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 Activation of Rho family small G proteins is thought to be a critical event in 

breast cancer development and metastatic progression.  Rho protein activation is 

stimulated by a family of enzymes known as guanine nucleotide exchange factors 

(Rho GEFs).  The neuroepithelioma transforming gene 1 (Net1) is a Rho GEF specific 

for the RhoA subfamily that is overexpressed in primary breast tumors and breast 

cancer cell lines.  Net1 isoform expression is also required for migration and invasion 

of breast cancer cells in vitro.  These data indicate that Net1 may be a critical regulator 

of metastatic progression in breast cancer.  Net1 activity is negatively regulated by 

sequestration in the nucleus, and relocalization of Net1 outside the nucleus is required 

to stimulate RhoA activation, actin cytoskeletal reorganization, and oncogenic 

transformation.  However, regulatory mechanisms controlling the extranuclear 

localization of Net1 have not been identified.  In this study, we have addressed the 

regulation of Net1A isoform localization by Rac1.  Specifically, co-expression of 

constitutively active Rac1 with Net1A stimulates the relocalization of Net1A from the 

nucleus to the plasma membrane in breast cancer cells, and results in Net1A 

activation.  Importantly, Net1A localization is also driven by endogenous Rac1 activity.  

Net1A relocalizes outside the nucleus in cells spreading on collagen, and when 

endogenous Rac1 expression was silenced by siRNA, Net1A remained nuclear in 
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spreading cells.  These data indicate that Rac1 controls the localization of the Net1A 

isoform and suggests a physiological role for Net1A in breast cancer cell adhesion and 

motility. 
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CHAPTER 1:  INTRODUCTION 

Genes commonly associated with Breast Cancer Initiation and Progression  

 Breast cancer is the most widespread malignancy specific to women in the 

developed world and is the second leading cause of death, with approximately half a 

million fatalities worldwide per year (1, 2).  This high death rate continues despite 

improvements in diagnostics and treatments.  Breast cancer is a heterogeneous 

collection of diseases with diverse pathological factors, including aberrant hormone 

and growth factor regulation, genetic variations in key oncogenes and tumor 

suppressors, and altered cell-cell and cell-matrix adhesion.  Metastatic progression is 

the cause of death in breast cancer, yet our understanding of the mechanisms 

controlling metastasis is not fully understood.   

 Heightened activity or expression of particular extracellular ligand receptors, 

including the hormone receptors (HR) estrogen receptor (ER) and progesterone 

receptor (PR), and the epidermal growth factor receptor (EGFR) 2 (HER2/Neu), is 

recognized as a critical factor contributing to disease progression in human breast 

cancer.  In fact, HR over-expression occurs in 70% of breast tumors, while HER2 

positive (+) breast tumors can be detected in approximately 30% of patients (3-5).  

HR+ tumors are often more treatable and less aggressive compared to HR negative (-) 

tumors, which tend to exhibit greater metastatic spread and are not receptive to 

endocrine therapy (5).   

Estrogen is important in the development of reproductive tissues in women and 

for multiple physiological functions in adults.  For example, binding of ligand induces 

the ER to interact with estrogen response elements (ERE) in the promoters of 

estrogen responsive genes, and also recruits transcriptional co-activators to promote 

the transcription of these genes.  ER activation also elicits non-genomic activation of 
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multiple signaling cascades, including the PKC, PKA, PI3K-Akt, and MAPK pathways 

(6, 7).  In cancerous ER+ tissues, estrogen promotes vascular endothelial growth 

factor (VEGF) and Transforming Growth Factor-β (TGF-β) secretion to stimulate 

carcinoma cell growth (6).  Endocrine therapy approaches for ER+ tumors include ER 

antagonists or selective estrogen receptor modulators (SERM) (2).  Tamoxifen is an 

ER antagonist that prevents the binding of estrogen to the ER, while aromatase 

inhibitors, such as Anastrozole, are SERMs that inhibit estrogen biosynthesis (2, 8).   

HER2 is a proto-oncogene with relatively low expression in normal breast tissue 

that is inversely proportional to the expression levels of ER, and is down-regulated by 

estrogen (5).  Binding of ligand to the HER2 causes it to dimerize with other EGFR 

family members, stimulating the MAPK, PI3K and PLC pathways (5, 9).  Over-

expression of HER2 in breast cancer correlates with an up-regulation of cyclin D1 

expression, which is an essential regulator of G1/S phase progression in the cell cycle, 

promoting tumor cell growth (10).  HER2+ tumors are generally sensitive to therapy 

using HER2-specific monoclonal antibodies, such as trastuzumab (5, 9, 10).  However, 

recurrence of breast cancer in patients receiving anti-HER2 therapy indicates that 

additional treatment approaches are needed.   

 Tumor suppressor genes that have been shown to be mutated in breast cancer 

and to contribute to breast cancer risk include the BRCA1/2 and TP53 tumor 

suppressor genes (11).  For example, inheritance of mutations in the BRCA1 or 

BRCA2 genes, which are responsible for DNA repair, significantly increases the risk of 

breast cancer (3, 12).  BRCA1 mutation-containing cancers typically lack ER, PR, and 

HER2 expression, and occur in only 5% to 10% of breast cancer cases.  However, 

about 30% of sporadic breast cancers exhibit reduced BRCA1 mRNA and protein 

expression (3, 13).  On the other hand, TP53 gene mutations are the most common 
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genetic alteration in human cancer and have been detected in human breast tumors 

(14).  The TP53 gene regulates essential cellular processes such as DNA repair and 

apoptosis.  Thus, p53 mutations typically allow a cancer cells to evade death in the 

presence of genetic imbalances or apoptotic stimuli (11).   

Another hallmark of breast cancer is the process of epithelial to mesenchymal 

transition (EMT), which involves the loss of cell polarity, cell-cell and cell-matrix 

adhesion, and an increase in cell motility (15, 16).  Precursor tumor cells undergo EMT 

through aberrant regulation of adherens junctions (AJ), tight junctions (TJ), and 

integrin-extracellular matrix (ECM) adhesion.  Studies have shown that dysregulation 

of AJs, such as the loss of E-cadherin expression, and TJs, such as dysregulation 

within the Partitioning defective (Par) complex, lead to breast cancer tumorigenesis in 

cells and in animal models which incorporate much of the diversity of human breast 

cancer (17-20).   

Abnormal regulation of cell-matrix adhesions also promotes tumor invasive 

potential.  Integrins constitute the major transmembrane receptor that binds to the 

ECM and have been implicated in tumor cell survival, invasion, migration, and 

anchorage at metastasis sites (21).  For example, the alpha6-beta4 (α6β4) and α6β1 

integrins promote tumor cell survival and motility, and the α1 and α2 integrins have 

been implicated in controlling the expression of the matrix metalloproteinase (MMP) 

MMP-3/stromelysin-1, promoting tumor cell invasion (21-24).  The α3β1 and αvβ1 

integrin dimers are also associated with tumor cell migration and invasion due to 

MMP-9 production (25, 26).  However, the mechanisms underlying the dysregulation 

of cell adhesion in breast cancer are not fully understood. 

 

 



4 

Rho GTPases and Cancer 

 The Rho family of small GTPases contains 23 members and is part of the Ras 

superfamily of monomeric GTPases.  Amongst the Rho GTPases, RhoA, Rac1, and 

Cdc42 are the most extensively characterized (27).  Rho family small G proteins 

regulate many critical processes of cell physiology, including actin cytoskeletal 

organization, cell cycle progression, cell motility, gene expression, vesicle trafficking, 

cell polarity, proliferation, cell-cell and cell-matrix adhesion (28-31).  Rho proteins act 

as molecular switches, cycling between inactive, GDP-bound, and active, GTP-bound 

states, and upon activation, Rho proteins interact with effector proteins to stimulate 

multiple cell signaling pathways (Figure 1) (27, 32).  Rho protein activation is mediated 

by guanine nucleotide exchange factors (GEFs) that catalyze GDP release to facilitate 

GTP loading (33).  GTPase activating proteins (GAPs) stimulate the intrinsic GTPase 

activity of Rho proteins to inactivate their function (34).  Guanine nucleotide 

dissociation inhibitors (GDIs) sequester GDP-bound Rho proteins into the cytoplasm 

(35).  
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Figure 1.  Rho GTPase activation cycle.  Rho GTPases cycle between inactive 
(GDP-bound) and active (GTP-bound) states.  Intrinsic Rho GTPase activity is 
stimulated by Rho GAPs, down-regulating Rho GTPases.  GDP-bound Rho 
GTPases are sequestered in the cytoplasm by GDIs.  Rho GEFs catalyze GTP 
binding by Rho GTPases, stimulating their activation.  Active Rho proteins 
interact with downstream effector (E) proteins to control many cellular 
processes, including cytoskeletal organization, cell cycle progression, gene 
expression, vesicle trafficking, cell polarity, proliferation, cell-cell, and cell-matrix 
adhesion. 

 
 
 

Aberrant signaling, activation, or expression of Rho proteins can lead to 

increased proliferation, EMT, and transformation, and are critical for cancer cell motility 

and invasion (36-39).  Overexpression of Rho proteins in human cancer seems to be a 

frequent occurrence.  For example, over-expression of RhoA and RhoC has been 

observed in multiple human cancers, including breast cancer (40-43).  Furthermore, 

because both RhoA and RhoC stimulate cell motility, enhanced RhoA or RhoC 

expression in breast tumors suggests that they may promote metastatic progression 
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(44).  However, the overexpressed Rho proteins are invariably wild type, meaning Rho 

GEFs and Rho GAPs still control their activation state.   

There are more than 70 Rho GAPs and 70 Rho GEFs encoded by the human 

genome, which allows for pathway specific regulation of Rho activity (45, 46).  Two 

distinct families of Rho GEFs up-regulate Rho GTPase activity, the canonical Dbl 

(diffuse B-cell lymphoma) family and the non-conventional DOCK (Dedicator of 

cytokinesis) or CZH (CDM [Ced-5, Dock180 and Myoblast city]-Zizimin homology) 

family of Rho GEFs.  DOCK family Rho GEFs activate Rac and Cdc42 GTPases to 

control cell migration, morphogenesis, and phagocytosis, and contain conserved 

DHR2 (DOCK homology region 2) catalytic domains and conserved DHR1 domains 

(47).  Dbl family Rho GEFs contain conserved, tandem Dbl homology (DH) and 

Pleckstrin homology (PH) domains (33, 47-49).  The catalytic activity of Rho GEFs 

resides in the DH domain, while the PH domain stabilizes the DH domain-Rho protein 

interaction and has been observed to control binding of Rho GEFs such as Lbc 

(Lymphoid blast crisis), Lfc (Lbc’s first cousin), and Dbs (Dbl’s big sister) to 

phosphatidyl-inositol lipids (48, 50-53).  Many canonical Rho GEFs, such as Dbl, Vav 

(sixth letter of the Hebrew alphabet), Neuroepithelioma Transforming Gene 1 (Net1), 

and Lfc, were first identified as oncogenes in NIH3T3 cell transformation assays.  In all 

cases their transforming activity was dependent on their ability to stimulate Rho protein 

activation (49, 54-56).  In addition, over-expression of Rho GEFs such as T-cell 

lymphoma invasion and metastasis-inducing protein 1 (Tiam1), leukemia-associated 

Rho GEF (LARG), and Net1 has been observed in human tumors (57-59).  However, 

the requirement for particular Rho GEF activity in tumor development and progression 

has not been evaluated at length.   
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Regulation of Rho GEF activity 

Regulatory mechanisms controlling Rho GEF activity have only been 

extensively studied for a few proteins.  Almost all Rho GEFs display specificities for 

different Rho family small G proteins and can be regulated by post-translational 

modifications, such as phosphorylation, ubiquitylation, PDZ (PSD-95/Disc-large/ZO-1)-

domain protein interaction, and subcellular localization (33, 60-62).   

For example, Tiam1 catalyzes nucleotide exchange specifically for Rac1, while 

the Rho GEF XPLN is specific for RhoA and RhoB, but not RhoC (63, 64).  Moreover, 

Rho GEFs such as Vav, Dbl, FRG (FGD1 [faciogenital dysplasia gene product]-related 

Cdc42 GEF), Tiam1, and Epithelial cell transforming sequence 2 (Ect2) are positively 

regulated by phosphorylation (65-69).  Dbl activity is enhanced by tyrosine 

phosphorylation by the tyrosine kinase, activated Cdc42 kinase 1 ACK1 (67).  FRG is 

directly phosphorylated and activated by Src kinase, which underlies cell motility 

inhibition downstream of the endothelin A receptor (68).  GEF phosphorylation can 

also coincide with particular phases of the cell cycle, as indicated by Ect2 up-

regulation by phosphorylation during the G2/M phase of the cell cycle (70).  

Furthermore, phosphorylation can be accompanied by lipid binding, as observed when 

Vav is activated by binding to phosphoinositide 3, 4, 5-phosphate (PIP3) and by 

lymphocyte-specific protein tyrosine kinase (Lck)-mediated phosphorylation (65, 66, 

71).    In addition, phosphorylation can be induced by ligand stimulation.  Exposure to 

the agonist lysophosphatidic acid (LPA), or  increases in intracellular Ca2+, induce 

protein kinase C (PKC) and Ca2+/calmodulin-dependent protein kinase II 

phosphorylation of Tiam1, respectively, to increase its activity (69).   

Rho GTPase activity can also be down-regulated by ubiquitin-stimulated 

degradation of Rho GEFs by the proteasome (72).  For example, after mitosis, RhoA 
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activity is reduced by ubiquitin-mediated degradation of the Rho GEF Ect2 (73).  Dbl is 

another Rho GEF that is ubiquitylated by the E3 ligase, CHIP (carboxyl terminus of 

HSC70-interacting protein) to target it for proteasome degradation (74).  Additionally, 

the Cdc42 specific GEF, hPEM-2 (human homologue of the Ascidian protein Posterior 

End Mark-2), is ubiquitylated by the E3 ligase, Smurf1 in a Ca2+ independent manner, 

while Net1 has been found to be ubiquitylated following disengagement of E-cadherin  

(75, 76).   

In addition, about 40% of Rho GEFs have a PDZ binding motif (PBM) that is 

predicted to mediate interaction with PDZ domain containing proteins.  However, the 

PBM has only been shown to be functional for a few Rho GEFs (62).  Proteins 

containing PDZ domains often act as scaffolds to promote specific cellular localization 

of signaling molecules and increased protein-protein interactions.  PDZ-domain 

proteins also provide a mechanism for regulating Rho GEF subcellular targeting and 

activation.  For example, the neuronal Rho GEF Kalirin-7 interacts with postsynaptic 

density protein 95 (PSD-95), targeting Kalirin-7 to the PSD to regulate dendritic 

morphogenesis through Rac1 signaling (77).  Two other PDZ-domain proteins, 

Scribble and Shank, form complexes with the Rho GEF Pak-interacting exchange 

factor-beta (β-PIX) and localize β-PIX to pre-synaptic sites in neurons to promote 

exocytosis and dendritic protrusions, respectively (78, 79).  Furthermore, the PDZ-

domain protein, synectin, binds to and recruits the RhoA-specific GEF, Syntaxin 1A 

(Syx1), to the plasma membrane, promoting local RhoA activation (80).  Finally, Net1 

(Net1A isoform) interaction with the PDZ-domain containing protein, Dlg1, prevents 

proteasome mediated degradation of Net1A to allow for maximal stimulation of RhoA 

activity (76, 81). 
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Lastly, subcellular localization is an important mechanism for controlling Rho 

GEF activity. For example, inactive Rho GTPases and most Rho GEFs are primarily 

localized in the cytosol.  Upon activation, both the Rho proteins and their respective 

GEFs re-localize to the plasma membrane.  However, two Rho GEFs, Ect2 and Net1, 

diverge from this regulatory paradigm and are localized to the nucleus at a steady 

state (70, 82).  This represents a mechanism to downregulate their activity, as 

truncation of their respective N-termini relocalizes Ect2 and Net1 outside the nucleus 

to potentiate RhoA and RhoB activation (70, 82).   

 

The Rho GEF Net1 

 Net1 is a Rho GEF specific for the RhoA subfamily (33, 60).  Net1 was originally 

cloned from a human neuroepithelioma cDNA library in a screen for novel transforming 

genes using a focus formation assay in NIH3T3 fibroblasts (83).  In this screen, a non-

naturally occurring 5’ truncated form of Net1 (lacking the first 145 amino acids) was 

found to have transforming properties.  NIH3T3 cells expressing this truncated form of 

Net1 exhibited increased proliferation, loss of contact inhibition, and anchorage 

independent growth in vitro, and were tumorigenic when injected into nude mice (83).  

The NET1 gene encodes a protein of 595 amino acids with tandem DH domain and 

PH domains, with 155 amino acid amino-terminal and 93 amino acid carboxyl-terminal 

regulatory domains (Figure 2) (60, 61, 83, 84).  The presence of multiple nuclear 

localization signal (NLS) sequences in the N-terminal regulatory domain of Net1 

targets it to the nucleus at steady state (61).  The C-terminus of Net1 also contains a 

Type I PBM (X-S/T-X-V-COOH [X being any amino acid]) allowing for interaction with 

the PDZ domain containing proteins Dlg1 (Discs large gene 1) and Magi-1 

(Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 1) 



10 

(81, 85).  Interaction with Dlg1 protects the Net1A isoform from proteasome mediated 

degradation (81, 86).   

 

Figure 2.  Net1 proteins.  (A)  Net1 is 595 amino acids in length.  Net1 contains NLS 
sequences within the N-terminus, indicated by yellow boxes, followed by 
tandem DH and PH domains, illustrated by the red and blue boxes, 
respectively.  The PBM sequence, ETLV, lies at the carboxyl terminal end of 
Net1.  The splice variant, Net1A, is identical to Net1 except in the N-terminus.  
Specifically, Net1A lacks the first 85 amino acids of Net1 and contains a distinct 
31 amino acid sequence, as denoted by the green box.  Net1ΔN lacks the first 
121 amino acids of Net1.  (B)  Amino acid sequence of the NLS sequences in 
Net1 and Net1A. 

 
 
 

There are two Net1 isoforms that exist in most cells, Net1 and the splice variant 

Net1A.  Expression of Net1 isoforms is controlled by alternative promoters within the 

NET1 gene, which are inversely regulated by estradiol (59).  The difference between 

the primary amino acid sequences of Net1 and Net1A lies within their unique amino-

termini.  The amino-terminus of Net1A lacks the first 85 amino acids of full length Net1 

and has its own unique 31 amino acids (81).  Net1 contains 4 putative NLS 

sequences, while Net1A only contains the NLS sequences corresponding to NLS3 and 



11 

NLS4 in Net1 (Figure 2).  Net1 also contains a putative nuclear export signal (NES) 

within the PH domain, however, mutation of the NES in Net1 did not affect 

chromosomal region maintenance protein 1 (CRM1)-dependent export (61).  Net1 NLS 

sequences allow for nuclear import of Net1 isoforms, and truncation of the N-terminal 

regulatory domain results in the oncogenic form known as Net1ΔN.  Net1N mainly 

localizes outside the nucleus to constitutively stimulate RhoA activity and actin stress 

fiber formation, indicating that localization of Net1 in the nucleus is a form of negative 

regulation (60, 61, 87).  However, signaling mechanisms controlling the nuclear import 

or export of Net1 isoforms have yet to be identified.   

Both Net1 isoforms are overexpressed in various cancers, including gastric, 

breast, ovarian, cervical, and pancreatic cancers (59, 88, 89).  Moreover, Net1 isoform 

expression is necessary for migration and invasion of MDA-MB-231 breast cancer 

cells and gastric adenocarcinoma cells (AGS) in vitro, suggesting that Net1 may be a 

critical regulator of metastatic progression in cancer (88).  Furthermore, Net1 and 

integrin alpha6beta4 (α6β4) co-expression in primary tumors of lymph node-positive 

breast cancer patients and Net1 overexpression in ER positive (ER+) breast tumors 

selects for high risk distant metastasis (59, 89).  Thus, understanding regulatory 

mechanisms controlling Net1 activity may be important for discerning breast cancer 

metastasis. 

 

Net1 and DNA damage 

Net1 localizes to the nucleus, sequestered away from RhoA at the plasma 

membrane.  This is thought to leave Net1 biologically inert.  However, Net1-dependent 

RhoA localization and activation in the nucleus has been observed in response to DNA 
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damage (90, 91).  This indicates that Net1 may have additional, non-classical nuclear 

functions that are not well appreciated.  However, the exact role of Net1 in DNA 

damage responses is still unclear.  For example, it has been shown that Net1 

expression is required for activation of the p38 Mitogen Activated Protein Kinase 

(MAPK)-MAPKAP2 signaling pathway after exposure to genotoxic agents such as 

ionizing radiation (IR), which promotes survival in HeLa cells (91, 92).  On the other 

hand, in MCF7 breast cancer cells IR-stimulated DNA damage causes Net1- and Ect2-

dependent RhoB activation, which inhibits cell survival (93).  Thus, the role of Net1 in 

DNA damage signaling may be cell type specific. 

 

Net1 mediated signaling through RhoA 

RhoA activation induces various downstream signal transduction pathways that 

control actin cytoskeletal rearrangement, transformation, adhesion, and gene 

expression.  For example, TGF-β stimulates Smad activity, which enhances Net1 

expression, leading to increased Rho activity and actin stress fiber formation (84, 94).  

Net1 dependent activation of downstream stress fiber formation is down-regulated by 

co-expression with the scaffold protein Connector Enhancer of Kinase Suppressor of 

Ras 1 (CNK1) (87, 95).  Importantly, CNK1 co-expression causes Net1 to stimulate 

RhoA-dependent SAPK/JNK pathway activation.  These findings indicate that 

signaling downstream of Net1 is regulated by associated proteins (60, 95).  Net1 also 

has the ability to induce SAPK/JNK activation independently of the generation of 

titratable GTP-bound RhoA (60).  Moreover, the PBM of Net1 is not required for RhoA 

dependent cytoskeletal effects, but is necessary for cellular transformation (87).  On 

the other hand, Net1ΔN interaction with Dlg1 reduces the transformation potential of 
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oncogenic Net1 (81).  Altogether, this indicates that Net1 activity is differentially 

regulated towards RhoA and transformation. 

 

Regulation of Net1 activity 

Net1 activity is regulated by phosphorylation, ubiquitylation, and subcellular 

localization (61, 76, 81, 87, 96).  Additionally, TGF-β inhibits Net1 expression by the 

microRNA miR-24 (94).  The exchange activity of Net1 and its ability to stimulate 

stress fiber formation is reduced by phosphorylation of serines 152 and 153 (S152, 

S153) by p21 Activated Kinase 1 (PAK1) in response to Rac1 activation (96).  

Disruption of E-cadherin engagement leads to decreased Net1A and Dlg1 interaction 

and subsequent Net1A ubiquitylation, thus indicating enhancement of Net1A stability 

in response to cell-cell contact (76).  Increased Net1A stability correlates with 

increased interaction with Dlg1 and relocalization of Net1A/Dlg1 complexes to the 

subnuclear structures, the promyelocytic leukemia protein (PML) bodies (76, 81).  This 

indicates Net1A association with Dlg1 which protects Net1A from ubiquitin-mediated 

degradation and this interaction is regulated by cell-cell contact (76).  Lastly, down-

regulation of Net1 activity also occurs through nuclear sequestration (61, 87).  Deletion 

mutants of Net1, containing various NLS aberrations or N-terminus abnormalities, 

exhibit cytoplasmic localization, indicative that the N-terminus of Net1 regulates 

subcellular localization through these NLS sequences.  Extranuclear localization of 

Net1 isoforms is required for RhoA activation and stress fiber formation.  However, 

stimuli that cause increased nuclear export or decreased nuclear import of Net1 

isoforms, thereby relocalizing Net1 outside the nucleus, have not been described. 
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Ran dependent Nuclear Import and Export 

Nuclear import and export are typically regulated by families of binding proteins 

known as importins and exportins, which function as chaperones to mediate transit 

through the nuclear pore.  Importins are classified as karyopherins (97).  Karyopherins 

have two subunits, importin α and importin β, of which there are six importin α subunits 

in humans, namely KPNA1, 2, 3, 4, 5, and 6.  Importin α binds to the NLS of a protein 

to be imported into the nucleus, while importin β binds to importin α and mediates 

docking to the nuclear pore complex (NPC) and translocation through the pore.  The 

importin β subunit can also bind to a NLS protein without the aid of an importin α 

subunit.  The importin/NLS complex binds the GDP-bound Ras family GTPase, Ran 

(Ras-related nuclear protein).  Together, this complex moves through the nuclear pore 

by forming contacts with nucleoporins.  Once inside the nucleus, GDP-Ran interacts 

with chromatin bound RCC1 (a Ran GEF), which causes GTP binding.  GTP-bound 

Ran triggers a conformational change of importin β to catalyze release of the NLS 

containing protein from importin α (98, 99).  Cargo that needs to be exported outside 

the nucleus utilizes exportins.  There are seven exportins in humans, respectively 

named CRM1 (Chromosome region maintenance protein 1) (XPO1), CAS (Cellular 

Apoptosis Susceptibility Protein) (XPO2), XPO T (XPO3), XPO4, XPO5, XPO6, and 

XPO7.  Of these, CAS controls the nuclear export of importins after they shuttle cargo 

into the nucleus and XPOT mediates the nuclear export of tRNAs (98, 99).  A 

consensus NES has only been defined for CRM1.  Exportins bind to the NES of a 

protein to form a ternary complex with RanGTP.  Upon translocation through the 

nuclear pore, cytoplasmic RanGAP1 stimulates GTP hydrolysis by Ran, causing 

complex dissociation and the release of the exported cargo into the cytoplasm (98, 

99).   
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Cellular Adherence to Extracellular Matrices and Cell Spreading 

 Adhesion of cells to the ECM provides structural support for cells and is critical 

for tissue development and homeostasis.  ECM binding also mediates activation of 

multiple signaling pathways to regulate cellular behavior.  The ECM is comprised of an 

interlocking mesh of assorted fibrous proteins and proteoglycans, such as heparan 

sulfate, elastins, fibronectins, laminins, and collagens, of which collagen is the most 

abundant (100-102).  Cells bind to the ECM through different cell surface receptors, 

including syndecans and integrins.  The major receptors for cell adhesion to the ECM 

are integrins (103).  Integrins are heterodimeric transmembrane receptors composed 

of single  and  chains. There are 18 α and 8 β subunits in mammals, which 

assemble into 24 distinct integrin complexes, allowing for specificity in ECM 

component binding and intracellular signaling (103).  For example, while integrins 

α1β1 and α2β1 both bind collagen I and IV, α2β1 preferentially interacts with collagen I 

while α1β1 has a higher affinity for collagen IV (104-106).  Integrins behave as 

bidirectional signal transducers, transmitting signals from the inside of the cell to the 

outside through cytoplasmic binding to cytoskeletal adaptor proteins, or from the ECM 

to the inside of the cell through extracellular ligand binding (103).   

 Following initial adherence to an ECM, cells begin to flatten and spread out.  

During this process, signaling events are triggered by integrin engagement.  Prior to 

ECM binding, the protein Talin binds to the β subunit of the integrin dimer, inducing a 

conformational change in an integrin receptor that allows for binding to the ECM.  

Following binding of the integrin heterodimer to the ECM the focal adhesion kinase 

(FAK) is recruited.  Clustering of multiple ECM-bound integrins allows for the trans-

phosphorylation of FAK molecules on tyrosine 397, which creates a binding site for the 
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tyrosine kinase Src (107, 108).  Src binding leads to further tyrosine phosphorylation of 

FAK as well as increased Src phosphorylation, maximizing the kinase activity of the 

FAK-Src complex (109).  This FAK-Src complex recruits and activates scaffolding and 

adaptor proteins, such as p130Cas and paxillin.  These proteins recruit additional 

signaling molecules to initiate cell signaling.  Among these events, activation of the 

Rho family proteins Rac1 and Cdc42 is crucial.  Their activation is mediated by binding 

to the Rac1 and Cdc42 exchange factors, the unconventional GEF Dock180-

engulfment and motility 1 (ELMO1) complex and β-PIX, which stimulate Rac1 and 

Cdc42 activation to promote membrane protrusion (110-112).  Once activated, Cdc42 

and Rac1 promote the extension of filopodia and lamellipodia that allow for early cell 

spreading. Rac1 stimulation also induces reactive oxygen species production, which 

inhibits tyrosine phosphatase activity toward p190RhoGAP, thereby activating 

p190RhoGAP and inhibiting RhoA activity.  This diminishes actomyosin contractility in 

the spreading edge of the cell (113-116).   

In the later stages of spreading, 60 to 90 minutes following adhesion, Rac1 and 

Cdc42 activities decrease and RhoA activity steadily increases, driving maturation of 

focal complexes (FC) to focal adhesions (FA), promoting the formation of actin stress 

fibers.  This provides cellular anchorage to the ECM and enhances actomyosin 

contraction (113, 114, 117, 118).  RhoA activation also stimulates Rho-associated 

protein kinase (ROCK)-mediated phosphorylation of the Rac1 GAP FilGAP, thereby 

down-regulating Rac1 activity (117, 118).  In fibroblasts the increase in RhoA activity 

at later stages of cell spreading has been shown to require the actions of the Rho 

GEFs LARG, p115RhoGEF (Lsc), and p190RhoGEF (119, 120).  However it is not 

clear how the activity of these Rho GEFs are coordinated during cell spreading, nor is 

it known why multiple RhoA directed GEFs are required for efficient spreading.  Also, 
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most of these studies have been conducted in mouse fibroblasts.  It is possible that 

different Rho GEFs may be operative in human breast cancer cells. 

 

Constitutive activation of Rac1 stimulates Net1A extranuclear localization 

 Previous work in the Frost lab was directed at screening upstream regulators 

and downstream effectors of Rho proteins to identify factors that would cause 

relocalization of Net1 isoforms from the nucleus. From these efforts, the lab found that 

co-expression of constitutively active Rac1 (V12Rac1) caused a dramatic re-

localization of Net1A outside the nucleus in transfected MCF7 breast cancer cells.  As 

shown in Figures 3A and 3B, when transfected alone, Net1 and Net1A localized 

outside of the nucleus in approximately 15% and 25% of transfected cells, respectively 

(61, 87, 96).  However, co-expression of V12Rac1 robustly increased the percent of 

transfected cells with extranuclear Net1A to more than 80% of cells.  This considerable 

effect, however, was not observed when V12Rac1 was co-expressed with Net1, 

suggesting that the localization of Net1 and Net1A are regulated differently.  

Furthermore, using subcellular fractionation followed by Western blotting, the 

localization of HA-tagged Net1A in the membrane fraction was significantly increased 

by co-expression of Myc-tagged V12Rac1, indicating that Net1A was re-localized to the 

membrane (Figure 3C). 
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Figure 3.  Co-expression of V12Rac1 relocalizes Net1A outside the nucleus.  (A)  
MCF7 cells were transfected with HA-Net1 or HA-Net1A, plus control vector or 
Myc-V12Rac1, and processed for immunofluorescence by using anti-HA 
antibodies (green), anti-Myc antibodies (red), and DAPI (stains DNA, blue).  A 
representative panel for each transfection is shown.  The constructs used for 
each condition are indicated to the left of each panel.  (B)  Quantification of 
extranuclear Net1 isoform localization.  At least 100 cells were counted for each 
condition.  Significance was estimated by Student’s t test for non-paired values.  
Error bars represent standard error of the mean.  * = P <0.002.  (C)  Cells were 
transfected with HA-Net1A alone or with Myc-V12Rac1 and processed for 
subcellular fractionation.  Proteins within each fraction were analyzed by 
Western blotting using the indicated antibodies.  Results of a representative 
experiment are shown (Frost Lab, data not published).   

 
 
 

Since V12Rac1 co-expression relocalized Net1A outside the nucleus, the Frost 

Lab also tested whether the related Rho GTPase Cdc42 also caused Net1A 

relocalization in transfected MCF7 cells.  In these experiments, Net1A localization was 

tested only one day after transfection, as expression of constitutively active Cdc42 

(V12Cdc42) was toxic to MCF7 cells after longer periods of time (data not shown).  In 

these assays, it was found that co-expression of V12Rac1 caused extranuclear 
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localization of Net1A in approximately 60% of the cells while V12Cdc42 only caused 

30% of the cells to exhibit extranuclear Net1A (data not shown), suggesting that 

V12Rac1 is more effective than V12Cdc42 for stimulating Net1A relocalization outside 

the nucleus.   

The Frost Lab also determined what aspects of Net1A function were required 

for Rac1-stimulated relocalization.  For these assays the following Net1A mutants 

were tested: catalytically inactive Net1A (L267E, L/E); the PH domain mutant (W438L, 

W/L) (60), and the deletion mutant Net1A 1-307, which lacks the PH domain and the 

C-terminal regulatory domain (Figure 2).  Immunofluorescence analysis showed that 

each Net1A mutant efficiently relocalized outside the nucleus when co-expressed with 

V12Rac1.  Co-expression of wild type Net1A, Net1A L/E, and Net1A W/L with V12Rac1 

caused approximately 70% of the cells to contain extranuclear Net1A.  Rac1 was 

slightly less efficient at causing re-localization of Net1A 1-307, with only 60% of the 

cells exhibiting extranuclear Net1A localization (data not shown).  Taken together, 

these results demonstrate that the catalytic activity, potential phosphatidyl-inositol 

binding ability, and C-terminal sequences within Net1A are not necessary for 

stimulation of its relocalization outside the nucleus by V12Rac1.    

Extranuclear localization of Net1 is required for RhoA activation, actin 

cytoskeletal reorganization, and oncogenic transformation.  However, regulatory 

mechanisms controlling the import or export of Net1 have not been identified.  It has 

been determined that the relocalization of Net1A from the nucleus to the plasma 

membrane in breast cancer cells is regulated downstream of constitutively activation of 

Rac1.  Through the current study, we established that Rac1 expression and activation 

are necessary for Net1A relocalization during cell spreading.  These results suggest 

that Net1 isoforms are regulated differently and that Rac1-mediated relocalization of 
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Net1A may be a significant determinant of the ability of cells to adhere to an ECM and 

for cell motility.  
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CHAPTER 2:  MATERIALS AND METHODS 

Antibodies and cDNA constructs 

The following antibodies were used:  anti-Rac1, anti-Cdc42, and anti-paxillin 

(BD Biosciences); anti-GAPDH, anti-glutathione S-transferase (GST), anti-Net1, anti-

HA, anti-SOD1, and anti-Na+/K+ ATPase (Santa Cruz); anti-RhoA (Cytoskeleton); anti-

H3 and anti-phosphoFAK (Y397) (Cell Signaling); anti-Myc epitope (AbCam); and anti-

-tubulin (Sigma).  Primary antibodies used for Western blotting were detected with 

horseradish peroxidase-conjugated secondary antibodies (Kirkegaard & Perry 

Laboratories) via enhanced chemiluminescence (ECL).    For immunofluorescence 

microscopy, Cy2- and Cy3- conjugated anti-mouse and anti-rabbit secondary 

antibodies were from Jackson ImmunoResearch.  TRITC-phalloidin and 4’, 6-

diamidino-2-phenylindole (DAPI) were from Sigma.  Alexa 647-phalloidin was from 

Invitrogen.  Wild type and constitutively active V12Rac1 and V12Cdc42 were in 

pCMV5M, as described (96).  Mouse Net1, Net1A and their respective mutants were in 

pEFHA (87).  DNA sequencing was used to verify all constructs.  

 

Cell culture and transfection 

MCF7 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

(Sigma) supplemented with 10% fetal bovine serum (FBS) (Sigma) and antibiotics 

(100 units/mL penicillin-streptomycin) (HyClone).  MCF7 cells were transfected with 

cDNA expression vectors using Lipofectamine/Plus (Invitrogen) following the 

manufacturer’s instructions.  Cells were assayed 48 h after transfection. 

 Small interfering RNAs (siRNA) against human Rac1 were from Sigma.  Rac1 

siRNA sequences were as follows: Rac1-1 sense, 5’-
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AAGGAGAUUGGUGCUGUAAAAUU-3’, and antisense, 5’-

UUUUACAGCACCAAUCUCCUU-3’; and Rac1-2 sense, 5’-

AACCUUUGUACGCUUUGCUCAUU-3’, and antisense, 5’-

UGAGCAAAGCGUACAAAGGUUUU-3’.  The RNA sequences, sense, 5’- 

GAUCAUACGUGCGAUCAGAUU-3’, and antisense, 5’-

UCUGAUCGCACGUAUGAUCUU-3’, was used as a non-targeting control (Sigma).  

MCF7 cells were transfected with siRNAs using the INTERFERin transfection reagent 

(Polyplus) according to manufacturer’s instructions.  Cells were assayed 96 h after 

transfection with Rac1 siRNA. 

 

Recombinant protein expression 

V17A-RhoA (RhoA(17A)) in pGEX-KG was created by PCR-mediated 

mutagenesis and verified by DNA sequencing.  GST- or GST-RhoA17A proteins were 

purified as previously described (121).  Briefly, BL21(DE3) E. coli transformed with 

pGEX-KG or pGEX-KG/RhoA(17A) were cultured to O.D.600 = 0.8 and GST protein 

expression was induced for 12 to 16 h at room temperature following the addition of 50 

M IPTG (isopropyl-β-D-thiogalactopyranoside).  Bacterial cells were collected by 

centrifugation (6,000 x g), lysed in buffer containing 20 mM HEPES pH 7.5, 150 mM 

NaCl, 5 mM MgCl2, 1% Triton X-100, 1 mM DTT, 1 mM phenylmethylsulfonyl fluoride 

(PMSF), and 10 g/ml each of aprotinin, leupeptin, and pepstatin A, and insoluble 

material was pelleted by centrifugation (20,000 x g, 30 minutes, 4°C). GST or GST-

RhoA17A in the soluble fraction was purified by incubation with glutathione-agarose 

beads (Sigma) for 1 h at 4°C, followed by two washes with lysis buffer and two washes 

with lysis buffer lacking Triton X-100 and protease inhibitors.  Protein purity was 
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assessed by Coomassie staining and concentrations were tested by BCA assay 

(Pierce).  Proteins were left attached to the beads and frozen in aliquots.   

 Rac1 activity was measured by pulldown assay using the p21-binding domain 

(PBD) of Pak1 cloned into pGEX-2T, a kind gift from Catherine Denicourt (UT-

Houston).  Prokaryotic expression of the pGEX-2T/PBD construct was performed as 

described (122).  Briefly, BL21(DE3) E. coli transformed with pGEX-2T/PBD were 

grown to O.D.600 = 0.8 and expression of the GST or GST-PBD fusion proteins in was 

induced with 400 M IPTG for 3 h at 30°C.  Bacterial cells were pelleted by 

centrifugation (6,000 x g) and re-suspended in buffer containing 50 mM Tris-HCl pH 

7.5, 150 mM NaCl, 5 mM MgCl2, 1 mM EDTA, 1 mM DTT, 1 mM PMSF, 1 mg/ml 

lysozyme (Fisher), and 10 g/ml each of aprotinin, leupeptin, and pepstatin A.  After 

sonication, insoluble material was pelleted by centrifugation (12,000 x g, 10 min, 4°C), 

and soluble proteins were incubated with glutathione-agarose beads for 1 h at 4°C 

followed by three washes using buffer containing 50 mM Tris-HCl pH 8.0, 150 mM 

NaCl, 5 mM MgCl2, 1 mM DTT, 1 mM PMSF, and 10 g/ml each of aprotinin, 

leupeptin, and pepstatin A.  Protein purity was assessed by Coomassie staining and 

concentrations were tested by BCA assay.  Proteins were left attached to the beads 

and frozen in aliquots.   

 

Net1 activity pulldowns 

Active Net1 pulldown experiments were performed as described (121).  Briefly, 

cells were lysed in lysis buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 5 mM MgCl2, 

1% Triton X-100, 1 mM DTT, 1 mM PMSF, and 10 g/ml each of aprotinin, leupeptin, 

and pepstatin A), sonicated for 30 s, and clarified by centrifugation (13,000 x g, 5 min, 
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4°C).  Lysates concentrations were determined by BCA assay and equal amounts of 

lysate were mixed for 1 h at 4°C with 20 μg of GST or GST-RhoA17A beads.  Beads 

were pelleted by centrifugation and washed 3 x in lysis buffer, resuspended in 25 l 

sodium dodecyl sulfate (SDS) sample buffer (50 mM Tris-HCl pH 6.8, 100 mM DTT, 

2% SDS, 0.02% bromophenol blue, and 10% glycerol), boiled for 5 min, and separated 

by SDS-polyacrylamide gel electrophoresis (PAGE).  Proteins were transferred to 

polyvinylidene fluoride (PVDF) membrane (GE, Millipore) and immunoblotted with the 

indicated antibodies.   

 

Rac1 activity assays  

 Active Rac1 pulldown experiments were performed as described (122).  Briefly, 

suspended and adherent cells were lysed in buffer containing 50 mM Tris-HCl pH 7.5, 

200 mM NaCl, 10 mM MgCl2, 1% NP-40, 5% glycerol, 1 mM PMSF, and 10 g/ml 

each of aprotinin, leupeptin, and pepstatin A and incubated on ice for 5 min.  Insoluble 

material was pelleted by centrifugation (13,000 × g, 10 min, 4°C).  Lysate 

concentrations were determined by BCA assay and equal amounts were incubated 

with GST or GST-PBD beads for 1 h at 4°C.  The beads were pelleted and washed 3 

times in wash buffer (25 mM Tris-HCl pH 7.5, 40 mM NaCl, 30 mM MgCl2, 1% NP-40, 

1 mM DTT, 1 mM PMSF, and 10 g/ml each of aprotinin, leupeptin, and pepstatin A), 

followed by two washes with wash buffer lacking NP-40.  Lysates were subsequently 

prepared for SDS-PAGE, transferred to PVDF membrane and immunoblotted for Rac1 

and GST proteins. 
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Cell spreading assays   

Cells were trypsinized (HyClone), washed three times with phosphate-buffered 

saline (PBS), and resuspended in 0.5% de-lipidated bovine serum albumin (BSA) 

(Sigma) in DMEM for 1 h at 37°C.  Cells were then replated on tissue culture dishes or 

glass coverslips previously coated with collagen IV (10 g/ml) (BD Biosciences).  

Coverslips or tissue cultures dishes were coated with Collagen IV diluted in PBS for 1 

hr at room temperature then washed with PBS and stored at 4°C until ready for use.  

Cells were harvested at the appropriate times for biochemical or microscopic analysis. 

 

Immunofluorescence microscopy   

Cells grown on collagen IV coated coverslips were washed in PBS and fixed in 

4% paraformaldehyde for 10 min at 37°C.  Cells were permeabilized with 0.2% Triton 

X-100 in PBS for 5 min at room temperature.  Coverslips were then washed in PBS 

plus 0.1% Tween 20 (PBST), followed by blocking with 1% BSA in PBST for 30 min.  

Cells were incubated with primary antibodies diluted to 1-3 g/ml in PBST + 1% BSA 

for 1 h at 37°C.  Coverslips were washed 3 x in PBST for 5 min and incubated with 

secondary antibodies diluted to 0.5-2 g/ml in PBST + 1% BSA for 1 h at 37°C.  

Coverslips were washed and mounted on slides with FluorSave Reagent 

(Calbiochem).  Epifluorescence images were captured with a Zeiss Axioskop 

microscope equipped with a Zeiss AxioCam MRm MC100 SPOT digital camera and 

AxioVision software.  For quantitative analysis, images were serially acquired with the 

same illumination and exposure parameters, and the average fluorescence intensity in 

regions of interest for each transfected cell was performed using Image J software.   
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CHAPTER 3:  RESULTS 

Constitutive activation of Rac1 stimulates Net1A activity 

 Net1 activity towards RhoA is inhibited by nuclear sequestration (82, 87).  

Because co-expression of V12Rac1 with Net1A causes its relocalization outside the 

nucleus, we examined whether this also resulted in an increase in the catalytic activity 

of Net1A.  MCF7 breast cancer cells were transfected with expression plasmids for 

HA-Net1, HA-Net1A, or HA-Net1ΔN alone or with Myc-V12Rac1.  After two days the 

cells were harvested and equal amounts of lysate were incubated with recombinant 

GST-RhoA(17A) bound to glutathione-agarose.  GST-RhoA(17A) is a nucleotide-free 

RhoA mutant that binds tightly to active Rho GEFs (121).  After incubation, GST-

RhoA(17A) complexes were pelleted by centrifugation, washed, and resolved by SDS-

PAGE.  The presence of HA-tagged Net1 proteins in these complexes was then 

assessed by Western blotting.  Net1 activity was calculated by dividing the level of 

Net1 in the GST-RhoA(17A) pulldowns by the amount of Net1 in the lysate, normalized 

to the amount of GST-RhoA(17A) used in the pulldown (GST-RhoA(17A) bound Net1 / 

total Net1 in lysate / GST-RhoA(17A) in pulldown). 

As shown in Figure 4, both HA-Net1 and HA-Net1N displayed a high level of 

activity in MCF7 cells irrespective of whether V12Rac1 was co-expressed.  This was 

expected for Net1ΔN, as it has been reported previously to function as a constitutively 

active form of Net1 in other cell types (60, 82).  Similarly, Net1 has been reported to be 

constitutively active (87, 91).  On the other hand, HA-Net1A expressed alone in MCF7 

cells displayed very little activity.  However, co-expression of V12Rac1 strongly 

activated Net1A, increasing its ability to bind to GST-RhoA(17A) by nearly three-fold.  

Interestingly, co-expression of V12Rac1 also increased the expression of each Net1 
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isoform.  Since Net1A has been observed previously to be targeted for proteasome-

mediated degradation (76), this may indicate that co-expression of V12Rac1 stabilizes 

Net1 proteins in general.  In this regard, others in the Frost Lab have observed that co-

expression of V12Rac1 significantly increases the half-life of transfected HA-Net1A 

(data not shown).  Importantly, our method for quantifying Net1 isoform activity 

included normalization for Net1 expression, indicating that increases in Net1A activity 

caused by V12Rac1 co-expression cannot be discounted due to altered Net1A 

expression. Taken together, these data indicate that co-expression of constitutively 

active Rac1 strongly stimulates the activity of Net1A, but not Net1, similar to its effects 

on the extranuclear localization of Net1 isoforms.  

 

Figure 4.  Co-expression of V12Rac1 stimulates Net1A activation.  (A)  Cells were 
transfected with HA-Net1, HA-Net1A, or HA-Net1ΔN, alone or with Myc-
V12Rac1, as indicated.  Equal amounts of lysate from each population of cells 
were incubated with glutathione-agarose-bound GST-RhoA(17A).  Binding of 
Net1 proteins to GST-RhoA(17A) was analyzed by Western blotting (top panel).  
Expression of HA-Net1 proteins and Myc-V12Rac1 in the lysates is shown in the 
bottom panels. Results of a representative experiment are shown.  (B)  
Quantification of Net1 isoform activity.  Active Net1 was defined as the amount 
of HA-Net1 protein in the GST-RhoA(17A) pulldown divided by that in the 
lysate, and values were adjusted according to the amount of GST-RhoA(17A) in 
the pulldowns.  Data were then normalized to the level of activity exhibited to 
HA-Net1 transfected alone.  The results from 6 independent experiments are 
shown.  Significance was determined by Student’s t test for non-paired values.  
* = p < 0.005.   
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Endogenous Rac1 controls Net1A localization 

 When over-expressed alone, approximately 25% of the HA-Net1A transfected 

cells exhibited extranuclear localization of Net1A (Figure 1B).  This begged the 

question of whether endogenous Rac1 activation accounts for the extranuclear 

localization of Net1A in these cells.  To test this idea, MCF7 cells were transfected with 

non-targeting (control) or Rac1-specific siRNAs.  Two days later, the cells were 

transfected with an HA-Net1A expression vector.  Two days after that the cells were 

fixed and stained for HA-Net1A localization.  As shown in Figure 5A, inhibition of Rac1 

expression drastically reduced the extranuclear localization of HA-Net1A.  

Quantification of these results showed that inhibition of Rac1 expression decreased 

the number of cells exhibiting extranuclear localization of Net1A from nearly 30% to 

10%.  These effects were consistent using two siRNAs targeting distinct sequences 

within human Rac1, both of which strongly inhibited Rac1 expression (Figure 5C).  

These data indicate that basal activation of endogenous Rac1 in MCF7 cells drives the 

extranuclear localization of transfected Net1A, and support the notion that Net1A 

relocalization stimulated by exogenously expressed V12Rac1 reflects a valid 

physiological mechanism controlling Net1A localization.   
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Figure 5.  Endogenous Rac1 controls extranuclear localization of Net1A.  Cells 
were transfected with non-targeting control or Rac1-specific siRNAs.  Two days 
later, the cells were re-transfected with an expression vector for HA-Net1A.  
Two days after that, the cells were fixed and stained for HA-Net1A localization.  
(A)  Representative panels showing HA-Net1A localization (green) in control 
and Rac1 siRNA transfected cells.  DNA is stained blue and F-actin is stained 
red.  (B)  Quantification of HA-Net1A localization in control and Rac1 siRNA 
transfected cells.  Shown is the average of three independent experiments.  
Significance was determined by Student’s t test for non-paired values.  * = p < 
0.0002.  (C)  Representative Western blot confirming inhibition of Rac1 
expression. 

 
 
 
Spreading on collagen IV stimulates Rac1 activity and Net1A relocalization 

Our data shows that expression of constitutively active Rac1 causes Net1A 

relocalization outside the nucleus and results in Net1A activation.  Thus, we wanted to 

test whether stimuli that are known to activate endogenous Rac1 also regulated Net1A 

localization in MCF7 cells.  To test this, we examined whether cell spreading after 

trypsinization caused Rac1 dependent Net1A relocalization, since this process is 

known to strongly activate Rac1 in other cells types (110-112).  To determine whether 

replating of MCF7 cells on collagen stimulated endogenous Rac1 activation, actively 

growing cells at 80% confluency were trypsinized and replated on dishes coated with 

collagen IV.  At different times the cells were lysed and tested for Rac1 activation 
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using a conventional pulldown assay (122).  In this assay, cell lysates are incubated 

with the recombinant Rac1 binding domain from Pak1 fused to GST (GST-PBD).  

Since only active Rac1 binds to this domain, the amount of Rac1 bound is directly 

proportional to the degree of Rac1 activation.  Rac1 activation can be detected by 

Western blot, and is quantified by dividing the amount of Rac1 in the pulldowns by the 

amount of Rac1 in the lysate, normalized to the amount of GST-PBD used in the 

pulldown.  In these assays, we observed that endogenous Rac1 was strongly 

activated within 5 min after replating, with peak Rac1 activation occurring within 30 

minutes of replating.  By 90 minutes Rac1 activation had returned to baseline (Figures 

6A and 6B).  Thus, these experiments demonstrate that replating MCF7 cells on 

collagen IV strongly induces endogenous Rac1 activity.   
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Figure 6.  Replating MCF7 cells on collagen strongly activates endogenous 
Rac1.  (A)  Endogenous active Rac1 was pulled down from cell lysates with 
recombinant GST-PBD and analyzed by Western blotting using anti-Rac1 
antibodies.  The upper panel shows Rac1 bound to GST-PBD, the middle panel 
shows Rac1 in the lysate.  GST-PBD in the pulldowns is shown in the lower 
panel.  Shown is a representative experiment.  (B)  Quantification of Rac1 
activation following replating on collagen IV.  Shown is the average of three 
independent experiments.  Significance was determined by Student’s t test for 
non-paired values.  * = p < 0.05. 

 
 
  

We then examined whether replating cells on collagen would stimulate Net1A 

relocalization.  MCF7 cells were transfected with an HA-Net1A expression vector, 

trypsinized, and replated on collagen.  At different times, the cells were then fixed and 

stained for Net1A localization, DNA, and F-actin.  As a positive control, adherent cells 

were co-transfected with V12Rac1.  To more precisely measure HA-Net1A localization, 
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we quantified the fluorescent intensity of HA-Net1A in the nucleus and cytoplasm, and 

displayed the results as a ratio of cytoplasmic to nuclear Net1A (Cyto/Nuc).  Typically, 

nuclear localization of HA-Net1A in MCF7 cells is indicated by a Cyto/Nuc ratio of 

about 0.8, and an increase in this ratio signifies increased localization of Net1A outside 

the nucleus.  By this analysis we observed that HA-Net1A was mainly localized in the 

nucleus in adherent cells before trypsinization and replating, and quickly relocalized 

outside the nucleus upon replating.  Peak relocalization of HA-Net1A outside the 

nucleus occurred 60 min after replating onto collagen, and by 90 min HA-Net1A was 

largely re-localized inside the nucleus (Figures 7A and 7B).  Altogether, these data 

suggest that integrin engagement onto a collagen matrix stimulates Rac1 activation, 

which in turn stimulates Net1A relocalization outside the nucleus.   
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Figure 7.  Relocalization of Net1A in cells spreading on collagen IV.  (A)  Cells 
were transfected with HA-Net1A and then replated on collagen IV coated 
coverslips.  At different times, the cells were fixed and stained for HA-Net1A 
(green), DNA (blue), and F-actin (red).  A representative experiment is shown.  
(B)  Quantification of HA-Net1A subcellular localization.  Fluorescence intensity 
of HA-Net1A staining was analyzed using Image J software and is depicted as 
the ratio of intensities in the cytoplasm and nucleus (Cyto/Nuc).  Shown is the 
average of three independent experiments.  Significance was determined by 
Student’s t test for non-paired values.  * = p < 0.0001.     

 
 
 
Rac1 controls Net1A relocalization during cell spreading 

To determine the role of Rac1 on Net1A relocalization during cell spreading, we 

transfected MCF7 cells with control or Rac1-specific siRNAs.  One day later, the cells 

were re-transfected with an HA-Net1A expression vector.  Two days after that, the 

cells were trypsinized and replated on collagen coated coverslips.  At different times 

the cells were fixed and stained for HA-Net1A localization, DNA, and F-actin.  In these 
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experiments cells depleted of Rac1 exhibited a reduced rate of spreading, consistent 

with a pivotal role for Rac1 in early spreading events in other cell types (108, 111, 

112).  Importantly, we also observed that inhibition of Rac1 expression completely 

inhibited the relocalization of Net1A during cell spreading (Figures 8A and 8B).  These 

data indicate that Rac1 expression is necessary for Net1A relocalization outside the 

nucleus in spreading cells.   
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Figure 8.  Net1A relocalization during cell spreading requires Rac1 expression.  
(A)  Cells were transfected with control or Rac1-specific siRNAs, and then two 
days later re-transfected with HA-Net1A expression vector.  Two days after that, 
the cells were trypsinized and replated on collagen coated coverslips.  At 
different times the cells were fixed and stained for HA-Net1A (green), DNA 
(blue), and F-actin (red).  Shown is a representative experiment.  (B)  
Quantification of HA-Net1A subcellular localization.  The fluorescence intensity 
of HA-Net1A in the cytoplasm and nucleus was quantified.  The average of 
three independent experiments is shown.  Significance was determined by 
Student’s t test for non-paired values.  * = p < 0.05; ** = p < 0.0001.  (C)  
Representative Western blot demonstrating knockdown of Rac1 expression. 
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CHAPTER 4:  DISCUSSION 

 Net1 activity towards RhoA is negatively regulated by nuclear localization (61, 

87).  However, stimuli causing the redistribution of Net1 isoforms outside the nucleus 

have not been published.  In the present study, we have demonstrated that expression 

of constitutively active Rac1 stimulates Net1A re-localization to the plasma membrane 

and results in an up-regulation of Net1A activity.  Interestingly, Net1 appears to 

maintain a high basal activity (Figure 4).  Moreover, Rac1 activation is necessary for 

Net1A relocalization outside the nucleus during cell spreading on a collagen matrix.  

Thus, these data represent the first mechanism for regulating the subcellular 

distribution of Net1A, and demonstrate that the localization of Net1 isoforms is 

differentially regulated.   

 Little is known about mechanisms controlling the nuclear import and export of 

Net1A.  Nuclear import and export are typically regulated by the small GTPase Ran, 

which controls import and export by chaperone proteins known as importins and 

exportins, respectively (98, 99).  We hypothesize that Rac1 activation should alter 

Net1A localization either by negatively regulating Net1A-importin association, up-

regulating Net1A-exportin association, or a combination of the two mechanisms.  

Net1A contains two predicted NLS sequences in its amino-terminus (Figure 2).  Others 

in the Frost Lab have shown that both of these NLS sequences contribute to the 

nuclear localization of Net1A, although the first NLS (NLS3) seems to be the more 

important of the two sequences (not shown).  In this regard, the Frost lab has also 

observed that the importin α subunit, KPNA2, co-immunoprecipitates with Net1A (not 

shown).  In addition, KPNA2 mediates the nuclear import of Rac1 (123).  So 

conceivably, the first NLS (NLS3) of Net1A may bind to KPNA2 to mediate nuclear 

Net1A import.  In this regard it would be important to show whether KPNA2 mediates 
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nuclear import of Net1A, and then to determine whether Rac1 activation alters KPNA2-

dependent Net1A nuclear import. 

It would also be important to determine whether nuclear export mechanisms 

contribute to Rac1 mediated relocalization of Net1A.  Previous work has shown that 

the PH domain of Net1A mediates CRM1 dependent nuclear export of the N-terminal 

truncation mutant, Net1ΔN, from the nucleus (61).  However, others in the Frost Lab 

have observed that treatment of MCF7 cells with the CRM1 inhibitor, leptomycin B, 

does not block nuclear export stimulated by constitutively active Rac1 (not shown).  

Thus, if nuclear export of Net1A contributes to its Rac1 dependent re-localization, then 

one or more exportins other than CRM1 is likely to control this event.  Further work is 

necessary to evaluate how Rac1 activation affects Net1A interaction with the relevant 

importin or exportin. 

The mechanism by which Rac1 signals to cause Net1A relocalization is 

presently not known.  Rac1 initiates intracellular signaling by stimulating the activation 

of a known set of effector proteins.  Thus, identifying the Rac1 effector responsible for 

Net1A relocalization is important to understanding how Net1A localization and activity 

are controlled in breast cancer cells.  There are approximately 30 effectors for Rho, 

Rac, and Cdc42 GTPases (32).  However, since V12Rac1 is more effective than 

constitutively active Cdc42 at causing Net1A relocalization, and RhoA activation does 

not affect Net1A localization (not shown), we would expect that potential effectors 

should be preferentially be activated by Rac1.   

 Rac1-dependent effectors that may be responsible for relocalization of Net1A 

include the kinases MLK2 and 3, MEKK1 and 4, PAKs1-3, the phospholipase PLC-β2, 

and the scaffolding proteins POSH, POR1, p140Sra-1, and IQGAP1-3 (82, 124-134).  

Although this list of effectors is long, the respective function of the possible Rac1 
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effectors can be utilized to identify likely candidates.  For instance, the Rac1 effector 

p70 S6 kinase regulates mRNA translation (32, 135), so it is unlikely to control the 

ability of Net1A to affect actin cytoskeleton organization.  In addition, the Frost lab has 

shown previously that the Rac1/Cdc42 effector PAK1 phosphorylates Net1 in 

response to Rac1 activation, which inhibits its ability to stimulate actin stress fiber 

formation (a RhoA phenotype) (96).  As the PAK1 phosphorylation sites are adjacent 

to the second NLS (NLS4) in Net1A, it is possible that PAK1 mediates Rac1 effects on 

Net1A localization.  Future work will be required to identify the Rac1 effector that 

controls Net1A localization. 

 Because we observed that V12Rac1 expression caused extranuclear 

localization of Net1A, we examined whether stimuli that promote endogenous Rac1 

activation also impact Net1A localization.  For these experiments, we focused on Rac1 

activation stimulated by cellular adhesion, since this is known to require Rac1 at early 

times, followed by RhoA activation at later times (108).  Importantly, we found that cell 

spreading dramatically stimulated the relocalization of Net1A outside the nucleus 

(Figure 7).  Furthermore, we determined that Rac1 was activated by cell spreading in 

MCF7 cells, and that its expression was required for Net1A relocalization (Figures 5 

and 8), Moreover, we also observed that the catalytically-inactive Net1A mutant, 

Net1A L267E, also relocalized outside the nucleus during cell spreading (not shown), 

suggesting that spreading induced Net1A subcellular redistribution independently of 

Net1A-stimulated RhoA activation.  My preliminary data has also suggested that 

Net1A activity is enhanced during cellular spreading, peaking at 60 min following 

adhesion, and returning to basal activity by 90 min (not shown).  Thus, the subcellular 

localization of Net1A is regulated by Rac1 during cell spreading, similar to what we 
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observed in cells transfected with V12Rac1.  This indicates that our over-expression 

experiments are likely to reflect a physiologically relevant regulatory mechanism. 

We then asked whether Net1A re-localization was important for cell spreading.  

Although the results are preliminary, we have observed that MCF7 cells transfected 

with siRNA targeting both Net1 isoforms exhibited a reduced rate of cell spreading in 

comparison to cells treated with control siRNA (not shown), suggesting that Net1A is 

important for efficient cell spreading.  In this regard, the Rho GEFs, LARG, Lsc, and 

p190RhoGEF have been shown to contribute to cell spreading in fibroblasts plated on 

fibronectin and collagen (119, 120).  In the future, it will be important to determine 

whether they also contribute to cell spreading in MCF7 breast cancer cells, and to 

investigate the relationship of Net1A to their function.   

Not surprisingly, the kinetics of Rac1, Net1A, and RhoA activities during 

spreading in MCF7 cells fits with cellular spreading dogma; Rac1 is activated and 

RhoA is down-regulated during early spreading events, and in later spreading stages 

RhoA and Rac1 activities are reversed.  For example, we observed that Rac1 is 

quickly activated by replating on collagen, reaching a peak by 30 min after replating 

(Figure 6).  Moreover, the kinetics of Rac1 activation coincides with the rapid 

relocalization of Net1A outside the nucleus (Figure 7).  Net1A relocalization and 

activity kinetics correlates with peak RhoA activity observed in various cell lines at 30 

to 90 min of spreading on fibronectin and collagen (119, 120, 136, 137).  However, 

RhoA activation in response to Rac1 stimulated Net1A redistribution in MCF7 cells has 

not yet been confirmed by our group. 

Our data are consistent with the following model for Net1A regulation during cell 

spreading.  We have observed that following adhesion to the ECM, cell spreading 

activates Rac1.  Active Rac1 mediates a rapid increase in Net1A nuclear export, or 
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decreased nuclear import.  By unknown mechanisms, extranuclear Net1A maximally 

translocates to the plasma membrane and becomes maximally activated.  

Concurrently, since V12Rac1 co-expression increases the half-life of Net1A (not 

shown), and interaction with the scaffolding protein Dlg1 has been reported to increase 

Net1A stability (76), relocalized Net1A may be stabilized by interaction with Dlg1, 

which typically localizes to the plasma membrane in epithelial cells.  During the latter 

stages of cell spreading, Net1A continues to contribute to RhoA activation, leading to 

efficient focal adhesion and actin stress fiber formation.  Our findings provide a 

physiological role for the Net1A isoform and suggest an added level of control to 

cellular spreading mechanisms, where not only does Rac1 activity antagonize RhoA 

activity following adhesion through Rho GAP activation, but also prepares for RhoA 

activation mediated by temporal and spatial activation of Rho GEFs such as Net1A. 
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CHAPTER 5:  CONCLUSIONS 

  Breast cancer metastasis is the critical event leading to death in breast cancer 

patients.  Understanding the mechanisms controlling metastatic progression of tumor 

cells is thus extremely important, yet this process is not well understood.  It is known 

that activation of Rho family small G proteins, especially RhoA, contributes to breast 

cancer metastasis.  However, there is little data showing how RhoA activation is 

regulated in breast cancer.  Previous work from our lab indicates that Net1 isoforms 

specifically regulate RhoA activity.  It has also been previously established that activity 

of Net1 isoforms are regulated by subcellular localization.  Net1 isoforms are nuclear 

proteins and must be localized outside of the nucleus in order to activate RhoA.  We 

have shown that Rac1 activating stimuli, specifically cellular anchorage to extracellular 

substrates, relocalize Net1A outside the nucleus in a Rac1 dependent manner and 

increase Net1A activity.  These findings suggest that Net1A relocalization may be 

critical for efficient cellular spreading.   

In future research efforts, it would be important to elucidate the mechanisms 

controlling nuclear import and export of Net1A using over-expression, co-

immunoprecipitations, and RNAi approaches.  How Rac1 stimulation alters the nuclear 

import and export dynamics of Net1A should also be studied.  Ways that Rac1 may 

alter Net1A localization may be through increased Net1A export and/or decreased 

importin-Net1A association.  This may occur through Rac1 stimulated post-

translational modification of Net1A, or through altered protein binding to Net1A.  Rac1 

stimulates intracellular signaling by activating a known set of effector proteins.  The 

Rac1 effector that mediates Net1A redistribution could also be identified using a 

combination of RNAi and over-expression methods.  Furthermore, continued 

investigation into the role of Net1A in breast cancer cell spreading is necessary.  It will 
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be interesting to verify if the mechanisms regulating Rac1-induced Net1A 

relocalization in MCF7 cells also contributes to cell spreading in metastatic breast 

cancer cells.  Since cell spreading dynamics are thought to reflect similar mechanisms 

used in cell migration and ECM invasion, Rac1 may also regulate Net1A-dependent 

breast cancer cell migration and invasion.  With this understanding of Net1A 

regulation, novel therapeutic targets can be developed for use in the diagnosis and 

treatment of breast cancer.   
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