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The presentation of MHC class I (MHC-I)/peptide complexes by dendritic cells 

(DCs) is critical for the maintenance of central tolerance to self and for the regulation of 

cytotoxic T lymphocytes (CTL)-mediated adaptive immune responses against pathogens 

and cancer cells. Interestingly, several findings have suggested that the cytoplasmic tail of 

MHC class I plays a functional role in the regulation of CTL immune responses.  For 

example, our previous studies demonstrated that exon 7-deleted MHC-I molecules (Δ7) not 

only showed extended DC cell surface half-lives but also induced significantly increased 

CTL responses to viral challenge in vivo.  Although the Δ7 splice variant of MHC class I 

does not occur naturally in humans, the animal studies prompted us to examine whether 

exon 7-deleted MHC-I molecules could generate augmented CTL responses in a 

therapeutic DC-based vaccine setting.  To examine the stimulatory capacity of Δ7 MHC 

class molecules, we generated a lentivirus-mediated gene transfer system to induce the 

expression of different MHC-I cytoplasmic tail isoforms in both mouse and human DCs. 

These DCs were then used as vaccines in a melanoma mouse tumor model and in a human 

invitro co-culture system.  
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In this thesis, we show that DCs expressing exon 7-deleted MHC class I molecules 

(Δ7-D
b
), stimulated remarkably higher levels of T-cell cytokine production and 

significantly increased the proliferation of melanoma-specific (Pmel-1) T cells compared 

with DCs expressing wild type MHC-I.  We also demonstrate that, in combination with 

adoptive transfer of Pmel-1 T-cell, DCs expressing Δ7-D
b 

molecules induced greater anti-

tumor responses against established B16 melanoma tumors, significantly extending mouse 

survival as compared to DCs expressing WT- D
b 

molecules. Moreover, we also observed 

that human DCs expressing Δ7-HLA-A*0201 showed similarly augmented CTL 

stimulatory ability. Mechanistic studies suggest that Δ7 MHC-I molecules showed 

impaired lateral membrane movement and extended cell surface half-lives within the 

DC/T-cell interface, leading to increased spatial availability of MHC-I/peptide complexes 

for recognition by CD8+ T cells.  Collectively, these results suggest that targeting exon 7 

within the cytoplasmic tail of MHC class I molecules in DC vaccines has the potential to 

enhance CD8
+
 T-cell stimulatory capacity and improve clinical outcomes in patients with 

cancer or viral infections. 
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CHAPTER 1- INTRODUCTION 

 

1.1 The immune system: Overview 

 

The immune system has evolved many different mechanisms to make rapid, highly 

specific and often protective responses against a wide variety of pathogens, including 

bacteria and viruses. In fact, the tragic example of severe immunodeficiencies as seen in 

some congenitally-determined diseases and in acquired immunodeficiency syndrome 

(AIDS), illustrates the critical role of the immune system in protection against pathogenic 

microorganisms [1; 2]. After a century of much debate as to whether the immune system 

can eliminate tumor cells, strong evidence now suggests that the cellular immune system 

plays a critical role in the control of tumorigenesis [3; 4] The cellular immune system not 

only plays a role in the elimination of pathogens and cancer cells, but it also plays a role in 

the development of several clinical conditions, including autoimmune diseases (i.e. Type 1 

diabetes, Lupus), allergies and rejection of transplanted tissues [5; 6; 7; 8]  

The cells of the immune system originate from hematopoetic stem cells and are 

constantly re-circulating throughout the body for detection of invading pathogens or tumor 

cells. In vertebrates, immune defenses consist of two connected systems: innate and 

adaptive immunity. Cells from the innate immune system express receptors that are 

evolutionary conserved and recognize pathogen-associated molecular patterns (PAMPs), 

which are shared by common microorganisms. This conserved receptor-mediated 

recognition leads to the capture and fragmentation of pathogens into small antigenic 

proteins, accompanied by inflammation and in many cases pathogen clearance. The cells 

mainly responsible for these functions are macrophages and dendritic cells [9; 10] 
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Cells from the adaptive immune system are characterized by their ability to 

specifically recognize a wide range of pathogens and to generate long-lasting memory that 

provides improved protection against re-infection. The adaptive immune responses are 

mediated by T and B lymphocytes, which express highly diverse antigen specific receptors. 

In contrast to the evolutionary-conserved receptors found in innate immune cells, the T-cell 

receptor (TCR) and the B-cell receptor (BCR) are generated by gene rearrangements, 

which provide each single lymphocyte with a unique specificity. B lymphocytes eliminate 

extracellular pathogens by producing antibodies [9; 10]. T lymphocytes are divided into 

two major categories: CD4
+
 T cells and CD8

+
 T cells. These types of lymphocytes are 

known to specifically recognize antigens bound to the groove of MHC proteins, which are 

encoded by a large complex of genes called the major histocompatibility complex (MHC) 

[11]. There are two main structurally and functionally distinct classes of MHC proteins: 

class I MHC proteins and class II MHC proteins.  CD4
+
 T cells recognize antigens bound 

to MHC class II.  This type of T-cell lymphocyte have the ability to help or inhibit the 

development of specific types of immune responses, including antibody production and 

increased microbidicial activity of macrophages. In contrast, CD8
+
 T lymphocytes 

recognize antigens bound to MHC class I molecules. This type of T-cell lymphocyte is 

involved in direct effector functions such as the lysis of virus-infected cells or cancer cells 

[11; 12]. For the purpose of this thesis, the biological functions of CD8
+
 T cells and their 

roles in cancer immunity will be discussed in more details.  

 

 

 

http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5014/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5215/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5421/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5456/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5688/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5456/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5688/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5456/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5688/
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1.2 T cells eliminate tumors and virally infected cells 

The development of T cells begins with the migration of hematopoetic precursors 

from the bone marrow to the thymus.  At the thymus, hematopoetic precursors commit to 

the T-cell lineage, which then undergoes thymic selection.  Thymic selection of the T-cell 

lineage is based on the recognition of self-peptide/MHC class I complexes at the cell 

surface of thymic dendritic cells, and thymic medullary epithelial cells by the TCR of T 

cells [13]. The binding properties of TCRs for their peptide/MHC ligands (i.e. affinity and 

avidity rates) are critically important in not only T-cell thymic selection but also for full 

activation of peripheral T-cell responses [14]. During thymic selection, TCRs with low 

affinity for self-peptide/MHC leads to weak interactions promoting T-cell survival 

(positive selection). However, TCRs with high affinities for self-peptide MHC complexes 

leads to strong interactions promoting T-cell apoptosis (negative selection). Thymic 

selection is important because it induces central tolerance by eliminating autoreactive T-

cells with high affinity TCRs for self peptides and by selecting T-cells with low affinities 

TCRs for self-peptides [14]. Having succeeded thymic selection, naive T cells (i.e. CD8+ T 

cells) then exit the thymus and migrate to peripheral lymph nodes, where they become 

activated into effector T cells that can kill target cells such as tumor cells and virally-

infected cells.  

Naïve T cells are mainly found in peripheral lymphoid organs, and their activation 

is initiated following the recognition of pathogen or tumor-associated antigens on the 

surface of an antigen-presenting cell (APC), usually a dendritic cell. The antigen is in the 

form of peptide fragments which are generated by the degradation of foreign protein 

antigens within the proteosome or acidic compartments (i.e. endosomes) of the APC. The 

http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A4833/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5065/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A4830/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5688/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A4830/
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peptide fragments are then transported into the endoplasmic reticulum (ER) for binding to 

nascent MHC class I proteins. The affinity of the peptide for a specific MHC class I 

molecule is critical for the formation of stable peptide/MHC class I complexes that can be 

recognized by the TCR of the cognate CD8+ T cell. For example, it has been demonstrated 

that peptides bound to MHC class I molecules with low affinity leads to low 

affinity/avidity or weak interactions between the TCR-pMHC complexes resulting in 

incomplete activation of the cognate T-cell. It has also been demonstrated that low affinity 

binding of peptide to MHC can mediate the escape of autoreactive T cells from negative 

selection [15].  

T-cell activation requires two major types of signals: The first signal involves the 

recognition of the peptide/MHC complex located on the surface of an APC by the TCR on 

T cells. The second signal involves the triggering of co-stimulatory molecules (i.e. CD28, 

CD80) and adhesion molecules (i.e. integrins, LFA-1) expressed on the cell surface of both 

the APC and T-cell [12]. These signals lead to the stimulation of the TCR, which in turn 

induces a signaling cascade (i.e. MAPK signaling) that promotes the differentiation of 

naïve T cells into potent effector antigen-specific T cells, such as cytotoxic T cells (CTL) 

[16].  

The antigen recognition event for the generation of the first signal is a very 

sensitive process since it has been demonstrated that as few as 1-50 pMHC complexes are 

sufficient to activate target-cell lysis by CTLs [17]. Two models have been proposed to 

explain how TCR-pMHC interactions result in T cell activation: the serial TCR 

engagement and the kinetic proofreading model. The serial TCR engagement model 

proposes that a single pMHC complex is able to serially trigger multiple TCR molecules 
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since T cell activation can be accomplished at low physiological density of specific pMHC 

complexes on the target cell surface [18]. This model is consistent with different studies 

that have demonstrated that the TCR-pMHC interactions are of low affinity and have rapid 

association and dissociation rates [19]. In conclusion, in order for few pMHC complexes to 

efficiently trigger multiple TCRs, each individual TCR needs to bind and dissociate from 

its ligand with fast kinetics to allow the next TCR to be triggered resulting in a sustained 

TCR signal. On the other hand, the kinetic proofreading model proposes that a minimal 

half-life for the TCR-pMHC interaction is an additional requirement for a complete TCR 

signal [20]. According to this model, fast dissociation of the TCR from the pMHC complex 

would result in incomplete TCR signaling preventing T cell activation. By contrast, a more 

sustained interaction (slow dissociation rates) would allow complete TCR signaling and T 

cell activation. In support of this model, different studies have reported that T cell 

activation correlates with the half-life of the TCR-pMHC interaction [20]. However, it has 

been recently demonstrated that for T-cell activation, both shortened and prolonged TCR-

pMHC interaction half-lives have detrimental effects on T cell activation [21]. Therefore, it 

has been suggested that efficient T cell activation occurs within an optimal dwell-time 

range of TCR-pMHC interaction. It has been described that such dwell-time for triggering 

efficient T cell activation needs to be sufficiently long to complete the TCR signal cascade 

but also short enough to allow serial engagement of multiple TCRs by a few cognate 

pMHC complexes.  

Once naïve CD8+ T cells are activated, they undergo clonal expansion and migrate 

to peripheral tissues expressing the same peptide/MHC class I complex that induce their 

activation. During clonal expansion, the initial numbers of antigen-specific precursors 
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increase more than 1000-fold, generating a pool of effector T cells, which can directly kill 

pathogen-infected cells or tumor cells [22]. The expansion phase usually lasts for 7 to 9 

days. After the effector phase, the majority (90-95%) of antigen-specific T cells die 

through a mechanism called apoptosis in order to maintain homeostasis. The surviving 

cells form a stable memory pool that can generate more rapid and greater responses upon 

secondary encounter with the antigen [23].  Activated T cells also secrete cytokines such as 

interleukin-2 (IL-2) and interferon-γ (IFN- γ), which are known to not only promote T cell 

expansion, but also enhance anti-viral and anti-tumor responses by up-regulating the 

expression of MHC proteins on cancer cells or viral-infected cells [23; 24; 25]. Once 

activated, CTLs migrate through the peripheral tissues where they may encounter cells 

expressing the same foreign antigen that induced their activation and differentiation [12].   

Upon antigen recognition on the target cell, CTLs utilize at least two mechanisms to 

kill the target cell; both mechanisms operate by inducing the target cell to undergo 

apoptosis, which is a highly evolutionary conserved mechanism of cell death that ensures 

the elimination of “unwanted” cells from the body [26].  In order to kill target cells, CTLs 

begin to secrete a pore-forming protein called perforin, which is known to polymerize at 

the target cell surface to form transmembrane pores. Perforin is found in secretory vesicles 

(i.e. CD107a+ vesicles) of the CTLs and is released by exocytosis at the point of contact 

with the target cell [26; 27]. The secretory vesicles also contain granzyme B, which is a 

protease that enters the target cell through the perforin-induced transmembrane pores and 

activates caspase-induced apoptosis [27; 28].  A second strategy that CTL utilize to kill 

target cells is through the interaction of Fas and Fas ligand. Fas is expressed on the target 

cells while Fas ligand is expressed on the surface of CTLs.  The interaction of Fas and 

http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A4839/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5784/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5160/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5784/
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FasL leads to a signaling cascade that activates downstream caspases and subsequent 

apoptosis of the target cell [29].  

Because of their extraordinary capacity to specifically recognize foreign antigens, 

to migrate toward infected areas and to directly kill target cells, CTLs show great promise 

in the development of therapeutic treatment for different diseases, including cancer and 

viral infections. In fact, many studies have used CTLs to treat cancer patients and although 

proven to induce anti-tumor responses, complete responses have been relatively rare [30; 

31; 32]. However, one limitation is that the affinity of most TCRs specific for shared tumor 

antigens is usually very low. Thus, different strategies have been developed to increase the 

affinity and avidity of TCRs. For example, one study has demonstrated that removing N-

glycosylation sites in the constant region of the TCR leads to enhanced avidity and 

improved recognition of tumor cells by T cells [33]. Other studies have demonstrated that 

specific mutations in the CDR3 domain of the TCR can control the TCR-pMHC interaction 

half-lives leading to optimal T cell activation [21]. Another limitation is that CTLs do not 

persist in vivo long enough to eradicate tumors [32]. In addition, cells within the tumor 

microenvironment express or secrete inhibitory factors that downregulate the effector 

functions of CTLs. To overcome these limitations, different studies have developed new 

strategies. For example, in melanoma, the transfer of CTLs into lymphodepleted melanoma 

patients results in objective clinical response rates as high as 50% [34]. Other strategies 

such as vaccines plus adjuvants are currently being developed to increase T-cell 

proliferation and effector functions [35; 36; 37].  
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1.3 Dendritic cells are master regulators of T-cell immunity  

The processing and presentation of peptides by dendritic cells (DCs) is critical for 

the activation and differentiation of naïve T cells into effector cells [38]. DCs are 

professional antigen presenting cells located in most tissues, where they capture, process 

and display antigen-derived peptides on MHC molecules. Following antigen capture and 

processing, DCs migrate to lymphoid organs, where they present peptide-MHC complexes 

to T-cell antigen receptors (TCR) on naïve T cells.  In conjunction with TCR triggering, 

DCs can also engage co-stimulatory and cytokine receptors to influence T cell 

proliferation, survival and effector activity.   

There are different DC subsets with distinct cell surface markers and biological 

functions. Three of the major DC subsets have been described in mouse: (1) CD11c
+
CD8

-

DCs, (2) CD11c
+
CD8

+
 DCs and (3) CD11c

+
CD45RA

+
Gr1

+
 plasmacytoid DCs (PDCs) 

[39]. The CD8
-
DCs have been described to be more efficient at capturing antigens and 

displaying them on MHC class II molecules for recognition of CD4
+
 T cells. On the other 

hand, the CD8
+
 DCs were demonstrated to be more efficient at capturing antigens and 

displaying them on MHC class I molecules to promote CD8
+
 T cell responses [40; 41]. The 

CD8
+
 DCs also have the unique capacity to capture dying cells and display exogenously-

derived antigens on MHC class I molecules, a process termed cross-presentation [41]. 

Because of their capacity to initiate CTL responses in vivo, CD8
+
DCs are the most logical 

targets for vaccine development. In contrast to CD8
-
DCs and CD8

+
DCs, PDCs are the 

main producers of Type I interferons, in particular interferon-α (IFN- α), which has been 

shown to be important for the recruitment and activation of other immune cells into the 

infected area to control disease [42]. In humans, two main DCs subsets have been 

described: myeloid-derived DCs (CD11c
+
CD123

-
) and lymphoid-derived DCs or 
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plasmacytoid DCs (CD11c
-
CD123

+
) [39].  However, in contrast to mouse DC subsets, the 

study of human DC subsets has been more challenging mainly because they only represent 

less than 2% of total cell numbers in tissues, and blood monocytes are the main reliable 

source of precursor cells [35; 43].  Both challenges are being overcome, and adequate DCs 

numbers can now be generated from progenitors. One method to generate sufficient DC 

numbers is by culturing hematopoetic stem cells from bone-marrow (CD34
+
) in the 

presence of different cytokines [44]. Another method is to differentiate DCs derived from 

human blood monocytes that have been cultured with GM-CSF and IL-4, followed by 

activation in a monocyte-conditioned medium.  

  DCs need to undergo a process of activation in order to initiate potent T-cell 

immune responses [38].  During steady state, DCs are mostly found in peripheral tissues as 

immature DCs. Immature DCs (iDCs) are professional phagocytes that can internalize and 

process antigens from pathogens for example. They express low levels of MHC molecules 

(MHC class I and MHC class II), the glycoprotein CD83 and the co-stimulatory molecules, 

CD86 and CD80, which are critical for efficient activation of T cells [38].  Because they 

express low levels of CD80 and CD86, iDCs play an important role in the induction of 

peripheral tolerance, a process required for protecting self tissues. However, upon 

infection, danger signals from pathogens induce iDCs to undergo a differentiation program 

called maturation. This maturation process transforms iDCs into potent activators of T-cell 

mediated immune responses [45]. Danger signals are recognized by evolutionary conserved 

receptors such as Toll like receptors (TLRs), which are abundantly expressed in DCs [46]. 

Upon recognition of danger signals, TLRs initiate a signaling cascade that induces iDCs to 

upregulate MHC and co-stimulatory molecules at their cell surface and to secrete cytokines 
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[38; 46]. Inflammatory cytokines, bacterial and viral products can also induce dendritic cell 

maturation through direct interaction with receptors expressed on DCs [47]. In contrast to 

immature DCs, mature DCs have low phagocytic activity but are remarkably efficient in 

antigen presentation [38].  Mature DC are the most potent antigen presenting cell for 

activating naïve T cells, in particular CD8+ T cells, to differentiate into cytotoxic antigen 

specific T cells (i.e CTLs). This is mainly because mature DCs express high levels of 

antigen presenting molecules (MHC class I and MHC class II) and co-stimulatory 

molecules (CD80, CD86 and CD83) at their cell surface. They also secrete high levels of 

interleukin-12 (IL-12), which is known to mediate the differentiation of CTLs [38]. 

DCs present peptides in the context of MHC class I molecules to CD8
+
 T-cells by 

using two major pathways: (1) direct presentation, in which the cell itself is infected with 

the antigen it presents on MHC-I; and (2) cross-presentation, in which the DCs engulfs 

components of an infected cell and then processes and present the associated antigen bound 

to MHC-I. [48]. However, a third mechanism -cross-dressing- has also been recently 

postulated. This mechanism of antigen presentation involves DCs (acceptor) to acquire 

peptide/MHC-I complexes directly from another infected APC allowing antigen 

presentation by acceptor DC to occur rapidly, without the need of any antigen processing. 

Moreover, Wakim and Bevan have recently reported that cross-dressing can activate 

memory but not naive CD8+ T cells. One possible explanation for this may be that naïve T 

cells, with their high activation threshold, disfavor cross-dressing because it involves the 

presentation of vanishingly small number of peptide/MHC class I complexes.  A more 

detailed molecular description of these pathways is discussed in the MHC molecules 

section.  
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DCs have held great promise for use in vaccines aimed at enhancing pathogen or 

tumor antigen-specific CTLs because of their high potency for initiating T cell-mediated 

immune responses. However, several questions need to be addressed in the development of 

effective vaccines that utilize DCs.  These questions require a deep understanding of the 

biological functions of DCs. For example: the first question to be addressed should be what 

type T-cell mediated immune response is desired: CD4+ T cells or CD8+ T cells? Another 

question to be addressed would be what type of DC subset to use for eliciting such an 

immune response?  Finally, what maturation signals are appropriate for activating DCs in 

particular settings? In cancer settings, several DC vaccines have proven to be effective at 

generating potent CTL-mediated antitumor responses [35]. Some of these vaccines 

formulations are discussed below in the DC cancer vaccines section. 

 

1.4 The role of MHC class I molecules in DC-induced T-cell immunity  

MHC class I molecules are one of the two primary classes of proteins encoded by 

the major histocompatibility complex (MHC), which were discovered to play a critical role 

in tissue rejection and immunity against pathogens and tumors [25].  MHC class I 

molecules are expressed by almost all nucleated cells and their main function is to display 

peptides from intracellular proteins (i.e. viral or self proteins) to CD8
+
 T cells. However, 

MHC class I molecules can also bind and present peptides from extracellular proteins (i.e. 

apoptotic tumor cells) to CD8
+
 T cells, a process known to as cross-presentation [49].  

Once the TCR of CD8
+
 T cells recognizes peptide/MHC class I complexes at the cell 

surface of DCs, a T-cell signaling cascade is initiated that promotes the elimination of 

abnormal or virus-infected cells. 
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MHC class I molecules present peptides through two main pathways: the 

endogenous or classical pathway and the cross-presentation pathway (See figure 1). The 

presentation of intracellular-peptides through the endogenous pathway begins in the cytosol 

of antigen presenting cells with the degradation of proteins, self proteins as well as those of 

pathogens. Degradation occurs in the proteosome, which is a macromolecule with 

proteolytic activity known to degrade cytosolyc proteins into small peptides fragments.   

The resulting peptide fragments are then transported from the cytosol into the lumen of the 

endoplasmic reticulum (ER) through the transporter associated with antigen processing 

proteins (TAP). In the ER, peptides combine with nascent class I MHC proteins with the 

help of ER-resident chaperons, such as calnexin, tapasin, calreticulin and Erp57 [49]. These 

proteins are involved in the proper assembly of a complete receptor complex suitable for 

transport to the cell surface. For example, calnexin is known to stabilize the MHC class I α 

chains prior to β2-microglobulin binding [50]. Tapasin binds to MHC class I molecules and 

facilitates the binding of MHC class I molecules to TAP, thus leading to enhanced peptide 

loading and colocalization. MHC class I molecules lacking a bound peptide are extremely 

unstable and requires the binding of the chaperones, calreticulin and Erp57. Once 

assembled, the peptide/MHC class I complexes are then released from the quality-control 

machinery of the ER and transported to the plasma membrane through the default secretory 

pathway. The transport of MHC class I molecules through the secretory pathway involves 

different prost-translational modifications of the MHC class I molecule, including 

glycosylation [51].  Once the glycosylation process occurs, the MHC class I molecules are 

transported to the plasma membrane, where they present peptides to CD8
+
 T cells, 

followed by internalization, recycling and degradation through different endosomal 
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compartments [52; 53]. On the other hand, cross-presentation is based on the uptake of 

exogenous antigens by DCs via phagocytosis. It has been demonstrated that phagocytosis 

of exogenous antigens (i.e. apoptotic tumor cells) is mediated by Cdc42 and Rac GTPases, 

which trigger actin rearrangements, protrusions of membrane around the apoptotic body 

and engulfment into a phagosome that then fuses with early endosomes for antigen 

fragmentation [54] [49; 55; 56]. Once in early endosomes, exogenously-derived peptides 

can be loaded onto recycling MHC class I molecules and then transported to the plasma 

membrane via Rab dependent mechanisms as demonstrated by different studies [49; 54; 

55]. Once at the cell surface, exogenously-derived peptides can be recognized by CD8+ T 

cells. The fact that antigen loading occurs in endosomal compartments during cross-

presentation, it has been suggested that the classical and cross-presentation pathways of 

MHC class I are spatially separated [52] [56].  

 

 

1.5 MHC class I internalization and endocytosis 

The molecular mechanisms of MHC class I internalization via endocytosis have 

been described by differing studies demonstrating that MHC class I molecules can be 

internalized either via clathrin-coated pits or in a clathrin-independent manner [57; 58]. For 

example, different electron microscopy studies have demonstrated that MHC class I 

molecules can be found in clathrin coated vesicles (CCVs) [57]. Also other reports have 

suggested that the cytoplasmic domain of MHC class I molecules contains a putative 

tyrosine-based endocytic motif (YXXФ, Y=tyrosine, X= any amino acid and Ф = 

hydrophobic amino acid) at position 320 of the cytoplasmic tail [59]. In fact, tyrosine 320 
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point mutants of MHC class I showed internalization defects [60]. It has been demonstrated 

that tyrosine-based endocytic motifs as well as dileucine-based motifs can be recognized by 

specific adaptor and accessory proteins involved in the initial formation of clathrin-coated 

vesicles (CCVs) [61]. The molecular players that regulate clathrin-mediated endocytosis 

have been described. For example, it has been demonstrated that the adaptor protein-2 

complex (AP-2) can recognize both tyrosine and dileucine-based motifs on the cytoplasmic 

domain of cargo molecules (i.e. LDL, MHC-class I, transferrin receptor, CD3-γ) [62]. Such 

interactions promote the formation of peripheral plasma membrane invaginations that are 

then coated with clathrin. Several studies have demonstrated that clathrin polymerization at 

sites of membrane invaginations is regulated by the adaptor molecule, AP180.  AP180 is 

known to recruit clathrin to PtdIns (4, 5)P2 zones in the membrane. Clathrin polymerization 

is important because it initiates the formation of clathrin-coated vesicles (CCVs) neck, 

which is then cut by the membrane accessory scission protein, dynamin [63].  Dynamin is a 

large GTPase that forms a helical polymer around the CCV neck and upon GTP hydrolysis, 

mediates the fission of the vesicle from the plasma membrane promoting the release and 

intracellular transport of the CCVs containing cargo molecules (i.e. MHC class I) [64]. The 

CCVs then fuse to early endosomal compartments, a process that has been demonstrated to 

be Rab5 dependent [65]. Rab 5 is a small GTPase protein found at the plasma membrane 

and in CCVs. It has been suggested that Rab5 directs the trafficking of CCVs from the 

peripheral membrane to early endosomal compartments by binding to specific motor 

proteins of the cytoskeleton (i.e myosin) and by interacting with the early endosomal 

antigen (EEA-1) [65]. Such interaction leads the fusion of Rab-5 expressing CCVs to early 

endosomes. Once in the early endosome compartment, clathrin-dependent cargoes can be 
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sorted into lysosomes for degradation or into recycling endosomes for trafficking back to 

the plasma membrane [64; 66; 67]. It has been demonstrated that membrane recycling of 

clathrin-dependent cargoes is regulated by small the Rab GTPases proteins, Rab4 and 

Rab11. While Rab 4 mediates the rapid recycling of clathrin-dependent cargoes from early 

endosomes to the plasma membrane (rapid recycling), Rab11 mediates the trafficking of 

clathrin-dependent cargoes from early endosomes into recycling endosomes. The recycling 

endosomes then translocate to and fused with the plasma membrane in a Rab11a dependent 

mechanism [67; 68].  

However, internalization and endocytic recycling of MHC class I molecules can 

also be regulated by a clathrin-independent pathway since inhibitors of the clathrin-

dependent pathway (i.e. AP180 mutants, dynamin mutants) did not completely impair 

MHC class I endocytosis [63]. Contrary to the clathrin-dependent pathway, clathrin-

independent endocytic pathway requires the ADP-ribosylation factor 6 (ARF6), actin 

polymerization and Rab22a GTPases for the initial formation of tubular membrane 

invaginations and intracellular trafficking of vesicles containing cargo molecules (MHC 

class I) [Radhakrishna, 1999 #15][69; 70]. ARF6 is a small GTPase that regulates 

peripheral plasma membrane/endosomal trafficking by switching between its GDP and 

GTP form [71; 72]. Previous studies have demonstrated that ARF6 is found to be in its 

GTP form at the inner space of plasma membrane and that ARF6 GTP initiates the 

formation of actin rich surface protrusions, which have been shown to be regulated by the 

actin regulatory protein, HS1 [58; 73].  Inactivation of ARF6-GTP through hydrolysis, 

signals ARF6-GDP expressing vesicles to be transported from the plasma membrane to 

early endosomal compartments via membrane intermediates that are yet to be defined. One 
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study demonstrates that excision of the ARF6 vesicles occurs in a dynamin-independent 

process [69]. However, the molecules that regulate the excision of ARF6 vesicles from the 

plasma membrane has not been described, but is very likely that it could be small GTPases. 

Once in the early endosomal compartment, ARF6-dependent cargoes, encounter clathrin 

dependent cargoes, however, their routes for membrane recycling are regulated by distinct 

Rab proteins. For example, while Rab 4 and Rab 11 have been involved in clathrin-

dependent endocytosis, Rab22a has been shown to allow the correct delivery of MHC class 

I containing vesicles from recycling endosomes to the plasma membrane in a clathrin-

independent manner [70]. The recycling of MHC class I containing vesicles to the plasma 

membrane is also regulated by the conversion of ARF6 GDP to ARF6 GTP through 

nucleotide change [68; 69].  Nevertheless, different internalization and recycling routes 

regulate peptide-MHC class I complex cell surface expression leading to controlled T cell 

activation. The different antigen presentation pathways and trafficking of MHC class I 

molecules are summarized in Figure 1.  
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Figure 1. Antigen presentation and endocytosis of MHC class I molecules. Endogenous 

peptides (green squares) enter the ER via TAP and bind to nascent MHC class I molecules. 

Stable peptide-MHC class I complexes exit the ER and are transported to the plasma 

membrane through the secretory transport pathway. At the plasma membrane, pepitde-

MHC class I complexes are recognized by cognate CD8+ T cells and then internalized via 

clathrin-dependent (mediated by AP-2, dynamin and Rab5) and/or ARF6-dependent 

endocytosis. The peptide-MHC class I complexes then recycle to the plasma membrane via 

different Rab proteins. On the other hand, exogenous antigens (orange) are phagocytosed 

via Rho-a GTPases into early endosomal compartments, where they can be degraded by 

early endosomal proteases (i.e. cathepsins) and loaded onto recycling MHC-I. They can 

also be degraded by the proteosome and transported into early endosomes via endosomal 

TAP. The pMHC complexes are then transported to the plasma membrane for cross-

presentation to CD8+ T cells.   
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1.6  Role of the MHC-I cytoplasmic tail 

Many distinct MHC class I loci have been described in both humans and mice. In 

humans, functional genes have been found for the HLA-A, -B, -C, -E, -F, and –G in the 

short-arm of chromosome 6 [74].  In mice, MHC class I molecules are encoded by the H-

2K, D and L loci on chromosome 17. The products of the different MHC class I loci show 

distinct tissue distributions and regulation of expression.  For example, the HLA-A, -B and 

–C products are expressed on a wide variety of somatic cells, with the highest expression in 

hematopoetic cells. HLA-G is expressed by throphoblasts in the fetus [75].  Each human 

gene is highly polymorphic. For example, there are more than 800 known variants of HLA-

B genes, more than 500 variants of HLA-A genes, and more than 100 variants of HLA-C 

genes.  The high diversity of MHC class I molecules is of critical significance because it 

ensures the presentation of a very wide variety of peptides to CD8
+
 T cells. Expression of 

MHC class I molecules can be regulated by several cytokines such as IFN-γ and TNF-α. 

For example, several studies have shown that MHC class I molecules can be highly 

upregulated in several different cell lines following the addition of IFN-γ and/or TNF- α to 

the culture [49]. 

The crystal structure of a MHC class I molecule (HLA-A2) was first described in 

1987 by Bjorkman and co-workers [76]. The three-dimensional structure of class I 

molecules demonstrated that MHC class I are heterodimers consisting of a 44-kd α chain 

noncovalently bound to a 12-kd soluble polypeptide called β2-microglobulin, which is not 

encoded by the MHC locus (See figure 2). The class I α chain is composed of three 

extracellular domains (α1, α2, and α3), a transmembrane segment, and a short cytoplasmic 
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tail. Portions of the alpha chain are highly variable, with the polymorphisms located mainly 

in the in the α 1 and α 2 domains. The α1 and α2 domains associate closely to form a deep 

groove that constitutes the binding sites for antigenic peptides. They also constitute the 

binding sites for the T-cell receptor [77]. By contrast, the amino acid sequence of the α3 

domain is mostly conserved. It interacts with β2-microglobulin and also serves as binding 

site for the CD8 co-receptor, which facilitates the interaction of T cells with MHC class I 

molecules.  The peptides that associate with MHC class I molecules are characterized by 

having preferential anchor residues, which are important for binding to specific MHC class 

I alleles [78; 79].  For example, HLA-A2 binds peptides that almost always have a leucine 

residue in the second position and a valine residue in the last position, while the other 

residues are highly variable [76].  Many different peptides can be presented by a particular 

class I MHC protein since a few of the residues are crucial for MHC-I binding. Thus, a 

tremendous repertoire of peptides can be presented by these molecules to T cells. 

Different studies have demonstrated that the ~35 amino acid short cytoplasmic tail 

of MHC-I plays a critical role not only in intracellular trafficking but also in DC-mediated 

antigen presentation and CTL activation [80; 81]. The cytoplasmic tail of MHC class I is 

encoded mainly by two separate exons (6 and 7), both containing a number of highly 

conserved motifs (See figure 3) [80]. The biological function of the MHC class I 

cytoplasmic tail was demonstrated by different groups using various cytoplasmic tail 

mutants of MHC class I [80; 82; 83]. One study revealed that deletion of the entire MHC-I 

cytoplasmic tail resulted in a complete abrogation of anti-viral CTL responses in vivo [51].  

Other studies demonstrated that the tyrosine residue (Tyr-320) located in exon 6 is a 

putative endocytic motif that is required for appropriate MHC-I trafficking through DC 
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endosomal compartments, cross-presentation of exogenous antigens, and anti-viral CTL 

priming [60; 80]. By contrast, deletion of exon 7-encoded cytoplasmic amino acids results 

in increased anti-viral CTL responses in vivo [80]. Interestingly, it has been shown that 

several species including mice, chickens and bovine, naturally express exon 7-deleted 

MHC class I variants [84; 85; 86]. Such splice variants lack at least one conserved serine 

phosphorylation site, Ser-335, and have been shown to exhibit delayed internalization in a 

number of cell types, including DCs [80; 87]. However, in contrast to Tyr-320-mutated 

MHC-I, MHC class I molecules lacking exon 7 maintain their ability to recycle through 

DC endosomal compartments, and appear to be fully functional at binding and presenting 

both endogenous and exogenous antigens [80; 88].  

The intracellular trafficking of MHC class I molecules in different cell types is 

regulated by its own cytoplasmic tail.  For example, different studies have shown that wild-

type (WT) surface MHC class I proteins are rapidly internalized and recycled through 

endocytic compartments of both human and mouse DCs. This process is cytoplasmic tail-

dependent and limits the surface half-life of MHC-I/peptide complexes for recognition by 

CD8
+
 T cells [88]. Since MHC class I molecules lacking exon 7 were demonstrated to have 

increased cell surface half-lives in DCs, we hypothesized that expression of MHC class I 

molecules lacking exon 7 might lead to superior antigen presentation and therefore more 

efficient CTL activation. In this thesis we tested this hypothesis by comparing the relative 

capacity of WT and 7 MHC-I molecules to stimulate antigen-specific CTL responses in a 

DC-based vaccine setting. 
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Figure 2:  Elements of the MHC class I cytoplasmic tail show a high degree of 

evolutionary conservation.  The cytoplasmic tail of MHC class-I is mostly composed of 

exon 6 and exon 7. Alignment of the amino acid sequences derived from the MHC class I 

cytoplasmic tail of widely divergent species reveals absolute conservation of amino acids 

(red arrows). Tyrosine 320 (highlighted in yellow) and Serine 335 (highlighted in green) 

are two highly conserved amino acids. Colors depict acid R-group charge characteristics: 

yellow, hydrophobic; blue, polar and uncharged; red, positively charged; and grey, 

negatively charged.  

 

 

 

 

 

 

 

 

 

 

 

 

 



  23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  24 

 

1.7 Skin cancer: Melanoma 

Cancer is a complex disease that causes millions of deaths worldwide and therefore 

has been classified as a major problem in public health [89]. Many cancers develop when 

DNA damage leads to different mutations that promote cells to grow out-of-control [90]. 

Among all types of cancers, non-melanoma skin cancer is the most common type of cancer 

in the United States with more than 2 million people being diagnosed every year [91].  

Non-melanoma skin cancer is divided into basal cell carcinoma and squamous cell 

carcinoma; both being less life-threatening and significantly more common than 

melanoma. Although melanoma only represents approximately 4% of all skin cancers, 

epidemiological studies have demonstrated that it causes approximately 75% of deaths 

related to skin cancer mostly due to its increased metastatic potential [92]. In the past 3 

decades, the incidence of melanoma has increased dramatically, with Caucasians and men 

older than 50 years old being at a higher risk of developing metastatic melanoma.  

Melanoma usually appears as an existing mole that begins to change color, size or 

morphology. This type of skin cancer develops from the uncontrolled growth of 

melanocytes, which are mostly located in the bottom layer of the skin‟s epidermis but can 

also be found in the middle layer of the eye, the inner ear, bones, intestines, and heart [93]. 

Melanocytes are the major producers of melanin, which is a ubiquitous dark pigment 

responsible for the color of skin and hair. The main function of melanin is to protect the 

skin from ultraviolet light-induced radiation which can cause serious mutations in the 

DNA. If the mutations are not repaired by the DNA repair machinery, melanocytes begin to 
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grow abnormally and may become malignant cells that can eventually lead to the 

development of melanoma [94]. 

 Although there are different melanoma risk factors including family history and 

genetics, the largest melanoma risk factor is the prolonged exposure to ultraviolet rays 

(UV) from the sunlight and tanning beds. Ultraviolet rays are classified into UV-A 

(400 nm–315 nm), UV-B (315 nm–280 nm) and UV-C (280 nm–100 nm). However, UV-

associated skin carcinogenesis studies have revealed that UV-B radiation accounts for 

about two-thirds of melanoma cases [94].  Mechanistic studies have shown that UV-B 

radiation causes mutations in genes involved in cell proliferation, differentiation and death. 

For example, specific mutations in the BRAF gene (i.e. mutation V600E), which is 

involved in cell growth, lead to the progression of melanoma as demonstrated by DNA 

screening analyses in human samples These DNA screening studies determined that 

approximately 60% of melanoma cases are associated with V600E BRAF [95] 

  Melanoma can be detected by using different methods including X-rays, PET 

scans, CT scans and ultrasound. Detection at earlier stages is highly important for better 

prognosis [96]. The progression of melanoma is divided into different stages based on 

tumor size, ulceration, metastatic potential and survival rates [97]. Patients diagnosed with 

stage 0 or melanoma in situ have abnormal melanocytes in their epidermis that may spread 

to adjacent normal tissues if not surgically removed.  If the disease is diagnosed and treated 

at this early stage, there is almost 100% chance of survival. Patients with stage I have 

developed melanoma in the epidermis and dermis of their skin but it has not spread to 

nearby lymph nodes The tumor size at this stage is approximately less than 2mm and the 
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survival rate is 85-99%.  The most common treatment for this stage is surgical removal of 

the tumor. If the tumor is not surgically removed during stage I, then the tumor may 

continue to grow and develop ulceration. Ulceration is a negative prognostic factor for 

patients with stage II melanoma and is associated with the presence of epidermis in the 

tissue overlying the tumor [96; 97].  Patients diagnosed with this stage have a 40-85% 

survival chance after treatment.  Stage III melanoma is characterized by tumors that have 

spread or metastasize to nearby lymph nodes. Patients diagnosed with stage III melanoma 

have about 30-60% survival chance after treatment.  During stage IV melanoma, cancer 

cells have spread to other organs including distant lymph nodes, skin, liver, brain and 

lungs. Patients diagnosed with stage IV have only a 10-20% survival chance after 

treatment. The chance of survival is increased when the tumor is diagnosed and treated at 

early stages [96; 97].   

 Melanoma, in contrast to other types of cancer, is highly immunogenic. In the past 

two decades, many different melanoma-associated antigens have been described and 

demonstrated to be specifically recognized by the immune system [32]. Based on these 

findings, many studies aim to use the cellular immune system for the treatment of 

melanoma since conventional chemotherapy regimens only leads to 10% of clinical 

responses [98]. The treatment for melanoma includes surgical removal of the tumor, 

chemotherapy, radiotherapy, immunotherapy or a combination of these treatments [96]. 

Different immunotherapy regimens for the treatment of melanoma and other types of 

cancers are discussed in the next section.  
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1.8 Cancer Immunotherapies 

The concept of Immunotherapy evolved from early murine studies demonstrating 

that the immune system can recognize and eliminate pathogens and tumors with high 

specificity.  Immunotherapy refers to any approach that utilizes the patient‟s natural 

immune defense system as a treatment for different diseases, including autoimmune 

disorders, infectious diseases and cancer [30]. Immunotherapy for cancer was first 

introduced by William B. Coley in the nineteenth century. In his studies, he observed 

tumor regression and even disappearance following injections of a vaccine containing 

bacterial extracts in and around tumors [99].  Based on many of his seminal observations, 

different cancer immunotherapy methods are currently under development with the main 

purpose of enhancing the body's natural immune defense to specifically recognize and 

eliminate tumor cells. The main advantage of using immunotherapies, is that they are 

specifically targeted to only eliminate malignant cells and not normal cells resulting in 

lower toxicity levels compared to those induced by many chemotherapy regimens [100].  

However, there are many barriers to be overcome in the development of cancer 

immunotherapy.  The concept of Immune survilliance was not widely accepted until 

experimental models demonstrated that lymphocytes spontaneously migrate to tumors and 

there, they collaborate to control tumor growth in inbred mice [30].  However, tumor cells 

and their microenvironment have evolved different mechanisms to favor tumor outgrowth 

despite immune survilliance.  One strategy is that tumor cells, in contrast to normal cells, 

become more resistance to cell death or apoptosis in conditions where nutrition and oxygen 

supplies are limited [101; 102]. Another strategy is that tumor cells have the ability to 

regulate the expression of critical molecules involved in the induction of immune 
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responses. For example, tumor cells downregulate the expression of MHC and co-

stimulatory molecules while upregulating co-inhibitory molecules such as PD-L1 and PD-

L2, which suppress the effector function of T cells [103; 104; 105]. Also, cells within the 

tumor microenvironment, including stromal cells and fibroblasts, secrete high levels of 

inhibitory factors, such as interleukin-10 (IL-10) and tumor growth factor-β (TGF- β) [101; 

102]. Inhibitory immune cells including T regulatory cells (Tregs), immature dendritic cells 

and myeloid-derived suppressor cells (MDSC) have also been found in the tumor 

microenvironment and play a critical role in the regulation of immune responses. All of 

these barriers within the tumor microenvironment suppress the function of anti-tumor 

specific T cells, leading tumor escape and progression of tumorigenesis. However, many 

different clinical strategies have now been developed to block or suppress the negative 

activity of the tumor microenvironment, and therefore boost antigen-specific T cell 

mediated anti-tumor immunity [105].  

Immunotherapy for cancer is divided into two categories: Passive immunotherapy 

and active immunotherapy. Passive immunotherapy involves the generation of immune 

components in the laboratory that are eventually administered into patients in order to 

provide immunity against tumors. One advantage of using passive immunotherapy is that it 

does not require the patient‟s immune system to take an active role in the elimination of 

tumors. Thus, such immunotherapy is preferred when the patient‟s immune system is 

highly compromised due to large tumor burdens or previous therapies. One disadvantage of 

this approach is that tumors may become resistant to this therapy as the cancer cells mutate 

or downregulate surface expression of targeted antigens [30].By contrast, active 

immunotherapy usually involves the generation of vaccines to stimulate the patient‟s own 
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immune system to fight cancer. One major advantage of using this type of immunotherapy 

is that it can induce both therapeutic immunity (in the form of tumor-specific effector T 

cells) and protective immunity (in the form of tumor specific memory T cells that can 

control tumor relapse) [100]. Different examples of current immunotherapy regimens are 

illustrated below.  

 

 

CANCER IMMUNOTHERAPY 

PASSIVE ACTIVE 

Monoclonal antibodies:  

 Anti-CD20 (Rituximab) for 

Non-Hodgkin‟s Lymphoma. 

 Anti-CTLA-4 (Ipilimumab) for 

Melanoma 

 Anti-HER2 (Herceptin) for 

breast cancer 

Adoptive T-cell Transfer: 

 Ex vivo–engineered T cells 

(CARs) 

 TILs 

Antigen-specific vaccines: 

 Peptide vaccines 

 DC vaccines 

 Tumor lysates 

 

Antigen non-specific vaccines: 

 IFN-α 

 IL-2 

 TNF-α 

The use of monoclonal antibodies is an example of passive immunotherapy. 

Monoclonal antibodies are molecules engineered in the laboratory that specifically 

recognize particular targets on cancer cells (i.e. tumor antigens) [106]. Monoclonal 

antibodies can be administered into patients intravenously. Once monoclonal antibodies 

recognize cancer cells it can lead to disruption of cancer cell growth, or to increase anti-

tumor immunity. One example of a monoclonal antibody currently used to treat B-cell 

lymphomas resistant to other chemotherapy approaches is Rituximab [107]. Rituximab was 

approved by the FDA in 1997 based on its safety and effectiveness in clinical trials. This 

monoclonal antibody binds to the CD20 molecule on B cells. CD20 has been described to 

regulate cell proliferation, and blocking its activity using rituximab leads to elimination of 
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malignant B cells. Another example of a FDA-approved monoclonal antibody to treat the 

most aggressive type of breast cancer (HER2
+
 breast cancer) is Herceptin [108; 109]. 

The use of immune cells such as T cells with anti-tumor activity is another example 

of passive immunotherapy. Since the discovery that T cells can kill tumors, different 

approaches have been developed for adoptively transferring tumor specific T cells into 

cancer patients [31; 32]. This approach requires the isolation of T cells from the patient‟s 

tumor followed by the progressive ex vivo expansion of those tumor-specific autologous T 

cells using high concentrations of IL-2. The main purpose of the ex vivo expansion is to 

increase the number of tumor-specific T cells with potent anti-tumor function for 

subsequent infusions into patients. Although early clinical studies were disappointing, 

recent reports have demonstrated that prior lymphodepletetion using chemotherapy 

increases the anti-tumor activity of the infused T cells, resulting in approximately 50% 

objective clinical responses in patients with metastatic melanoma [110].  

  One example of active immunotherapy is the use of vaccines. Vaccines have been 

widely used to boost the immune system‟s natural ability to protect the body against 

pathogens that may cause disease. Based on the same principles used to generate vaccines 

against infectious agents, several therapeutic anti-cancer vaccines have been developed for 

the treatment of different cancers, including melanoma, prostate, breast, lung and other 

cancers [111]. Cancer vaccines are biological preparations designed to stimulate immune 

cells, mainly CD8
+
T cells, and direct them to recognize and kill specific types of cancer. 

One approach to generate a cancer vaccine is to isolate tumor antigens from cancer cells 

and immunize cancer patients directly with the main purpose of inducing greater immune 
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responses against those specific antigens [112; 113].  Although many tumor antigens have 

been reported for different cancers, not all of them can boost immune responses against 

cancer cells.  Therefore, many clinical cancer vaccine trials aim to select antigens that are 

specifically recognized by CD8
+
T cells.  Some examples of tumor antigens recognized by 

CD8
+
T cells and have been demonstrated to boost anti-tumor responses following 

vaccination are the melanoma-associated antigens: Melan-A/MART-1, NY-ESO-1 and 

gp100 [114; 115; 116].  

 Cytokines have also been widely used as an active immunotherapy approach. 

Cytokines are substances that are naturally produced by white blood cells and their main 

role is to regulate immune responses. Some cytokines are known to increase the effector 

functions of CD8+ T cells (i.e. IL-2), whereas other cytokines inhibit the activity of these T 

cells (i.e. IL-10) [117]. Cytokines such as IL-2, IFN-α and GM-CSF have been frequently 

used in the clinic [118]. GM-CSF and IL-2 have proven to be effective adjuvants to boost 

the activity of cancer vaccines by either improving antigen presentation of tumor antigens 

or by supporting the effector function of vaccine-induced T-cell immune responses [118]. 

IFN-α has already been approved by the FDA to treat many cancers, including melanoma 

[119].  

1.9 Dendritic Cell cancer vaccines  

 

 

The generation of effective cancer vaccines depends not only on the discovery of 

target antigens but also on strategies to deliver those antigens to elicit tumor-specific T cell 

immune response. To elicit potent T-cell mediated immune responses against cancer, 

several different cancer vaccines have now been designed and tested clinically to treat 
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different types of cancers, including metastatic melanoma and lymphomas.  These have 

included immunizing patients with defined tumor-associated antigens (i.e. single peptides 

or whole tumor proteins), naked plasmid DNA, attenuated viral vectors, and dendritic cells 

(DCs) [120; 121].  Although early studies demonstrated that the use of each vaccine as 

single therapy regimen induced low objective clinical responses, more recent studies have 

shown that cancer vaccines are significantly more effective when used in combination with 

adoptive cell transfer of tumor-specific T cells [36].   

Of all the different vaccine formulations tested clinically, vaccines that utilize DCs 

have demonstrated the best combination of safety and efficacy [43]. The main goal of DC-

based cancer vaccines is to boost T cell-mediated antitumor immunity by introducing 

dendritic cells loaded with specific tumor-associated antigens to patients. Different 

methods to develop DC cancer vaccines have been used in both animal models and clinical 

trials. One method is the ex-vivo generation of antigen-loaded DCs. This method involves 

(1) the isolation of dendritic cells or precursors from the peripheral blood of cancer 

patients, (2) the ex-vivo DC culture and loading with a specific antigen obtained from the 

patient‟s own tumor and (3) the re-infusion of the antigen-loaded dendritic cells back into 

the patients to boost T cell-mediated anti-tumor immune responses [35]. The use of these 

ex-vivo generated DC cancer vaccines has generated effective anti-tumor responses in 

different studies. For example, clinical studies have demonstrated that vaccination with 

DCs pulsed with a melanoma antigen results in long term tumor regressions in patients 

with late stage metastatic melanoma as compared to other vaccine approaches (i.e viral 

vectors, plasmid DNA) [44; 122]. Also, our group has previously reported that giving a 

combination of tumor antigen-specific CD8+ T-cells and DCs pulsed with a tumor peptide 
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results in significant anti-tumor responses in a melanoma animal model [36]. Another 

method to deliver antigens for the generation of DC cancer vaccines is the in vivo DC 

targeting using antibodies against specific DC surface receptors, such as DEC205 [123; 

124; 125; 126]. One advantage of this method is that is does not require the ex-vivo 

generation of DCs, which can be an expensive process. Although clinical trials need to be 

performed to demonstrate the effectiveness of the in vivo DC targeting method, preclinical 

studies in mice demonstrate that such strategies promote substantial augmentation of 

antigen-specific T cell immunity. 

 

Understanding the biology of DCs is critical for the generation of effective DC 

cancer vaccines. DCs have a number of important advantages over other vaccines. For 

example, one advantage is that they have the ability to take up antigens from different 

tissues, such as the skin, and process them for subsequent presentation to T cells. Another 

advantage is that DCs express high levels of antigen presenting molecules (MHC 

molecules) and co-stimulatory receptors (i.e. CD80, CD86) and secrete large amounts of 

cytokines (i.e. IL-12) which are important for T cell activation, proliferation and 

differentiation [35; 38; 127].  But perhaps the most important advantage is that they can 

induce both therapeutic and protective anti-tumor immunity.  Thus, DCs possess a number 

of important attributes that make them highly suitable as vaccines for generating antitumor 

immunity.  

Although DC vaccine approaches have shown much promise, clinical responses 

remain relatively rare. Recently, the FDA has approved the use of PAP-GM-CSF fusion 

protein (Provenge) developed by Dendreon as the first therapeutic cancer vaccine for the 
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treatment of prostate cancer [128; 129].   The approval of Provenge not only demonstrates 

that efficacy of DC-based cancer vaccines in treating advance prostate cancer but it has 

also opened the doors for the development of vaccines for other types of cancer, including 

melanoma and breast [111].   

Several limitations need to be overcome to increase the potency of current DC 

vaccines. One limitation is that the presentation of peptides (i.e. tumor- associated 

peptides) by DCs is limited due to rapid internalization of peptide/MHC class I complexes 

into acidic intracellular compartments (i.e. lysosomes) for degradation [88; 130; 131]. This 

rapid internalization process is regulated by the MHC class I cytoplasmic tail and limits the 

cell surface half lives of peptide/MHC class I complexes for recognition by CD8
+
 T cells. 

To overcome this limitation, we generated a modified DC vaccine with enhanced antigen 

presentation capacity by introducing specific mutations into the MHC class I cytoplasmic 

tail. One of the MHC class I modified DC vaccines demonstrated substantially increased 

anti-tumor T cell responses in vivo as compared with a DC vaccine expressing the wild 

type MHC class I variant [132]. These studies provide a strong rationale and method of 

improving DC-based therapeutic vaccines for use in cancer therapy. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  35 

 

 

1.10 Long term goal, objectives and hypothesis of the present work 

 

 

The long term goal of this dissertation is to better understand the regulation of 

MHC class I antigen presentation in DCs so that we can identify key target proteins that are 

involved in MHC class I trafficking and antigen presentation at the molecular level. The 

identification of these molecules may lead to new insights that will provide rationale for 

improved design of DC-based vaccines. The generation of such vaccines may be used to 

manipulate T-cell immune responses in different clinical settings including autoimmunity, 

chronic infectious diseases and cancer. In particular, the main objectives of this 

dissertation are to evaluate the role of the MHC class I cytoplasmic tail in DC-induced T-

cell immune responses and to understand the role of the cytoplasmic tail in trafficking, cell 

surface half-lives, clustering and polarization of peptide/MHC-I complexes, which are 

critical for the initiation of CD8+ T cell-mediated immune responses.  

We hypothesized that exon 7 encoded by the MHC-I cytoplasmic tail may regulate 

DC antigen presentation and modulate T-cell immune responses. For this purpose, we have 

evaluated the stimulatory capacity of DCs expressing exon 7-deleted MHC-I molecules at 

inducing CD8+ T cell immune responses in vivo and invitro. In addition, we have 

evaluated the cell surface half-lives and clustering of exon 7-deleted MHC class I 

molecules in human DCs.  
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CHAPTER 2-RESULTS 

 

2.1 Mouse DCs express similar levels of wild type and Δ7 variants of H-2D
b 

 

 

To test the capacity of DCs expressing exon 7-deleted MHC class I at inducing 

CTL- mediated immune responses, we first developed a PCR-based site-directed 

mutagenesis protocol to specifically remove exon 7 (encoding 13 amino acids of the 

cytoplasmic tail, including the serine phosphorylation site) of the mouse H-2D
b
 

cytoplasmic domain [86]. Following sequencing analysis, bicistronic lentiviral vectors 

under the regulation of the Mouse Stem Cell Virus (MSCV) promoter were generated to 

induce the expression of WT H-2D
b
 or Δ7 H-2D

b
 molecules in mouse bone-marrow 

derived DCs (BM-DCs) from DBA/2 mice (haplotype H-2
d
). Green fluorescent protein 

(GFP) was also expressed from a downstream internal ribosome entry site (IRES) (Figure 

A). To confirm the expression levels of WT H-2D
b
 or Δ7 H-2D

b
 molecules in DCs, we 

stained surface H2-D
b
 molecules using a fluorescently labeled H2-D

b
 monoclonal antibody 

and performed flow cytometry analysis at 72 h after transduction. The flow cytometry 

analysis showed that DC transduction efficiencies range from ~15 to 30% using a MOI of 

10. In addition, such analysis demonstrated that transduced BM-DCs express comparable 

levels of WT H-2D
b
 and Δ7 H-2D

b 
molecules at the cell surface (Figure B).  These data 

indicated that peptide binding and trafficking of newly synthesized H-2D
b
 molecules from 

the endoplasmic reticulum to the plasma membrane was not affected by the mutations 

generated in the cytoplasmic tail of H-2D
b
.   
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Figure 3. Expression of WT and delta 7 variants of H2Db in mouse bone marrow 

derived DCs following transduction. (A) Bicistronic lentiviral vectors encoding either 

WT-H2D
b
, Δ7-H2D

b
 or GFP molecules driven off by the Mouse Stem Cell Virus (MSCV) 

promoter were used to transduce mouse bone marrow derived dendritic cells. Lenti vectors 

also contain an IRES element to drive the expression of GFP.  (B)  Bone marrow-derived 

DCs from DBA2 mice were transduced to express either wild-type (WT) H-2D
b
/GFP, exon 

7-deleted (Δ7) H-2D
b
/GFP, or GFP alone.  Following transduction, DCs were stained for 

H2D
b
 and the levels of H2D

b
 and GFP molecules were analyzed by flow cytometry. U = 

untransduced DCs, GFP = DCs expressing GFP alone, WT = DCs expressing wild type 

H2D
b
/GFP and Δ7 = DCs expressing Δ7-H2D

b
/GFP.  Reprinted from “Natural splice 

variant of MHC class I cytoplasmic tail enhances dendritic cell-induced CD8+ T-cell 

responses and boosts anti-tumor immunity” Tania G. Rodriguez-Cruz, Shujuan Liu, Jahan 

Khalili, Mayra Whittington, Minyin Zhang, Willem Overwijk and Gregory Lizee. PLos 

ONE 2011 6(8):e22939.  
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2.2 Δ7-D
b 

DCs induce enhanced CD8
+
 T-cells effector functions in vitro.  

The effector functions of melanoma specific CD8+ T-cells following stimulation 

with transduced DCs were also evaluated. For this, transduced BM-DCs were pulsed with 

titrated concentrations of human gp100 peptide and co-cultured with gp100-specific CD8+ 

T cells (Pmel-1 T cells) in vitro. Pmel-1 T cells were preferred in these studies because 

they can recognize gp100 peptide in association with H2D
b
 molecules [133]. Following 4h 

of co-culture, flow cytometry analysis was performed to measure the surface expression of 

CD107a (degranulation marker) and intracellular IFN-γ in Pmel-1 T cells.   

The analysis demonstrated that BM-DCs expressing Δ7-D
b 

and pulsed with 10nM 

of hgp100 peptide stimulated a much higher proportion of Pmel-1 T-cells to produce 

intracellular IFN-γ and express surface CD107a as compared to DCs expressing WT-D
b
 

(71% vs. 20%) (Figure A).  Similar results were also obtained at higher and lower peptide 

concentrations (Figure B).  Interestingly, we observed that DCs expressing delta 7 induced 

strong Pmel-1 T-cell IFN-γ production at peptide amounts at least 10-fold lower than the 

lower limit of IFN-γ detection for DC expressing WT-H2D
b 

(Figure C), suggesting that the 

binding properties of the TCR to its pMHC-I ligand may be modulated by modifications in 

the cytoplasmic tail of MHC-I.  In addition, naïve Pmel-1 T cells produced significantly 

higher amounts of IFN-γ, IL-2, TNF-α, and GM-CSF following priming by DCs expressing 

delta 7 H2D
b
 as measured by a Luminex assay (Figure D).  These data indicated that exon 

7 deleted H2D
b
 molecules retained their antigen presentation function in our DC-vaccine 

settings. Also, these results suggested that deletion of exon 7 within the cytoplasmic tail of 

MHC-I may increase the TCR affinity and avidity for gp-100/H-2Db complexes resulting 
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in enhanced T-cell activation even at very low peptide concentrations. Based on these data, 

we hypothesized that exon 7 deleted MHC class I molecules may induce stronger T-cell 

anti-tumor responses in vivo and in clinical settings.    
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Figure 4. Δ7/H-2D
b 

DCs stimulate superior cytokine production and degranulation by 

CD8
+
 T-cells.  DCs expressing either WT-H2D

b
/GFP, Δ7-H2D

b
/GFP or GFP alone were 

pulsed with different concentrations of hgp100 peptide, and co-cultured with gp100-

specific Pmel-1 CD8
+
 T cells for 4hours. Unpulsed DCs (0nM of peptide) were used as 

controls. (A) A representative contour plot of intracellular IFN-γ production and CD107a 

expression in Pmel CD8+ T cells following stimulation with transduced DCs. (B) 

Percentage of intracellular CD107a in Pmel T cells following stimulation with transduced 

DCs pulsed with titrated amounts of gp100.  This data is a representative of one triplicate 

experiment out of three. Data shows mean ± S.D. (C) Transduced DCs pulsed with titrated 

amounts of hgp100 peptide were co-cultured with Pmel CD8
+
T cells for 18hrs.  The levels 

of IFN-γ production in supernatants were analyzed by ELISA.  (D) IFN-γ, GM-CSF, IL-2 

and TNF-α release by Pmel-1 T cells following 72hrs stimulation with hgp100 peptide-

pulsed (10 nM) DCs expressing either WT-H2D
b
/GFP, Δ7-H2D

b
/GFP or GFP alone, as 

determined by Luminex. All results are representative of one from four replicate 

experiments. Data shows mean ± S.D. p values were calculated using a Student t test 

comparing the effects of delta 7 with WT-H2Db.  * = p values <0.05. This research was 

originally published in “Natural splice variant of MHC class I cytoplasmic tail enhances 

dendritic cell-induced CD8+ T-cell responses and boosts anti-tumor immunity” Tania G. 

Rodriguez-Cruz, Shujuan Liu, Jahan Khalili, Mayra Whittington, Minyin Zhang, Willem 

Overwijk and Gregory Lizee. PLos ONE 2011 6(8):e22939.  
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2.3 Δ7-D
b
 DCs stimulate improved Pmel-1 T-cell priming  in vitro and invivo.  

Proliferation of tumor-specific T cells is critical for the sustentation of potent anti-

tumor immune responses [32]. Therefore, we next tested the ability of DC vaccines 

expressing exon 7-deleted H2D
b
 molecules to induce the priming and proliferation of 

antigen-specific CD8+ T-cells.  For this, naïve Pmel-1 T cells were labeled with CFSE and 

co-cultured for 4 days with hgp100-pulsed DCs expressing either WT-D
b
 or Δ7-D

b 
in vitro. 

 

To assess the relative priming abilities of exon 7-deleted Db mutant, flow cytometry was 

performed on day 2, 3, and 4 following DC stimulation. Flow cytometry analysis showed 

that DCs expressing Δ7-D
b
 molecules induced a significantly higher proportion of Pmel-1 

T cells to undergo proliferation compared to DCs expressing WT-D
b
 molecules under all 

conditions tested. We also observed that the difference was particularly dramatic at limiting 

peptide concentrations, with Δ7-DCs clearly outperforming the WT-DCs at 1 nM and 

0.1nM peptide (Figure A). In particular, the most striking difference was observed at 96 hr 

using 0.1nM of gp100 peptide. In this condition, Δ7-DCs improved the proliferation of 

Pmel-1 T cells more than 10 fold as compared to WT-DCs. These results suggested that 

deletion of exon 7 within the cytoplasmic tail of MHC-I may increase the antigen 

presentation and priming capacity of DCs as well as the affinity and avidity of the TCR for 

pMHC-I leading to a more sustained T-cell activation signaling.  

Based on the results above, we then compared the capacity between WT and Δ7 DC 

vaccines at inducing CD8+T-cell priming in vivo.  For this, we co-injected naïve Pmel T 

cells along with peptide-pulsed DCs expressing WT-D
b
 or Δ7 D

b
 into the tail-vein of Thy 

1.2+ C57BL/6 recipient mice and analyzed T-cell proliferation. The percentage of Pmel-1 

T cells in peripheral blood was analyzed by flow cytometry over time. Similar to the in 
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vitro results, DCs vaccines expressing Δ7 D
b
 molecules stimulated significantly better 

Pmel-1 T-cell priming than DC vaccines expressing WT D
b
 molecules (16% vs. 4% of total 

CD8+ T cells at the peak of the response), Figure C. However, we also observed that T 

cells from WT and Δ7 groups ceased proliferation by day 9 after injection. This may have 

resulted due to large amounts of T-cell death since previous studies have demonstrated that 

the majority of T-cells have short-half lives after priming. This result suggested that T-cell 

priming and proliferation may be sustained by increasing DC vaccine doses [36] 
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Figure 5. In vitro and invivo priming of CD8+ T cells following stimulation with 

transduced
 
DCs. (A) WT-H2D

b
/GFP, Δ7-H2D

b
/GFP or GFP DCs were pulsed with 

titrated concentrations of hgp100 (25-33) peptide, and used to activate CFSE-labeled, naïve 

Pmel-1 CD8
+
 T cells invitro.  Proliferation of gated Pmel T cells was analyzed at 48 hours, 

72 hours, and 96 hours of co-culture by flow cytometry based on CFSE dilution. Numbers 

on histograms indicates the percentage of divided Pmel T cells following priming with DCs 

expressing WT-H2D
b
 (blue) or Δ7-H2D

b
 (black). (B) Normalized data was plotted to 

analyze statistical differences between WT and Δ7 DCs by using a student Ttest. * = 

p<0.05, ** = p<0.01. Data was normalized to control samples (unpulsed DCs). GFP control 

sample was referred as 1.  Error bars represent SEM from three individual samples. (C) 

Transduced DCs were pulsed with 300nM of hgp100 peptide, and adoptively transferred 

along with Pmel-1 CD8
+
 T cells into C57BL/6 mice. DC-induced T-cell expansion in vivo 

was analyzed by measuring the percentage of Thy1.1
+
 Pmel-1 T cells in peripheral blood at 

days 3, 6, 9 and 14 following adoptive transfer.  U, untransduced DCs. Error bars represent 

SEM of three mice per group.  This result is a representative of three independent 

experiments. This data was originally published in “Natural splice variant of MHC class I 

cytoplasmic tail enhances dendritic cell-induced CD8+ T-cell responses and boosts anti-

tumor immunity” Tania G. Rodriguez-Cruz, Shujuan Liu, Jahan Khalili, Mayra 

Whittington, Minyin Zhang, Willem Overwijk and Gregory Lizee. PLos ONE 2011 

6(8):e22939.   
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2.4 Δ7-2D
b
 DC vaccines induce improved T-cell anti-tumor responses in vivo 

 Because it has been shown that exon 7-deleted MHC class I molecules induced 

enhanced anti-viral T-cell responses and that Δ7 H-2Db DCs lead to improved Pmel T-cell 

proliferation [80] [and data presented above], we sought to determine whether DC vaccines 

expressing Δ7 H-2Db could lead to better T cell-mediated anti-tumor responses. To test 

this, we used an adoptive Pmel-1 T-cell transfer model in combination with DC vaccines to 

treat gp100-expressing B16 melanoma tumors as described previously [36].  Mice were 

first inoculated with B16 melanoma subcutaneously before given i.v. co-injection of Pmel-

1 T cells and gp100-pulsed DCs expressing WT or Δ7 H2D
b
 molecules. Tumor size, levels 

of Pmel-1 T cells in the blood and survival levels were then analyzed over time following 

treatment.  

We observed that the tumor size at day 23 post-treatment was significantly smaller 

in mice treated with a Δ7-D
b
 DC vaccine compared to mice treated with a WT-D

b
 DC 

vaccine (p = 0.04 at day 23) (Figure A). Also, the percentage of peripheral blood Pmel-1 T 

cells was greater in tumor bearing mice treated with Δ7 DC vaccines at days 7 and 21 

(Figure B). In addition Δ7 DC vaccines along with Pmel-1 T cells also resulted in a 

significant survival benefit (mean survival 31d vs 20 d, p = 0.0004) compared to mice 

administered with WT DC vaccines and Pmel-1 T cells (Figure C).   

Collectively, these results indicated that Δ7 MHC class I molecules could provide a 

substantial advantage over WT MHC class I molecules for stimulating T-cell mediated 

anti-tumor responses in a DC-based cancer vaccine setting. 
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Figure 6: CD8+ T-cell anti-tumor responses following stimulation with transduced 

DCs. Transduced DCs pulsed with 300nM of hgp100 peptide were co-injected along with 

Pmel CD8+ T cells into tumor (B16 melanoma) bearing mice, followed by 3 days of 

intravenous IL-2.  (A) B16 tumor size at different time points, following treatment with 

transduced DCs along with Pmel T cells. This data is a representative of one from three 

replicate experiments. Error bars represent mean ± S.D. * = p <0.05. p values were 

calculated using a student t test. (B) Flow cytometry analysis of the relative percentages of 

Pmel-1 T-cells in the peripheral blood of treated animals at days 7 and 21 after treatment. 

This data is a representative of one from three replicate experiments. Error bars represent 

mean ± S.D. * = p <0.05. p values were calculated using a student t test. (C) Survival 

analysis of treated mice as measured by the Kaplan Meier method. A Student T test was 

used to analyze the statistical significance of the groups. p = 0.0004 (mean survival 31d vs 

20 d). All data are representative of a minimum of 3 replicate experiments. N = 8 mice per 

group.  This data was originally published in “Natural splice variant of MHC class I 

cytoplasmic tail enhances dendritic cell-induced CD8+ T-cell responses and boosts anti-

tumor immunity” Tania G. Rodriguez-Cruz, Shujuan Liu, Jahan Khalili, Mayra 

Whittington, Minyin Zhang, Willem Overwijk and Gregory Lizee. PLos ONE 2011 

6(8):e22939.  
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2.5 Transduced human DCs express comparable levels of wild type and Δ7 isoforms 

of HLA-A*0201 

The mechanistic insights from the murine studies prompted us to next evaluate 

whether the Δ7 isoform of HLA class I could similarly enhance human CTL responses. 

First, lentiviral vectors encoding WT (WT-A2) or Δ7 (Δ7-A2) HLA-A2 molecules under 

the control of the human ubiquitous PGK promoter were developed and used to induce the 

expression of such HLA-A2 variants into primary human DCs (derived from CD34+HSC) 

and the human KG-1 DC-like cell line, (Figure A).  Following 5 days post-transduction, 

surface levels of WT-A2 and Δ7-A2 were measured in both CD34+-derived DCs and KG-1 

cells using a HLA-A2 fluorescently-labeled monoclonal antibody and by flow cytometry.  

The flow cytometric analysis demonstrated that transduced human DCs expressed 

comparable cell surface levels of WT-A2 or Δ7-A2 (Figure B). We also observed that those 

DCs expressed comparable levels of CD86, CD80, MHC class II, CD11c, B7H-1, B7-DC 

and CD70 (data not shown).  This data suggested that deletion of exon 7 from the HLA-A2 

cytoplasmic tail did not abrogate the molecule‟s transport from the endoplasmic reticulum 

to the cell surface of human DCs.  
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Figure 7: Expression of WT and Δ7 variants of HLA-A*0201 in human DCs.  (A) 
Lentiviral vectors used to transduce human DC-like KG-1 cells and human CD34-derived 

DCs. The human phosphoglycerate kinase (hPGK) promoter was used to drive the 

expression of WT and Δ7 isoforms of HLA-A*0201. Bottom, Predicted amino acid 

sequences of the cytoplasmic domains of WT and Δ7 HLA-A*0201. Exon 7-encoding 

amino acids are depicted as red, and bold font indicates reported phosphorylation sites. (B) 

Human DC-like KG-1 cells and primary CD34
+
-derived DCs were transduced to express 

comparable levels of surface HLA-A*0201, as determined by HLA-A2-specific mAb 

staining and flow cytometry. WT-A2, grey and blue histograms; Δ7-A2, black and green 

histograms.  Light grey histograms represent untransduced DCs.  Reprinted from“Natural 

splice variant of MHC class I cytoplasmic tail enhances dendritic cell-induced CD8+ T-cell 

responses and boosts anti-tumor immunity” Tania G. Rodriguez-Cruz, Shujuan Liu, Jahan 

Khalili, Mayra Whittington, Minyin Zhang, Willem Overwijk and Gregory Lizee. PLos 

ONE 2011 6(8):e22939.  
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2.6 Δ7-A2/DCs facilitated augmented inflammatory cytokine production by human 

CTL.  

We next evaluated the capacity of human DCs expressing Δ7-A2 to stimulate 

human antigen-specific CD8+ T cells effector functions. For this purpose, human DCs 

(KG-1 cells and CD34+-derived DCs) expressing either WT-A2 or Δ7-A2 were pulsed 

with different concentrations of MART-1 (melanoma antigen recognized by T cells) 27L 

peptide. Peptide pulsed-DCs were then used to stimulate MART-1 specific CD8+ T cells in 

an 18h invitro co-culture system. The levels of different inflammatory cytokines produced 

by the MART-1 specific T cells following stimulation were then analyzed in co-culture 

supernatants using ELISA and Luminex.       

Similar to the murine studies, we observed that both human primary DCs and KG-1 

cells expressing Δ7-A2 molecules and pulsed with 10nM MART-1 peptide significantly 

increased IFN-gamma production from MART-1 specific CD8+ T cells as compared to 

peptide-pulsed DCs expressing WT-A2. MART-1 specific T cells alone or co-cultured with 

untransduced DCs (No-A2) produced almost undetectable amounts of IFN-gamma as 

expected (Figure A). The difference in IFN-gamma production from MART-1 specific T 

cells was even more significant at lower peptide concentrations. We observed that MART-

1 specific T cells produced undetectable amounts of IFN-gamma when DCs expressing 

WT-A2 were pulsed with 1nM of peptide. However, at the same peptide concentration, 

DCs expressing Δ7-A2 were able to stimulate MART-1 specific T cells to produce more 

than 4,000 pg/ml of IFN-gamma, Figure B.  In addition, we also evaluated the capacity of 

DCs expressing Δ7-A2 to stimulate influenza matrix protein 1 (FluM1)-specific CD8+ T 

cells from the peripheral blood mononuclear cells (PBMC) of normal donors. Similar to the 



  55 

studies using MART-1 specific T cells, KG-1 cells expressing Δ7-A2 molecules induced 

significantly enhanced FluM1-specific inflammatory cytokine and chemokine production 

compared to KG-1 cells expressing WT-A2 molecules.  The levels of IFN-γ, MIP-1α and 

MIP-1β were 3 to 5-fold higher and the levels of IL-2, MCP-1, and TNF-α were typically 

>10-fold higher than WT-A2 stimulated T-cell cultures as measured by Luminex.  The 

levels of VEGF produced by Flu specific T cells following stimulation with transduced 

DCs were almost undetectable in our invitro system, Figure C.   

The fact that DCs expressing Δ7-A2 stimulated enhanced T-cell effector function at 

very low concentrations of peptide suggested that the affinity and avidity properties of the 

TCR may be modulated by specific motifs in the MHC-I cytoplasmic tail. Based on these 

results and previous studies that have demonstrated that the efficacy of CTLs cellular 

responses is highly dependent upon their functional avidity, we hypothesized that Δ7-A2 

molecules may increase the functional avidity of effector T cells to recognize tumor cells or 

infected cells during the killing or efferent phase. We tested this hypothesis in the human 

T-cell expansion experiments.  
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Figure 8: CD8
+
 T-cell inflammatory cytokine secretion following stimulation with 

transduced human DCs. (A) Transduced KG-1 cells and CD34
+
-derived DCs were pulsed 

with the melanoma peptide, MART-1 (100 nM), and co-cultured with MART-1-specific 

CD8
+
 T cells. Overnight culture supernatants were analyzed for IFN-

ELISA. (B) Transduced KG-1 cells were pulsed with titrated concentrations of FluM1 

peptide, and used to stimulate influenza-specific CD8
+
 T cells. IFN-γ secretion in response 

to titrated amounts of FluM1 peptide was analyzed by ELISA. (C) Specific inflammatory 

cytokine release in response to DC stimulation for 18h, as determined by Luminex. All 

results are representative of a minimum of 3 replicate experiments. * = p values <0.05. P 

values were calculated using a student T test analysis comparing the effects of delta 7 with 

WT-H2Db.   This data was originally published in “Natural splice variant of MHC class I 

cytoplasmic tail enhances dendritic cell-induced CD8+ T-cell responses and boosts anti-

tumor immunity” Tania G. Rodriguez-Cruz, Shujuan Liu, Jahan Khalili, Mayra 

Whittington, Minyin Zhang, Willem Overwijk and Gregory Lizee. PLos ONE 2011 

6(8):e22939.  
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2.7 Δ7-A2/DCs improved the expansion of antigen specific CD8+ T cells 

Because one goal of DC vaccines is to stimulate the expansion of human antigen-

specific T cells, we next went onto determine whether DC expressing Δ7-A2 molecules 

increase the expansion of HLA-A*0201 restricted CD8+T cells compared to DCs 

expressing WT-A2 in an invitro co-culture system. For this, we isolated CD8+ T cells from 

normal donor PBMCs (Flu specific T cells were <1% of the CD8+ T cell compartment) 

and co-culture them with Flu-pulsed KG-1 cells expressing either WT-A2 or Δ7-A2 for the 

period of 9 days. Following co-culture, the expansion of Flu-specific CD8+ T cells was 

measured by using a FITC-conjugated CD8+ specific antibody, an APC-conjugated Flu 

specific tetramer and flow cytometry.   

We found that FluM1 peptide-pulsed Δ7-A2 KG-1 cells facilitated superior 

expansion of FluM1-specific CD8+ T-cells compared with WT-A2 KG-1 cells (2 fold 

increased expansion) and that this effect was most remarkable at lower peptide 

concentrations (Figure A).  However, we did not observe significant differences in the MFI 

of tetramer staining following T-cell expansion. These results led us to think that Δ7-A2 

may not affect the affinity and avidity of the TCR following priming since previous studies 

have shown that the intensity of tetramer staining correlates with the affinity and avidity of 

TCRs.  We also observed similar results for the expansion of CMV-specific T cells from 

normal donor PBMC following a single round of in vitro stimulation with transduced KG-1 
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cells (Figure B). As expected, antigen specific T cells co-culture with untransduced KG-1 

cells showed a modest expansion.  

To test whether Δ7-A2 molecules may affect the functional avidity of the primed 

Flu specific T cells during the killing or efferent phase, T-cell intracellular IFN-γ and 

expression of CD107a was measured by flow cytometry following a second round of 

stimulation with peptide pulsed T2 cells. Although their distinct expansion indices, we 

found that CD8
+
 T cells expanded by either Δ7-A2 or WT-A2-expressing DCs were 

equally functional with regard to functional avidity, intracellular IFN-γ levels, and 

degranulation capacity (Figure C). These results suggested that deletion of exon 7 within 

the MHC-I cytoplasmic tail increases the expansion and effector function of CTLs through 

mechanisms independent of affinity and functional avidity of antigen specific T cells. We 

also attempted to evaluate the in vitro expansion of melanoma-specific CD8+ T cells using 

a single round of DC stimulation but was found to be significantly less robust compared 

with virus-specific T cell expansion. 
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Figure 9: Expansion of human antigen-specific CD8+ T cells following stimulation 

with transduced KG-1 cells.  KG-1 cells expressing WT-A2 or Δ7-A2 molecules were 

pulsed with 100nM of the influenza peptide (FluM1). Cells were then used to stimulate the 

expansion of influenza-specific CD8
+
 T cells isolated from normal donors PBMCs in vitro. 

Following 8days stimulation, the expansion of influenza-specific CD8+ T cells was 

determined by tetramer analysis and flow cytometry. Numbers on top of blue squares 

represent the % of Flu specific CD8+ T cells (Figure A). The % of Flu specific CD8+ T 

cells and mean fluorescence intensity (MFI) of the Flu tetramer were analyzed to measure 

statistical differences between the WT and Δ7-A2 groups following stimulation (Figure B).  

Transduced KG-1 cells were pulsed with Flu peptide and CMV peptide (pp65 peptide) and 

used to stimulate both Flu and CMV specific CD8+ T cells in vitro. The total number of 

virus-specific CD8+ T cells was then analyzed by the tryptan-blue method following 

invitro co-culture with transduced KG-1 cells (Figure C). Following expansion, T cells 

were then analyzed for effector function. For this, expanded T cells were co-cultured with 

T2 cells pulsed with titrated amounts of Flu peptide. After 4h stimulation, intracellular 

IFN-γ and surface CD107a was analyzed by flow cytometry (Figure D). All data are 

representative of at least 4 replicate experiments. Error bars represent SEM. A student T 

test was used to calculate p values and evaluate statistical differences between the WT-A2 

and Δ7-A2 experimental groups.   Reprinted from “Natural splice variant of MHC class I 

cytoplasmic tail enhances dendritic cell-induced CD8+ T-cell responses and boosts anti-

tumor immunity” Tania G. Rodriguez-Cruz, Shujuan Liu, Jahan Khalili, Mayra 

Whittington, Minyin Zhang, Willem Overwijk and Gregory Lizee. PLos ONE 2011 

6(8):e22939  
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2.8. Δ7-HLA-A*0201 isoforms show increased bio-availability of MHC-I/peptide 

complexes for recognition by CD8
+
 T cells. 

Because previous studies have demonstrated that the duration of peptide/MHC 

complexes at the cell surface plays a critical role in the activation of T cells, we 

hypothesized that Δ7 MHC-I splice variant may show prolonged cell surface half-lives on 

APCs leading to improved T cell activation and cellular responses [21]. To test this 

hypothesis, we compared the surface half-lives of peptide/MHC class I complexes (WT or 

Δ7) over time by using a TCR-like monoclonal antibody that specifically recognizes 

MART-1/HLA-A*0201 peptide complexes. Consistent with murine studies [80] Δ7-

A2/MART-1 peptide complexes demonstrated extended cell surface half-lives that were 

approximately twice that of WT-A2/peptide complexes in KG-1 cells (~16 h vs. ~8 h) as 

measured by flow cytometry (Figure A). Furthermore, confocal microscopy of transduced 

KG-1 cells revealed similar steady-state plasma membrane distributions of WT and Δ7 

HLA-A*0201 when cells were incubated at 4°C. However when KG-1 cells were 

incubated at 37°C, Δ7-A2 molecules demonstrated substantially impaired lateral membrane 

movement and polar „capping‟ compared with WT-A2.  Instead, Δ7-A2 molecules 

remained relatively evenly dispersed at the plasma membrane (Figure B).   

Moreover, MART-1-specific CD8
+
 T cells co-cultured with peptide-pulsed KG-1 

cells expressing WT-A2-GFP fusion proteins induced very similar clustering of WT-A2-

GFP molecules that was invariably localized at the region of the DC/T-cell interface 
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(Figure C). However, Δ7-A2-GFP fusion proteins, showed little or no such membrane 

spatial clustering in response to CD8
+
 T-cell contact (Figure C). As expected, the increased 

spatial distribution of membrane Δ7-A2/MART-1 complexes was also associated with an 

increase in the mean number of MART-1-specific T cells capable of forming conjugates 

with co-cultured Δ 7-A2 KG-1 cells on a per-APC basis following 2 h of co-culture (Figure 

D). Furthermore, larger order clusters of DC-T cell conjugates were formed after 6 hours of 

co-culture (Figure E) indicating that antigen presentation by Δ7-A2 molecules increases T-

cell/DC interactions.  

These data suggested that lateral movement and MHC-I clustering at the plasma 

membrane may be modulated by specific motifs within the cytoplasmic tail of MHC class I 

molecules and that such modulation may regulate T cell response outcomes. Also, these 

data suggested that delta 7 MHC class I molecules may show distinct signaling casacades 

that may affect antigen presentation, survival and cytokine production profiles of the APCs.  

However, how the MHC-I cytoplasmic tail modulate MHC-I clustering and signaling and 

how these parameters affect T cell activation at the molecular level need to be determined.  
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Figure 10:  Surface mobilization and bioavailability of surface peptide/MHC class I 

complexes in KG-1 cells expressing WT-A2 or Δ7-A2 molecules. KG-1 cells expressing 

WT- or Δ7-HLA-A*0201 were pulsed with the melanoma-associated peptide (MART-1, 

20nM) for 1hr at room temperature. Cells were then collected at different time points (0, 6, 

12 and 24 hrs) following cell culture at 37°C, and stained at 4°C with a fluorescently-

labeled TCR-like mAb that specifically recognizes HLA-A2/MART-1 complexes (Altor 

Biosciences). Graph depicts the mean fluorescence intensity (MFI) of surface WT-

A2/MART-1 and Δ7-A2/MART-1 complexes on the cell surface of transduced KG-1 cells 

at each time point as analyzed by flow cytometry (Figure A).  Transduced KG-1 cells were 

stained with a fluorescently-labeled HLA-A2-specific mAb (green) on ice to label surface 

HLA-A2 molecules. Cells were then incubated for 30 min at 4°C or 37°C and plated onto 

poly-L-lysine treated coverslips for confocal microscopy analysis (Figure B). KG-1 cells 

expressing WT-A2-GFP or Δ7-A2-GFP fusion proteins were pulsed with MART-1 peptide 

(100 nM) and co-incubated with MART-1-specific CD8
+
 T cells (Figure C to E). Cells 

were then stained for CD3 (red), and analyzed by confocal microscopy. Arrows show 

augmented cell surface distribution of Δ7-A2/GFP fusion proteins (Figure C). Figure D 

shows quantification of the mean number of CD8
+
 T-cells in contact with one KG-1 

expressing either variant of HLA-A2 (WT or Δ7). Figure E demonstrates typical higher-

order of APC/T-cell clusters as analyzed by light microscopy following 6h of co-culture. 

Reprinted from “Natural splice variant of MHC class I cytoplasmic tail enhances dendritic 

cell-induced CD8+ T-cell responses and boosts anti-tumor immunity” Tania G. Rodriguez-

Cruz,et al. PLos ONE 2011 6(8):e22939 
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CHAPTER 3  

DISCUSSION AND FUTURE IRECTIONS 

 

3.1 Summary  

The major aims of this dissertation were to evaluate the function of the MHC class I 

cytoplasmic tail in DC-induced CTL anti-tumor and anti-viral responses, and in the 

regulation of surface internalization and polarization. We have addressed these aims by 

using both a melanoma mouse tumor model and a human in vitro DC/T-cell co-culture 

system.  Specifically, we have demonstrated that DCs expressing exon 7-deleted MHC 

class I isoforms (Δ7-D
b
), stimulated remarkably higher levels of CTL-cytokine production 

and also increased the proliferation of melanoma-specific (Pmel-1) T cells compared with 

DCs vaccines expressing wild type MHC-I in vitro.  Additionally, we have demonstrated 

that, in combination with adoptive transfer of melanoma specific T-cells, DC vaccines 

expressing Δ7-D
b 

isoforms stimulated enhanced anti-tumor responses against established 

B16 melanoma leading to extension of mouse survival. Moreover, we showed that human 

DCs expressing Δ7-HLA-A*0201 molecules showed similarly augmented CTL stimulatory 

ability as compared to DCs expressing WT-HLA-A*0201 molecules. Finally, we have 

demonstrated that Δ7 MHC-I isoforms show impaired lateral membrane polarization and 

extended cell surface half-lives within the DC/T-cell interface, leading to increased spatial 

availability of MHC-I/peptide complexes for recognition by CD8+ T cells.  Collectively, 
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this work demonstrates that the MHC class I cytoplasmic tail plays a key role in the 

generation of both mouse and human anti-tumor CTL responses.  

 

3.2 MHC class I cytoplasmic tail splice isoform occur naturally in several species 

The cytoplasmic tail of MHC-I shows an extraordinary high level of conservation 

of certain amino acids including Tyrosine 320 in exon 6, and Serine-335 in exon 7 [80; 86]. 

Interestingly, these amino acids have been described to be the potential phosphorylation 

sites of MHC class I [80; 87]. Several studies have reported different natural alternate 

splice isoforms of MHC class I heavy chains and that the generation of most of these 

isoforms involves the deletion of specific exons leading to truncated, elongated or soluble 

MHC class I molecules [84; 85; 134]. Of interest, previous studies have reported that exon 

7 splicing isoforms of MHC class I occur naturally in mice, cows, and chickens resulting in 

a shorter cytoplasmic tail lacking the highly conserved Serine 335 phosphorylation site [84; 

85; 86; 135]. One possible reason why alternative splicing occurs around exon 7 may be 

because it is composed of less than 50 base pairs as demonstrated by previous studies, 

which indicated that the length of internal exons plays a critical role in splice site selection 

[136]. However, how these splice variants isoforms of MHC-I affect immune responses is 

not well understood. Sequence analysis of more than 10,000 human expressed sequence 

tags for HLA-A, -B, and –C have suggested that exon 7-deleted splice variants of classical 

HLA alleles may not exist. Nevertheless, exon 7-deleted isoform of HLA-A*0201 showed 

a significantly enhanced capacity to stimulate human CD8+ T cells, suggesting that a 

potential loss of exon 7 splicing in humans during evolution may have had functional 
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implications for adaptive immunity, potentially providing protection from CTL-mediated 

autoimmunity or excessive inflammatory responses.  

 

 

 

3.3 The role  of the MHC-I cytoplasmic tail in the generation of T-cell responses 

Because the presentation of peptides bound to MHC class I molecules is essential 

for the activation of CD8+ T cells, we examined whether the cytoplasmic tail of MHC class 

I molecules plays a functional role in the activation of both mouse and human CTL 

responses. We first hypothesized that exon 7 encoded by the cytoplasmic tail of MHC-I 

could regulate T-cell priming and effector function. To test this hypothesis, we generated 

DCs expressing either wild type or exon 7-deleted mutants of both H-2Db and HLA-A2 

and evaluated their stimulatory capacity to induce priming and effector function of antigen-

specific T cells in vitro and invivo. We found that exon 7 of MHC class I is completely 

unnecessary for the transport to the cell surface and as well as for the ability of MHC class 

I to acquire peptides since these molecules were able to be to recognized by cognate CD8+ 

T cells. Interestingly, we found that exon 7-deleted MHC class I molecules significantly 

induced superior T-cell immune responses as compared to native MHC-I in both murine 

and human systems. Our findings are consistent with previous studies supporting the idea 

that the MHC class I cytoplasmic tail contains motifs that can regulate T-cell activation 

resulting in increased or decreased CTL immune responses [80; 88].  For example, one 

study demonstrated that MHC class I molecules containing a point mutation in Tyr 320 

(ΔY MHC-I) encoded by exon 6 of the cytoplasmic tail induced suboptimal CTL responses 
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after viral challenge in vivo [80]. The same study also demonstrated that MHC-I molecules 

lacking exon 7, in contrast to ΔY MHC-I molecules, induced superior CTL responses after 

viral challenge [80]. Moreover, another study showed that HLA-A2 molecules lacking the 

entire cytoplasmic tail demonstrated diminished recognition by EBV-specific T cells in 

vitro [137]. However, our recent preliminary data indicated that H-2Db molecules lacking 

the entire cytoplasmic tail induced T-cell proliferation similarly to native molecules in vivo 

(Figure 13). Taken together these results suggested that the MHC class I cytoplasmic tail 

can regulate T cell immune responses. The potential mechanisms by which MHC-I 

cytoplasmic tail may regulate such immune responses are discussed below. 

 

3.4 Role of MHC-I cytoplasmic tail in internalization and endocytosis 

This and previous studies have clearly demonstrated that MHC-I molecules lacking 

exon 7 induced superior CTL responses in vitro and in vivo [80] However, the potential 

mechanisms of action that may contribute to such effect are poorly understood. Because it 

has been demonstrated that internalization can affect the duration of antigen presentation 

by MHC-I molecules, we first hypothesized that exon 7 of MHC-I molecules may regulate 

internalization and that such regulation may lead to different T cell response outcomes 

[130]. We found that Δ7 HLA-A2 isoforms show delayed internalization rates as compared 

to WT-HLA-A2, suggesting that peptide/Δ7 HLA-A2 complexes are more stable at the cell 

surface than peptide/WT-HLA-A2 complexes. These results were consistent with previous 

studies demonstrating that specific mutations in the cytoplasmic tail of mouse MHC-I 

alleles can impair MHC-I internalization and endocytosis [59; 60; 80; 88; 138]. The results 

presented in this study suggested that internalization of MHC class I molecules can be 
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modulated by exon 7 of the MHC class I cytoplasmic tail. However, how exon 7 of the 

MHC-I cytoplasmic tail regulates internalization and trafficking of MHC-I molecules is not 

very well understood at the molecular level.  

 Since Δ7 MHC-I lacks two highly conserved serine residues and one being the 

phosphorylation site of MHC-I (Ser 335), it could be possible that serine phosphorylation 

in exon 7 may initiate a signal cascade that promotes MHC-I internalization [87]. However, 

how phosphorylation of MHC-I affect internalization at the molecular level has yet to be 

elucidated. Previous studies have reported that MHC-I molecules can undergo 

phosphorylation at the cell surface and in endosomal compartments [139]. Studies on 

cytoplasmic tail mutants of MHC class I molecules have suggested that phosphorylation of 

the cytoplasmic tail may play an important role in antigen presentation and trafficking of 

MHC-I molecules. For example, independent studies have demonstrated that mutations in 

the highly conserved tyrosine encoded by exon 6 of the MHC-I cytoplasmic tail impairs 

MHC-I trafficking into endosomal compartments and abrogated the ability of DCs to cross-

present antigens [60; 80]. In addition, it has been suggested that phosphorylation of MHC-I 

molecules may tag MHC-I to undergo endocytic trafficking since inhibition of MHC-I 

phosphorylation by primaquine resulted in impaired recycling [139]. Moreover, it has been 

suggested that the cytoplasmic tail of MHC-I contains endocytic motifs that may mediate 

internalization possibly through interactions with different adaptor proteins, such as AP-2, 

ARF-6, RhoA and Rab family members which are known to regulate internalization and 

trafficking of different cell surface receptors by interacting with cytoskeletal components 

[54; 65; 70]. Therefore, it is possible that serine phosphorylation in exon 7 of the MHC-I 

may lead to the recruitment of AP-2 and/or ARF6 for example, and that such interactions 
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may allow the recruitment of other molecules perhaps clathrin, Rab proteins or different 

components of the cytoskeleton leading to rapid internalization and degradation [62; 71; 

130; 138; 139]. It would be interesting to perform co-immunoprecipitation as well as 

mutagenesis experiments to elucidate whether AP-2, ARF-6 and Rab proteins can bind to 

exon 7 of the MHC-I cytoplasmic tail. These experiments may help to elucidate the 

molecular mechanisms leading to MHC-I internalization and provide a better 

understanding on how antigen presentation can be regulated. 

However, we also found that although the reduced MHC-I DC surface 

internalization contributed to enhanced CTL immune responses, much of the increased 

stimulatory capacity by Δ7 was observed at early time points of DC-T cell interactions (1 

to 3 hours), when WT MHC-I molecules had yet to undergo significant internalization. 

These results suggested that other cellular mechanisms such as cytoskeleton-induced 

polarization and clustering of MHC class I molecules towards the immune synapse may 

also contribute to the greater stimulatory capacity of Δ7 MHC class I molecules. In fact, it 

has been demonstrated that MHC-I clustering can affect the sensitivity ofT-cell recognition 

and that the DC cytoskeleton is required for the polarization and the formation of a 

functional immunological synapse but the molecular events are yet to be elucidated [140] 

[141; 142]. 

 

 

3.5 Role of the cytoplasmic tail in MHC-I clustering 

 

To evaluate whether the cytoplasmic tail plays a role in cytoskeleton-induced 

polarization and clustering, we compared cell surface clustering of WT versus Δ7 MHC 

class I molecules in DCs following TCR ligation by confocal microscopy studies. We 
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found that recognition of peptides at the cell surface of APCs by cognate CD8+ T cells lead 

to rapid „super clustering‟ of WT MHC-I molecules at the site of T-cell contact. This result 

supported previous studies and our data suggesting that rapid internalization of MHC-I 

molecules is initiated following „super clustering‟ at the cell surface [141; 143]. We 

observed that this „super clustering‟ of WT MHC class I molecules greatly limited the bio-

availability of MHC-I/peptide complexes for recognition by CD8
+
 T cells. However, unlike 

WT MHC class I molecules, Δ7 MHC-I molecules showed significantly impaired „super 

clustering‟ at the site of T-cell contact, leading to increased MHC-I/peptide complex bio-

availability and enabling APCs to stimulate more CD8+ T cells on a per-cell basis.  

These results are consistent with previous studies demonstrating that MHC class I 

clustering at the cell surface of APCs modulates sensitivity of T cell recognition [141]. In 

addition, these results revealed that exon 7 in the cytoplasmic tail of MHC-I may regulate 

MHC-I clustering at the immunological synpase. However, how the cytoplasmic tail of 

MHC-I influences clustering at the molecular level is not well understood. Biophysical 

studies on lateral mobility and diffusibility have suggested that MHC-I molecules must 

cross the barriers imposed by the membrane lipid raft domains in the sub-membrane 

cytoskeleton in order to accumulate in the immunological synapse [141; 144; 145]. Studies 

by Damjanovich demonstrated that MHC class I clustering at the immune synapse involves 

dynamic homoassociations of MHC class I molecules as well as dynamic 

heteroassociations between MHC-I molecules and other proteins, including adhesion 

molecules and co-stimulartory molecules [146; 147]. Moreover, it has been demonstrated 

that the diffusion of MHC-I molecules in the plasma membrane is influenced by structural 

features of the MHC-I molecule and by the underlying cytoskeleton [148]. For example, 
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fluorescence photobleaching and recovery experiments on truncation mutants of MHC-I 

have demonstrated that the cytoplasmic tail restricts MHC-I mobility on the membrane by 

interacting with the cytoskeleton, which restricts the molecule‟s lateral diffusion in the 

membrane [148]. For example, studies by Capps have demonstrated that H-2Ld mutant 

having a cytoplasmic tail of seven amino acids was as restricted in its lateral mobility as the 

WT molecule with a full length of 31 amino acids. In contrast, H-2Ld mutants having a 

cytoplasmic tail of 4 amino acids or no cytoplasmic tail had a higher mobile fraction and a 

longer barrier-free path that did the WT molecules [145; 149; 150]. These studies 

suggested that the length and charge of the MHC class I cytoplasmic tail affects lateral 

diffusion. Consistent with those studies, we found that HLA-A2 molecules with full length 

cytoplasmic tail showed T-cell induced restricted lateral mobility in human DCs. By 

contrast, exon 7-deleted HLA-A2 molecules showed impaired clustering suggesting that 

these variant of HLA-A2 may have a longer barrier-free path. These results indicated that 

exon 7 of the MHC-I cytoplasmic tail may contain specific motifs that can regulate MHC-I 

clustering and diffusion. 

Exon 7 encoded by the MHC cytoplasmic tail contains two serine phosphorylation 

sites and it has been suggested that phosphorylation of the cytoplasmic tail of MHC class I 

has a role in the interactions between class I MHC molecules and cytoskeletal structures 

[87]. Moreover, it has been suggested that the cytoplasmic tail of MHC class I molecules 

could bind proteins of the membrane barrier through electrostatic or stereospecific 

interactions, suggesting that specific post-translational modifications in the MHC-I 

cytoplasmic tail may affect MHC-I cell surface clustering and distribution [150] . Based on 

our data, it is possible that serine phosphorylation in exon 7 may initiate clustering of 
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MHC-I at the APC/T cell contact area by perhaps leading the recruitment of cytoskeletal 

components that mediate receptor mobility at the cell surface. In fact, it has been 

demonstrated that ligation with antibodies induces phosphorylation of the MHC-I 

cytoplasmic tail leading to rapid MHC-I clustering, which then promotes the activation of 

signaling molecules involved perhaps in internalization and degradation [139]. Delta 7 

molecules may have showed impaired clustering perhaps due to differences in sequence 

charges, length of the molecule and steric forces that may affect interactions with the 

cytoskeleton and other membrane proteins [150]. These results suggested that serine 

phosphorylation of MHC-I may regulate T cell responses by inducing MHC clustering. 

However, the factors that may initiate MHC-I phosphorylation (i.e. TLR signals, kinases) 

and the potential cytoskeletal components that interact with the cytoplasmic tail of MHC-I 

are yet to be identified. The identification of such elements (kinases and cytoskeletal 

components) may provide insights on how MHC-I clustering is regulated at the molecular 

level. The understanding of MHC-I clustering at the molecular levels may be important for 

the generation of therapies that can modulate T cell responses in different clinical settings.  

A proposed model for the regulation of MHC-I clustering is described in Figure 12.  
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Figure 12: Proposed model for the regulation of MHC-I clustering. Surface MHC-I 

molecules found in lipid raft domains (small yellow circles) may become phosphorylated in 

exon 7 resulting in the recruitment of cytoskeletal components (i.e. actin filaments) to the 

cytoplasmic tail of MHC-I. Such interactions may results in plasma membrane mobility 

(arrows show mobility direction) and polarization of MHC-I towards specific membrane 

domains through the cytoskeleton. Once „super clustering‟ of MHC-I (big yellow circle) 

occurs, it delivers a signal for MHC-I/peptide complex internalization and degradation.   

Exon 7-deleted MHC-I molecules do not show „super clustering‟ and therefore they do not 

undergo rapid internalization and degradation. 
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3.6 The role of the MHC class I cytoplasmic tail in signal transduction 

 

 

Based on the results presented in this dissertation, we first hypothesized that 

deletion of exon 7 in MHC-I molecules may have significantly enhanced T cell priming by 

impairing MHC-I internalization, lateral movement and clustering and that such defects 

resulted in significantly increased bioavailability of MHC-I/peptide complexes for cognate 

CD8+ T cells.  However, more recent preliminary results from our laboratory have 

suggested that this hypothesis may not fully explain how the cytoplasmic tail of MHC-I 

influences T cell activation. Specifically, we found that MHC-I mutants lacking the entire 

cytoplasmic tail showed similar internalization defects and cell surface distribution as Δ7 

MHC-I molecules but, however, such Tail-less molecules did not affect the DC-induced T-

cell proliferation invivo. Instead, DC expressing Tail-less molecules showed similar 

stimulatory capacity as DCs expressing WT MHC class I molecules (Figure 13). Therefore, 

increased bioavailability of MHC-I at the cell surface may not be the only explanation for 

why Δ7 MHC-I molecules enhanced T cell priming. Nevertheless, these data suggested that 

the cytoplasmic tail of MHC class I molecules contain domains that may differentially 

regulate T cell responses perhaps by providing positive and negative signals to T cells or 

even to the DCs. Based on these data, it is tempting to speculate that exon 6 contain motifs 

that may play a role as a positive regulators of CTL immune responses whereas exon 7 
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contain motifs that may play a role as negative regulators of CTL responses and that such 

regulation by these domains could maintain homeostatic T cells responses. Because exon 6 

contains a highly conserved tyrosine residue and exon 7 contains two highly conserved 

serine residues, it is possible that phospshorylation of these residues may differentially 

influence signaling perhaps in both T cells and APCs leading to different immune 

outcomes (see below). We are currently generating cytoplasmic tail mutants lacking exon 6 

in order to test whether this portion of the MHC-I cytoplasmic tail plays a positive 

regulatory role in T-cell responses. If our hypothesis is correct then we would expect that 

exon 6-deleted MHC-I molecules will not induce T cell responses while exon 7-deleted 

MHC-I molecules will increase T cell responses as compared to WT MHC-I after 

challenge.  

One possible mechanism could be that specific motifs encoded by the cytoplasmic 

tail of MHC class I may differentially regulate signal transduction pathways involved in 

cell differentiation, survival and proliferation of both DCs and T cells. In fact, MHC class I 

molecules have been involved in signal transduction in T cells, endothelial cells and 

smooth muscle cells [151; 152; 153] For example, previous studies have demonstrated that 

cross-linking of MHC class I on the surface of T cells activates the ZAP70 and p56 

tyrosine kinases and induces δ-chain phosphorylation leading to an increase in intracellular 

free calcium concentration, IL-2 production and proliferation, as well as an increase in the 

expression of costimulatory receptors [154]. Moreover, it has been demonstrated that cross-

linking HLA class I molecules in human endothelial cells (EC) resulted in signal 

transduction pathways that stimulated both EC proliferation and survival. Specifically, 

these studies reported that engagement of MHC class I molecules in EC induces tyrosine 
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phosphorylation of Src family protein kinases and activation of focal adhesion kinase 

(FAK). Moreover, they showed that MHC-I mediated activation of FAK triggers a pro-

survival signaling cascade, resulting in the activation of PI3K/Akt-signaling pathway and 

upregulation of anti-apoptotic proteins such as Bcl-2 and Bcl-xL [151; 153]([155; 156]. 

These studies suggested that Class I-mediated upregulation of anti-apoptotic proteins 

renders EC resistance to complement mediated lysis. Thus, it is possible that engagement 

of MHC class I molecules by the TCR may play an important role not only in T cell 

activation but also in DC survival and function. However, the role of the MHC class I 

cytoplasmic tail in signal transduction pathways in DCs is not well understood. 

 Previous studies have demonstrated that cytoplasmic tail of MHC class I molecules 

is constitutively phosphorylated in vivo on a serine residue encoded in exon 7, suggesting 

that such exon may be involved in signal transduction pathways [87]. However, other 

studies have revealed that the cytoplasmic tail of class I molecules is not involved in T cell 

activation since cross-linking truncated MHC class I molecules (no cytoplasmic tail) 

induce IL-2 production similar to that induced by the native molecules, suggesting that the 

cytoplasmic tail of  class I MHC molecules is not involved in signaling [157]. However, 

our results indicated that deletion of exon 7 leads to enhanced T-cell responses suggesting 

that it may regulate signaling cascades. Interestingly, it has been demonstrated that cross-

linking of MHC class I molecules leads to phosphorylation events which resulted in the 

association of MHC class I molecules with other signaling receptors including insulin 

receptor (IR) and GLUT-4, on the cell surface of DCs suggesting that association of MHC-

I with other receptors may propagate a signaling cascade leading to perhaps increased DC 

activation, survival and antigen presentation [131; 158]. However, the role of the MHC 
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class I cytoplasmic tail in the association of MHC-I with other receptors (i.e. IR) has not 

been reported. It is possible that specific motifs encoded by the cytoplasmic tail of MHC-I 

and their phosphorylation status may regulate interactions with other receptors leading to 

cell survival through mechanisms that may involve steric forces. In fact, it has been 

demonstrated that steric forces between the cytoplasmic tail of different receptors regulate 

the formation of different heterodimers at the cell surface [146]. Based on this, it is 

possible that MHC class I molecules associate with other signaling receptors at the cell 

surface of DCs and that such associations may be interrupted following serine 

phosphorylation in exon 7 of MHC-I leading to pro-survival signaling shutdown. This 

could be tested by analyzing the expression levels of anti-apoptotic molecules including 

Bcl-2 and Bcl-xL in DCs expressing either WT or Δ7 MHC class I molecules before and 

after co-culture with T cells. Increasing the survival rates of DCs may be beneficial for the 

generation of prolonged T cell immune responses. The proposed model describing a 

potential role of conserved motifs in the cytoplasmic tail of MHC class I is shown in Figure 

14.   
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Figure 13. The cytoplasmic tail of MHC-I can influence T-cell priming. Naïve Thy1.1+ 

CD8+T cells from Pmel mice were co-injected along with gp100 pulsed DCs expressing 

either WT (blue), Δ7 (black) or Tail-less (orange) variants of H-2Db into C57 mice. T cell 

proliferation in peripheral blood over time was analyzed as readout for T cell priming. 

Error bars represent SEM of three mice per group.  
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Figure 14. Hypothetical model of the role of conserved motifs in the cytoplasmic tail 

of MHC class I. The cytoplasmic tail of MHC class I molecules is composed mainly of 

two exons. Exon 6 (red) encodes a highly conserved tyrosine at position 320 (blue). This 

exon may function as a positive regulator of CTL responses following post-translational 

moifications (i.e. phosphorylation). Exon 7 (black) encodes a highly conserved serine motif 

at position 335 (blue).  Based on this and other studies, we speculate that this exon may 

negatively regulate CTL responses following phosphorylation. TM = transmembrane 

domain. 
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3.7 Does the cytoplasmic tail of MHC-I affect cross-dressing?  

 

 Recent studies have demonstrated that cross-dressing is another antigen 

presentation mechanism by which DCs induce the activation of T cells. Cross-dressing 

refers to the transfer of membrane peptide/MHC class I molecules from one DCs (donor 

DC) to another DC (recipient DCs), which then presents the peptide to CD8+ T cells 

without the need of any antigen processing [159] [160]. This antigen presentation 

mechanism has been elegantly demonstrated by Wakim and Bevan to occur via cell-cell 

contact or trogocytosis and not through the secretion of exosomes [159]. These studies also 

showed that antigen presentation through cross-dressing of peptide/MHC-I complexes is 

very inefficient for the activation of naïve T cells possibly due to the presentation of 

vanishingly small number of peptide/MHC class I complexes. However, the mechanisms 

that regulate trogocytosis are not understood. Because we observed more peptide/MHC 

class I complexes at the cell surface of DCs expressing Δ7 MHC class I molecules as 

compared to DCs expressing WT MHC-I, it is possible that the cytoplasmic tail of MHC-I 

may regulate trogocytosis of peptide/MHC-I complexes from one DC to another DC, 

which then results in T cell activation. In particular, we speculate that Δ7 MHC class I 

molecules, lacking 13 amino acids including two potential serine phosphorylation sites, 

may be transferred from one DC to another more efficiently than WT MHC-I molecules 

maybe because such molecules are less heavy or/and contain the appropriate net charge 

allowing more transfer. Such increment in trogocytosis of peptide/MHC-I complexes may 
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allow DCs to present higher quantities of antigens to cognate T cells as well as to induce a 

more sustained signaling cascade leading to survival, proliferation and differentiation in 

both cross-dressed DCs and T cells. Also, it is possible that phoshorylation of MHC-I may 

affect trogocytosis, however, this need to be determined.  These ideas could be tested by 

analyzing the transfer of WT and cytoplasmic tail mutants of MHC class I (i.e. Δ7) from 

one DC to another DC. For example, we could introduce the expression of either WT or Δ7 

HLA-A2 fused to GFP into donor DCs and then co-culture these donor DCs with HLA-A2 

negative recipient DCs to allow trogocytosis. Then the cross-dressed DCs expressing WT 

or Δ7 HLA-A2 could be analyzed for surface expression of transferred MHC-I and for their 

capacity to stimulate T cells. In addition, the capacity of transferred MHC-I molecules to 

stimulate signaling cascades could be also tested by analyzing the expression levels of pro-

survival molecules in cross-dressed DCs as well as analyzing T cell signaling by measuring 

the levels of phosphorylated ERK in T cells, for example. Understanding how cross-

dressing is regulated at the molecular level may provide new insights for the generation of 

new DC vaccines. 

 

3.8 Pharmacological implications 

Although the cellular and molecular mechanisms that regulate internalization, 

clustering and turnover of MHC-I/peptide complexes in DCs are mostly unknown, 

understanding such mechanisms is an important first step for the development of efficient 

therapies. In this study, we demonstrated that DCs induced to express Δ7 MHC-I enhanced 

T-cell mediated anti-tumor responses and significantly prolonged mouse survival. These 

findings suggested that similar strategies could increase the efficacy of human DC cancer 

vaccines developed to induce anti-viral or anti-tumor specific CTL immune responses. 
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However, we encountered two main limitations of using DCs vaccines engineered to 

expressed different MHC class I isoforms over the course of this study. The first limitation 

was the very often poor transduction efficiencies obtained following DCs infection with 

lentiviral vectors encoding different MHC class I isoforms. The second limitation was that 

CTL responses were restricted against one single MHC class I allele (H-2D
b
 or HLA-

A*0201). Based on this, we speculated that it may be more effective to directly target exon 

7-encoded determinants pharmacologically in order to counteract their negative effect on 

CTL priming. Such an approach may be superior because it could simultaneously improve 

antigen presentation by all endogenously-expressed HLA alleles.  

Although the protein binding partners (i.e. kinases and phosphatases) of the MHC 

class I cytoplasmic tail are still unidentified, exon 7 does encode a highly conserved serine 

phosphorylation site (Ser-335) that may serve to regulate the trafficking and antigen 

presentation capacity of MHC-I molecules. Additionally, exon 6 is composed of at least 

two other possible motifs for protein post-translational changes. One motif is the highly-

conserved putative phosphorylation site at Tyr-320, and the second motif is the highly-

conserved ubiquitination site at Lys-316 [161]. If these post-translational modifications in 

the cytoplasmic tail influence MHC-I function in vivo, then we speculate that inhibitors of 

the kinases, phosphatases, or ubiquitin ligases that target the MHC-I tail may function as 

highly immunomodulatory therapies. These studies will not only address how MHC class I 

is regulated at the molecular level, but they might open a door toward the generation of 

new pharmacological drugs that may serve to manipulate CTL priming responses at the 

level of antigen presentation via the direct targeting of the MHC-I cytoplasmic tail.  
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CHAPTER 4 

EXPERIMENTAL PROCEDURES 

 

4.1 Mice and B16 melanoma  

DBA/2, C57BL/6 and Thy1.1+ Pmel-1 transgenic mice were maintained in a 

pathogen-free facility at the MD Anderson Cancer Center. CD8
+
 T cells expressing a TCR 

restricted to H-2D
b
 molecules presenting the melanoma tumor antigen, gp100 (gp10025-33) 

were isolated from the spleens of Thy1.1
+
 Pmel-1 transgenic mice. The majority of the 

CD8
+
 T cells from these transgenic mice were VB13

+
 Thy1.1

+
 (>95%) as measured by 

flow cytometry.  All of the protocols conformed to MD Anderson Cancer Center guidelines 

for the care and use of laboratory animals. The murine melanoma cell (B16) was obtained 

from the National Cancer Institute tumor repository (Bethesda, MD) and maintained in 

RPMI 1640 supplemented with 10% heat-inactivated fetal bovine serum (FBS), 0.03% L-

glutamine, 100ug/ml streptomycin, 100ug/ml penicillin, and 50ug/ml gentamicin sulfate. 

All cell culture reagents were obtained from Invitrogen.  

 

4.2 Human cell lines 

 The human DC-like cell line, KG-1, was obtained from ATCC (CCL-246™) and 

maintained in Iscove's Modified Dulbecco's Medium containing 20% Fetal Bovine Serum, 

Glutamax, 100ug/ml Penicillin and 100ug/ml streptomycin. 293METR cells were a kind 

gift from Brian Rabinovich (MD Anderson Cancer Center). These cells were maintained in 

Dulbecco‟s Modified Eagle Medium supplemented with 10% Fetal Bovine Serum, HEPES, 

Glutamax, Penicillin/Streptomycin and Normocin (all from Invitrogen). The MART-1 
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specific T cell line, DMF5, was kindly provided by Laura A. Johnson from the NIH. These 

MART-1 specific T cells were cultured in RPMI containing 10% FBS, HEPES, Glutamax, 

Penicillin/Streptomycin.  In addition, the human recombinant IL-2 (300 IU/ml) was added 

every other day. Human recombinant IL-2 was obtained from ProLeukin (Novartis).   

 

4.3 General cloning strategy for HLA-A2 and H-2D
b
 molecules 

We utilized the Gateway system (Invitrogen) to clone different HLA-A2 and H-2D
b
 

variants into lentiviral expression vectors.  First, we designed gateway-adapted primers to 

amplify HLA-A*0201 and H-2D
b
 from pcDNA 3.1 HLA-A2 (NCBI) and pcDNA 3.1 H-

2Db (James Gibbs, NIAID), respectively. The primers were designed to insert highly 

specific recombination sites (attB1 and attB2) at the 5‟ and 3‟ end of each molecule (see 

cloning strategy and primer list below). We also added EcoR1 and Cla-I restriction sites at 

the 5‟ and 3‟ end of the primers, respectively.  The amplified PCR products flanked by 

attB1 and attB2 sites were then purified and cloned into the gateway entry vector, pDONR 

222. pDONR 222 was used because it contains recombination sites that specifically 

recognize the attB1 and attB2 sites during BP recombination reactions. Following BR 

reactions, the products were then used for bacterial transformations and DNA from 

different clones was analyzed by sequencing. Validated clones were named pDONR222 

HLA-A2 and pDONR222 H-2D
b
. pDONR 222 HLA-A2 and pDONR222 H-2D

b
 entry 

vectors were then used to modify the cytoplasmic tail of both mouse and human MHC 

class I molecules. The different MHC class I variants were then transferred from the entry 

vector to different gateway-adapted lentiviral expression vectors via LR reactions.  The 
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gateway-adapted lentiviral expression vectors were used because they specifically 

recognize the recombination sites located in pDONR 222.   
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Figure 15: Cloning different MHC class I molecules into Gateway-adapted entry 

vectors.  (A) MHC class I molecules (orange) were amplified using primers containing the 

recombination sites attp1 and attp2 (patterned arrows). The PCR products were then cloned 

between the B1 and B2 sites of the gateway-adapted entry vector, pDONR 222 via BP 

reactions. The resulting vector was selected by kanamicyn (KanR) resistance and used for 

transferring the gene into gateway-adapted lentiviral expression vectors. (B) 

Recombination of pDONR 222 MHC class I (left) into a lentivirus expression vector 

containing a mammalian promoter (i.e. human PGK or MSCV promoter) was performed 

using LR reactions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  94 

 

 

 

 

 

A) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  95 

Figure 16: Cloning different MHC class I molecules into Gateway-adapted entry 

vectors.  (A) MHC class I molecules (orange) were amplified using primers containing the 

recombination sites attp1 and attp2 (patterned arrows). The PCR products were then cloned 

between the B1 and B2 sites of the gateway-adapted entry vector, pDONR 222 via BP 

reactions. The resulting vector was selected by kanamicyn (KanR) resistance and used for 

transferring the gene into gateway-adapted lentiviral expression vectors. (B) 

Recombination of pDONR 222 MHC class I (left) into a lentivirus expression vector 

containing a mammalian promoter (i.e. human PGK or MSCV promoter) was performed 

using LR reactions.  
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4.4 Generation of Δ7 MHC class I molecules  

Mutagenesis in the cytoplasmic tail of MHC class I molecules was performed using 

a PCR-based site directed mutagenesis (Stratagene). To generate Δ7 MHC class I 

molecules, we performed site-directed mutagenesis PCR on pDONOR222 WT-A2 and 

pDONOR222 H-2D
b
 using mutagenic primers designed to specifically delete exon 7 in the 

cytoplasmic tail of both H-2D
b
 and HLA-A2 molecules (see primer design and primer 

sequences below). For example, the forward primer (1) was designed to anneal several base 

pairs located at the end of exon 6 and several base pairs from the start end of exon 8.  A 

second primer (2) was designed to be the reverse complement of the forward primer. 

Sequences in exon 7 were not included in these primers to allow the deletion of exon 7 

during the PCR. PCR products were analyzed by gel electrophoresis and used to transform 

bacteria.  DNA from different bacterial clones was purified and sent out for sequencing 

analysis (MD Anderson, DNA core). Validation of clones was performed by using the 

alignment program of the Vector NTI software (Invitrogen). Validated clones were then 

transferred into a HIV-based lentivirus expression vector containing the human PGK 

promoter via gateway recombination LR reactions (Gateway technology from Invitrogen). 

The products of the LR reactions were then used for bacterial transformations to amplify 

the expression vector followed by generation of lentiviral virions for transductions.  
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4.5 Generation of different HLA-A2/GFP fusion proteins 

To generate different HLA-A2/GFP fusion proteins, the WT and Δ7 variants of 

HLA-A*0201 generated in the section above were amplified by PCR. The primers used for 

PCR were designed to contain unique EcoR1 and ClaI sites at the 5‟ end and 3‟ end, 

respectively. The Cla-I site at the 3‟ end was used to substitute the stop codon of the 

different HLA-A2 variants in order to allow the translation of the fusion protein. The PCR 

products were then confirmed by gel electrophoresis and purified using a Qiagen PCR 

purification kit (Invitrogen). The purified products were then cut using the EcoR1 and ClaI 

restriction enzymes and transferred into pENTR1A/GFP (a kind gift from Brian 

Rabinovich, MD Anderson) by ligations. We choose to use the pENTR1A/GFP vector for 

generating the fusion proteins because it has been characterized to contain a death cassette 

flanked by unique EcoR1 and ClaI sites at the 5‟ end and 3‟ end, respectively. Also because 

it has a linker that allows the proper folding of the fusion protein, and the green fluorescent 

protein (GFP), both being downstream of the death cassette. The different HLA-A2 

Mutagenic primers for human  and mouse MHC class I molecules : 

1. HLA-A*0201 

5‟ CTCTCAGGCTGCAGTGTGAATCGATG 

3‟ CATCGATTCACACTGCAGCCTGAGAG 

2. H-2D
b
 

5‟ GCTCTGGCTCCAGCGTGAGACCCAGC 

3‟ GCTGGGTCTCACGCTGGAGCCAGAGC  
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molecules (minus stop codon) were ligated between the EcoR1 and Cla I sites of the death 

cassette. Following ligations, the different HLA-A2/GFP constructs were then used for 

bacterial transformations and the extracted DNAs were confirmed by DNA sequencing 

Validated plasmids were then cloned into a gateway-adapted lentivirus expression vector 

containing the human PGK promoter by using highly specific recombination reactions 

(Gateway system, Invitrogen). Primers used for PCR are listed below.  

Primers: 

5’ EcoR1---HLA-A2 (Fwd) 

GAATTCGCCACCATGGCCGTCA 

3’  ClaI----HLA-A2 (Rev) 

ATCGATCACTTTACAAGCTGTG 

 

4.6 Generation of lentiviral vectors 

Lentiviruses were generated by transient transfection of 293METR cells using 

Lipofectamine 2000 (Invitrogen). Briefly, 293METR cells were transfected with plasmids 

encoding either WT-HLA-A2, Δ7-HLA-A2, WT-HLA-A2/GFP, Δ7-HLA-A2/GFP, WT-

H-2D
b
 or Δ7-H-2D

b
 (2.3μg each), along with the packaging plasmids, p∆R8.91 (4.7μg) and 

CMV-pVSVG (2μg), using Lipofectamine 2000 (1.6μg/ml). p∆R8.91 encodes the 

structural gag and pol, and the tat and rev, which regulate viral gene expression [162]. The 

CMV-pVSVG encodes the VSV-G envelope protein, which enables viral entry into cells. 

Viral supernatants were collected at 48 and 72 hrs following transient transfection and 

filtered using a 0.45μm membrane (Millipore). Viral supernatants were then concentrated 
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by ultracentrifugation at 25,000rmp for 2 hours. Viral pellets were re-suspended at a 400X 

concentrate in X-vivo15 serum-free medium and stored at -80°C.    

4.7 Titration of Lentiviruses 

  2.5 x10
4
 293 METR cells were resuspended in 1 ml of DMEM medium, plated in 

24-well plate and cultured overnight at 37°C. Media was then removed and 200μl of fresh 

DMEM was added to the cells for virus titrations. Serial dilutions (3 fold) of lentiviral 

vector stocks were then added to the cells along with 8 μg/ml of polybrene (Sigma), which 

enhances viral entry efficiency.  Cells were then collected to measure transgene expression 

using specific antibodies and flow cytometry. An anti-HLA-A2 monoclonal antibody 

conjugated to alexa 488 (Serotec) was used to measure titrations of lentivirus encoding 

different HLA-A2 cytoplasmic tail isoforms. An anti-H2D
b
 monoclonal antibody 

conjugated to alexa 647 (BD Biosciences) was used to measure titrations of lentiviruses 

encoding different H2-D
b
 cytoplasmic tail isoforms. Viral vector titrations were calculated 

as follows: Transducing units (TU) per ml = % transgene positive cells x 50,000 cells / 

volume of viral vector used (in ml).  

 

4.8 Generation of primary dendritic cells 

Mouse: Bone marrow-derived murine DC progenitors were isolated from the tibia and 

femur of DBA/2 mice.  The bone marrow was triturated using an 18 gauge needle and 

passed through a 70μm nylon mesh cell strainer (Becton Dickinson) to make single cell 

suspension in PBS. Bone marrow cells were then counted using a hemacytometer and 

resuspended in complete medium consisting of RPMI 1640 supplemented with 10% heat-

inactivated fetal bovine serum and GM-CSF (50ng/ml) at a starting concentration of 5×10
5
 



  101 

cells/ml. Cells were incubated at 37°C for 7 days to induce the differentiation of cells into 

immature dendritic cells. To generate mature dendritic cells, cells were incubated for 2 

additional days in the presence of LPS. 

Human: CD34
+
 cells were purified from HLA-A*0201 negative donor stem cells (a kind 

gift from Nina Shah, M.D. Anderson) using CD34
+
 selection beads (Miltenyi) following 

the manufactures instructions. Enriched CD34
+
 cells were incubated at 37°C for 2 weeks in 

complete media containing RPMI + 5% human AB serum, Flt3L (100ng/ml), TPO 

(100ng/ml) and stem cell factor (100ng/ml). Cells were then washed and incubated at 37°C 

in RPMI + 5% human AB serum. Human recombinant GM-CSF (100ng/ml) and IL-4 

(100ng/ml) were also added to the media and cells were incubated for 6 additional days in 

order to induce the differentiation of immature DCs. To mature DCs, a combination of 

poly:IC (5ug/ml), IFN-α (100ng/ml) and CD40L (200ng/ml) were added to the culture for 

2 additional days. All cytokines were obtained from BD Biosciences. 

 

4.9 Transduction of dendritic cells using lentiviruses 

 BM-DCs were transduced on day 3 using lentiviral vectors encoding WT-D
b
-

IRES-GFP, Δ7-D
b
-IRES-GFP, or empty-IRES-GFP. Cells were transduced by spinfection 

using a multiplicity of infection (MOI) of 5 in RPMI supplemented with GM-CSF 

(50ng/ml), and polybrene (4g/ml). Transduced cells were then incubated for 7 additional 

days at 37°C in complete media supplemented with GM-CSF. Cell viability and 

transduction efficiencies were then analyzed by FacScan (BD Biosciences). The human 

HLA-A*0201 negative KG-1 cells [163], and CD34
+
-derived DCs were transduced with 

lentiviral vectors encoding either WT-HLA-A*0201, Δ7-HLA-A*0201, WT-HLA-
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A*0201/GFP fusion protein or the Δ7-HLA-A*0201/GFP fusion protein in XVivo-15 

serum free media (Cambrex). A MOI of 5 was used to transduce human cells. Polybrene 

was also added to transduction conditions. Cells were then incubated for 5 days in the 

appropriate culture medium, and transduction efficiencies were measured by flow 

cytometry. KG-1 cells expressing comparable levels of cell surface WT-A2 and Δ7-A2 

were purified by cell sorting. To ensure that the same number and percentage of WT- and 

7-MHC-I expressing cells were used for all functional experiments, we first normalized 

transduced primary CD34
+
-derived DCs for HLA-A2 expression.   

 

4.10 T-cell cytokine production: ELISA, Luminex and Intracellular staining  

Mouse T-cell cytokines: Mouse BM-DCs expressing either WT or Δ7 variants of H-2D
b 

were pulsed with titrated concentrations of hgp100 (25-33) peptide, and co-cultured with 

Pmel-1 T cells at a 1:10 ratio at 37°C for 18hrs. Culture supernatants were collected and T-

cell cytokine production was measured by mouse ELISA (Endogen) and Luminex 

(Millipore). The IFN-γ ELISA method was performed according to the manufacturers 

instructions after a 1:10 dilution of the culture supernatants. Seven standard curve points 

were used: 2,500, 1000, 400, 160, 64, 25.6, and 0pg/ml. The samples were added in 

triplicates of 50ul to each well. The plates were developed using TMB substrate for 15 

minutes and the reactions stopped by adding 100μl of Stop Solution to each well. The 

plates were read in a 96-well ELISA microplate reader (Tecan Group Ltd) using Megallan 

V.400 software with a 450nm filter. The standard curve was generated by plotting the 

average absorbance obtained for each standard concentration on the Y axis versus the 

corresponding IFN-γ concentration (pg/ml) on the X axis. This standard curve was then 



  103 

used to determine the amount of IFN-γ in an unknown sample. The concentration of IFN-γ 

in each sample was determined by multiplying the interpolated value obtained from the 

standard curve by the dilution factor. The Luminex method was performed similarly to the 

ELISA method but according to the manufacture‟s instructions.  

Human T-cell cytokines: Transduced KG-1 or CD34
+
-derived DCs were pulsed with 

titrated amounts of MART-1 or FluM1 peptides and co-cultured with MART-1 or Flu-

specific T cells at a 1:10 ratio for 18h at 37°C. IFN-γ production was measured in culture 

supernatants collected 18hrs following stimulation of antigen-specific T cells by peptide-

pulsed dendritic cells expressing either WT/HLA-A2 or Δ7/HLA-A2 molecules using 

human IFN-γ ELISA kit (Endogen) and Luminex.  The human ELISA and Luminex 

methods were performed as described above.   

  Intracellular cytokine staining: Antigen-specific T cells were co-cultured with 

transduced DCs for 4h in the presence of GolgiStop (BD Biosciences), washed, fixed, 

permeabilized, and stained using anti-mouse or anti-human IFN- conjugated to FITC (BD 

Biosciences). Mouse T cells were also stained with a fluorescently labeled CD107a specific 

antibody (BD Biosciences) to measure degranulation. Human antigen-specific T cells were 

also stained with MART-1 or FluM1 tetramers (Baylor College of Medicine) and a 

fluorescently labeled anti-human CD8 antibody (BD Biosciences). Antigen-specific 

intracellular IFN- production by CD8
+
 T cells was then determined by flow cytometric 

analysis.  

4.11 CFSE labeling  

1μM of CFSE (Invitrogen) was used for labeling T cells to track their proliferation.  

CFSE has a fluorescence exiting/emission profile similar to FITC. The proliferating cells 
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can dilute CFSE and generate proliferation curves following stimulation experiments. T 

cells were first washed in PBS and resuspended in PBS containing CFSE.  Labeling was 

performed in room temperature for 5 minutes followed by three times of wash using culture 

medium.  Stimulation was next set up as described earlier and CFSE dilution was measured 

by flow cytometry using the FL-1 channel.  

 

4.12 T-cell proliferation 

Mouse studies: Naïve T cells isolated from the spleen of Pmel-1 mice were labeled 

with CFSE (Sigma) and co-cultured invitro with D
b
-transduced DCs that had been pulsed 

with titrated amounts of hgp100 peptide (0.1, 1 and 10 nM) at 37°C for 48, 72 and 96 

hours.  Cells were collected and stained using a fluorescently labeled anti-Thy.1.1 antibody 

(eBioscience) and anti-mouse CD8 antibody conjugated to alexa 647 to label Pmel-1 

CD8+T cells. Proliferation of gated Thy.1.1 CD8+ Pmel T cells was assessed by flow 

cytometry over time. At least 10,000 cells were analyzed in each sample.  

 Human studies: HLA-A2-positive PBMCs from normal donors were obtained from 

Gulf Coast Blood Center (Houston, TX).  Transduced KG-1 cells were pulsed with 

different amounts of peptides for 2hr at room temperature.  The HLA-A*0201-restricted 

peptides used in the experiments were MART-1 (26-35,27L: ELAGIGILTV), influenza 

matrix 1 protein (58-66: GILGFVFTL), or CMVpp65 (495-503: NLVPMVATV). All 

peptides were obtained from Beckman Coulter. Following peptide pulsing, DCs were 

irradiated with 20,000 rads, and co-cultured with antigen-specific human T cells at a ratio 

of 1:10 at 37°C for 8 days.  Cells were then collected and analyzed by flow cytometry to 

determine the number of tetramer positive cells in the CD8
+
 T-cell population. The 
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function of the expanded antigen-specific T cells was analyzed by measuring intracellular 

IFN- staining and CD107a in response to antigen presentation by T2 cells. 

 

4.13 Adoptive T-cell transfer, DC vaccination and Tumor treatment 

  To induce tumor growth, 5×10
5
 B16 melanoma cells were injected subcutaneously 

into C57BL/6 mice (8-10 weeks old). On day 7 after tumor injection, tumor-bearing mice 

were subjected to irradiation (350 rad). Following irradiation, 5×10
6
 T-cells from Pmel-1 

mice were mixed with 1×10
6 

transduced DCs pulsed with 300 nM of hgp10025–33 peptide 

and adoptively transferred into irradiated tumor bearing mice for tumor treatment. IL-2 

(6×10
5
 units twice daily) was injected intraperitoneally for 3 consecutive days to support T-

cell proliferation. Tumor size was measured every day following treatment using calipers, 

and the products of perpendicular diameters were recorded. On day 7 and 21 following DC 

vaccination, the percentages of peripheral blood Thy1.1+ Pmel-1 cells were analyzed by 

flow cytometry. Mice were sacrificed when tumors exceeded 15 mm in diameter or became 

ulcerated or mice became moribund. All invivo experiments were carried out in a blinded, 

randomized fashion and performed three times.  

 

4.14 Internalization of cell surface HLA-A2 in human dendritic cells 

KG-1 cells induced to express either WT or Δ7 variants of HLA-A2 were stained 

on ice for 30 minutes by using a monoclonal HLA-A2 specific antibody conjugated to 

alexa 888 (Serotec). Transduced KG-1 were washed with ice-cold PBS and incubated at 

37°C or 4°C for 90 minutes. Cells were then fixed with 2% parafomaldehyde (PFA) and 
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plated onto poly-L-lysine coated coverslips. The remaining fluorescence at the cell surface 

following incubation at 37°C was analyzed by confocal microscopy (Leica).   

 

4.15 APC/T-cell conjugates 

KG-1 cells induced to express WT-A2/GFP or Δ7-A2/GFP fusion proteins were 

pulsed with MART-1 peptide (20nM) for 2 hrs at room temperature.  Cells were then co-

incubated with MART-1 specific T cells at a 1:1 ratio, plated in 48 well plates for 2hrs in 

order to visualize KG-1/T-cell cluster formation using light microscopy. The mixture of 

KG-1 cells and MART-1 specific T cells was also plated onto poly-L-lysine-coated 

coverslips and incubated at 37°C for up to 2hrs. The mixture of cells were then fixed using 

2% PFA (Fisher) and stained with anti-CD3-δ (6B10.2, BD Biosciences) mAb conjugated 

to alexa 647 on ice in order to label MART-1 specific T cells. KG-1/MART-1 T-cell 

conjugates were evaluated by confocal microscopy using a 60X oil objective.  Z-stacks of 

with 20 planes and 2μM spacing between each plane were collected for each image. KG-

1/MART-1 T-cell conjugates were also quantified by visually counting numbers of MART-

1 specific T cells conjugated to a random collection of 20 to 30 transduced KG-1 cells. 

Conjugates were scored only if MART-1 specific T cells were in contact with one KG-1 

cell expressing either WT or Δ7 variants of HLA-A2 fused to GFP.  

 

4.16 Statistical analysis 

 Microsoft Excel was used for graphing and statistical analysis. The Kaplan-Meier 

test was used to compare mouse survival between treatment and control groups. A Student 
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T test was used to analyze the statistical significance of the results.  A p-value of less or 

equal to 0.05 was the cut-off to determine significance of the statistics. 
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