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Gastrointestinal stromal tumors (GISTs) are oncogene-addicted cancers driven by 

activating mutations in the genes encoding receptor tyrosine kinases KIT and PDGFR-α. 

Imatinib mesylate, a specific inhibitor of KIT and PDGFR-α signaling, delays 

progression of GIST, but is incapable of achieving cure. Thus, most patients who initially 

respond to imatinib therapy eventually experience tumor progression, and have limited 

therapeutic options thereafter. To address imatinib-resistance and tumor progression, 

these studies sought to understand the molecular mechanisms that regulate apoptosis in 

GIST, and evaluate combination therapies that kill GISTs cells via complementary, but 

independent, mechanisms. BIM (Bcl-2 interacting mediator of apoptosis), a pro-apoptotic 

member of the Bcl-2 family, effects apoptosis in oncogene-addicted malignancies treated 

with targeted therapies, and was recently shown to mediate imatinib-induced apoptosis in 

GIST. This dissertation examined the molecular mechanism of BIM upregulation and its 

cytotoxic effect in GIST cells harboring clinically-representative KIT mutations. 

Additionally, imatinib-induced alterations in BIM and pro-survival Bcl-2 proteins were 

studied in specimens from patients with GIST, and correlated to apoptosis, FDG-PET 

response, and survival. Further, the intrinsic pathway of apoptosis was targeted 
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therapeutically in GIST cells with the Bcl-2 inhibitor ABT-737. These studies show that 

BIM is upregulated in GIST cells and patient tumors after imatinib exposure, and 

correlates with induction of apoptosis, response by FDG-PET, and disease-free survival. 

These studies contribute to the mechanistic understanding of imatinib-induced apoptosis 

in clinically-relevant models of GIST, and may facilitate prediction of resistance and 

disease progression in patients. Further, combining inhibition of KIT and Bcl-2 induces 

apoptosis synergistically and overcomes imatinib-resistance in GIST cells. Given that 

imatinib-resistance and GIST progression may reflect inadequate BIM-mediated 

inhibition of pro-survival Bcl-2 proteins, the preclinical evidence presented here suggests 

that direct engagement of apoptosis may be an effective approach to enhance the 

cytotoxicity of imatinib and overcome resistance. 
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Gastrointestinal stromal tumors 

Gastrointestinal stromal tumors (GISTs) are soft-tissue sarcomas, cancers of 

mesenchymal origin, which can arise anywhere along the alimentary tract but occur 

primarily in the stomach (60%) and small bowel (35%), and rarely in the esophagus, 

large bowel, rectum, or mesentery (<5%). The median age at diagnosis is between 55 and 

65 years, with a minority of tumors (3%) arising in patients younger than 21 years of age 

[1-5]. Although patients with GIST comprise less than one percent of all patients with 

gastrointestinal cancers, GIST is the most common sarcoma of the digestive tract, with an 

incidence of 10 to 20 cases per million people, or approximately 5000 patients per year in 

the United States. For comparison, new cases of colorectal carcinoma exceeded 140,000 

in 2011  [1-3].  

Patients with GIST may present with symptoms such as abdominal pain, early 

satiety, distention, GI bleeding (melena or hematochezia), or weight loss, and physical 

examination may reveal signs suggestive of a gastrointestinal lesion, including a palpable 

mass, GI obstruction, or anemia [1]. However, given their tendency for indolent growth 

and extraluminal location, it is common for GISTs to enlarge and spread in the absence 

symptoms. Consequently, a significant number of tumors are discovered incidentally (12-

18%) or emergently (40%), and many patients are diagnosed with metastatic or 

inoperable GIST (40-50%) at the time of presentation [2-4].  

For many years, GISTs were categorized on morphologic appearance and 

incorrectly grouped with smooth muscle sarcomas, or leiomyosarcomas [2]. In 1983, 

Mazur and Clark recognized that many sarcomas of the GI wall were not derived from 

smooth muscle but exhibited mixed neural and smooth muscle elements [3]. Following 
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this observation, it became apparent that these GI “stromal” tumors heralded distinctly 

unfavorable prognoses in comparison with other sarcomas. Specifically, less than 5% of 

patients with advanced GIST respond to cytotoxic chemotherapies, including 

doxorubicin- or ifosfamide-based regimens, which are standard-of-care for other 

advanced sarcomas [4]. Consequently, the median disease-specific survival (DSS) was 

determined to be between 9 and 19 months for patients with recurrent, metastatic or 

unresectable GIST [5]. The outcome of patients with localized GIST treated with 

complete surgical resection was only marginally better, with approximately 50% of 

patients experiencing tumor recurrence within five years [5]. With long-term follow up, 

some investigators have found that up to 90% of patients with localized GIST eventually 

experience tumor recurrence after surgical resection [5, 6]. 

Two discoveries in 1998 revolutionized the prognosis of patients with GIST. 

Kindblom and colleagues found that GISTs share ultrastructural and immunophenotypic 

features with interstitial cells of Cajal (ICC), the pacemaker cells responsible for 

gastrointestinal peristalsis, and suggested that GISTs may be derived from ICCs or from a 

common lineage. Specifically, these investigators found that the majority of GISTs 

express the receptor tyrosine kinase KIT (c-KIT), named after its viral homolog v-KIT 

from the Hardy-Zuckerman 4 feline sarcoma virus [6, 7]. In parallel, Hirota and 

colleagues discovered gain-of-function mutations in the KIT gene, and demonstrated that 

transfection of mutant KIT constructs caused neoplastic transformation of Ba/F3 murine 

lymphoid cells [8]. These seminal findings shed light on the tumorigenic mechanism of 

GIST and provided a target for therapeutic intervention, beginning its transformation 
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from a chemotherapy-resistant orphan disease into an exemplar of molecular-targeted 

therapy.  

 

KIT and platelet-derived growth factor receptor–alpha (PDGFR-α)  

We now know that greater than 95% of GISTs exhibit strong expression of KIT 

by immunohistochemistry. Mutually-exclusive activating mutations in the genes 

encoding KIT, or the receptor for platelet-derived growth factor-alpha (PDGFR-α), occur 

in approximately 80-85% and 5-7% of tumors, respectively. The remaining 10% of 

tumors lack mutations in either gene, and are termed ‘wild-type’ GIST [9-11].  

The KIT and PDGFRA genes are located in adjacent loci on chromosome 4q12, 

and encode transmembrane glycoproteins which belong to the Type III family of receptor 

tyrosine kinases (RTKs).  KIT and PDGFR-α are the cell-surface receptors for stem cell 

factor (SCF) and platelet-derived growth factor (PDGF), respectively. Members of this 

family, which also includes the colony-stimulating factor-1 receptor (CSF-1R), Fms-like 

tyrosine kinase 3 (Flt-3), and PDGFR-β, are characterized by a ligand-binding 

extracellular domain consisting of five immunoglobulin (Ig) regions, an autoinhibitory 

intracellular juxtamembrane domain, and a ‘split’ kinase domain consisting of an amino-

terminal ATP-binding region and a carboxy-terminal phosphotransferase region (Figure 

1) [12].  

Upon binding to their physiologic ligands, type III RTKs homodimerize and 

undergo transphosphorylation at tyrosine residues within the juxtamembrane domain, 

initiating signal transduction cascades that promote cellular growth, proliferation, and 

survival by inhibition of apoptosis [13-16]. In humans, KIT is expressed by, and required 
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for development of, melanocytes, germ cells, hematopoietic stem cells, mast cells, and 

interstitial cells of Cajal [17]. In these normal cells, signaling cascades are limited by 

auto-regulatory mechanisms, including the inhibitory juxtamembrane domain, which 

sterically hinders the kinase domain in the absence of ligand [18], dephosphorylation of 

active KIT by the phosphatase SHP-1 [19], and activation-induced receptor endocytosis 

coupled with proteasomal degradation [20].  

Gain-of-function mutations in the KIT or PDGFRA genes abrogate the regulatory 

mechanisms of their respective proteins, and cause constitutive, ligand-independent 

signaling that drives the neoplastic proliferation and survival of GIST. Importantly, 

mutations in KIT or PDGFRA are thought to be tumor-initiating events in the 

development of GIST, as evidenced by their occurrence in ICC hyperplasia and very 

small, incidentally-discovered GIST, by their ability to induce malignant transformation 

in non-neoplastic cells, and by the causative role of germline KIT/PDGFRA mutations in 

familial GIST syndromes [8, 21, 22].  

In GIST, most mutations are found in KIT exon 11 (70-80%), and cause 

disruption of the autoinhibitory function of the juxtamembrane domain [18]. KIT exon 9 

mutations are found in approximately 12-15% of tumors and are thought to permit KIT 

activation in the absence of homodimerization [23]. A minority of primary mutations 

(<2%) occur in the kinase domains encoded by KIT exons 13 and 17; these mutations 

cause kinase hyperactivity, rather than escape autoinhibition [10, 24]. Although rare at 

clinical presentation, kinase domain mutations are responsible for the majority of 

acquired imatinib-resistance found in patients with GIST (Figure 1) [24-27].  
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While somatic KIT and PDGFRA mutations are necessary and sufficient to 

initiate and maintain tumorigenesis in GIST, other molecular and genetic aberrations 

contribute to its progression [28]. In particular, deletion or loss of heterozygosity of 

chromosome regions 14q and 22q are common features, observed in 40-67% of advanced 

GIST [29, 30]. Moreover, loss of the gene encoding tumor suppressor p16Ink4A, known as 

cyclin-dependent kinase inhibitor 2A (CDKN2A) on chromosome 9p, has been found to 

associate with highly-malignant behavior in GIST [31]. Additional cytogenetic 

aberrations associated with GIST include deletions of 1p, 13q, and 15q, although the 

mechanism by which these contribute to the pathogenesis of GIST is unclear [32]. 
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Figure 1. KIT/PDGFR-α Structure and Mutation Frequencies  
 

 

KIT and PDGFR-α are members of the Type III family of receptor tyrosine kinases, 
characterized by ligand-binding extracellular domains consisting of five Ig regions, 
autoinhibitory intracellular juxtamembrane domains (KIT exon 11; PDGFRA exon 12), 
and kinase domains separated into ATP-binding region (KIT exon 13; PDGFRA exon 14) 
and phosphotransferase region (KIT exon 17; PDGFRA exon 18). KIT exon 11 mutations 
are the most common primary mutations encountered in GIST patients, whereas KIT 
exons 13 or 17 are the most common secondary mutations responsible for imatinib-
resistance. 
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Targeted therapy with imatinib mesylate 

Discovery of KIT/PDGFRA mutations as the primary oncogenic mechanism 

driving GIST facilitated therapy with imatinib mesylate (Gleevec; Novartis 

Pharmaceuticals), a small-molecule tyrosine kinase inhibitor (TKI) specific for KIT, 

PDGFR-α, and the fusion kinase BCR-ABL, which is caused by the Philadelphia 

chromosome translocation t(9;22)(q34;q11) in patients with chronic myelogenous 

leukemia (CML). Imatinib is an orally-bioavailable derivative of 2-

phenylaminopyrimidine that binds with high affinity (Ki<0.01 µM) to the structurally-

related ATP-binding pockets of these kinases and competitively inhibits substrate 

phosphorylation. Importantly, imatinib binds to the kinase domain of KIT in its inactive 

conformation, explaining why KIT exon 13 and 17 (kinase) mutations exhibit resistance 

to imatinib. 

Imatinib was first used for the treatment of patients with CML, yielding complete 

hematologic responses in 98% of patients [33]. Following the extraordinary clinical 

response of a patient with widely metastatic GIST who was treated compassionately [34], 

a series of phase I, II, and III clinical trials confirmed the efficacy and safety of imatinib 

[35-37]. In 2002, imatinib (400-800 mg daily) was  approved by the FDA for treatment of 

patients with metastatic and unresectable GIST, and has since been shown to benefit 80-

90% of patients and extend median overall survival (OS) from 9 to 57 months [38]. 

Furthermore, in the adjuvant (post-surgical) setting, imatinib effectively delays tumor 

recurrence in patients at high risk [39], and is increasingly used in the neoadjuvant (pre-

surgical) setting to reduce tumor volume and facilitate resection of bulky and borderline-

inoperable tumors [40].  
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Despite its overwhelming success in comparison to cytotoxic chemotherapies, the 

long-term efficacy of imatinib is limited by resistance, cytostatic effects, and the 

heterogeneous resistance of GISTs. Collectively, these factors subvert the curative 

potential of imatinib and facilitate tumor progression, causing immeasurable physical and 

emotional suffering among our patients.  

 

Imatinib delays progression but does not cure advanced GIST 

Approximately 80-90% of patients with advanced GIST treated with imatinib 

achieve objective clinical benefit (disease control), defined as complete or partial 

decreases in tumor size, or stabilization of tumor growth, for greater than six months. The 

remaining 10-20% of patients experience disease progression (tumor growth or 

metastasis) within six months. Tumors that progress immediately are said to exhibit 

primary (inherent) resistance to imatinib, a phenotype commonly attributed to ‘wild-type’ 

KIT/PDGFRA status, to PDGFRA exon 18 mutations, or to KIT exon 13/17 mutations. A 

minority of patients (4%) are non-compliant with therapy or incapable of tolerating the 

adverse effects of imatinib, which include periorbital edema (25-40%), nausea and 

vomiting (33-61%), diarrhea (17-54%), fatigue (12-45%), and low-grade anemia (up to 

90%) [35-37].  

Among patients whose tumors initially respond by decreasing in size, complete 

responses (disappearance of all lesions) are observed in only 1-3% of patients [35-37]. 

More often, tumor shrinkage eventually ceases and 50% of patients experience 

progression  at approximately two years after initiating imatinib (Figure 2). When GIST 

progression occurs after initial response to imatinib, it is typified by the outgrowth of 
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isolated tumor nodules within a stable or partially-responding tumor mass. Such ‘limited 

progression’ reflects the selection of imatinib-resistant GIST subclones, in contrast to the 

‘generalized progression’ that occurs with primary resistance.  

Acquired (secondary) resistance to imatinib is the most common cause of 

treatment failure and tumor progression, and various mechanisms of imatinib-resistance 

have been characterized in GIST. In 70% of patients with progressing tumors, secondary 

cis-mutations (in the same allele as the primary mutation) develop in the kinase domains 

of KIT, disrupting imatinib-binding and restoring oncogenic signaling to tumors [25, 26]. 

Importantly, a vast number of distinct drug-resistant secondary mutations have been 

described in GIST patients. These may occur in separate metastatic lesions and even in 

different regions within the same tumor [41]. A minor proportion of acquired resistance 

occurs by amplification of the KIT locus, by adoption of alternative oncogenes, or by 

rhabdomyoblastic differentiation [41-44].  

Acquired resistance to targeted therapy is not unique to GIST, but is commonly 

observed in other oncogene-addicted hematologic and solid malignancies, including 

BCR-ABL+ CML, and non-small cell lung cancers (NSCLC) driven by mutations in the 

epidermal growth factor receptor (EGFR). In CML, primary resistance is observed in 15-

25% of patients, while secondary resistance develops in 7-15% at 24 months [45]. 

Overall, approximately 60% of patients with CML continue to sustain complete 

cytogenetic responses (CCyR) five years after treatment initiation [45]. Analogous to 

GIST, acquired imatinib-resistance in CML mainly occurs through secondary mutations 

within the kinase domain, and the BCR-ABL T315I mutation is responsible for the 

majority [46]. Similarly, 50% of progressing lung tumors from patients with resistance to 
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erlotinib (Tarceva; Astellas Pharma.) or gefitinib (Iressa; AstraZeneca), harbor T790M 

secondary cis-mutations in the kinase domain of EGFR [47]. Mechanisms of resistance 

independent of secondary oncogene mutations have also been observed, particularly in 

CML, and include increased expression of the drug efflux pump P-glycoprotein (Pgp) 

[48], and decreased expression of the organic cation transporter (hOCT1) responsible for 

cellular uptake of imatinib [49].  

In addition to acquired resistance, GIST cells survive imatinib monotherapy via 

adaptive cellular responses, such as quiescence and autophagy. Several investigators have 

observed viable tumor nodules containing autophagic or quiescent GIST cells on 

histopathologic examination of imatinib-treated tumors, in vitro and in vivo [25, 50, 51]. 

These findings are consistent with the clinical observation that imatinib-discontinuation 

often leads to resumption of tumor progression [52]. It is not certain how the ability to 

remain metabolically dormant contributes to the development of imatinib-resistant 

mutations, or vice-versa. What is clear is that resistance and cytostatic effects prevent 

cure, and cause patients to remain on therapy indefinitely. This is not trivial, given the 

burden of impending progression, and the cost of imatinib ($50,000 to $80,000 per year) 

[53].  

Sunitinib malate (Sutent; Pfizer), a TKI whose molecular targets include KIT, 

PDGFR-α, and vascular endothelial growth factor receptor (VEGFR), is the only FDA-

approved agent for patients with imatinib-refractory GIST, but it postpones progression 

by only 21 weeks in comparison with placebo, and achieves responses in only 7% of 

patients [54]. Other TKIs, such as nilotinib (Tasigna; Novartis), pazopanib (Votrient, 

Glaxo-Smith-Kline), dasatinib (Sprycel, Bristol-Meyer-Squibb), or sorafenib (Nexavar; 
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Onyx/Bayer), are used in clinical trials or off-label, as third-line agents for patients with 

imatinib- and sunitinib-resistant GIST, but these provide limited benefit, with eventual 

disease progression [55]. Furthermore, given that progressing GISTs are composed of 

heterogeneous cells undergoing adaptive selection, it is unlikely that KIT inhibition as a 

sole therapeutic strategy will achieve cure.  

In sum, although it was previously thought that tumor cell death was the 

predominant effect of imatinib in GIST, the lack of cures, emergence of resistance, and 

eventual progression of disease imply that inhibition of KIT signaling, even when 

complete, is not equivalent to cell death. Mixed cytostatic and cytotoxic effects at the 

cellular level partially explain the variability of clinical responses to imatinib, and 

underscore the need for therapeutic targets other than KIT. Thus, to augment the 

cytotoxicity of imatinib and overcome resistance, it is necessary to understand how GIST 

cells succumb to therapy. To that end, the studies described in this dissertation focus on 

the mechanism of imatinib-induced apoptosis in GIST, and define its translational 

(therapeutic and prognostic) relevance.   
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Figure 2. Imatinib delays progression but does not cure patients with GIST. 
 

 

 
 

Clinically, GIST responses to imatinib lie on a continuum between cure (CR, complete 
response) and progression (continued tumor growth or metastasis). Most tumors initially 
respond by shrinking (PR, partial response) or ceasing to grow (SD, stable disease), while 
a minority progress immediately after initiation of therapy. Acquired imatinib-resistance 
eventually leads to disease progression in most patients whose tumors initially respond. 
Progressing GISTs are composed of heterogeneous clones, harboring diverse imatinib-
resistant mutations, which preclude the efficacy of further therapy with imatinib or 
second-generation tyrosine kinase (KIT/ PDGFR-α) inhibitors. 
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Imatinib-induced apoptosis in GIST 

Apoptosis is a conserved mechanism of programmed cell death that mediates 

turnover of damaged or unwanted cells within multicellular organisms. Thus, the ability 

to evade apoptosis is a defining feature of cancer cells, one which promotes their survival 

in the face of normal homeostatic mechanisms, but also in the presence of cytotoxic 

agents such as radiotherapy and chemotherapy [56].  

Apoptosis is distinguishable from necrotic cell death by the stereotypic manner in 

which it proceeds. Unlike necrotic cells, apoptotic cells do not swell, lyse, or induce 

inflammation. Morphologically, apoptotic cells compact and degrade their cytoplasmic 

and nuclear (DNA and RNA) contents, form plasma membrane blebs, and externalize 

phosphatidyl serine to attract phagocytes [57]. Biochemically, these cellular changes are 

mediated by caspases, a family of cysteine-dependent aspartate-directed proteases that 

are activated by two distinct mechanisms [58]. The ‘extrinsic pathway of apoptosis’ 

triggers cell death in response to external stimuli, including binding to death-ligands such 

as FAS-L, whereas the ‘intrinsic (mitochondrial) pathway’ responds to intracellular 

stresses, such as irreparable DNA damage or oncogenic signaling. As its name suggests, 

the intrinsic pathway culminates with mitochondrial outer membrane permeabilization 

(MOMP), which releases cytochrome c into the cytoplasm. Cytochrome c then binds to 

the cytosolic protein Apaf-1 to form a multimeric complex, known as the apoptosome, 

which activates initiator caspase 9 by proteolysis (pro-caspase to caspase cleavage). In 

turn, caspase 9 cleaves effector caspases 3, 6, and 7, which activate the proteases and 

nucleases that ultimately degrade the vital macromolecules of the cell [57]. 
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Although cell death resulting from inhibition of KIT is moderate across GIST 

study models, imatinib has been shown to induce apoptosis in patient and murine tumors, 

as well as cell lines [59-62]. For example, in 19 patients with GIST who received 

imatinib (600 mg daily) for 3, 5, or 7 days, McAuliffe and colleagues demonstrated that 

GIST cell apoptosis increased by a mean of 12% (range 0-33%), and correlated 

significantly with duration of therapy [60]. Similarly, in a mouse model of GIST, Rossi 

and colleagues showed that apoptosis is not an immediate effect, but requires prolonged 

exposure to imatinib. These investigators observed few histologic changes consistent 

with apoptosis in mice treated for 6, 12, 24, or 48 hours (45 mg/kg imatinib twice daily), 

but found significant decreases in cellularity, increases in myxoid stroma, and caspase 3 

cleavage after 7 days of treatment [62]. In contrast, Miselli and colleagues examined 11 

imatinib-treated specimens from patients with GIST and found no cleaved caspase 3 or 7 

by immunohistochemistry. Instead, they reported finding LC3-II by western blot, and 

suggested that autophagy, rather than apoptosis, mediated cell death in GIST [63]. Albeit 

interesting, these findings are inconclusive, as they were not corroborated via electron 

microscopic visualization of autophagosomes, which is the gold standard method for 

detection of autophagy. Additionally, these samples were evaluated after prolonged 

imatinib exposure, raising the question as to whether autophagy may be a marker of 

resistance rather than apoptosis. 

In patient-derived GIST cell lines, apoptosis induction by imatinib is equally 

controversial. While Tuveson found that the proportion of apoptotic GIST882 cells, by 

Annexin V staining, increased 2-3-fold upon treatment with 1 µM imatinib for 4 and 7 

days [59], Sambol and colleagues reported that exposure to 0.1-10 µM imatinib was 
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insufficient to increase apoptosis of GIST882 cells above baseline (<10%) [64]. This 

discrepancy may be explained by the fact that the latter study did not treat GIST cells 

beyond 72 hours, and the finding by Liu and colleagues that some GIST882 cells do not 

undergo apoptosis, but enter p27(Kip1)-mediated quiescence in response to imatinib [50]. 

Similarly, most investigators have reported induction of apoptosis by imatinib in the 

imatinib-sensitive cell line GIST-T1 [65-67], whereas Gupta and colleagues reported that 

imatinib induces autophagy as a survival pathway, in lieu of apoptosis, in these cells [51]. 

In light of the paradoxical observations regarding imatinib-induced apoptosis, our 

laboratory and others’ have focused on identifying the molecular mediators of imatinib-

induced cytotoxicity. Importantly, prior work from our laboratory demonstrated that early 

molecular alterations, including upregulation of insulin-like growth factor binding protein 

3 (IGFBP3) and VEGF downregulation, correlate with apoptosis induction in vivo [68, 

69]. In addition, studies by Duensing, Bauer and colleagues clearly identified the 

phosphatidyl-inositol 3-kinase (PI3K) and mitogen-activated protein kinase (MEK1/2, 

also known as MAPKK1/2) signaling pathways as the primary mediators of survival 

downstream of KIT, and excluded SRC, JAK/STAT or PLC-γ signaling pathways in this 

regard [61, 70]. These investigators subsequently implicated the intracellular stresses, γ-

H2AX-mediated transcriptional arrest and endoplasmic reticulum (ER) stress, in the 

mechanism of imatinib-induced apoptosis in GIST [65, 71].  

Despite an abundance of molecular culprits and imatinib-induced intracellular 

stresses, the mechanism by which cytotoxic and cytostatic stimuli are integrated to 

determine the fate of GIST cells remained unclear until recently. In the latter part of 

2007, evidence from seemingly dissimilar “oncogene-addicted” cancers began to 
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coalesce, and suggested that imatinib-induced apoptosis in GIST involved the Bcl-2 (B-

cell lymphoma-2) family of proteins, given their role as regulators of the intrinsic 

pathway of apoptosis at the level of the mitochondria [72].  

 

The Bcl-2 family of proteins 

The Bcl-2 family of proteins controls the intrinsic pathway of apoptosis by 

modulating the permeability of the mitochondria (Figure 3). Three subgroups with unique 

regulatory mechanisms and roles make up this family. The first group, consisting of pro-

survival members Bcl-2, Bcl-xL, Bcl-w, A1, and Mcl-1, prevent apoptosis by inhibiting 

the second subgroup, consisting of apoptotic effectors BAX and BAK, from forming a 

pore on the mitochondrial outer membrane [73, 74]. The namesake of the family, Bcl-2, 

was the first human cancer protein found to enhance cell survival under cytotoxic stress 

[75, 76], followed by Bcl-xL, Bcl-w, A1, and Mcl-1 [77, 78]. It was later noted that 

homologues BAX and BAK interact intimately with pro-survival proteins, but antagonize 

them to induce apoptosis [79, 80].  

The third subgroup function as molecular sensors of intracellular stress [81]. 

These BH3-only proteins, so called because they share only Bcl-2 homology domain 3  

with the rest of the family, include BIM, BAD, PUMA, NOXA, BMF, and BIK. These 

proteins are kept suppressed during normal cell cycling by growth and survival signaling, 

and become activated by specific intracellular stresses. For example, PUMA and NOXA 

are activated by DNA damage through p53 transcriptional activation, whereas BIK and 

BMF are activated by ER stress and anoikis, respectively [81]. Once activated, BH3-only 
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proteins promote apoptosis by antagonizing the pro-survival Bcl-2 proteins, or by directly 

activating BAX and BAK [82].  

While there is considerable debate as to exactly how BH3-only proteins promote 

apoptosis, the current model proposes that they disrupt the equilibrium between pro- and 

anti-apoptotic members, which otherwise titrate one another by forming heterodimers 

[83]. Under this model, the relative concentrations of opposing members partly 

determines whether cells will live or die in response to cytotoxic stress, but the BH3-only 

proteins actually sense those stresses and trigger mitochondrial permeabilization [82]. 
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Figure 3. The Bcl-2 Family 
 

 

Members of the Bcl-2 family of proteins regulate the intrinsic pathway of apoptosis, 
upstream of caspase activation, by modulating the permeability of the mitochondrial 
outer membrane. BH3-only proteins (gray) are pro-apoptotic members of this family, 
which sense a variety of intracellular cytotoxic stresses, and become activated by 
transcriptional and post-translational mechanisms. Upon activation, BH3-only proteins 
antagonize pro-survival Bcl-2 proteins (white) and/or directly activate pro-apoptotic Bcl-
2 proteins BAX and BAK to form a pore to permeabilize the mitochondria [81].  
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Oncogene-addiction and BIM 

 “Oncogene addiction” refers to an absolute dependence of tumor cells on specific 

oncogenic pathways for proliferation or survival [84, 85]. This phenomenon is exhibited 

by certain types of cancers, and contrasts with the model of tumorigenesis in cancers that 

lack oncogene addiction, in which the multi-step accumulation of scores of genetic and 

epigenetic alterations results in the gradual progression from the normal to the malignant 

phenotype [86, 87]. 

The phenomenon of oncogene addiction was first illustrated by studies in 

transgenic mouse models and human cancer cell lines [88-93]. In a transgenic model of 

T-cell and myeloid leukemias, Felsher and Bishop demonstrated that inducible 

overexpression of Myc caused proliferation and survival of leukemia cells, whereas 

"switching off" Myc invariably resulted in growth arrest and apoptosis [88]. Similarly, in 

a model of BCR-ABL+ myeloid leukemias, blocking BCR-ABL expression caused 

apoptosis and differentiation of leukemic cells [89]. Subsequently, oncogene addiction 

was found to extend to some solid tumors, including B-RAF- or H-RAS-induced 

melanomas and EGFR-mutant NSCLC transgenic models, where inhibiting activated 

oncogenes was also found to trigger apoptotic tumor cell death [93].  

Perhaps the most convincing evidence in support of oncogene addiction comes 

from clinical studies in which the dependence on specific oncogenes has been exploited 

therapeutically. Examples of extraordinary clinical responses to targeted therapies can be 

found among patients with BCR-ABL+ CML treated with imatinib [94], patients with 

EGFR-mutant or -amplified NSCLCs treated with gefitinib/erlotinib [95], and patients 

with advanced GIST treated with imatinib [38].  
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One model to explain the dependence of tumor cells on specific signaling 

pathways suggests that pro-apoptotic and pro-survival signals have different rates of 

attenuation upon oncogene inactivation [96]. That is, because survival signals are 

generally short-lived whereas apoptotic signals generally persist, an unbalanced 

accumulation of pro-apoptotic effectors occurs upon oncogene inhibition [96]. 

In this context, the BH3-only protein BIM (Bcl-2 interacting mediator of 

apoptosis) has emerged as a universal mediator of apoptosis in oncogene-addicted 

malignancies treated with targeted therapies [97, 98]. In untreated oncogene-addicted 

tumors, the PI3K/AKT and MEK/ERK survival pathways are constitutively activated and 

suppress the expression and activity of BIM (Figure 4). Consequently, targeted therapy 

with their respective oncogene inhibitors causes upregulation of BIM and activation of 

apoptosis (Figure 5). For example, in patient-derived BCR-ABL+ cells, Kuroda and 

others have demonstrated that BIM plays an effector role in imatinib- and nilotinib-

induced apoptosis, and that siRNA silencing of BIM abrogates the apoptotic effect of 

these BCR-ABL inhibitors [99-101]. Similarly, KIT-driven systemic mastocytosis treated 

with KIT inhibitor PKC412 offer analogous evidence in support of the pro-apoptotic role 

of BIM in oncogene-addicted cancers [102].  

The role of BIM as mediator of TKI-induced apoptosis extends to oncogene-

addicted solid-tumors. For instance, human melanoma cells harboring the B-RAF V600E 

mutation are dependent on MEK1/2 signaling for survival, and inhibition of BRAF or 

MEK1/2 with the TKIs PLX4720 or CI-1040, respectively, results in BIM upregulation 

and apoptosis [98, 103]. Similarly, Costa and colleagues demonstrated that upregulation 

of BIM is required for apoptosis in EGFR-mutant lung cancer cells treated with gefitinib 
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or erlotinib [104]. In addition, these investigators showed that the T790M secondary 

mutations that cause resistance to gefitinib/erlotinib prevent apoptosis by blocking 

upregulation of BIM [104]. 

Against this background, Gordon and Fisher recently demonstrated that BIM 

contributes functionally to imatinib-induced apoptosis in a GIST cell culture model [105]. 

Specifically, inhibition of KIT, PI3K/AKT and MEK/ERK signaling in imatinib-sensitive 

GIST882 cells causes transcriptional and post-translational upregulation of BIM, which 

results in activation of apoptosis. Inhibition of PI3K enables transcription of BIM by 

FOXO3A (a transcription factor inhibited by AKT-mediated phosphorylation), whereas 

inhibition of MEK leads to dephosphorylation of BIM on serine 69, preventing its 

proteasomal degradation [105].   
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Figure 4. BIM is suppressed by constitutive oncogene signaling. 
 
 

 

Constitutive oncogene-signaling suppresses BIM expression and function via the 
PI3K/AKT and MEK/ERK signaling pathways. BIM-EL, the largest BIM isoform, is 
suppressed by ERK1/2-mediated phosphorylation on serine 69, which targets it for poly-
ubiquitination and proteasomal degradation. BIM-L and BIM-S lack this “EL unique” 
domain and are not regulated by ERK1/2-mediated phosphorylation. All three isoforms 
are regulated at the transcriptional level by AKT-mediated inhibitory phosphorylation of 
transcription factor FoxO3a (S253). NTD, Amino-terminal domain; “EL unique,” protein 
domain unique to BIM-EL, containing serine 69; DLC, dynein light-chain binding 
domain possessed by BIM-EL and BIM-L to allow these isoforms to activate apoptosis in 
response to cytoskeletal perturbations; BH3, BH3-only domain that permits inhibition of 
pro-survival Bcl-2 proteins; CTD, carboxy-terminal domain. Green “P,” activating 
phosphorylation. Red “P,” inhibitory phosphorylation. Ub, ubiquitin. 
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Figure 5.  Inhibition of oncogene signaling upregulates BIM to induce apoptosis. 
 
 

 
 

Withdrawal of oncogene signaling resulting from tyrosine kinase inhibition (i.e. imatinib 
therapy), disrupts survival signaling via PI3K/AKT and MEK/ERK pathways, and causes 
upregulation of BIM by two mechanisms: First, BIM-EL is relieved of ERK1/2-mediated 
phosphorylation on serine 69, allowing it to escape poly-ubiquitination and proteasomal 
degradation. Second, transcription factor FoxO3a is relieved of AKT-mediated inhibitory 
phosphorylations, particularly on serine 253, enabling FoxO3a to transcribe all isoforms 
of BIM. Active BIM isoforms inhibit pro-survival Bcl-2 proteins to induce mitochondrial 
apoptosis.  

 



25 
 

Specific aims and significance of study 

While the aforementioned studies clarified our understanding of the mechanism 

by which KIT inhibition induces apoptosis, the role of BIM in GIST is of uncertain 

clinical relevance. Imatinib-sensitive GIST882 cells harbor homozygous KIT exon 13 

activating mutations (K642E) in the ATP-binding region of the split tyrosine kinase 

domain, which are rarely found in GIST patients (1%) [59]. Thus, it is necessary to 

ascertain whether BIM mediates apoptosis in GIST cells harboring KIT exon 11 

mutations, which are found in approximately 70% of patients [11]. Secondly, while BIM 

may be important for imatinib-induced apoptosis in vitro, the role of the BIM/Bcl-2 axis 

in tumor cell apoptosis has not been evaluated in GIST patient samples.  

No studies have examined whether BIM is upregulated in patients with GIST 

treated with imatinib, or whether its expression is related to response or survival. Further, 

given that imatinib monotherapy appears to achieve inadequate neutralization of pro-

survival Bcl-2 proteins, a rational drug combination that inhibits both KIT signaling and 

Bcl-2 proteins may achieve greater apoptotic cell death. Therapeutic inhibition of pro-

survival Bcl-2 molecules in GIST has not been attempted. To address these issues and 

characterize the translational implications of BIM-mediated apoptosis in GIST, I carried 

out the following research aims: 

1. To validate the role of BIM as a mediator of imatinib-induced apoptosis in 
clinically-representative GIST cells, and examine the clinical significance of 
BIM in patients with GIST treated with imatinib (Chapter 2).  

  
2. To enhance the apoptotic effect of imatinib in GIST by targeting the pro-

survival Bcl-2 proteins with inhibitor ABT-737 (Chapter 3).  
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This dissertation details efforts to understand the role of BIM in imatinib-induced 

apoptosis in GIST, as well as to evaluate the potential of Bcl-2 proteins as biomarkers 

and/or therapeutic targets. In Chapter 2, the expression and function of BIM in clinically-

representative GIST cells is examined. The mechanism of BIM upregulation was studied 

by treating cells with imatinib and inhibitors specific of downstream pathways. To 

examine the cytotoxic function of BIM, three known functional isoforms of BIM were 

transfected and expressed in GIST cells, and their ability to induce caspase activation was 

assessed. Given the role of BIM in imatinib-induced apoptosis in vitro, I hypothesized 

that its function extends to patients with GIST. To test this hypothesis, mRNA expression 

levels of BIM and pro-survival Bcl-2 proteins (Bcl-2, Bcl-xL, and Mcl-1) were 

quantified, before and after imatinib, in tumor specimens from patients with GIST, and 

gene expression alterations were correlated to tumor cell apoptosis, autophagy, FDG-PET 

response and disease-free survival.  

In chapter 3, therapeutic inhibition of Bcl-2 as an approach to enhance the 

cytotoxicity of imatinib was examine in GIST. Given the current understanding of 

imatinib-induced apoptosis, I targeted the pro-survival Bcl-2 proteins therapeutically, 

using a novel pro-apoptotic BH3-mimetic, ABT-737. I hypothesized that inhibition of 

pro-survival Bcl-2 proteins enhanced the cytotoxicity of imatinib to overcome imatinib-

resistance in GIST. The antiproliferative and apoptotic effects of ABT-737 were assessed 

in imatinib-sensitive and -resistant GIST cells, and synergy with imatinib was quantified.  
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Chapter 2: Defining the role of BIM in imatinib-induced apoptosis in GIST cells and 

patient tumors 

 



28 
 

Introduction 

As discussed previously, current evidence suggests that imatinib lacks sufficient 

cytotoxicity to eradicate GIST cells and achieve cure. Thus, it is necessary to understand 

the molecular mechanisms that underlie its cytotoxicity, with the hope that this can result 

in the formulation of rational combination therapies in GIST. Importantly in this regard, 

BIM mediates the apoptotic effect of targeted therapies in multiple analogous oncogene-

addicted malignancies [97, 98], and has been shown to contribute functionally to 

imatinib-induced apoptosis in the imatinib-sensitive cell line GIST882 [105].  

Although we have a better understanding of the regulatory role of BIM and the 

Bcl-2 family in the intrinsic pathway of apoptosis in GIST, it is necessary to validate the 

clinical and translational significance of the current evidence. In particular, current 

understanding of the role of BIM in imatinib-induced apoptosis was derived from 

evidence obtained in a single study in GIST882 cells, which harbor KIT exon 13 

mutations (K642E) [59]. As this genotype is found in less than one percent of patients 

with GIST, current findings are of uncertain, and potentially limited, clinical relevance.  

Before concluding that BIM mediates imatinib-induced apoptosis in all GIST, it is 

necessary to ascertain whether BIM mediates apoptosis in GISTs harboring KIT exon 11 

mutations, which are found in approximately 70% of patients [11]. This is necessary, as 

genotype-specific distinctions are common among GIST [70], and observations in KIT 

exon 13 mutant GIST do not always extend to tumors harboring exon 11 mutations. 

Indeed, Dupart and colleagues recently showed that imatinib-responsive cell lines, GIST-

T1 and GIST882, exhibit opposing effects upon overexpression of the pro-apoptotic 

insulin-like growth factor binding protein 3 (IGFBP3), which was previously thought to 
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mediate imatinib-induced apoptosis in GIST [68, 106]. Similarly, whereas GIST-T1 cells 

undergo apoptosis by induction of ER stress, and GIST882 cells undergo apoptosis by 

transcriptional arrest, these mechanisms are exclusive to the cell lines in which they were 

described, and are not been extended to other GIST cells, or to patients treated with 

imatinib [65, 71].  

Further, three functional BIM isoforms, BIM-S (small), BIM-L (large), and BIM-

EL (extra large), derived from alternative splicing of the BCL2L11 gene, are known to 

differ in regulation and propensity to induce apoptosis [107]. Specifically, O’Connor and 

colleagues, who discovered BIM through a bacteriophage screen for proteins that interact 

with Bcl-2, also found that while each of the BIM isoforms clearly bound to Bcl-2, BIM-

S antagonized Bcl-2 and suppressed FDC-P1 and L929 fibroblast colony formation more 

effectively than BIM-L or BIM-EL. Other than BIM-EL, the activation of BIM isoforms 

by imatinib, and their individual cytotoxicity, has not been evaluated in GIST. Most 

importantly, while BIM may be important for imatinib-induced apoptosis in cell culture, 

the role of the BIM/Bcl-2 axis in has not been evaluated in GIST patient samples. 

In keeping with the translational goals of this study, both in vitro and patient-

based approaches were employed to accomplish the specific aims. Specifically, patient-

derived GIST cell lines harboring clinically-representative KIT exon 11 mutations were 

used to study the regulation, expression, and function of BIM in apoptosis. To validate 

cell culture findings and evaluate the clinical relevance of BIM-mediated apoptosis, 

specimens from patients with GIST were examined ex vivo.  

For logical flow, this study was divided into two experimental objectives: First, I 

examined whether imatinib causes upregulation and activation of BIM in clinically-
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representative GIST cell lines and evaluated the ability of three BIM isoforms to activate 

caspases. Second, I examined imatinib-induced expression of BIM and pro-survival Bcl-2 

proteins in patient specimens, before and after imatinib treatment, and studied their 

association with therapeutic responses at the level of the cell (apoptosis and autophagy), 

the tumor (response by FDG-PET imaging), and the patient (disease-free survival).  

The studies in GIST cells demonstrate that three functional isoforms of BIM 

(BIM-S, BIM-L, and BIM-EL) are upregulated by imatinib treatment. Upregulation of 

BIM at the mRNA and protein level was caused by inhibition of KIT and the PI3K 

pathway, but not by inhibition of MEK signaling. Although both untreated imatinib-

sensitive and imatinib resistant GIST cells express BIM at baseline and after imatinib, 

only imatinib-sensitive cells activate apoptosis significantly with treatment. Further, 

BIM-S, BIM-L, and BIM-EL are equally capable of activating effector caspases 3 and 7 

and apoptosis when overexpressed in GIST cells.  

In specimens from GIST patients, BIM and Mcl-1 are upregulated by imatinib, 

while Bcl-2 is downregulated, and these gene expression alterations were greater in 

tumors exposed to longer durations of imatinib therapy. Additionally, BIM upregulation 

is associated with tumor apoptosis and prolonged disease-free survival, with trends 

toward decreased autophagosome formation and early response by PET.  

 

Materials and Methods  

Cell lines and Culture Conditions  

GIST-T1 cells harbor a heterozygous imatinib-sensitive KIT exon 11 deletion of 

20 amino acids (V560-Y579del), within the cytoplasmic juxtamembrane domain of KIT, 
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which disrupts its autoinhibitory function [108] and causes constitutive KIT signaling. 

GIST-T1 cells were established from a patient with metastatic GIST by Dr. Takahiro 

Taguchi (Kochi Medical School, Japan), and are sensitive to imatinib and other TKIs.  

GIST48IM cells were established from a metastatic GIST after progression during 

imatinib therapy. These cells were derived from imatinib-refractory GIST48 cells [109, 

110], harboring primary KIT exon 11 mutation (V560D), and secondary KIT exon 17 

mutation (D820A). The latter mutation, in the phosphotransferase region of the KIT 

kinase domain, confers imatinib-resistance and is encountered commonly in patients who 

progress after initial response to imatinib [61, 109-111]. GIST48IM cells were generated 

by Dr. Jonathan Fletcher (Brigham and Women's Hospital; Boston, MA), and provided 

by Dr. Anette Duensing (University of Pittsburgh Cancer Institute; Pittsburgh, PA). 

All cells were maintained at 37˚C in a humidified incubator containing 95% 

atmospheric air and 5% CO2. GIST-T1 cells were cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM), supplemented with penicillin/streptomycin (1%), and fetal 

bovine serum (FBS; 10%). GIST48IM cells were maintained in Ham’s media (F-10), 

supplemented with FBS (15%), L-glutamine (2 mM), penicillin/streptomycin (1%), 

amphotericin (0.1%), gentamycin (10 µg/ml), MITO+ serum extender (0.5%), and bovine 

pituitary extract (1%), purchased from VWR International (Roden, Netherlands). All cell 

lines were validated by STR DNA fingerprinting, and STR profiles were compared to 

known fingerprints.  
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Chemicals, antibodies, and plasmids  

Imatinib mesylate was procured from M. D. Anderson Cancer Center. PI3K 

inhibitor LY294002 (#9901) and MEK1/2 inhibitor U0126 (#9903) were purchased from 

Cell signaling Technology (Danvers, MA). Drugs were dissolved in dimethyl sulfoxide 

(DMSO) (Fisher Bioreagents, Fair Lawn, NJ) to a stock concentration of 10 mM, sterile-

filtered through a 0.22 micron low protein binding filter (Millipore, Bedford, MA), and 

stored at -20°C prior to use.  

Primary antibodies specific for BIM (#2819), phospho-BIM (S69) (#4581), total 

FoxO3a (#2497), and phospho-FoxO3a (S253) (#9466), were procured from Cell 

Signaling Technology. Primary β-actin antibody (sc-8432), and horseradish peroxidase 

(HRP)-conjugated anti-mouse (sc-2031) and anti-rabbit (sc-2305) secondary antibodies 

were purchased from Santa Cruz Biotechnology (Santa Cruz, CA).  

Plasmid vectors [pEGFP-(C2)] encoding enhanced green fluorescent protein 

(EGFP), and containing BIM-S, BIM-L, or BIM-EL insert sequences were generated as 

previously described [107]. Empty pEGFP-(C3) plasmid (Clontech, Mountain View, 

CA), lacking BIM inserts, was used as a control to determine the cytotoxicity of EGFP 

expression alone.  

 

Western Blotting  

Cells were harvested by trypsinization (adherent cells) and centrifugation (non-

adherent cells), washed twice with phosphate-buffered saline (PBS), and lysed on ice for 

5 min in Cell Extraction Buffer (#FNN0011, Invitrogen, Eugene, Oregon), containing 

commercial protease inhibitor cocktail (Complete, Mini tablets; Roche, Mannheim, 
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Germany) and 1 µM phenylmethane sulfonylfluoride (PMSF; a serine protease inhibitor). 

Protein concentration was measured with the bicinchoninic acid (BCA) Protein Assay kit 

(Fisher Scientific, Pittsburgh, PA). Lysates were diluted with NuPAGE LDS (lithium 

dodecyl sulfate) sample buffer/reducing agent, and heated to 70°C for 10 min; 30 µg 

protein per lane were then resolved by denaturing electrophoresis at 100V for 35 min on 

pre-cast 4-12% gels (NuPAGE System, Invitrogen, Carlsbad, CA). Resolved proteins 

were blotted onto methanol-activated polyvinylidene fluoride (PVDF) membranes 

(Millipore, Bedford, MA) by wet electrophoretic transfer (Bio-Rad Laboratories, 

Hercules, CA) for 1 hr at 100V. Membranes were blocked with 5% (w/v) dry, non-fat 

milk dissolved in 0.05% Tween-20 in PBS (PBS-T) for one hour, and washed thrice with 

0.05% PBS-T for 10 minutes. The membranes were incubated for one hour with primary 

antibodies diluted at 1:1000 in 5% milk-PBS-T, per the manufacturers' recommendations. 

Membranes were washed with 0.05% PBS-T thrice for 10 minutes before incubation with 

horseradish peroxidase-conjugated secondary antibodies at 1:5000 for an hour at room 

temperature. Membranes were washed as above, incubated 1 minute in 

chemiluminescence solution (Amersham Life Science, Piscataway, NJ), and subjected to 

autoradiography. 

 

Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay  

The mirVana miRNA Isolation Kit (Applied Biosystems, Foster City, CA), was 

used to extract total RNA from cultured GIST cells, frozen pre-imatinib core-needle 

biopsies (n=20) and frozen post-imatinib surgical specimens (n=26). To determine 

changes in gene expression, 1 µg of total RNA from cell lines, and 400 ng from patient 
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samples, were reverse transcribed as follows: To each sample, 0.4 µg of pd(N)6 random 

hexamers (Amersham Biosciences, Piscataway, NJ) were first added in 11 µL, and the 

solution was heated at 70°C for 10 min, followed by 10 min incubation at room 

temperature (RT). SuperScript II RT buffer (Invitrogen), 10 mM dithiothreitol 

(Invitrogen), 0.5 mM deoxynucleotide triphosphate (dNTPs) (Bioexpress, Kaysville, 

UT), 20 U of RNase inhibitor (Applied Biosystems), and 200 U of SuperScript II RT 

(Invitrogen) were added to 20 µL, and the reaction was incubated for 10 min at RT to 

allow primer annealing, held at 37°C for 1 hr, then incubated at 42°C for 90 min followed 

by 50°C for 30 min.  

Real-time PCR was performed on the ABI Prism 7700, using pre-validated 

Assays-on-Demand specific for BCL2L11 (BIM; Hs00197982_m1), MCL1 

(Hs03043899_m1), BCL2L1 (Bcl-xL; Hs00236329_m1), BCL2 (Hs00608023_m1), and 

endogenous control genes cyclophilin or β-Actin Vic-labeled PreDeveloped Assay 

Reagent (Applied Biosystems). Initial experiments were performed to determine the valid 

range of RNA concentrations and to determine PCR efficiencies for BCL2L11, MCL1, 

BCL2L1 and BCL2 compared to endogenous control genes. A 15 µL final reaction 

volume containing 1X TaqMan Universal PCR Master Mix (Applied Biosystems) and 1X 

Assay-on-Demand was used to amplify 80 ng cDNA with the following cycling 

conditions: 10 min at 95°C, followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min. 

Cycle threshold values (Ct) were used to determine relative mRNA abundance  using the 

ΔΔCT method [112].  
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Apoptosis assays  

GIST-T1 and GIST48IM cells were cultured to 80% confluence in 100-mm plates 

(BD Falcon, Franklin Lakes, NJ), then left untreated or treated for 24 or 72 hr with 

DMSO (vehicle), 1 or 10 µM imatinib, 30 µM LY294002, or 10 µM U0126. As methods 

to detect apoptosis may yield different results depending on apoptotic stimulus and time, 

I examined two characteristic features of apoptosis: For quantification of phosphatidyl 

serine externalization (early apoptosis), adherent cells were harvested by trypsin 

treatment, and non-adherent cells were harvested by centrifugation at 100xg for 5 min. 

These were combined, washed twice with cold PBS, and incubated with 5% (v/v) Alexa-

488- conjugated Annexin V containing 1 µg/ml f the DNA-intercalating dye propidium 

iodide (PI) in 100 µl total volume of 1X Annexin V binding buffer, using the Vybrant 

Apoptosis Assay Kit #2 (Invitrogen, Eugene, Oregon). Early-stage apoptotic cells, 

defined as positive for Annexin-V Alexa 488 (green fluorescence), and negative for PI 

(red fluorescence), were quantified by flow-cytometry on a BD FACSCanto II (BD 

Biosciences, San Jose, CA). For quantification of DNA fragmentation (late apoptosis), 

cells were harvested as above, washed twice in PBS, and permeabilized in ice-cold 70% 

ethanol overnight. Apoptotic cells with hypodiploid DNA content (sub-G1 phase) were 

quantified as described [113, 114].  

 

Transfection and caspase activity assay  

To study the effect of BIM expression in GIST cells, I transfected plasmid vectors 

(pEGFP, pEGFP-BIM-S, pEGFP-BIM-L, or pEGFP-BIM-EL) using the FuGENE 6 

Transfection Reagent (Roche, Mannheim, Germany). Controls were as follows: 
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untransfected cells, mock transfected cells (only transfection reagent), and empty pEGFP 

vector. Briefly, 3x103 cells/well were seeded in 100 µl in 96-well plates, and allowed to 

reach 50% confluence. FuGENE 6 reagent (µl) and plasmid DNA (µg) were combined at 

a 6:1 ratio in 94 µl of serum-free medium, and incubated for 30 minutes at RT to form 

DNA:tranfection reagent complexes; 5 µl of this mixture was added to triplicate wells. 

Caspase activity was assessed at 12, 24 or 48 hr post-transfection, using the Apo-ONE 

Homogeneous Caspase-3/7 Assay (Promega, Madison, WI). At each time point, 3 ml of 

ApoOne reagent and 30 µl of substrate were combined, and 100 µl was added to each 

well; plates were incubated for 10 hr at RT, on an orbital shaker at 300 revolutions per 

minute, protected from light. Each condition was assayed with and without 20 µM of 

caspase inhibitor Z-VAD-FMK (Promega). Fluorescence was normalized to 

untransfected cells. 

 

Patients and Tumor Specimens  

With IRB-approval and informed consent, two sets of clinically-annotated 

specimens were examined. The first set of tumor specimens were acquired through a 

prospective, randomized phase II study of preoperative and postoperative imatinib 

(MDACC ID03-0023) [60]. From August 2003 to October 2008, 28 patients were 

diagnosed with resectable, KIT-positive GIST at M. D. Anderson Cancer Center, and 

asked to enroll in a study of preoperative (neoadjuvant) and postoperative (adjuvant) 

imatinib. The objectives of this study were (1) to assess the safety of preoperative 

imatinib, (2) to understand the mechanisms of action of imatinib in vivo by procuring 

correlative molecular, cellular, radiographic, and survival data, and (3) to evaluate the 
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efficacy of two years of adjuvant imatinib in preventing or delaying tumor recurrence 

after surgery.  

To accomplish these objectives, patients underwent pre-imatinib baseline studies 

(core-needle tumor biopsy, FDG-PET, CT, and routine blood work), randomized to 

receive neoadjuvant imatinib (600 mg daily) for 3, 5, or 7 days prior to surgical resection, 

and underwent post-imatinib studies immediately before surgery. To assess early 

response to imatinib in the preoperative period, patients underwent [18F]-

fluorodeoxyglucose-positron emission tomography (FDG-PET) scans, before and after 

preoperative imatinib therapy. Where possible, surgical specimens were stored frozen in 

optimal cutting temperature (OCT) tissue matrix, or embedded in paraffin after fixation 

in formalin. After surgery, patients received adjuvant imatinib (600 mg daily) for up to 

two years, and followed up prospectively every three months by the Department of 

Sarcoma Medical Oncology.  

Comprehensive patient (age, sex, race, and presentation status) and tumor (size, 

histologic subtype, KIT/PDFRA genotype) variables were recorded and updated into a 

database until September 2011. Presentation status, including extent of disease and 

history of prior treatment, was categorized as primary, metastatic, or locally recurrent. 

Histologic diagnosis of GIST, as well as histologic subtype, were assessed by the 

pathology department at MDACC. Tumor size was considered the greatest primary tumor 

diameter in any dimension by CT, and stratified as ≤5 cm, 5 to 10 cm, or >10 cm. All 

clinicopathologic data were obtained from patient records.  

The second set of clinically-annotated specimens consists of 53 surgical 

specimens from patients diagnosed with KIT-positive GIST who underwent surgical 
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resection without preoperative imatinib. A tissue microarray (TMA) was constructed and 

validated from these specimens by our group [69]. I used this TMA to determine the level 

of apoptosis in imatinib-naïve GIST at the time of resection, for comparison with 

imatinib-treated GIST. 

 

Immunohistochemical Detection of Apoptosis and Autophagy 

Immunohistochemical detection of autophagosome formation in human GIST 

specimens was performed by immunohistochemical detection of α-LC3 [51]. Degree of 

punctate α-LC3 staining was defined as negative (0% cells positive), focal (< 25% cells 

positive), or moderate (≥ 25% cells positive). To evaluate imatinib-induced apoptosis in 

patient tumors, I performed TdT-Mediated dUTP Nick-End Labeling (TUNEL) on 

formalin-fixed paraffin-embedded surgical specimens (n=25), using the ApopTag In Situ 

Apoptosis Detection Kit (Millipore, Billerica, MA). Briefly, slides were deparaffinized 

with serial washes in xylene (3 x 5 min), 100% ethanol (2 x 5 min), 95% ethanol (once), 

and 70% ethanol (once), treated with 20 µg/ml proteinase K for 15 min (followed by two 

5 min washes with dH2O), and quenched with 3% H2O2 (followed by 2 x 5 min washes 

with dH2O). After 5 min incubation in equilibration buffer, a solution of 30% TdT 

enzyme/70% reaction buffer was applied for 1 hr in a humidified chamber at 37°C, and 

the reaction was stopped by PBS wash (3 x 1 min). Slides were incubated with anti-

digoxigenin conjugate for 30 min, washed with PBS (3 x 2 min), and incubated with 

peroxidase substrate 3,3'-diaminobenzidine (DAB). Color development was stopped by 

washing in dH2O (3 x 5 min), and slides were counterstained with 0.5% (w/v) methyl 
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green. Results were visualized by brightfield microscopy and apoptotic cells per five 

high-powered fields (200x) were quantified using the open-source software ImageJ [115].  

 

Statistics  

Computations were performed using GraphPad Prism 5 software (GraphPad 

Software, La Jolla, CA), with significance set at P-value ≤ 0.05. Cell lines were examined 

separately, and in vitro assays were repeated at least twice; means ± standard deviations 

(SD) were calculated. For parametric measurements, two-sample t-tests were used to 

assess the differences between two groups, whereas analysis of variance (ANOVA) was 

used to assess differences in outcomes among multiple (>3) groups or time points. For 

nonparametric, two-sample and multiple-sample comparisons the Mann-Whitney and 

Kruskal-Wallis tests were used, respectively. To evaluate associations between gene 

expression and apoptosis, I used linear regression analyses and Pearson correlation.  

Patient and tumor variables were analyzed in relation to disease-free and overall 

survival (DFS/OS), determined by Kaplan–Meier analysis. Local recurrence was defined 

as tumor growth at the primary site, whereas metastasis involved distant tumor spread to 

liver or non-primary sites. DFS was defined as the time from surgical resection to 

recurrence or death, whereas OS was calculated from diagnosis to date of death. 

Associations between clinicopathologic characteristics and outcome were tested by 

univariate analysis using log-rank tests, with P < 0.05 considered statistically significant. 
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Results  

Inhibition of KIT and PI3K signaling upregulates BIM and activates apoptosis in 

GIST cells   

The bimodal (transcriptional and post-translational) mechanism controlling BIM 

expression and function in oncogene-addicted cancers is well-characterized (Figures 4 

and 5). Briefly, PI3K signaling suppresses BIM mRNA expression through inhibitory 

AKT-mediated phosphorylation of transcription factor FoxO3a at serine 253 (S253), 

which translocates FoxO3a to the cytoplasm and prevents transcription. Phosphorylation 

of BIM by ERK1/2, leads to ubiquitination and proteasomal degradation of BIM. In 

GIST882 cells, a FRE-Luciferase Reporter Vector assay was used by Gordon and Fisher 

to demonstrate that imatinib treatment increases the transcriptional activity of FoxO3a at 

the FoxO3a response element (FRE) in the promoter region of the BCL2L11 (BIM) gene. 

Likewise, these investigators showed that imatinib treatment inhibits the S69 

phosphorylation of BIM by ERK1/2, causing decreased ubiquitination and halting the 

proteasomal degradation of BIM [105].  

To determine whether a BIM-mediated mechanism of apoptosis extends to GIST 

cells with KIT exon 11 mutations, GIST-T1 and GIST48IM cells were first treated with 

DMSO, 1 or 10 µM imatinib, 30 µM LY294002, or 10 µM U0126, and early apoptosis 

(phosphatidyl serine externalization by Annexin V staining) and late apoptosis (DNA 

fragmentation) were quantified. These drug concentrations have been shown to 

completely inhibit signaling by their respective targets (KIT, PI3K, or MEK1/2) in GIST 

cells [67]. 
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Consistent with published data [59, 67], the overall apoptotic effect resulting from 

KIT inhibition was moderate (<40% with 10 µM imatinib at 72 hrs), and demonstrated 

significant time- and dose-dependence by two-way ANOVA. Apoptosis was most 

increased in GIST-T1 cells treated with 10 µM imatinib and 30 µM LY294002 at 24 and 

72 hrs, as compared to untreated and DMSO-treated controls (Figure 6). Whereas both 1 

µM and 10 µM imatinib induced significant early apoptosis, the apoptotic effect of 1 µM 

imatinib appeared to subside after 24 hours, whereas late apoptosis was sustained at 72 

hours in GIST-T1 cells treated with 10 µM imatinib.  

Importantly, the apoptotic effect of imatinib in GIST-T1 cells was recapitulated 

by PI3K inhibition with 30 µM LY294002 (20-30%), but not MEK1/2 inhibition with 10 

µM U0126 (19%). In contrast to GIST-T1 cells, GIST48IM cells were largely resistant to 

imatinib, but underwent apoptosis upon inhibition of PI3K signaling (26%), and to a 

lesser extent MEK1/2 inhibition (14%).  
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Figure 6. Inhibition of KIT and PI3K activates apoptosis in GIST cells. 
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Annexin V positivity, evidence of early apoptosis (top), and DNA fragmentation, 
evidence of late apoptosis (bottom), results from inhibition of KIT, PI3K, and, to a lesser 
extent, MEK1/2 signaling in GIST-T1 cells (left), whereas inhibition of PI3K and 
MEK1/2, but not KIT, causes apoptosis in GIST48IM cells (right). Bars  represent the 
mean of triplicate experiments; error bars represent standard deviation 
(SD).Abbreviations: (UT), untreated; (DM), DMSO-treated; (IM), imatinib; (UO), 
UO126; (LY), LY294002  
 
 



43 
 

Next, I examined the expression of BIM mRNA and protein levels, by RT-PCR 

and western blot, respectively.  As early as 24 hrs, BIM mRNA was increased 4-fold and 

5-fold in GIST-T1 cells treated with 1 µM and 10 µM imatinib, respectively, compared 

with untreated cells (Figure 7, top left). PI3K inhibition, but not MEK1/2 inhibition, 

induced a 3-fold increase in BIM mRNA at 24 hrs. At 72 hrs, BIM mRNA levels 

increased by greater than 5-fold in cells treated with 1 µM and 10 µM imatinib and 30 

µM LY294002. In contrast, BIM mRNA was minimally upregulated in GIST48IM cells 

treated with 10 µM imatinib and 30 µM LY294002 at 72 hrs, with a 2-fold increase in 

BIM mRNA in cells compared with untreated and DMSO-treated GIST48IM cells 

(Figure 7, top right).  

At the protein level, BIM-EL and BIM-S, but not BIM-L, were expressed at low 

levels in untreated GIST-T1 cells (Figure 7, bottom left), but increased considerably after 

treatment with 1 µM and 10 µM imatinib and 30 µM LY294002, consistent with 

upregulation of BIM mRNA.  In contrast, moderate-to-high basal BIM-EL protein levels 

were detectable in untreated GIST48IM cells, and only treatment with 10 µM imatinib  

and 30 µM LY294002 increased expression above this baseline.  

To better understand the mechanism of BIM activation in GIST cells, the 

phosphorylation status of BIM and its transcription factor, FoxO3a, were examined by 

western blotting. BIM-EL phosphorylation at serine 69 (S69) is known to negatively 

regulate BIM function by promoting its proteasomal degradation [116], whereas AKT-

mediated phosphorylation of FoxO3a at serine 253 (S253) contributes to its translocation 

from the nucleus, and blocks transcription of BIM [105, 117].  
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In accordance with this model, BIM-EL was constitutively phosphorylated at S69 

in untreated and DMSO-treated in GIST-T1 cells, and phosphorylation was abolished by 

incubation with 1 and 10 µM imatinib for 24 and 72 hrs, in parallel with increased 

unphosphorylated (native) BIM-EL. Decreased S69-phosphorylation of BIM-EL was 

similarly achieved by treatment with 30 µM LY294002, but not by treatment with 

U0126. Similarly, S253-phosphorylated FoxO3a was decreased at 24 and 72 hrs with 

imatinib, and at 72 hrs with LY294002, but not with U0126. Importantly, 

dephosphorylation of transcription factor FoxO3a correlated with increased BIM mRNA 

and protein levels, particularly BIM-S and BIM-EL.  

In GIST48IM cells, dephosphorylation of BIM-EL was inconsistently achieved 

with imatinib (1 or 10 µM) or 10 µM U0126, but phosphorylation was abolished 

completely by treatment with LY294002. Likewise, only PI3K inhibition achieved 

significant S253-dephosphorylation of FoxO3a in GIST48IM cells. Collectively, these 

findings suggest that in clinically-representative GIST cells, BIM is regulated 

transcriptionally and post-translationally by KIT and PI3K signaling, and that 

upregulation of BIM accompanies apoptosis.  
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Figure 7. Inhibition of KIT and PI3K upregulates BIM in GIST cells. 
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TOP PANEL: BIM mRNA levels are increased by inhibition of KIT and PI3K in GIST-
T1 (left) and GIST48IM (right) cells, in a time- and dose-dependent manner. Columns 
represent the mean of triplicate experiments; error bars represent standard deviation (SD). 
 
BOTTOM PANEL: Representative western blots demonstrating upregulation of BIM-
EL, BIM-L (minor), and BIM-S in protein extracts of imatinib-treated GIST-T1 cells, 
compared to untreated (UT) and DMSO-treated cells (DM). KIT and PI3K inhibition 
abolish phosphorylation of BIM (S69) and FoxO3a (S253). High basal level of BIM-EL 
was noted in untreated and DMSO-treated GIST48IM cells.  
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Isoforms BIM-EL, BIM-L, and BIM-S activate apoptosis equally in GIST cells 

Having observed that three known functional isoforms of BIM are upregulated in 

GIST cells by KIT and PI3K inhibition, and that BIM upregulation parallels induction of 

apoptosis, I asked whether BIM mediates apoptosis functionally, and whether the 

individual isoforms of BIM differ with regard to cytotoxicity in GIST. To examine 

whether BIM causes activation of apoptosis in GIST cells, the ability of three distinct 

BIM isoforms to activate effector caspases 3 and 7 was evaluated.  

For this, GIST-T1 and GIST48IM cells were transfected with pEGFP-(C2) 

expression vectors containing BIM-EL, BIM-L, or BIM-S inserts, or empty pEGFP 

vector, and quantified the activity of caspases 3 and 7, which are irreversibly activated by 

apoptosis. I anticipated that BIM over-expression would cause increased apoptosis, as  

compared to control cells transfected with empty pEGFP-vector, mock-transfected cells, 

and untransfected cells. 

In both cell lines, transfection with pEGFP-BIM-EL, pEGFP-BIM-L, and pEGFP-

BIM-S significantly increased caspase activation in a time-dependent manner, in 

comparison to untransfected, mock-transfected, and pEGFP-transfected cells (Figure 8). 

In GIST-T1 cells, a 2-fold increase in caspase activity was observed as early as 12 hrs 

post-transfection with all three isoforms, and peaked at 24 hrs (>6-fold increase) before 

returning to 4-fold at 48 hrs.  

GIST48IM cells transfected with pEGFP-BIM-EL, pEGFP-BIM-L, or pEGFP-

BIM-S similarly demonstrated increased caspase 3/7 activation, compared to 

untransfected, mock-transfected, and pEGFP-transfected cells. However, the magnitude 
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of caspase 3/7 activation relative to untransfected cells did not surpass 2-fold with any of 

the BIM isoforms in GIST48IM.  

Importantly, there were no significant differences in caspase 3/7 activation among 

the individual BIM isoforms, suggesting that they are equally cytotoxic when expressed 

in GIST cells. In all cases, caspase activation and cytotoxicity were abolished by co-

treatment with the pan-caspase inhibitor Z-VAD-FMK (20µ µM), confirming that the 

cytotoxic effect of BIM expression is mediated by caspase activation, and therefore by 

apoptosis. 
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Figure 8. BIM-EL, BIM-L, and BIM-S activate effector caspases in GIST cells. 
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Isoforms BIM-EL, BIM-L, and BIM-S activate apoptosis equally in GIST cells. A. 
Significant, time-dependent activity of caspases 3 and 7 was observed after transfection 
of GIST-T1 cells (top) and GIST48IM cells (bottom) with expression vectors encoding 
isoforms BIM-EL, BIM-L, and BIM-S. Bars, mean of triplicate experiments; error bars, 
standard deviation (SD). 
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Imatinib treatment causes BIM mRNA upregulation in GIST patients 

To determine whether a BIM-mediated mechanism of imatinib-induced apoptosis 

extends to patient GISTs, I investigated whether BIM mRNA was upregulated in tumors 

from patients with GIST who were treated with 600 mg imatinib daily for 3, 5, or 7 days 

before undergoing surgical resection of their tumor [60]. I performed quantitative RT-

PCR to evaluate BIM mRNA levels in 20 pre-imatinib and 26 post-imatinib specimens. 

Where paired specimens were available (n=20), I determined the magnitude of BIM 

upregulation (fold-change in BIM mRNA in post-imatinib surgical specimen normalized 

to pre-imatinib biopsy), as well as its relation with temporal exposure to imatinib.   

 

Figure 9. Imatinib upregulates BIM mRNA in GIST patients. 
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BIM mRNA levels were quantified by RT-PCR (ΔΔCT method) in pre-imatinib biopsies 
and post-imatinib surgical specimens from patients with GIST treated preoperatively. 
Statistics: Paired t-test. 
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As shown in Figure 9 (left panel), mean BIM mRNA was significantly higher in 

post-imatinib surgical specimens (Mean ± Std. Error, 6.2 ± 0.7), as compared with pre-

imatinib biopsies (2.4 ± 0.5; Paired t-test, P=0.0002). Moreover, 19 out of 20 paired 

specimens demonstrated upregulation of BIM mRNA after treatment with imatinib, and 

only one patient demonstrated downregulation of BIM (Figure 9, right).  

In addition, as shown in Figure 10 (bottom), patients treated beyond three days 

exhibited a mean 5-fold increase in BIM expression, as compared to a 2-fold increase in 

patients who received imatinib for only three days (Mann Whitney test, P=0.03). 

However, the pre-imatinib (basal) levels of BIM mRNA were significantly greater in 

tumors treated for 3 days, making it impossible to conclude that the increases in BIM 

mRNA were directly proportional to the length of exposure to imatinib (Figure 10, 

middle). 
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Figure 10. Comparison of BIM upregulation in GISTs treated with imatinib for 3 
days and GISTs treated for >3 days.  
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Fold-changes in BIM expression (mRNA levels in surgical specimens normalized to 
paired biopsy samples) were greater in tumors exposed to longer durations of imatinib 
therapy, with GISTs treated for >3 days exhibiting a mean BIM increase of 5.78±1.3, as 
compared to GISTs treated for only 3 days (mean BIM increase of 2.0±0.4. Statistics: 
Mann-Whitney test. 
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Imatinib downregulates Bcl-2, and upregulates Mcl-1 in GIST patients 

Given that BIM functions in direct opposition to the pro-survival Bcl-2 family 

members, I evaluated the expression of Bcl-2, Bcl-xL, and Mcl-1 mRNA by RT-PCR in 

GIST patients treated with imatinib (Figure 11). Overall, the mean levels of Bcl-2 mRNA 

in post-imatinib tumor specimens (0.31 ± 0.05) were significantly lower in comparison 

with pre-treatment biopsy samples (0.47 ± 0.08; Paired t-test, P=0.007). In contrast, I 

observed mixed upregulation and downregulation of Bcl-xL and Mcl-1 mRNA, such that 

mean Bcl-xL and Mcl-1  levels were statistically equivalent between pre-imatinib 

biopsies and post-imatinib surgical specimens.   

As with BIM, post-imatinib mRNA levels of pro-survival Bcl-2 proteins in 

surgical specimens were also normalized to their corresponding pre-imatinib biopsies. I 

noted a trend toward time-dependent Bcl-2 downregulation, although this was not 

statistically significant, given the high variability of Bcl-2 expression in tumors from 

patients treated for three days (Figure 12). Similarly, there was no association between 

Bcl-xL mRNA and temporal exposure to imatinib. Notably, upon normalizing post-

imatinib Mcl-1 mRNA to matched pre-imatinib biopsies, it became evident that Mcl-1 

was downregulated in tumors treated for 3 days (Mean fold-change = 0.55  ± 0.18), but 

upregulated in tumors treated for >3 days (Mean fold-change = 1.77 ± 0.31; Mann-

Whitney test, P=0.009). 
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Figure 11. Imatinib-induced alterations in pro-survival Bcl-2 genes in GIST 
patients.  
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Bcl-2 mRNA levels were significantly lower in post-imatinib surgical specimens, as 
compared with pre-imatinib biopsies. Bcl-xL and Mcl-1 mRNA levels were comparable 
in GIST specimens before and after treatment. 

 

Figure 12. Imatinib-induced alterations in pro-survival Bcl-2 genes in GISTs treated 
with imatinib for 3 days and >3 days. 
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Fold-changes in Mcl-1 expression (mRNA levels in surgical specimens normalized to 
paired biopsy samples) differ with shorter and longer treatment, with GISTs treated for 
>3 days exhibiting a mean Mcl-1 increase of 1.77 ± 0.31, as compared to GISTs treated 
for only 3 days (0.55  ± 0.18; P=0.008). Statistics: Mann-Whitney test. 
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Imatinib therapy induces tumor cell apoptosis in patients with GIST 

Our laboratory previously reported that imatinib activates tumor cell apoptosis in 

vivo, and that the rate of apoptosis is dependent on the duration of therapy [60]. 

Importantly, results of the previous study were reported prior to completion of accrual by 

the clinical trial MDACC ID03-0023, and consisted of 10 pre-imatinib biopsies and 17 

surgical specimens, obtained from 19 patients with GIST; in the interim, nine more 

patients were accrued onto the study, yielding eight more post-imatinib surgical 

specimens and one more biopsy. I assessed activation of apoptosis by TUNEL on 25 

post-imatinib formalin-fixed paraffin-embedded surgical specimens. For comparison, I 

used a GIST tissue microarray, consisting of 53 imatinib-naïve surgical specimens [69].  

Consistent with the previous report, tumors treated preoperatively with imatinib 

exhibited significantly higher, albeit moderate, rates of apoptosis (4.6 ± 0.9%), than 

untreated tumors (Figure 13, top; 1.4 ± 0.3%; Mann Whitney test, P=0.007). Moreover, 

tumor cell apoptosis (%) was significantly higher in tumors treated for greater than three 

days with imatinib therapy, as compared with tumors treated for 3 days, or untreated 

tumors (Figure 13, bottom; One-way analysis of variance, P=0.01). 
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Figure 13. Imatinib therapy induces tumor cell apoptosis in patients with GIST.   
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TOP: GISTs treated preoperatively with imatinib (n=25) exhibited significantly higher, 
albeit moderate, rates of apoptosis as compared with untreated tumors (n=53; Mann-
Whitney test, P=0.007).  
BOTTOM: Tumor cell apoptosis is greater with longer exposure to imatinib. (*) denotes 
p<0.05 by Bonferroni's Multiple Comparison Test. 
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Upregulation of BIM correlates with tumor cell apoptosis in GIST patients 

Given that tumor cell apoptosis and BIM upregulation were found to be  

concurrent and time-dependent in GIST patients treated with imatinib, I determined 

whether there was an association between upregulation of BIM and activation of 

apoptosis in patient tumors. Tumors that exhibited upregulation of BIM by greater than 4-

fold demonstrated considerably higher levels of apoptosis (7.7 ± 1.8%), than tumors 

which downregulated BIM, or increased its expression by less than 4-fold (Figure 14; 2.9 

± 0.8%; Mann Whitney test, P=0.004). Moreover, linear regression and Pearson 

correlation of BIM expression and apoptosis in surgical specimens revealed that BIM 

upregulation trended toward an association with apoptosis (Figure 15; Pearson 

correlation, P=0.06).  

 

Figure 14. Upregulation of BIM correlates with tumor cell apoptosis in GIST 
patients.   
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Patients whose tumors upregulated BIM by greater than 4-fold demonstrated higher 
levels of apoptosis than patients whose tumors downregulated, or increased BIM 
expression by less than 4-fold (Mann-Whitney test, P=0.004).  
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Figure 15. Linear regression analysis of BIM expression and apoptosis. 
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Linear regression analysis and Pearson correlation of BIM expression and apoptosis in 
surgical specimens revealed that BIM upregulation trended toward a linear association 
with apoptosis (P=0.06). 
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Imatinib-induced alterations in pro-survival Bcl-2 proteins and apoptosis 

Having observed significant imatinib-induced alterations in expression of Bcl-2 

and Mcl-1, I asked whether these changes in pro-survival proteins were associated with 

apoptosis in patient tumors. Specifically, I hypothesized that tumors which 

downregulated Bcl-2 mRNA would exhibit higher rates of apoptosis than those which 

upregulated it. Similarly, I postulated that tumors which upregulated Mcl-1 would exhibit 

lower rates of apoptosis, in accordance with its pro-survival function.  

Contrary to my hypotheses, no association between imatinib-induced alterations 

in pro-survival Bcl-2 proteins and apoptosis were found in patient tumors by linear 

regression analysis (Figure 16). 

 

Figure 16. Imatinib-induced alterations in pro-survival Bcl-2 proteins  and GIST 
apoptosis. 
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Basal expression of Bcl-2, Bcl-xL, and Mcl-1 and apoptosis 

As post-imatinib expression changes in pro-survival Bcl-2 proteins did not appear 

to associate with tumor cell apoptosis, I examined whether basal, or pre-treatment, 

expression, as opposed to imatinib-induced alterations, influenced BIM-mediated 

apoptosis in GIST. For this analysis, I quantified mRNA in pre-imatinib biopsy samples 

and divided the group into quartiles, hypothesizing that tumors in the upper quartile of 

pre-treatment Bcl-2, Bcl-xL, or Mcl-1 expression would correlate with lower rates of 

apoptosis. Paradoxically, tumors in the upper quartile of pre-treatment Bcl-xL mRNA 

exhibited higher rates of post-treatment apoptosis (n=5; 8.3 ± 2.4%) as compared with 

tumors in the lowest three quartiles (n=15; 3.3 ± 0.8%; Unpaired t test, P=0.02). (Table 

1). This was confirmed by Pearson correlation (Figure 17), suggesting an association 

between high pre-treatment Bcl-xL expression and post-treatment apoptosis (P=0.002; r 

=0.66).  

 

Table 1. Basal expression of Bcl-2, Bcl-xL, and Mcl-1 and apoptosis. 
 

 Bcl-2 Bcl-xL Mcl-1 

Apoptosis (%TUNEL 
Positive Cells) 

Mean ± 
SEM 

p-value Mean ± 
SEM 

p-value Mean ± 
SEM 

p-value 

Upper Quartile (N=5) 6.6 ± 2.2 0.23 8.3 ± 2.3 0.02 2.6 ± 1.0 0.24 

Lower 3Q (N=15) 3.9 ± 1.0  3.3 ± 0.8  5.2 ± 1.2  

 
Tumors in the upper quartile of pre-treatment Bcl-xL expression exhibited significantly 
higher rates of apoptosis than patients in the lowest three quartiles. Statistics: Two-tailed, 
unpaired t-test. 
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Figure 17. High basal (pre-imatinib) Bcl-xL mRNA correlates with apoptosis. 
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Pearson correlation of basal Bcl-xL expression and tumor apoptosis, depicting a 
significant association between high pre-treatment Bcl-xL expression and post-treatment 
apoptosis. 
 

 

Autophagy in imatinib-treated GIST patient samples 

Although imatinib caused significant pro-apoptotic gene expression alterations 

(i.e. upregulation of BIM and downregulation of Bcl-2) in GIST specimens from patients 

treated with imatinib, these pro-apoptotic gene expression changes did not account fully 

for the apoptotic response, suggesting that alternative mechanisms may modulate BIM-
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mediated apoptosis in GIST. Depending on cellular context, autophagy may promote cell 

death, or serve as an adaptive mechanism that allows cancer cells to survive cytotoxic 

stress [118]. In GIST cells, autophagy was previously shown to function as an adaptive 

response to imatinib, and therapeutic inhibition of autophagy synergized with imatinib to 

activate apoptosis. By detection of punctate α-LC3, Gupta and colleagues previously 

demonstrated that imatinib induces autophagosome formation in human GIST specimens, 

and that autophagosome formation correlates inversely with apoptosis [51].  

Given that BH3-only proteins and pro-survival Bcl-2 proteins are known to play 

opposing roles in autophagy [119], I hypothesized that autophagosome formation might 

be related to sub-apoptotic BIM upregulation, or conversely, to upregulation of Bcl-2, 

Bcl-xL, or Mcl-1. I thus examined imatinib-induced alterations in Bcl-2 family genes in 

relation to autophagosome formation by punctate α-LC3 immunohistochemical staining. 

Specifically, BIM, Bcl-2, Bcl-xL, and Mcl-1 mRNA levels were quantified relative to 

endogenous cyclophilin, and post-imatinib levels were normalized to corresponding pre-

imatinib mRNA levels. I then compared average fold-changes in gene expression 

between autophagosome-positive (focal or moderate) and -negative GISTs (Table 2). 

BIM was upregulated 6-fold in autophagosome-negative specimens compared 

with a 3-fold increase in autophagosome-positive specimens (P=0.17).  In accordance 

with its pro-survival function in promoting autophagy, Bcl-2 was upregulated 3-fold in 

autophagosome-positive tumors and unchanged in autophagosome-negative tumors 

(P=0.37). Although neither of these associations reached statistical significance, they 

stood in agreement with the previous observation that tumors with high BIM upregulation 

tended to activate apoptosis rather than autophagy. In contrast, expression changes in 
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Mcl-1 and Bcl-xL did not demonstrate notable trends in relation to autophagosome 

formation in patient GISTs. 

 

Table 2. Autophagosome formation and imatinib-induced alterations in the Bcl-2 
family.  
 

 BIM Bcl-2 Bcl-xL Mcl-1 

Autophagosome 
Formation 

Mean ± 
SEM 

p-
value

Mean ± 
SEM 

p-
value

Mean ± 
SEM 

p-
value 

Mean ± 
SEM 

p-
value

LC3-negative (N=9) 6.2 ± 
2.2 

0.17 2.9 ± 
2.4 

0.37 1.3 ± 
0.3 

0.24 1.6 ± 
0.5 

0.70 

LC3-positive 
(N=11) 

3.3 ± 
0.4 

 0.9 ± 
0.2 

 2.4 ± 
0.8 

 1.4 ± 
0.3 

 

 
Mean fold-changes in gene expression between autophagosome-positive and 
autophagosome-negative tumors were compared. Statistics: Two-tailed, unpaired t-test.  
 

 

Bcl-xL upregulation is associated with imatinib-resistance by PET 

FDG-PET is a sensitive method to evaluate early tumor responses in GIST, and 

PET response has been found to be predictive of prolonged disease-free survival in 

patients with GIST treated with imatinib [120]. Having observed an association between 

BIM upregulation and apoptosis in patient tumors, I asked whether gene expression 

alterations at the cellular level correlated with radiographic tumor responses. Specifically, 

I asked whether imatinib-induced expression changes in the Bcl-2 family of proteins were 

associated with early responses by PET, which were defined as a relative decrease greater 

than 70% in maximum standard uptake value (SUVmax) of the tumor, or residual SUVmax 

≤ 3.9 [60].  
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To test the hypotheses that BIM expression correlates with response to imatinib, 

whereas Bcl-2, Bcl-xL, and Mcl-1 correlate with resistance, I examined the associations 

between imatinib-induced expression changes and intratumoral glucose metabolism by 

FDG-PET. I anticipated that patients whose tumors upregulated BIM in response to 

imatinib also exhibit decreased glucose uptake. Conversely, I anticipated that imatinib-

treated patients whose tumors exhibit upregulation of Bcl-2, Bcl-xL and Mcl-1, or 

downregulation of BIM experienced inferior responses. 

Bcl-xL was upregulated 3-fold in non-responders (P<0.05), compared to PET 

responders (Table 3). Conversely, PET responders, on average, upregulated BIM by 5-

fold compared to a 2-fold increase in non-responders, a tendency which failed to reach 

statistical significance (P=0.09), but which nonetheless was consistent with the putative 

role of BIM in mediating imatinib-induced apoptosis.  

 
 
Table 3. PET response and imatinib-induced alterations in the Bcl-2 family.  
 

 BIM Bcl-2 Bcl-xL Mcl-1 

Radiographic 
Response 

Mean ± 
SEM 

p-
value

Mean ± 
SEM 

p-
value

Mean ± 
SEM 

p-
value 

Mean ± 
SEM 

p-
value

PET Responder 
(N=14) 

5.1  ± 
1.4 

0.09 2.2 ± 1.5 0.63 1.4 ± 0.3 0.01 1.5 ± 0.3 0.8 

Non-responder 
(N=5) 

2.3 ± 0.4  0.9 ± 0.4  3.5 ± 0.5  1.3 ± 0.6  

 
Mean fold-changes in gene expression between PET responders and non-responders were 
compared. Statistics: Two-tailed, unpaired t-test. 
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Survival of patients with GIST and the Bcl-2 family  

Having found that imatinib causes early gene expression alterations in the Bcl-2 

family that correlate with tumor cell apoptosis and early response by PET, I asked 

whether these changes associated with clinical outcome, particularly disease-free survival 

time. Before undertaking this analysis, I updated the clinical outcomes of patients 

enrolled in the MDACC ID03-0023 study, as the previous report was published before 

completion of patient accrual into the study [60]. 

 

Patient and tumor characteristics: MDACC Study ID03-0023  

The clinicopathologic variables for the cohort of 28 patients with GIST are 

summarized in Table 4. The group consisted of 16 men and 12 women, with median age 

of 59 years (range 29 to 84). Race distribution was: 17 (61%) white, 6 (21%) black, and 5 

(18%) Asian. Clinical presentation was primary in 22 patients (79%), and recurrent or 

metastatic in 6 (21%).  

The most common site of tumor origin was the stomach, occurring in  21 patients 

(75%), followed by the small intestine in 7 (25%). Median tumor size was 7 cm (range 

0.9 to 22 cm). Seven patients (25%) presented with tumors less than 5 cm, 11 patients 

(39%) presented with tumors between 5 and 10 cm, and  10 patients (36%) presented 

with tumors > 10 cm. Twenty-three tumors (82%) were described as having spindled 

morphology, two (7%) were epithelioid, and three were undetermined. The vast majority 

of tumors in this cohort, 23 (82%), were found to harbor KIT exon 11 mutations, and one 

tumor harbored a KIT exon 9 mutation. Interestingly, two tumors were found to harbor 

PDGFRA exon 12 mutations, and two were found to be wild-type for KIT and PDGFRA. 
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Complete surgery (R0) was achieved in 27 of 28 patients (96%), whereas a single 

patient (with a 22 cm gastric GIST) was found to have evidence of gross and microscopic 

residual disease after resection. Nineteen patients (68%) went on to complete two years 

of adjuvant imatinib, while 9 patients (32%) discontinued therapy. Three patients 

removed themselves from the study after surgical resection, deciding not to participate in 

further treatment or follow-up. 

Associations between post-imatinib BIM, Bcl-2, Bcl-xL, and Mcl-1 mRNA levels 

and clinicopathologic factors were examined, including KIT/PDGFRA genotype, tumor 

size, and primary tumor location (Table 5). Albeit not statistically-significant, post-

imatinib BIM mRNA levels were considerably higher in gastric GISTs (8.7±2.3), as 

compared with small bowel tumors (5.1±0.9). Similarly, tumors ≤ 10 cm were found to 

have higher BIM mRNA levels than tumors > 10 cm after treatment with imatinib 

(9.3±2.7 and 5.2±0.7, respectively). Notably, KIT exon 11 mutant GISTs expressed lower 

levels of BIM mRNA after treatment with imatinib (7.4±2.0), than tumors harboring 

other KIT/PDGFRA genotypes (9.4±2.2). There were no notable associations between 

clinicopathologic variables and post-imatinib expression of Bcl-2, Bcl-xL, and Mcl-1. 
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Table 4. Clinical and Pathologic Characteristics: MDACC ID03-0023 Study 
 

  n % of Total 
Age    
 ≤ 50 7 25 
 > 50 21 75 
Sex    
 Male 16 57 
 Female 12 43 
Race    
 White 17 61 
 Asian 5 18 
 Black 6 21 
Tumor Size    
 ≤ 5 cm 7 25 
 >5 cm, ≤ 10 cm 11 39 
 > 10 cm 10 36 
Presentation 
Status 

   

 Primary 22 79 
 Recurrent/Metastatic 6 21 
Primary Site    
 Stomach 21 75 
 Sm. Intestine 7 25 
Histology    
 Epithelioid 2 7 
 Spindled 23 82 
 Other/unknown 3 11 
Genotype    
 KIT exon 11 23 82 
 KIT exon 9 1 4 
 PDGFRA 2 7 
 Wild type 2 7 
Surgical Margins    
 R0, complete resection 27 96 
 R1 or R2, incomplete 1 4 
Adjuvant Imatinib    
 Completed 2 years 19 68 
 Discontinued 9 32 
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Table 5. Association of clinicopathologic factors with post-imatinib BIM, Bcl-2, Bcl-
xL and Mcl-1 mRNA. 
 

  n BIM Bcl-2 Bcl-xL Mcl-1
   Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM

Tumor Size   
 ≤ 10 cm 16 9.3±2.7 0.3±0.1 2.0±0.2 1.5±0.2
 > 10 cm 10 5.2±0.7 0.4±0.1 3.1±1.1 1.2±0.1
Primary Site   
 Stomach 19 8.7±2.3 0.3±0.1 2.3±0.6 1.4±0.2
 Sm. Intestine 7 5.1±0.9 0.3±0.1 2.7±0.5 1.2±0.2
Genotype    
 KIT exon 11 22 7.4±2.0 0.3±0.1 2.5±0.5 1.4±0.2
 Other 4 9.4±2.2 0.3±0.1 1.9±0.5 1.2±0.4

 
Mean fold-changes in gene expression were compared according to clinicopathologic 
characteristics with prognostic value: Tumor size, primary tumor location, and 
KIT/PDGFRA genotype. Statistics: Two-tailed, unpaired t-test. 

 

 

Long-term Overall Survival 

Overall survival of the entire ID03-0023 cohort is depicted graphically in Figure 

18. With median follow-up of 53 months (range 29-91), OS was 100% for the first four 

years, 92% at 5 years, 84% at 6 years, and 72% at 7 years. As of September 2011, only 

three of the original 28 patients have died as a result of GIST progression (recurrence or 

metastasis), and none have died of other causes. Of the 25 living patients, 19 (76%) are 

alive and free of disease recurrence and six (24%) are alive with recurrent or metastatic 

disease. Given that all three deceased patients had small bowel GIST greater than 10 cm 

at primary presentation, tumor size and primary tumor site were significant predictors of 

overall survival by univariate analysis (Figure 19 and Table 6). 
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Figure 18. Overall survival of patients enrolled in MDACC ID03-0023 study 
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Figure 19. Overall survival by tumor size and primary tumor site in patients 

enrolled in MDACC ID03-0023 study 
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Table 6. Association of clinicopathologic factors with overall survival 
 

  Patients  
(n) 

Deaths
(n) 

Median OS  
(months) 

Univariate  
p-value 

All Patients  28 3 Undefined  
Age      
 ≤ 50 7 1 Undefined 0.986 
 > 50 21 2 Undefined  
Sex      
 Male 16 2 Undefined 0.3284 
 Female 12 1 Undefined  
Race      
 White 17 2 Undefined 0.6146 
 Other 11 1 Undefined  
Tumor Size      
 ≤ 10 cm 18 0 Undefined 0.0171 
 > 10 cm 10 3 76.10  
Primary Site      
 Stomach 21 0 Undefined 0.0318 
 Sm. Intestine 7 3 76.10  
Genotype      
 KIT exon 11 23 2 Undefined 0.3790 
 Other 5 1 Undefined  
Adjuvant Imatinib Two years     
 Completed 19 2 Undefined 0.8261 
 Discontinued 9 1 Undefined  

 

 

Long-term Disease-Free Survival 

With median follow-up of 53 months, tumor recurrence or metastasis has 

occurred in nine of 28 patients after surgical resection, 3 of whom have died of disease. 

Two of nine patients (22%) experienced local recurrence alone, two patients (22%) 

experienced both local and metastatic progression, and four patients (44%) experienced 

metastasis alone (three to liver, one to peritoneum). One patient had extra-abdominal 

recurrence to the lung, in addition to liver metastasis. Disease-free survival rates for the 
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entire cohort were: 96% at 1 year, 92% at 2 years, 80% at 3 years, 55% at 4 through 7 

years (Figure 20, top left). 

As with overall survival, only tumor size and primary tumor site were 

significantly associated with recurrence (Table 7 and Figure 20, bottom panel). In 

accordance with established risk-stratification criteria, six of seven patients (86%) 

patients with small bowel tumors and five of 10 patients (50%) with GIST > 10 cm 

experienced disease progression.  

Importantly, among patients who actually completed the study protocol, there 

were no instances of progression during the two years of therapy with adjuvant imatinib, 

whereas two of nine patients (22%) who discontinued adjuvant therapy progressed within 

the first two years. Accordingly, DFS rates for patients who completed two years of 

adjuvant imatinib were 100% at 1 and 2 years, but fell to 80% at 3 years. These data are 

consistent with the results of a published clinical study reporting that adjuvant imatinib 

effectively delays tumor recurrence in patients with high-risk GIST [39]. 
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Figure 20. Disease-free survival, MDACC ID03-0023. 
 

Disease-free Survival, All Patients

PFS (Months)

Pe
rc

en
t s

ur
vi

va
l

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

n = 28
censored 19
events 9
Median DFS Undefined

DFS by Adjuvant Imatinib

PFS (Months)

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Discontinued
Completed

n=19

n=9

p=1.0

DFS by Tumor Size

PFS (Months)

Pe
rc

en
t s

ur
vi

va
l

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

< 10 cm
> 10 cm

n=18

n=10

p=0.03

DFS by Tumor Site

PFS (Months)

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Sm. Bowel
Stomach

n=21

n=7

p=0.0005

 
 
 



72 
 

Table 7. Association of clinicopathologic factors with disease-free survival 
 
  Patients (n) Recurrent Median DFS  

(months) 
Univariate 

p-value 
All Patients  28 9 Undefined  
Age      
 ≤ 50 7 4 46.00 0.2259 
 > 50 21 5 Undefined  
Sex      
 Male 16 4 Undefined 0.4444 
 Female 12 5 46.90  
Race      
 White 17 6 46.90 0.7485 
 Other 11 3 Undefined  
Tumor Size      
 ≤ 10 cm 18 4 Undefined 0.0315 
 > 10 cm 10 5 42.47  
Primary Site      
 Stomach 21 3 Undefined 0.0005
 Sm. Intestine 7 6 42.47  
Genotype      
 KIT exon 11 23 8 46.90 0.4758 
 Other 5 1 Undefined  
Adjuvant Imatinib 
Two years 

     

 Completed 19 6 Undefined 0.9998 
 Discontinued 9 3 Undefined  
 
 

 

Upregulation of BIM is associated with improved DFS in patients with GIST treated 

with adjuvant imatinib  

Having found that two years of adjuvant imatinib effectively delays GIST 

progression, I hypothesized that imatinib-induced alterations which promote tumor 

apoptosis, such as BIM upregulation and Bcl-2 downregulation, associated with 

improved DFS. In other words, I asked whether those patients who benefited longest 

from delays in tumor progression did so because their GIST exhibited higher BIM 
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upregulation (and presumably apoptosis) while receiving imatinib post-operatively. 

Conversely, I postulated that alterations which promoted the survival of tumors, such as 

Mcl-1 upregulation, associated with inferior DFS. By univariate analysis, I evaluated 

DFS according to post-imatinib gene expression, comparing tumors in the upper quartile 

of BIM, Bcl-2, Bcl-xL, or Mcl-1 mRNA with those in the lower three quartiles (Table 8). 

To avoid the confounding effect of noncompliance or interruptions, I excluded the nine 

patients who did not complete the 2-year period of adjuvant imatinib from this survival 

analysis.  

Importantly, no tumor recurrences were observed among patients whose tumors 

were in the upper quartile of post-imatinib BIM mRNA, as compared with 6 recurrences 

in 14 patients whose tumors were in the lower three quartiles of BIM mRNA expression 

(Figure 21).  

 

Table 8. Association of Bcl-2 family gene expression with disease-free survival. 
 
  Patients 

(n) 
Recurrence Median DFS  

(months) 
Univariate 

p-value 
Patients treated with Adjuvant IM 19 6 Undefined  
BIM mRNA (post-IM)     
 Lower 3Q 14 6 45.97 0.0176 
 Upper Quartile 5 0 Undefined  
Bcl-2 mRNA (post-IM)     
 Lower 3Q 14 4 46.9 0.6963 
 Upper Quartile 5 2 Undefined  
Bcl-xL mRNA (post-IM)     
 Lower 3Q 14 3 Undefined 0.4050 
 Upper Quartile 5 3 45.97  
Mcl-1 mRNA (post-IM)     
 Lower 3Q 14 6 46.9 0.1366 
 Upper Quartile 5 0 Undefined  
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Figure 21. Post-imatinib BIM mRNA level is associated with prolonged DFS in 
patients with GIST treated with adjuvant imatinib. 
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By univariate survival analysis, post-imatinib BIM mRNA (upper quartile expression) 
was significantly associated with prolonged disease-free survival (P=0.02), as compared 
with lower levels of BIM mRNA. 
 

 

Discussion 

The purpose of this study was to determine whether a BIM-mediated mechanism 

of apoptosis, as previously-reported in GIST cells with KIT exon 13 mutations, extends to 

GIST cells with clinically-relevant KIT exon 11 mutations and/or patient tumors. Further, 

I examined whether imatinib-induced alterations in expression of Bcl-2 family members 

were associated with tumor apoptosis, autophagy, FDG-PET response, or disease-free 

survival.  
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In GIST cells with KIT exon 11 mutation, inhibition of KIT with imatinib 

upregulated three functional variants of BIM at the mRNA and protein levels. Further, 

BIM upregulation accompanied activation of apoptosis, and both effects were 

recapitulated by PI3K inhibition, but not by MEK1/2 inhibition. Accordingly, two post-

translational modifications known to inhibit BIM expression and activation are reversed 

by KIT or PI3K inhibition, namely S253-phosphorylation of transcription factor FoxO3a 

and S69-phosphorylation of BIM-EL. Collectively, these findings confirm that BIM is 

suppressed downstream of KIT in GIST-T1 and GIST48IM cells.  

In contrast to GIST cells with KIT exon 13 mutations, however, BIM is regulated 

exclusively by PI3K signaling in GIST cells with exon 11 mutations. This is not 

unprecedented, as other investigators have reported genotype-specific distinctions in 

signaling pathways among GIST cells and primary tumors with different mutations, and 

between tumors with similar genotypes [70].  GIST-T1 cells appear to preferentially 

depend on the PI3K survival pathway, perhaps owing to deletion of 20 amino acids from 

the juxtamembrane domain of KIT, as opposed to GIST882 cells, which are driven by 

missense mutation in exon 13 in the KIT kinase domain. I speculate that the deletion may 

alter the conformation of the juxtamembrane domain, limiting the potential docking 

partners and downstream signal transducers available to effect the survival of GIST-T1 

cells. 

While other investigators have reported differences in cytotoxicity among 

isoforms BIM-EL, BIM-L, or BIM-S [107, 121], I found no such variability. When 

transfected into GIST cells, all three isoforms exhibited equivalent time-dependent 

caspase activation that peaked 24 hours post-transfection. Interestingly, I observed 
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differences between GIST-T1 and GIST48IM cells with regards to baseline expression 

and cytotoxic potential of BIM. Whereas minimal BIM expression was observed in 

untreated GIST-T1 cells, moderate amounts of BIM-S and BIM-EL were detected by 

western blot in untreated GIST48IM cells, in the absence of demonstrable cytotoxicity. 

Moreover, BIM protein levels were higher in 72 hr GIST48IM cultures compared to 

corresponding 24 hr cultures, irrespective of treatment, and only supraphysiologic 

concentrations of imatinib (10 µM) and LY294002 (30 µM) induced expression of BIM 

above this baseline. Indeed, GIST48IM cells transfected with BIM-EL, BIM-L, or BIM-S 

demonstrated significant caspase activation, compared to untransfected cells, but 

maximum caspase activity (2-fold) was far below GIST-T1 cells (>5-fold). These 

findings suggest that BIM does not activate apoptosis in an absolute (all-or-nothing) 

manner when expressed in GIST cells, and imply that imatinib-resistant cell lines may 

possess additional mechanisms and molecules that may suppress, or counteract, the pro-

apoptotic function of BIM. 

The aforementioned in vitro findings confirmed that imatinib-induced apoptosis 

in GIST was mediated by BIM activation, and suggested a similar role in GIST patients. 

To corroborate this, I examined imatinib-induced alterations in BIM and pro-survival 

Bcl-2 molecules at the mRNA level, and evaluated their association with tumor 

apoptosis, PET response, and clinical outcome. These studies found that BIM is 

upregulated in patient tumors in proportion to the duration of exposure to imatinib, and 

BIM upregulation was associated with apoptosis. However, while there was a general 

tendency for higher rates of apoptosis in tumors with large BIM increases, the Pearson 

correlation coefficient (r) of the interaction was calculated as 0.44, indicating a weak 
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linear relationship. This was not unexpected, and suggests that factors other than BIM 

contribute to, or dampen, GIST apoptosis.  

I suspected that BIM-antagonists (Bcl-2, Bcl-xL, or Mcl-1) or adaptive responses, 

including autophagy, modulate cell death of GIST cells. In this context, it was intriguing 

to observe that tumors with demonstrable autophagosome formation exhibited lower BIM 

induction than autophagosome-negative tumors.  These observations suggest that BIM 

upregulation above an effective threshold may lead to GIST cell apoptosis, whereas 

insufficient BIM up-regulation may lead to autophagosome formation and diminished 

apoptotic response to imatinib. Future studies are necessary to determine whether 

apoptosis and autophagy are mutually exclusive responses to imatinib in GIST, and to 

clarify the role of the pro-survival Bcl-2 proteins in this decision point. 

Interestingly, I suspect that there is an inverse relation between autophagosome 

formation and apoptosis in imatinib-treated GIST patient samples, suggesting that a 

threshold of BIM may determine whether GISTs induce apoptosis or tumor adaptation. 

Notably, tumors with low-BIM (≤4-fold) upregulation post-treatment had lower rates of 

apoptosis and tended to exhibit positive autophagosome formation, whereas tumors with 

high-BIM (>4-fold) upregulation had higher rates of apoptosis, and tended to be negative 

for autophagosome formation.  

Previous published data on the expression of Bcl-2 family members in GIST 

patients was limited to immunohistochemistry studies of Bcl-2, and no patient-based 

information on mRNA levels of BIM, Bcl-xL or Mcl-1 was available [122]. Whereas 

Bcl-2, Bcl-xL and Mcl-1 have previously been found to be KIT-independent in GIST 

cells [64, 105, 114], I observed significant imatinib-induced alterations in their 
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expression in patient tumors.  

Importantly, prior to the era of targeted therapy with imatinib, 

immunohistochemical studies found that Bcl-2 expression was a negative, or neutral, 

prognostic factor for disease-free survival [123-125] [122], whereas high Bcl-2 

expression in the imatinib-era was found to correlate with improved outcome [126]. 

These paradoxical observations are reconciled by the finding that Bcl-2 is downregulated 

by imatinib, suggesting that Bcl-2 expression is KIT-dependent in patient tumors, and its 

downregulation may be viewed as a surrogate marker of response.  

To our knowledge, this is the first study to evaluate the expression of Mcl-1 and 

Bcl-xL in specimens from GIST patients. These studies found that Mcl-1 was 

significantly upregulated in tumors treated with imatinib for longer than three days. I 

speculate that Mcl-1 upregulation may neutralize the pro-apoptotic function of BIM in 

some tumor cells, and contribute to short-term imatinib-resistance. Future studies must 

determine whether Mcl-1 upregulation is a transient or sustained response, and whether it 

is part of a global tumor response that mitigates the cytotoxicity of imatinib. Lastly, these 

studies found that high pre-treatment Bcl-xL correlates with increased apoptosis after 

imatinib treatment, and that Bcl-xL upregulation was associated with imatinib-resistance 

by PET. Given the established function of Bcl-xL as an anti-apoptotic protein, the finding 

that high pre-treatment Bcl-xL expression associates with imatinib-induced apoptosis 

appears paradoxical. I speculate that this may reflect a predisposition, by a subset of 

GIST, on KIT-dependent, Bcl-xL-mediated survival. Consequently, treatment with 

imatinib in these tumors results in Bcl-xL downregulation and apoptosis. The small 

sample size available for this study limits interpretation of this finding, and further 
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functional studies are necessary to fully characterize the function of Bcl-xL in GIST. 

Taken together, imatinib-induced expression changes in the Bcl-2 family in GIST 

have important therapeutic and prognostic implications. In Chapter 3, I demonstrate that 

inhibition of pro-survival Bcl-2 proteins in vitro synergistically augments the cytotoxicity 

of imatinib, and is capable of overcoming imatinib-resistance in GIST cells [114]. Given 

that imatinib-induced apoptosis in vivo similarly appears to be mediated by BIM 

upregulation, it is possible that rational drug combinations that converge on the intrinsic 

pathway of apoptosis may also be effective in patients.  

Furthermore, identification of mechanism-based prognostic factors, both 

favorable and adverse, is necessary to optimize the management of patients with GIST. 

Given the variability of clinical responses to imatinib, knowledge of individual BIM/Bcl-

2 expression profiles may improve prediction of treatment efficacy, assessment of 

prognosis, risk-stratification, and selection of patients for alternative therapies.  

One corollary result of the patient-based studies was independent of apoptosis: To 

study the association of BIM and the Bcl-2 family of proteins with clinicopathologic 

variables, FDG-PET response, and disease-free survival, I updated the patient database 

for the MDACC ID03-0023 study. Notably, patients who completed two-years of 

adjuvant imatinib were free of recurrence during the treatment period, supporting the 

efficacy of imatinib at preventing recurrence after resection. In addition, this long-term 

survival and recurrence data supports the established risk factors for recurrence in GIST, 

confirming the negative prognostic significance of tumor size and primary tumor site.  
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Chapter 3: Synergistic activation of apoptosis by the Bcl-2 Inhibitor ABT-737 and 

imatinib in GIST cells 
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Introduction 

Most pre-clinical research conducted after the initial discovery of the oncogenic 

mechanism in GIST has focused on inhibition of KIT signaling as a therapeutic goal, 

with the assumption that this would invariably achieve cell death. To date, the consensus 

approach is exemplified by in vitro studies targeting KIT function (with imatinib, 

sunitinib, dasatinib, and sorafenib), KIT expression (flavopiridol and siRNA-KIT), KIT 

stability (inhibition of chaperone protein HSP90), inhibition of downstream signaling 

pathways PI3K/AKT and MEK/ERK (LY294002, UO126), and inhibition of pathways 

parallel to KIT, including PKC-θ, IGF-1R, and FAK [61, 64, 109, 127-134]. Collectively, 

these studies have established that inhibition of oncogenic KIT signaling, even when 

complete, is not equivalent to tumor apoptosis [50, 61, 70].  

Importantly, while failing to demonstrate that apoptosis is the predominant effect 

resulting from inhibition of KIT, these studies have shown that GISTs, in general, do not 

impair the apoptotic pathway to acquire resistance, and suggest that the molecular 

components of the apoptotic pathway in GIST are intact, and may be therapeutic targets 

[111, 135].  

As discussed previously, the immense diversity of primary and secondary KIT and 

PDGFRA mutations that have been observed imply that kinase inhibition as monotherapy 

may not be sufficient to achieve cure in GIST [136, 137]. Therefore, new approaches 

must be sought to enhance the therapeutic efficacy of imatinib and overcome imatinib-

resistance. In this context, combining imatinib with a pro-apoptotic drug may augment 

imatinib-induced cytotoxicity and prevent resistant cells from emerging a priori. 
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The studies described in Chapter 2 demonstrated that BIM is upregulated by 

imatinib, and that it effects apoptosis in GIST cells with clinically-representative 

genotypes, confirming and extending the findings in a previous published report. 

However, while BIM appears to mediate imatinib-induced apoptosis, adequate inhibition 

of pro-survival Bcl-2 proteins is not realized with imatinib monotherapy [64]. This 

suggests that the efficacy of imatinib might be improved by increasing BIM expression or 

by activating complementary effectors of apoptosis. One promising strategy involves 

inhibiting KIT with imatinib while concurrently engaging the intrinsic pathway of 

apoptosis. Herein, I aimed to modulate the BIM/Bcl-2 axis toward apoptosis by inhibiting 

pro-survival Bcl-2 proteins, an approach that is a practical application of current 

understanding of imatinib-induced apoptosis in GIST. 

ABT-737 is a small-molecule inhibitor of pro-survival Bcl-2 proteins that was 

developed by Abbott laboratories with the objective of mimicking the pro-apoptotic 

function of BH3-only proteins, which is mediated through interaction of their BH3 α-

helix with a hydrophobic pocket on anti-apoptotic Bcl-2 family proteins [138]. 

Specifically, Oltersdorf and colleagues employed a nuclear magnetic resonance (NMR)-

based method to screen a chemical library for molecules that bind to the hydrophobic 

groove of Bcl-xL. They then modified lead compounds (minimizing binding to human 

serum albumin) to obtain ABT-737, which exhibits high affinity (inhibitory constant 

Ki<1nM) for Bcl-xL, Bcl-2 and Bcl-w, but not for Mcl-1 or A1 (Ki > 1 µM) [139]. In 

contrast to other putative Bcl-2 inhibitors (chelerythrine, obatoclax, EM20-25, gossypol, 

and apogossypol), ABT-737 is the only compound proven to target Bcl-2 proteins 
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specifically, and induce death strictly by BAX/BAK- and caspase-9-mediated apoptosis 

[140].  

With regards to anti-tumor effects, ABT-737 exhibits remarkable single-agent 

efficacy against human B lymphoma cells, primary follicular lymphoma cells, and 

chronic lymphocytic leukemias [139]. In studies of mice implanted with human follicular 

lymphomas and studies of small cell lung cancer (SCLC) xenografts, daily injections of 

ABT-737 were well-tolerated, and morbidity was delayed. Most importantly, ABT-737 

induced complete regression in the majority (>75%) of SCLC xenografts. Notably, 

although solid tumor cells (with the exception of SCLC) were generally resistant to 

single-agent ABT-737, their responses to radiation and cytotoxic chemotherapies was 

enhanced up to 20-fold with ABT-737 [139]. These pre-clinical findings motivated the 

use of ABT-737 in combination with cytotoxic and targeted therapies, where it has been 

shown to act downstream, and independently, of TKIs, etoposide, doxorubicin, cisplatin, 

and paclitaxel to effect BAX/BAK-dependent apoptosis in a time- and dose-dependent 

manner in multiple tumor models [141-143].  

The studies in the following sections demonstrate that ABT-737 acts in synergy 

with imatinib to arrest proliferation and induce apoptosis in GIST cells. Importantly, the 

antitumor effects of ABT-737 in GIST cells are independent of initial imatinib-sensitivity 

or -resistance, and these are evident at physiologically-relevant concentrations of ABT-

737.  
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Materials and Methods 

Chemicals and Antibodies  

ABT-737 and its inactive stereoisomer (Compound A793844) were obtained 

through a Materials Transfer Agreement with Abbott Pharmaceuticals (Abbott Park, IL). 

These were dissolved to 10 mM stock concentration in DMSO (Fisher-Scientific, Fair 

Lawn, NJ), sterile-filtered with 0.22 µm pore-size syringe mircofilters, and stored in the 

dark at -20°C. I used primary rabbit antibodies against poly-ADP-Ribose polymerase 

(PARP) (#9542; 1:1000), Bcl-2 (#2870; 1:1000), Bcl-xL (#2764; 1:1000), and Mcl-1 

(#4572; 1:1000), as well as mouse monoclonal antibodies specific for caspase 3 (#9668; 

1:1000), (Cell Signaling Technology; Danvers, MA). Mouse monoclonal primary 

antibodies specific for β-actin (sc-8432; 1:5000) and HRP-conjugated anti-mouse and 

anti-rabbit secondary antibodies, (sc-2031; 1:2000) and (sc-2305; 1:2000), respectively, 

were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). 

 

Cell Culture  

The origin, genotype, and culture methodology relevant to GIST-T1 and 

GIST48IM cells was detailed in Chapter 2 Materials and Methods.  

The GIST882 cell line was established from a primary, untreated GIST, and 

harbor homozygous missense KIT exon 13 mutations (K642E) [59]. Being homozygous 

mutant, GIST882 cell do not express wild type KIT and are dependent on constitutive 

KIT signaling for survival [65, 67, 70, 129, 144]. This imatinib-sensitive GIST cell line 

was kindly provided by Jonathan Fletcher (Dana-Farber Cancer Institute; Boston, MA), 
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and cultured in DMEM, containing 1% (w/v) streptomycin/penicillin as well as 10% 

(v/v) heat-inactivated FBS.  

As in the previous study, cells were maintained at 37˚C, in a humidified 

incubator, with 5% CO2, subjected to STR DNA fingerprinting for validation, and STR 

profiles compared to known fingerprints.  

 

Western blot analysis 

Treated and untreated cells were harvested by centrifugation, and washed twice 

with ice-cold PBS. Cell pellets were then lysed for 5 min in ice-cold cell lysis buffer 

consisting of 50 mM Tris–HCl, pH 7.4, supplemented with Nonidet P-40 [1% (v/v)], 

sodium chloride (150 mM), sodium orthovanadate (1 mM; Na3VO4, inhibitor of tyrosine-  

and alkaline-phosphatases), sodium fluoride (1 mM), and EDTA (1 mM). Immediately 

prior to use, the following protease inhibitors were added to RIPA buffer: 5 μg/ml 

aprotinin (basic pancreatic trypsin inhibitors, inhibits trypsin-like proteolytic enzymes), 5 

μg/ml pepstatin (inhibitor of aspartyl proteases), and 1 µM PMSF (Sigma-Aldrich, St. 

Louis, MO). Lysates were sonicated (3 x 3 sec bursts), and cleared by ultracentrifugation 

at 14,000 x g for 10 min at 4°C. Total protein concentration in whole-cell lysates was 

quantified by Bradford’s colorimetric assay (Bio-Rad; Hercules, CA). Protein lysates 

were diluted 1:2 by addition of 10 mM dithiothreitol (DTT)-containing sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) loading buffer, and denatured at 

70°C for 10 min. Whole-cell lysate (30 μg per lane) were then separated by SDS-PAGE 

for 35 at 100V min on pre-cast 4-12% gels, and transferred to methanol-activated PVDF 
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membranes for 1 hour  at 100V. The remainder of the western blot protocol was as 

described in Chapter 2 Materials and Methods.  

 

Analysis of Cell Proliferation and Viability  

Proliferation of tumor cells was quantified using a commercial cell proliferation 

assay (CellTiter 96; Promega Corporation, Madison, WI). This assay detects reduction of 

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium, salt (MTS) into a soluble product (formazan), which occurs in metabolically 

active cells after the addition of phenazine methosulfate (PMS). The absorbance 

ABS490nm is directly proportional to the quantity of living cells in culture.  

Briefly, 4x103 cells/well were seeded onto 96-well plates, and incubated at 37°C 

for 24 hr. DMSO, single-agent ABT-737 or A793844 (0.1, 1, 10, 20 µM), were combined 

in a checkerboard manner with imatinib (0.1, 1, 10 µM), in a 100 μL volume/well. 

Following 24 to 72 hr incubation, MTS and PMS were combined (20:1), 20 μL of this 

mix was added to each well, and plates were further incubated for 4 hr at 37°C to allow 

formation of formazan. ABS490nm was quantified with Bio-Tek microplate reader A3100 

(Bio-Tek Instruments, Winooski, VT), and KC Junior software. Percent viability (relative 

to DMSO-treated cells) was calculated by the following formula [(mean ABS490nm,  treatment 

- ABS490nm,  background) / (mean ABS490nm,  DMSO-treated - ABS490nm,  background)] x100.   

 

Propidium Iodide Staining and Cell Cycle Analysis 

As discussed previously, one of the characteristic features of apoptosis is 

fragmentation and loss of cellular DNA content. Propidium iodide (PI)-staining, coupled 
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with flow cytometric analysis, enables measurement of cellular DNA content, which can 

distinguish apoptotic cell populations, as well as cell cycle phase. Specifically 

hypodiploid cells are considered apoptotic(sub-G1 phase), cells with diploid DNA in G0- 

or G1-phase, cells with supra-diploid DNA in S-phase, and cells with tetraploid content 

in M-phase.  

For this assay, GIST cells were seeded in 100 mm culture plates (Corning Life 

Sciences, Corning, NY), and grown to >80% confluence, whereupon they were treated 

with single-agent ABT-737 or ABT-737 combined with imatinib. I harvested non-

adherent cells by centrifugation at 100xg for 5 min at 4°C, and adherent cells by 

trypsinization and centrifugation. I then washed cells twice with ice-cold PBS and 

permeabilized their plasma membrane by overnight incubation  in 70% ethanol/PBS (v/v) 

at -20°C. Permeabilized cells were collected by centrifugation at 300xg for 5 min at 4°C, 

washed twice with PBS, and incubated for 30 min in PBS containing RNAse-A (1µg/ml) 

and propidium iodide (50 µg /ml), protected from light. Cellular DNA content was 

acquired by flow cytometry on a non-cell-sorting FACSCanto II cytometer, and  results 

were analyzed using FACS Diva 6.1 software (BD Biosciences, San Jose, CA).  

 

TdT-Mediated dUTP Nick-End Labeling (TUNEL) Assay 

To further quantify apoptosis in GIST cells, I used the DeadEnd Fluorometric 

TUNEL System, available commercially form Promega Corporation (Madison, WI). The 

TUNEL assay is useful for quantifying apoptosis-induced DNA-fragmentation and cells 

within cell populations, and is based on the incorporation of fluorescein-conjugated 2´5´-

deoxyuridine-triphosphate (F-dUTP) by cells undergoing apoptotic DNA-fragmentation.  
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For this assay, GIST cells were cultured, treated, and harvested as for cell cycle 

analysis (previous section). They were then washed twice with ice-cold PBS, and 

incubated with 1% paraformaldehyde (methanol-free) for 30 min at RT to fix their 

internal protein contents. Cells were subsequently washed with PBS twice, permeabilized 

in 70% ethanol/PBS (v/v), and stored at -20°C until ready for use. Immediately before 

TUNEL, I PBS-washed the cells twice, and resuspended them in equilibration buffer. 

Finally, 50 μL of recombinant terminal deoxynucleotidyl transferase (TdT) and 

fluorescein-12-dUTP were added to the fixed/permeabilized cells, and the cell suspension 

was incubated with for 2 hr at 37°C in the dark. This reaction was terminated with 150 

μL 20mM EDTA, washed cells twice in PBS, and incubated them for 30 min in PBS 

containing RNAse A at 1µg/ml and 50 μg/ml PI, protected from light. As above, 

apoptotic cells were quantified by flow cytometry on a FACSCanto II cytometer, being 

defined as double-positive for F-dUTP (green FITC fluorescence) and PI (red 

fluorescence). Results were analyzed using FACS Diva 6.1 software (BD Biosciences, 

San Jose, CA).  
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Ethidium Bromide/Acridine Orange (EB/AO) Apoptosis Assay 

To assess morphologic changes consistent with apoptosis (plasma membrane 

blebbing, pyknosis, nuclear fragmentation, chromatin condensation), GIST cells were 

cultured in 96-well plates, and treated as per MTS assay protocol. Cells were dual-stained 

with 10μg/ml acridine orange and 5μg/ml ethidium bromide, as described by Ribble and 

Goldstein [145]. Specifically, at timepoints from 24 to 72 hr,  20 μl of freshly-prepared 

dual stain was added, and the plates were incubated at RT for 10 minutes on an orbital 

shaker at 300 RPM, followed by centrifugation at 100xg for 5 min. I defined apoptotic 

cells as exhibiting nuclear fragmentation and/or chromatin condensation. Early apoptotic 

cells display these nuclear changes but still exclude the vital dye ethidium bromide 

(orange stain), and therefore stain green with acridine orange. Late apoptotic cells display 

loss plasma membrane integrity and therefore stain orange, in addition to exhibiting 

nuclear fragmentation and/or chromatin condensation. Necrotic cells, which lose integrity 

of the plasma membrane without undergoing nuclear condensation, incorporate ethidium 

bromide (orange stain), and appear as orange cells with normal-sized nuclei. Viable cells 

by definition do not lose plasma membrane integrity nor undergo nuclear condensation, 

thus appearing as green (acridine-orange stained) normal-sized nuclei. Apoptosis was 

calculated as the average proportion of pyknotic cells in replicate wells, counting 200 

cells/well with ImageJ Software. 

 

Data analysis: Statistics and Synergy 

Statistical analysis was undertaken using GraphPad Prism 5 software (San Diego, 

CA). Experimental results among three or more experimental groups were compared by 
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analysis of variance (one- and two-way ANOVA), with Bonferroni’s multiple 

comparisons to compare, post-test, two individual groups. To evaluate whether the anti-

tumor effects of ABT-737 and imatinib were synergistic I used the combination index 

(CI) method described by Chou and Talalay [146-148]. Combination indices for cell 

viability and apoptosis were generated with CalcuSyn (Biosoft Software, Cambridge, 

UK).  

 

Results   

ABT-737, but not stereoisomer A793844, inhibits the growth of GIST cells  

As discussed, ABT-737 was designed to mimic the BH3 domain of the BH3-only 

protein BAD, and is a highly-specific inhibitor (Ki <1 nM) of Bcl-2, Bcl- xL, and Bcl-w, 

while its inactive stereoisomer, a compound known simply as A793844, exhibits limited 

affinity  (Ki >100 nM) or inhibitory effects upon Bcl-2 and Bcl- xL [139].  

Prior to applying ABT-737 in GIST cells, I evaluated whether its protein targets, 

Bcl-2 and Bcl-xL, were expressed in imatinib-sensitive GIST-T1 and GIST882 cells, 

examining protein levels in untreated cells, as well as imatinib-induced alterations, if any, 

by western blot. In addition, I examined Mcl-1 protein levels, the expression of which has 

been found to be proportional to ABT-737-resistance in other models. The pro-survival 

Bcl-2 members A1 and Bcl-w were not queried due to their established tissue-specific 

distribution in hematopoietic stem cells and testicular germ cells, respectively.  

GIST-T1 and GIST882 cells express high levels of Bcl-2 and Bcl-xL, in addition 

to Mcl-1 (Figure 22), in accordance with published reports [64, 149]. In contrast to the 
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studies by Sambol, et al. and Paner, et al., expression of Bcl-2 and Mcl-1 was unaffected 

by imatinib. The expression of Bcl-xL had not previously been evaluated in GIST cells.  

 

 

Figure 22. GIST cells express Bcl-2, Bcl-xL and Mcl-1, the targets of ABT-737. 
 
 

 

GIST-T1 and GIST882 cells were incubated with DMSO or 1 µM imatinib for 24, 48, 
and 72 hrs, and whole-cell lysates were subjected to western blotting for Bcl-2, Bcl- xL, 
and Mcl-1. β-actin was used to demonstrate equal protein loading. Reprinted from 
Molecular Oncology, Vol 5:1(93-104). Copyright (2010), with permission from Elsevier. 
 

 

 

Having found substantial expression of its protein targets in GIST cells, I next 

evaluated the anti-tumor effects of single-agent ABT-737 in GIST cells. I also 

determined whether the effect of ABT-737 was due to specific inhibition of its pro-

survival targets by comparing its effects with those of A793844, hypothesizing that cell 

death caused by off-target effects would also be exhibited by its inactive stereoisomer.  

To evaluate the antiproliferative activity of ABT-737 and/or A793844, GIST-T1 

and GIST882 cell viability was quantified by MTS assay after treatment with incremental 

concentrations of ABT-737 or A793844 as single agents for 24 to 72 hours (Figure 23). 
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The concentrations used in this study ranged from 0.1 µM  to 20 µM ABT-737, and were 

comparable to doses used in other preclinical studies of ABT-737 [150].  

In GIST-T1 and GIST882 cells, single-agent ABT-737 exhibits limited anti-

proliferative activity at concentrations below 1 µM, but effects significant inhibition of 

viability, in a dose- and time-dependent manner, above this concentration (Two-way 

ANOVA, p<0.0001). Specifically, the viability of GIST-T1 and GIST882 cells relative to 

untreated and DMSO-treated controls was reduced by an average of 20% with 1 µM 

ABT-737, whereas 50% and 95% inhibition were observed with 10 µM and 20 µM ABT-

737, respectively. At 72 hours post-treatment, the IC50 of ABT-737 for both GIST-T1 and 

GIST882 cells approximated 10 µM. In contrast, the viability of GIST cells was 

unaffected by treatment with stereoisomer A793844 at any concentration, consistent with 

its decreased binding capacity and inhibition of Bcl-2 proteins.  
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Figure 23. ABT-737, but not its stereoisomer A793844, significantly inhibits the 
viability of GIST cells. 

 

 
 

GIST-T1 and GIST882 cells were treated with DMSO, or incremental concentrations of 
single-agent ABT-737 or stereoisomer A793844 (0.1, 1, 10, 20 µM) for 24, 48, and 72 
hrs. Relative cell viability was quantified by MTS assay. Symbols represent the mean of 
triplicate experiments; error bars represent standard deviation (SD). Three asterisks (***) 
represent Bonferroni’s multiple post-test comparison, p-value<0.0001 as compared to 
A793844 at equal timepoints. 
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ABT-737 and imatinib inhibit GIST cell viability synergistically 

As monotherapy, ABT-737 effectively inhibited the viability of imatinib-sensitive 

GIST cells, but did so at higher concentrations than has been observed in hematologic 

tumors models [151, 152]. I thus examined the anti-tumor effects of ABT-737 in 

combination with imatinib, theorizing that such a rational combination might exhibit 

superior activity compared with either agent alone. Cells were treated in a standard 

checkerboard fashion with 0, 0.1, 1, 10, or 20 µM ABT-737 as a single agent and in 

combination with 0, 0.1, 1, or 10 µM imatinib 72 hours, and quantified cell viability by 

MTS assay.  

Combined treatment causes superior reductions in viability, as compared with 

either imatinib or ABT-737 as single agents (Figure 24). While maximum growth 

inhibition with single-agent imatinib (0.1, 1, and 10 µM; white bars) plateaus at 80% in 

GIST-T1 cells, and 60% in GIST882 cells, combination with 0.1 to 10 µM ABT-737  

results in up to 90% growth inhibition in both cell lines (One-way ANOVA, p<0.0001). 

Notably, concentrations of ABT-737 that appeared to be ineffective in monotherapy (0.1 

and 1 µM ABT-737) potentiated the effect of imatinib in combination.  

To determine whether the antitumor effects of ABT-737 and imatinib were 

additive, synergistic, or antagonistic, I conducted isobologram analyses according to the 

methods of Chou and Talalay. These revealed that reductions in cell viability were 

strongly synergistic, with CI<0.5 for most combinations tested (Figure 25). The synergy 

results are depicted graphically in the Normalized Isobologram, and Fraction affected-

Combination Index (Fa-CI) plots generated for GIST-T1 (left panel) and GIST882 (right 

panel) cells.  



95 
 

Figure 24. ABT-737 and imatinib synergistically inhibit the viability of GIST cells. 
 

 
GIST-T1 and GIST882 cells were incubated with incremental doses of imatinib (0, 0.1, 1, 
10 µM) and  ABT-737 (0, 0.1, 1, 10, 20 µM), by checkerboard fashion, and analyzed by 
MTS assay at 72 hrs. Columns represent mean of triplicate experiments; error bars 
represent SD. Results were analyzed by one-way ANOVA, and three asterisks (***) 
represent p<0.0001 versus DMSO control by Bonferroni’s post-test comparison.  
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Figure 25. Isobologram analysis of synergy for imatinib/ABT-737 combinations with 
respect to growth inhibition in GIST cells. 
 

 
 
Combination indices (CI) corresponding to the Imatinib/ABT-737 combinations tested in 
Figure 24 were determined by isobologram analysis of synergy (Chou-Talalay method). 
Representative normalized isobolograms and Fraction affected (Fa)-CI plots, graphically 
depict the growth-inhibitory interactions between imatinib and ABT-737 in GIST-T1 
(left) and GIST882 cells (right). Note that all but one imatinib/ABT-737 combination was 
synergistic in this analysis in GIST-T1 cells, and all combinations in GIST-T1 achieved 
greater than 80% growth inhibition. Similarly, only two combinations were 
additive/antagonistic in GIST882 cells, and all combinations achieved greater than 50% 
growth inhibition. Reprinted from Molecular Oncology, Vol 5:1(93-104). Copyright 
(2010), with permission from Elsevier. 
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ABT-737 and imatinib combine to induce apoptosis synergistically  

Cell viability assays, including the MTS assay, are based on the linear relationship 

between metabolic activity in viable cells and reduction of MTS to formazan. While this 

is a highly sensitive method to detect reductions in cell viability, decreases in metabolic 

activity may be the result of cell cycle arrest, senescence, or quiescence, and not 

apoptosis. To determine whether the cell viability reductions induced by the combination 

of ABT-737 and imatinib were a consequence of apoptosis activation, GIST-T1 and 

GIST882 cells were treated with ABT-737 as a single agent and in combination with 

imatinib for 48 hours, and DNA fragmentation was measured by propidium iodide 

staining and flow cytometric cell cycle analysis (Figure 26A), as well as by TUNEL 

(Figure 26B).  

By both methodologies, combinations of ABT-737 and imatinib induced superior 

apoptosis as compared with DMSO or either agent alone (One-way ANOVA, p<0.0001).  

Specifically, apoptosis (hypodiploid DNA content) was observed in 3% of DMSO-treated 

GIST-T1 cells, as compared with 20% of GIST-T1 cells treated with 10 µM ABT-737 

alone. Combined, 10 µM ABT-737 + 0.1 µM imatinib and 10µM ABT-737 + 1µM 

imatinib induced 28% and 41% apoptosis, respectively. By TUNEL assay, 3% apoptosis 

was observed with DMSO treatment in GIST-T1 cells, 13% with 10 µM ABT-737, 15% 

with 10 µM ABT-737 + 0.1 µM imatinib, and 22% with 10µM ABT-737 + 1µM 

imatinib.  

In GIST882 cells, 4% apoptosis was observed in the DMSO-treated group, 

increasing to 55% and 68%, respectively with 10 µM ABT-737 + 0.1 µM imatinib and 

10µM ABT-737 + 1µM imatinib. Similarly, I observed a significant proportion of sub-G1 
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phase DMSO-treated GIST882 cells (19%), 29% with 10 µM ABT-737, and 50% with 

both 10 µM ABT-737 + 0.1 µM imatinib and 10µM ABT-737 + 1µM imatinib.  

Notably, the synergy exhibited with regard to reductions in viability by MTS 

assay extended to apoptosis in both cell lines (Figure 27). As with cell viability 

reductions, isobologram analyses of apoptosis induction confirmed a synergistic 

interaction (CI<0.5) for most combinations of ABT-737 and imatinib. Overall results of 

isobologram (synergy) analyses for all three cell lines are available in Table 9. 

 
Figure 26. ABT-737 and imatinib induce apoptosis synergistically in imatinib-
sensitive cells. 

 
GIST-T1 and GIST882 cells were incubated with imatinib (0, 0.1, 1 µM) and ABT-737 
(0, 0.1, 1, 10 µM) for 48 hrs and apoptosis was determined by (A) cell cycle analysis 
(sub-G1 DNA content) and (B) TUNEL (FITC+). Columns represent averages of 
triplicate experiments; error bars represent SD.  Results were analyzed by one-way 
ANOVA, and three asterisks (***) represent p<0.0001 versus DMSO control by 
Bonferroni’s post-test.  



99 
 

 

Figure 27. Isobologram analyses of synergy with respect to apoptosis for 
imatinib/ABT-737 combinations in GIST cells. 
 

 
 
Combination indices (CI) corresponding to the Imatinib/ABT-737 combinations tested in 
Figure 25 were determined by isobologram analysis of synergy (Chou-Talalay method). 
Normalized isobolograms and Fraction affected (Fa)-CI plots, graphically depict the pro-
apoptotic (% TUNEL positivity) interactions between imatinib and ABT-737 in GIST-T1 
(left) and GIST882 cells (right). Normalized isobolograms (top), and Fraction affected-
Combination Index (Fa-CI) plots (bottom). All combinations were strongly synergistic 
with regard to apoptosis in both GIST-T1 and GIST882 cells. Reprinted from Molecular 
Oncology, Vol 5:1(93-104). Copyright (2010), with permission from Elsevier. 
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Apoptosis was further evaluated by western blot detection of caspase 3 and PARP 

in whole-cell lysates of GIST882 cells after treatment with ABT-737/imatinib for 72 

hours (Figure 28). ABT-737 monotherapy resulted in dose-dependent activation of 

caspase 3, as evidenced by cleavage of the inactive 37-kDa pro-caspase 3, coupled with 

detection of the 19-kDa active caspase 3. Likewise, PARP was cleaved after treatment 

with ABT-737 as a single-agent, but not after treatment with imatinib. Notably, imatinib 

treatment caused minimal cleavage of caspase 3 in GIST882 cells, with no cleavage of 

PARP. In contrast, combinations of 10 µM ABT-737 + 0.1, 1, or µM imatinib induced 

significant cleavage of both, in excess of the effect of 10 µM ABT-737 alone (Figure 28, 

right panel). Interestingly, the cleaved species (active caspase 3 and PARP fragments) 

and uncleaved pro-forms were found to exhibit different rates of turnover, with the 

former being degraded rapidly after cleavage in GIST882 cells.  
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Figure 28. Single-agent and combined effect of ABT-737 and imatinib on 
caspase/PARP cleavage. 
 
 

 
 
 

Representative western blots of GIST882 cells treated with ABT-737 and imatinib as 
single agents (left) and in combination (right). Cells were treated for 72 hours with 
vehicle (DMSO) or with increasing concentrations of imatinib and/or ABT-737, and 
caspase-3 and PARP cleavage were assessed by western blotting. Treatment with 
Etoposide (10 µM) was used as a positive control for caspase activation. β-actin was used 
to demonstrate equal protein loading. Abbreviations: (F), full length; (C), cleaved. 
Reprinted from Molecular Oncology, Vol 5:1(93-104). Copyright (2010), with 
permission from Elsevier. 
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ABT-737 induces morphologic features of apoptosis in GIST cells  

The gold-standard method for determination of apoptosis involves morphologic 

confirmation of its characteristic features, including visualization of condensation and 

fragmentation of nuclear contents, plasma membrane blebbing, and loss of plasma 

membrane integrity [153]. I evaluated apoptotic cell death after treating GIST cells with 

ABT-737 and/or imatinib for 72 hours, by assessing nuclear morphology with light and 

fluorescence microscopy of ethidium bromide/acridine orange (EB/AO) stained cells.  

As seen in Figure 29A, DMSO- and imatinib-treatment result in  minimal 

chromatin fragmentation or nuclear condensation in GIST-T1 or GIST882 cells, while 

treatment with 10 µM ABT-737, or 10 µM ABT-737 + 1 µM imatinib results in greater 

apoptosis induction.  

This was confirmed by quantitative assessment of nuclear morphology using 

ImageJ Software (Figure 29B). Specifically, treatment with 1 µM imatinib plus any 

amount of ABT-737 (0.1, 1, 10, 20 µM) for 72 hours caused superior activation of early 

and late apoptosis than either agent alone.  
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Figure 29. The morphologic features of apoptosis are induced by ABT-737 in GIST 
cells 
 

 

 

GIST-T1  and GIST882 cells were treated for 72 h with 1 µM imatinib alone, or in 
combination with ABT-737 (0.1, 1, 10, 20 µM) and apoptotic cell death was evaluated by 
assessment of nuclear morphology after ethidium bromide/acridine orange (EB/AO) 
staining. (A) Representative micrographs of GIST-T1 (left) and GIST882 (right) cells 
treated with vehicle (DMSO), 1μM imatinib, 10μM ABT-737, or both, demonstrating 
nuclear fragmentation and condensation in ABT-737-treated cells. Original 
magnification, x200.  Abbreviations: (N), normal nuclei; (Thick arrow), late apoptosis; 
(Thin Arrow), early apoptosis. (B) Quantitative assessment of normal and apoptotic cells 
treated with 1 µM imatinib, alone or with ABT-737 (0, 0.1, 1, 10, 20 µM). Reprinted 
from Molecular Oncology, Vol 5:1(93-104). Copyright (2010), with permission from 
Elsevier. 
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ABT-737 and imatinib combine to activate apoptosis and overcome resistance to 

imatinib in GIST48IM cells  

Given that ABT-737 effectively augmented the cytotoxicity of imatinib in GIST 

cell lines that were initially susceptible to KIT inhibition (GIST-T1 and GIST882), I 

wondered whether this therapeutic combination could overcome imatinib-resistance in 

GIST48IM cells.  

As with GIST-T1 and GIST882 cells, I first evaluated the anti-tumor effects 

imatinib and ABT-737 as single agents by MTS assay (Figure 30).  In accordance with 

their known resistance to KIT inhibition, I observed moderate reductions in viability with 

single-agent imatinib for 72 hours, and the IC50 of imatinib was not reached (Figure 30, 

top). In contrast, monotherapy with ABT-737 for 72 hours resulted in significant 

reductions in viability of GIST48IM cells, with IC50 of 1 µM (Figure 30, bottom).  

In combination (Figure 31), ABT-737 and imatinib exhibited superior inhibition 

of viability in GIST48IM cells, as compared with either agent alone (One-way ANOVA 

p<0.0001). However, because single-agent imatinib has only a moderate effect on the 

viability of GIST48IM cells, the degree of synergy between imatinib and ABT-737 in 

GIST48IM was decreased (Figure 32). In particular, because the effect of ABT-737 at 

doses above 10 µM is unaffected by imatinib, I observed three antagonistic, and two 

additive combinations in this GIST48IM cells. 
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Figure 30. Antiproliferative effects of imatinib and ABT-737 as single-agents in 
imatinib-resistant cells. 
 

 
 
The antiproliferative effect of single-agent imatinib (top) and single-agent ABT-737 
(bottom) in imatinib-resistant GIST48IM cells was examined after 24, 48 and 72 hours of 
treatment, using the MTS cell viability assay. Columns, mean of triplicate experiments; 
error bars, SD. Results were analyzed by two-way ANOVA. Reprinted from Molecular 
Oncology, Vol 5:1(93-104). Copyright (2010), with permission from Elsevier. 
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Figure 31. ABT-737 and imatinib synergistically inhibit the viability of imatinib-
resistant GIST cells. 
 

 

The effect of combined ABT-737 (0, 0.1, 1, 10, 20 µM) and imatinib (0, 0.1, 1, 10 µM) 
on the viability of GIST48IM cells at 72 h. Columns, mean of triplicate experiments; 
error bars, SD. Results were analyzed by one-way ANOVA. Reprinted from Molecular 
Oncology, Vol 5:1(93-104). Copyright (2010), with permission from Elsevier. 
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Figure 32. Analysis of synergy between imatinib and ABT-737 in imatinib-resistant 
GIST cells. 
 

Normalized isobologram (top) and Fa-CI plot (bottom) of GIST48IM cells, graphically 
depicting synergistic, additive, and antagonistic interactions between imatinib and ABT-
737 in this cell line. Reprinted from Molecular Oncology, Vol 5:1(93-104). Copyright 
(2010), with permission from Elsevier. 
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To further evaluate whether viability reductions in GIST48IM were caused by 

apoptotic cell death, I examined their nuclear morphology after treatment with DMSO or 

1 µM imatinib, in combination with ABT-737 (0, 0.1, 1, 10, 20 µM) for 72 hours. 

Notably, this cell line demonstrates greater apoptosis at baseline (DMSO-treated) than 

either GIST-T1 or GIST882 cells (Figure 33). In addition, treatment of GIST48IM cells 

with 10 µM ABT-737, with or without 1 µM imatinib, but not with 1 µM imatinib alone, 

resulted in marked nuclear fragmentation and chromatin condensation. Overall, 

quantitative assessment of nuclear morphology using ImageJ Software confirmed that 

apoptosis increased in direct proportion with ABT-737, to a maximum of 100% with 20 

µM ABT-737.  
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Figure 33. ABT-737 and imatinib induce morphologic apoptosis in imatinib-
resistant GIST cells. 

 

(A) Nuclear morphology was assessed by EB/AO staining after treatment with ABT-737 
and imatinib for 72 h. Representative micrographs of ethidium bromide/acridine orange-
stained GIST48IM cells. Original magnification, x200.  (B) Quantification of normal and 
apoptotic cells treated with 1 µM imatinib alone, or combined with ABT-737 (0.1, 1, 10, 
20 µM). 
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Using western blotting, expression of Bcl-2, Bcl-xL and Mcl-1, cleavage of 

caspase 3, and cleavage of PARP were evaluated after treatment with DMSO, 1 µM 

imatinib, 10 µM ABT-737, alone and in combination. While the protein levels of Bcl-2, 

Bcl-xL and Mcl-1 were unchanged under these conditions, caspase 3 and PARP were 

cleaved by treatment with ABT-737 monotherapy, as well as 1 µM imatinib + 10 µM 

ABT-737, but not by imatinib monotherapy.  

 

Figure 34. Western blot detection of Bcl-2 proteins and apoptotic markers in 
GIST48IM cells. 

 
 
Western blot analysis of Bcl-2, Bcl-xL and Mcl-1, as well as the cleavage of caspase 3 
and  PARP, after treatment with DMSO, 1 µM imatinib, 10 µM ABT-737, or a 
combination for 72 hours. Actin was used to demonstrate equal loading. Abbreviations: 
(F), full length; (C), cleaved. Reprinted from Molecular Oncology, Vol 5:1(93-104). 
Copyright (2010), with permission from Elsevier. 
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Table 9. Overall results from isobologram (synergy) analyses of imatinib/ABT-737 
combinations in GIST cells. 
 
COMBINATIONS GROWTH INHIBITION APOPTOSIS 
Imatinib ABT-

737 
 GIST-T1 GIST882 GIST48IM  GIST-T1 GIST882 

(µM) (µM) # Fa CI Fa CI Fa CI # Fa CI Fa CI 
0.1 0.1 1 0.82 0.0 0.57 0.1 0.41 0.6 1 0.15 0.1 0.02 0.1 
0.1 1 2 0.82 0.1 0.63 0.3 0.64 0.9 2 0.26 0.1 0.08 0.2 
0.1 10 3 0.88 0.4 0.83 1.2 0.80 1.9 3 0.55 0.0 0.15 0.8 
0.1 20 4 0.98 0.2 0.98 0.2 0.91 0.6      
1 0.1 5 0.83 0.2 0.59 0.1 0.47 0.4 4 0.22 0.3 0.02 0.1 
1 1 6 0.83 0.3 0.67 0.3 0.66 0.8 5 0.31 0.1 0.08 0.2 
1 10 7 0.89 0.4 0.86 1.0 0.80 1.8 6 0.69 0.0 0.22 0.5 
1 20 8 0.97 0.2 0.98 0.3 0.91 0.6      
10 0.1 9 0.81 4.7 0.70 0.1 0.58 0.4      
10 1 10 0.85 0.6 0.82 0.1 0.75 0.4      
10 10 11 0.96 0.2 0.95 0.3 0.80 1.8      
10 20 12 0.97 0.3 0.98 0.3 0.91 0.5      

 
Overall results from isobologram (synergy) analyses of imatinib/ABT-737 combinations 
in GIST-T1, GIST882, and GIST48IM cells, performed for growth inhibition and 
apoptosis. The combinations are numbered sequentially (# 1-12 for growth inhibition; # 
1-6 for apoptosis) and these correspond to the numbers in the normalized isobolograms 
and Fa-CI plots (Figures 25, 27 and 32). Abbreviations: (CI), combination index; (Fa), 
fraction affected (%growth inhibition or % TUNEL-positive); Legend: #, combination 
identifier; CI<0.5, strong synergy; CI<1 synergy; CI=1 additive (italics); and CI>1, 
antagonism (underlined). Reprinted from Molecular Oncology, Vol 5:1(93-104). 
Copyright (2010), with permission from Elsevier. 
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Discussion 

In spite of its unquestionable superiority in comparison with cytotoxic 

chemotherapies, current clinical evidence suggests that imatinib is unable to eradicate all 

viable GIST cells in tumors and produce cures. As discussed, acquired imatinib-

resistance, coupled with adaptive cellular responses, enable GIST subclones to survive 

monotherapy with imatinib.  

The therapeutic options are limited for patients with imatinib-resistant GIST. 

Sunitinib, and other second- and third-generation TKIs are transiently-effective treatment 

options for imatinib-resistance. Moreover, it is well-known that individual lesions in 

patients harbor diverse TKI-resistant mutations, whose capacity for adaptive selection far 

outpaces our pharmacologic repertoire. Thus, combining proven targeted therapies in a 

rational way might be a more successful therapeutic strategy to overcome imatinib-

resistance or realize durable clinical remissions.  

These studies evaluated whether therapeutic Bcl-2 inhibition was cytotoxic in 

GIST cells, and, particularly, whether it enhanced the efficacy of imatinib. Direct 

activation of the mitochondrial pathway of apoptosis via Bcl-2 inhibition is known to 

overcome resistance to TKIs in other solid and liquid tumor models, but this strategy has 

not been examined in the setting of GIST. One additional benefit of targeted inhibition of 

pro-survival Bcl-2 proteins is that normal tissues are generally not susceptible to this 

mode of cell death. That is, healthy tissues, by definition, do not depend on deregulated 

pro-survival Bcl-2 expression or function for survival and are exempt from the cytotoxic 

actions of Bcl-2 inhibitors. 
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I hypothesized that ABT-737, a BH3-mimetic inhibitor of the pro-survival Bcl-2 

proteins, would complement or enhance the cytotoxicity induced by KIT inhibition in 

GIST cells, by specifically activating the intrinsic pathway of apoptosis downstream, and 

independently, of imatinib. The primary goals of this preclinical study were to examine 

whether ABT-737 augmented apoptosis in imatinib-sensitive GIST cell lines, and to 

determine whether it could overcome established imatinib-resistance in GIST cells 

refractory to imatinib monotherapy. Additionally, these studies sought to determine 

whether the effective concentrations of ABT-737 in vitro might be attained in GIST 

patients.  

These studies found evidence that ABT-737 and imatinib combine synergistically 

to inhibit the proliferation of, and induce apoptosis in, GIST cells. The synergistic 

interaction between imatinib and ABT-737 in GIST cells occurs without regard to their 

sensitivity or resistance to imatinib. This effect may be explained by the complementary 

nature of the mechanisms by which these targeted therapies engage the intrinsic pathway 

of apoptosis. Presumably, the effect of imatinib-induced BIM upregulation combined 

with Bcl-2 inhibition mediated by ABT-737 achieves greater antagonism of the pro-

survival Bcl-2 proteins than either agent alone.  

While this study did not evaluate the degree of inhibition of Bcl-2 proteins in 

GIST cell lines, published reports have demonstrated that the pro-apoptotic effects of 

ABT-737 are the result of specific inhibition of Bcl-2, Bcl-xL, and Bcl-w [150]. Further, 

compound A793844, an inactive stereoisomer of ABT-737 that exhibits decreased 

affinity for Bcl-2 and Bcl-xL, does not exhibit cytotoxicity in GIST cells, suggesting that 
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GIST cell death was directly related to inhibition of pro-survival Bcl-2 proteins Bcl-2 and 

Bcl-xL.  

The recently-published results of three phase I studies of an orally-bioavailable 

ABT-737 analog, ABT-263 (Navitoclax) [154], confirm the safety and biologic activity 

of Bcl-2 inhibition in patients with hematologic and solid tumors, including refractory 

chronic lymphocytic leukemia (CLL) [155], small-cell lung cancer (SCLC)/pulmonary 

carcinoid [156], and multidrug-resistant lymphoid tumors [157]. Wilson and colleagues 

found that 10 of 46 patients (22%) with relapsed or refractory lymphoid malignancies 

achieved partial responses with ABT-263, and the median progression-free survival 

(PFS) of responders was 15 months [157]. In this study, the greatest sensitivity to ABT-

263 was demonstrated by patients with CLL and small lymphocytic lymphoma, two 

diseases characterized by increased Bcl-2 expression. Importantly, durable responses 

were observed with ABT-263 monotherapy in heavily pretreated patients, with a median 

of four previous drug regimens (range 1–12). Similarly, Roberts and colleagues observed 

partial responses in nine of 26 patients (35%) with relapsed or refractory CLL treated 

with Navitoclax >110 mg/d, with median PFS of 25 months [155]. Notably, single-agent 

activity was observed in patients with bulky, fludarabine-resistant del(17p) CLL. 

Moreover, the antitumor efficacy of ABT-263 extends to solid tumors, as Ghandi and 

colleagues found that 10 of 38 patients (26%) with SCLC or pulmonary carcinoid tumors 

achieved stable disease or partial responses [156]. In this study, however, median 

duration of disease control was only 5 months (range 2-35). 

A corollary aim of this study was to determine whether cytotoxic concentrations 

of ABT-737 in vitro were feasible in clinical trials. Although pharmacologic data for 
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ABT-737 in humans is limited, Cmax ranging from 3 to 14 µM were observed in mice and 

dogs gavaged with 10 to 100 mg/kg/day, in the absence of toxicity, and these 

concentrations constitute effective exposure in preclinical models [150]. With regards to 

pharmacokinetics of the orally bioavailable ABT-263 in human beings, the 

concentrations projected to be effective in preclinical models were achieved in humans at 

doses between 250 and 325 mg/day on a continuous daily dosing schedule, and these 

have been selected for phase II studies [155-157]. 

Importantly, the synergistic interaction of ABT-737 and imatinib in GIST cells 

was apparent with low-concentrations of either drug (0.1 and 1 µM ABT-737 and 0.1 µM 

and 1 µM imatinib), suggesting that a safe therapeutic index is achievable for 

combinations of ABT-737 and imatinib. Furthermore, whereas most cytotoxic 

chemotherapy regimens employed for the treatment of sarcomas and other solid tumors 

were developed empirically, I employed a rational approach to combine ABT-737 and 

imatinib. Specifically, I considered complementary mechanisms of action as the goal of 

therapy, so as to maximize the apoptotic effects while minimizing cross-resistance.  

In sum, parallel inhibition of KIT signaling and direct engagement of the intrinsic 

pathway of apoptosis is an effective therapeutic strategy in GIST cells. ABT-737 

synergistically augments the cytotoxicity of imatinib via apoptosis, in imatinib-sensitive 

GIST cells, suggesting that resistance may be preempted. Further, ABT-737 was equally 

efficacious against imatinib-resistant GIST cells, implying that addition of a pro-

apoptotic agent may be a suitable approach to overcome established resistance. Most 

importantly, synergy between ABT-737 and imatinib provide rationale for clinical 

investigation of therapeutic combinations with independent, but complementary, 
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mechanisms in GIST. Multi-target studies of rational design are necessary to develop 

curative therapies for patients with imatinib-resistant GIST.  
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Introduction 

Most gastrointestinal soft-tissue sarcomas are GISTs. As with all cancers, GIST 

cells multiply uncontrollably due to mutations in genes that regulate survival, growth, and 

proliferation. KIT and PDGFRA mutations are required for initiation and maintenance of 

the malignant phenotype in GIST. Thus, they belong to a group of oncogene-addicted 

cancers that are absolutely dependent on specific oncogenes for survival. Until recently, 

most patients with advanced GIST died within two years of diagnosis due to the 

unrelenting growth and spread of their disease. Survival was extended by 6-9 months if 

reduction of tumor burden was surgically feasible, but chemo- and radiotherapy were 

ineffective. Over the last decade, targeted therapy with imatinib, through inhibition of 

KIT/ PDGFR-α, has more than doubled the life expectancy of patients.  

Unlike conventional cytotoxic chemotherapies, which kill cancerous and normal 

cells alike, imatinib specifically inhibits the viability of GIST cells while sparing most 

normal cells. This is an example of the selectivity that makes targeted therapies attractive, 

and has contributed to their establishment as first-line treatments for oncogene-addicted 

cancers, including GIST and CML, as well as some lung, breast, and colon cancers. 

However, while imatinib in particular, and targeted therapies in general, achieve 

substantial disease-control by halting or reversing tumor growth, their efficacy is 

transient and rarely translates to cure. In GIST and CML, imatinib-resistance and disease 

progression afflict most patients eventually, and our pharmacologic repertoire is outpaced 

by the diversity of resistance mechanisms in progressing tumors. At the cellular and 

molecular level, evidence abounds that targeted therapies do not induce tumor cell death 
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exclusively, but cause a mixture of cytostatic and cytotoxic effects, which beget 

resistance in conjunction with secondary mutations.  

Although apoptosis is an important cytotoxic effect of imatinib, the specific 

molecular effectors that bring about GIST cell death were only recently characterized, 

when the pro-apoptotic Bcl-2 protein BIM was identified as a mediator of apoptosis. 

However, this evidence was derived from a single study of cultured GIST cells with a 

genotype rarely seen in patients (KIT exon 13 mutant GIST882 cells), requiring 

confirmation. These studies examined the role of BIM, and its anti-apoptotic Bcl-2 

counterparts, in the mechanism of apoptosis in GIST cells with clinically-relevant 

genotypes and tumors from patients, and evaluated their potential as biomarkers and/or 

therapeutic targets.  

 

Summary of findings 

The first set of studies (Chapter 2) examined the expression, regulation, and 

function of BIM in GIST cells with clinically-relevant genotypes. This is not trivial, 

given that genotype-specific distinctions are common among GIST [70], and effects in 

KIT exon 13 mutant GIST do not always extend to tumors harboring exon 11 mutations. 

These studies demonstrate that BIM-mediated, imatinib-induced apoptosis is common to 

GIST cells harboring KIT exon 11 mutations. In imatinib-sensitive GIST-T1 and 

imatinib-resistant GIST48IM cells, inhibition of KIT and PI3K signaling upregulates 

three functional isoforms of BIM at the mRNA and protein levels, in parallel with 

activation of apoptosis.  In contrast to GIST882 cells, inhibition of MEK1/2 failed to 

upregulate BIM in GIST-T1 or GIST48IM, suggesting that this pathway does not 
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universally mediate BIM suppression in GIST. Importantly, high levels of basal BIM 

expression in GIST48IM cells were observed, consistent with the finding that these cells 

fail undergo apoptosis to the same extent as GIST-T1 cells when transfected with BIM. 

This suggests that, in addition to  secondary KIT mutations, imatinib-resistant GIST may 

avert apoptosis by neutralizing BIM, or possibly possess additional mechanisms that 

inhibit caspases after BIM-mediated activation of BAX/BAK. This is consistent with the 

findings of Hoang and colleagues, who reported that the caspase inhibitor survivin, a 

member of the inhibitor of apoptosis (IAP) family, is overexpressed in GIST and 

correlates with potential for invasion and metastasis [158]. 

The patient-based studies (Chapter 2) examined whether the function of BIM 

extended to patients with GIST. I assessed pre- and post-treatment specimens from 28 

patients treated for 3-7 days, based on the expectation that mRNA alterations induced by 

imatinib, if any, would be evident at early timepoints. These studies revealed that in 

patient tumors imatinib causes time-dependent BIM and Mcl-1 upregulation, and 

downregulation of Bcl-2, in parallel with activation of apoptosis. Among gene expression 

alterations, only upregulation of BIM correlated significantly with tumor apoptosis, 

although basal (pre-treatment) expression of Bcl-xL was significantly associated with 

post-treatment apoptosis. Given the role of BIM at the cellular level, I examined its 

relation with response at the whole-tumor level, and found greater upregulation of BIM in 

PET responders than in non-responders. Moreover, Bcl-xL upregulation was significantly 

associated with imatinib-resistance by PET, a finding which may explain early resistance 

(and immediate-progression) in some patients. Further, BIM upregulation is associated 

with prolonged disease-free survival in patients treated with adjuvant imatinib, 
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suggesting that BIM expression may have a role in suppressing GIST cells 

(micrometastases) lingering after surgery. In other words, the longer time to recurrence 

observed in patients with high post-imatinib BIM may translate to inhibition of residual 

GIST through activation of apoptosis.  

Taken together, these studies demonstrate that the cytotoxic intracellular stresses 

initiated by imatinib converge upon the BIM/Bcl-2 axis, and suggested that inhibition of 

Bcl-2 proteins directly may be a rational approach to overcome imatinib-resistance. In the 

studies described in Chapter 3, the novel BH3-mimetic, ABT-737, causes significant 

growth-inhibition in patient-derived GIST cells, regardless of imatinib-

sensitivity/resistance, and combines synergistically with imatinib to induce apoptosis. 

Importantly, its stereoisomer A793844, which exhibits lower affinity for Bcl-2 proteins, 

has no anti-tumor effects on GIST cells, suggesting that the effects of ABT-737 are 

target-specific. These pre-clinical studies demonstrate that combined treatment with 

ABT-737 and imatinib may overcome established imatinib resistance in GIST by 

synergistic activation of apoptotic cell death.  

The guiding principle of these investigations was to acquire knowledge that 

contributes in a practical way to the management of patients with GIST. In the following 

sections, I consider the translational relevance of these findings, and discuss ways in 

which BIM and the Bcl-2 family may be exploited for predictive, prognostic, and 

therapeutic purposes. In particular, I focus the discussion on two current clinical hurdles. 

First, an important challenge is the inability to predict whether, or how long, individual 

patients will respond to imatinib. Second, patients with GIST are generally not cured with 
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imatinib, but rational combinations of targeted therapies have the potential for complete 

eradication of GIST. 

 

Can we predict who will respond to therapy and act accordingly?  

As BIM and the Bcl-2 family of proteins appear to be regulators of imatinib-

induced apoptosis in GIST, one may speculate that profiling their expression in patient 

tumors may enable oncologists to forecast important clinical outcomes, including 

response or resistance to imatinib, or the extent of benefit (cure versus transient 

response). That is, I theorize that BIM and the Bcl-2 family may have predictive or 

prognostic value.  

The terms ‘predictive’ and ‘prognostic’ have different meanings, but are often 

used interchangeably to refer to molecular biomarkers with clinical associations. A 

predictive biomarker offers information about response to a therapy, whereas a 

prognostic biomarker offers information about the natural history of a disease irrespective 

of treatment. To illustrate, KIT expression was the first true biomarker with diagnostic 

and prognostic relevance in GIST, enabling accurate diagnosis and characterization of the 

clinical behavior of these sarcomas, and later facilitating imatinib therapy. KIT/PDGFRA 

genotype, on the other hand, is a predictive biomarker, as patients with GIST harboring 

KIT exon 11 mutations exhibit higher imatinib-response rates and longer time to 

progression than wild-type tumors, or tumors harboring KIT exon 9 or PDGFRA 

mutations [11]. Moreover, patients with KIT exon 9 mutations benefit from dose-

escalation to imatinib 800 mg daily, whereas patients with other genotypes do not [159].  

Other than KIT expression or KIT/PDGFRA genotype, few biomarkers have been 
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characterized in the imatinib-era, and none affect clinical decision-making to the same 

extent. In this context, evidence that BIM is upregulated by imatinib (and correlates with 

tumor apoptosis, PET response, and time to progression) evokes intriguing possibilities. 

As patients with metastatic GIST are routinely treated with imatinib until progression 

ensues, and resection of metastases is increasingly used to decrease tumor burden, a 

wealth of clinically-informative data could be obtained from metastases profiled after 

resection. Knowledge of a patient’s BIM/Bcl-2 expression profile might then be used to 

guide patients toward alternative targeted therapies or enrollment in clinical trials. For 

example, a patient whose GIST does not upregulate BIM may expect minimal benefit 

from further imatinib, warranting consideration of alternative therapy prior to overt 

progression. This would not only enable treatment of viable residual GIST cells earlier, 

but would spare the patient the adverse effects of an ineffective drug. On the other hand, 

a patient whose tumor responds by upregulation of BIM may be continued on imatinib 

after resection of metastases, with the expectation that residual disease will respond 

similarly to their resected lesions.  

It is important to note one important limitation to molecular profiling in GIST. In 

particular, unlike patients with liquid tumors such as CML, tissue required for profiling 

solid tumors is often inaccessible to the oncologist. Requiring patients to undergo biopsy 

or surgical resection in order to obtain information about current or future response to 

therapy seems unethical and inappropriate, as the risks associated with invasive 

procedures may not be outweighed by the benefit of having predictive information. 

Nevertheless, advances in imaging technology may one day make it possible to label 

specific tumor biomarkers, and visualize their expression non-invasively. For instance, 
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Kumar and colleagues used a (64)Cu-radiolabeled peptide specific for Thomsen-

Friedenreich (TF) antigen, a disaccharide expressed by human breast cancer cells, for 

PET imaging of breast cancer xenografts in mice. Biodistribution studies found that the 

radiolabeled peptide accumulated in breast cancer xenografts, but not in other organs, 

while in vivo imaging studies demonstrated tumor uptake of the antigen-specific peptide, 

but not of a scrambled radiolabeled peptide [160]. These findings suggest that 

noninvasive in vivo tumor imaging may be possible if specific antigens are developed. By 

extension, a future application of this technology may involve labeling of BIM to assess 

response to targeted therapies in GIST or other oncogene-addicted cancers. 

In the setting of primary localized GIST, the translational implications are closer 

to reality, given that the standard of care for these patients already involves complete 

surgery, with or without adjuvant/neoadjuvant imatinib [161]. Most specialized sarcoma 

centers currently employ a multidisciplinary approach to manage patients with GIST, and 

as part of this approach many patients are treated with imatinib pre-operatively to reduce 

the size of their tumors or facilitate surgery [40, 162]. During this pre-operative therapy, 

patients are monitored via imaging (CT or MRI), and treated until ‘maximal tumor 

response’ is reached (or progression occurs), at which time the tumor is resected. The 

exact duration of therapy is not known ahead of time, but generally requires 3-12 months. 

Profiling tumors for imatinib-induced changes to assess response early in therapy may 

determine whether surgery needs to be expedited or delayed, and may help to decrease 

the uncertainty in management of these patients. Moreover, as responses at the time of 

recurrence are variable and unpredictable, a trial of neoadjuvant imatinib implemented to 

facilitate surgery might also yield information about subsequent response to imatinib. 
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Knowledge of individual tumor’s BIM/Bcl-2 profiles would permit early allocation to 

effective therapies if, or when, recurrence occurs. For instance, tumors which fail to 

upregulate BIM in response to imatinib during the neoadjuvant trial may be expected to 

progress on imatinib upon recurrence, allowing these patients to be guided toward 

alternative therapies at the time of recurrence. 

 

Can rational combinations of targeted agents cure advanced GIST? 

A better understanding of the mechanism by which imatinib kills GIST cells has 

the potential to enable the development of more effective therapies. Many oncologists 

believe that the efficacy of imatinib monotherapy has already peaked (is “maxed out”), 

while others believe that there is room for significant improvement by optimizing dosage 

according to patient and tumor variables, including imatinib plasma levels [163-165], 

KIT/PDGFRA genotype [166], or presence of CYP450 liver enzymes involved in 

imatinib metabolism [167].  

Regardless of whether the efficacy of imatinib can be extended to previously-

unresponsive GIST, the likelihood of cure with monotherapy is extremely low, whereas 

the odds of disease progression are high, a fact that motivated the study of combined KIT 

and Bcl-2 inhibition in GIST cells. Importantly, the high degree of synergy observed 

between imatinib and ABT-737 suggests that combining agents with complementary, but 

independent, mechanisms of action may enable permanent cures in GIST. Furthermore, 

in a collaborative publication, we have found that imatinib synergizes with drugs that 

inhibit autophagy, chloroquine and quinacrine, to effect apoptosis in GIST. These studies 
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provide rationale for studying the safety and efficacy of multi-target combinations in 

patients.   

In spite of this evidence, single-agent studies of TKIs continue to predominate 

among clinical trials, and no trial has yet compared single-agent imatinib against a 

rational combination of targeted agents. Some of this may be due to pharmaceutical 

companies’ unwillingness to compare their proprietary product(s) with others, but there is 

also the concern for unforeseen drug interactions and extreme adverse events. In this 

regard, one can look outside of cancer research to find many safe and effective 

combination regimens and learn from their development. For instance, current guidelines 

for antibiotic treatment of serious infectious conditions, including sepsis, pneumonia, 

meningitis, and pyelonephritis, invariably call for empiric combinations of agents in 

consideration of potential antimicrobial resistance [168]. Subsequently, antimicrobial 

susceptibility tests are routinely implemented to tailor antibiotic regimens to specific 

microbes. While cancer and infectious diseases are not exactly analogous, one can argue 

that equipoise exists to test rational combinations of targeted agents in cancer. In other 

words, the potential benefit of curing cancer with personalized combinations outweighs 

the risk of unforeseen drug interactions. 

Outside of science, the challenge will be to sort and enroll patients in appropriate 

studies, to find the right drug for the right patient. Moreover, it will be necessary to 

modify or overcome the regulatory hurdles in the current drug-development process. In 

spite of these real obstacles, we currently stand at a turning point in cancer research, 

where advances in synthetic chemistry are intersecting advances in molecular biology, 

and the potential for cures seems possible. In this regard, clinical research in GIST has 
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the potential to break new ground for other cancers, by providing proof of principle for 

the efficacy and safety of multi-target combinations. In conclusion, over the last decade, 

GIST has been the subject of intense investigation out of proportion to its incidence. In 

spite of its rarity, however, the discoveries derived from GIST have contributed to many 

aspects of oncology, and their importance will continue to extend beyond the 

management GIST, to other soft-tissue sarcomas and cancer in general.  
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