36).  

A major regulator of actin filament formation and contractility in vascular SMCs is 

the small G-protein RhoA (29; 34; 38-40). Activation of RhoA can be driven by upstream 

signaling cues, for example by activated focal adhesion kinase (FAK) (39), angiotensin II 

type 1 receptor (41), or activated integrin-linked kinase (ILK) (29), which in turn are 

promoted by mechanical stress (29) or individual extracellular matrix components (40). 

RhoA regulates polymerization via induction of mDia, and p160ROCK, a Rho kinase, which 

activates LIM kinase (LIMK) and, in turn, cofilin, leading to actin reorganization. Further, 

Rho kinase inhibits the myosin light-chain phosphatase, allowing for myosin light chain 

phosphorylation to persist and thus increasing contractile filament crosslinking in the SMCs 

(29; 39). Thus, RhoA controls actin reorganization, contractility, and contractile gene 

expression via the SRF: MRTF axis, making it a key regulator of the SMC phenotype (19; 

28). 
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While RhoA is important for regulating actin reorganization in differentiated 

vascular SMCs, other small G-proteins can also regulate actin polymerization in migratory 

cells, for example, where turnover of actin filaments and cytoskeletal rearrangements are 

rapid and transient. Such regulatory G-proteins include Rac1 and Cdc42, which, together 

with RhoA, are localized in the focal adhesions and activated in response to the changing 

composition of these adhesions (39). 

 

Focal adhesions 

 Focal adhesions are the points of contact between the plasma membrane and the 

extracellular matrix. Clustered around integrin receptor heterodimers, focal adhesions are 

multi-protein complexes, which are important for both signal- and mechano-transduction in 

SMCs. Focal adhesions act as “sensors” for mechanical stretch, and they trigger the 

activation of signaling cascades involved in proliferation, migration, survival, and 

cytoskeletal remodeling (39; 42). Focal adhesions are not static; instead they can “mature” 

in response to cues from actin polymerization and myosin force generation (43-44). During 

focal adhesion maturation, the adhesions not only become larger and more complex, but 

they also change in composition (44-45). For example, Kuo et al (2011) showed that treating 

fibroblast cells with blebbistatin, which inhibited myosin motor function, caused adhesions 

to appear smaller (less mature) and enriched in Rac1 activators, unlike untreated cells, which 

had mature focal adhesions, differentially enriched in RhoA activators. Enrichment with 

Rac1 activators promotes proliferative signaling and prevents further focal adhesion 

maturation; enrichment in RhoA activators in more mature adhesions, on the other hand, 

promotes further actin polymerization, cytoskeletal remodeling and further focal adhesion 
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maturation (38; 46-47).  We were able to replicate the findings by Kuo and colleagues 

(2011) in SMCs with a myosin mutant, which caused a decrease in myosin function: 

compared to wildtype SMCs, the SMCs with impaired myosin function had increased Rac1 

activation, decreased RhoA activation, smaller focal adhesions and a dedifferentiated 

phenotype; the differentiated phenotype was restored by activating RhoA in these cells (48). 

Thus, focal adhesions play a key role in regulating the SMC phenotype and response to the 

environment by mediating interactions with the extracellular matrix and responding to actin 

polymerization and signaling cues within the cells. 

 

Embryonic origins of VSMCs  

Because smooth muscle cells are widely distributed in a number of organs and organ 

systems, they also have diverse embryonic origins. Even different segments of the aorta are 

populated by SMCs of distinct embryonic origins (49). For example, the aortic root is made 

up of secondary heart field-derived SMCs, the ascending aorta, aortic arch and the base of 

the left and right carotid arteries, right subclavian artery and the innominate artery are made 

up of neural crest cell-derived SMCs, while the descending aorta contains SMCs originating 

from somite cells, and the abdominal aorta is made up of mesodermally-derived cells (49). 

Studies of the SMC properties in the different regions of the aorta suggest that there is a 

differential response to common cues, such as TGF-β1: a study by Gadson et al (1997), for 

example, established that although both neural crest-derived and mesoderm-derived SMCs 

required TGF-β1 for contraction in a collagen gel contraction study, the response was much 

greater in mesoderm-derived SMCs. Furthermore, when administered at the same 

concentrations, TGF-β1 was able to induce proliferation in neural crest-derived SMCs but 
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caused growth arrest in mesoderm-derived SMCs (49; 51). Further, studies involving the 

translocation and grafting of different cell types in other portions of the aorta suggest that 

the basis of SMC phenotype and behavior depends on embryonic origin and not on 

environmental factors. Taken together, these findings add another layer of complexity when 

studying SMC function and dysregulation in disease and set a requirement for cell-lineage 

specific studies. 

 

Genetic Basis of TAAD 

 

 TAAD is a clinical feature of several syndromes (Marfan syndrome, Loeys-Dietz 

syndrome, vascular Ehlers-Danlos syndrome); it can also be inherited in the absence of 

syndromic features (termed familial TAAD, or FTAAD), or can occur sporadically (termed 

STAAD). Syndromic cases account for 5% of all aortic dissections; familial cases are 

approximately 15%, and the rest are sporadic (3; 5-8; 52). 

 

Syndromic presentation 

TAAD is a common and fatal outcome for patients with Marfan syndrome (MS), 

Ehlers-Danlos type IV (vascular EDS, or vEDS), and Loeys-Dietz syndrome (LDS). 

Additional syndromes that may lead to TAAD include filamin A deficiencies, arterial 

toruosity syndrome (caused by mutations in the glucose transporter GLUT10), and bicuspid 

aortic valve (BAV) syndrome (3; 5; 8). Specific findings related to several of these 

syndromes in relation to TAAD are presented below. 
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Marfan syndrome is a common connective tissue disorder, which affects 

approximately one in 5000 newborns in the United States (53-54). Patients with Marfan 

syndrome present with a range of skeletal features (great height, extremely long limbs, 

pectus excavatum - sunken chest, cleft palate), as well as pulmonary, ocular and 

cardiovascular symptoms (53-54). Upon examination, the aortas of patients with Marfan 

syndrome reveal a loss of SMCs, loss of elastin, and an increase in MMPs. The causal gene 

defect was identified in patients with Marfan syndrome in 1991– a dominant negative 

mutation in FBN1, which codes for the extracellular matrix protein fibrillin (5-6; 8). Fibrillin 

is the main constituent of microfibrils, which connect the layers of elastin to the smooth 

muscle cell layers in the media. Fibrillin mutations lead to a defect in transforming growth 

factor beta (TGF-β1) signaling: TGF-β1 is normally sequestered by fibrillin in the 

extracellular matrix in an inactive form (6; 54). Fibrillin mutations prevent the sequestration 

of TGF-β1 and thus lead to enhanced TGF-β1 signaling, which affects multiple pathways in 

smooth muscle cells and adventitial fibroblasts. It has been proposed that dysregulated TGF-

β1 signaling drives aortic aneurysm formation in MS patients (8; 55). A National Institutes 

of Health clinical trial is currently underway for patients with Marfan syndrome after 

promising results were obtained from mouse models of the disease, which showed a 

dramatic reversal of aneurysms when treated with losartan, an angiotensin II receptor 

blocker (54). While the benefits of the losartan treatment have been established in mice 

carrying a mutation in Fbn1, the exact mechanism by which an angiotensin receptor II 

blocker mediates TGF-β1 blockade is not yet clear (55). More recently, another FDA-

approved drug, pravastatin, was also shown to reverse Marfan aneurysms to a similar extent 

as losartan, albeit without preserving the aortic architecture as well as losartan (56). 
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 Loeys-Dietz syndrome is caused by mutations in the TGFBR1/2 genes, and affects 

approximately 500 people worldwide, with the number increasing as knowledge about this 

condition, first identified in 2005, is spreading (57-58). Common features in patients with 

the disease include wide-set eyes, translucent and thin skin, bifid uvula, cleft palate, as well 

as early-onset aortic disease (1; 3; 8; 57; 59). Interestingly, patients with Loeys-Dietz 

syndrome, display very similar clinical features to patients with Marfan syndrome, as well as 

dysregulated TGF-β1 signaling in spite of the fact that the identified mutations have a 

predicted loss of TGF-β1 receptor function (6; 8). Experiments using losartan and 

pravastatin are currently underway to evaluate their potential benefit for LDS patients in 

addition to Marfan syndrome patients.  

Finally, vascular Ehlers-Danlos syndrome (vEDS) is caused by a mutation in 

procollagen 3, encoded by the gene COL3A1, and it affects as many as 1 in 5000 people (1; 

6). Patients with vEDS have thin, translucent skin and impaired wound healing, joint 

hypermobility and distinctive facial features, including large protruding eyes, small chin, 

thin lips and nose. These patients frequently present with spontaneous aortic dissections or 

organ rupture without prior history of aneurysms (3; 6; 8). It has been suggested that the 

dissections occur at focal points as a result of accumulation of environmental insults to the 

same site, such as hypertension or physical injury (8). In 2010, Ong et al reported a clinical 

trial conducted in France and Belgium using the β2-adrenergic receptor blocker and β1 

activator celiprolol for the treatment of patients with vEDS. Use of celiprolol led to a 

threefold decrease in the frequency of deadly events in patients with vEDS (60).   
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Sporadic TAAD 

 A patient with sporadic TAAD is one who presents with an aortic aneurysm or 

dissection without prior family history and who does not carry any of the Mendelian 

mutations associated with syndromic or familial TAAD. Sporadic TAAD is by far the most 

common form of TAAD among patients. These patients are usually older, and it is believed 

that a combination of genetic and environmental factors, and the accumulation of insults to 

the aorta with time, might jointly contribute to disease. The most common environmental 

risk factor is hypertension, followed by smoking and obesity (6). STAAD patients are at a 

great risk because currently there are no proven strategies for recognizing who in the general 

population might carry a predisposition for developing an aortic dissection. 

Our lab and others have been working to identify the genetic risk factors associated 

with sporadic TAAD, focusing on rare variants that are found in patient cohorts but not in 

controls. Rare variants are genetic events, which are not as frequent in the general 

population as single nucleotide polymorphisms (SNPs), but are more prevalent than 

Mendelian mutations. Rare variants do not necessarily segregate with disease in families, 

and could be found at lower frequencies among healthy individuals too; thus, rare variants 

might contribute to the development and predisposition to TAAD, but they are unlikely to 

cause disease without any additional risk factors (48; 61- 62).  

So far we have identified two kinds or rare variants - copy number variations 

(CNVs) and missense alterations. While a number of CNVs were identified in patients with 

sporadic disease, they all disrupted very few and specific pathways, most frequently genes 

related to contraction and focal adhesions (61). One such example is a copy number 

variation in a region on chromosome 16p13.1, which was present in approximately 1% of 
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patients in the STAAD cohorts studied, but only in 0.09% of control cohorts. Interestingly, 

this duplication was also present in some patients with family history of the disease, though 

it did not segregate with disease in these families. The 16p13.1 region comprises a number 

of genes, but the most likely candidate for increasing the risk of dissection in sporadic 

TAAD patients is the variation in MYH11, the gene that codes for smooth-muscle myosin 

heavy chain, an essential component of the acto-myosin contractile apparatus in vascular 

smooth muscle cells (62). The pathways, which could cause smooth muscle cell dysfunction 

and thus greater risk for an aortic aneurysm and dissection as a result of the increased 

MYH11 copy number, are currently being elucidated. 

A second rare variant that we chose to characterize is a missense R247C alteration, 

also in MYH11. This alteration was enriched in TAAD cohorts, as well as cohorts of patients 

with occlusive vascular disease, and it was predicted that it leads to a 10-12 fold increase in 

the risk for a dissection in these individuals. Interestingly, a paralogous mutation in cardiac 

myosin, MYH7, R249Q, has already been characterized in cases of hypertrophic 

cardiomyopathy, supporting the hypothesis that the MYH11 R247C alteration could 

contribute to TAAD. Indeed, a double knock-in mouse model of the R247C alteration 

showed decreased aortic contractility ex vivo and decreased ATPase activity in vitro, but it 

did not develop aortic disease. Myh11R247C/R247C mice also exhibited a pathologic highly 

proliferative response to carotid artery injury by carotid artery ligation. Further, explanted 

primary aortic smooth muscle cells from these mice were dedifferentiated and significantly 

more proliferative. These SMCs also had smaller focal adhesions and increased expression 

of focal adhesion kinase (FAK) and Rac1, but decreased RhoA activation. Treating the cells 

with the bacterial endotoxin CN03 caused RhoA to become constitutively activated, which 
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was able to rescue the de-differentiated phenotype of the smooth muscle cells. Therefore, 

although the Myh11 R247C missense mutation did not confer an aortic disease phenotype, it 

appeared to increase the risk of an aortic event by affecting the smooth muscle cell 

phenotype and aortic contractility and the risk of an occlusive vascular event by leading to 

increased proliferation in response to injury in vivo  (48). 

Finally, LeMaire and colleagues (2011a) conducted a genome-wide association study 

of patients with STAAD, looking at common genetic variants, which may increase the risk 

for aortic disease, and found such (SNPs) on chromosome 15q21.1, a region that 

encompasses FBN1, the gene coding for fibrillin 1, and causes Marfan Syndrome. This 

finding draws yet another link between the different presentations of TAAD and suggests 

that lessons from the study of syndromic patients may be applicable to TAAD patients at 

large, and that extracellular matrix defects and smooth muscle contractile defects likely 

share similar downstream effects, resulting from the dysregulation of the smooth muscle cell 

phenotype. 

 

Familial TAAD 

About 15% of patients with aortic aneurysms and dissections have first-degree 

relatives with the condition. These patients have single gene mutations, which are dominant 

negative and have variable expression and decreased penetrance (3; 5- 6; 8; 52). Our lab and 

others have identified a number of genes that cause familial TAAD, which broadly segregate 

in two categories – TGF-β1-signaling pathway genes and contractile genes.  
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Role of impaired TGF-β1 signaling in FTAAD 

Transforming growth factor beta is a potent and versatile cytokine, which has a role 

in development and regulates a number of different cell types in adult tissues. TGF-β1 

signals through its receptors, TGFBR-1 and -2, via two pathways. The canonical TGF-β1 

pathway causes the activation of regulatory Smads (Smad2 and Smad3), which dimerize and 

associate with Smad4 in order to translocate into the nucleus where they drive the 

expression of a number of genes. Non-canonical TGF-β1 signaling is independent of Smad 

activation, and it results in the activation of a number of different mitogen-activated protein 

kinases (MAPKs). In total, TGF-β1 drives a range of cellular processes, which in smooth 

muscle range from differentiation to proliferation, migration and survival. TGF-β1 is an 

autocrine and paracrine signal, and it is found in an inactive form in complex with Latency 

Associated Peptide (LAP) and Latent TGF-β1-Binding Protein (LTBP), which together form 

a Large Latent Complex (LLC) and associate with microfibrils in the extracellular matrix 

(8).  

So far, we have identified three genes which are altered in our families and belong to 

the TGF-β1 pathway: TGFBR1, TGFBR2, and SMAD3. TGFBR1/2 mutations account for 

approximately 1-2% of the families with inherited TAAD; these mutations lead to Loeys-

Dietz syndrome in some patients, but they do not lead to syndromic presentation in the 

studied families (5; 64). These mutations cause early-onset aortic disease, medial disarray, 

loss of elastin fibers in the aortic wall and dedifferentiation of SMCs. Interestingly, these 

SMCs are also less proliferative than wildtype SMCs. While canonical signaling was not 

significantly altered, non-canonical signaling through p38 MAPK and Akt was decreased, 

but the exact mechanism has not been determined (64).  



23 

Mutations in SMAD3 are responsible for about 2% of all cases of FTAAD (5; 65). 

Interestingly, in addition to aortic disease, some of the TAAD families carrying alterations 

in this gene have also had history of aneurysms in other vessels. Even though the changes 

occurring in the vascular SMCs of patients with SMAD3 mutations have not yet been 

characterized, aortic tissue from these patients indicates an increase in SMAD3 staining, as 

well as in phosphorylated SMAD2. These observations were not consistent with data from 

Smad3-/- fibroblasts, which point towards a dedifferentiated phenotype, with cells expressing 

low levels of downstream canonical TGF-β1 targets, such as connective tissue growth factor 

(CTGF) and collagens (65). While the reason for the discrepancy has not been clarified yet, 

it highlights the level of complexity that is added when interactions with other cell types and 

the extracellular matrix are taken into consideration. 

 

Role of contractile gene mutations in FTAAD 

So far mutations in three contractile genes have been identified in families with 

FTAAD - MLCK, MYH11 and ACTA2, which together account for approximately 13% of all 

cases of FTAAD. 

MLCK (also known as MYLK) is the gene for myosin light-chain kinase, a 

serine/threonine kinase, which is responsible for the phosphorylation of myosin regulatory 

light chain at Ser19 and the activation of the smooth muscle-specific, as well as nonmuscle, 

myosin motors for acto-myosin contraction. Two mutations have been identified in families 

with TAAD, indicating that MLCK mutations are responsible for approximately 1% of 

FTAAD cases. Interestingly, patients with mutations in MLCK develop acute aortic 

dissections without developing aortic aneurysms first (66).  
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Mutations in MYH11 are responsible for approximately 1-2% of FTAAD and are 

consistently identified in conjunction with patent ductus arteriosus (PDA) (67-69). These 

mutations cause medial degeneration, SMC disarray as well as focal SMC hyperplasia, loss 

of elastic fibers, accumulation of proteoglycans (67-69). Interestingly, Pannu et al (2007) 

also reported an increased vascularization in the aortic wall, with the vasa vasorum 

penetrating as far as the medial layer, as well as occlusions of the vasa vasorum itself, which 

stained positively for SM alpha-actin, indicating that the occluding cells were smooth 

muscle-like. Finally, in addition to predisposing to TAAD, MYH11 mutations were found to 

segregate with occlusive vascular disease in the families reported by Pannu et al (2007), 

indicating a contribution to occlusive pathology in addition to aneurysm formation.  

The most commonly mutated gene in families with TAAD is ACTA2, which codes 

for smooth muscle-specific α-actin (70). It is altered in approximately 10% of all families 

with history of TAAD. Many mutations have been identified in α-actin to date, which are all 

predicted to have a dominant negative effect (17; 69-76). Recently, a de novo and extremely 

severe ACTA2 R179H/L mutation was identified, which predisposes to multi-system SMC 

dysfunction (72).  

Similar to MYH11 mutations, ACTA2 mutations also lead to focal hyperplasia and 

smooth muscle cells disarray in the aortic wall, coupled with loss of elastin fibers, 

proteoglycan accumulation and occlusion of the vasa vasorum by smooth-muscle α-actin-

positive cells (Fig.1.4A) (70). Importantly, ACTA2 mutations in FTAAD families also 

segregate with a range of occlusive vascular diseases such as livedo reticularis (vascular rash 

resulting from occlusions in dermal capillaries), iris flocculi (pigmentation tumors of the 

iris), Moyamoya disease (MMD; early-onset cerebrovascular disease, which leads to vessel 
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occlusion, compensatory but insufficient microvascularization at the site of occlusion and 

stroke), early-onset stroke and early-onset fibrotic coronary artery disease (CAD; Fig. 1.4B)  

(17; 70). Detailed analysis of family history also reveals that different mutations in ACTA2 

predispose to different but distinct sets of occlusive diseases. For example, patients with 

R149C mutations more frequently develop early-onset CAD, unlike patients with R258H/C 

mutations, who show a higher frequency of early-onset stroke (17). Therefore, despite 

shared aortic pathology, specific mutations can also lead to unique but equally devastating 

additional pathologies. 

 

Figure 1.4:  Mutations in ACTA2 Lead to TAAD and Vascular Occlusive Diseases.  A. 
Aortic pathology in patients with two different ACTA2 mutations. Both show proteoglycan 
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accumulation (in blue), loss of elastin fibers, SMC disarray. B. The vasa vasorum of patients 
with ACTA2 mutations is completely occluded (top panel) with cells that stain positive for 
α-actin (bottom panel), indicating these cells are smooth muscle-like. Reprinted by 
permission from Macmillan Publishers Ltd: Nature Genetics, (70), copyright (2007). 

 

While the reasons for the different occlusive pathologies associated with each 

ACTA2 mutation have not been determined, the cause most likely relates back to the three-

dimensional α-actin structure and the specific conformational and functional defect that each 

mutation confers. Actin monomers consist of four subdomains, each of which plays a 

specific role in ATP binding, protein-protein interactions and filament formation (17; 70). 

Work on cardiac actin (ACTC1), mutations in which predispose to familial hypertrophic and 

dilated cardiomyopathies, indicates that mutations in subdomains 1 and 4 affect the ability 

of cardiac actin to interact with other proteins, while mutations in subdomain 3 affect actin 

filament formation (77). In smooth muscle-specific α-actin, mutations that confer a greater 

risk for developing premature CAD, such as R149C and R118Q, are all found in the 

hydrophobic cleft of the actin molecule (17; 70). The ACTA2 R258C/H mutation, on the 

other hand, is found in subdomain 4 of α-actin, which plays a role in the opening and closing 

of the ATP binding pocket (17; 70). It has not yet been properly studied how each mutation 

alters the ability of smooth muscle actin to bind other molecules, such as calponin, cofilin, 

gelsolin or profilin, which regulate actin filament polymerization, severing or stability. 

Recent work by Bergeron et al (2011) was the first to identify specific changes resulting 

from different ACTA2 mutations found in TAAD patients by studying two neighboring 

mutations using a S. cerevisiae expression system. The authors compared the N115T and 

R116Q mutations found in patients with TAAD, and found striking differences in nucleotide 

exchange rates and in sensitivity to severing proteins like cofilin, where the N115 mutation 
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was hyposensitive, and the R116Q mutant was hypersensitive (78). These are only two 

examples in a large field that is yet to be explored in more detail.   

 

Role of ACTA2 in TAAD Pathogenesis 

 

Since ACTA2 was identified as a common cause of familial TAAD, work in our lab 

has focused on determining the mechanisms of disease pathogenesis in patients with ACTA2 

mutations using primary aortic smooth muscle cells and dermal fibroblasts from patients, as 

well as mouse models. 

Staining for α-actin in smooth muscle cells explanted from the aortas of patients with 

ACTA2 mutations confirm a dominant negative effect of the ACTA2 mutations on contractile 

filament formation. In fact, polymerization of α-actin into actin filaments is disrupted to a 

different extent in all mutations (Fig. 1.5A). Alpha-actin polymerization was similarly 

disrupted in explanted patient dermal fibroblasts, which were treated for 72 hours with TGF-

β1 to induce transformation into myofibroblasts and, consequently, contractile protein 

expression. Further, both SMCs and fibroblasts were shown to proliferate significantly more 

than cells obtained from age-, race- and gender-matched normal controls (Fig. 1.5B) (70). 

These observations are in agreement with the vascular pathology observed by 

immunohistochemistry (Fig. 1.4) (17; 70). Together, these findings led to the hypothesis that 

the effects of ACTA2 mutations are twofold. First of all, mutations in ACTA2 lead to 

decreased contractility in the aorta by disrupting the SMC contractile apparatus and, hence, 

mechanotransduction across the medial layer (6). In addition, ACTA2 mutations cause a 
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hyperplastic compensatory response in smaller arteries, where SMCs are solely responsible 

for maintaining the contractility of the vessel, leading to vascular occlusive disease (9).  

 

Figure 1.5: Pathology of Cells from Patients with ACTA2 Mutations. A. SMCs from 
patients with ACTA2 mutations have disrupted α-actin filament formation. Adapted by 
permission from Macmillan Publishers Ltd: Nature Genetics, (70), copyright (2007) B. 
Explanted SMCs and dermal fibroblasts from patients with ACTA2 mutations proliferate 
more than control cells in culture. Reprinted from The American Journal of Human 
Genetics, 84, Dong-Chuan Guo, Christina L. Papke, Van Tran-Fadulu, Ellen S. Regalado,  
Nili Avidan,  Ralph Jay Johnson,  Dong H. Kim,  Hariyadarshi Pannu,  Marcia C. Willing,  
Elizabeth Sparks,  Reed E. Pyeritz,  Michael N. Singh,  Ronald L. Dalman,  James C. Grotta,  
Ali J. Marian,  Eric A. Boerwinkle,  Lorraine Q. Frazier,  Scott A. LeMaire,  Joseph S. 
Coselli,  Anthony L. Estrera,  Hazim J. Safi,  Sudha Veeraraghavan,  Donna M. Muzny,  
David A. Wheeler,  James T. Willerson,  Robert K. Yu,  Sanjay S. Shete,  Steven E. Scherer,  
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C.S. Raman,  L. Maximilian Buja,  and Dianna M. Milewicz, Mutations in Smooth Muscle 
Alpha-Actin (ACTA2) Cause  Coronary Artery Disease, Stroke, and Moyamoya Disease,  
Along with Thoracic Aortic Disease, 617-627, Copyright (2009), with permission from The 
American Society of Human Genetics. 
 

Characterization of the ACTA2 R258C Mutation Using a Transgenic Mouse Model 

 

Because only limited patient smooth muscle cells samples are available, and because 

dermal fibroblasts present a limited alternative system, we proceeded to study the disease 

phenotype caused by individual mutations by using a transgenic mouse model carrying 

mutations in Acta2. 

 

Figure 1.6: ACTA2 R258C Segregates with TAAD and Premature Stroke in Three 
Families. Reprinted from The American Journal of Human Genetics, 84, Dong-Chuan Guo, 
Christina L. Papke, Van Tran-Fadulu,  Ellen S. Regalado,  Nili Avidan,  Ralph Jay Johnson,  
Dong H. Kim,  Hariyadarshi Pannu,  Marcia C. Willing,  Elizabeth Sparks,  Reed E. Pyeritz,  
Michael N. Singh,  Ronald L. Dalman,  James C. Grotta,  Ali J. Marian,  Eric A. 
Boerwinkle,  Lorraine Q. Frazier,  Scott A. LeMaire,  Joseph S. Coselli,  Anthony L. Estrera,  
Hazim J. Safi,  Sudha Veeraraghavan,  Donna M. Muzny,  David A. Wheeler,  James T. 
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 We chose to characterize the R258C/H mutation first. This mutation was first 

identified in three families, in which over 70% of the mutation carriers developed aortic 

disease and approximately 50% had history of early-onset ischemic strokes (starting as early 

as 5 years of age; Fig. 1.6) (17). A cDNA construct was generated using the Acta2 gene with 

the R258C mutation in exon 7 and a wildtype smooth muscle ACTA2 promoter up to intron 

1, attached to the remaining construct at an AatII site. A HindIII site at the 3’ UTR region 

containing a neomycin resistant gene was also included (Fig. 1.7A) (79). Using the smooth 

muscle α-actin-specific promoter allowed for the transgene to be expressed together with 

wildtype actin exclusively in cells that express this actin isoform. In addition, a second, 

independent transgenic line was generated to verify that the observed phenotype was not due 

to a disruption at the site of transgene insertion but by the transgene itself (Appendix 1 & 

2). Further, mutant α-actin expression was confirmed by quantitative real-time PCR and by 

isoelectric focusing (IEF) blot using aortic tissue protein (Fig. 1.7B), which was able to 

resolve the mutant from wildtype protein.  

Next, the mice carrying the transgene on a wildtype background were bred with 

Acta2-/- mice so that in two generations, three different genotypes were obtained: Acta2+/+ 

R258C TG, Acta2+/- R258C TG  and Acta2-/- R258C TG  (Fig. 1.7C) (81). Aortic tissue protein was then 

isolated from the Acta2-/- R258C TG mice and immunoblotted for SM α-actin in order to show 

that the mutant protein is expressed (Fig. 1.7D). Thus, three different mouse models were 

developed with a transgene under a wildtype promoter so that mutant actin expression is 

tissue-specific and occurring simultaneously with the wildtype expression, and the mutant 

protein expression was confirmed by qPCR, immunoblot, and IEF blot.  
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Figure 1.7: Generation of the Acta2 R258C TG mice. A. Construct design for mutant 
transgene, containing a wildtype α-actin promoter up to intron 1. From J. Cao, MD, PhD 
(79), with permission B. IEF blot confirming mutant α-actin expression in the aorta. From   
A. Chang, PhD (80), with permission C. Breeding scheme for generating Acta2+/- R258C TG 
and Acta2+/-  mice. From C. Villamizar (81), with permission.  D. Immunoblot showing α-
actin expression in aortic tissue from Acta2-/- R258C TG mice. 

 

We proceeded to characterize the Acta2+/+ R258C TG and the Acta2+/- R258C TG mice. We 

predicted that, like in TAAD patients, the R258C mutation will have a dominant negative 

effect and that this disruptive effect will have similar, if less severe, physiological 

manifestations in the mice as in the patients, including aneurysm formation and occlusive 
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disease phenotype. Further, we hypothesized that decreasing the number of wildtype alleles 

in our transgenic mouse models would exacerbate the phenotype. 

Characterization of the Acta2+/+ R258C TG and the Acta2+/- R258C TG mice has indicated 

that both mice develop aortic enlargements as early as 12 weeks of age, but the difference 

from the normal controls was significant only for the Acta2+/- R258C TG aortas (Fig. 1.8C) 

(81). The number of elastic lamellae laid at development was also significantly larger in 

these mice compared to the other genotypes. Interestingly, both Acta2+/+ R258C TG and the 

Acta2+/- R258C TG mice have significantly increased cell density, which, decreases by 24 weeks 

of age but remains significantly greater than wildtype medial cell density (Fig. 1.8A,B) (81). 

Importantly, aortic contractility in the Acta2+/+ R258C TG SMCs was significantly lower in the 

thoracic and ascending aortas compared to the wildtype controls (Fig. 1.8D) (82). This 

finding provides evidence towards a dominant negative effect of the mutation on the whole 

aorta structure and function. 
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Figure 1.8. Aortic Pathology of the Acta2+/+ R258C TG and Acta2+/- R258C TG Mice. A. H&E 
and Movat staining of aortas from wildtype, Acta2+/+ R258C TG, Acta2+/- and Acta2+/- R258C TG 
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mice at 12 weeks.  From C. Villamizar (81), with permission. B. Quantification of number 
of lamellae at 4 weeks, medial area and cell density from staining over 6 months. From C. 
Villamizar (81), with permission C. Aortic diameter determined by echocardiography up to 
1 year of age. From C. Villamizar (81), with permission. D. Aortic contractility is 
significantly decreased in the ascending and thoracic aorta of Acta2+/+ R258C TG mice. From J. 
Huang, PhD (82), with permission. *p<0.05, **p<0.01.  
 

 In order to assess whether the Acta2+/+ R258C TG and the Acta2+/- R258C TG mice 

exhibited a pathologic proliferative response in vivo, we used a carotid artery ligation model, 

first described by Kumar & Lindner (1997). Briefly, the left carotid artery of mice is ligated 

completely proximal to the bifurcation, causing extensive aortic remodeling and neointima 

formation, which occludes up to 80% of the lumen in normal mice (83). Importantly, the 

cells that make up the neointima are smooth muscle cells that migrate from the media into 

the lumen and proliferate extensively. Thus, the carotid artery ligation model assesses the 

vascular response to injury in mice. Aortic remodeling and neointima formation are 

characterized and quantified when mice are sacrificed for histology 21 days later, with the 

right carotid artery serving as control. When we performed carotid artery ligations and 

quantified the neointima development 21 days post-injury, we found that the Acta2+/- R258C TG 

mice had significantly more neotintima formation compared to wildtype, as estimated by the 

area of the intima, of the media and the ratio of the media to the neointima. The Acta2+/+ 

R258C TG mice did not have a significant pathologic response to injury (Fig. 1.9A,B) (81). Yet, 

it was in the Acta2+/+ R258C TG mice that we recorded two cases of spontaneous stroke. 

Unfortunately, we were unable to preserve the tissue and perform a necropsy to identify the 

exact location of the occlusion. 
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Figure 1.9: Neointima Formation Following Carotid Artery Ligation in Acta2+/+ R258C TG 
and Acta2+/- R258C TG Mice. A. Carotid artery ligation lead to severe occlusions in the 
Acta2+/+ R258C TG and Acta2+/- R258C TG mice. B. Medial area, neointima area and the ratio of 
the media to neointima are significantly increased in Acta2+/- R258C TG mice, but not in the 
Acta2+/+ R258C TG mice. **p<0.01. From C. Villamizar (81), with permission. 

 

To summarize, while the Acta2+/+ R258C TG mice have a slight aortic dilatation, they do 

not develop aneurysms, nor do they show a significant hyperproliferative response as a 

result of vascular injury. However, they have decreased aortic contractility, increased cell 

density by 8 weeks and a rare occurrence of strokes. The Acta2+/- R258C TG mice do not have a 

recorded case of stroke so far, but they show robust aortic dilatation starting at 12 weeks of 

age, significantly greater number of elastic lamellae, significantly increased cell density and 

a significant, pathologic increase in neotintima formation after injury. This data confirms a 

dominant negative effect of the mutation, highlights similarities in the pathological 



36 

hallmarks in the mouse models and the human patients, as well as between the Acta2+/+ R258C 

TG and Acta2-/- mice, and robust evidence for the increased severity of the phenotype with the 

loss of one wildtype Acta2 allele. 

The in vivo phenotype of mice with the R258C mutation posed the question whether 

these findings could be translated to the aortic SMCs, too. That lead us to hypothesize that 

introducing a mutation in α-actin will lead to (1) impaired filament formation, (2) altered 

focal adhesion maturation and (3) increased proliferation. Further, we predicted that the 

decrease in relative wildtype to mutant α-actin content would exacerbate the disease 

phenotype of the aortic SMCs of these mice as well. 



37 

 

 

 

 

 

 

 

 

 

CHAPTER TWO: Materials and Methods 
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Aortic SMC Isolation 

 

 Aortas were isolated from 5- to 8-week old wildtype, Acta2+/+ R258C TG,  Acta2+/- R258C 

TG  and  Acta2+/- mice. Three explants were obtained from the Acta2+/+R258C TG mice, four 

explants from the wildtype mice, one from Acta2+/- and one from Acta2+/- R258C TG; each 

explant was made up of 3-5 mouse ascending or descending aortas. Whole aortas were 

obtained under sterile conditions and transferred into biopsy media (Waymouth’s basal 

medium, Gibco Life Technologies, Grand Island, NY) and either immediately processed or 

stored at 4°C. The ascending aorta was separated from the descending aorta at the start of 

the left subclavian artery; the two were then processed and grown separately. The adventitia 

was gently shaved off and the aortas were washed consecutively in 70% EtOH, sterile PBS 

(Gibco Life Technologies, Grand Island, NY) and aortic biopsy medium (Waymouth’s basal 

medium). The tissue was cut into small pieces (≤0.5-1 mm diameter) and incubated for 14-

18 hours at 37°C in 5 ml aortic biopsy medium with 0.5 mg collagenase type I, 0.095 mg of 

elastase type I and 0.125 mg of soybean trypsin inhibitor. The digestion was stopped at the 

end of the incubation with 2.5 ml of sterile, filtered fetal bovine serum (FBS; Atlanta 

Biologicals, Lawrenceville, GA) and 2.5 ml of complete SMC medium. The cells and tissues 

were then spun down, resuspended in complete SMC medium and left in 25 cm2 flasks in an 

incubator set at 37°C and 5% CO2.  

Experiments were conducted only on cultured SMCs from the ascending aorta. 

Wildtype and Acta2+/- cells were used as controls. All cells were no higher than passage 5. 

All genotypes were passage-matched for each experiment, and each experiment was 

conducted between two and six times. Cells for all experiments were plated on collagen IV-
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coated flasks, plates and dishes. Briefly, collagen IV (Sigma-Aldrich, St. Louis, MO) was 

resuspended in 0.25% sterile glacial acetic acid and left at 4°C for several hours before use. 

The collagen IV stock solution was then resuspended in a 1:19 ratio in sterile PBS. Dishes 

were coated and then left to incubate for at least 45 min before cell plating. Extra collagen 

IV was removed from dishes before seeding. 

 

SMC Culture and Storage 

 

Smooth muscle cells were grown in 25cm2 and 75cm2 cell culture flasks in 

incubators set at 37°C, 5% CO2. Cells were grown in complete smooth muscle medium, 

which was made up of Smooth muscle Basal Medium (SmBM, Lonza, Walkersville, MD) 

supplemented with 20% fetal bovine serum (FBS; Atlanta Biologicals, Lawrenceville, GA), 

2% HEPES (1M), 1% 100x Antibiotic-Antimycotic, 1% 200mM L-glutamine, 1% 100mM 

MEM sodium pyruvate (Gibco Life Technologies, Grand Island, NY), as well as growth 

factor aliquots: human Fibroblastic Growth Factor (hFGF-B, 1ml), insulin (0.5 ml) and 

human Epidermal Growth Factor (hEGF; 0.5 ml; Lonza SmGM-2 SingleQuots, 

Walkersville, MD). All components were first filtered through a 0.45 µm sterile filter before 

being added to the SmBM. Cells were detached from flasks using 0.25% trypsin (Gibco Life 

Technologies, Grand Island, NY) and passed when they reached 80-90% confluency.  

Cells were stored in 1 ml aliquots of SMC freeze media (for 50 ml: 40 ml complete 

SMC media, 5 ml filtered FBS, 5 ml DMSO (Sigma-Aldrich, St. Louis, MO)) at first in -

80°C freezers and then permanently in liquid nitrogen tanks. 
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RNA Isolation and Quantitative Real-time PCR 

 

 SMCs were seeded on collagen IV-coated dishes and left overnight to attach. They 

were subsequently incubated in 1% serum media (serum-starving media: 1% FBS, 2% 

HEPES (1M), 1% 100x Antibiotic-Antimycotic, 1% 100x L-glutamine, 1% 100x sodium 

pyruvate in SmBM) for 24 hours. The media was then aspirated, and cells were washed once 

in PBS, which was completely removed afterwards. Dishes were either placed on ice for 

immediate use or stored at -80°C. 

   For RNA isolation, 1 ml of Trizol (Invitrogen, Carlsbad, CA) was added to each 

dish, which was then left on ice for at least 5 min. Cells were detached with a cell lifter and 

moved to a centrifuge tube. Two hundred microliters of MB grade chloroform (Fisher 

Scientific, Pittsburgh, PA) were added to each tube. Tubes were then shaken vigorously for 

15 sec and left to incubate at room temperature for 5 min. The samples were then spun down 

at 4°C for 20 minutes at 1,200 x g. 

 After the cells were centrifuged, the transparent top layer was transferred to a new 

centrifuge tube and 750 µL of 100% isopropanol (Fisher Scientific, Pittsburgh, PA) was 

added to each tube. Tubes were inverted 20 times and then left either overnight at -20°C or 

for 5 minutes at room temperature. Samples were then spun down at 4°C for 30 minutes at 

16,100 x g. Once the spin was completed, the liquid was discarded and 750µL of 75% 

ethanol (EtOH, Fisher Scientific, Pittsburgh, PA) was added to each tube. The pellet at the 

bottom was resuspended by tapping the tube with finger several times, and spun down again 

at 4°C and 16,100 x g for 20 min. The EtOH was removed completely and the pellets were 

air-dried on ice for 20 min before resuspending in 50 µL of RNase-free water and 



41 

quantifying the RNA concentration at OD 260 nm using a NanoDrop (Thermo Scientific, 

Wilmington, DE).  

 The isolated RNA was then used for cDNA synthesis using High Capacity cDNA 

Archive Kit (Life Technologies, Carlsbad, CA) according to the manufacturer’s protocol. 

Briefly, 5µL RNA, 5µL 10x RT buffer, 10x random primers, 2.5 µL dNTPs and 2 µL of 

Multiscribe RT (50U/µL), together with 30.5 µL RNase-free water were mixed and placed in 

a thermal cycler for 10 min at 25°C followed by 2 hrs at 37°C. We used Applied 

Biosystems’ TaqMan probes and followed the manufacturer’s protocol when we performed 

quantitative real-time PCR of mRNA expression using an Applied Biosystems Prism 7900 

HT Sequence Detection System (Applied Biosystems, Foster City, CA). All samples were 

run in triplicate and standardized to Gapdh.  

 

Protein Isolation 

 

 Cells were grown in 35-mm collagen IV-coated dishes at density of 75,000 

cells/dish. After seeding, cells were allowed to attach overnight in complete smooth muscle 

medium. They were subsequently serum-starved in 1% serum medium for 24 hours, washed 

once in PBS and snap frozen in liquid nitrogen for the preservation of phosphorylated 

proteins. Dishes were then stored at -80°C until use. Protein was isolated from cells using 

RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% NP-40, 0.25% sodium 

deoxycholate, 1 mM EDTA) with 10µL/ml phosphatase inhibitor cocktails 2 and 3 (Sigma-

Aldrich, St. Louis, MO), and 30µL/ml protease inhibitor cocktail (P8340; Sigma-Aldrich, St. 

Louis, MO). Between 50 and 100 µL of the solution were added to each dish, depending on 
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the dish size. Cells were scraped using cell lifters and the solution was transferred to a 

centrifuge tube. Samples were shaken on an orbital shaker at 4°C for 30 min and then spun 

down at 16,100 x g at 4°C for 30 minutes. Supernatant was then transferred to a clean tube 

and quantified using a standard Bradford assay, measuring absorption at 650 nm. Samples 

were stored at -20°C until further use. 

 

Western Blot 

 

 Five to ten micrograms of protein sample was loaded onto pre-cast Tris-HCL SDS-

PAGE gels (BioRad, Hercules, CA), separated by SDS PAGE, and transferred to 

polyvinylidene difluoride membranes (Millipore, Bedford, MA) at 35 V overnight or at 80V 

for 90 min. Membranes were blocked with 5% (w/v) milk in Tris Buffered Saline with 

Tween-20 (TBS-T), and incubated with primary antibodies at their respective concentrations 

(see Table 1) on a shaker for 3 hours at room temperature or on a shaker overnight in a 4°C 

room. Blots were washed for 10 min in TBS-T before incubating with their respective 

horseradish peroxidase (HRP) secondary antibodies (Jackson ImmunoResearch 

Laboratories, West Grove, PA) at 1:2,000 concentrations for 1 hour at room temperature. 

Immunoblots were then exposed using enhanced chemiluminescence (GE Healthcare, 

Piscataway, NJ). Primary antibodies used include anti-α-tubulin, phospho-Akt (S473), total 

Akt (all from Cell Signaling Technology, Beverly, MA), anti-SM myosin (Biomedical 

Technologies Inc, Stoughton, MA), anti smooth muscle α–actin, anti-calponin (both Sigma-

Aldrich, St. Louis, MO), anti-SM22α (Abcam, Cambridge, MA), anti-GAPDH (Fitzgerald 

Industries, Acton, MA), phospho-FAK (Y397) (Millipore, Bedford, MA), total FAK (Santa 
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Cruz Biotechnology, Santa Cruz, CA), phospho-PDGFRβ (T1021, Santa Cruz 

Biotechnology, Santa Cruz, CA), total PDGFRβ (Cell Signaling Technology, Danvers, MA), 

anti-GAPDH (Fitzgerald International Industries, Acton, MA), MRTF-A (C19; Santa Cruz 

Biotechnology, Santa Cruz, CA), phospho-p44/42 MAPK (phospho-ERK1/2; Cell Signaling 

Technology, Danvers, MA) and p44/42 MAPK (ERK1/2; Cell Signaling Technology, 

Danvers, MA). The concentrations at which each antibody was used for Western blot and 

immunofluorescent staining are summarized in Table 1. Western blot results were quantified 

using NIH ImageJ (National Institutes of Health, Bethesda, MD).  

 

Immunofluorescent Staining, Confocal Imaging and Analysis 

 

   Cells were seeded on collagen IV-coated, 22 mm (diameter) round coverslips at 

5,000 cells/coverslip and allowed to attach overnight. They were then starved in 1% serum 

media for 24 hours. Cells stained for smooth muscle α-actin (Sigma-Aldrich, St. Louis, MO, 

1:100), MRTF-A (H-140; Santa Cruz Biotechnology, Santa Cruz, CA, 1:50) and vinculin-

FITC (Sigma-Aldrich, St. Louis, MO, 1:200) were fixed with 4% paraformaldehyde in 0.1 

M phosphate buffer for 10 min at room temperature after washing twice with PBS. Cells that 

were used for Y397 pFAK (Millipore, Bedford, MA, 1:50) staining were fixed with an ice-

cold 1:1 acetone-methanol (both from Fisher Scientific, Pittsburg, PA) solution at -20°C for 

5 min after washing twice with PBS. Cells that were treated with 10ng/mL TGF-β1 were 

incubated for another 72 hours in fresh 1% serum medium after the initial 24 hours of serum 

starvation and fixed with 4% paraformaldehyde as described above. At the end of fixation, 

coverslips were washed three more times with PBS and stored at 4°C until use. 
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For staining, cells were first permeabilized for 10 min in 0.1% Triton X-100 (Fisher 

Scientific, Pittsburgh, PA) in PBS. Then, coverslips were inverted for 1 hour over a drop of 

blocking solution containing 5% donkey serum (Jackson ImmunoResearch Laboratories, 

West Grove, PA) in PBS. Incubation with primary antibodies at their respective 

concentrations was performed also by inverting the coverslips onto 50 µl drops of antibody 

diluted in blocking solution and leaving them at 4°C overnight. Coverslips were washed 

three times for 2 min each in PBS and fluorescein isothiocyanade (FITC)-conjugated 

secondary antibody (Jackson ImmunoResearch Laboratories, West Grove, PA) diluted in 

blocking solution was used for one hour at room temperature in the dark. Another three two-

minute washes were performed, and, if necessary, a final 30-minute incubation in 1:40 

Texas Red phalloidin (Life Technologies, Grand Island, NY) in blocking solution was 

performed at room temperature in the dark. After final three two-minute washes, coverslips 

were air-dried for 5 min and mounted using Vectashield mounting media with DAPI (Vector 

Laboratories, Burlingame, CA) and sealed with nail polish.  

Images were taken from random fields of the coverslips using a confocal microscope 

(Nikon A1, Nikon Instruments, Melville, NY) at constant settings for all coverslips in an 

experiment. Images were analyzed using Nikon NIS Elements software. Pearson correlation 

coefficients for colocalization of blue (DAPI) or green (MRTF-A) were calculated for at 

least 20 cells per slide on at least 3 slides for each bar presented on the graph. Additionally, 

MRTF-A nucleus/cytoplasm ratios were calculated by measuring the mean intensity of the 

nuclear versus the cytoplasmic staining of cells (7 slides per genotype, 10-30 cells per slide). 

Calculating the relative colocalization of phalloidin and SM α-actin was done as with 

MRTF-A and DAPI by estimating the Pearson correlation coefficient. Focal adhesion size 
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was estimated by measuring at least 30 randomly selected focal adhesions for at least 3 

images per slide for at least 3 slides for each bar on the graph. Measurements were 

performed by a blinded volunteer in order to avoid involuntary biasing of results. 

 

SMC Proliferation Assays 

 

Cell proliferation was measured by quantifying BrdU incorporation into the DNA of 

cells. SMCs were plated on 96-well plates, coated with collagen IV, seeded at 5,000 

cells/well and allowed to attach overnight in complete media. The cells were then starved in 

1% serum media with or without inhibitors for 24 hours. BrdU reagent was added to the 

wells 30 min after serum starvation/inhibitor treatment. The plates were then fixed and 

quantified with an ELISA assay according to the manufacturer’s protocol (Millipore, 

Bedford, MA). The inhibitors used include PF573228 (FAK inhibitor – Tocris Bioscience, 

Ellisville, MO) at a 1µM concentration, 10µM Imatinib mesylate (Selleck Chemicals, 

Houston TX), 20 µM LY294002 (PI3K inhibitor - Cell Signaling Technology, Danvers 

MA), and 10 µM U0126 (MEK inhibitor – Sigma Aldrich, St. Louis, MO). Dimethyl 

sulfoxide (DMSO; 0.6 uL per 2.5 mL media) was used as vehicle control. 

 

F/G Actin Assays 

 

The ratio of polymerized to unpolymerized actin was measured using an F/G actin 

assay (Kit BK-037, Cytoskeleton, Denver, CO). Cells were seeded on 60 mm collagen IV –

coated dishes at 200,000 cells/dish and left in complete media to attach overnight. The next 
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day cells were washed once in PBS and serum starved in 1% SmBM for 24 hours. At the 

end of the 24 hours, cells were either treated with 10ng/ml TGF-β1 for 72 hours or directly 

lysed for the assay according to manufacturer’s protocol. Briefly, cells were lysed, collected 

into centrifuge tubes and sheared with a bent 26½ – gauge needle. Wildtype controls were 

treated either with 10µM phalloidin (positive control) or with 10µM cytochalasin D 

(negative control). Cells were spun down for 5 min at 376 x g, transferred into 

ultracentrifuge tubes and spun in an ultracentrifuge (Optima TLX Ultracentrifuge, Rotor 

TLA-110, Beckman Coulter, Brea, CA) for 1 hour at 126,000 x g and 37°C in a rotor that 

was pre-warmed to 37°C for a minimum of 1 hour. Supernatant and pellet were then 

separated and the pellet was resuspended in ice-cold lysis buffer with 10µM cytochalasin D 

or F-actin destabilization buffer and sheared with 26½ - gauge needle every 15 min for one 

hour on ice.  

Sixteen microliters of each sample were then loaded on an SDS-PAGE gel and 

processed for immunoblot analysis with α-SMA (Sigma- Aldrich, St. Louis, MO).  

 

Actin Filament Breakdown Assay 

 

 Five thousands cells were seeded on collagen IV-coated coverslips and left to attach 

for one hour before complete medium was added and the cells were incubated overnight. 

Next, cells were serum-starved for 24 hours, at the end of which they were resuspended in 

fresh 1% serum medium and treated with 10ng/ml TGF-β1 for 48 hours. At the end of the 48 

hours, SMCs were treated with 0.5 µM Latrunculin A (Cayman Chemicals, Ann Arbor, MI) 

for 0hr, 5 min, 10 min, 15 min or 1 hour. Coverslips were fixed with 4% paraformaldehyde 
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as previously described, immunostained for smooth muscle α-actin and total actin 

(phalloidin) and viewed under a Confocal microscope. 

 

RhoA/Rac1 Activation Assays 

 

Activation of RhoA and Rac1 were measured by G-LISA assays according to 

manufacturer’s protocol (Kits BK-124/128, Cytoskeleton, Denver, CO). Briefly, cells were 

seeded onto collagen-IV coated 60 mm dishes at 200,000 cells/ dish and were grown 

overnight in complete SmBM at 37°C. SMCs were then serum starved in 1% SmBM for 24 

hours, at the end of which they were treated with or without lypophosphatidic acid (LPA; 

Sigma-Aldrich, St. Louis, MO) for 15 min for Rac1 activation. Cells were then washed with 

ice-cold PBS, lysed in 120µl of lysis buffer with protease inhibitors in a 4°C room and snap 

frozen after a 12 µL aliquot was taken out for protein quantification. Protein levels were 

quantified for each sample using 10µL of the aliquot and 300 µL of the provided Precision 

Red Protein Quantification Reagent at OD 600 nm.  For both RhoA and Rac1 activation 

assays, 0.3-0.5 µg of protein were used per well in a provided reaction plate for subsequent 

G-LISA analysis. Reactions were performed in duplicate or triplicate.  

 

Statistical Analysis 

 

Student t-tests were used to compare samples from each genotype to wildtype for all 

experiments. P-values were considered significant (*) when p<0.05, highly significant (**) 
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at p<0.01 and (***) p<0.001. Error bars on each graph represent either the standard 

deviation (s.d.) or 95% confidence intervals (C.I.), as indicated in the respective legends. 
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Table1: Antibody Product and Dilution Information 

Antibody Company IB  IF 

Primary antibodies: 

α-tubulin Cell Signaling Technology, Danvers, MA 1:500 --- 

α-smooth muscle actin Sigma-Aldrich, St. Louis, MO 1:1,000 1:100 

SM22α Abcam, Cambridge MA 1:1,000 --- 

Calponin 1 Sigma-Aldrich, St. Louis, MO 1:1,000 --- 

SM-MHC Biomedical Technologies Inc, Stoughton, MA 1:1,000 --- 

GAPDH Fitzgerald Industries International, Acton, MA 1:20,000 --- 

pAKT (Ser473) Cell Signaling Technology, Danvers, MA 1:500 --- 

Total AKT Cell Signaling Technology, Danvers, MA 1:1,000 --- 

pFAK Millipore, Bedford, MA 1:500 1:25 

Total FAK Santa Cruz Biotechnology, Santa Cruz, CA 1:1,000 --- 

pPDGFRβ Santa Cruz Biotechnology, Santa Cruz, CA 1:500 --- 

Total PDGFRβ Cell Signaling Technology, Danvers, MA 1:1,000 --- 

Vinculin Sigma-Aldrich, St. Louis, MO --- 1:200 

MRTF-A (H140) Santa Cruz Biotechnology, Santa Cruz, CA --- 1:50 

p42/44 MAPK Cell Signaling Technology, Danvers, MA 1:1,000 --- 

Phospho-p44/42 MAPK Cell Signaling Technology, Danvers, MA 1:500 --- 

MRTF-A (C19) Santa Cruz Biotechnology, Santa Cruz, CA 1:500 --- 

Secondary Antibodies: 

Mouse-FITC Jackson ImmunoResearch Laboratories, West 

Grove, PA 

--- 1:200 

Rabbit-FITC Jackson ImmunoResearch Laboratories, West 

Grove, PA 

--- 1:200 

Mouse HRP Jackson ImmunoResearch Laboratories, West 

Grove, PA 

1:2,000 --- 

Rabbit HRP Jackson ImmunoResearch Laboratories, West 

Grove, PA 

1:2,000 --- 
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CHAPTER THREE:  Actin Filament Formation and Stability in Acta2+/+ R258C TG and 

Acta2+/- R258C TG Mouse Aortic Smooth Muscle Cells 
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Introduction 

 

In order to confirm the importance of α-actin for the normal functioning of vascular 

SMCs, we first characterized an Acta2 null mouse model. This model was first described by 

Schildmeyer et al (2000), who found that the loss of α-actin did not affect the development 

of the vasculature in these mice but led to decreased aortic contractility, as well as decreased 

blood pressure. Further, these mice were described to have impaired milk ejection ability 

(85-86), similar to MRTF-A deficient mice (24-25). Interestingly, compensatory expression 

of skeletal actin was noted in the aortas of Acta2-/- mice (84).  

Detailed study of the aortas of the Acta2-/- mice using echocardiography and 

histology established that the Acta2 null mice develop significant aortic dilatations by 8 

weeks of age (Fig. 3.1A), coupled with an increase in medial thickness, which reaches 

significance at 1 year (Fig. 3.1B). These mice have increased density of SMCs in the aortic 

wall at 4 weeks, which decreases as their aortic diameter progressively increases with age 

(Fig. 3.1B). Further, Acta2-/- mice have increased numbers of elastic lamellae in their aortas 

(Fig. 3.1B) and mild proteoglycan accumulation with age, in agreement with the mild aortic 

disease phenotype (87). These findings are, unsurprisingly, more pronounced but similar to 

our findings in the Acta2+/+ R258C TG and Acta2+/- R258C TG mice. 

Assessment of the levels of expression of contractile genes and proteins in explanted 

aortic Acta2-/- SMCs showed that these SMCs are highly differentiated by the classical 

definition of increased expression of contractile markers (Fig.3.1C). While there were no 

differences in total actin levels in the cells, there was a compensatory increase in γ-SM actin 

levels in these cells. Immunofluorescent staining for MRTF-A and quantification of the ratio 
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between the nuclear and cytoplasmic fraction indicated that MRTF-A is significantly more 

nuclear in Acta2-/- SMCs (Fig. 3.1D, E). Thus, the loss of α-actin in these SMCs leads to 

increase in γ-actin filaments, differential MRTF-A localization in the nucleus, expression of 

high levels of contractile markers and, therefore, a differentiated phenotype despite the 

decrease in whole aorta contractility (87).  We wanted to test whether introducing the 

R258C mutation in α-actin conferred a similar phenotype or, on the contrary, a less 

differentiated phenotype as a result of filament disruption and MRTF sequestration in the 

cytoplasm. 

 

Figure 3.1: Aortic and Vascular Smooth Muscle Cell Phenotype of Acta2-/- Mice. A.  
Acta2-/- mice have significantly larger aortic diameters starting at 8 weeks. From J. Cao, MD 
PhD and colleagues (unpublished data) (87), with permission.  B. Medial area in Acta2-/- 

mice increased with age, while cell density decreases. Acta2-/- mice have significantly more 
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elastic layers in their aortas. From J. Cao, MD PhD and colleagues (unpublished data) (87), 
with permission.  C. SMCs from the ascending aorta of Acta2-/- mice express contractile 
markers at significantly greater levels compared to wildtype. D. MRTF-A is predominantly 
localized in the nucleus of Acta2-/- SMCs. E. Quantification shows that nuclear MRTF-A 
localization in Acta2-/-  SMCs is significantly greater than in wildtype SMCs. *p<0.05; error 
bars represent ±standard error of the mean (s.e.m.) C,D,E from C. Papke, PhD and 
colleagues (unpublished data) (88), with permission. 
 

Results 

 

 RNA from explanted aortic SMCs was used to generate cDNA for quantitative real-

time PCR (Fig. 3.2A). All results are normalized to Gapdh and presented as fold change 

compared to wildtype (which is set to 1). Smooth muscle cells from Acta2+/+ R258C TG mice 

show a significant increase in expression of all smooth muscle contractile genes. Acta2+/- 

R258C TG SMCs, on the other hand, only show a significant increase in expression of smooth 

muscle myosin heavy-chain (Myh11) and calponin 1 (Cnn1) genes, while Acta2 and SM22α, 

another SMC-specific contractile marker, levels are unchanged. Acta2+/- SMCs show no 

significant difference in gene expression compared to wildtype SMCs for any of the 

contractile markers. These SMCs also exhibited a lot of variability between different 

experimental repeats, making them a less reliable control. Thus, while Acta2+/+ R258C TG 

SMCs showed a consistent and significant increase in contractile gene expression, Acta2+/- 

R258C TG SMCs only express significantly more Cnn1 and Myh11 mRNA and have expression 

similar to wildtype cells for other contractile genes. The observed increase in Myh11 in both 

transgenic lines confirms that the explanted cells are in fact SMCs and not fibroblasts, as 

differentiated fibroblasts express most smooth muscle contractile genes at comparable levels 

except for Myh11 (14). 
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 Contractile protein levels as shown by a quantified Western blot in Fig. 3.2B  

(quantification in Appendix 3A) indicate that the increased contractile gene expression in 

Acta2+/+ R258C TG SMCs is matched by a similar increase in contractile protein expression. All 

proteins but myosin heavy chain (SM-MHC) were expressed at higher levels compared to 

the wildtype, and myosin levels were unchanged. However, both Acta2+/- and Acta2+/- R258C 

TG SMCs express lower levels of α-actin and SM22α compared to wildtype cells. Calponin 1 

was more strongly expressed in Acta2+/- R258C TG compared to wildtype cells, and SM-MHC 

protein levels were unchanged. Acta2+/- SMCs had comparable expression levels to the 

Acta2+/- R258C TG (Appendix 3A) 

 

 

Figure 3.2:  Contractile Gene and Protein Expression in Wildtype (WT), Acta2+/+ 

R258C TG, Acta2+/- and Acta2+/- R258C TG SMCs. A. Quantitative real-time PCR data for the 
expression of the contractile genes Acta2, Myh11, Cnn1 and SM22α in all four genotypes. 
Wildtype is set to 1 for each assay and gene expression in the other genotypes is 
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presented as a fold difference from the wildtype. All results are normalized to Gapdh. * 
p<0.05, ** p<0.01. Error bars are ±standard deviation (s.d.) B. Contractile protein 
expression, as shown by Western blot. SM-MHC = smooth muscle myosin heavy chain. 
SM α-actin = smooth muscle-specific α-actin.  
 

 Next, we assessed whether α-actin could incorporate into actin filaments by staining 

smooth muscle cells with α-smooth muscle actin antibody and all filamentous actin with 

Texas Red phalloidin (Fig. 3.3A). Similar to wildtype cells, Acta2+/+ R258C TG cells appeared 

to form proper filaments without any visible pools of unpolymerized α-actin (Fig. 3.3A); 

there was also no significant difference in the colocalization of red and green in these cells 

compared to wildtype (Fig. 3.3B). Acta2+/- R258C TG and Acta2+/- SMCs, however, had larger 

pools of unpolymerized α-actin (Fig. 3.3A); hence, α-actin colocalized significantly less 

with phalloidin in these cells (Fig. 3.3B). In order to quantitatively assess the relative 

amount of polymerized to unpolymerized α-actin in each cell type, we performed an F/G 

actin assay on SMCs that were serum-starved for 24 hours (Fig. 3.3C). As expected based 

on the immunofluorescence results in Fig. 3.3A, all of the α-actin in Acta2+/- R258C TG and 

Acta2+/- SMCs was unpolymerized (Fig. 3.3C, Appendix 3B). Interestingly, the 

unpolymerized fraction in Acta2+/+ R258C SMCs based on the F/G actin assay was also much 

larger than the polymerized (Fig. 3.3C Appendix 3B), which differs from the observations 

by immunofluorescence and indicates a potential instability in the filaments.  

In order to further assess the discrepancy in the results for Acta2+/+ R258C TG SMCs’ 

ability to form actin filaments, we performed an F/G actin assay after lysing and then 

treating the SMCs with phalloidin in order to stabilize the existing filaments (Fig. 3.3D). We 

predicted that performing an F/G actin assay on the pre-treated lysates would allow to better 

replicate the results from the immunofluorescent staining in Fig. 3.3A.  Indeed, treating cells 
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with phalloidin increased the polymerized fraction in all genotypes, with a small 

unpolymerized fraction remaining only in Acta2+/+ R258C TG SMCs, which is also the genotype 

with the largest amount of total α-actin, too (Appendix 3C). This indicates that in all 

genotypes, mutant α-actin is able to incorporate in filaments, but phalloidin treatment or 

other stimulus is required in order for polymerization to happen. Together, the F/G actin 

assays indicate that at baseline, the Acta2+/+ R258C TG SMCs form filaments, which, however, 

are more prone to breakdown as the unpolymerized actin fraction remains greater than the 

polymerized. 
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Figure 3.3: Alpha-actin Polymerization in Wildtype (WT), Acta2+/+ R258C TG, Acta2+/- and 
Acta2+/- R258C TG SMCs at Baseline.  A. Immunofluorescent staining for SM α-actin (green), 
F-actin (phalloidin, red), and nucleus with DAPI after 24 hours of serum starvation. B. 
Quantification of the colocalization of α-SMA and phalloidin, presented by an estimate of 
the Pearson’s correlation coefficient. Results shown are pooled from three independent 
experiments *** p<0.001. Error bars are ± 95% confidence interval (C.I.) C. F/G actin assay 
for all four genotypes. Positive control = wildtype cells after phalloidin treatment. Negative 
control = wildtype cells after cytochalasin D treatment. U= unpolymerized, P=polymerized. 
D. F/G actin assay for cells with or without phalloidin treatment.  
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Next, we treated the SMCs with TGF-β1 for 72 hours to reach a more differentiated 

phenotype (89) and stained for α-SMA and filamentous actin. All SMCs showed at least 

partial incorporation of α-actin into filaments (Fig. 3.4A). Acta2+/+ R258C TG SMCs appeared 

to incorporate all of their α-actin into filaments, although the filaments often appeared 

thinner, less organized and more fragile than the wildtype filaments.  Acta2+/- R258C TG and 

Acta2+/- SMCs formed few filaments, and they also had pools of unpolymerized actin, 

indicating that there might be a critical amount of actin required by SMCs in order for 

polymerization and incorporation into filaments to occur. 

When an F/G actin assay was performed on cells treated with TGF-β1 and incubated 

for 72 hours, we saw that while there was a polymerized fraction of α-actin for all 

genotypes, the unpolymerized fraction was much greater for all three non-wildtype 

genotypes compared to the wildtype (Fig 3.4B, Appendix 3D), supporting the prediction 

that stability of the filaments is impaired as a result of the mutation in α-actin. Taken 

together, these data show that the non-wildtype SMCs are able to form filaments but require 

a stimulus, such as TGF-β1 or phalloidin, in order to achieve that. 
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Figure 3.4: Actin Polymerization After 72 Hours of TGF-β1 Treatment. A. 
Immunofluorescent staining after 72 hours of TGF-β1 treatment for α-SMA (green) and 
total filamentous actin (phalloidin, red). Nuclei were stained with DAPI (blue). B. F/G 
actin assay after 72 hours of TGF-β1 treatment. Positive ctrl= wildtype cells treated with 
phalloidin. U=unpolymerized. P=polymerized 

  

In order to test if the Acta2+/+ R258C TG filaments break down more quickly than the 

wildtype filaments as a result of the R258C mutation, we treated coverslips with TGF-β1 for 

48 hours, followed by treatment with 0.5 µM Latrunculin A for 0, 5, 10, 15 min and 1 hour. 
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Immunofluorescence for SM α-actin and phalloidin showed that wildtype SMC filaments 

have begun to fall apart by 5 min and are almost completely broken down by 15 min of 

treatment, and missing by 1 hour. In contrast, the Acta2+/+ R258C TG SMCs appear to have still 

some polymerized filaments after one hour of Latrunculin A treatment, and a delayed 

response at all earlier timepoints (Fig. 3.5). As the rate of polymerization during actin 

treadmilling is the same as the rate of depolymerization, our findings suggest that Acta2+/+ 

R258C TG SMCs surprisingly have less dynamic filaments compared to wildtype SMCs. This 

finding may be important under conditions of stress, where the ability to quickly respond 

and assemble new contractile filaments to withstand force across the cell is highly 

important. 
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Figure 3.5: Actin Filament Breakdown After Latrunculin A Treatment. Wildtype cells 
show disrupted filaments as early as 5 min after treatment with 0.5 µM Latrunculin A and 
complete filament loss by 1 hour, while Acta2+/+ R258C TG SMCs have partial filaments even 1 
hour post- treatment. Green = α-SM actin. 
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We next assessed the cellular localization of MRTF-A under the hypothesis that 

MRTF-A localization would reflect the level of contractile gene expression and the 

proportion of unpolymerized actin fraction observed for each genotype. Immunofluorescent 

staining for MRTF-A and the nucleus (with DAPI, Fig.3.6A) and quantification of the ratio 

of nuclear versus cytoplasmic MRTF-A signal using two independent methods indicated 

differences in the cellular localization of MRTF-A among the four genotypes (Fig. 3.6B), 

which matched the gene expression data for these cells (Fig. 3.2A). Acta2+/+ R258C TG SMCs 

showed increased colocalization of MRTF-A with the nucleus, which matched the observed 

increased contractile gene expression and indicated that sufficient filament formation 

occured in these SMCs to allow MRTF-A translocation. Acta2+/- R258C TG SMCs showed 

significantly less nuclear localization of MRTF-A, in accordance with the observed large 

unpolymerized cytoplasmic actin fractions and the lower expression of contractile genes 

compared to Acta2+/+ R258C TG SMCs. Finally, colocalization data for Acta2+/- SMCs 

indicated that,  in these cells,  a similar proportion of MRTF-A is found in the nucleus when 

compared to wildtype cells. This also matches contractile gene expression data for the 

heterozygous cells, which showed no significant difference in the contractile gene 

expression when compared to wildtype cells. Interestingly, we also found increased 

expression of total MRTF-A in all three non-wildtype cell lines (Fig. 3.6C, Appendix 3E).  

Finally, expression of c-fos was significantly increased in the Acta2+/- R258C TG SMCs, in line 

with increased cytoplasmic MRTF-A localization in these cells (Fig. 3.6D). 
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Figure 3.6: MRTF-A Localization and Expression in Wildtype (WT), Acta2+/+ R258C TG, 
Acta2+/- and Acta2+/- R258C TG SMCs A. Staining with MRTF-A (green) and DAPI (blue) 
reveals differential localization of MRTF-A in the four genotypes B. Nuclear localization of 



64 

MRTF-A, presented by the Pearson correlation coefficient for blue and green (top) and as a 
ratio of nuclear/cytoplasmic intensity of staining ratio (bottom) indicates significantly 
greater colocalization of MRTF-A with the nucleus in Acta2+/+ R258C TG SMCs, and 
significantly less colocalization of MRTF-A with DAPI in Acta2+/- R258C TG  SMCs. There is 
no significant difference between wildtype cells and Acta2+/- R258C TG SMCs. The results 
shown are pooled from three (top) or two (bottom) independent experiments. *p<0.05 
***p<0.001. Error bars± 95% C.I. C. MRTF-A expression in the Acta2+/+ R258C TG SMCs and 
the Acta2+/- SMCs is increased compared to WT SMCs. D. C-fos expression is increased 
only in Acta2+/- R258C TG  SMCs. *p<0.05. Error bars ± s.d. 

 

So far we have been able to show that mouse smooth muscle cells expressing an 

Acta2 R258C mutant transgene in an Acta2+/+ or Acta2+/- background exhibit a change in 

contractile gene and protein expression, actin filament stability, and MRTF-A localization. 

The Acta2+/+ R258C TG SMCs are able to form filaments, which allows for MRTF-A to 

translocate to the nucleus and potentially drives the expression of contractile markers. Thus, 

Acta2+/+ R258C TG SMCs are differentiated by the classical definition of showing increased 

expression of contractile markers. Acta2+/- SMCs, on the other hand, have pools of 

unpolymerized α-actin and limited filament formation, and even 3 days after TGF-β1 

treatment, they still have only about 50% of α-actin incorporated in filaments. MRTF-A 

localization in the Acta2+/- R258C TG SMCs is more cytoplasmic than in wildtype cells, and 

together with the modest increases in contractile gene expression and the lower contractile 

protein expression, it points to a less differentiated phenotype due to impaired filament 

formation.  Finally, all three non-wildtype genotypes require an external stimulus to 

efficiently incorporate monomeric actin into filaments, and Acta2+/+ R258C TG SMCs appear to 

have more brittle but less dynamic filaments compared to wildtype SMCs. 
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CHAPTER FOUR: Focal Adhesion Alterations in Acta2+/+ R258C TG and Acta2+/- R258C TG 

Mouse Aortic Smooth Muscle Cells
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Introduction 

 

As explained in chapter one, focal adhesions (FAs) are clusters of proteins around 

integrin receptors at the plasma membrane, which connect the cytoskeleton and actomyosin 

contractile unit to the extracellular matrix. FAs are signal- and mechanotransducers, and 

their maturation in fibroblasts has been shown to depend on both actin polymerization and 

on myosin motor function (43-44). We studied the importance of α-actin and myosin 

function for the maturation of focal adhesions using SMCs from a mouse model that has 

decreased myosin function (48), as well as in SMCs from mice lacking α-actin (88). 

Interestingly, we found differences in the focal adhesion alterations due to the defect in 

myosin motor function and the ones due to loss of α-actin. 

In SMCs from the Myh11R247C/R247C mice, which have significantly impaired myosin 

function, we found that compared to wildtype SMCs, the Myh11R247C/R247C SMCs had 

smaller focal adhesions as determined by staining for vinculin and activated focal adhesion 

kinase (FAK), coupled with increased Rac1 activation and decreased RhoA activation. 

These cells were also de-differentiated; activating RhoA using the bacterial endotoxin CN03 

was able to restore the differentiated phenotype. Further, increased proliferation in these 

SMCs was attenuated by blocking FAK (48). This study indicated the key role that focal 

adhesion maturity and composition plays in regulating the SMC phenotype in response to 

the cell’s contractile unit activity. 

Focal adhesion maturation was also determined in SMCs from the α-actin deficient 

mice. Analysis of focal adhesion size, number and localization using total internal reflection 

fluorescent (TIRF) microscopy after immunostaining revealed dramatic differences in the 



67 

size, number and localization of focal adhesions in Acta2-/- SMCs. Compared to wildtype 

SMCs, Acta2-/- SMCs have fewer focal adhesions, localized exclusively at the cell periphery 

rather than throughout the cell (Fig. 4.1A,B). Further, the Acta2-/- SMC focal adhesions are 

significantly larger in size as compared by both vinculin and pFAK staining (Fig. 4.1B). 

Finally, while RhoA activation was not changed, Rac1 was significantly more activated 

(Fig. 4.1C), consistent with less mature focal adhesions (88). Together, these data indicate 

that loss of α-actin leads to a major reorganization and alteration of focal adhesions in these 

SMCs, but that the exact changes are profoundly different compared to those in mice with a 

defect in myosin motor function. 

Given these findings, we hypothesized that FAs will also be altered in Acta2+/+ R258C 

TG and Acta2+/- R258C TG SMCs as a result of the impaired actin filament formation and 

stability. 

 

 

Figure 4.1: Focal Adhesion (FA) Alterations in Acta2-/- SMCs. A. Total Internal 
Reflection Fluorescent (TIRF) microscopy images of pFAK- and vinculin-stained wildtype 
and Acta2-/- SMCs. B. Quantification of the intensity and number of FAs in wildtype and 
Acta2-/-  SMCs. Ratio = ratio of protein area to total cell area. C. Rac1 is more activated in 
Acta2-/-  compared to wildtype SMCs; Quantified by G-LISA. *p< 0.05. Error bars ± s.d. 
From C. Papke, PhD and colleagues (unpublished data) (88), with permission. 
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Results 

 

 Smooth muscle cells from all four genotypes were first immunostained with a 

vinculin antibody and examined under a laser confocal microscope (Fig. 4.2A). 

Quantification of the focal adhesion size as assessed by the vinculin staining indicated that 

Acta2+/+ R258C TG, Acta2+/- and Acta2+/- R258C TG SMCs all had significantly larger focal 

adhesions compared to wildtype cells. Importantly, the focal adhesions of Acta2+/- R258C TG 

SMCs were also significantly larger than both the Acta2+/- and the Acta2+/+ R258C TG focal 

adhesions (Fig. 4.2B). Further, compared to the wildtype SMCs, Acta2+/+ R258C TG and 

Acta2+/- R258C TG SMCs had fewer and more peripherally localized focal adhesions, similar to 

the ones in the Acta2-/- SMCs. 

The observed increase in focal adhesion size in non-transgenic SMCs was replicated 

when the focal adhesions were quantified by immunofluorescent staining for activated FAK 

(pFAK; Fig. 4.2A,B). Additionally, the differences between the Acta2+/+ R258C TG, Acta2+/- 

and Acta2+/- R258C TG SMCs were all highly significant, suggesting a very distinct pattern of 

FAK activation based on the genetic alteration (Fig. 4.2A,B). These observations were 

confirmed by Western blot as well – while the Acta2+/+ R258C TG had similar levels of 

activated FAK compared to the wildtype cells, both the Acta2+/- and the Acta2+/- R258C TG 

SMCs had more activated FAK (Fig. 4.2C). The ratio of pFAK/FAK was elevated for all 

non-wildtype SMCs, and consistently highest in the Acta2+/- R258C TG SMCs (Appendix 3F). 

Akt, a common downstream target of activated FAK, was significantly less activated in the 

Acta2+/+ R258C TG and the Acta2+/- SMCs, but comparable to wildtype in Acta2+/- R258C TG. A 

comparison of the ratios of pAkt/Akt for all four genotypes confirmed decreased Akt 
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activation in the non-wildtype SMCs (Fig. 4.2D, Appendix 3F). These data suggest that 

there are differences in FAK activation, and that Akt is not the major downstream pathway 

activated by FAK in these SMCs. 

 Given that the size and arrangement of the focal adhesions in the Acta2+/+ R258C TG 

and the Acta2+/- R258C TG SMCs resemble the ones from SMCs lacking α-actin, we tested 

whether the transgenic SMCs also had more Rac1 activation. Consistent with previous 

findings and the expectation that focal adhesions are immature, we found that in the 

Acta2+/+ R258C TG SMCs Rac1 was significantly more activated, but RhoA remained 

unchanged (Fig. 4.2D). Interestingly, we saw a significant decrease in the activation of Rac1 

in the Acta2+/- SMCs and a similar but even more dramatic decrease in the Acta2+/- R258C TG 

SMCs. RhoA activation was unchanged in the Acta2+/- SMCs but significantly lower in the 

Acta2+/- R258C TG cells (Fig. 4.2D). 

 Taken together, data indicate that both transgenic cells lines have alterations in their 

focal adhesion composition and size. Acta2+/+ R258C TG SMCs have larger focal adhesions, 

which contain more activated FAK and greater Rac1 activation. Acta2+/- R258C TG SMCs also 

have significantly larger focal adhesions as quantified by vinculin and pFAK staining, as 

well as even higher levels of activated FAK as quantified by Western blot. However, Rac1 is 

decreased in these SMCs compared to wildtype cells, similar to Acta2+/- SMCs.    
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Figure 4.2: Focal Adhesions Are Altered in Acta2+/+ R258C TG and Acta2+/- R258C TG SMCs. 
A. Immunofluorescent staining for vinculin (green), total filamentous actin (phalloidin, red) 
and nucleus (DAPI, blue), or pFAK (green) and nucleus (DAPI, blue). B. Quantification of 
focal adhesion size in Acta2+/+ R258C TG and Acta2+/-R258C TG SMCs indicates that focal 
adhesions are significantly larger in these SMCs compared to the wildtype. Acta2+/- SMCs 
are only significantly larger than wildtype SMCs when size is determined by pFAK staining. 
Results are pooled from three independent experiments for vinculin and two for pFAK.  
*p<0.05, **p<0.01, *** p<0.001. Error bars ± 95% CI. C. Western blot showing increased 
activation of FAK in all three non-wildtype genotypes. Akt activation, however, is lower 
compared to the wildtype for all of them. D.  G-LISA assays for RhoA and Rac1 activation 
show that there is a significant decrease in RhoA activation in Acta2+/- R258C TG SMCs but no 
change in the others compared to wildtype. Rac1 is significantly more activated in Acta2+/+ 

R258C TG SMCs compared to the wildtype in unstimulated and LPA-stimulated cells, and 
significantly less activated in Acta2+/- R258C TG SMCs under both conditions and in Acta2+/- 
SMCs after LPA stimulation. RhoA activation is pooled from 3 experiments, Rac1 is a 
representative experiment (one of three repeats) *p<0.05, **p<0.01. ***p<0.001. Error bars 
± s.d. 
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CHAPTER FIVE: Proliferation in Acta2+/+ R258C TG and Acta2+/- R258C TG Mouse Aortic 

Smooth Muscle Cells 
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Introduction 

 

 Increased proliferation is the hallmark of dedifferentiated smooth muscle cells. 

Explanted SMCs and dermal fibroblast cells from patients with mutations in ACTA2 and 

MYH11 show increased proliferation (Fig. 1.5B) (17; 68; 70). These patients also have a 

high occurrence of vascular occlusive diseases in a number of smaller arteries, possibly due 

to increased SMC proliferation.  

The proliferative, occlusive vascular pathology observed in humans is retained the 

Acta2-/- mice in vivo and in culture. Aortic SMCs explanted from the ascending aortas of the 

knockout mice proliferate more in culture compared to wildtype SMCs (Fig.5.1A). When 

we performed carotid artery ligations to assess the response to vascular injury in the Acta2-/- 

mice, we unsurprisingly found that the carotid arteries of these mice were almost completely 

occluded 21 days post-injury (Fig. 5.1B,C). The abnormal and significant increase in 

neointima formation confirmed a pathologic proliferative response of these SMCs in vitro 

and in vivo  (88).  

In trying to identify the mechanism by which a defect in contractile properties leads 

to increased proliferation, we assessed the contribution of the impaired focal adhesion 

maturation resulting from the loss of α-actin to increased proliferation in the Acta2-/- SMCs. 

Work in different types of cancer has focused on the role of FAK in proliferation (90-92), 

and more recently a role for FAK was established in cell proliferation in human lung 

epithelial cells under conditions of continuous stretch and stress (93), which bear 

resemblance to the conditions in the vasculature, too. Thus, we chose to determine whether 

the increased activation of FAK was at least in part responsible for increased proliferation, 
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and found that using a FAK-specific inhibitor, we were in fact fully able to block 

proliferation (Fig. 5.1C, D) (88).  

In cancer, FAK has been shown to interact with growth factor receptors, and this 

cross-talk contributes to increased tumor proliferation (94-96). Therefore, we assessed if 

there is any abnormal growth factor involvement in the Acta2-/- SMCs as well. There are 

several growth factor receptors in SMCs that play key roles in modifying the smooth muscle 

cell phenotype, but the most likely candidate for driving proliferation in the Acta2-/- SMCs, 

the platelet-derived growth factor receptor beta (PDGFRβ), was studied. PDGFRβ is a 

potent activator of SMC proliferation and migration and is highly important in the 

development of the vasculature, as well as in response to injury when SMCs switch back to 

a dedifferentiated phenotype (97-99). Indeed, PDGFRβ had increased expression at the 

mRNA level in the Acta2-/- SMCs (Fig. 5.1F). There was more total PDGFRβ protein as 

well as more activated PDGFRβ, as assessed by phosphorylation of tyrosine 1021 in the α-

actin-deficient SMCs, but the ratio of total to activated PDGFRβ was unchanged (Fig. 5.1F) 

(88). Importantly, treating the SMCs with the tyrosine kinase inhibitor imatinib mesylate, an 

FDA-approved cancer drug (100), was able to decrease proliferation in the Acta2-/- SMCs to 

wildtype levels by decreasing PDGFRβ activation (Fig. 5.1G,H;) (88). Imatinib treatment 

has been shown to be effective in treating pulmonary arterial hypertension (101-102). It has 

also been shown to reduce excessive neointima formation after carotid artery ligation in a 

neurofibromatosis mouse model, which developed occlusive vascular disease (103), and it 

also prevented excessive neotintima formation in Acta2-/- mice (Fig. 5.1I) (88), highlighting 

the potential relevance of this drug in treating patients with occlusive vascular diseases due 

to mutations in ACTA2. 
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Figure 5.1: Increased SMC Proliferation in Acta2-/- Mice in Vivo and in Culture Is 
Driven by FAK and PDGFRβ Activation and Can Be Attenuated by Inhibition of FAK 
in Culture and by Imatinib Both in Culture and in Vivo. A. Proliferation in Acta2-/- 
SMCs is significantly increased compared to wildtype SMCs. *p<0.05. Error bars ± s.d. B.  
Acta2-/- mice have increased neointima formation 21 days after carotid artery ligation. C. 
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Quantification of carotid ligation response confirms significant increase in neointima 
formation in Acta2-/- mice. *p<0.05. Error bars ± s.e.m. D. Western blot showing increased 
Y397 pFAK expression in Acta2-/- SMCs. E. Two different FAK inhibitors are able to 
attenuate proliferation in Acta2-/- SMCs. *p<0.05. Error bars ± s.d. F. Increased Pdgfrb gene 
expression and total and activated PDGFRβ expression in Acta2-/- SMCs. Error bars ± s.d.  
G. Imatinib treatment attenuates proliferation in Acta2-/- SMCs. *p<0.05. Error bars ± s.d. 
H. Imatinib, but not PF573228 (PF-228; FAK inhibitor), can partially reduce PDGFRβ 
activation. I. Treating carotid artery ligation site with imatinib post-ligation prevents 
pathologic neointima formation in Acta2-/- mice. *p<0.05 Figures from C. Papke, PhD and 
colleagues (unpublished work), with permission. 

   

We performed carotid artery ligation on the Acta2+/+ R258C TG and Acta2+/- R258C TG 

mice in order to assess their response to injury, and found that 21 days post-surgery, the 

Acta2+/+ R258C TG mice did not have significantly greater neointima formation compared to 

wildtype mice, but the Acta2+/- R258C TG mice did, as well as significantly thicker media and a 

significantly larger media/intima ratio (Fig. 1.9A, B) (81). Therefore, we wanted to assess 

whether proliferation was increased in the smooth muscle cells of the Acta2+/+ R258C TG and 

Acta2+/- R258C TG mice, and whether the pathways found to drive the proliferation in Acta2-/-  

SMCs are also implicated here. Given the many parallels between the Acta2 R258C TG and 

Acta2-/- models in vivo and in culture, we hypothesized that SMCs with the R258C mutation 

will proliferate more, and that the pathways driving this response will involve FAK 

activation and the PDGFRβ. 

 

Results 

 

 In order to assess proliferation, we performed a BrdU ELISA assay on our SMCs. 

Data indicate that both Acta2+/+ R258C TG and Acta2+/- R258C TG SMCs proliferate more than 

wildtype SMCs in culture, with the Acta2+/- R258C TG SMCs proliferating even more than 
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Acta2+/+ R258C TG SMCs (Fig. 5.2A). Acta2+/- SMCs showed such dramatic variation in 

proliferation between different runs of the assay under identical conditions that we chose not 

to include them in our comparison of proliferative ability.    

 We first wanted to test the role of FAK in driving the increased proliferation. We 

already showed that FAK is not activating the PI3K-Akt pathway, a survival pathway, which 

suggests that FAK may instead be differentially activating proliferative pathways. In order 

to test whether FAK activation was driving the increased proliferation in the Acta2+/+ R258C 

TG and Acta2+/- R258C TG SMCs, we treated the SMCs with 1µM PF573228, a highly specific 

FAK inhibitor. Data presented in Fig. 5.2B indicates that treating SMCs with the PF573228 

was able to partially decrease the proliferation in Acta2+/- R258C TG SMCs, but not in Acta2+/+ 

R258C TG SMCs, consistent with differences in pFAK levels in these SMCs. Further, when we 

used the PI3K inhibitor LY294002 we found a paradoxical increase in proliferation (Fig. 

5.2C), consistent with compensatory activation of MAPK pathways in the LY294002-

treated SMCs.  

 Next, we wanted to assess the potential role of the PDGFRβ in proliferation. We 

determined mRNA expression and protein levels using quantitative real-time PCR and 

Western blot and found an increase in the expression of the Pdgfrb gene only in the Acta2+/+ 

R258C TG SMCs (Fig. 5.2D) and of phosphorylated PDGFRβ in the Acta2+/+ R258C TG and 

Acta2+/- SMCs, but not in the Acta2+/- R258C TG SMCs (Fig. 5.2D, Appendix 3H). 

Interestingly, ERK1/2, which is downstream of the PDGFRβ, as well as many other 

proliferative pathways, was also only activated in the Acta2+/+ R258C TG SMCs (Fig. 5.2E, 

Appendix 3G). We tested whether a MEK inhibitor, U0126, could block proliferation in the 

Acta2+/+ R258C TG SMCs, and found, unsurprisingly, that to be the case (Fig. 5.2F). However, 
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when we tested whether imatinib could block proliferation in all cell lines, we found only a 

partial effect on the Acta2+/+ R258C TG SMCs but a much stronger effect in the Acta2+/- R258C TG 

SMCs, in which imatinib brought proliferation down to wildtype levels (Fig. 5.2G).  

 

 

Figure 5.2: Proliferation Is Increased in Acta2+/+ R258C TG and Acta2+/- R258C TG SMCs and 
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Can Be Partially Attenuated by Imatinib and PF573228. A. Both Acta2+/+ R258C TG and 
Acta2+/- R258C TG SMCs proliferate more than wildtype SMCs. B. Treating SMCs with 1µM 
PF573228 (FAK inhibitor) significantly attenuates proliferation only in the Acta2+/- R258C TG 
SMCs.  *p<0.05 ***p<0.001. C. Treating cells with 20µM LY294002 causes an increase in 
proliferation in all cell lines, including wildtype. D. Pdgfrb expression is only borderline 
significantly increased in Acta2+/+ R258C TG SMCs, but not in any other cell line. The Acta2+/+ 

R258C TG SMCs also have more activated PDGFRβ, as well as total receptor. E. 
Phosphorylated ERK is only elevated slightly in Acta2+/+ R258C TG SMCs, and it is lower than 
the wildtype in Acta2+/- and Acta2+/- R258C TG SMCs. F. Treatment with 10µM U0126, a MEK 
inhibitor, can completely block proliferation in Acta2+/+ R258C TG SMCs. G. 10µM Imatinib 
treatment partially blocks proliferation in Acta2+/+ R258C TG SMCs and completely in Acta2+/- 

R258C TG SMCs. *p<0.05, **p<0.01, ***p<0.001.All error bars ±s.d. 
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 An overarching goal of our lab is to understand how mutations in contractile and 

other proteins can cause such profound and devastating vascular diseases in patients so that 

we can improve clinical management and treatment for these patients. We sought to 

characterize the aortic smooth muscle cell phenotype of transgenic mice carrying the Acta2 

R258C mutation in order to determine whether the mutation had a dominant negative effect 

and whether decreasing the ratio of wildtype to mutant actin would increase the severity of 

the phenotype. Our in vivo data indicating decreased aortic contractility in the Acta2+/+ R258C 

TG mice and increased neotintima formation in response to carotid injury in the Acta2+/- R258C 

TG mice point towards a dual effect of the mutation – impaired contractile properties and 

increased proliferation. Further, we observed an increase in both neotintima formation post- 

injury and in aortic disease when we introduced mutant α-actin in mice with an Acta2+/- 

background compared to the Acta2+/+ R258C TG mice, which suggested that the Acta2+/- R258C TG 

mice develop vascular pathology similar to that in patients who are heterozygous for the 

ACTA2 R258C mutation. These findings led us to hypothesize that the phenotype of SMCs 

explanted from these two mutant mouse models will similarly become more severe when the 

ratio of wildtype to mutant α-actin is decreased. Data presented here confirms this 

hypothesis but also highlights the dramatic differences in the pathways activated in the 

Acta2+/+ R258C TG versus Acta2+/- R258C TG SMCs caused by the decrease in wildtype to mutant 

α-actin content.  Finally, these findings suggest a key role of α-actin in modulating SMC 

phenotype and function. 

 In assessing the ability of the Acta2+/+ R258C TG SMCs and Acta2+/- R258C TG SMCs to 

form α-actin filaments, we found some interesting differences. Immunofluorescent staining 

revealed that the Acta2+/+ R258C TG SMCs formed actin filaments but the Acta2+/- R258C TG 
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SMCs had large pools of unpolymerized actin and few filaments. Even 72 hours post-TGF-

β1 treatment, most of the actin in the Acta2+/- R258C TG remained in monomeric form. 

Interestingly, when we performed an F/G actin assay, we found that both cell lines lacked 

pelleted filaments, suggesting that the Acta2+/+ R258C TG filaments visualized in the cells are 

unstable when stressed. Treating the cells with phalloidin prior to centrifugation effectively 

stabilized the polymerized actin in Acta2+/+ R258C TG SMCs, allowing it to be pelleted. This 

result indicates that the cells are in fact able to form filaments, as observed with 

immunofluorescence, but these filaments cannot withstand the shearing and agitation 

required in preparation for the F/G actin assay. Interestingly, the Acta2+/- R258C TG SMCs also 

produced a pellet after treatment with phalloidin. Phalloidin addition has been known to 

reduce the critical concentration required for actin polymerization to occur in vitro, in 

addition to accelerating new filament formation by promoting actin nucleation (104). Thus, 

our finding in the Acta2+/- R258C TG SMCs suggested that phalloidin may cause α-actin to 

polymerize more effectively and/or stabilize the filaments that are formed. 

 Concomitant with an increase in the percentage of cells staining positively for actin 

filaments in both the Acta2+/+ R258C TG SMCs and, to a lesser extent, the Acta2+/- R258C TG   

SMCs, at 72 hours post-TGF-β1 treatment, about 50% of actin appeared in the polymerized 

fraction of both cell types. Therefore, growth factor stimulation induced a more 

differentiated phenotype and more stable filaments in these SMCs. This finding may also be 

relevant in vivo, where stimulation by the extracellular matrix, TGF-β1, biomechanical 

forces, or other factors may promote similar α-actin filament stability in the SMCs, which 

could potentially preserve the integrity of the arterial wall resulting in less vascular disease 

than what would be expected based on the cellular defects. 
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 The findings in the Acta2+/- R258C TG SMCs were also seen in part in the Acta2+/- 

SMCs. Both SMCs showed few filaments by immunofluorescence both after 24 hours of 

serum starvation and after 72 hours of TGF-β1 treatment, suggesting that the wildtype α-

actin haploinsufficiency contributes to decreased actin polymerization, which further 

supports the hypothesis that actin does not reach a critical concentration in these SMCs and 

hence polymerization is difficult to initiate. The Acta2+/- SMCs also responded to phalloidin 

treatment prior to performing an F/G actin assay, as we observed pelleting of almost the all 

α-actin, as well as to TGF-β1 treatment which allowed for approximately 50% 

polymerization to occur, again suggesting that the inherent ability of these, like the Acta2+/- 

R258C TG, SMCs to polymerize is not impaired.  

While haploinsufficiency of wildtype actin is alone sufficient to inhibit actin 

polymerization based on the findings by F/G actin assay and immunofluorescent staining, 

there is evidence for additional effects of the R258C mutation on actin polymerization in the 

Acta2+/- R258C TG SMCs. Even though it is difficult to separate the effects of the loss of the 

wildtype allele and the mutant transgene insertion on actin filament formation, it is notable 

that the Acta2+/- R258C TG SMCs express similar levels of total α-actin compared to the 

Acta2+/- SMCs, and yet α-actin integrates into filaments less well than in the heterozygous 

SMCs (Fig. 3.3A, B). This observation is supported by preliminary in vitro studies using 

human α-actin expressed in a bacculovirus system, which suggest that the critical 

concentration of α-actin R258C mutant monomers required for polymerization to occur is 

higher than in the wildtype, and thus more protein is required for filaments to begin to form 

(Kathleen Trybus, PhD, and colleagues, personal communication). This subtle difference 

between the two heterozygous genotypes is masked when the cells are treated with TGF-β1 
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because of increased expression of Acta2 and other contractile proteins in both cell lines. 

Further, downstream changes resulting from the defect in actin filament formation in the 

Acta2+/- R258C TG and Acta2-/- SMCs, such as MRTF-A localization, focal adhesion size or 

proliferation ability, were different in these two cell lines. Therefore, we conclude that the 

Acta2+/- R258C TG SMC phenotype is unique and more severe than either the Acta2+/+ R258C TG 

or Acta2+/- SMCs due to the presence of increased mutant to wildtype α-actin in these cells. 

This conclusion is also supported by the more severe phenotypes observed in vivo in these 

mice  (Fig. 1.8C).  

The hypothesis that the R258C mutant actin forms brittle filaments is also supported 

by preliminary in vitro data from the Trybus lab  (Kathleen Trybus, PhD, and colleagues, 

personal communication). An assessment of flexural rigidity of the wildtype and mutant α-

actin showed that the mutant was less flexible when compared to the wildtype, with a 

tendency to break. Measuring the in vitro motility of the wildtype and mutant α-actin 

revealed that myosin moved the R258C and R258H mutant actins significantly more slowly 

compared to the wildtype (Kathleen Trybus, PhD, and colleagues, personal communication). 

While experiments have not yet been conducted with mixed wild-type: mutant actin, as they 

are found in vascular SMCs in individuals with heterozygous ACTA2 mutations and in our 

mouse mutant SMCs, these preliminary data provide further support to our observations in 

culture. 

Our finding that the Acta2+/+ R258C TG filaments break down more slowly than the 

wildtype following treatment with Latrunculin A are also in agreement with the in vitro 

findings by Dr. Trybus and colleagues (personal communication). First, the Acta2+/+ R258C TG 

SMCs express significantly more α-actin compared to the wildtype SMCs and form more, 
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but thinner, filaments as assessed by immunofluorescent staining. Therefore, the effects of 

the Latrunculin A treatment might appear less striking in the Acta2+/+ R258C TG SMCs 

compared to the wildtype cells because there are more filaments depolymerizing 

simultaneously. This is a plausible but probably only partial explanation since even after one 

hour of treatment, the Acta2+/+ R258C TG SMCs still have intact filaments whereas the wildtype 

SMCs have no filaments by 15 minutes. It is, therefore, likely that the Acta2+/+ R258C TG 

filaments are also less dynamic compared to wildtype filaments. This conclusion is 

supported by structural predictions that this mutation disrupts the opening and closing of the 

ATP binding cleft (17). Actin depolymerization requires ATP breakdown into ADP+Pi, 

followed by subsequent Pi release (35). Therefore, a defect in the ATP binding region, 

which affects Pi release, could lead to slower depolymerization. Alternatively, it is possible 

that Latrunculin A is not able to bind mutant actin and hence has only partial effect in the 

Acta2+/+ R258C TG SMCs. Further studies in vitro will be required to thoroughly assess the 

filament dynamics of this mutant. Ultimately, our experiments suggest that the Acta2+/+ R258C 

TG SMC filaments do not dissociate more quickly than wildtype filaments in cultured SMCs, 

but when force is applied to these cells as in the shearing step prior to F/G actin assays, the 

filaments fall apart easily. It is tempting to speculate that the constant stretch and force on 

the aortic wall in vivo has a similar effect on the filament integrity as does shearing in 

culture. This hypothesis could potentially be tested by introducing hypertension, a common 

risk factor for TAAD in humans, in the Acta2+/+ R258C TG mice, and thus increasing the force 

exerted on the aortic wall. Assessment of the F/G actin ratios in the aortic SMCs may 

demonstrate increased monomeric actin in the SMCs exposed to increased pressures.  



86 

The differential localization of MRTF-A in the SMCs, along with the corresponding 

changes in contractile gene expression and protein levels, provide a link between impaired 

actin filament formation/stability and SMC phenotype. Acta2+/+ R258C TG SMCs had 

significantly more nuclear MRTF-A staining compared to the wildtype SMCs, and 

corresponding increases in all contractile protein levels that were assessed. This confirms 

our observation that the filaments in these SMCs are intact, and perhaps even more 

numerous than in wildype cells, allowing MRTF-A localization in the nucleus. The Acta2+/- 

R258C TG SMCs, on the other hand, had significantly less MRTF-A in the nucleus than the 

wildtype cells, which is in agreement with the observation that these SMCs have large pools 

of monomeric actin, which sequesters MRTF-A in the cytoplasm. Surprisingly, these SMCs 

had no difference in the gene expression levels of Acta2 and SM22α compared to the 

wildtype cells, and increased expression of Cnn1 and Myh11, suggesting that constitutively 

nuclear transcription co-factors like myocardin, may partially compensate for the 

cytoplasmic sequestration of MRTF-A. Interestingly, the Acta2+/- SMCs did not show a 

significant difference in the ratio of nuclear to cytoplasmic MRTF-A compared to the wild-

type, but were significantly different from the Acta2+/- R258C TG SMCs. Further, the 

heterozygous SMCs also did not show a difference in the expression of any contractile genes 

compared to wildtype. Both Acta2+/- R258C TG and Acta2+/- SMCs, however, showed lower 

protein expression levels than expected based on the gene expression data, suggesting that 

they both may have increased protein turnover as well. This prediction could be tested by 

performing a time-course assay with the translation inhibitor cycloheximide in order to 

assess how quickly proteins are degraded after inhibition. Taken together, we have observed 

three unique phenotypes in our three genotypes. The Acta2+/+ R258C TG mice form filaments 
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and are highly differentiated based on MRTF-A nuclear localization and increased 

contractile marker expression; the Acta2+/- SMCs form very few filaments and do not show 

any changes in contractile gene expression and MRTF-A localization but have a decrease in 

contractile markers at the protein level; finally, the Acta2+/- R258C TG SMCs have almost no 

filament formation, decreased nuclear MRTF-A localization but partial increase in 

contractile gene expression, coupled with a  decrease in contractile protein levels.   

 Given the differential localization of MRTF-A in each cell line, we would have 

predicted that the Acta2+/+ R258C TG and Acta2+/- R258C TG SMCs would have opposite rates of 

proliferation. Interestingly, we found that both cell lines proliferated significantly more than 

the wildtype SMCs. This finding is consistent with the established SRF: MRTF phenotype 

switching axis for the Acta2+/- R258C TG SMCs – sequestering MRTF-A in the cytoplasm 

allows SRF to bind other transcription factors that promote c-fos expression and cell growth. 

While it is surprising that the Acta2+/+ R258C TG SMCs did not show a decrease in 

proliferation, these data are consistent with findings from the Acta2-/- SMCs, which also 

showed a significant increase in contractile marker levels in conjunction with increased 

proliferation  (88). It has been shown previously that SMC precursor cells display this dual 

phenotype during the early stages of vascular development (106). Further, reports have 

suggested that deficits in contractile protein expression may not be required for growth and 

proliferation to be initiated (107), and, conversely, that differentiation of SMCs in culture 

also does not require a loss of proliferative activity (106; 108). Therefore, there is evidence 

for an uncoupling of the two ends of the smooth muscle cell phenotypic spectrum, which 

could help explain the unique phenotype we observed in the Acta2+/+ R258C TG and Acta2-/- 

SMCs.  
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   With regard to the SRF: MRTF axis, the increased proliferation, in addition to 

contractile gene expression, suggests that growth signals may be promoting proliferation 

independently of SRF. Alternatively, SRF expression levels may be higher in these SMCs, 

and so enough SRF is present to bind both types of transcriptional co-factors. Support for 

the uncoupling between growth and differentiation via the SRF: MRTF axis was also found 

in the dedifferentiated Myh11R247C/R247C SMCs (48). While RhoA activation restores 

differentiation by inducing actin polymerization and driving MRTF-A back in the nucleus, 

proliferation was not correspondingly attenuated by this process  (48). Therefore, MRTF-A 

translocation out of the nucleus can “sensitize” SMCs to proliferative stimuli, but 

localization of MRTF-A in the nucleus does not prevent the SMCs from being sensitive to 

other proliferation signals.  

 Mutations in contractile proteins identified in our lab have been shown to uniformly 

decrease contractility and force generation in the aorta. As the demonstrated or hypothesized 

decreased contractility is the underlying defect linking the mutations causing thoracic aortic 

disease, we wanted to explore the link between the phenotypic changes and force generation.  

We focused on focal adhesions, which are crucial signal transduction centers and integration 

points for signaling and mechanical cues (39; 42). The composition of focal adhesions 

depending on their maturity can drive additional cell processes and pathways that will affect 

the cellular phenotype, and the progression of maturation of these focal adhesions is 

dependent on increasing force generation across the cell driven by actin and myosin 

filaments.  For example, activators of RhoA are only found in mature focal adhesions (44); 

RhoA regulates myosin light chain phosphorylation and actin stress fiber formation, 

hallmarks of a differentiated cell. Activators of Rac1, on the other hand, are enriched in less 
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mature FAs (44), and Rac1 is involved in proliferative and migratory signaling downstream 

of growth factor receptors like the PDGFRβ (109), the angiotensin type 1 receptor (110), 

and it may also be activated in response to reactive oxygen species (111).  

 We found in both the Acta2+/+ R258C TG and Acta2+/- R258C TG SMCs that the focal 

adhesions are fewer, more peripherally localized and larger compared with wildtype cells. 

Further, these SMCs were enriched in activated FAK, suggested to play a role in focal 

adhesion strengthening (112-113), in addition to focal adhesion turnover (114-115). These 

findings are in line with the Acta2-/- SMC findings (88), providing further support to the 

hypothesis that the disruptive effect of the R258C mutation induces a smooth muscle cell 

phenotype similar to the one resulting from the complete loss of α-actin. Interestingly, the 

Acta2+/+ R258C TG SMCs had a significant increase in the activation of Rac1 but no change in 

RhoA activation, also in line with the Acta2-/- SMCs. However, the Acta2+/- R258C TG SMCs 

and Acta2+/-  SMCs showed a paradoxical decrease in Rac1, and the Acta2+/- R258C TG  SMCs 

had a slight but significant decrease in RhoA activation, which was unique to this cell line 

and hence further supports an additive effect of the genetic alterations. This indicates that 

there may be a decrease in total Rac1 and RhoA production or expression. The exact 

mechanism, by which the loss of an α-actin allele could lead to a decrease in Rac1 and 

RhoA activation, remains unclear, but probably stems directly from the altered focal 

adhesion content. A summary of these findings if presented in Fig. 6.1. 
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Figure 6.1: Model of the Effects of the Acta2 R258C Mutation in Acta2+/+ R258C TG and 
Acta2+/- R258C TG SMCs 
 

Our lab’s work is the first to address how mutations in contractile proteins affect the 

focal adhesion phenotype. Thus, we are observing not only novel SMC phenotypes, but also 

previously undescribed focal adhesion phenotypes. While work has been done to disrupt 

actin polymerization or myosin II motor activity using specific inhibitors (43-44; 113), the 

indirect effects of impaired contractile ability (coming from altered interactions with partner 

molecules, for example) on focal adhesion maturation have not been addressed. Loss of 

actin filament stability induces the formation of large focal adhesions, which are 

traditionally considered to be more mature. However, the peripheral localization of these 

adhesions (which suggests they are nascent), the activation of FAK, together with the 

increase in Rac1 for the Acta2+/+ R258C TG SMCs and the decrease in RhoA in the Acta2+/- 



91 

R258C TG SMCs, indicate that the focal adhesions are not maturing properly. Thus, the dual 

nature of the observed SMC phenotype is reflected in the focal adhesion phenotype, too. 

We also wanted to test whether the proliferative pathways identified in the Acta2-/- 

SMCs were similarly activated in the mutant cells. Our studies clearly indicate a role for 

FAK in driving proliferation. While FAK inhibitor treatment had a modest effect on 

attenuating proliferation in the Acta2+/+ R258C TG SMCs, it had a partial but significant effect 

in the Acta2+/- R258C TG  SMCs, which also had the greatest increase in activated FAK as seen 

by Western blot. Together with the observation that Akt is not more activated in the SMCs 

expressing more activated FAK, this data suggests that a key role for FAK in these SMCs is 

in stimulating proliferative pathways. 

In addition to assessing the contribution of FAK to proliferation in our SMCs, we 

tested for growth factor receptor activation, focusing on the platelet-derived growth factor 

receptor β (PDGFRβ). Expression of the receptor at the mRNA level was only marginally 

significantly increased in the Acta2+/+ R258C TG SMCs. At the protein level, both the activated 

receptor and total receptor protein levels were increased in these cells, which is in agreement 

with findings in the Acta2-/- SMCs  (88). Therefore, we tested whether imatinib could block 

proliferation in our SMCs like it did for the null cells. The fact that imatinib reduced 

proliferation to wildtype levels in the Acta2+/- R258C TG SMCs and only partially in the 

Acta2+/+ R258C TG SMCs was surprising given the lack of increased activation in the PDGFRβ, 

but it may possibly indicate a greater sensitivity of these SMCs to inhibitors of proliferation 

like imatinib. Alternatively, imatinib, as a multi-target tyrosine kinase inhibitor, may be 

affecting proliferation through any of its other main targets, such as Bcr/Abl and C-kit (116). 

However, Bcr in SMCs is downstream of PDGF (117). C-kit, on the other hand, is more 
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highly expressed in endothelial cells than SMCs (118), but its expression can increase in 

VSMCs in response to injury (119). These data suggest that it is less likely that these 

tyrosine kinases play a role in driving proliferation in culture. However, their increased 

expression in response to injury (117; 119), together with the significant enrichment of c-kit 

positive stem cells in the media of TAAD patients reported by Shen and colleagues (120), 

suggests a role for multi-target tyrosine kinase inhibitors like imatinib in treating vascular 

disease in patients with ACTA2 mutations. 

 One surprising finding from this study is the similarity in the cellular phenotypes of 

the Acta2-/- SMCs and the Acta2+/+ R258C TG SMCs. These SMCs have similar contractile 

gene and protein expression, proliferation, MRTF-A localization, focal adhesion alterations 

and response to imatinib treatment (88). The mouse models also display similar aortic 

pathology, but the Acta2+/+ R258C TG mouse pathology is predictably less severe than the 

pathology of actin-deficient mice. Furthermore, wildtype SMCs treated with an α-actin 

disrupting peptide also exhibit alterations in agreement with data presented here (88). These 

findings suggest that the dominant negative effect of the R258C mutation, even with 

wildtype α-actin present, can almost recapitulate the complete loss of the gene and gene 

product in vitro. Furthermore, while the cellular phenotype that we characterized in the 

Acta2+/- R258C TG SMCs was different from the ones in the Acta2+/+ R258C TG and Acta2-/- SMCs, 

the Acta2+/- R258C TG mice develop more significant vascular pathology compared to the other 

two genotypes. Taking the recurring findings in SMCs from the three models, it appears that 

alterations or loss of α-actin drive the cellular and vascular phenotype in these mouse 

models through impaired actin filament stability, focal adhesion rearrangements, FAK 

activation, and increased proliferation. More work will be needed to detail the exact cause-
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and-effect sequence as a result of the mutant α-actin expression and to devise potential 

treatments for the aortic disease in patients with ACTA2 R258C mutations.  

 In conclusion, the Acta2+/+ R258C TG and Acta2+/- R258C TG mice are the first mouse 

models of a recurring mutation that leads to FTAAD. The aortic phenotype in these mice 

matches the observations in our patients, verifying that this is a good model of disease. We 

sought to characterize the phenotype of vascular SMCs explanted from the ascending aorta 

in order to gain better understanding of the cellular pathology associated with aneurysm 

development, since little is known about the fate of SMCs in the early stages of disease 

progression. The findings presented here, coupled with the ones from the Acta2-/- mouse 

model, point towards a unique SMC phenotype resulting from a disruption or complete loss 

of α-actin filaments, which is simultaneously proliferative and expressing contractile 

markers (88). The similarity of results amongst our various models suggests that the 

pathology noted in this study is most likely going to be replicated in SMCs from models of 

other ACTA2 mutations. Further, and also importantly, the shared findings between the 

Acta2-/- and Acta2+/+ R258C TG SMCs and mice imply that any treatments evaluated for aortic 

or vascular occlusive disease may potentially be applicable to patients with other mutations 

in ACTA2.  
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Appendix 1: Characterization of the Acta2+/+ R258C TG2 SMCs. A. Acta2+/+ R258C TG2 SMCs 
express Cnn1 and SM22α at significantly greater levels compared to wildtype cells, and 
Acta2 and Myh11 and comparable levels. *p<0.05, **p<0.01. Error bars ± s.d. B. Increased 
contractile protein expression in Acta2+/+ R258C TG2 SMCs. C. While Pdgfrb expression is not 
increased, cfos is significantly more highly expressed in Acta2+/+ R258C TG2   SMCs, and the 
PDGFRβ is more activated at the protein level when SMCs are grown on plastic, collagen 
IV and fibronectin 1 alike. D. Proliferation is borderline significantly increased in Acta2+/+ 

R258C TG2 SMCs. 
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Appendix 2: Immunofluorescent Staining of Wildtype and Acta2+/+ R258C TG2 SMCs. SM 
α-actin = green, vinculin = green, phalloidin (total filamentous actin) = red, nucleus (DAPI) 
= blue. 
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Appendix 3: Quantification of Western Blots.   
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