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Gemcitabine is a potent nucleoside analogue against solid tumors however 

drug resistance rapidly emerges. Removal of gemcitabine incorporated in the DNA 

by repair mechanisms could potentially contribute to resistance in chemo-refractory 

solid tumors. In this study, we evaluated homologous recombination repair of 

gemcitabine-stalled replication forks as a potential mechanism contributing to 

resistance. We also studied the effect of hyperthermia on homologous 

recombination pathway to explain the previously reported synergy between 

gemcitabine and hyperthermia. We found that hyperthermia degrades and inhibits 

localization of Mre11 to gemcitabine-stalled replication forks. Furthermore, 

gemcitabine-treated cells that were also treated with hyperthermia demonstrate a 

prolonged passage through late S/ G2 phase of cell cycle in comparison to cells 

treated with gemcitabine alone. This coincides with inhibition of resolution of γH2AX 

foci. Our findings also demonstrate that thermal sensitization of human 

hepatocellular carcinoma cell lines to gemcitabine is mediated through an Mre11-

dependent homologous recombination repair pathway. Combination of non-invasive 

radiofrequency field-induced hyperthermia and gemcitabine was superior to either 

therapy alone (p<0.05) in two different orthotopic murine models of hepatocellular 

carcinoma. This study provides mechanistic understanding and support of 

homologous recombination inhibiting-strategies, such as non-invasive 

radiofrequency field-induced hyperthermia, to overcome resistance to gemcitabine 

in refractory human solid tumors. 
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1. INTRODUCTION 

	

1.1 Hepatocellular carcinoma – an emerging health problem 

	 Primary hepatocellular carcinoma (HCC) is an aggressive disease. Globally, 

about one million new cases of HCC are diagnosed each year with an identical 

cause-specific mortality rate demonstrating a very high case fatality rate. It is the 

fifth most common cause of cancer death in men and the ninth most common cause 

of cancer death in women (1, 2). Invariably, HCC is associated with underlying liver 

cirrhosis, chronic inflammation and/or infection. About 80% of the patients have 

chronic Hepatitis B or C infection (3). The incidence of HCC varies across 

geographic locations, predominantly because of variations in prevalence of 

Hepatitis B and C infection, alcohol consumption as well as aflatoxin exposure. 

In the United States, the incidence of HCC is relatively low with an estimated 

occurrence of 3.2 per 100,000 (4, 5). It is estimated that approximately 28,000 new 

cases of HCC will be diagnosed in 2012 with approximately 20,000 deaths (NCI). 

However, this incidence is gradually rising and is expected to increase in the 

coming years (4, 5). The rising incidence can be attributed to an aging population, 

immigrating population from East Asia, non-alcoholic steatohepatitis and a high 

incidence of hepatitis C from 1960 to 1990 (with a lag time of 20-30 years). 

Important demographic differences exist between different parts of the world in 

regards to HCC. For instance, the average age at the time of presentation in sub-

Saharan Africa is 33 years while in the rest of the world it is 50 to 60 years (2, 6). In 



	
Copyright	©	2012	Mustafa	Raoof.	All	rights	reserved.	

	

	 2

U.S. the most common risk factors for the development of HCC are hepatitis C 

infection (5), hepatitis B infection (7),alcohol use and non-alcoholic steatohepatitis 

(8). In addition to these risk factors, exposure to environmental toxins such as 

aflatoxin (9), betel nut (10) and contaminated water containing microcystin (11) is 

commonly observed in East Asia and parts of Africa. A recent study examining a 

large cohort demonstrated a significant association between saturated fat or red 

meat consumption and liver cancer (12). In separate studies, type 2 diabetes and 

metabolic syndrome have been associated with liver cancer (13, 14). This 

predisposition may be due to underlying non-alcoholic steatohepatitis. 

  At presentation, patients usually have either advanced liver cancer, liver 

dysfunction or both. Signs and symptoms develop late in the course of the disease 

and are mostly indistinguishable from those of underlying liver dysfunction (15). 

Because of delayed diagnosis, the median survival of untreated advanced liver 

cancer is 6 to 20 months (16). Most patients die from local disease with 

uncompensated liver failure as the initiating event. 

1.2 Current treatment strategies 

	 The mainstay of curative therapy for patients with HCC is surgical resection 

(17). The majority of patients at presentation, however, are not eligible for surgery 

because of underlying liver dysfunction.  In early stage HCC (as defined by 

Milano/Mazzaferro criteria (18)) with poor liver function, liver transplantation is the 

preferred option. Patients needing liver transplantation are prioritized according to 

MELD score (19). Even though patients with HCC receive a higher MELD score, the 

gap between organ demand and supply may require a lag time of several months. 
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Under these circumstances bridging therapies are often employed with trans-arterial 

chemoembolization (TACE) being the most common (20).  For patients who do not 

meet the criteria for resection or transplantation but have localized disease, a 

multitude of local-regional therapies can be used based on availability and local 

expertise. These include percutaneous ethanol or acetic acid ablation, 

radiofrequency or microwave ablation, radiotherapy, bland microspheres or radio 

therapeutic microspheres (21). Patients eligible for these local-regional therapies 

including resection or transplantation constitute less than 25% of patients diagnosed 

with HCC. For the remaining 75% of patients therapeutic options are limited. 

For patients with multifocal, unresectable or metastatic HCC, systemic 

therapy is usually recommended. Conventional cytotoxic therapy has been shown 

to be of minimal benefit in these patients for multiple reasons.  Most importantly, 

HCC is considered a chemo-refractory tumor with high expression of drug 

resistance genes products including P-glycoprotein, heat shock proteins and 

mutated tumor suppressor p53 protein (22-24). Patients with HCC do not tolerate 

chemotherapy well because of underlying liver dysfunction. Since most patients with 

HCC succumb to their hepatic dysfunction, this limits our ability to study 

effectiveness of chemotherapy in the context of a clinical trial. Recently however, a 

multi-kinase inhibitor, sorafenib showed a modest improvement in median overall 

survival of approximately 3 months making it the new standard of care (25). While 

this clinical response of a molecularly targeted therapy is encouraging, the benefit 

afforded to these patients is transient. A major challenge therefore remains in 
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understanding drug resistance pathways in HCC and exploiting them for developing 

better therapies. 

1.3 Gemcitabine and resistance mechanisms 

	 1.3.1. Clinical use of gemcitabine as a single agent in advanced HCC:	Like 

most other cytotoxic chemotherapies, gemcitabine has shown minimal benefit in 

patients with advanced HCC. In one phase II study, 28 previously untreated 

Taiwanese patients with advanced liver cancer not amenable to local-regional 

therapies received single agent gemcitabine therapy at 1250mg/m2/wk (26). An 

overall response rate of 17.8% (95% CI, 2.7-32.9%) was noted. There were no 

complete responses, 25% had stable disease and 57.2% had disease progression. 

Most patients progressed within 12 weeks of the start of therapy. The authors 

concluded that the toxicity of gemcitabine was minimal and favor its use despite 

short-lived benefit. Contrary to these findings, a study on 20 European patients 

using a similar regimen demonstrated a much lower partial response rate of 5% 

(27). Confirming the findings of this study a high-dose gemcitabine regimen in 17 

European patients failed to yield any objective response. However, stable disease 

was noted in 47% of patients during the course of therapy (28). In a follow-up study 

conducted in the USA, 30 patients with advanced HCC received single-agent 

gemcitabine at 1000mg/m2/wk. Again, no responses were observed, but 30% of 

patients had stable disease (29). Fixed-dose rate regimens yield higher intracellular 

drug concentrations with comparable toxicity to single-bolus regimens in several 

other solid tumors and may be more effective (30). This regimen was tested in a 

phase II study where a similar cohort of 50 Asian patients was randomized to 
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receive gemcitabine as a single agent, either as a bolus or on a fixed-dose rate 

regimen. The authors noted that there was only one partial response in the fixed-

dose rate arm with an overall response rate of 2.1% (31). Except one study from 

Taiwan, all studies demonstrate that gemcitabine even though well tolerated, is 

ineffective as a single agent in advanced liver cancer regardless of the dose or 

regimen used.  

 1.3.2. Clinical use of gemcitabine as combination therapy in advanced HCC:	

Several combination regimens consisting of gemcitabine have been used with more 

encouraging results. Most often gemcitabine has been combined with platinum-

based chemotherapy. For instance, a phase II study comprising 34 previously 

untreated patients with advanced HCC who received gemcitabine and cisplatin 

demonstrated an overall response rate of 18% (95% CI 8-34%). Most patients 

(58%) had stable disease. This regimen was also well tolerated despite hepatic 

dysfunction (32).  In a comparable study of 30 patients that employed cisplatin in 

place of oxaliplatin, a response rate of 20% was observed with stable disease in 

43% of the patients (33). In a more recent study bevacizumab, a monoclonal 

antibody against vascular endothelial growth factor was added to a gemcitabine and 

oxaliplatin regimen. A response rate similar to prior studies of about 20% was 

reported, suggesting no added benefit from bevacizumab (34). Gemcitabine has 

also been used in combination with doxorubicin (35). However in 50 patients 

evaluated, there was a partial response rate of only 11.4% with stable disease in 

44% of the patients. Data from these studies demonstrate that gemcitabine is well 

tolerated but combination therapies are only slightly more effective in comparison to 
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single-agent gemcitabine therapy. Moreover, the response rates are low and the 

benefit is transient, underscoring the need to understand resistance mechanisms to 

these therapies for better approaches to higher and more sustained responses and 

ultimately to improve median survival. 

 1.3.1. Mechanism of action and resistance: Gemcitabine (2’, 2’ - difluoro 2’ -

deoxycytidine, dFdC) is nucleoside analogue that is similar to deoxycytosine and is 

structurally related to its predecessor Ara-C (arabinoside cytosine) that showed 

potent activity in hematologic malignancies. It is a pro-drug that requires transport 

into the cells before activation and incorporation. Gemcitabine is taken up by the 

cells via human nucleotide transporters (hNTs) on the cell membrane (36). Upon 

internalization, it is phosphorylated by deoxycytidine kinase (dCK) to produce 

gemcitabine mono-phosphate (dFdCMP), di-phosphate (dFdCDP) and tri-

phosphate (dFdCTP) in sequential steps (37). Gemcitabine tri-phosphate is the 

active drug that is incorporated into the DNA or RNA. Once incorporated into the 

leading and lagging strand of the DNA during replication, gemcitabine allows 

incorporation of one additional nucleotide before chain termination (38). This 

phenomenon called masked chain termination is unique to gemcitabine and is 

believed to be important in its evasion of excision enzymes. Gemcitabine tri-

phosphate has several self-potentiating mechanisms that enhance its cytotoxicity by 

increasing incorporation into the DNA. For instance, dFdCTP inhibits deoxycytidine 

mono-phosphate deaminase (dCDA), preventing the degradation of its precursor, 

dFdCMP (39). More importantly dFdCDP is a potent inhibitor of ribonucleotide 

reductase (RR), an enzyme required for conversion of nucleotide tri-phosphates 
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(NTPs) into deoxy-NTPs (dNTPs) (40). By inhibiting dNTP synthesis, gemcitabine 

decreases competition against its incorporation into the DNA. The mechanisms that 

lead to cell death after incorporation of gemcitabine in the DNA remain elusive, 

however, apoptosis has been implicated in certain cell types. 

 Study of gemcitabine resistance has focused on pathways involving its 

transport and metabolism or those of apoptosis and survival. In vitro studies have 

demonstrated that cells deficient in equilibrative type nucleotide transporter 1 

(hENT1) are highly resistant to gemcitabine (36). This observation is consistent with 

data from patients where hENT1 expression levels correlate with gemcitabine 

sensitivity (37). Since, gemcitabine needs to be phosphorylated to become active, it 

is not surprising to note that lack of dCK activity correlates with resistance to 

gemcitabine (37). Conversely, a higher expression of dCDA in mononuclear cells 

was associated with resistance to gemcitabine in a cohort of pancreatic cancer 

patients (41). Additionally, nucleotidase 1 (5’ NT-1) plays an important role in 

dephosphorylating dFdCTP and its over expression has also been associated with 

lower activity of gemcitabine in several cell lines (42). The most important self-

potentiation mechanism responsible for sustained effective intracellular 

concentration of gemcitabine is inhibition of RR (40). In non-small cell lung cancer 

cell lines and patients, over expression of RR sub-unit 1 (RRM1) was associated 

with gemcitabine resistance and a worse survival (43-46). RR sub-unit 2 (RRM2) 

modulates RRM1 enzymatic activity. Expectedly, over expression of RRM2 also 

contributes to gemcitabine resistance (47). Various pro-survival cell-signaling 

pathways that are associated with gemcitabine resistance in cell lines or animal 
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models involve phosphatidylinositol 3-kinase/ Akt pathway (48, 49), increased 

activation or over-expression of focal adhesion kinase (50), c-Src (51, 52) or c-Met 

(53). Pathways that trigger apoptosis upon exposure to gemcitabine have also been 

implicated in sensitivity to gemcitabine. For instance, over-expression of S100A4 

inhibits gemcitabine-induced apoptosis by regulating the hypoxia-induced pro-

apoptotic gene BNIP3 (54, 55). In addition, it has been shown that p53-deficient cell 

lines fail to undergo apoptosis in response to gemcitabine in comparison to wild-

type p53 counter parts (56-58). These findings demonstrate a multitude of pathways 

that are now known to be involved in gemcitabine resistance/ sensitivity.  

 As yet not much is known about the molecules that detect gemcitabine 

incorporation into the DNA. It is also unclear what mechanisms are at play in 

repairing gemcitabine-stalled replication forks and if these mechanisms are 

important in resistance to gemcitabine. Aberrant mismatched nucleotides are 

removed from the DNA by 3’-5’ exonuclease activity of DNA polymerase  (59). It 

was demonstrated that dFdCMP residues are difficult to excise from the DNA, in-

part due to masked-chain termination in comparison with dCMP residues (60). 

Mismatch repair (MMR) enzymes also repair DNA by removing single base 

aberrancies. MMR-deficient colon cancer and endometrial cells were found to be 

more resistant than MMR-proficient parental cell lines implicating MMR pathway in 

repair of gemcitabine-incorporated DNA (61). Recently, the role of homologous 

recombination repair (HRR) in restarting stalled replication forks has become 

clearer. Along that line, Ewald et al.  studied the role of Mre11-Rad50-Nbs1 (MRN) 

complex in responding to gemcitabine-induced DNA damage (62). They found that 
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gemcitabine sensitivity was enhanced in cells deficient in one of several 

components of the pathway, namely, ataxia telangiectasia mutated (ATM), 3’-5’ 

exonuclease Mre11 and Rad50. These findings provide a platform to further study 

the role of the HRR pathway in gemcitabine resistance.  

1.4 Repair of mammalian stalled replication forks 

	 Error-free replication is required to maintain genomic information with high 

fidelity. In normal cells, spontaneous blocks in replication can occur and can either 

lead to a stalled replication fork or a collapsed replication fork (63). A stalled 

replication fork is an arrested fork that can be restarted at a later time. A collapsed 

fork occurs when the replication machinery dissociates from the DNA or a double 

strand break occurs. Collapse of a stalled replication fork occurs typically with 

prolonged replication blocks (64). While the pathways of fork restart are well 

characterized in prokaryotes, those pathways do not exist in eukaryotic species 

raising the possibility of alternative pathways. Recent advances in the field have 

demonstrated that replication-independent mechanisms are involved. This restart 

requires regression of the fork into a chicken foot-structure (65). In most cases this 

replication fork intermediate is sensed by poly (ADP-ribose) polymerase 1 (PARP1). 

Poly-ADP ribose residues in association with the chromatin recruit Mre11, a 3’-5’ 

exonuclease, for DNA end processing (66). The DNA end processing is essential 

for loading of Rad51 recombinase on the DNA that forms a RAD51 nucleoprotein 

filament (67). This complex subsequently catalyzes sister chromatid homology 

search and strand invasion to complete homologous recombination. This model 
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explains the observations where fork restart has been observed without the need for 

generating or occurrence of a double strand break (65). 

Since cancer cells undergo proliferation at a faster rate under the influence of 

oncogenes or lack of tumor suppressors, the occurrence of stalled replication forks 

is also at a higher rate. Failure to restart stalled replication forks without loss or 

alteration of genetic information is thought to be an important basis of origin of 

mutations in cancer (as described by oncogene-induced stress model of genomic 

instability) (68). However once the malignant transformation has occurred, cancer 

cells may rely on DNA repair pathways such as HRR to propagate the mutated 

genome. In support of that model, the most commonly mutated gene in cancer, p53, 

has been shown to tightly regulate the HRR pathway through transcriptional 

regulation of Rad51 (69-73). For instance, loss of p53 or mutations in the DNA 

binding domain of p53, up regulate Rad51 expression, which in turn enhances 

homology-directed repair. These findings highlight the importance of the HRR 

pathway in maintenance of replication in cancer cells, perhaps more so than in 

normal cells. The dependence of cancer cells on homology-directed repair can be 

further enhanced by treatment with replication inhibitors. Many replication inhibitors 

are already in use in the clinic including hydroxyurea and nucleoside analogues. It 

has been clearly demonstrated that cells treated with replication inhibitors exhibit 

pronounced activation of HRR and that this pathway is essential for survival during 

recovery from stalled replication forks (67). The role of HRR in recovery from 

nucleoside analogue-stalled replication forks has not been studied specifically. At 
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least one report suggests localization of HRR pathway proteins to sites of 

gemcitabine-stalled replication forks (62).  

1.5 Thermolabile targets in homologous recombination pathway 

	 Hyperthermia involves raising the temperature of cells, tissues or organs 

above normal and has been used in the treatment of cancers for more than a 

century. The earliest observations from Busch demonstrated regression of a 

sarcoma by fever resulting from erysipelas (74). Later Coley purposely administered 

the bacterial toxins from Streptococcus group A (etiological agent of erysipelas) to 

reproduce these effects. A variety of cellular and biological processes in cancer 

cells are preferentially affected by hyperthermia (41-43oC) that may explain the 

effects observed by Coley. Of these, effects of hyperthermia on DNA replication and 

repair have been of most interest and form the rational basis of synergy between 

chemoradiation and hyperthermia. 

 The seminal observation that implicates the HRR pathway in hyperthermia-

related cell death was that cancer cells are most sensitive to hyperthermia during 

late S and G2 phase of the cell cycle (75). This finding implied that hyperthermia 

must affect proteins involved in synthesis of DNA and/ or DNA repair. Even though 

the involvement of the HRR pathway in repair of stalled replication forks has only 

recently become clear, the thermal effects on the proteins in this pathway have 

already been observed in the context of DNA double strand break repair as 

described below.   

 1.5.1 PARP-1 and hyperthermia: PARP-1 has various cellular functions 

including modulation of chromatin, transcription and single-strand DNA repair. 
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Recently, PARP-1 has been implicated in repair of hydroxyurea-stalled replication 

forks as a sensor upstream of several repair proteins. It has been shown that 

PARP-1 enzymatic activity is inhibited by hyperthermia (76, 77). This result is 

mainly due to sumoylation and subsequent ubiquitination of PARP1 upon heat 

shock. Degradation of PARP1 in this fashion is important in the transcriptional 

regulation of heat shock protein 70. It was found that in heat shocked rat livers, 

PARP-1 increases in the insoluble nuclear matrix fraction while it decreases from 

the soluble fraction of the nucleus (76). This is associated with decreased PARP-1 

enzymatic activity. The authors concluded that hyperthermia destabilizes PARP-1 

and when denatured, PARP-1 has a higher affinity for the nuclear matrix. 

 1.5.2 MRN-complex and hyperthermia: This complex is composed of two 

enzymes Rad50 and Mre11, and one protein with catalytic function Nbs1. These 

proteins rapidly localize to ionizing radiation-induced double strand breaks where 

this complex primarily performs DNA end processing before repair. Mre11 is the 

main excision enzyme with 3’-5’ exonuclease activity as well as endonuclease 

activity. Rad50 can phosphorylate Mre11 and enhance its exonuclease activity 

while Nbs1 binding enhances endonucleolytic activities of Mre11. Several prior 

studies have evaluated the effects of heat shock on the functions of the MRN 

complex. Zhu et al. heated U-1 human melanoma cells and HeLa cells for 15 min at 

45.5oC and noted translocation of MRN complexes from the nucleus to the 

cytoplasm (78). This effect lasted 7 hours with only partial recovery of Mre11 and 

Rad50 levels in the nucleus. A follow up study by the same group administered an 

equitoxic thermal dose of 42.5oC for 2 hours and found similar patterns of 
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translocation, however the translocation was enhanced by up to two-fold. It was 

further shown that administering leptomycin B, an inhibitor of nuclear exporter 

CRM1, inhibits this translocation suggesting involvement of an active process (79). 

In a later study, the same group demonstrated that hyperthermia inhibits localization 

of MRN complex proteins to sites of ionizing radiation-induced double strand breaks 

and speculated that this may be related to heat-mediated conformational changes in 

the structure of these proteins (80). The recovery of MRN complex foci took up to 

48 hours after heat shock. A more recent study by the same group failed to show 

that the translocation of MRN complex proteins is important in heat 

radiosensitization but implicated thermal denaturation of Mre11 in lack of MRN 

complex formation and subsequent heat radiosensitization (81). They further 

demonstrated inhibition of 3’-5’ exonuclease activity of Mre11 and its increased 

association with heat shock protein 70 providing evidence of thermal denaturation. 

These findings implicate Mre11 to be the key target of heat radiosensitization.  

 1.5.3 BRCA proteins and hyperthermia: The role of BRCA2 in repair of 

double strand breaks by HRR is well characterized where it mediates Rad51 

nucleoprotein filament formation. The role of BRCA2 in repair of stalled replication 

forks is more complex however. In addition to assisting homology-directed repair, 

BRCA2 inhibits exonucleolytic degradation of nascent strands at stalled replication 

forks and keeps end processing by Mre11 3’-5’ exonuclease in check (82). 

Enhanced nucleolytic degradation by Mre11 in the absence of BRCA2 was found to 

increase chromosomal aberrations without a decrease in survival in cancer cells. 

Krawczyk et al., while investigating the effects of hyperthermia on HRR of double-
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strand breaks demonstrated that thermal radiosensitization is mediated through 

thermal degradation of BRCA2 downstream of Mre11 (83). Contradictory to prior 

reports, they found no effects on Mre11 or on the formation of MRN complex. This 

result could be explained on the basis of lower thermal dose administered in these 

experiments and may suggest that BRCA2 is more sensitive to thermal effects than 

Mre11. Degradation of BRCA1 after heat shock has been reported, however, its role 

in repair of stalled replication forks is uncertain (84).  

1.6 Hypothesis and specific aims 

	 The studies mentioned above demonstrate that the main cytotoxic effect of 

gemcitabine is mediated through its incorporation into the DNA and subsequent 

stalling of replication fork progression. It is also known that the HRR pathway is the 

main pathway involved in the repair of stalled replication forks and component 

proteins of this pathway have been shown to respond to gemcitabine-stalled 

replication forks. Finally, a profound effect of mild to moderate hyperthermia on 

several of the key components of the HRR pathway has been demonstrated.  

It is not known, however, if HRR of stalled replication forks is a significant 

mechanism that contributes to chemoresistance of gemcitabine. The effects of 

hyperthermia on repair of stalled replication forks also remain to be elucidated. 

We hypothesize that mild to moderate hyperthermia can inhibit 

homologous recombination after gemcitabine-stalled replication forks by its 

effects on key components of the HRR pathway, hence contributing to 

chemosensitivity. Our specific aims are as follows: 
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Specific aim 1: To identify thermo-labile proteins in the HRR pathway as putative 

targets of thermal chemosensitization 

Specific aim 2:  To assess gemcitabine chemosensitization by hyperthermia-

induced inhibition of HRR in hepatocellular carcinoma cell lines in vitro. 

Specific aim 3: To assess anti-tumor activity of gemcitabine with and without non-

invasive radiofrequency field-induced hyperthermia in murine orthotopic xenografts 

of primary hepatocellular carcinoma. 
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2. Materials and methods 

2.1 Cell lines, reagents and transfection 

 2.1.1. Cell Culture: All cell lines (Hep3B, HepG2 and SNU449) were 

purchased from American Type Culture Collection (ATCC, Manassas, VA) and 

maintained according to the supplier’s protocol. Media i.e. RPMI-1640 (for SNU449) 

or MEM (for HepG2 or Hep3B) was supplemented with 10% (v/v) fetal bovine 

serum. Additional supplementation for Hep3B culture media was performed with 

sodium pyruvate and non-essential amino acids. Cells were cultured in T-75 or T-

150 tissue culture flasks (Corning Inc., Corning, NY). For each cell line short 

tandem repeat fingerprint was confirmed by the Cell Line Characterization Core 

Service (M. D. Anderson Cancer Center, Houston, TX) within one year of all 

experiments. All media and supplements were purchased from Gibco (Life 

technologies, Grand Island, NY). The cells were passaged approximately every 

three to five days before reaching confluency. Media was replaced every three 

days.  

2.1.2 Cell Counting: Before each experiment cells were counted. For 

clonogenic viability assays cells were counted using a hemocytometer and trypan 

blue staining as described in detail later. For all other assays, counting was 

performed using a cellometer (Nexcelom Bioscience, Lawrence, MA). First, cells 

were trypsinized, washed with and re-suspended in PBS. Approximately 20μl of cell 

suspension was diluted 1:1 with trypan blue solution. Of the 40μl, 20μl was loaded 

on a disposable counting chamber (Nexcelom Bioscience, Lawrence, MA). The 
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chamber slide was placed in the cellometer and viable cell counts were noted. For 

all experiments viability was recorded to be greater than 90%.   

2.1.3 Reagents, antibodies and culture plates: All reagents were purchased 

from Sigma Aldrich (Sigma-Aldrich Corp, St. Louis, MO) unless otherwise stated. 

Phosphate buffered saline was acquired from the surgical oncology core media 

facility (M.D. Anderson Cancer Center, Houston, TX). Bromodeoxyuridine (BrdU) 

was purchased from BD (BD Pharmingen, San Diego, CA). All experimental setups 

required 6-well or 12-well culture plates purchased from Corning Inc. (Corning, NY). 

For fluorescence microscopy, the following primary antibodies were used; 

rabbit anti-PAR (Trevigen, Gaithersburg, MD), rat anti-RPA32 (4E4, Cell Signaling, 

Danvers, MA), rabbit anti-Mre11 (GenTex, San Antonio, TX), rabbit anti-rad51 (H-

92, Santa Cruz biotechnology, Santa Cruz, CA), mouse anti-γH2AX (Upstate-

Millipore, Billerica, MA), rat anti-BrdU (BU1/75[ICR1], Abcam, Cambridge, MA). 

Primary antibodies were detected using the following secondary antibodies; Alex 

Fluor 488 conjugated donkey anti-rat, Alex Fluor 546 conjugated donkey anti-mouse 

and Alex Fluor 647 conjugated donkey anti-rabbit antibodies (Invitrogen, Grand 

Island, NY). 

For western blot analysis, the following antibodies were used; mouse anti-

PARP (Trevigen, Gaithersburg, MD), rabbit anti-NBS1 (Cell Signaling, Danvers, 

MA), rabbit anti-Rad50 (Cell Signaling, Danvers, MA), rabbit anti-mre11 (Gentex, 

San Antonio, TX), rabbit anti-rad51 (H-92, Santa Cruz biotechnology, Santa Cruz, 

CA), mouse anti-p53 (DO-1, Santa Cruz biotechnology, Santa Cruz, CA), rabbit 

anti-BRCA2 (Calbiochem, Billerica, MA). Primary antibodies were detected using 
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HRP-linked goat anti-rabbit or goat anti-mouse antibodies (Jackson 

Immunoresearch, West Grove, PA) 

For colorimetric-based immunohistochemistry, mouse anti-human Ki67 

(M7240, Dako, Carpinteria, CA), rabbit anti-cleaved caspase 3 (Asp175, Cell 

Signaling, Danvers, MA) and rabbit anti-LC3B (Cell Signaling, Danvers, MA) were 

used 

2.1.4 Transfection: Two transfections were performed. First, Hep3B and 

HepG2 cells were transfected to express GFP and luciferase to facilitate in vivo 

detection of xenografts. Renilla luciferase containing plasmid pRL-TK (Promega, 

Madison, WI) was modified by adding a GFP sequence. This recombinant plasmid 

was transfected into NIH 293T cells to generate a lentivirus vector containing the 

plasmid. This lentivirus was then used to infect Hep3B and HepG2 cell lines. 

GFP/Luc-transduced stable cells lines were obtained by sorting GFP-positive cells 

using FACScan (BD biosciences, Boston, MA) 

For generating an Mre11-knockdown cell line, we used GPIZ lentiviral 

shRNA (Open biosystems, Lafayette, CO) according to the supplied protocol. In 

order to generate lentivirus, Hep3B cells were tranfected in separate experiments 

with three random clones from shRNA library against Mre11 or a control shRNA 

together with a packaging plasmid (Trans-lentiviral packaging system, Open 

biosystems, Lafayette, CO) using lipofectamine 2000 (Invitrogen, Life technologies, 

Grand Island, NY). Approximately 72 hours later, cells were observed under a 

microscope to express GFP, which is a marker of expression of shRNA against 

Mre11. Relative mre11 knockdown was confirmed by western blot analysis. 
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2.2 Protein electrophoresis and immunoblotting 

	 Approximately 200,000 cells were plated in 60mm cell culture plates. Cells 

formed sub-confluent monolayers. The cells were exposed to moderate 

hyperthermia in an incubator at 42.5oC for 2 hours and cell lysates were prepared 

for western blotting before and at 0, 1, 4 and 24-hours after hyperthermia exposure 

to evaluate the relative levels of various proteins. For preparation of whole cell 

lysates, media was removed and cells were washed with PBS. Cell lysis buffer 

(150mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50mM Tris,pH 

8.0, one mini protease inhibitor/ 10ml tablet Rosche # 11 836 153001) was added 

on ice and lysed cells were collected after gentle scraping and mixed on ice for 

30min. The lysates were spun at 15000 RPM for 10 min at 4oC. The supernatant 

was collected and stored at -80oC before electrophoresis.  

 Protein concentrations were measured using Bradford assay (Fischer 

scientific, Pittsburgh, PA) with bovine serum albumin as the standard curve, 

according to manufacturer’s instructions. The samples were loaded at 20-40 μg/ 

well in a gel using a denaturing sodium dodecyl sulphate- polyacrylamide gel 

electrophoresis (SDS-PAGE) system. Electrophoresed proteins were transferred 

onto a polyvinylidene fluoride (PVDF) membrane overnight on ice. The transferred 

proteins were probed using a specific antibody against each protein of interest. The 

primary antibody was detected using a horseradish peroxidase (HRP)-conjugated 

secondary antibody. HRP-conjugated secondary antibody was detected using an 

Amersham ECL detection system (GE Health Care Biosciences, Pittsburgh, PA). 



	
Copyright	©	2012	Mustafa	Raoof.	All	rights	reserved.	

	

	 20

 For BRCA 2 detection, cell lysates were prepared as for other proteins. 

However, NuPAGE large protein blotting kit was used that utilizes a 3-8% tris-

acetate gradient gel allowing better resolution of larger proteins. 

2.3 Immunocytochemistry 

 For immunocytochemistry assay, indirect immunofluorescence approach was 

used. Circular #1.5 cover slips (Electron microscopy sciences, Hatfield, PA) were 

placed in 12-well plates and sterilized using a 20-minute UV exposure. Cells from 

an exponentially growing culture were counted and approximately 50,000 cells were 

seeded in each well of a 12-well plate. Adherent sub-confluent monolayers were 

observed growing on the cover slip 24 hours later. At this point cells were exposed 

to various treatment conditions as described in the results section. At the end of 

treatment, immunolabeling of proteins being studied was performed. Cells were 

fixed, permeablized, blocked, labeled with primary antibody and then with 

secondary antibody in consecutive steps. Between each step cells were washed 

with PBS three times for 5 minutes each time on a leveled shaker at 50 RPM. Cells 

were fixed with 1% paraformaldehyde in PBS (w/v) for 30 minutes. Permeablization 

was performed using 0.3 % (v/v) Triton-100 and 0.125 % (w/v) CHAPS (3-[(3-

Cholamidopropyl) dimethylammonio]-1-�propanesulfonate) dissolved in PBS for 15 

minutes. Cells were blocked for 1-hour in a 3 % (w/v) bovine serum albumin and 1 

% (v/v) normal goat serum. Primary and secondary antibodies were diluted in the 

blocking buffer. Incubation with primary antibody was performed over night at 4oC. 

Secondary antibody incubations were performed for 2 hours at room temperature. 

At the end of immunolabeling, 4',6-diamidino-2-phenylindole, DAPI (Molecular 
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probes, Eugene, OR) was used to counter stain DNA at 1:5000 dilution for 15 

minutes. Cover slips were washed one more time with PBS and were mounted on 

frosted glass slides (Fischer Scientific, Waltham, MA) using Dako mounting media 

(Dako, Carpinteria, CA). 

 The slides were sealed with a conventional nail polish hardener and stored at 

4oC until imaging. For confocal imaging Fluoview - FV1000 Olympus Confocal 

Microscope (Center Valley, PA) was used. Images were acquired using a 60x 

(NA1.6, oil) or 100x (NA1.3, oil) objective at an X-Y resolution of 100nm and a Z-

stack resolution of ~800nm. Samples were excited using an incident LD laser at 

405nm (50mW, 5% power) for DAPI, 559nm (15mW, 20%) for Alex Fluor 546, and 

635nm (20mW, 20% power) for Alex Fluor 647. Capture resolution was set at twice 

the optical resolution and Kallman averaging was set at 2 for enhanced signal to 

noise ratio. Images were acquired sequentially to minimize cross contamination 

from multiple emission spectra. Exposure settings were set to maximize dynamic 

range initially and then kept constant across multiple samples to allow quantitative 

comparisons. 

 Acquired images were processed in Slidebook (version 5.0, Intelligent 

Imaging Innovations, Inc., Denver, CO). Nuclei were identified using the DAPI 

channel and the areas were converted to regions of interest (ROI). Signals in these 

ROIs from other channels were used for colocalization analysis. Colocalization 

thresholds were defined using control images from secondary antibody alone slides 

such that less than 5% of the pixels exceeded this threshold. Pearson’s correlation 
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was used as an index of colocalization of pixels with intensity above the background 

threshold. 

2.4 Clonogenic assays 

Clonogenic assay estimates single-cell reproductive viability by measuring 

the ability of a single cell to form a colony of 50 cells or more. Clonogenic assay in 

this study was performed as described previously (85). Briefly, cancer cells from an 

exponentially growing, sub-confluent culture were trypsinized and harvested. 

Approximately 200 cells were counted and plated in each well of a 6-well plate. 

Approximately 12 hours later the cells were adherent and treatment conditions were 

introduced as described in the results section. After varying treatments, media was 

replaced and cells were allowed 14 days to form colonies. Subsequently, the media 

was aspirated and cells were washed with PBS once. Colonies were then fixed with 

glutaraldehyde (6.0% v/v) and stained with crystal violet (0.5% w/v) for 30 minutes 

on a leveled shaker at 50 RPM.  The fixation and staining solution was then 

aspirated and the 6-well plates were air-dried after gentle rinsing with tap water. The 

number of colonies in each well was counted using a colony counting grid. We 

found that early passage HepG2 failed to form colonies using standard condition or 

by using pre-conditioned media from the exponentially growing HepG2 culture. 

Therefore clonogenic assay on HepG2 cells could not be performed. 

2.5 Cell cycle analysis 

 For cell cycle analysis a BrdU-labeling protocol was used to identify cells in 

S-phase of the cell cycle accurately. Cells were harvested from an exponentially 

growing culture as described for other experiments and seeded in 6-well plates, 
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approximately 150,000 cells per well.  After 24-hours adherent sub-confluent 

monolayers were noted and cells were exposed to various experimental conditions.  

At the end of the treatments, cells were washed and sampled at various time points 

to study the progression of the cell cycle in time. One hour before each time point, 

cells were pulsed with BrdU (10µM) for 1 hour. BrdU gets incorporated in the DNA 

of cells in S-phase along with other nucleotides and can be detected using a mouse 

FITC conjugated anti-BrdU antibody. A BrdU Flow Kit (BD Pharmingen, San Diego, 

CA) was used according to the supplied instructions without modifications. For 

counterstaining of DNA content, cells were incubated with 7-amino-actinomycin D 

(7-AAD) supplied with the kit, on ice for 20 minutes before analysis on a BD LSR II 

flowcytometer (BD biosciences San Jose, CA). 

 Single cell populations were identified using forward and side-scatter profiles. 

A total of 10,000 events were recorded from a gated single cell population. For 7-

AAD fluorescence measurements, SORP YG laser (561nm) was used to excite the 

cells and emission was recorded through a 630LP filter followed by a 660/20 filter.  

For FITC fluorescence measurements, SORP blue laser (488nm) was used to 

excite the cells and emission was recorded through 505LP filter followed by a 

525/50 filter. There was no spectral over-lap between the two emission spectra and 

compensation was not required. Data was analyzed using FlowJo 7.63 (Tree Star, 

Inc., Ashland, OR) 

2.6 Mouse model of hepatocellular carcinoma 

 For in vivo studies, an implanted mouse model of human HCC was 

generated in CB17SCID mice (Taconic Hudson, NY). Female mice between 4-5 
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weeks in age were purchased and acclimatized in M.D. Anderson Animal facilities 

for up to 1 week. All animals were handled, housed and studied in accordance with 

Institutional Animal Care and Use Committee.  

 Cultured luciferase and GFP-expression human HCC cell lines (Hep3B and 

HepG2) were harvested from an exponentially growing culture and washed with 

PBS. The cells were re-suspended in 3ml PBS and final centrifugation was 

performed at 1000 RPM for 5 minutes. Supernatant was discarded and the cell 

pellet was used for implantation. The concentration of cells achieved using this 

protocol was 160,000 cells per micro liter. The cells were kept on ice and animals 

were injected within 3-4 hours after final centrifugation.   

Before surgery hair was removed from the ventral surface of the abdomen 

using clippers. Mice were anesthetized using 2.5% isoflurane. The surgical field was 

sterilized with 70% (v/v) ethanol in water. Mice were placed supine on a heating pad 

and the surgical site was sterilized using povidone iodine swab sticks. After 

confirming induction of anesthesia, an approximately 1-cm transverse incision was 

made in the skin of the upper abdomen slightly left of the midline. Deeper layers of 

muscle and peritoneum were incised and hemostasis was achieved using silver 

nitrate chemical cautery sticks. By applying gentle pressure on the lower abdomen 

and lower chest, the left lobe of the liver was eviscerated. A 10μl volume of cells 

was aspirated (~1.6 million cells) using a Hamilton syringe with an angled 30-

guage-needle tip (point style 4, 30o, Hamilton Company, Reno, NV). The needle 

was advance ~5mm in to the liver parenchyma of the left lobe and the cells were 

gently deposited ~2mm underneath the liver capsule such that a bleb of fluid was 
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observed. The needle was carefully withdrawn and the needle track was 

immediately compressed with a sterilized cotton Q-tip for ~60seconds.  A dab of 

silver nitrate cautery or super glue was used to ensure hemostasis at the needle 

site. The liver was returned to the peritoneal cavity. Peritoneum, abdomen and skin 

were closed in a single layer using stainless steel surgical clips (Harvard Apparatus, 

Holliston, MA). After surgery the mice were allowed to regain consciousness under 

a thermal lamp and observed for 30-60 minutes before returning them to the 

housing. Staples were removed 10-14 days after surgery. 

Three weeks after implantation of tumor cells in the liver, bioluminescence 

measurements were performed. D-Luciferin from firefly (Caliper Life Sciences, 

Hopkinton, MA) was administered at a dose of 150mg/kg in 100μl intra-peritoneally 

(i.p.).  Animals were anesthetized using 2.5% isoflurane and imaged using Xenogen 

IVIS-200 (Caliper Life Sciences, Hopkinton, MA) 5 minutes after the injection. The 

imaging was performed over 2 minutes with a 1x1 binning. Mice that had any 

bioluminescence activity above background (suggesting the development of tumors) 

were included in the subsequent study. Based on bioluminescence ~95-99% of 

mice develop tumors 3 weeks after implantation of cells for both tumor models. 

While bioluminescence imaging was useful in determining the presence of tumors 

before the start of the study, the levels of bioluminescence did not correlate with the 

size of the tumors and hence could not be used to track the growth of tumors during 

the study. 
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2.7 Radiofrequency generator setup 

 A Kanzius non-invasive external RF generator (ThermMed, LLC, Erie, PA) 

was used for animal hyperthermia exposures. The use of this generator has been 

described previously (86). The generator operates at an adjustable output power (0-

2kW) at a fixed frequency, 13.56 MHz. The generator is connected to a high Q 

coupling system with a Tx head (focused end-fired antenna circuit) and reciprocal 

Rx head (as a return for the generator) mounted on a swivel bracket allowing the 

RF field to be oriented in either a horizontal or vertical direction (Figure 1). The two 

heads were set at a distance of 3.5 inches apart.  The Tx head is covered with a 

Teflon plate whereas the Rx head has a conducting copper surface to allow 

grounding of the animals as described later. The coaxial end-fire circuit in the Tx 

head produces a uniform RF electric field up to 15cm in diameter.  The field 

generated is predominantly electric with minimal magnetic component.  We have 

attempted to measure this electric field previously using a Hewlett Packard 

Spectrum Analyzer (model 8566B, Agilent, Santa Clara, CA), an isotropic field 

monitor and a probe (models FM2004 and FP2000, Amplifier Research Inc., 

Souderton, PA). However, at high power output (>100W) accurate measurements 

cannot be performed because of heating of the measurement probe itself.  

 For animal RF field exposures, mice were anesthetized with a cocktail of 

ketamine (100 mg/kg i.p.) and xyalzine (10 mg/kg i.p.).  Hairs were removed from 

the anterior abdominal wall using clippers. Before administering RF exposures, 

certain steps were taken to ensure prevention of electrothermal injury. For instance, 

mice that urinate in the RF field suffer severe burns in the groin region. This is 
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because urine with high ionic content heats significantly faster than the mouse in an 

RF-field. By gently pressing on the lower abdomen of the mouse, urine was 

removed from the bladder before RF exposures. Parts of mouse’s body with pointed 

geometry (paws, limbs, ears, whiskers and tail) accumulate a very high charge at 

the tips because of an impedance mismatch.  As a result mice can suffer intense 

electrothermal burns at these sites. The experiments were therefore performed after 

grounding all parts of the mouse’s body using a copper tape. A window was created 

within the copper tape grounding-shield to allow RF exposure to the abdomen 

(Figure 1).  All experiments were performed for a 10-minute duration at 600W power 

output to be consistent with prior reports in the literature (86).  

 2.8 Thermal imaging and fiber optic thermography 

 During RF-field exposure temperature from the abdominal surface of mice 

was recorded using an infrared thermal camera (FLIR SC 6000, FLIR Systems, Inc., 

Boston, MA). This non-invasive measurement was performed for all mice to ensure 

that the surface temperature did not exceed 43oC. 

 For liver and orthotopic xenograft measurements fiber optic thermography 

was employed. Fluotemp, a fiber-optic probe (PhotonControl, Burnaby, BC, 

Canada), 400 microns in diameter with a scientific accuracy of 0.1±oC was 

advanced over a 20G, 1-inch needle. The needle was placed in the liver or liver 

tumor under ultrasound guidance and the probe was advanced into the target 

organ. Subsequently, the needle was retracted over the fiber-optic probe.  This 

probe was pre-tested for lack of heating in the RF field.  
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Figure 1. Radiofrequency generator and fiber optic probe placement 
 
Pane A. For fiberoptic thermography, a temperature-sensing probe is placed over a 
20G needle. The needle is advanced into the tumor (T) under ultrasound guidance. 
The probe is then advanced over the needle and the needle is withdrawn. 
 
Pane B. Kanzius 13.56 MHz external RF generator system is shown (black box) 
that is connected to an end-firing antenna in the transmission head (Tx). A spacing 
of 3.5 inches exists between the Tx head and the receiver head (Rx)/ ground plate. 
 
Panel C. A CB17 SCID mouse is placed supine on the ground plate of the Rx head. 
A copper shield made from copper tape is used to ground the mice and prevent 
electrothermal injury. An abdominal window is created in the middle of the copper 
shield to allow thermal exposures to the tumor.  
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2.8 Immunohistochemistry 

 Tumor tissues harvested at the end of the experiment were fixed in 10% 

buffered formalin (pH 7.0) for 24 hours and subsequently stored in 70% Ethanol 

(v/v) before embedding them in paraffin. For immunohistochemistry 5-micron 

sections were placed on a glass slide and tissue sections were de-paraffinized and 

rehydrated. Antigen retrieval was performed in citrate buffer at pH 6.0. The slides 

were placed in Tris-buffer (pH 8.0) before further processing. 

 For fluorescence immunohistochemistry, a protocol similar to that used for 

immunocytochemistry (described above) was used with some modifications 

described here. Tris-buffer was removed and tumor section was encircled using a 

pap pen (Electron microscopy sciences, Hatfield, PA).  For blocking 5% (w/v) BSA 

and 3 % (v/v) NGS was used instead of 3% BSA and 1% NGS, respectively. 

Imaging was performed as for immunocytochemistry. 

 For chromogen-based immunohistochemistry, cleaved caspase-3 (CC-3) and 

LC3B protein were detected using a rabbit monoclonal antibody, and Ki67 was 

detected using a mouse monoclonal antibody. Mouse antibody was detected using 

mouse-on-mouse HRP-Polymer Kit  (BioCare Medical, Concord, CA). Rabbit 

antibody was detected using EnVision+/ HRP, rabbit kit (Dako, Carpinteria, CA). 

The staining was performed on a Dako automated stainer (Dako, Carpinteria, CA).  

Primary antibody incubation was 30 minutes. The slides were counterstained with 

hematoxylin and a cover slip was sealed in place. Images were acquired using a 

multispectral scope (Olympus IX51 featuring a CRi Nuance camera, Hopkinton, 

MA). Staining was quantified using inFormTM (CRI, Capillary Life Sciences, 
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Hopkinton, MA), pattern recognition software that subjects multispectral data to 

machine-learning algorithms for accurate quantification of staining. 

2.9 Statistical Analyses 

 The data were plotted and analyzed in GraphPad Prism (version 5, La Jolla, 

CA). For data with Gaussian distribution and when comparing two groups, Student’s 

t-test was used. Multiple group data was analyzed using one-way analysis of 

variance (ANOVA).  Where necessary ad-hoc post-tests were performed and the 

type of test used is reported with the results. For all inferential statistics a p-value 

<0.05 was considered significant. 
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3. Results 

3.1 Effect of moderate hyperthermia on HRR-pathway proteins 

To investigate the effects of moderate hyperthermia on HRR-pathway 

proteins, we evaluated three cells lines with varying p53 status i.e. Hep3B (p53 -/-), 

HepG2 (p53wt/wt) and SNU449 (p53mut/mut; A161T). Exponentially growing cells in 

60mm plates were subjected to hyperthermia at 42.5oC for 2 hours in an incubator 

with humidified air and 5% CO2. Protein expression levels were monitored before 

thermal exposure, immediately after thermal exposure and then over-time at 1 hour, 

4 hour and 24-hour intervals, in whole-cell lysates. The data are shown in Figure 2. 

The data demonstrate that with moderate hyperthermia exposure, initially 

there is mild degradation of PARP-1 for Hep3B cells, while there is little or no 

change for HepG2 and SNU449 cell lines. At 24 hours, however, PARP-1 levels 

tend to increase (~5-fold) compared to control levels more in HepG2 cells but not in 

SNU449 or Hep3B cells. Levels of p53, NBS1, Rad50 and Rad51 do not change 

with thermal exposure in any of the cell lines tested. Interestingly, we find that levels 

of Mre11 gradually decline after heat shock in all cell lines to less than half of the 

control levels at 24 hours.  This finding is most pronounced for HepG2 cells. It has 

been previously reported that BRCA2 is an important target of heat 

radiosensitization (83). We find that the effect of hyperthermia on BRCA2 levels was 

cell line-dependent. The wt-p53, HepG2 cells and mutant-p53, SNU449 cells 

demonstrated negligible changes in BRCA2 levels after thermal exposure, however 

p53-null, Hep3B cells demonstrated a slight decrease in BRCA2 levels.  
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Figure 2. Effect of moderate hyperthermia on HRR-pathway proteins 
Three liver cancer cell lines with varying p53 status were subjected to hyperthermia 
at 42.5oC for 2 hours and levels of proteins monitored over time. C= control, before 
hyperthermia. (A) Immunoblots, (B) Quantification by densitometry. 
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3.2 Localization of HRR-pathway proteins to gemcitabine-stalled replication 

forks 

	 We asked if hyperthermia impairs localization of HRR-pathway proteins to 

gemcitabine-stalled replication forks. To address that question we first sought to 

investigate γH2AX-p as a marker of stalled replication forks. Phosphorylation of γ-

H2AX has been observed to occur in association with double-stranded DNA breaks 

induced by ionizing radiation. Increasing evidence has accumulated since then, 

demonstrating γ-H2AX phosphorylation to be a sensitive but non-specific marker of 

a wide-variety of insults to the DNA. For instance, it has previously been reported 

that γ-H2AX-p foci mark gemcitabine-stalled replication forks without occurrence of 

dsDNA breaks. It is also known that hyperthermia can induce γ-H2AX foci without 

detectable damage to the DNA. To evaluate if γ-H2AX foci localize to stalled 

replication forks, Hep3B cells were pulsed with BrdU for 30 min prior to addition of 

gemcitabine. We found that almost all γ-H2AX foci localize with BrdU foci confirming 

its presence at stalled replication forks (Figure 3). Cells that were treated with 

hyperthermia alone also demonstrated γ-H2AX foci. We find that these foci were 

significantly fewer (p<0.001) than gemcitabine treated cells. Interestingly, γ-H2AX 

foci were only found in cells positive for BrdU suggesting specificity for S-phase 

(Figure 4). Combining hyperthermia immediately followed by gemcitabine treatment 

did not further increase γ-H2AX foci compared to the gemcitabine alone group. This 

suggests a common etiology to the origin of γ-H2AX foci with hyperthermia i.e. 

stalled replication forks. Transient stalling of replication forks is known to occur with 

hyperthermia based on prior reports (87). If this assumption is correct then 
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hyperthermia induced- γ-H2AX foci should colocalize with single-stranded DNA that 

arises as a result of a stalled replication forks. Using replication protein A (RPA) as 

a marker of single-stranded DNA we found that γ-H2AX foci after hyperthermia 

exclusively colocalize with RPA foci confirming the nature γ-H2AX phosphorylation 

after hyperthermia, which was previously not known (Figure 5).  

 After establishing γ-H2AX foci as a marker of stalled replication forks, we 

evaluated recruitment of downstream pathway proteins to these sites. We exposed 

cells to mild hyperthermia at 42.5oC for 75 min followed immediately by a high 

concentration of gemcitabine (10μg/ml). This concentration was chosen to induce 

maximal stalling of replication forks and hence maximum number of γ-H2AX foci in 

each cell.  It has previously been reported that PARP1 serves as an initial sensor at 

hydroxyurea-stalled replication forks and catalyzes poly-ADP ribosylation (PAR) at 

these sites. Localization of PARP1 within the nucleus is diffuse and does not form 

distinct foci. However, PAR residues can form foci that can be detected using a 

specific antibody. We found that there was no correlation between PAR staining and 

γ-H2AX foci (not shown). Furthermore, PAR staining was found to occur in most 

untreated cells suggesting a high baseline level of PARylation of chromatin.  

 Stalled replication forks can cause uncoupling between the replication 

machinery and the double-stranded DNA unwinding helicase. This stalling leads to 

stretches of single-stranded DNA. Replication protein A (RPA) has a high affinity for 

single stranded DNA and is important in recruitment of downstream HRR-pathway 

proteins to stalled replication forks. We find that pre-treatment with hyperthermia 

does not inhibit localization of RPA to the sites of stalled replication forks (Figure 5, 
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8). Downstream, RPA recruits proteins of the Mre11-Rad50-Nbs1 (MRN) complex. 

Localization of the MRN complex to stalled replication forks is essential for HRR. 

Within this complex, Mre11 is the key effector with known 3’-5’ exonuclease as well 

as 5’-3’ endonuclease activity. In particular, Mre11 nucleolytic activity allows loading 

of Rad51 recombinase by processing DNA ends at stalled replication forks. We note 

that pre-treatment with mild hyperthermia impairs localization of Mre11 to sites with 

γ-H2AX foci (Figure 6, 8). This pre-treatment further leads to inhibition of Rad51 

loading at stalled replication possibly because of inhibited end processing by Mre11 

(Figure 7, 8). 

 These data demonstrate that hyperthermia alters localization of the HRR-

pathway proteins at sites of stalled replication forks. We identify Mre11 as a key 

thermolabile target of hyperthermia. 
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Figure 3. Gemcitabine-stalled replication forks are marked by γ-H2AX foci. 
 
Panel A. Hep3B cells were exposed to hyperthermia and/ or gemcitabine and DNA 
immediately upstream of stalled replication forks was labeled with BrdU. 
 
Panel B. Distinct foci marking gemcitabine-stalled replication forks are detected by 
anti-BrdU antibody. γ-H2AX foci colocalize at sites of stalled replication 
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Figure 4. Hyperthermia-induced γ-H2AX foci are S-phase specific 
 
Panel A. S-phase cells were marked using BrdU incorporation over a period of 4.5 
hours immediately after hyperthermia  
 
Panel B. It was noted that hyperthermia-induced γ-H2AX foci only occurred in cells 
staining positive for BrdU (S-phase cells)  
 

 

 

 

 

 



	
Copyright	©	2012	Mustafa	Raoof.	All	rights	reserved.	

	

	 39

 

 

Figure 5. Gemcitabine and hyperthermia-stalled replication forks recruit RPA 
 
Panel A. Hep3B cells were exposed to hyperthermia and/ or gemcitabine 
 
Panel B. RPA colocalizes with γ-H2AX foci in cells treated with gemcitabine, 
hyperthermia or combination of the two treatments. 
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Figure 6. Inhibition of Mre11 recruitment at gemcitabine-stalled replication 
forks by hyperthermia 
 
Panel A. Hep3B cells were exposed to hyperthermia and/ or gemcitabine 
 
Panel B. Mre11 was recruited at gemcitabine-stalled replication forks. Cells treated 
with hyperthermia or combination with gemcitabine demonstrated decreased 
colocalization of Mre11 and γ-H2AX foci. 



	
Copyright	©	2012	Mustafa	Raoof.	All	rights	reserved.	

	

	 41

 

 
Figure 7. Inhibition of Rad51 recruitment at gemcitabine-stalled replication 
forks by hyperthermia 
 
Panel A. Hep3B cells were exposed to hyperthermia and/ or gemcitabine 
 
Panel B. Rad51 was recruited at gemcitabine-stalled replication forks. Cells treated 
with hyperthermia or combination with gemcitabine demonstrated decreased 
colocalization of Rad51 and γ-H2AX foci. 
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Figure 8. Quantification of data presented in Figure 3-7 
 
*p<0.05, **p<0.01, ns = not significant, N/A = not applicable i.e. Hyperthermia 
treated cells is not detected as distinct foci and therefore correlation could not be 
quantified. 
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3.3 Cell cycle alterations 

 The data thus far suggest that hyperthermia can alter the expression levels 

and localization of HRR-pathway proteins. Since stalled replication forks are 

primarily repaired through recombination-mediated repair, we postulated that 

hyperthermia would inhibit the repair of gemcitabine-stalled replication forks 

delaying progression through the cell cycle.  

 To test this hypothesis, we exposed Hep3B cells to gemcitabine for 24 hours 

(approximate doubling time of Hep3B cells) at a concentration of 1μM. This 

concentration is comparable to the peak intracellular concentration achieved with 

clinically used fixed-dose rate regimens (88). Since incorporation of gemcitabine 

only occurs during S-phase, exposing Hep3B cells for 24 hours ensures 

incorporation of gemcitabine in all cells. For the last 2 hours of incubation, cells 

were or were not exposed to hyperthermia at 42.5oC. The cells were washed with 

PBS and media was replaced to allow recovery of stalled replication forks. Cell 

cycle progression was analyzed over time (Figure 9A).  

We note that a 24-hour incubation with 1μM gemcitabine completely halts 

progression of cells through the cell cycle by activating a G1/S checkpoint (Figure 

9B).  Once gemcitabine is removed, these cells resume DNA synthesis in 24 hours 

in a synchronized manner suggesting gemcitabine-induced cell cycle arrest is 

reversible at clinically relevant concentrations. Interestingly the delay caused by 

hyperthermia in progression through early and mid S-phase was negligible. We 

noted however, that gemcitabine followed by hyperthermia-treated cells 

demonstrate a much slower progression through late-S and G2/M phase compared 
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to cells treated with gemcitabine alone. This delayed arrest in late-S and G2 phase 

with normal progression through early and mid S-phase demonstrates the temporal 

separation of replication and recombination and is further discussed later. We also 

note that the effect of hyperthermia on repair of stalled replication forks is transient 

(lasting a few hours) as most cells progress to G0/G1 phase of the cell cycle 

eventually.  

Consistent with prior observations, our data demonstrate a late-S/ G2 arrest 

when cells are treated with moderate hyperthermia alone (89-92). Although several 

reports have noted this observation, an explanation of underlying mechanisms has 

been lacking. Here we find that the duration of G2 arrest is ~39-48 hours. This 

matches the delay in progression of cells through late-S/ G2 phase after recovery 

from gemcitabine-stalled replication forks. Since recombination repair predominantly 

occurs in late-S/ G2 phase, hyperthermia alone may inhibit HRR required for 

spontaneously arising stalled replication forks. Hence, the data provide a rational 

explanation of G2 arrest occurring after hyperthermia. 

Cancer cells that fail to resolve stalled replication forks demonstrate 

persistent staining for γ-H2AX phosphorylation sites. We used this strategy to 

evaluate if gemcitabine treatment followed by hyperthermia would demonstrate 

persistence of γ-H2AX positive cells in comparison with gemcitabine treatment 

alone. To test this hypothesis we treated Hep3B cells with gemcitabine (100nM) for 

24 hours. For the last 2 hours, cells were treated with or without hyperthermia at 

42.5oC. The media was then replaced and cells were allowed to recover from 

gemcitabine-stalled replication forks. We note that when cells are treated with a 
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combination of gemcitabine and hyperthermia, γ-H2AX positive cells persist for a 

longer duration compared to hyperthermia alone or gemcitabine alone treated cells 

(Figure 9D). Moreover, the resolution of γ-H2AX positivity coincides with the 

progression of cell cycle observed in the previous experiment.  

These experiments demonstrate that hyperthermia significantly alters cell 

cycle progression by inhibiting post-replication recombination repair and resolution 

of gemcitabine-stalled replication forks as observed by persistent γ-H2AX staining. 

We also note that this inhibitory effect is transient lasting with a duration of 48 hours 

after hyperthermia exposure.  
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Figure 9. Hyperthermia inhibits post-replication recombination repair at 
gemcitabine-stalled replication forks. 
 
Panel A. Experimental scheme is presented 
 
Panel B. Cell cycle progression was monitored using flowcytometry in Hep3B cells 
before after release from gemcitabine-induced G1/S arrest.  
 
Panel C. Median DNA content of Hep3B cells was quantified using flowcytometry 
after treating them according to the design in Panel A. (*p<0.05) 
 
Panel D. Hep3B cells were treated with gemcitabine +/- hyperthermia and cells 
positive for γ-H2AX foci in confocal microscopy images were quantified. (*p<0.05)
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3.4 Clonogenic survival & viability 

 Next, we wanted to understand the consequences of pronounced cell cycle 

alterations and inhibition of stalled replication fork repair by hyperthermia on 

reproductive viability of cancer cells. Clonogenic assays were performed on null-p53 

Hep3B cells and mutant-p53 SNU449 cells after one of two combinations of 

hyperthermia and gemcitabine in comparison with hyperthermia alone or 

gemcitabine alone. Of note, WT-p53 HepG2 cells failed to form colonies when 

plated as single cells for clonogenic assay, precluding further analysis of these 

cells. 

 In one combination regimen, Hep3B or SNU449 cells were exposed to 

gemcitabine for 24 hours and were then subjected to hyperthermia for the final 2 

hours at 42.5oC. In a different combination regimen Hep3B or SNU449 cells were 

exposed to hyperthermia for 2 hours at 42.5oC followed by gemcitabine for 24 

hours. The media was replaced at the end of exposures and the colonies were 

counted after appropriate duration. Figure 10 demonstrates a dose-dependent 

enhancement of gemcitabine toxicity by moderate hyperthermia in both SNU449 

and Hep3B cells irrespective of the dose schedule used. Next we evaluated 

clonogenic viability at a gemcitabine concentration of 5ng/ml and varied the duration 

of hyperthermia (30min - 4 hours). The data demonstrate a thermal dose-dependent 

enhancement in synergistic toxicity of gemcitabine and hyperthermia.  

 Prior studies conducted as a part of this thesis demonstrated that Mre11 is a 

key thermolabile target of hyperthermia. We asked if inhibition of Mre11 

exonuclease activity by a specific inhibitor, mirin, would result in similar 
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enhancement of gemcitabine toxicity. The above experiments were repeated with 

and without a sub-cytotoxic dose of mirin (25μM). We found that inhibition of Mre11 

exonuclease activity by mirin significantly enhanced gemcitabine-induced 

clonogenic cell death (Figure 11). Furthermore, addition of hyperthermia did not 

further enhance this toxicity confirming that thermal enhancement of gemcitabine 

toxicity is mediated through an Mre11-dependent pathway.  

 To rule out the possibility of off-target effects of mirin, we developed a partial 

Mre11 knockdown (shMre11) Hep3B cell line. Hep3B cells with complete 

knockdown of Mre11 expression were not stable in cell culture. These cells were 

then treated with or without gemcitabine and with or without hyperthermia. The 

results are compared to a cell line expressing a non-specific shRNA (shControl) 

subjected to same experiments. Similar to the results obtained with mirin, we found 

that shMre11 cell line was more sensitive to gemcitabine in comparison with 

shControl cell line. Furthermore, thermal enhancement of gemcitabine toxicity was 

noted for shControl cell line but not with shMre11 cell line.  

 These data strongly implicate an Mre11-dependent homologous 

recombination repair pathway in thermal enhancement of gemcitabine-induced 

cytotoxicity. 
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Figure 10. Hyperthermia sensitizes hepatocellular carcinoma cells to 
gemcitabine in a dose-dependent manner. 
 
Panel A. Experimental scheme is presented 
Panel B &D. Experimental design i, ii and iii were used. 
Panel C &E. Experimental design iv was used.  
*p<0.05 
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Figure 11. Hyperthermia-induced gemcitabine sensitivity of hepatocellular 
carcinoma cells is via a Mre11-dependent pathway 
 
Panel A. Hep3B cells were treated with gemcitabine alone (Gem), hyperthermia  +/- 
gemcitabine (HT), Mirin +/- gemcitabine (Mirin) or Hyperthermia and Mirin +/- 
gemcitabine (Mirin-HT). In all cases hyperthermia followed gemcitabine or mirin 
exposure. *p<0.05 
 
Panel B. Control (shControl) or Mre11 knockdown (shMre11) were treated with or 
without gemcitabine followed by +/- hyperthermia.  *p<0.05 
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3.5 Animal model studies 

	 Two animal models of human primary hepatocellular carcinoma were 

developed using a wt-p53 HepG2 cell line or null-p53 Hep3B cell line in immune-

deficient CB17 SCID mice. The cells were implanted in the liver to generate an 

orthotopic tumor model as detailed in the methods. We noted that both xenografts 

were locally aggressive, eroded (as opposed to invaded) the normal adjacent 

mouse liver and had no distant or intra-hepatic metastasis or extension in non-liver 

viscera. However, Hep3B xenografts were fast growing unlike the HepG2 

xenografts. On histological analysis, both tumors appeared hyper-vascular with 

areas of spontaneous necrosis (Figure 12). We observed larger aberrant vessels 

with Hep3B xenografts, which were not seen with HepG2 xenografts. The xenograft 

models closely mimicked non-metastatic human primary hepatocellular carcinoma 

based on growth pattern, macroscopic and microscopic appearance. 

 

 

Figure 12. Animal model characterization (next page) 
 
Panel A. A Hep3B xenograft is seen in the left lobe of CB17 SCID mouse liver at the 
time of necropsy. 
 
Panel B. The development of luciferase expressing Hep3B or HepG2 xenografts 
can be tracked using bioluminescence imaging. 
 
Panel C-F. Histological analysis demonstrates that these xenografts mimic human 
hepatocellular carcinoma based on growth pattern, hyper-vascularity, erosion and 
spontaneous central necrosis. 
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 After establishing the tumor models, we evaluated if hyperthermia could be 

successfully delivered to the tumor tissue using the 13.56 MHz non-invasive 

Kanzius RF generator.  For that purpose, we employed fiber-optic thermography to 

measure the temperature of liver tumor and normal liver in anesthetized mice 

subjected to RF field exposure for 10 min at 600W. Since fiberoptic thermography 

requires placement of a fiber-optic (400 micron diameter) probe under ultrasound 

guidance and is challenging for smaller tumors, we wanted to investigate if 

abdominal surface temperature as measured by infrared thermal imaging correlated 

with tumor temperature. This would allow us monitor thermal dose in real-time non-

invasively for future experiments. The data are shown in figure 13.  

 After anesthesia and during placement of mice on the Rx head of the RF 

generator, we noted a drop in core body and surface temperature. For consistency 

we allowed the abdominal surface temperature to drop to 34oC before starting RF 

exposures. During a 10-minute RF exposure we observed a duration-dependent 

near-linear rise in Hep3B xenograft and normal liver temperature. Interestingly, 

normal livers heated significantly less than Hep3B xenografts, suggesting, some 

tumor selective heating effect of RF-field exposure. Abdominal surface 

temperatures recorded during these experiments demonstrated a strong linear 

correlation with tumor temperature (R2=0.99). Prior reports have demonstrated that 

a 10-min RF exposure using the same parameters is safe with no detectable harm 

to normal tissues (86). Here we demonstrate that the same RF exposure can be 

used to deliver tumor selective hyperthermia to orthotopic liver tumors. However, 

the underlying reason for tumor selective hyperthermia is not evident from these 
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experiments. Thermal dose calculations as defined by cumulative equivalent 

minutes at 43oC (CEM43) were performed using the average time-temperature plots 

obtained from liver tumor and normal liver during a 10-minute RF exposure. We 

note that CEM43 for liver tumor was ~80 fold higher than that of normal liver 

(CEM43: 1401.6 vs. 17.5). 
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Figure 13. Thermal dose quantification in Hep3B xenografts under RF field 
exposure (13.56 MHz, 600W) 
 
Panel A. Xenograft and abdominal surface temperatures were measured in real-
time using fiber optic thermography and infrared thermography, respectively in 
tumor-bearing mice 
 
Panel B. Similar measurements were performed on the normal livers of non-tumor-
bearing mice. 
 
Panel C. Data in Panel A and B are combined for comparative representation. 
Abdominal surface temperature is the composite average from tumored and non-
tumor-bearing mice. 
 
Panel D. Tumor and surface temperature from Panel A is plotted and was found to 
correlate in a linear fashion. 
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To determine the anti-tumor effect of hyperthermia alone or in combination 

with gemcitabine we used the same set-up as described above and in the Methods 

section. For the Hep3B orthotopic tumor model experiment, we allowed the tumors 

to grow for three weeks after implantation before starting treatment. At three week 

after implantation of cells, bioluminescence imaging was performed to confirm 

presence of tumors. Mice that developed tumors were randomized to one of five 

groups: Untreated, RF exposure alone, gemcitabine alone, gemcitabine followed 24 

hours later by RF exposure, or RF exposure immediately followed by gemcitabine. 

This experimental design is comparable to in vitro studies reported above. The 

treatments were administered twice a week for 3 weeks for a total of 6 treatments. 

Gemcitabine dose administered was 70mg/kg/dose or 150mg/kg/week. This is 

approximately half the dose used in humans (1000mg/m2/week dose in a 1.7m 

human equals ~300mg/kg/week dose in a mouse). Twenty-four hours after the last 

treatment, mice were sacrificed and tumors were harvested, weighed and fixed in 

formalin for downstream analysis (Figure 14). At the end of the experiment, we 

noted that tumors in all treatment groups were significantly smaller and had a lower 

tumor mass than untreated controls (p<0.05). On further analysis, we compared 

tumor mass of gemcitabine treated tumors with that of tumors that received 

combination therapy. We found that combination therapy was more effective than 

gemcitabine alone based on tumor mass (p<0.01). Of note, there was no difference 

in tumor mass when comparing groups that received a different schedule of 

combination therapy. From these data we conclude that addition of hyperthermia 
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using the radiofrequency field enhances gemcitabine-mediated anti-tumor effect in 

Hep3B xenografts. 

This experiment was repeated in the slow growing wt-p53 HepG2 xenograft 

model with some modifications in the design (Figure 15). Tumor presence was 

confirmed at 4 weeks instead of 3 weeks using bioluminescence imaging to allow 

the tumors to grow to a larger size. Mice with tumors were then randomized to one 

of five groups as detailed in the previous experiment. Treatments were performed 

once a week for a duration of 3 weeks instead of twice a week, keeping in mind the 

slow growing nature of these xenografts. Unlike Hep3B xenografts we found that 

HepG2 xenografts treated with RF exposure alone were not significantly different 

from untreated controls. However, gemcitabine-treated groups had significantly 

smaller tumors compared to mice treated with RF exposure alone or not treated. 

Similar to the Hep3B xenografts we found that addition of hyperthermia to 

gemcitabine significantly enhanced the anti-tumor effect of gemcitabine in HepG2 

xenografts. Again, as with Hep3B xenografts no difference was noted between the 

two schedules of combination treatment tested. 
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Figure 14. Efficacy of gemcitabine and RF combination therapy in mice 
bearing Hep3B xenografts 
 
Tumor weight, percent growth inhibition and macroscopic appearance are 
represented in Panel A, B &C, respectively. (*p<0.05, ***p<0.001 vs. Gemcitabine) 
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Figure 15. Efficacy of gemcitabine and RF combination therapy in mice 
bearing HepG2 xenografts 
 
Tumor weight, percent growth inhibition and macroscopic appearance are 
represented in Panel A, B &C, respectively. (*p<0.05, ***p<0.001 vs. Gemcitabine) 
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From the in vitro studies we have established that Mre11 is a key 

thermolabile target that is important in the repair of gemcitabine-stalled replication 

forks. Inhibition of Mre11 exonuclease using mirin resulted in significant 

enhancement of gemcitabine cytotoxicity in the Hep3B cell line. Despite its weak 

inhibitory effects we wanted to evaluate if this thermomimetic response to mirin 

could be reproduced in an in vivo Hep3B xenograft model. For that purpose, 4 

weeks after Hep3B cell implantation, mice bearing tumors were randomized to no 

treatment, gemcitabine alone (35mg/kg/dose), mirin alone (50mg/kg/dose) or a 

combination of gemcitabine and mirin. The treatment was repeated two times a 

week for two weeks.  Of note, the dose of gemcitabine was reduced to half of that 

used in previous experiments to better demonstrate the synergistic interaction, if 

any. The dose of mirin chosen for this experiment was the maximum dose that 

could be dissolved in the maximum amount of DMSO that could be safely 

administered to the mice.  All the mice not treated with mirin also received DMSO. 

The data shown in Figure 16 demonstrate that there were no statistically significant 

differences among the various tumor groups. We do note however, that the mice 

treated with the combination therapy had the lowest median tumor mass. 

Interestingly, we noted a bimodal distribution of tumor mass in the combination, 

which was not observed with other groups. The reason for this finding is not evident 

from this experiment, as we do not have correlative pharmacokinetic and 

pharmacodynamic data on mirin. With its weak inhibitory effects on Mre11, mirin is 

an unsuitable compound for drug development. We hope to repeat this experiment 

with more effective inhibitors of Mre11 in the future. 
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Figure 16. Efficacy of gemcitabine and Mirin combination therapy in mice 
bearing Hep3B xenografts 
 
Tumor weight, percent growth inhibition and macroscopic appearance are 
represented in Panel A, B &C, respectively. 
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From these three animal experiments, we draw several important 

conclusions. First, RF exposure alone has an anti-tumor effect in Hep3B xenografts 

but not in HepG2 xenografts. Second, HepG2 xenografts are more sensitive to 

gemcitabine compared to Hep3B xenografts. Third, combination therapy with 

gemcitabine and RF hyperthermia was more effective than gemcitabine alone in 

both tumor models.  Fourth, the schedule of combination therapy did not have an 

impact on anti-tumor efficacy for the two schedules tested in either tumor model. 

Finally, mirin, a water-insoluble, weak inhibitor of Mre11 exonuclease activity 

demonstrated some anti-tumor effect in combination with gemcitabine and no anti-

tumor effect when used alone. However, better inhibitors and further investigation is 

needed to develop Mre11 inhibition as a thermomimetic approach to enhance 

gemcitabine toxicity.   

 

3.6 Histological analysis of human HCC xenografts from mice 

	 Tumor tissues from the first Hep3B xenograft experiment were harvested 24 

hours after the last treatment and analyzed. We evaluated the autophagy marker 

LC3B and apoptosis marker CC3-3 in various tumor tissues using colorimetric 

immunohistochemistry (Figure 17). Although tumors in the combination groups 

demonstrated more frequent CC-3 positive cells than tumors in other groups, the 

overall frequency of apoptotic cells was rare. Since Hep3B xenografts lack p53 

expression, and apoptosis is tightly regulated by p53, this observation is not 

unexpected. We evaluated autophagy as a marker of cell death and noted that 

tumors that received combination treatment had a pronounced increase in 
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autophagy compared to tumors in other groups suggesting an important role in the 

observed anti-tumor effect. When evaluating proliferation using an S-phase specific 

marker, Ki67, we found an increase in staining. It seems contradictory to have 

increased proliferation in tumors with smaller mass. We interpret this to represent in 

situ synchronization of tumor cells in S-phase 24 hours after last dose of 

gemcitabine consistent with in vitro cell cycle analysis data. 

 Next we evaluated localization of the HRR-pathway proteins Mre11 and 

Rad51 to sites of stalled replication forks in tumors of mice in various groups. 

Stalled replication forks were detected by labeling γ-H2AX foci (Figure 18,19, 20). 

Consistent with in vitro data we observed decreased localization of the HRR-

pathway proteins to sites of stalled replication forks. In addition we also noted a 

relatively higher proportion of γ-H2AX positive cells in tumors treated with the 

combination of gemcitabine and RF exposure in comparison with tumors in 

gemcitabine only group. We interpret this to represent the presence of persistently 

stalled replication forks or DNA damage in these tumors. Finally we also noted an 

increased aberrancy in the shape of nuclei in tumors treated with combination 

therapy compared to those treated with gemcitabine alone. These nuclei were 

irregular in shape and appeared fragmented suggestive of unrepaired DNA 

damage. 
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Figure 17. Immunohistochemical analysis for proliferation, apoptosis and 
autophagy 
 
(A) Markers for apoptosis (CC-3), proliferation (Ki67) and autophagy (LC3B) were 
evaluated in Hep3B xenografts. Tumors treated with combination gemcitabine and 
RF therapy demonstrated increased apoptosis and autophagy compared to 
untreated, gemcitabine alone or RF alone controls. Increased proliferation (Ki67) in 
gemcitabine-treated tumor groups may represent in situ synchronization of cells in 
S-phase of the cell cycle. (B, C) Tumor tissue staining for CC-3 and LC3B was 
quantified and median (Inter-quartile range) is represented. *p<0.05 Mann-Whitney 
Test (non-parametric) 
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Figure 18. Inhibition of Mre11 localization to stalled forks in vivo 
Hep3B xenografts were evaluated for colocalization of γ-H2AX and Mre11 foci. As 
shown RF exposure inhibits Mre11 localization to stalled replication forks. 
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Figure 19. Inhibition of Rad51 localization to stalled forks in vivo 
Hep3B xenografts were evaluated for colocalization of γ-H2AX and Rad51 foci. As 
shown RF exposure inhibits Rad51 localization to stalled replication forks. 
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Figure 20. RF exposure inhibits resolution of gemcitabine-induced DNA 
damage in Hep3B xenografts 
 

Panel A. Sites of DNA damage were evaluated using fluorescence 
immunohistochemistry for γ-H2AX. Also note the increased nuclear fragmentation in 
the DAPI channel for combination therapy groups. 
 
Panel B. Tumors treated with combination therapy demonstrate significantly higher 
γ-H2AX staining. *p<0.05, **p<0.01 vs. gemcitabine. 
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4. DISCUSSION 

	 Several findings of this study have important implications for rational drug 

combinations and multi-modality treatment of hepatocellular carcinoma. First, we 

demonstrate that the HRR-pathway is invaluable in the repair of gemcitabine-stalled 

replication forks. Second, the synergy between gemcitabine and hyperthermia has 

been previously reported. However, a mechanistic understanding has been lacking 

and the data presented here provide a rational explanation for this synergy. Third, 

we demonstrate that the relevant thermal dose necessary for such synergistic 

interaction can be achieved in pre-clinical mouse models using a non-invasive 

radiofrequency field generator in a tumor selective fashion. Finally, these data 

provide an initial platform for further development of thermomimetic approaches to 

circumvent gemcitabine chemoresistance in hepatocellular carcinoma. These 

findings are discussed in more detail below. 

 Gemcitabine is the only nucleoside analogue with a potent activity in solid 

tumors. Its unique self-potentiating mechanism (discussed in the introduction) is 

thought to be important for this activity. Several pathways have been implicated in 

chemoresistance of solid tumors to gemcitabine. However most of these involve 

reduced conversion of pro-drug (gemcitabine) to active drug (gemcitabine tri-

phosphate) leading to decreased incorporation of gemcitabine in the DNA. Our data 

demonstrate that clinically achievable intracellular concentration (1 μM) was 

sufficient to arrest cell cycle in hepatocellular carcinoma cells suggesting adequate 

incorporation of gemcitabine in the DNA. Moreover, 24 hours after removal of 

gemcitabine, these cells resumed their cell cycle. Therefore pathways to repair 



	
Copyright	©	2012	Mustafa	Raoof.	All	rights	reserved.	

	

	 72

gemcitabine-stalled replication forks must exist and may contribute to drug 

resistance.  

We evaluated proteins of the HRR-pathway believed to be important in the 

restart of hydroxyurea-stalled replication forks. We failed to demonstrate PAR 

localization to these sites as observed by Bryant et al. when evaluating 

hydroxyurea-stalled replication forks (66). We attribute this discrepancy to our 

inability to detect PAR foci due to high baseline levels of PAR residues in the nuclei 

of cancer cells. It may also reflect differences in the replication poison used 

(gemcitabine vs. hydroxyurea) or differences in the cell lines investigated. However, 

we find that RPA, Mre11 and Rad51 readily accumulate at sites of stalled replication 

forks. These findings are consistent with prior reports (62, 66, 93). We find that 

Mre11 knockdown cells or cells where mre11 exonuclease activity was inhibited by 

mirin were more sensitive to gemcitabine than control cells demonstrating the 

significance of this HRR-pathway protein in gemcitabine resistance. This result is 

consistent with observations of Ewald et al. with their study on leukemia cell lines 

(62). 

 After demonstrating HRR-pathway as a survival mechanism for cancer cells 

treated with gemcitabine, we asked if the same mechanism may be involved in anti-

tumor synergy of gemcitabine and hyperthermia. When evaluating HRR protein 

levels after hyperthermia we noted that mild-moderate hyperthermia had a transient 

effect on PARP1 levels. Similarly levels of Nbs1, Rad50, Rad51 and p53 were 

minimally affected. We note partial degradation of BRCA2 in one cell line. However 

partial degradation of Mre11 was consistently observed in all cell lines. 
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Thermolability of Mre11 has been recently reported in a study where only 10 min at 

42.5oC reduced Mre11 exonuclease function to 10% of untreated control (81). On 

further analysis we found that Mre11 and downstream Rad51 failed to localize at 

gemcitabine-stalled replication forks in cells pretreated with mild hyperthermia. 

Assimilating these observations and those from Dynlacht et al. we attribute this 

effect to thermal denaturation of Mre11.  

We demonstrate that hyperthermia has no effect on emergence from G1/S 

arrest in cells with gemcitabine-stalled replication forks. In fact these cells 

progressed through early and mid-S phase without much delay. However, we noted 

a prolonged passage through late S and G2 phase, which is characteristic for cells 

deficient in post-replication recombination repair (94). When evaluating synergy of 

gemcitabine and hyperthermia Vertees el al. noted a similar enhancement of cells 

arrested in G2/M phase with combination therapy (89). This delay in recovery was 

also observed with persistent γH2AX staining in our study. Ultimately, we find that 

this inhibition of the Mre11-dependent HRR pathway by hyperthermia is responsible 

for decreased clonogenic survival and cell death.  

It is important to discuss thermal degradation of BRCA2 and its effects on 

HRR of stalled replication forks because BRCA2 plays two essential roles at the 

stalled replication forks. BRCA2 prevents excessive nucleolytic degradation of 

stalled forks by Mre11, an effect associated with genomic instability (82). Therefore, 

degradation of BRCA2 is expected to increase excision of gemcitabine by Mre11 

and contribute to chemoresistance. Conversely, BRCA2 participates in Rad51 

loading in HRR pathway (95). In this case, degradation of BRCA2 is expected to 
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inhibit repair of gemcitabine-stalled replication forks and have the opposite effect.  

Because of this paradoxical effect at stalled replication forks it is unlikely that 

BRCA2 is responsible for thermal enhancement of gemcitabine toxicity as observed 

here. These findings also imply that synergistic interaction between hyperthermia 

and gemcitabine will ultimately depend on the relative effect on heat on BRCA2 

compared to that on Mre11. For instance, thermal degradation of BRCA2 without 

Mre11 inhibition may not only contribute to gemcitabine resistance but also genomic 

instability as detailed in a report by Schlacher et al. (82). Conversely, tumors 

already deficient in BRCA2 may be more susceptible to thermal sensitization of 

gemcitabine therapy. This speculation is supported by findings of Ying et al. who 

demonstrate BRCA2 deficient cells to be more susceptible to Mre11 inhibition (93). 

These speculations however, need to be tested in future studies.  

We deduce from the mechanism of action described in this study that 

inhibition of HRR by hyperthermia will be most effective when cells recovering from 

gemcitabine are passing through late S and G2 phase of the cell cycle. This 

underscores the need to optimize the dosing schedule in future studies. From 

animal experiments we find that the schedule where the two therapies were give in 

quick succession was comparable to the schedule where hyperthermia was given 

24 hours after gemcitabine. We explain these findings based on the duration of the 

effect of hyperthermia on HRR that lasts 39-48 hours. Our study also helps explain 

findings of Van Bree et al. who noted maximum synergistic effect 24-48 hours after 

gemcitabine dose in a rhabdomyosarcoma model (90). Even though comparative 
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cell cycle analysis was not provided in that study, we expect the cells to be in late S 

or G2 phase 24-48 hours after gemcitabine dose based on our findings. 

While our data suggest that passage of cells through late S/ G2 phase with 

stalled replication forks increases tumor cell kill, the mechanism remains to be 

elucidated. Vertees et al. reported apoptosis to be a significant mechanism from this 

combination therapy (89). In our study we noted that apoptosis was increased in 

tumors treated with combination therapy however, the occurrence of apoptosis was 

infrequent. This may be due to the lack of p53 in our Hep3B tumor model. In 

support of alternative mechanisms we noted increased nuclear fragmentation and 

increased autophagy in tumors treated with combination therapy compared to 

controls. 
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5. Conclusion and future studies 

	 From the findings of this study we conclude that the HRR pathway is 

important in the repair of gemcitabine-stalled replication forks. Inhibition of the HRR-

pathway protein, Mre11, enhances the toxicity of gemcitabine in cancer cells in vitro 

and in vivo.  Thermal enhancement of anti-tumor effect of gemcitabine is mediated 

through inhibition of Mre11-dependent HRR pathway by denaturation and 

degradation of Mre11. Non-invasive RF field-induced tumor selective hyperthermia 

in combination with gemcitabine is superior to either modality alone in orthotopic 

mouse models of hepatocellular carcinoma. 

 Future studies already underway will build on these findings to develop a 

non-invasive combined modality treatment for patients with hepatocellular 

carcinoma. For translation of this modality to clinic, certain questions need to be 

answered first. Specifically, our data strongly suggest Mre11 as a key enzyme 

responsible for the excision of gemcitabine from stalled replication forks. To confirm 

this hypothesis, exonuclease assays will be performed using purified Mre11.  In 

addition the effect of hyperthermia on the ability of Mre11 to excise gemcitabine will 

also be investigated. Our data demonstrate that the effect of hyperthermia is cell 

cycle phase-dependent with maximum effect in the late S and G2 phase. Further 

studies will utilize this information to optimize temporal parameters for maximum 

anti-tumor effects. The findings of the study indicate that the currently available 

inhibitor of Mre11 is not suitable for clinical use. More potent inhibitors need to be 

developed for a thermo-mimetic approach to cancer therapy. In addition, the effects 

of hyperthermia on Mre11 can be further exploited by combination with other DNA 
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damaging agents that activate the HRR-pathway such as other replication inhibitors 

e.g. hydroxyurea, nucleoside analogues or double-strand break inducers including 

platinum compounds, alkylating agents and topoisomerase inhibitors. Finally, 

translation of this modality to the clinic will also require parallel development of the 

non-invasive RF generator hyperthermia system. We are currently performing large 

animal studies to evaluate the safety and efficacy of this system before use in 

humans. 
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