
M APP 4 1986

Institute of Paper Science and Technology Central Files

•*

11

THE INSTITUTE OF PAPER CHEMISTRY, APPLETON, WISCONSIN

PULPING PROCESSES

PROJECT ADVISORY COMMITTEE MEETING

April 3-4, 1986

HANDOUTS

TABLE OF	CONTENTS
----------	----------

	Page
RESEARCH OVERIVEW	1
KRAFT CHEMICAL RECOVERY	
SummaryGrace)	8
Fundamental Processes in Alkaline Recovery Furnaces (Project 3473-1)(Cameron) (Clay)	12 27
Black Liquor Combustion (DOE Project 3473-6)(Clay)	35
Incremental Capacity in Recovery Boilers (Project 3558)(Grace)	45
Smelt-Water Explosions (Project 3456-2)(Grace)	46
FUNDAMENTALS OF SELECTIVITY IN PULPING AND BLEACHING (Project 3475)	47
Delignification Reactions(Dimmel) Carbohydrate Reactions(Schroeder)	48 64
DEVELOPMENT AND APPLICATION OF ANALYTICAL TECHNIQUES (Project 3477)(Easty)	75
FINE STRUCTURE OF WOOD PULP FIBERS (Projects 3288 and 3521)(Atalla)	85
IMPROVED PROCESSES FOR BLEACHED PULP (Project 3474)	114
Low Lignin Pulps(McDonough) Nonchlorine Bleaching(Thompson)	115 116
HIGH YIELD PULPS	
Fundamentals of Brightness Stability (Project 3524)(Lonsky)	124
Separation of Strong, Intact Fibers (Project 3566)(McDonough)	142
//	

3

.

RESEARCH OVERVIEW

E. W. Malcolm

اروم المربع بالمحالة مؤلفاتي من المعالية من المعالية . الموالية المحالية الم

· · · · · ·

÷

1.

٠,

CHEMICAL SCIENCES DIVISION

STAFF (JULY 1986) 10 PH.D. (FACULTY) 25 B.S./M.S.

RESEARCH AREAS CHEMICAL PULP KRAFT CHEMICAL RECOVERY HIGH YIELD PULPS

RESEARCH TYPE IPC FUNDED IPC STUDENT CONTRACT an constant

٠,

•

1.

ىمەت مۇمىرت^{ىت}ەتىرى^{ىيە} ر

. "·

IPC RESEARCH BUDGETS (1986-1987) - CHEMICAL SCIENCES DIVISION (\$1000)

IPC FUNDED

Chamical Dulmin-		
Chemical Pulping	75	
3288 - Fine Structure of Wood Pulp Fibers	150	
3475 - Fundamentals of Selectivity in Pulping and Bleaching 3474 - Improved Processes for Bleached Pulp	35	
3474 - Improved Processes for Breached Pulp 3477*- Development and Application of Analytical Techniques	13	
34//*- Development and Application of Analytical fechniques		(-99)
Deservenu	213	(-33)
Recovery	220	
3473-1-Fundamental Processes in Alkali Recovery Furnaces	230	
3456-2-Smelt-Water Explosions	20 13	
3477* -Development and Application of Analytical Techniques	20	
New -Nodulation of Lime	20	
New -Computer Model of Recovery Furnace	$\frac{20}{303}$	(- 8)
High Wight Dulming	202	(- 0)
High Yield Pulping	175	
3566 - Separation of Strong, Intact Fibers	140	
3524 - Fundamentals of Brightness Stability	140	
3521-2-Raman Microprobe Investigation of Molecular Structure	AE	
and Organization in the Native State of Woody Tissue	45 13	
3477*- Development and Application of Analytical Techniques	373	(+31)
	3/3	(+31)
Other Suplementary Records	70	
3534 - Exploratory Research	26	
3477*- Analytical (Paper)	-20	(+26)
	90	(+20)
		27 Martin Constant
TOTAL IPC FUNDED	1 045	(-50)
	1,040	(-50)
	-	
	-	
	1	
CONTRACT RESEARCH		
CONTRACT RESEARCH	1 1	
CONTRACT RESEARCH Government Funded		
CONTRACT RESEARCH	220	
<u>CONTRACT RESEARCH</u> <u>Government Funded</u> 3473-6-Fundamental Studies of Black Liquor Combustion		
<u>CONTRACT RESEARCH</u> <u>Government Funded</u> 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS	220	
<u>CONTRACT RESEARCH</u> <u>Government Funded</u> 3473-6-Fundamental Studies of Black Liquor Combustion IPC	220	
<u>CONTRACT RESEARCH</u> <u>Government Funded</u> 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure	220 205	
<u>CONTRACT RESEARCH</u> <u>Government Funded</u> 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure	220 205 50 100	
CONTRACT RESEARCH <u>Government Funded</u> 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure and Organization in the Native State of Woody Tissue	220 205 50	
CONTRACT RESEARCH <u>Government Funded</u> 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure and Organization in the Native State of Woody Tissue New Raman Microprobe Nongovernment Funded	220 205 50 <u>100</u> 575	
CONTRACT RESEARCH <u>Government Funded</u> 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure and Organization in the Native State of Woody Tissue New Raman Microprobe	220 205 50 <u>100</u> 575 210	
CONTRACT RESEARCH <u>Government Funded</u> 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure and Organization in the Native State of Woody Tissue New Raman Microprobe Nongovernment Funded	220 205 50 <u>100</u> 575 210 122	
CONTRACT RESEARCH <u>Government Funded</u> 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure and Organization in the Native State of Woody Tissue New Raman Microprobe <u>Nongovernment Funded</u> River Survey	220 205 50 <u>100</u> 575 210	
CONTRACT RESEARCH <u>Government Funded</u> 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure and Organization in the Native State of Woody Tissue New Raman Microprobe <u>Nongovernment Funded</u> River Survey Other	220 205 50 <u>100</u> 575 210 <u>122</u> <u>332</u>	
CONTRACT RESEARCH <u>Government Funded</u> 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure and Organization in the Native State of Woody Tissue New Raman Microprobe <u>Nongovernment Funded</u> River Survey	220 205 50 <u>100</u> 575 210 122	
CONTRACT RESEARCH <u>Government Funded</u> 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure and Organization in the Native State of Woody Tissue New Raman Microprobe <u>Nongovernment Funded</u> River Survey Other	220 205 50 <u>100</u> 575 210 <u>122</u> <u>332</u> 907	
CONTRACT RESEARCH Government Funded 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure and Organization in the Native State of Woody Tissue New Raman Microprobe Nongovernment Funded River Survey Other TOTAL CONTRACT RESEARCH	220 205 50 <u>100</u> 575 210 <u>122</u> <u>332</u> 907	
CONTRACT RESEARCH <u>Government Funded</u> 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure and Organization in the Native State of Woody Tissue New Raman Microprobe <u>Nongovernment Funded</u> River Survey Other	220 205 50 <u>100</u> 575 210 <u>122</u> <u>332</u> 907	(46% Contract)
CONTRACT RESEARCH Government Funded 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure and Organization in the Native State of Woody Tissue New Raman Microprobe Nongovernment Funded River Survey Other TOTAL CONTRACT RESEARCH	220 205 50 <u>100</u> 575 210 <u>122</u> <u>332</u> 907	(46% Contract) (54% IPC Funded)
CONTRACT RESEARCH Government Funded 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure and Organization in the Native State of Woody Tissue New Raman Microprobe Nongovernment Funded River Survey Other TOTAL CONTRACT RESEARCH TOTAL FUNDED AND CONTRACT	220 205 50 <u>100</u> 575 210 <u>122</u> 332 907	
CONTRACT RESEARCH Government Funded 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure and Organization in the Native State of Woody Tissue New Raman Microprobe Nongovernment Funded River Survey Other TOTAL CONTRACT RESEARCH TOTAL FUNDED AND CONTRACT	220 205 50 <u>100</u> 575 210 <u>122</u> <u>332</u> 907	
CONTRACT RESEARCH Government Funded 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure and Organization in the Native State of Woody Tissue New Raman Microprobe Nongovernment Funded River Survey Other TOTAL CONTRACT RESEARCH TOTAL FUNDED AND CONTRACT	220 205 50 <u>100</u> 575 210 <u>122</u> 332 907	
CONTRACT RESEARCH Government Funded 3473-6-Fundamental Studies of Black Liquor Combustion IPC NBS 3521-3-Raman Microprobe Investigation of Molecular Structure and Organization in the Native State of Woody Tissue New Raman Microprobe Nongovernment Funded River Survey Other TOTAL CONTRACT RESEARCH TOTAL FUNDED AND CONTRACT	220 205 50 <u>100</u> 575 210 <u>122</u> 332 907	

* Portion of project budget assigned to this area

EWM/gmk 3/25/86

IPC STUDENT RESEARCH

	<u>Рн.D.</u>	<u>M.S.</u>
CHEMICAL PULPING	11	11
KRAFT CHEMICAL RECOVERY	3	7
HIGH YIELD PULP	5	5
•		
	19	23

(1/86)

IPC RESEARCH BUDGETS (1986-1987) - CHEMICAL SCIENCES DIVISION (\$1000)

CONTRACT RESEARCH

Government Funded

3473-6-FUNDAMENTAL STUDIES OF BLACK LIQUOR COMBUSTION IPC NBS	220 205
3521-3-RAMAN MICROPROBE INVESTIGATION of Molecular Structure and Organization in the Native State of Woody Tissue	50
New Raman Microprobe	<u>100</u>
Nongovernment Funded	575
RIVER SURVEY OTHER	210 <u>122</u>
	<u>332</u>
TOTAL CONTRACT RESEARCH	907

IPC RESEARCH BUDGETS (1986-1987) - CHEMICAL SCIENCES DIVISION (\$1000)

IPC FUNDED

CHEMICAL PULPING	273	(-99)
Recovery	303	(- 8)
HIGH YIELD PULPING	373	(+31)
OTHER	96	(+26)
TOTAL IPC FUNDED	1,045	(-50)

IPC RESEARCH BUDGETS (1986-1987) - CHEMICAL SCIENCES DIVISION (\$1000)

IPC FUNDED

CHEMICAL	PULPING	
3288 -	FINE STRUCTURE OF WOOD PULP FIBERS	75
3475 -	Fundamentals of Selectivity in Pulping and Bleaching	150
3474 -	Improved Processes for Bleached Pulp	35
3477*-	DEVELOPMENT AND APPLICATION OF Analytical Techniques	13

273 (-99)

١.

• • • • •

· · · · ·

••••

· . . .

IPC RESEARCH BUDGETS (1986-1987) - CHEMICAL SCIENCES DIVISION (\$1000)

IPC FUNDED

RECOVERY

3473-1-FUNDAMENTAL PROCESSES IN ALKALI Recovery Furnaces	230	
3456-2-Smelt-Water Explosions	20	
3477* -DEVELOPMENT AND APPLICATION OF Analytical Techniques	13	
NEW -NODULATION OF LIME	20	
NEW -COMPUTER MODEL OF RECOVERY FURNACE	_20	
	303	(-8)

IPC RESEARCH BUDGETS (1986-1987) - CHEMICAL SCIENCES DIVISION (\$1000)

IPC FUNDED

HIGH YIELD PULPING		
3566 - Separation of Strong, Intact Fibers	175	
3524 - FUNDAMENTALS OF BRIGHTNESS Stability	140	
3521-2-RAMAN MICROPROBE INVESTIGATION OF MOLECULAR STRUCTURE AND		
ORGANIZATION IN THE NATIVE STATE OF WOODY TISSUE	45	
3477*- DEVELOPMENT AND APPLICATION OF Analytical Techniques	_13	:
	373	(+31)

a the second second

· · · *

IPC RESEARCH BUDGETS (1986-1987) - CHEMICAL SCIENCES DIVISION (\$1000)

IPC FUNDED

OTHER		
3534 - Exploratory Research	70	
3477*- ANALYTICAL (PAPER)	_26	
	96	(+26)

IPC RESEARCH BUDGETS (1986-1987) - CHEMICAL SCIENCES DIVISION (\$1000)

TOTAL IPC FUNDED	1,045
'TOTAL CONTRACT RESEARCH	907
TOTAL FUNDED AND CONTRACT	1,952 (46% Contract) (54% IPC Funded)

Recovery Summary

T. M. Grace

na and a start when the start and the start of the start of

يلۇرى ئىلىيى ، ئەسەرىمۇرىمۇرىيى

۰,

١.

COMBUSTION RESEARCH

- 1. CHAR BURNING
- 2. FUME FORMATION
- 3. BLACK LIQUOR BURNING
- 4. SULFUR RELEASE

STUDENT RESEARCH

SWELLING AND PYROLYSIS......MILLER Convective Drying.....Robinson Pile Burning of Char.....Aiken

MOISTURE AND COMBUSTIBILITY......MORELAND SULFUR RELEASE DURING BURNING.....CANTRELL CHAR GASIFICATION WITH CO2......GOERG SULFATE REDUCTION WITH CO......COENEN MODEL OF PARTICLE BURNING......SUMNICHT COCURRENT BURNING......BUEHLER

SOURCES OF PARTICULATES

- 1. PHYSICAL CARRYOVER OF BURNING PARTICLES
- 2. SPARKLERS DURING CHAR BURNOUT
- 3. VAPORIZATION OF NACL AND KCL
- 4. SODIUM VAPORIZATION-ENHANCED MASS TRANSFER

1.

- A. SMELT OXIDATION
- B. CHAR BURNING

- 9 -

FUTURE WORK

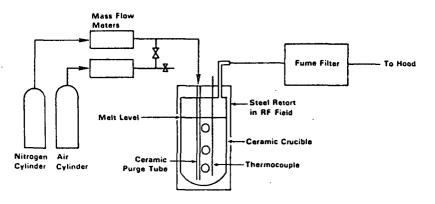
1.	SODIUM RELEASE FROM BURNING CHAR - VERRILL
2.	Burning phenomena - cooperate with Hupa
3.	REACTIONS OF HYDROGEN-CONTAINING SPECIES
4.	CARBON GASIFICATION REACTIONS - GOERG, AIKEN
5.	PREPARE A TEXT ON BLACK LIQUOR COMBUSTION
6.	MATHEMATICAL MODEL OF FIREBOX - JONES, WALSH, Burns, Sumnicht
7.	MECHANISM OF FIRESIDE CORROSION - KULAS

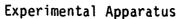
Project 3473-1

FUNDAMENTAL PROCESSES IN ALKALI RECOVERY FURNACES

.

Fume Generation	- J. H. Cameron			
Black Liquor Burning	-	D.	Τ.	Clay


- 11 -


•

and the second secon

1.

Effect of purge tube location on oxidative fuming.

Initial Conditions $Na_2CO_3 = 0.77 \text{ mol}$ $Na_2S = 0.03 \text{ mol}$ Temperature = 955°C (1750°F)

Purge Introduced Below Melt's Surface		Purge Introduced Above Melt's Surface		
Oxidation Rate, mol O_2 consumed/min x 10^4	Fume Rate, g/min	Oxidation Rate, mol 0_2 consumed/min x 10^4 .	Fume Rate, g/min	
9.38	0.0106	0.84	0.00146	
9.46	0.0134	3.88	0.00100	
		7.80	0.00115	
		12.00	0.00079	
		17.70	0.00044	

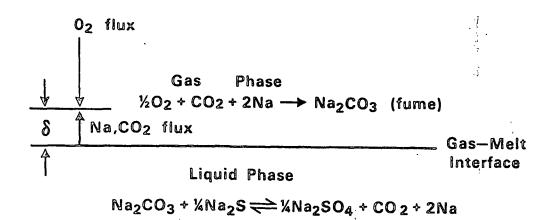
- 12 -

and and a

and the second secon In the second **1****-

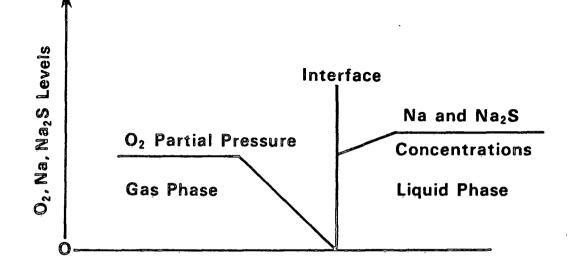
مى بىرى ئەر ئۇرۇپۇر مىيىتى ، ،

Two Modes of Oxidation


Second and the

1

.


1.

- N₂-O₂ introduced above melt, Na₂S oxidation is liquid-side mass transfer limited.
- 2) N_2-O_2 introduced below melt's surface, Na_2S oxidation is gas-side mass transfer limited.

Oxidative Fume Generation

- 13 -

Relative Levels of O_2 , Na and Na₂S at Gas-Melt Interface with Purge Introduced Below Melt's Surface

Rate of 0_2 Consumption in Gas Bubble

$$\frac{d(N_{O_2})}{dt} = S Pt Kg \frac{N_{O_2}}{N_{N_2}}$$

 $\begin{array}{l} N_{02} = Moles \ of \ 0_2 \\ N_{N2} = Moles \ of \ N_2 \\ Pt^2 = Total \ Pressure \\ Kg = Gas \ Phase \ Mass \ Transfer \ Coefficient \\ S = Bubble's \ Surface \ Area \end{array}$

Fume generation rate is constant during O_2 consumption

$$\frac{\mathrm{d}\mathbf{F}}{\mathrm{d}\mathbf{t}} = -\mathbf{K}\mathbf{S}$$

Then \overline{d}

$$\frac{\mathrm{d} \mathbf{F}}{\mathrm{d} (N_{02})} = -\frac{\mathrm{K} N_{N2}}{\mathrm{Kg Pt} N_{02}}$$

$$\int_{O}^{Ft} dF = -\frac{K N_{N_2}}{kg Pt} \int_{N_{O_2T}}^{N_{O_2F}} \frac{dN_{O_2}}{N_{O_2T}}$$

Boundary Conditions

- 1) Moles of O_2 in bubble (N_{O_2}) = Initial moles of O_2 in Purge (N_{O_2I}) and fume generated (F) = 0.
- 2) Moles of 0_2 in bubble (N_{0_2}) = moles of 0_2 in bubble where fuming ceases $(N_{0_{2F}})$, and fume generated (F) = total fume (Ft)

$$Ft = \frac{K N_{N_2}}{Kg Pt} [ln (N_{O_2I}) - ln (N_{O_2F})]$$

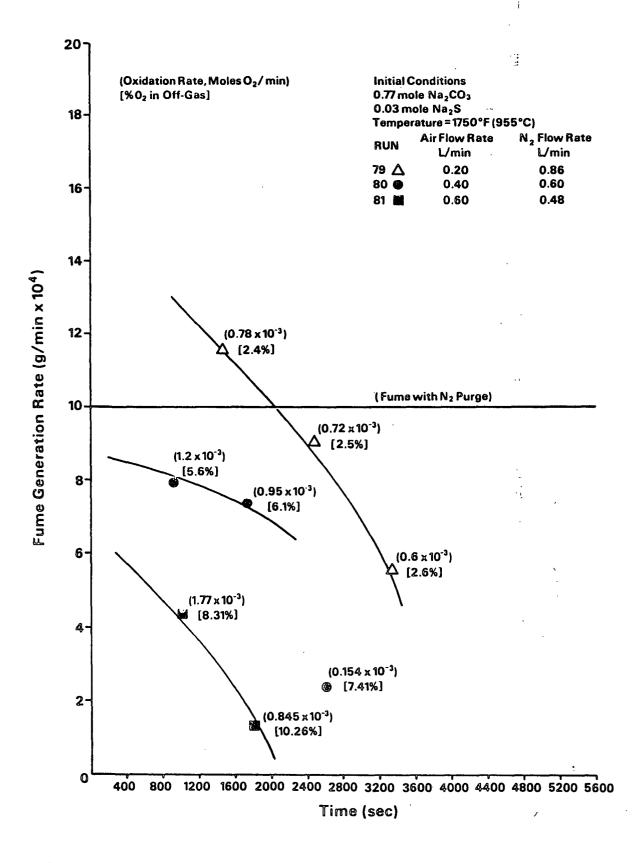
$$Ft = Fume generation in gas bubble$$

$$N_{O_2}I = Initial moles of O_2 fed$$

$$N_{O_2} = Final moles of O_2 when fuming stops$$

APPLICATION OF MODEL TO EXPERIMENTAL RESULTS

- (A) Fume generation during sulfide oxidation with the $N_{\rm 2}\text{-}O_{\rm 2}$ purge introduced above melt's surface
 - 1) Fume generation with a N_2-O_2 purge was normally less than under a N_2 purge.
 - 2) Fume generation decreased as O₂ level was increased.


- (B) Fume generation during sulfide oxidation with the N₂-O₂ purge introduced below the melt's surface
 - 1) Sulfide oxidation in this mode of gas-melt contact produces large quantities of fume.
 - 2) Fume rate is proportional to the N₂ purge rate.
 - 3) The fume generation rate depends logarithmically on O_2 content of the purge.
 - 4) The bubble size and hence surface area has no effect on fume generation rate.
 - 5) Carrier gases with lower interdiffusivities produce lower fume generation rate.

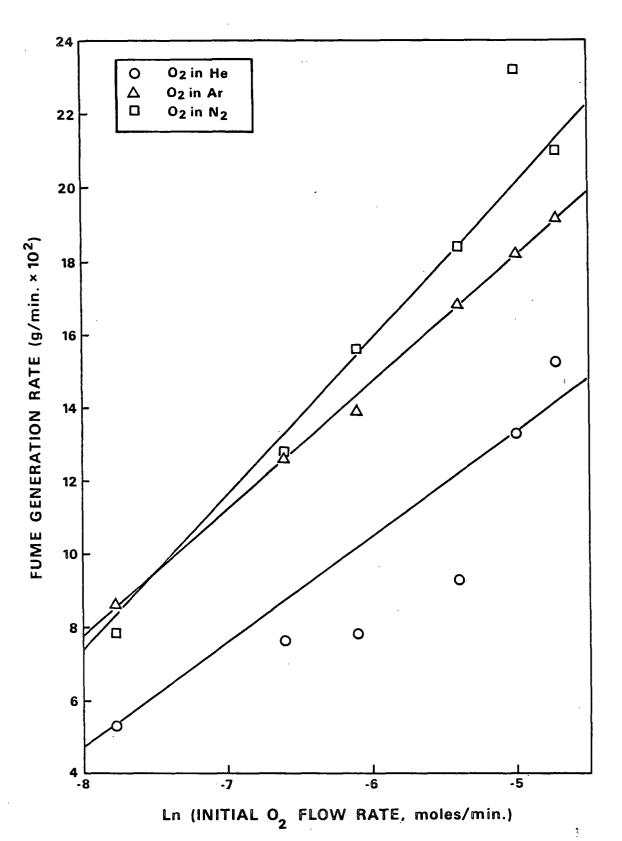
(Oxidation Rate, Moles O_2/min) **Initial Conditions** 0.77 mole Na₂CO₃ [%O2 in Off-Gas] 18 0.03 mole Na₂S Temperature = 1750°F (955°C) Air Flow Rate, N₂Flow Rate, Run L/min L/min 0.014 0.92 75 F O 16 0.10 0.92 76 F 🖸 O (0.099 x 10⁻³) $O(0.10 \times 10^{-3})$ (0.098 x 10⁻³) [0.115%] [0.131%] 14 [0.12%] Fume Generation Rate (g/min x 10^4) 0^(0.102 x 10⁻³) 0^[0.131%] (0.084×10^{-3}) O [0.106%] (Fume with N₂Purge) 12 (0.388 x 10⁻³) (0.36×10^{-3}) (0.35×10^{-3}) [1.25%] (0.33×10^{-3}) ר [1.3%] ן [1.33%] 10 D [1.4%] 8. (0.34×10^{-3}) ۵ [1.35%] 6 4 2 0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600 Time (sec)

Effect of O_2 on Fume Generation with O_2 Introduced Above Melt's Surface, Low O_2 Levels

- 18 -

207

Effect of O₂ on Fume Generation with O₂ Introduced Above Melt's Surface. High O₂ Levels


- 19 -

Effect of N_2 Flow Rate on Fume Generation

Initial Melt Conditions: $Na_2CO_3 = 0.77 \text{ mol}$ $Na_2S = 0.03 \text{ mol}$ Temperature = 927°C (1700°F)

٩,

Run	N ₂ , L/min	Air, L/min	Total N2, L/min	Fume Generation Rate ± Std. Dev., g/min
50	0.04	0.1	0.48	0.00680 ± 0.00032
51	0.6	0.1	0.68	0.00850 ± 0.00076
52	0.8	0.1	0.88	0.01004 ± 0.00042
38	0.9	0.1	0.98	0.01024 ± 0.00032
53	1.06	0.1	1.14	0.01204 ± 0.00042
54	1.23	0.1	1.31	0.01474 ± 0.00198

Effect of Initial Oxygen Level in Different Carrier Gases ٢.

- 21 -

Run No.	Temp I °F	N ₂ Flow Rate L/Min	O ₂ Flow Rate L/Min	Fuming Rate g/Min <u>+</u> Std. Dev.	Predicted Fuming Rate g/Min
127	1749	1.03	.020	0.0129 + .001	0.0126
128	1754	1.03	.0426	0.0163 <u>+</u> .001	0.0156
129	1754	1.01	.0634	0.0156 <u>+</u> .001	0.0172

Effect of Two Purge Tubes on Fume Generation Rate

and the second second

1.

ł

••

MAJOR CONCLUSIONS

- 1) FUME PRODUCTION IS A DYNAMIC PROCESS DEPENDENT ON MASS TRANSFER PROCESSES AND CHEMICAL REACTIONS.
- 2) FUME GENERATION RESULTING FROM REDUCTION OF NA2CO3 WITH CARBON, H2 AND CO IS SIGNIFICANTLY LOWER THAN FUME GENERATION DURING SULFIDE OXIDATION IN A WELL-MIXED MELT.
- 3) EQUILIBRIUM CONSIDERATIONS GOVERN THE VOLATILIZATION OF NACL AND KCL.
- 4) THE ONLY VOLATILE SPECIES THAT CONTRIBUTE TO FUME FORMATION IN THE KRAFT FURNACE ARE NA VAPOR, K VAPOR, NACL VAPOR AND KCL VAPOR.

FUTURE WORK

DETERMINE APPLICABILITY OF OXIDATIVE FUMING TO COMBUSTION OF BLACK LIQUOR DROPLETS: PH.D. THESIS.

NODULATION OF LIME

OBJECTIVE: DEVELOP AN UNDERSTANDING OF THE PROCESSES INVOLVED IN LIME NODULATION AND EFFECT OF NONPROCESS ELEMENTS ON THESE PROCESSES.

- 23 -

PLANNED ACTIVITY

- 1) Determine if nodulation behavior is related to sintering.
- Examine changes in sintering characteristics that occur during calcination-causticizing cycle and effect of impurities on this behavior.
- 3) Determine the effect of specific nonprocess elements on sintering.

CHEMICAL REACTIONS INVOLVING HYDROGEN-CONTAINING SPECIES (H₂, H₂O, H₂S)

1) Hydrogen Reduction of Sulfate

 $4H_2 + Na_2SO_4 \longrightarrow 4H_2O + Na_2S$

2) Water Gasification of Char

 $H_{20} + C \longrightarrow C0 + H_{2}$

3) Hydrogen Sulfide Release & Recapture

a) Na₂S + H₂O + CO₂ \rightleftharpoons H₂S + Na₂CO₃

b) $H_2S + 20_2 + Na_2CO_3 - Na_2SO_4 + CO_2 + H_2O$

4) NaOH Formation

 $H_20 + Na_2CO_3 \rightleftharpoons 2NaOH + CO_2$

STUDENT RESEARCH

Gregg Aiken; Ph.D.: A Determination of the Processes Controlling the Carbon Dioxide-Carbon Monoxide Split During Char Combustion.

Kris Goerg; Ph.D.: The Role of the Carbon Dioxide-Carbon Reaction in the Burning of Kraft Char.

John G. Fuller; M.S.: The Effect of Nonprocess on Lime Sintering.

Christopher L. Verrill; M.S.: Sodium Fume Generation During Black Liquor Combustion.

> >]

BLACK LIQUOR BURNING (TASK OF PROJECT 3473-1)

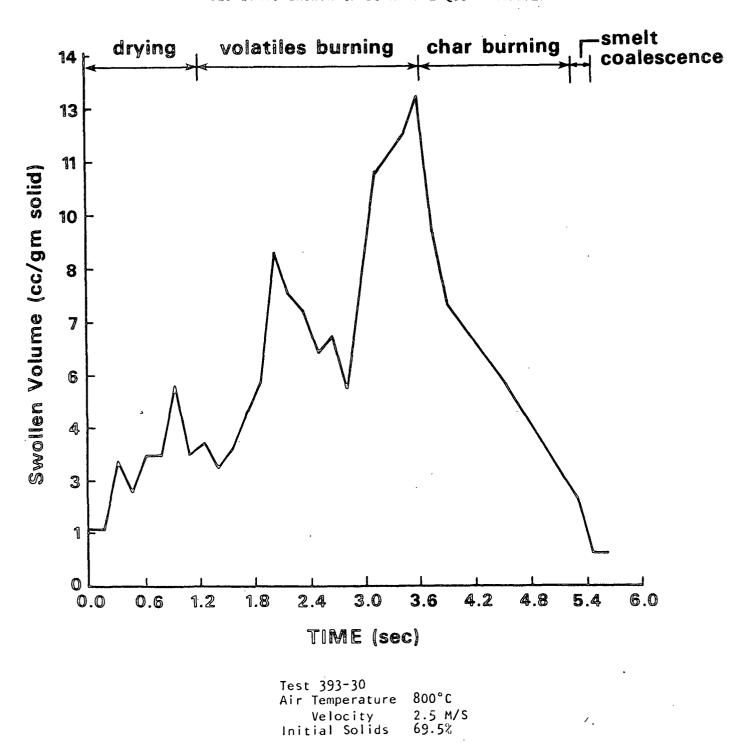
OBJECTIVE

4

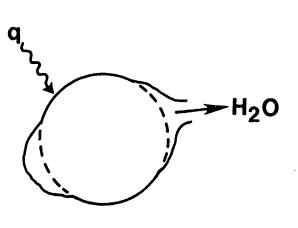
1

CHARACTERIZE THE BURNING PHENOMENA OF A VARIETY OF BLACK LIQUORS USING QUANTITATIVE TEST METHODS.

RATIONALE


- MINIMAL FUNDAMENTAL KNOWLEDGE OF THE BURNING PROCESS
- THERMAL EFFICIENCY INCREASES NEEDED
- INCREMENTAL CAPACITY NEEDED
- FOUNDATION FOR FUTURE RECOVERY PROCESSES

APPROACH


- USE MILL LIQUORS
- CONDUCT CHEMICAL AND COMBUSTION TESTS
- ANALYZE DATA FOR EMPIRICAL INTER-RELATIONSHIPS
- DESIGN CONTROLLED TESTS TO CONFIRM CONTROLLING PHENOMENA

1.

an an an tao amin' ao amin' An amin' a

VOLUMETRIC GROWTH OF BURNING LIQUOR PARTICLE

- External heat transfer
- Skin forming tendency

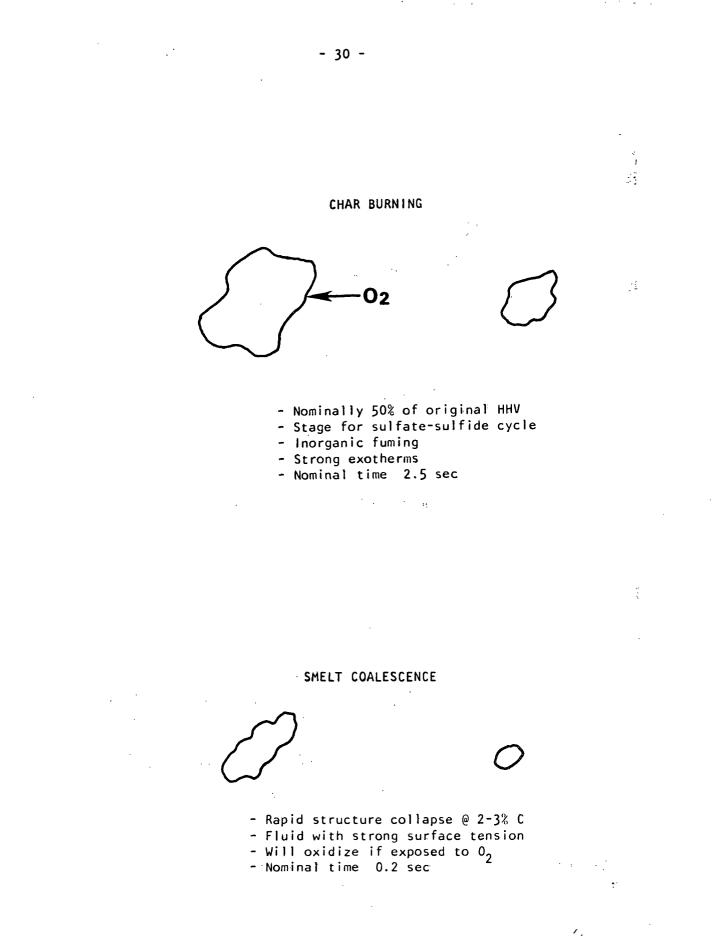
- 29 -

DRYING

- Rapid expansion/contraction
- Swelling can be significant
- Time for 65%-70% solids N/sec

VOLATILES BURNING

Ignition


Combustion **Products** PVIONSIS Gases 02

1

Maximum Volume

- Point ignition

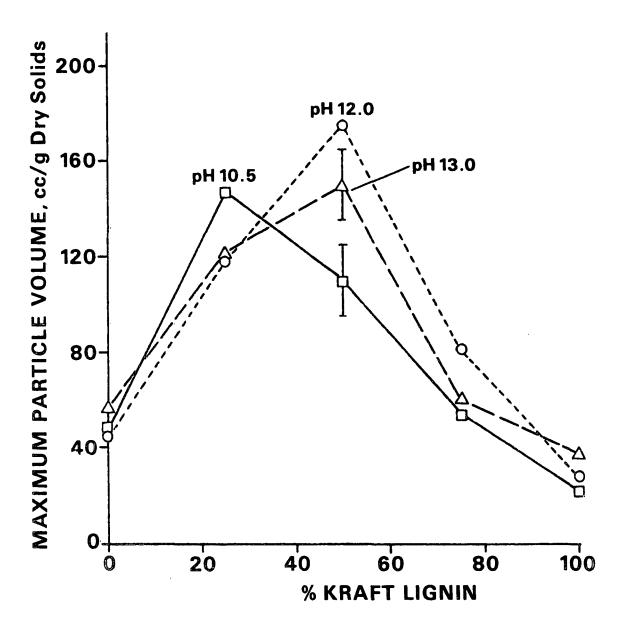
- Heat source pyrolysis gas combustion
 Wide range and variability of swelling /
 Liquor composition and 0₂ key variables
 Sulfur released
- Nominal time 1.5 sec

MILL LIQUORS

MILL LOCATIONS (U.S. (Foreign	13) 7)	20
MILL SAMPLES (KRAFT (Soda (Semichemical (Others	54) 2) 3) 2)	61

LAB KRAFT SAMPLES

DIRECTION


. .

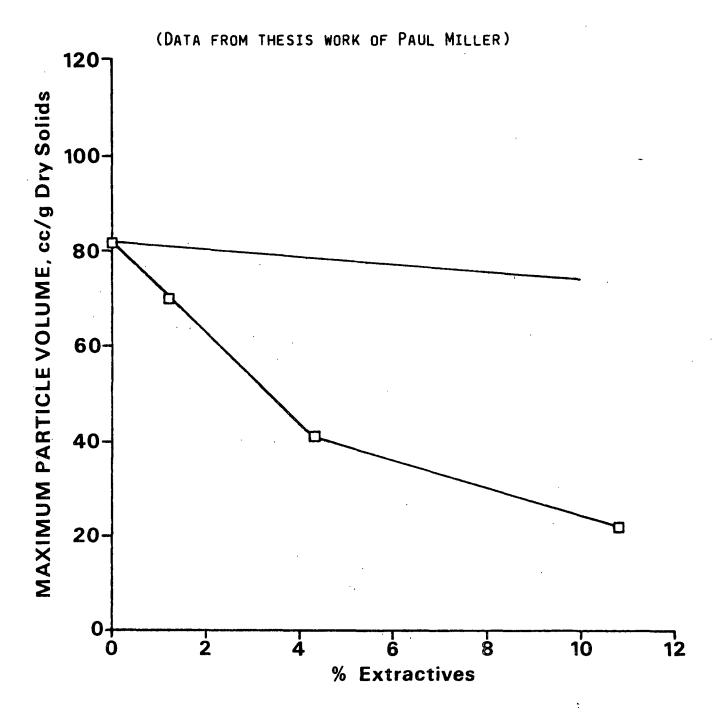
- EVALUATE EMPIRICAL INTERRELATIONSHIPS
- WORK CLOSELY WITH TWO MILLS HAVING LIQUOR BURNING PROBLEMS
- DESIGN CONTROLLED TESTS WITH SPIKED MILL LIQUORS AND/OR LAB LIQUORS
- COLLABORATE WITH DR. MIKKO HUPPA IN LIQUOR BURNING STUDIES
- INTERTIE WITH STUDENT WORK, E.G., Paul Miller and Kathy Crane

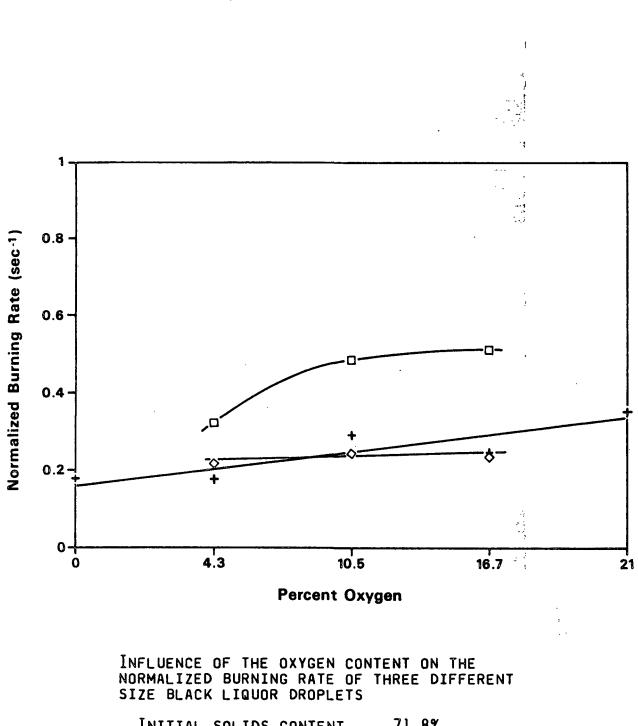
م المربع الم المربع المربع

1.

THE INFLUENCE OF HYDROXY ACID/KRAFT LIGNIN RATIO ON THE SWOLLEN VOLUME OF BLACK LIQUOR UNDERGOING PYROLYSIS AT 500°C. The variation with solution PH is also shown.

(DATA FROM THESIS WORK OF P. MILLER)


- 32 -


Sec. Sec. 3

1.

٠,

THE INFLUENCE OF EXTRACTIVES ON THE SWOLLEN VOLUME OF BLACK LIQUOR UNDERGOING PYROLYSIS AT 500°C. THE TOP SOLID LINE INDICATES THE RELATIONSHIP IF THE EXTRACTIVES ACT AS ONLY A DILUENT.

INITIAL SOLIDS CONTENT 71.8% Range gas temperature 665-860°C

	11 MG	2.5 мм
+	22 MG	3.1 мм
\diamond	33 mg	3.6 MM

(DATA FROM A190 WORK OF KATHY CRANE)

1.

· ..

Project 3473-6

FUNDAMENTAL STUDIES OF BLACK LIQUOR COMBUSTION

D. T. Clay

Ś

FUNDAMENTAL STUDIES OF BLACK LIQUOR COMBUSTION

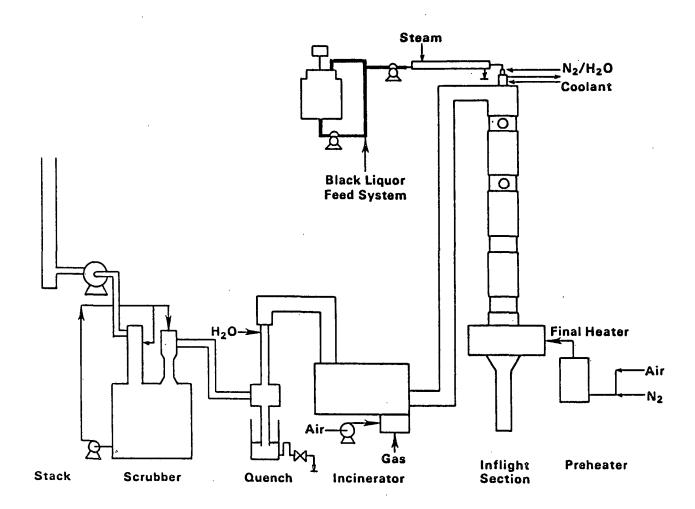
OBJECTIVES

- DEVELOP A BLACK LIQUOR COMBUSTION REACTOR
- APPLY ADVANCED SPECTROSCOPIC TECHNIQUES
- OBTAIN FUNDAMENTAL DATA

ACCOMPLISHMENTS (SINCE OCTOBER 1985)

IPC

- FIRST PROGRESS REPORT DISTRIBUTED
- INITIAL TRAJECTORY TESTS COMPLETED
- UPFLOW MODE OF PHASE 1 FLOW REACTOR _____INSTALLED
 - BRIEF TEST AT HIGH LIQUOR FLOWS CONDUCTED

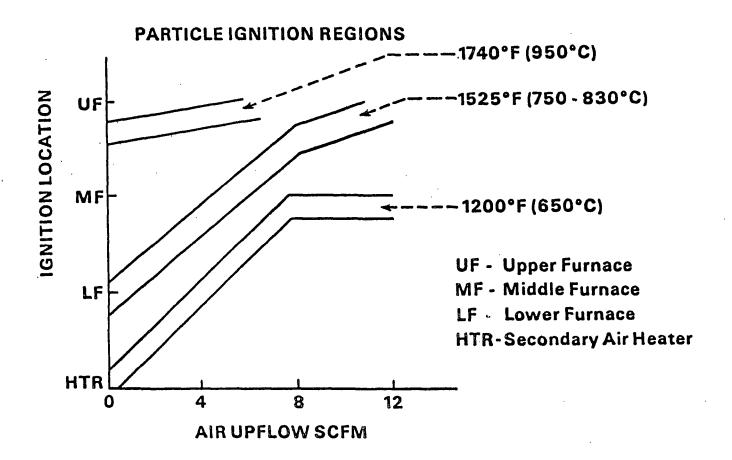

NBS

- VOLUMETRIC DROPLET DIAMETERS MEASURED
- TEMPERATURE PROFILES DETERMINED
- FIRST IN-FLIGHT PROCESSES DOCUMENTED
- DYNAMIC PARTICLE SIZE/VELOCITY MEASURED

/

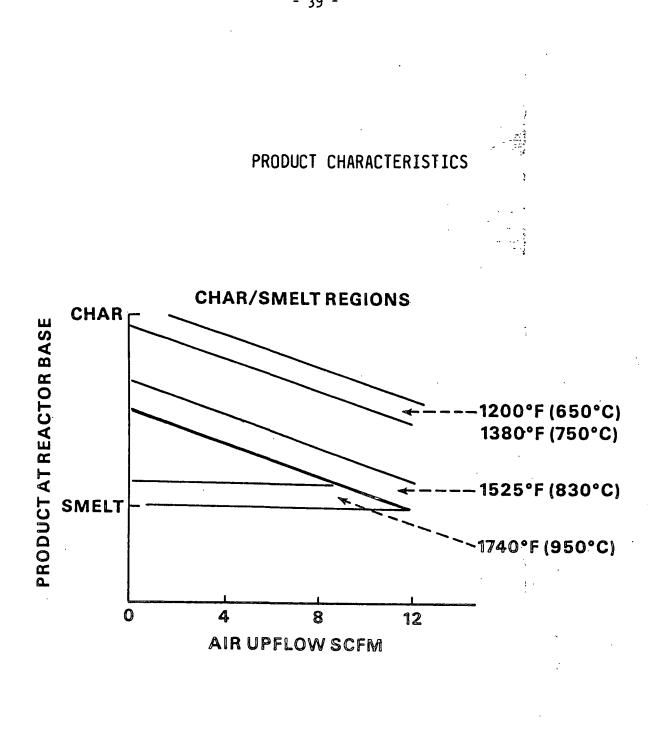
.,...

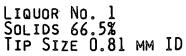
and the second secon



UPFLOW MODE OF IPC PHASE 1 SYSTEM

1.





LIQUOR NO. 1 Solids 66.5% Tip Size 0.81 mm ID

- 38 -

STATE OF L

٢.

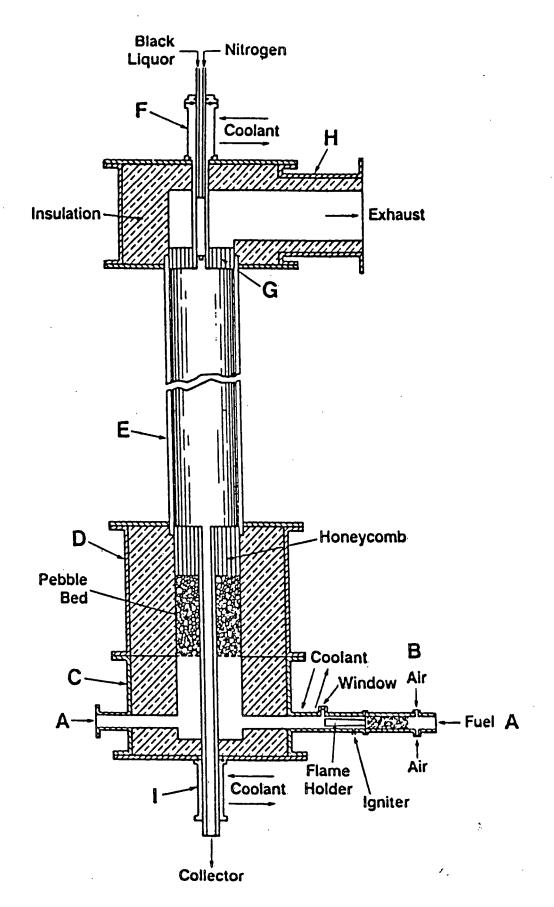
- 39 -

PHASE 1 REACTOR: UPFLOW MODE

STARTUP STATUS

• OPERABLE GAS TREATMENT PACKAGE

EQUIPMENT OPERATED AT EQUIVALENT 400,000 BTU/HR CAPACITY


MINOR MODIFICATIONS REQUIRED TO MEET DESIGN.

÷,

• PHASE 1 SYSTEM OPERATED BRIEFLY 0.5 TO 7 LB SOLIDS/HR

CHAR COLLECTED

PLUGGED AT BASE

NBS INITIAL REACTOR MODULE

41 -

CALCULATED UT VS. EXPERIMENTAL US

 $U_T(A)$: Assumes swelling to measured d without mass loss $U_T(B)$: Assumes complete drying (40% mass loss)

PARTICLE NO.	D (MM)	U _S (cm/s)	U _T (A)(cm/s)	UT(B)(CM/S)
1	2.6	599	655	466
2	2.6	609	655	466
3	2.9	599	585	418
4	2.3	444	741	527
5	(2.3)*	589	741	527
6	(2.7)*	589	632	449

*NON-SPHERICAL

CONCLUSIONS: PHOTOGRAPHIC DATA

A. EXPERIMENTAL

- 1. TRAJECTORIES VERTICAL UNTIL SWELLING BY ABOUT FACTOR OF 2 (LINEAR)
- 2. D_{0=1.8} MM, T=900°C, U_{G=385} cm/s, △ H=45 cm
 - A. SUBSTANTIAL SWELLING, PARTIAL DRYING
 - B. ESTIMATED RESIDENCE: 0.2<T<0.5 SECONDS

B. VAPORIZATION TIME - ROUGH CALCULATION

$$T_V = \frac{M_0 \times 0.4 \times H_W}{N D N_U K (T_G-110)} = 1.2 \text{ s}$$

C. COMPARISON, IPC DATA $D_0 \sim 2 \text{ mm}, T_V \sim 1 \text{ second}$ ومعتور فرجانه والمتوصينات

· · · · · ·

NBS TARGETED INSTRUMENTATION (PRELIMINARY LIST)

- DROPLET INJECTOR
- RESIDENCE TIME MONITOR
- BURNING PARTICLE/GAS TEMPERATURE SENSOR
- COMPOSITION MEASUREMENT OF BURNING PARTICLE FLAMES
- FUME SIZE/CONCENTRATION MEASUREMENT
- BURNING CHAR PILE TEMPERATURE SENSOR

NEAR TERM PLANS (THROUGH JUNE 1986)

- OPERATE PHASE 1 SYSTEM AT DESIGN FLOWS
 - COMPLETE SYSTEM CHARACTERIZATION
 - CONDUCT IN-FLIGHT PROCESS TESTING

NBS

- INSTALL PHASE 1 SYSTEM
- DEVELOP TARGETED INSTRUMENTATION LIST
- MEASURE INDIVIDUAL PARTICLE IN-FLIGHT PARAMETERS

IN-FLIGHT PROCESS TESTING (IPC)

<u>OBJECTIVE</u> STUDY THE FOUR STAGES OF BLACK LIQUOR BURNING UNDER CONDITIONS WHERE THEY OCCUR IN-FLIGHT.

APPROACH STABLE LIQUOR SOURCE Key independent variables Final and intermediate particle sampling Solids chemical/physical characterization Gas analysis

GOAL

- DATA WHICH SHOWS THE VARIATION WITH TIME OF:
 - PARTICLE COMPOSITION/PHYSICAL CHARACTER
 - EVOLVED GAS COMPOSITION/QUANTITY AS A FUNCTION OF KEY INDEPENDENT VARIABLES

1.

INDIVIDUAL PARTICLE IN-FLIGHT PARAMETER TESTING (NBS)

- ObjectiveDocument the drying stage of black liquor
particle burning and its trajectory.
- APPROACH STABLE LIQUOR SOURCE STUDY INITIAL DROP SIZE AND OXYGEN CONTENT MEASURE PARTICLE DIAMETER AND VELOCITY OBSERVE IN-FLIGHT IGNITION/SWELLING/ TRAJECTORY
- GOALS DRYING TIMES, PARTICLE VELOCITIES, AND DYNAMIC DIAMETER CHANGES AS A FUNCTION OF INITIAL DROP SIZE AND OXYGEN CONTENT

Project 3558

INCREMENTAL CAPACITY IN RECOVERY BOILERS

T. M. Grace

Project 3456-2 SMELT-WATER EXPLOSIONS

T. M. Grace

2

PROJECT 3558

1

INCREMENTAL CAPACITY IN RECOVERY BOILERS

TERMINATING THE PROJECT

SMELT-WATER EXPLOSIONS

- 1. NO MAJOR CHANGES IN ACTIVITIES.
- 2. EXPECTING DRAFT OF SENSITIVITY ANALYSIS FROM UW-MADISON.
- 3. HAVE SUBMITTED JOINT PROPOSAL WITH CORRADINI.

Project 3475

FUNDAMENTALS OF SELECTIVITY IN PULPING AND BLEACHING

Delignification Reactions- D. R. DimmelCarbohydrate Reactions- L. R. Schroeder

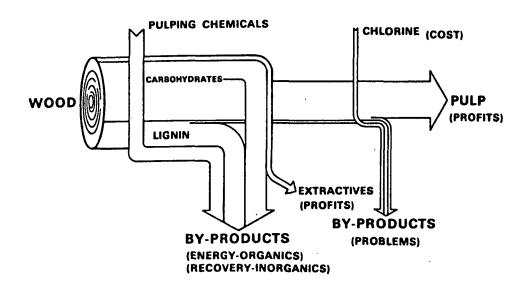
PROJECT 3475

FUNDAMENTALS OF SELECTIVITY IN PULPING AND BLEACHING

DELIGNIFICATION REACTIONS

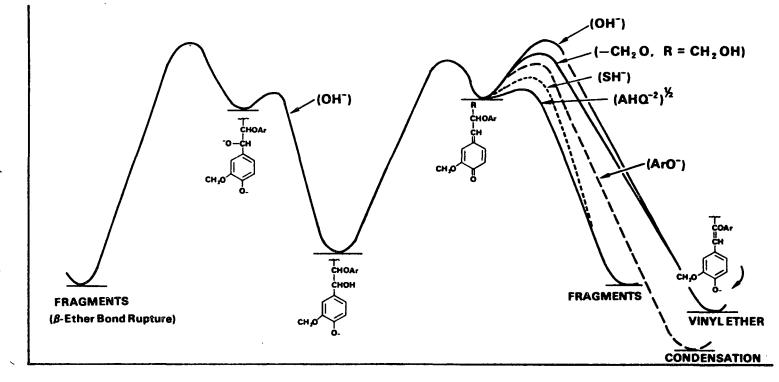
CARBOHYDRATE REACTIONS

PULPING


BLEACHING

:

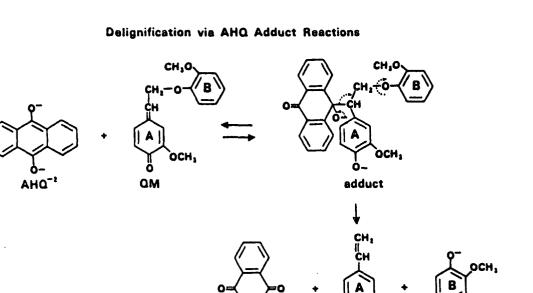
٢.


The All Mary of the second second

•. •

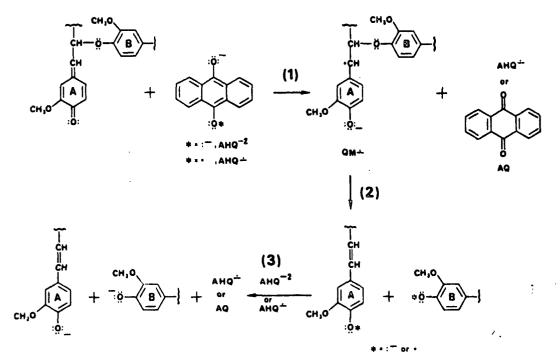
PULPING MATERIAL BALANCES

- 48 -



REACTION COORDINATE

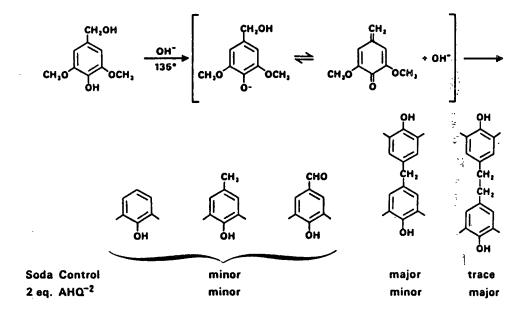
Hypothetical energy diagram for the reactions of phenolic lignin end units.


ENERGY

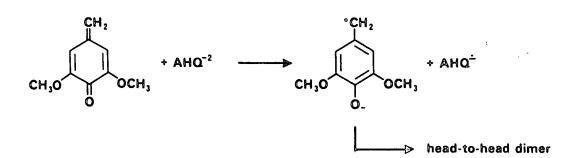
- 49 -

AQ

Delignification via AHQ-induced SET Reactions.

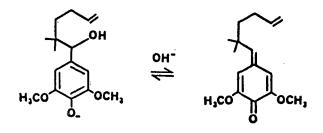


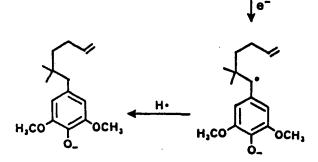
3.8

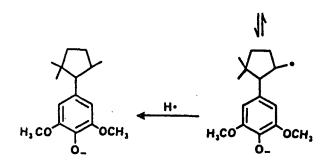

and the second second

DCH,

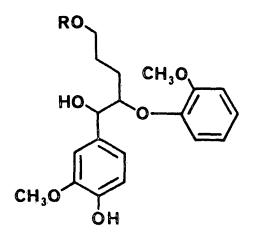
phenol fragments

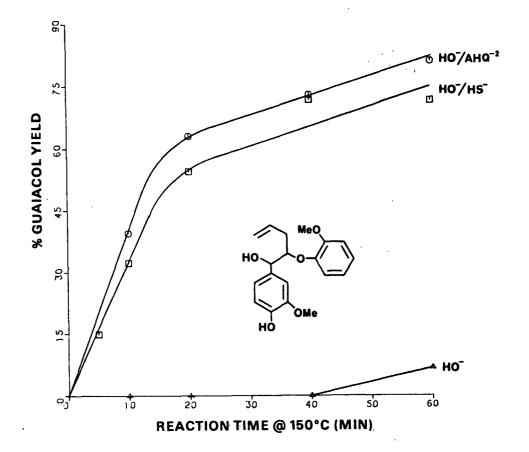

HIGH TEMPERATURE AQUEOUS REACTIONS OF SYRINGYL ALCOHOL (D. SMITH THESIS)




•. • . • •

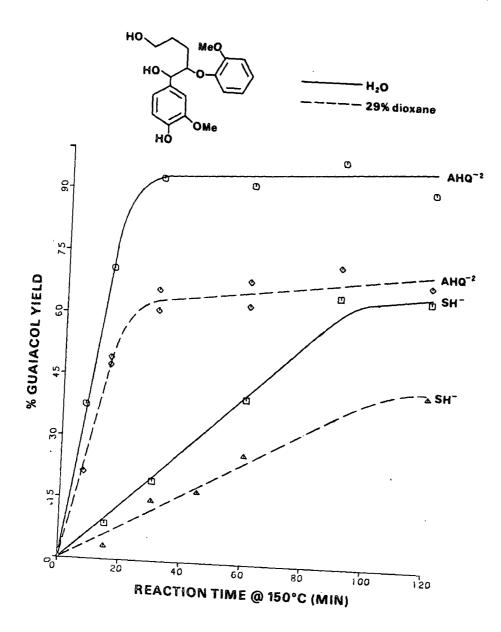
. . . .

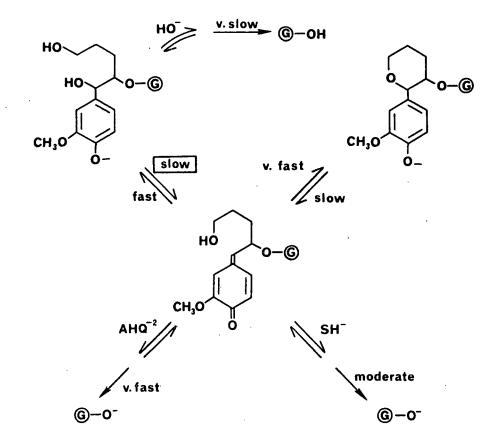

Į


REACTIONS OF A PENTENYL SUBSTITUTED QUINONEMETHIDE (UPPER RIGHT) WHICH SHOW ELECTRON TRANSFER PROCESSES.

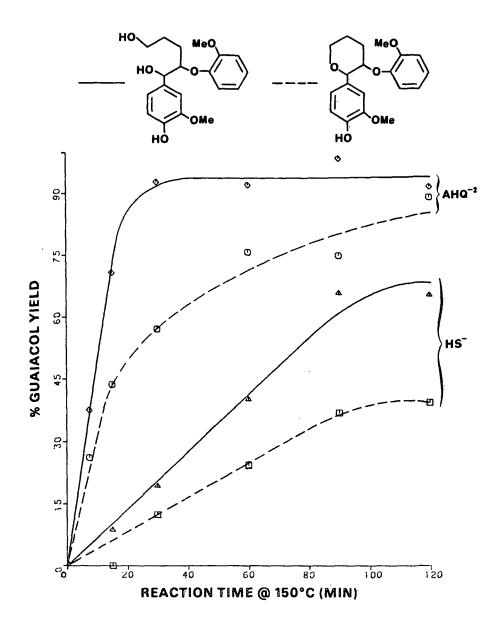
R = H

 $R = CPh_3$

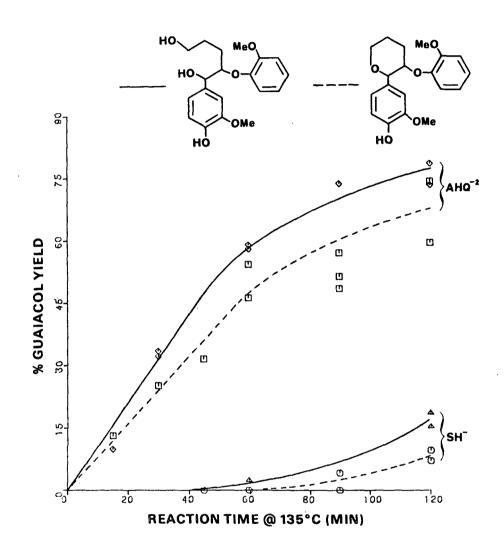

$$R = CPh_2 - polystyrene$$


Guaiacol yield as a function of time for the degradation of the indicated model at 150° water in the presence of 25 equiv. of NaOH, and 5 equiv. of NaSH, and 5 equiv. of AHQ (prepared from 5 equiv. each of AQ and glucose).

Guaiacol yield as a function of time for the degradation of the indicated model at 150° water in the presence of 25 equiv. of NaOH, and 5 equiv. of NaSH, and 5 equiv. of AHQ (prepared from 5 equiv. each of AQ and glucose).


Guaiacol yield as a function of time for the degradation of the indicated model at 150° in either pure water or 29% dioxane-water in the presence of 25 equiv. of NaOH and 5 equiv. of NaSH, or 5 equiv. of AHQ (prepared from 5 equiv. each of AQ and glucose).

٢.


Reactions of the β -(propyl alcohol) model

۰. ۲. ۱

Guaiacol yield as a function of time for the degradation of the indicated models at 150° in water in the presence of 25 equiv. of NaOH and 5 equiv. of NaSH, or 5 equiv. of AHQ (prepared from 5 equiv. each of AQ and glucose).

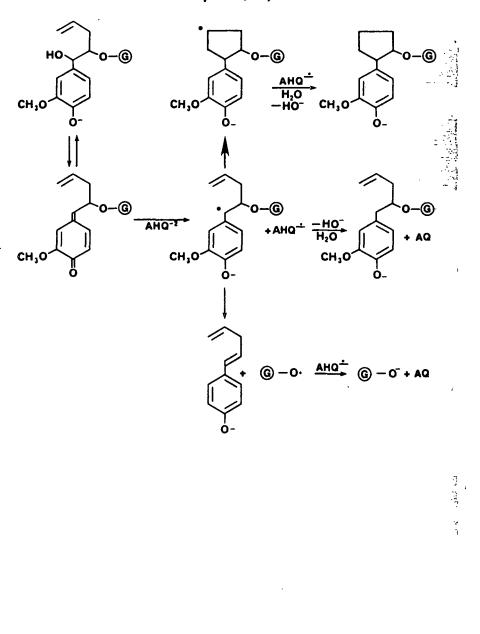
Ż

Guaiacol yield as a function of time for the degradation of the indicated models at 135° in water in the presence of 25 equiv. of NaOH, and 5 equiv. of NaSH, or 5 equiv. of AHQ (prepared from 5 equiv. each of AQ and glucose).

57.5

The Population of a

1.


<u>v.slow</u> ► G−OH HO HO-`0-© HO 0-G CH₃O CH₃O slow 0 v. fast slow fast нò 0-© CH₃O AHQ⁻² Ö SH⁻ 1 moderate / v. fast **G**-0⁻ **⑥**−0⁻

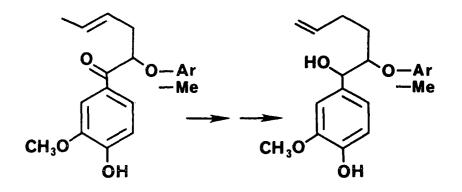
Reactions of the β -(propyl alcohol) model

1.

HO 0-G ©-0-+ AQ CH3O CH,O HO НО HO~ нό -AHO~ `0-© + ана⁻ AHQ 0-G -@ or CH₃O CH 3O CH3O HS⁻⁻ но но НΟ、 (-o-© HO + ©-0⁻ HS 0-© ^S∖ сн,о CH₃O CH₃C

Cleavage Mechanisms of the eta-(propyl alcohol) model

Reactions of a β -allyl - β -ether model


.

но осн, осн, .осн? AHQ H₂O HO CH3O CH301 CH,O OCH, `осн, OCH, AHQ-2 +AHQ - HO H20 + AQ СН,0' CH30 CH₃O CH3-0. AHQ CH3-0-+ AQ

÷.

Reactions of a β -allyl - β -ether model

New Model Synthetic Targets

RESEARCH DIRECTIONS

- fundamental chemistry of pulping
- chemistry of insoluble lignin models
- importance of electron transfer reactions
- high temperature aqueous electrochemistry

Ph.D. STUDENT RESEARCH The Fundamentals of Chemical Pulping

Student	Location	Research Topic
Matthew Bovee	K213	Synthesis and Characterization of Insoluble Cellulose Models
Daniel Geddes	K209	Alkaline Polysaccharide Degradation: Mathematical Modelling
Margaret Henderson	K231	Alkaline Chain Cleavage in Mannans
William Molinarolo	K210	Reactive Intermediates in Alkaline Cellulose Chain Cleavage
Patrick Apfeld	K 205	Synthesis and Reactions of Insoluble Lignin Models
Gregg Reed	K232	Sulfide (Kraft) Pulping Chemistry
Dean Smith	K206	Chemistry of Lignin Fragment Recombination Reactions
Robert Barkhau*		Chemistry of Lignin Fragment Recombination Reactions
John Wozniak*		Electrochemical Promotion of Pulping

*Currently working on admission to doctoral candidacy

. . .

Project 3475

· · · · ·

مسويدي بدو ديد الدي الاردين. مسويدي بدو ديد الدي الاردين

....

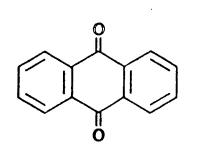
FUNDAMENTALS OF SELECTIVITY IN PULPING AND BLEACHING

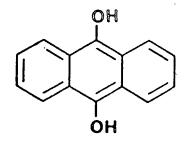
Carbohydrate Reactions

OBJECTIVE

Understand the mechanisms of carbohydrate degradation during pulping and bleaching

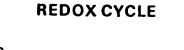
CURRENT EFFORT

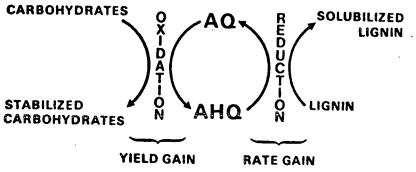

Effect of anthraquinone on polysaccharide chain cleavage in alkaline pulping


÷

٢.

بر ہے۔ اور ہے ا


.. • .*



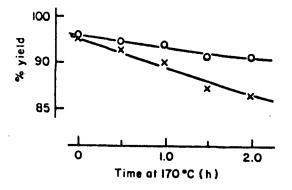
AQ

AHQ

- 65 -

EFFECT OF AQ ON RANDOM CHAIN CLEAVAGE

Polysaccharide


Effect

Amylose

acceleration

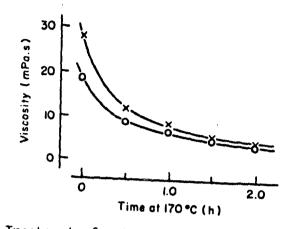
Cellulose (Cotton Linters) li

little, if any

Treatment of cotton cellulose at 170° C with 1M NaOH, without AQ (X) and with 5% AQ addition (O).

WALLIS and WEARNE 1985

Table 1. The effect of anthraquinone (AQ) and yield in kraft and soda cooking of cotton linters.


Temperature,	Time,	Yield, %			
°C	h	Kraft ^a	Kraft-AQ ^a ,c	Sodab	Soda-AQ ^b ,c
140		96.4	99.5	96.6	99.2
170	0.0	95.3	98.1	95.3	98.7
170	0.5	94.9	95.1	94.4	96.2
170	1.0	92.4	93.0	92.0	94.1
170	2.0	89.5	90.2	90.4	87.5
170	4.0	83.5	83.9	84.4	84.5
170	8.0	73.7	73.6	75.0	75.0

2

1.

al.OM NaOH, 0.15M Na₂S, 25:1 liquor-to-cellulose ratio.
bl.15M NaOH, 25:1 liquor-to-cellulose ratio.
c0.0048M AQ, comparable to 0.5% addition at 5:1 liquor-to-wood ratio.

- 66 -

Treatment of cotton cellulose at 170° C with 1M NaOH, without AQ (X) and with 5% AQ addition (O).

WALLIS and WEARNE 1985

• . .

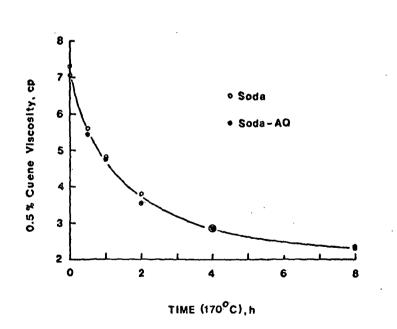
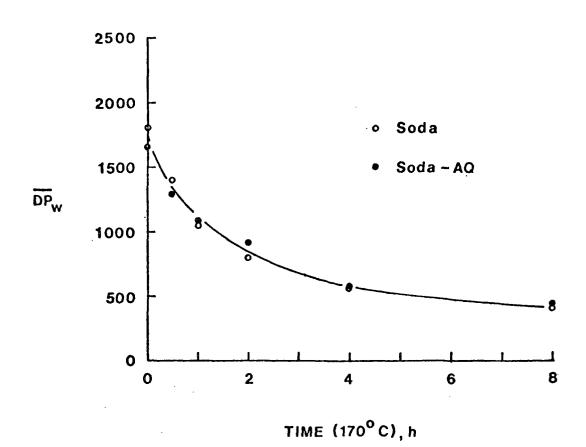
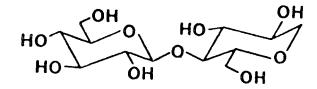


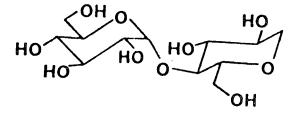
Figure 2. Effect of anthraquinone (0.0048M) on cuene viscosity in soda (1.15M NaOH) cooking of cotton linters.

1.




Figure 1. Effect of anthraquinone (0.0048M) on DP_w in soda (1.15M NaOH) cooking of cotton linters.

POTENTIAL REASONS FOR DIFFERENT RESPONSE TO AQ


Stereochemical

1

Physical

1,5-Anhydrocellobiitol

1,5-Anhydromaltitol

Degradation of 1,5-Anhydromaltitol (0.01 M) in 0.984 M NaOH at 169.9° C.

Additive	$10^{6}k_{r}, s^{-1}$
-	1.12 (0.02)
AQ (0.00480 M)	1.65 (0.06)
AHQ (0.00480 M)	1.20 (0.06)

÷

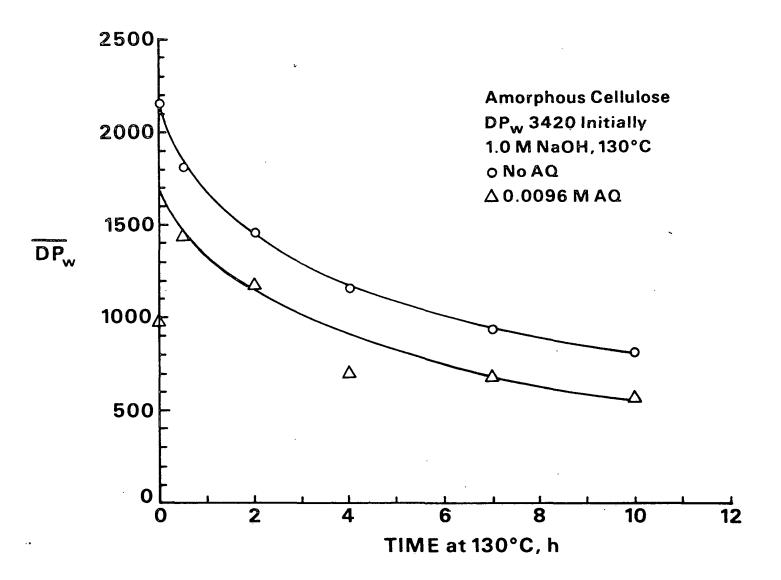
/

* \sim 0.5% at 5:1 Liquor-to-wood

1.

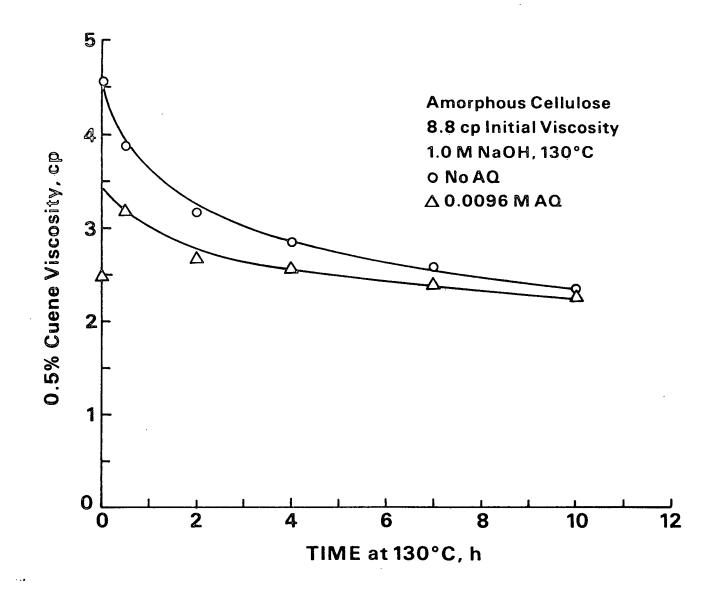
۰,

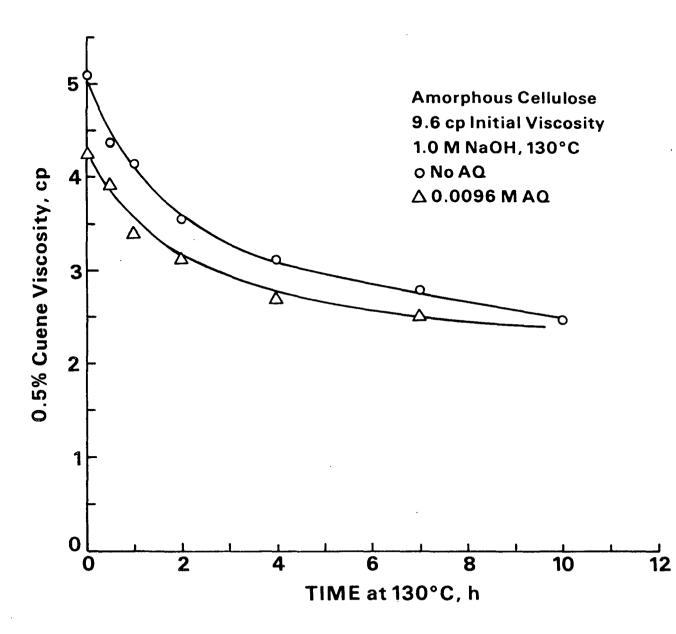
Degradation of 1,5-Anhydrocellobiitol (0.01 M) in 0.985 M NaOH at 169.8°C.


Additive	$10^{6}k_{r}$, s ⁻¹
-	6.25 (0.08)
AQ (0.00480 M)*	6.72 (0.08)
AHQ (0.00480 M)*	6.27 (0.06)

* \sim 0.5% at 5:1 Liquor-to-wood

Incremental Effect of Anthraquinone


	$10^{6} \Delta k_{r}$, s ⁻¹
1,5-Anhydrocellobiitol	0.47
1,5-Anhydromaltitol	0.53



72 -

1

.`

- 74

,

Ą

i. .

Project 3477

DEVELOPMENT AND APPLICATION OF ANALYTICAL TECHNIQUES

D. B. Easty

Determination of Elemental and Polysulfide Sulfur

Analysis of Pulping and Bleaching Liquors by Ion Chromatography

Determination of Lignin in Wood Pulp by Diffuse Reflectance Fourier Transform Infrared Spectrometry

TAPPI Test Method T 699 pm-83

Analysis of Bleaching and Pulping Liquors by Ion Chromatography

Intents of IPC investigation:

• evaluate

• supplement

• validate

والمراجع والمراجع المحمولين والمحمولين والمراجع والمراجع والمراجع والمراجع والمحمولين والمحمولين والمحمولين وال

1

Ion Chromatographic Analysis of Kraft Black Liquor

Conclusions

Using the electrolytic conductivity detector, IC is a valuable technique for:

• sulfite

• sulfate

thiosulfate

• chloride

• carbonate

Using the constant potential amperometric detector, IC is of limited value for sulfide.

Studies Needed Before Preparation of T 699 Revision

- 1. Evaluate UV detector for sulfide determination.
- 2. Investigate need for dilute HCl dilution of green liquor for sulfate determination.

1.

and the second second

1.

- 78 -

Evaluation of UV Detector

. .

Reservations About Use of Constant Potential Amperometric Detector for Determining Sulfide in Pulping Liquors

- 1. Extreme sensitivity; extensive sample dilution needed.
- 2. Narrow useful range: 0.4 1 ppm.
- 3. Need to dilute samples and standards with sulfide antioxidant buffer.
- 4. Detector maintenance.
- 5. Simultaneous determination of sulfide and sulfoxy anions is impractical.

Response of UV Detector to Sulfide in Black Liquor

Added Sulfide, mg/L ^a	Indicated Sulfide, mg/L
None	0
5.0	5.0
10.0	10.0
15.0	14.8
20.0	19.6

^aAdded to oxidized black liquor diluted 1:2000.

Effect of T Time After	Time on Measured Sulfide Conte	
Sample Dilution ^a , min	Without Antioxidant	With Antioxidant
<1	1.99	2.05
15	1.55	2.05
30	1.25	2.01
45	1.22	1.97
60	1.13	1.97
90	0.99	1.91

al:1000 ^bPercentage of o.d. liquor solids.

and the standard stan Standard stan

i

Sample	Original, %	Added, %	Total Found, %	Recovery, %
KBL	2.12	1.63	3.75	100
PBL	1.18	0.80	2.01	104
SBL	2.18	1.46	3.63	99

Recovery of Sulfide Added to Black Liquor

Comparison of Sulfide Determined by Ion Chromatography and Potentiometric Titration

Sample	Ion Chromatography ^a	Potentiometric Titration ^D
KBL1	2.12	2.06
KBL2	2.05	2.04
PBL	1.18	1.32
SBL	2.18	2.14
ABL	0.69	0.67
KWBL	0.90	0.88

^aUV detector. Black liquor samples diluted approx. 1:1000. Values are percentage of o.d. liquor solids. ^bTitration with HgCl₂. Conclusions -- UV Detection of Sulfide

1. Detector is less sensitive than amperometric; range 1 - 20 ppm.

Less extensive sample dilution:

Easier manipulation Reduced oxidative losses of sulfide

2. Antioxidant recommended for best results.

Ascorbic acid more concentrated than 1 $\underline{\mathsf{mM}}$ interferes in UV detector.

- 3. Valid results: Quantitative spike recovery and good agreement with potentiometric titrations.
- 4. Easier detector maintenance
- 5. Simultaneous determination of sulfide and sulfoxy anions is impractical.

Determination of Sulfate in Green Liquor

Problem reported in literature:

Higher sulfate by IC than by gravimetric method.

Hypothesis:

Oxidation of other sulfur compounds to sulfate.

Proposed solution:

Dilute green liquor with 0.1% HCl.

Effect of Dilution Medium on Sulfate Content as Function of Time After Dilution

Time After Dilution, min	Sulfate, g/L; Liquo 0.1% HCl	or Diluted With Deox. H ₂ O
<1	6.50	6.49
15	6.38	6.46
30	6.45	6.52
45	6.39	6.65
60	6.36	6.55
120	6.41	6.91
180	6.41	7.12
240	6.46	7.22
300	6.46	7.39

Green liquor diluted 1:1250. Sulfate determined by ion chromatography.

1.

•

Liquor	Sulfate, g/L; Liqu 0.1% HCl	or Diluted With Deox. H ₂ O
1	6.64	6.61
2	5.62	5.66
3	9.55	9.56
4	15.0	14.9
5	9.80	9.80
6	3.46	3.42
7	8.37	8.37
8	0.63	0.63

Liquors were diluted from 1:200 to 1:2000 depending on sulfate content. Samples were injected into the ion chromatograph within 1 min after dilution.

Conclusions -- Sulfate in Green Liquor

- 1. Dilution with HCl is unnecessary when samples are analyzed promptly after dilution.
- 2. Liquors diluted with 0.1% HCl and with deoxygenated water gave comparable results.

Sulfate Contents of Green Liquors Diluted With 0.1% HCl and With Deoxygenated Water

٨.

<u>م</u>

Future Work

Revise TAPPI Test Method T 699, Analysis of Bleaching And Pulping Liquors by Ion Chromatography.

Complete studies of lignin determination by diffuse reflectance Fourier transform infrared spectrometry.

Expand former exploratory projects:

Identification of paper additives and contaminants by pyrolysis/GC/MS.

Interface headspace gas concentrator with GC/MS.

Project 3288

FINE STRUCTURE OF WOOD PULP FIBERS

R. H. Atalla

Project 3521

RAMAN MICROPROBE INVESTIGATION OF MOLECULAR STRUCTURE AND ORGANIZATION IN THE NATIVE STATE OF WOODY TISSUE

R. H. Atalla

3288 FINE STRUCTURE OF WOOD PULP FIBERS

3521-1

RAMAN MICROPROBE STUDIES OF MOLECULAR STRUCTURE AND ORGANIZATION IN THE NATIVE STATE OF WOODY TISSUE

OVERVIEW OF PRESENTATION:

- 1. KEY TOPICS AND PERSPECTIVE WHICH DEFINE OUR PROGRAM.
- 2. REVIEW OF FALL 1985 PRESENTATION.
- 3. STUDIES ON CELLULOSE STRUCTURE AND AGGREGATION.
- 4. STUDIES ON CELL WALL STRUCTURE IN WOOD, AND RESPONSE TO CHEMICAL TREATMENT.
- 5. FUTURE WORK.

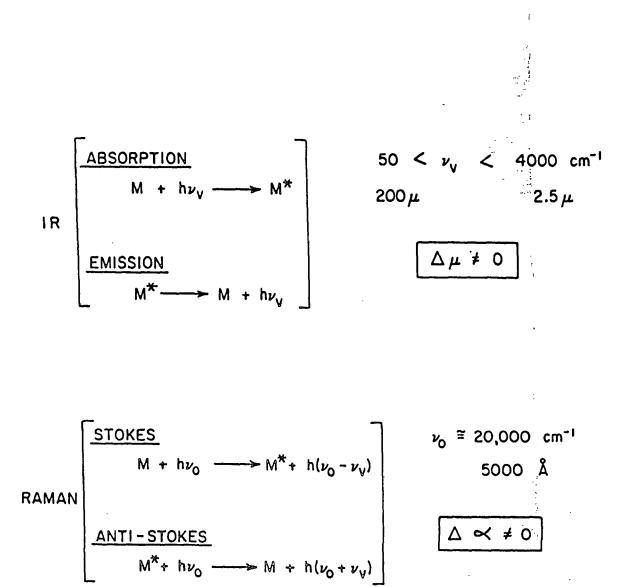
•

the second s

KEY TOPICS CURRENTLY INCORPORATED IN OUR FUNDED, EXPLORATORY, AND STUDENT RESEARCH PROGRAMS:

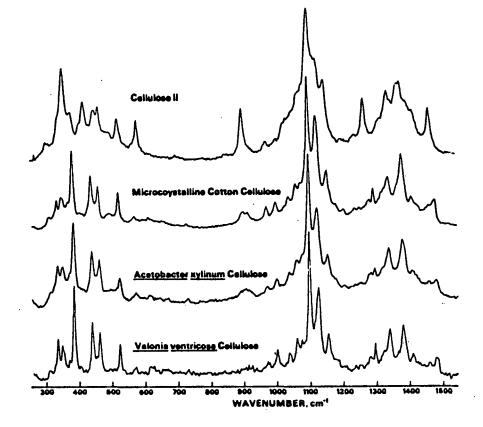
- 1. THE DEGREE TO WHICH THE COMPOSITE NATURE OF NATIVE CELLULOSES INFLUENCES THEIR PROPERTIES AND THOSE OF CELLULOSIC FIBERS FROM HIGHER PLANTS (WOOD, COTTON, RAMIE). TWO CLASSES OF PROPERTIES ARE OF INTEREST:
 - (A) CHEMICAL REACTIVITY, AND THE RESPONSE TO VARIOUS SOLVATING AND SWELLING ENVIRONMENTS;
 - (B) PHYSICAL AND MECHANICAL PROPERTIES.

- 2. DEVELOPMENT OF METHODS, BOTH EXPERIMENTAL AND CONCEPTUAL, FOR CHARACTERIZATION OF THE STRUCTURES OF NATIVE AND REGENERATED CELLULOSES, WITH PARTICULAR EMPHASIS ON NATIVE STRUCTURES.
- 3. THE PATTERNS OF AGGREGATION OF CELLULOSE WITH OTHER CELL WALL POLYSACCHARIDES, MAINLY HEMI-CELLULOSES, THE INFLUENCE THESE MAY HAVE ON OUR MEASUREMENT OF ORDER IN CELLULOSE, AS WELL AS THEIR EFFECTS ON PROPERTIES.

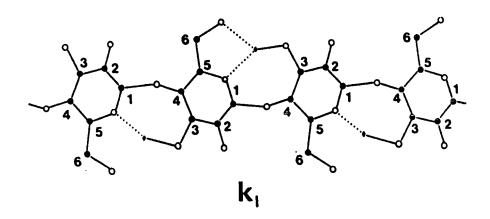

- 4. THE PATTERNS OF ORGANIZATION OF LIGNIN IN WOOD CELL WALLS, AND THEIR INFLUENCE ON FIBER STRUCTURE AND PROPERTIES.
- 5. THE PHOTOPHYSICS OF ELECTRONIC EXCITATION IN NATIVE LIGNIN, AND THE MANNER IN WHICH THE PATTERNS OF EXCITATION ARE ALTERED BY INTER-ACTION WITH MOLECULAR OXYGEN.

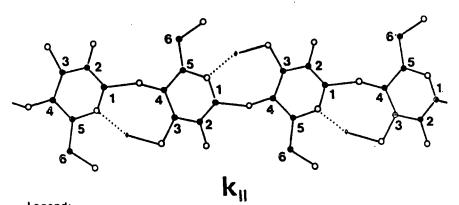
OVERVIEW

3288: FINE STRUCTURE OF WOOD PULP FIBERS


- 1. STUDIES ON POLYMORPHY IN NATIVE CELLULOSE
- 2. QUANTITATIVE ANALYSIS OF THE STRUCTURE OF PULP FIBERS ON THE BASIS OF RAMAN SPECTROSCOPY
- 3. PROTON NMR STUDIES OF THE EFFECTS OF REFINING ON THE MOBILITY OF BOUND WATER

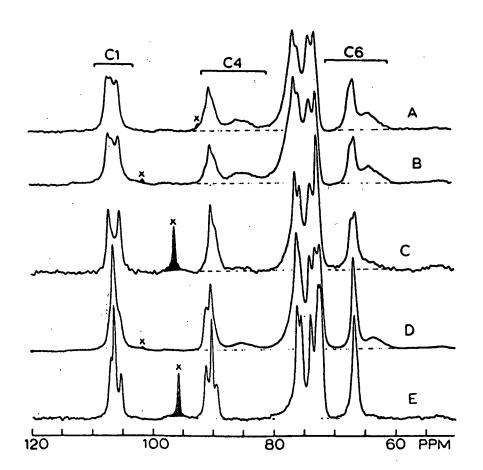
1


INFRARED AND RAMAN PROCESSES


s, en anno e

Raman spectra of <u>Valonia ventricosa</u> cellulose, <u>Acetobacter xylinum</u> cellulose, Microcrystalline cotton cellulose, and high-crystallinity cellulose **II**.

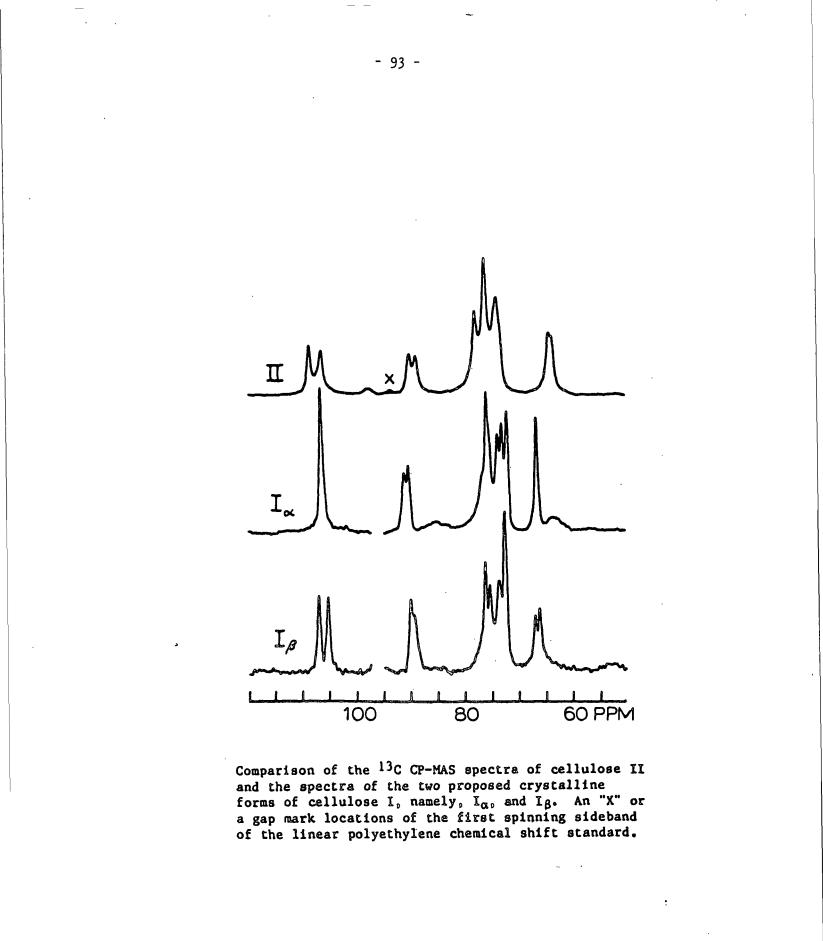
- 90 -

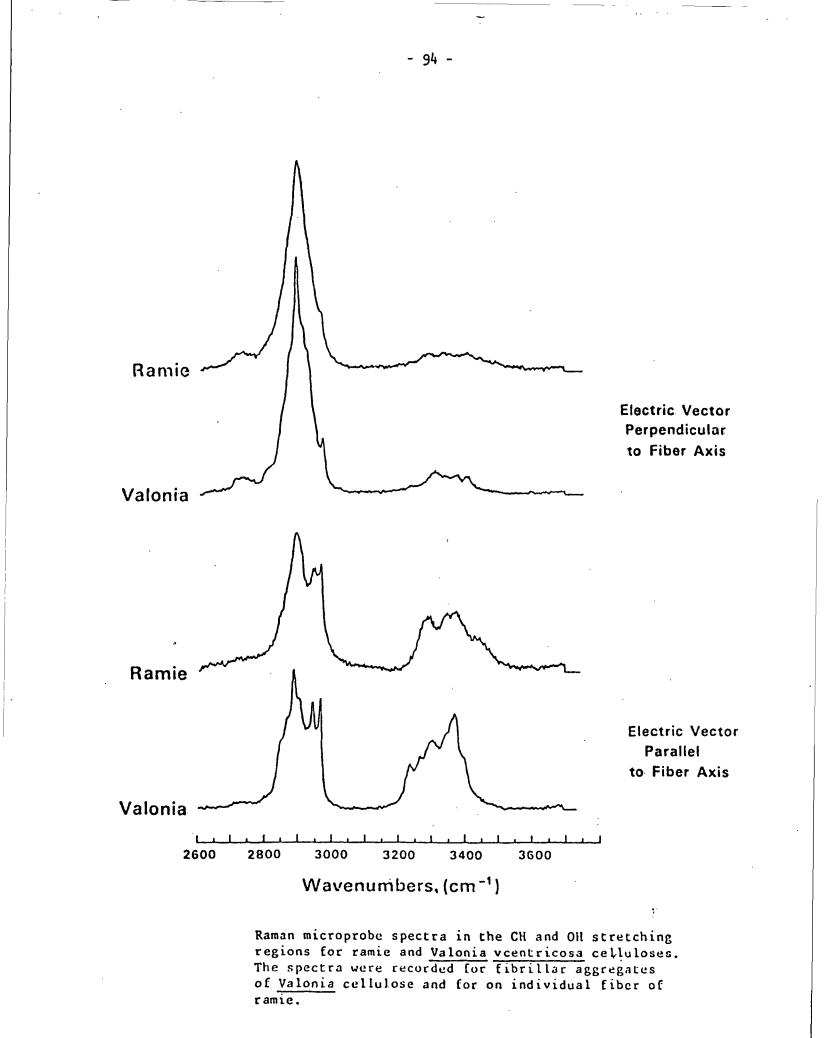


Legend:

Carbon
 Carbon
 O = Oxygen
 Hydrogen
 Covalent bond
 Hydrogen bond

Schematic representation of conformations $k_{\rm I}$ and $k_{\rm II\,\circ}$

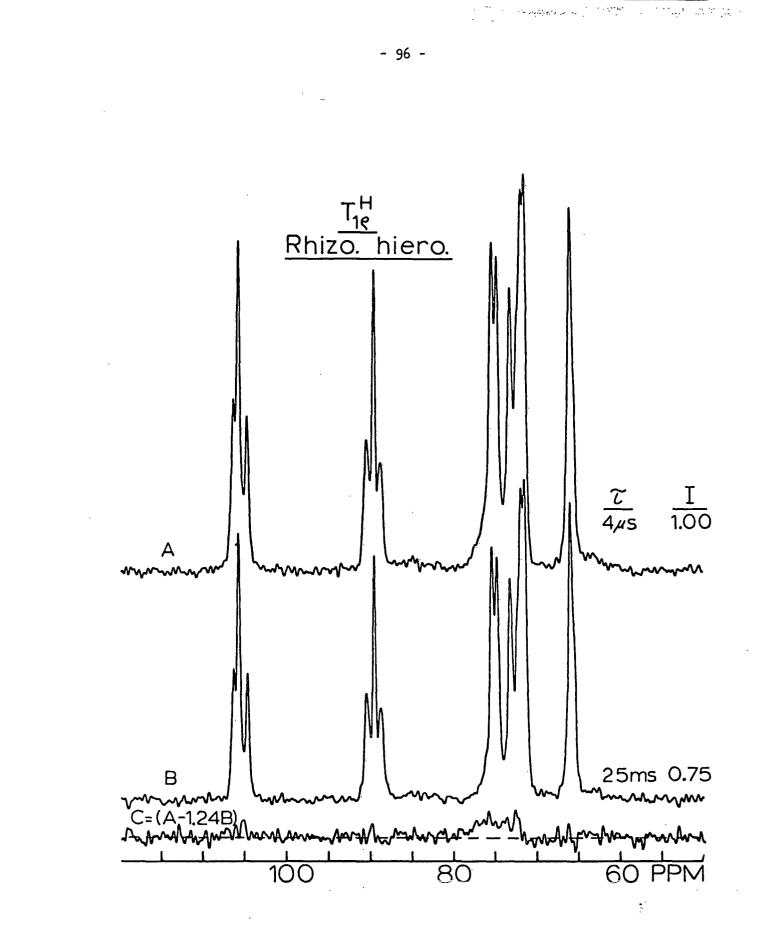

٢.



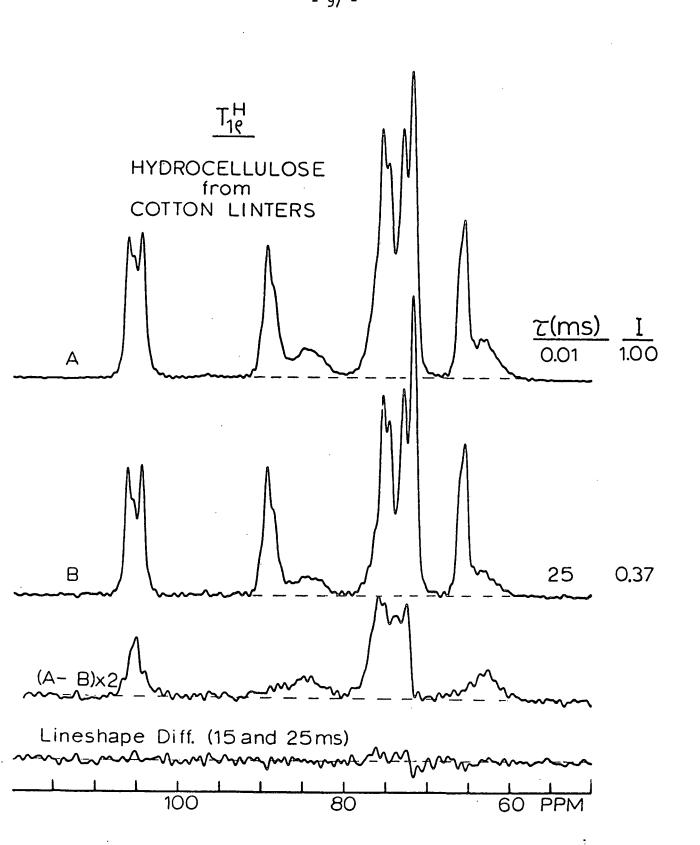
¹³C CP-MAS spectra of various celluloses: A -Ramie; B - cotton linters; C - regenerated cellulose I; D - Acetobacter xylinum cellulose; E - Valonia ventricosa cellulose. The "X" marks the small first spinning side band of linear polyethylene added as an internal standard; its centerband at 33.6 ppm is not included in this display.

C2,3,5

. . i


OVERVIEW

3288: FINE STRUCTURE OF WOOD PULP FIBERS


- 1. STUDIES ON POLYMORPHY IN NATIVE CELLULOSE
- 2. QUANTITATIVE ANALYSIS OF THE STRUCTURE OF PULP FIBERS ON THE BASIS OF RAMAN SPECTROSCOPY
- 3. PROTON NMR STUDIES OF THE EFFECTS OF REFINING ON THE MOBILITY OF BOUND WATER

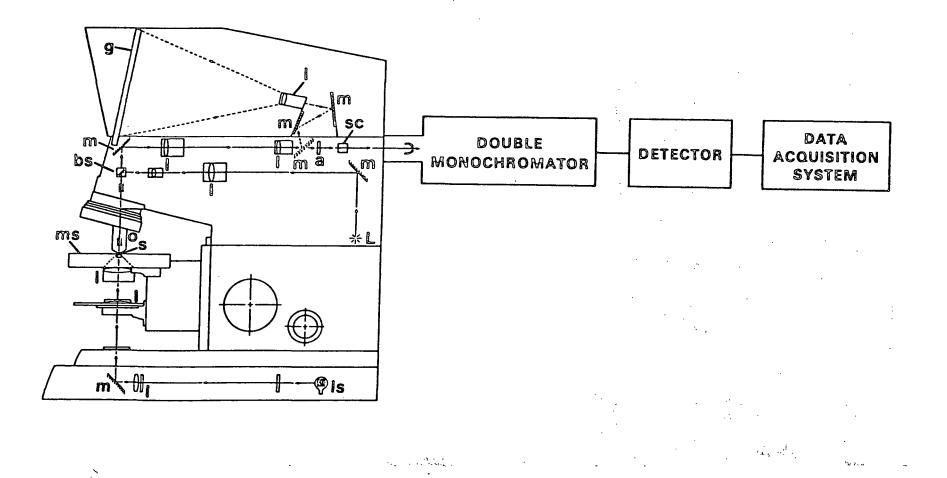
STUDIES ON CELLULOSE

- 1. VANDERHART SOLID STATE 13C NMR OF CELLULOSES
- 2. WILEY RAMAN MICROPROBE STUDIES OF FIBRILLAR CELLULOSES
- 3. ISOGAI REGENERATION AND MERCERIZATION OF DIFFERENT NATIVE CELLULOSES; AMORPHOUS CELLULOSES AND BLENDS WITH OTHER β 1-4 LINKED HOMOPOLYMERS
- 4. WOITKOVICH CELLULOSE DERIVATIVES DISPLAYING THE MEMORY EFFECT (HAYASHI); CELLULOSES DEGRADED BY WHITE ROT FUNGII (BLANCHETTE)
- 5. WHITMORE ALGAL AND BACTERIAL CELLULOSES, CULTURE AND DUETERATION; PREPARATION OF I_β Celluloses

CP-MAS spectra of the highly crystalline algal cellulose, Rhizoclonium hieroglyphium as a function of proton spin locking time.

CP-MAS spectra of hydrocellulose following the two indicated periods of proton spin locking; the CP time was 0.5 ms.

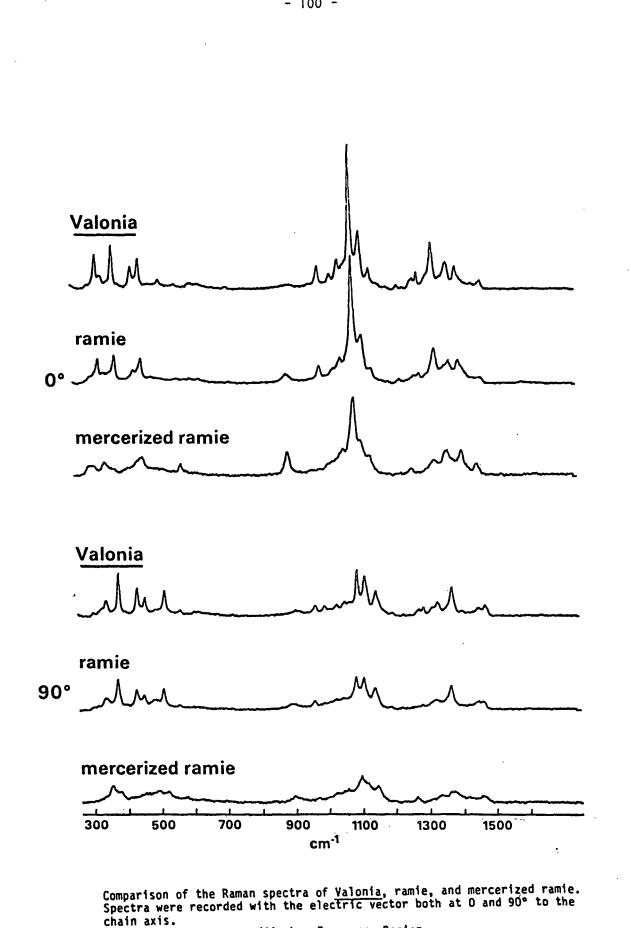
- 97 -


STUDIES ON CELLULOSE

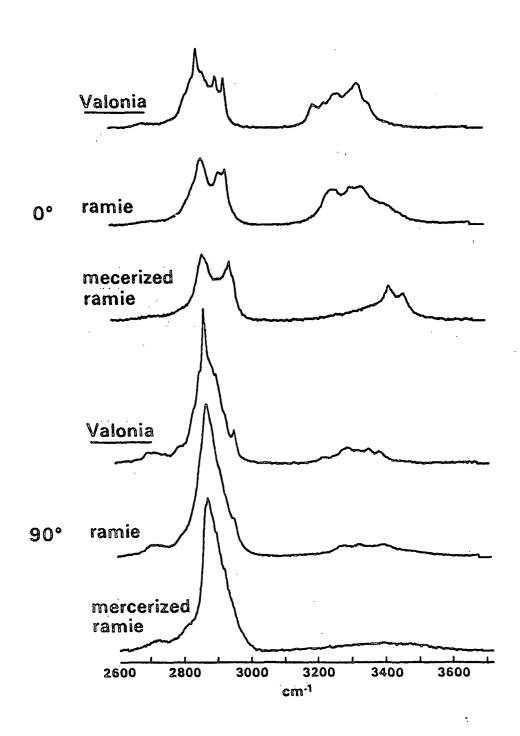
- 1. VANDERHART SOLID STATE 13C NMR OF CELLULOSES
- 2. WILEY RAMAN MICROPROBE STUDIES OF FIBRILLAR CELLULOSES
- 3. ISOGAI REGENERATION AND MERCERIZATION OF DIFFERENT NATIVE CELLULOSES; AMORPHOUS CELLULOSES AND BLENDS WITH OTHER \$1-4 LINKED HOMOPOLYMERS
- 4. WOITKOVICH CELLULOSE DERIVATIVES DISPLAYING THE MEMORY EFFECT (HAYASHI); CELLULOSES DEGRADED BY WHITE ROT FUNGII (BLANCHETTE)
- 5. WHITMORE ALGAL AND BACTERIAL CELLULOSES, culture and dueteration; preparation of I_{β} celluloses

and a second second

مر المراجع الم مراجع المراجع ال


٠,

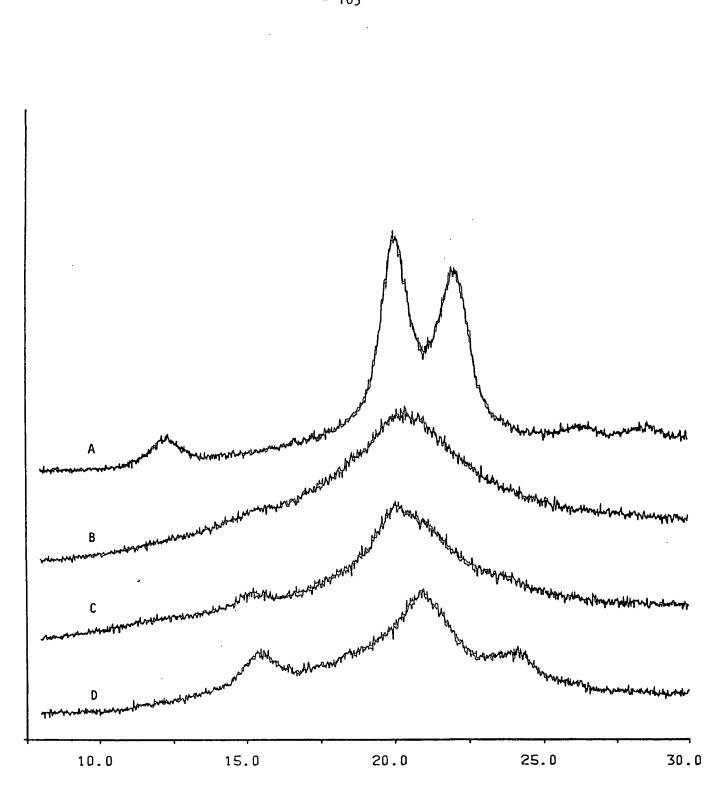
SCHEMATIC DIAGRAM OF RAMAN MICROPROBE SYSTEM


· • • - 66

S. 44 Sec. 4.

(A) Low Frequency Region

- 100 -

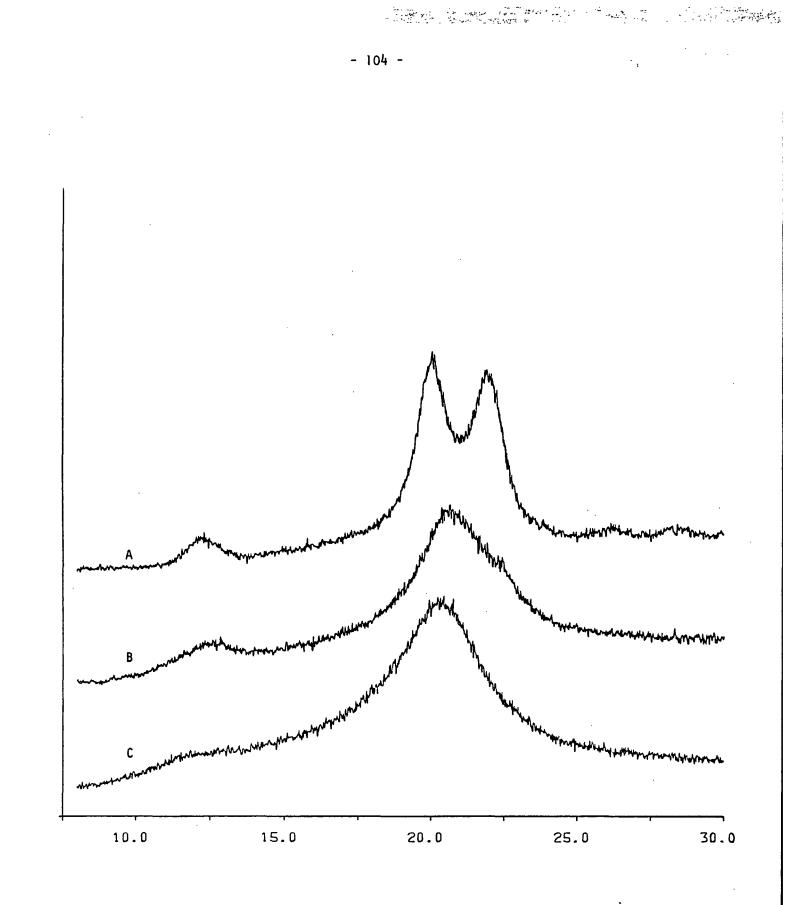

Comparison of the Raman spectra of <u>Valonia</u>, ramie, and mercerized ramie. Spectra were recorded with the electric vector both at \hat{O} and 90° to the chain axis.

(B) High Frequency Region

STUDIES ON CELLULOSE

- 1. VANDERHART SOLID STATE 13C NMR OF CELLULOSES
- 2. WILEY RAMAN MICROPROBE STUDIES OF FIBRILLAR CELLULOSES
- 3. ISOGAI REGENERATION AND MERCERIZATION OF DIFFERENT NATIVE CELLULOSES; AMORPHOUS CELLULOSES AND BLENDS WITH OTHER β1-4 LINKED HOMOPOLYMERS
- 4. WOITKOVICH CELLULOSE DERIVATIVES DISPLAYING THE MEMORY EFFECT (HAYASHI); CELLULOSES DEGRADED BY WHITE ROT FUNGII (BLANCHETTE)
- 5. WHITMORE ALGAL AND BACTERIAL CELLULOSES, CULTURE AND DUETERATION; PREPARATION OF I_{β} CELLULOSES

a series and the series of the


X-ray Diffractograms:

- A. High crystallinity Cellulose II
- B. Cellulose/Chitosan Blend
- C. Cellulose/Chitosan Blend 20% NaOH treated

1.

D. Chitosan - 20% NaOH treated

- 103 -

- X-ray Diffractograms: A. Cellulose II B. Cellulose/Chitosan Blend

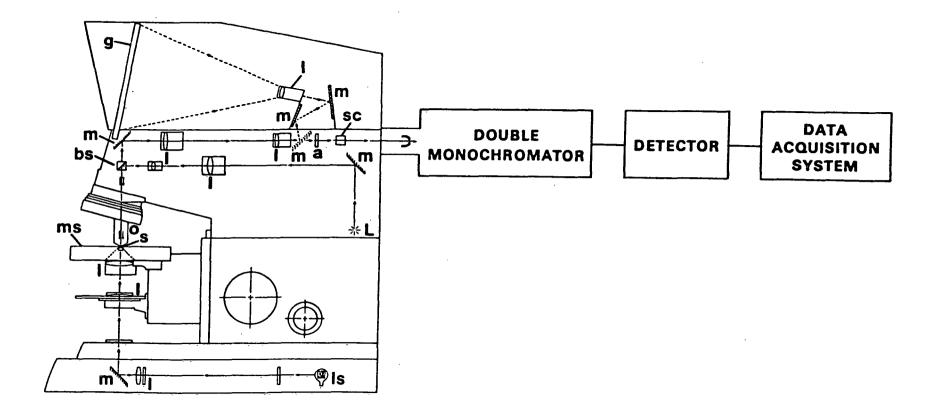
1.

C. Chitosan

STUDIES ON CELLULOSE

- 1. VANDERHART SOLID STATE 13C NMR OF CELLULOSES
- 2. WILEY RAMAN MICROPROBE STUDIES OF FIBRILLAR CELLULOSES
- 3. ISOGAI REGENERATION AND MERCERIZATION OF DIFFERENT NATIVE CELLULOSES; AMORPHOUS CELLULOSES AND BLENDS WITH OTHER β 1-4 LINKED HOMOPOLYMERS
- 4. WOITKOVICH CELLULOSE DERIVATIVES DISPLAYING THE MEMORY EFFECT (HAYASHI); CELLULOSES DEGRADED BY WHITE ROT FUNGII (BLANCHETTE)
- 5. WHITMORE ALGAL AND BACTERIAL CELLULOSES, CULTURE AND DUETERATION; PREPARATION OF I_{β} CELLULOSES

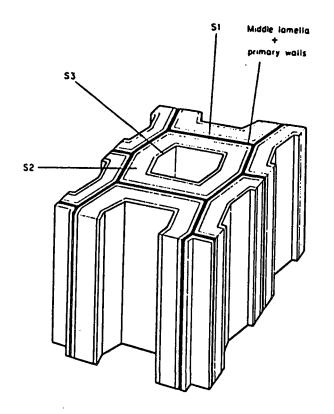
OVERVIEW


- 3521-2: RAMAN MICROPROBE STUDIES OF MOLECULAR Structure and Organization in the Native State of Woody Tissue
 - I. CURRENT MICROPROBE STUDIES
 - II. OPPORTUNITIES ARISING FROM THE NEW RAMAN MICROPROBE SYSTEM
 - III. STUDIES ON HIGHLY CRYSTALLINE ALGAE

CURRENT MICROPROBE STUDIES:

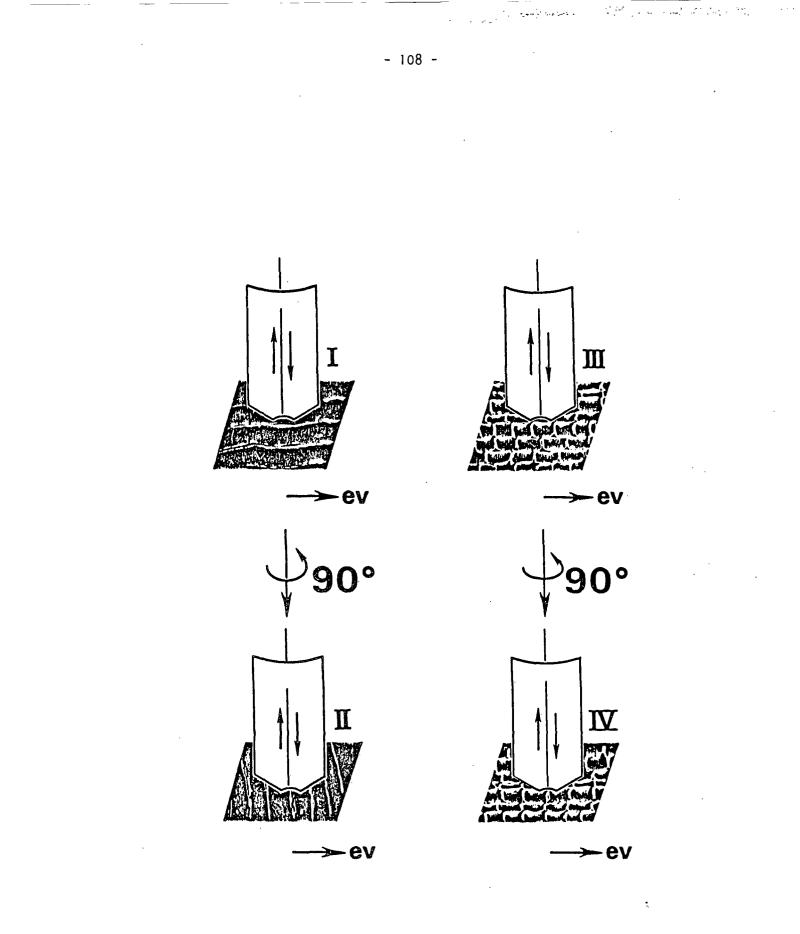
- A. MOLECULAR ORIENTATION OF LIGNIN AND CELLULOSE IN NATIVE AND DELIGNIFIED WOODY TISSUE
- B. COMPOSITIONAL VARIATION WITHIN CELL WALLS AND BETWEEN ADJACENT CELLS
- C. STUDIES ON <u>VALONIA</u> AND RAMIE CELLULOSES

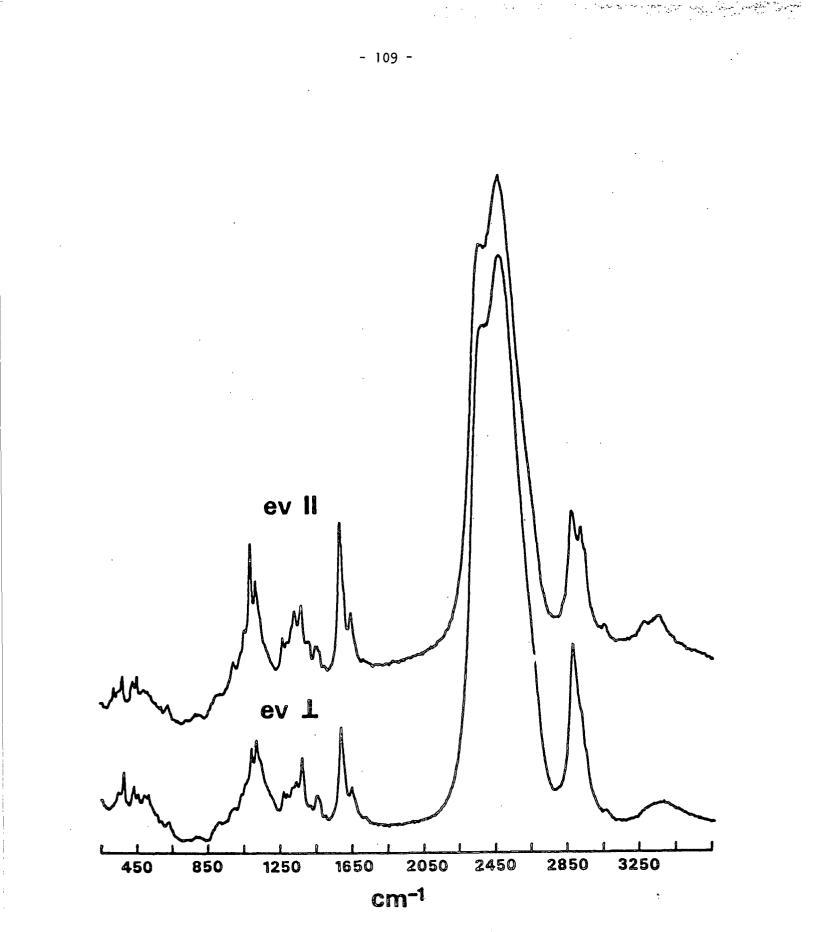
a second states and


1

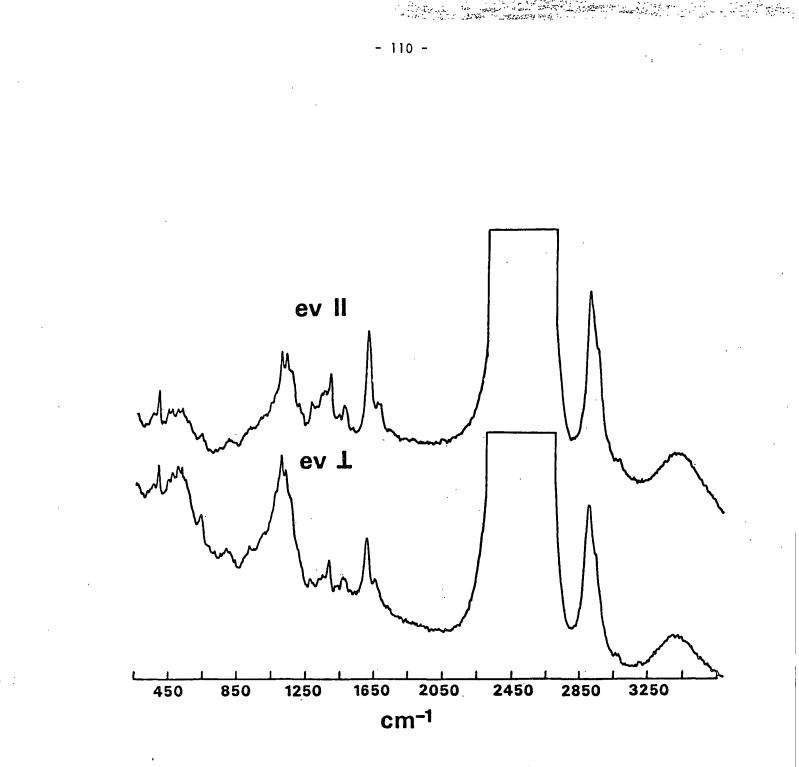
SCHEMATIC DIAGRAM OF RAMAN MICROPROBE SYSTEM

- 901


÷ .


CELL WALL SECTIONS

• • • • •


.

Scattering Geometries I - Electric vector (ev) direction parallel to the celí wall surface in a longitudinal section; II - ev perpendicular to the cell wall surface (LS); III - ev parallel to the cell wall surface in a cross section, and IV - ev perpendicular to the cell wall surface (CS).

POLARIZED RAMAN SPECTRA OF A SPOT LYING IN THE SECONDARY WALL - LONGITUDINAL SECTION (LS) OF SPRUCE.

Polarized Raman spectra of a spot lying in the secondary wall - cross section (CS) of spruce.

CONCLUSIONS

(SECONDARY WALL)

AROMATIC RINGS IN THE LIGNIN STRUCTURAL UNITS ARE OFTEN ORGANIZED PARALLEL TO THE PLANE OF THE SURFACE OF THE CELL WALL.

COMPOSITIONAL VARIATIONS IN THE DISTRIBUTION OF CELLULOSE AND LIGNIN ARE DETECTED.

SUCH DIFFERENCES IN COMPOSITION ARE MORE PROMINENT BETWEEN THE WALLS OF DIFFERENT CELLS THAN WITHIN A PARTICULAR CELL WALL.

LIGNIN & MICROPROBE STUDIES

- 1. ASSESSING NEW SYSTEM
- 2. AGARWAL EFFECT OF MOLECULAR OXYGEN; NEW EXPERIMENTAL METHODS
- 3. BOND SEARCH FOR LIGNIN PRECURSURS IN TISSUE CULTURE CELL WALLS; CORRELATIONS BETWEEN RAMAN BANDS OF LIGNIN WITH IR BAND AND KLASSON LIGNIN IN GROUNDWOOD AND PARTIALLY DELIGNIFIED GROUNDWOOD

المراجعة والمعروفة المحرفة الم

1

.

1.

. . . .

COMPARISON OF RAMAN MICROPROBE SYSTEMS

CURRENT SYSTEM:

Source -		CONTINUO	US	ARGON	ION	LASER	
SPECTROMETER -	-	DOUBLE M	ONO	CHROMA	TOR	WITH	

- COUPLED GRATINGS, DESIGNED FOR SINGLE CHANNEL DETECTION
- DETECTOR COOLED PHOTOMULTIPLIER

NEW SYSTEM:

Sources -	Solid state/dye laser system
	CAPABLE IN THE SUB-PICOSECOND
	PULSE RANGE; PRESENT CONTINUOUS
	LASER SYSTEMS

- SPECTROMETER TRIPLE MONOCHROMATOR OPTIMIZED FOR MULTICHANNEL DETECTION
- DETECTORS DIODE ARRAY DETECTORS OPERABLE CONTINUOUSLY OR IN GATED MODELS

LIGNIN & MICROPROBE STUDIES

- 1. ASSESSING NEW SYSTEM
- 2. AGARWAL EFFECT OF MOLECULAR OXYGEN; NEW EXPERIMENTAL METHODS
- 3. BOND SEARCH FOR LIGNIN PRECURSURS IN TISSUE CULTURE CELL WALLS; CORRELATIONS BETWEEN RAMAN BANDS OF LIGNIN WITH IR BAND AND KLASSON LIGNIN IN GROUNDWOOD AND PARTIALLY DELIGNIFIED GROUNDWOOD

FUTURE WORK

- 1. QUESTIONS REGARDING NATURE OF CRYSTALLINITY IN WOOD CELLULOSE
- 2. AGGREGATION STUDIES AND NATURE OF AMORPHOUS CELLULOSES AND CELLULOSE/HEMICELLULOSE BLENDS
- 3. MICROPROBE MAPPING OF WOOD AND CHEMICALLY TREATED WOOD
- 4. PHOTOPHYSICS OF LIGNIN

OPPORTUNITIES ARISING FROM THE NEW RAMAN MICROPROBE SYSTEM

- A. MAPPING OF BOTH ORIENTATIONAL AND COMPOSITIONAL VARIATIONS IN NATIVE WOODY TISSUE
- B. MAPPING OF THE EFFECTS OF DELIGNIFICATION REACTIONS ON LIGNIN DISTRIBUTION ACROSS THE CELL WALLS
- C. TIME RESOLVED STUDIES TO SEPARATE RAMAN SPECTRA FROM FLUORESCENCE, AND TO STUDY THE RISE AND DECAY OF ELECTRONIC EXCITATION
- D. THE POSSIBILITY OF AN ON-LINE LIGNIN DETECTOR

- 113 -

•• •• •

A LAND A MARKED A

1

Project 3474

IMPROVED PROCESS FOR BLEACHED PULP

Low Lignin Pulps

- T. J. McDonough - N. S. Thompson

•

٢.

and the second of the second second

Nonchlorine Bleaching

- 114 -

PROJECT 3474 IMPROVED PROCESS FOR BLEACHED CHEMICAL PULP

PROJECT 3474

- MODEST RECENT EFFORT
- DATA ANALYSIS PENDING
- OXYGEN DELIGNIFICATION ENHANCEMENT

PROJECT 3474 RELATED STUDENT ACTIVITY

KINETICS AND MODELLING OF KRAFT PULPING - M. BURAZIN, PH.D., 1985 - D. BOYLE, M.S., 1987 - K. SIME, M.S., 1986 - J. ROGERS, M.S., 1986

KINETICS AND MIXING EFFECTS IN BLEACHING - S. PUGLIESE, PH.D., 1987 - B. BURNS, M.S., 1986

HARDWOOD PULPING BEHAVIOR AND PULP PROPERTIES - T. NIEMI, SPECIAL STUDENT, 1986

PROJECT 3474 PLANS

- DATA ANALYSIS AND MODELLING
- LIMITED EXPERIMENTS TO COMPLETE MODELS

2

• REPORTING

PROJECT 3474

OXYGEN DELIGNIFICATION ENHANCEMENT

OBJECTIVE:

MODIFY LIGNIN IN UNBLEACHED PULP TO ENHANCE SUBSEQUENT OXYGEN BLEACHING

NITROGEN OXIDES

OXIDE	PHYSICAL FORM	M.P.,°C
NO	colorless gas	-163.6
N ₂ 0	colorless gas	-90.8
N ₂ 05	white crystals	30
NO3	blue gas	decomp.
NO2,N204	yellow liquid, brown gas	-11.2
N203	red brown gas, blue liquid	-102

•

1.

- 116 -

· · · · · · · · · · · ·

PREVIOUS WORK

RADICALS IN PULP, DURING BLEACHING RADICAL CHAIN REACTION THROUGH CELLULOSE INHIBITION REACTIONS CONCLUSIONS

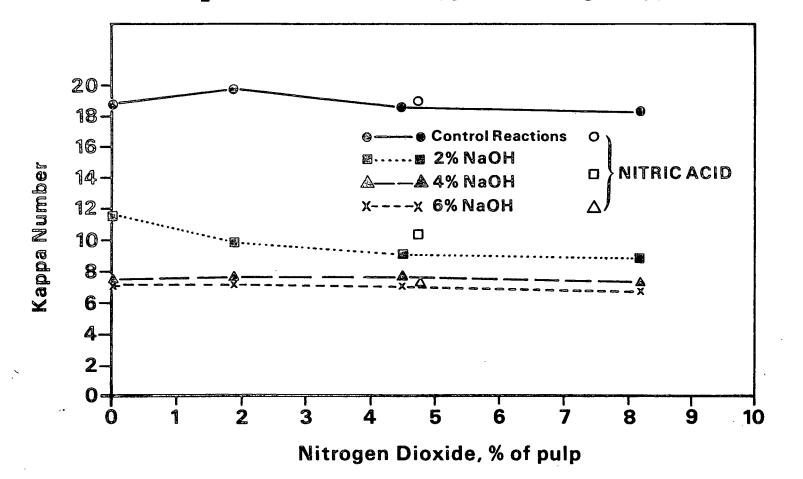
and the stand of the second second

1.

MODIFICATION OF LIGNIN

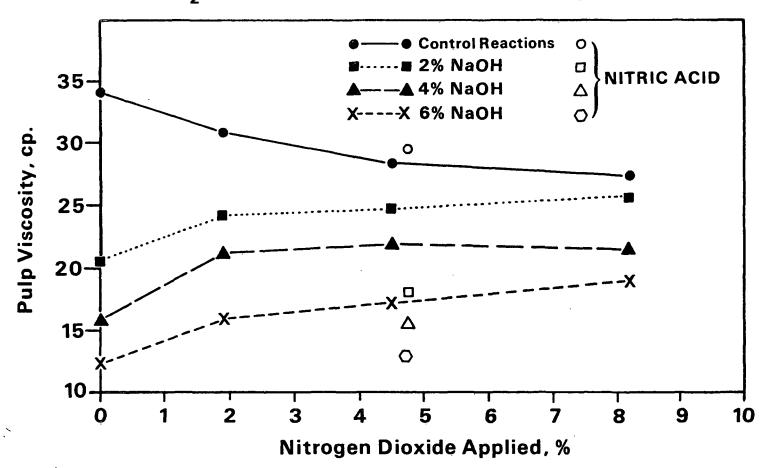
ALIPHATIC

AROMATIC MODIFY DESTROY


REAGENTS EMPLOYED

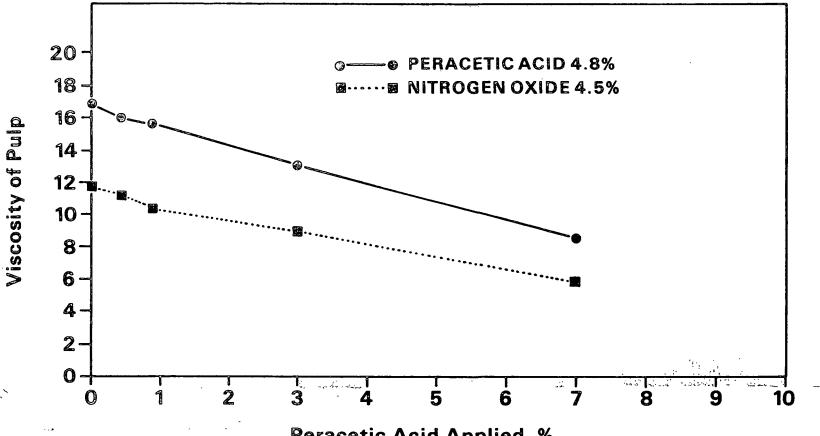
PEROXY ACETIC ACID NITROGEN OXIDE

CONCLUSIONS


POTENTIAL OF NITROGEN OXIDES

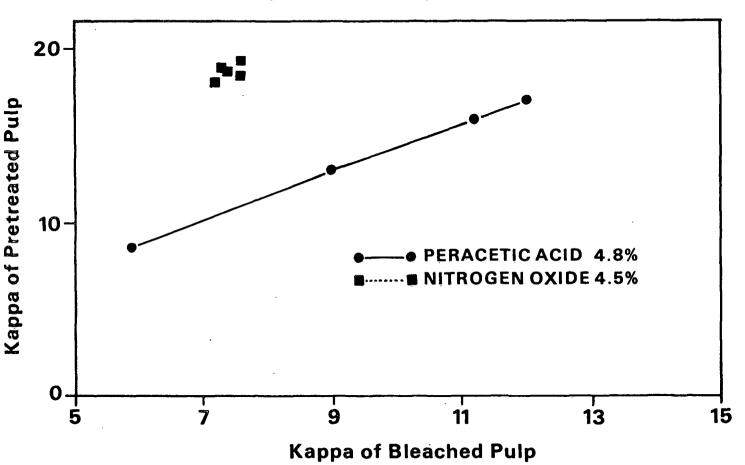
MECHANISM OF STABILIZATION

The Effect of NO₂ Pretreatments on Oxygen Bleaching-Kappa Content

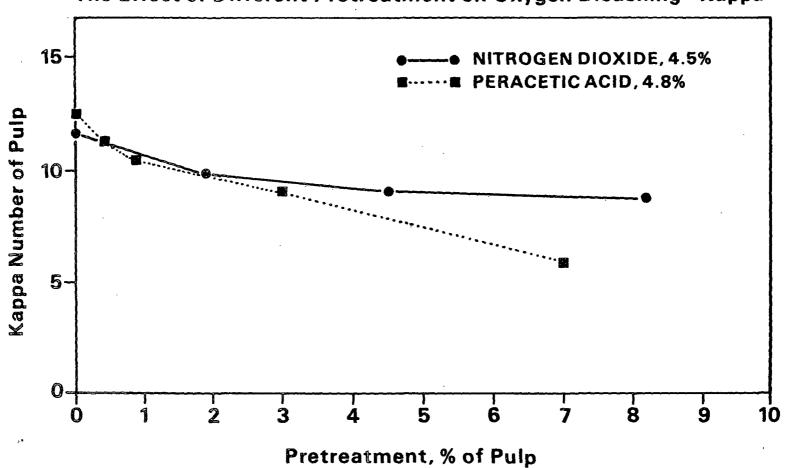

117 -

The Effect of NO₂ Pretreatments on Oxygen Bleaching–Pulp Viscosity

118

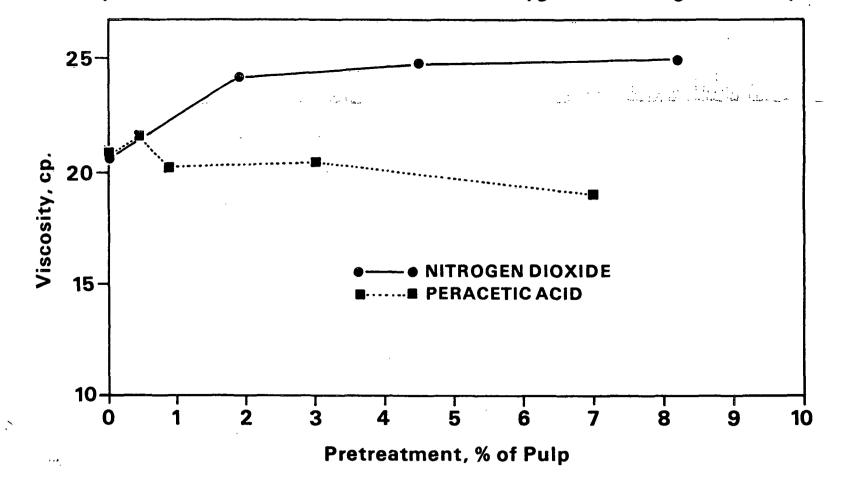

ł.

The Effect of Peracetic Acid Pretreatment on Bleached Pulp-Viscosity


Peracetic Acid Applied, %

120

The Effect of Pretreated Kappa on Bleached Kappa


- 121

The Effect of Different Pretreatment on Oxygen Bleaching—Kappa

122 -

1

Comparison of Different Pretreatments on Oxygen Bleaching–Viscosity

123 -

Project 3524

FUNDAMENTALS OF BRIGHTNESS STABILITY

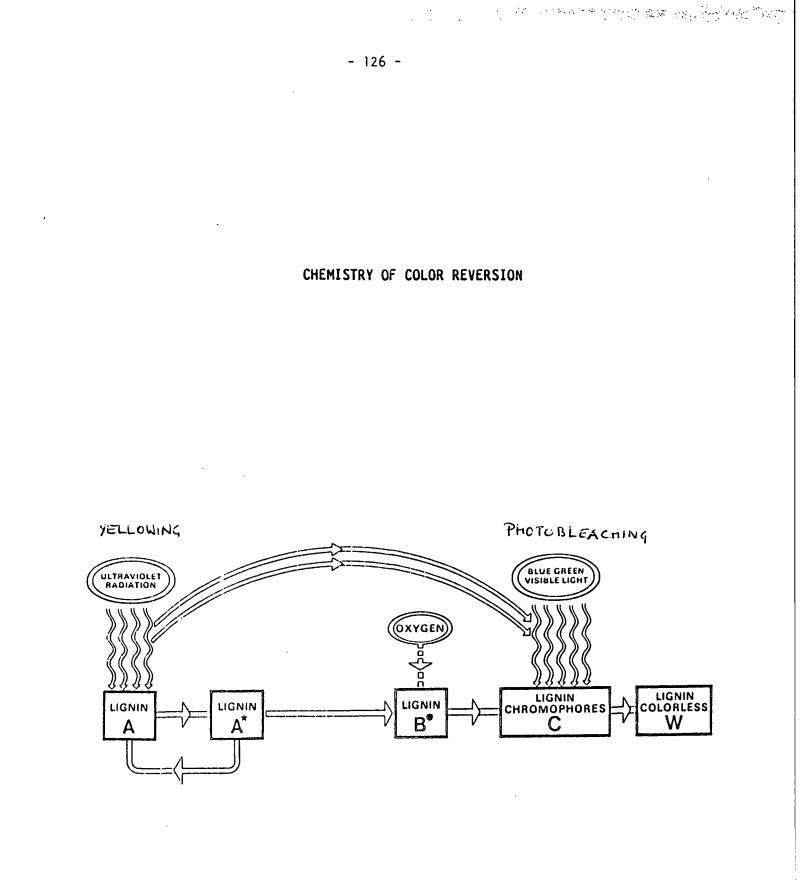
W. F. W. Lonsky

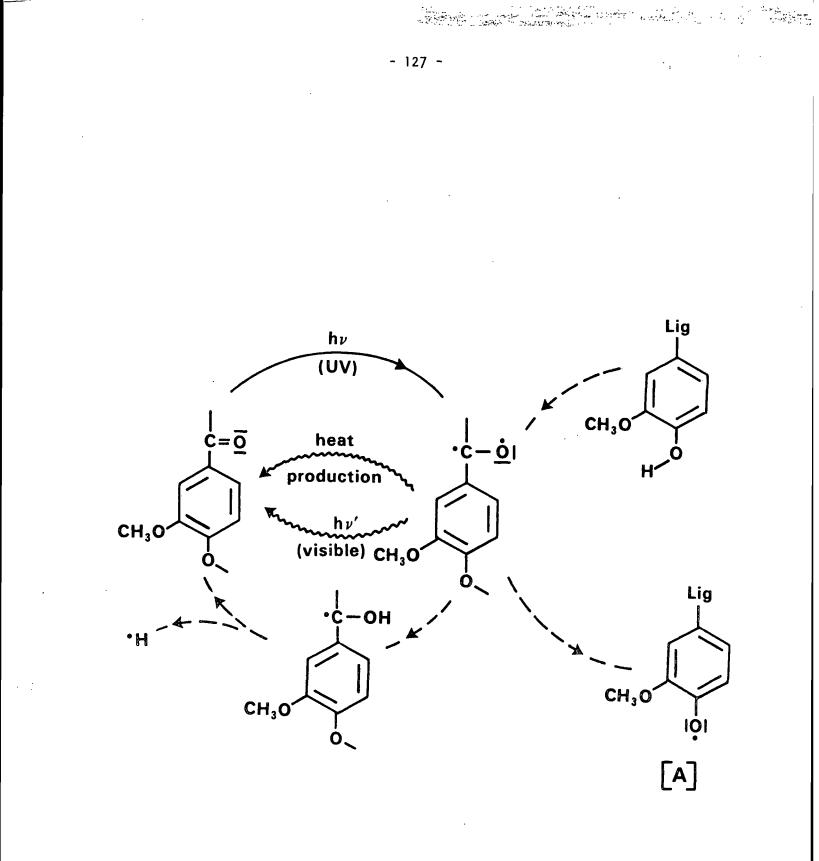
. . . .

1.

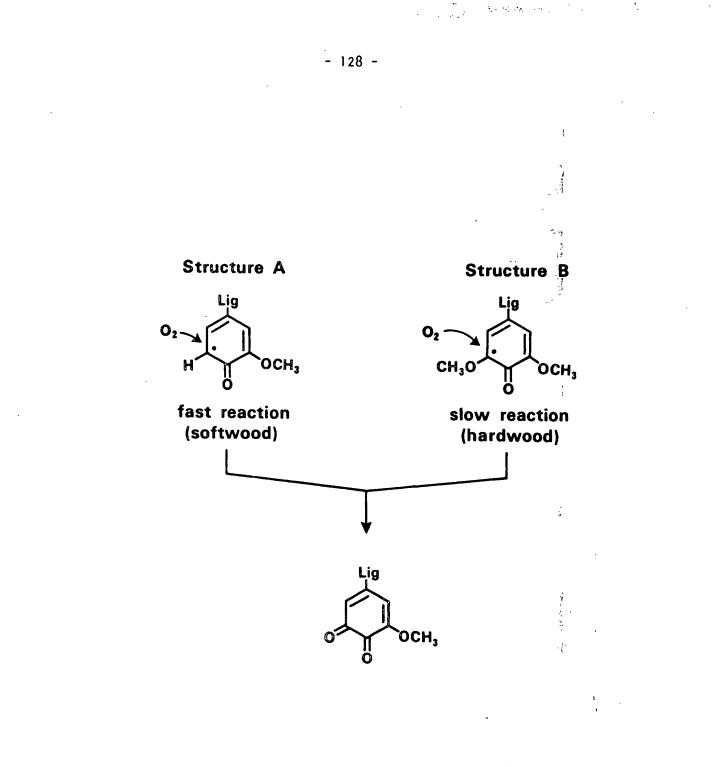
* 1. j.

FUNDAMENTALS OF BRIGHTNESS STABILITY

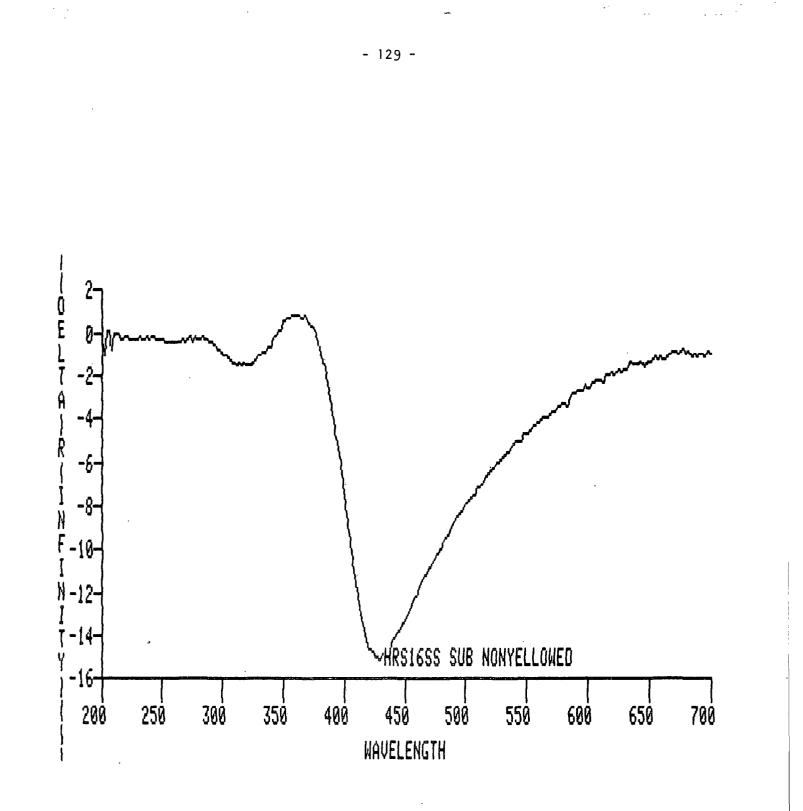

OBJECTIVE:


ESTABLISH MECHANISM FOR BRIGHTNESS LOSS IN HIGH YIELD PULPS

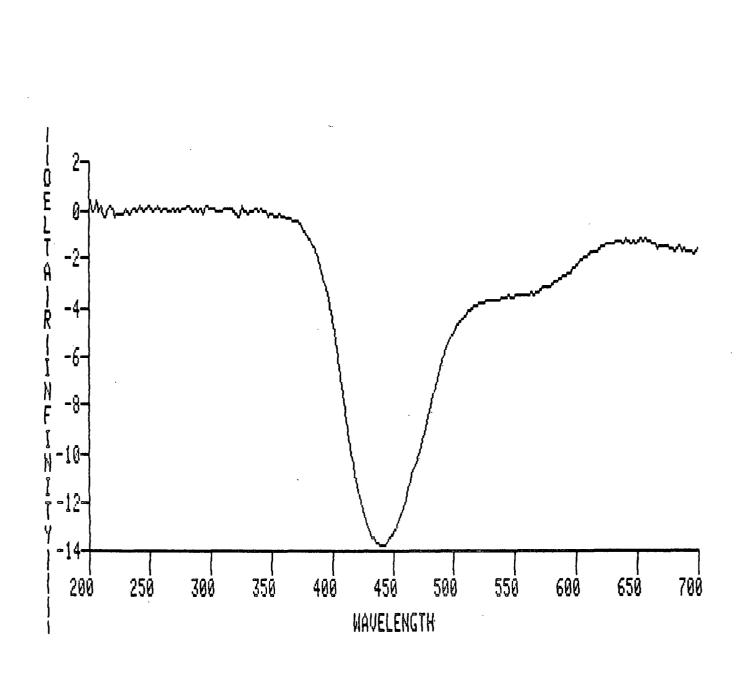
- OBSERVATIONS LEADING TO A PROPOSED MECHANISM
- ADDITIONAL EVIDENCE FOR THE MECHANISM
- STUDIES ON THE MECHANISM


a the state of the s

1

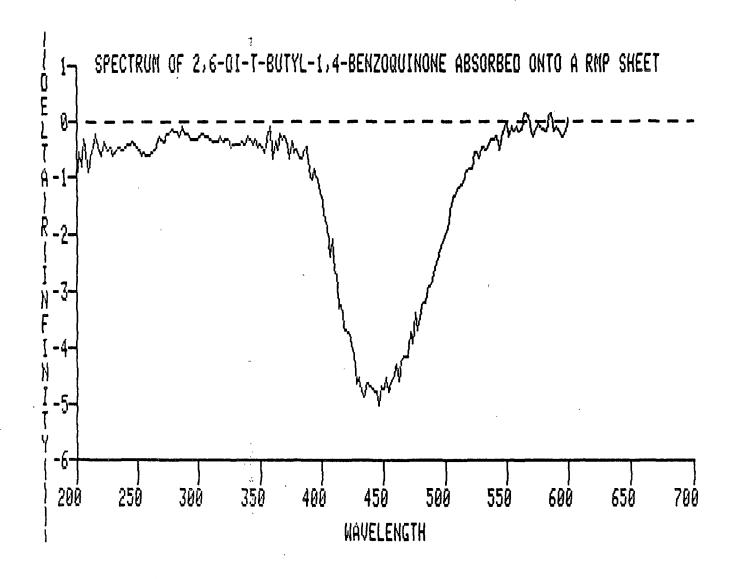


The Photochemical Induction Cycle

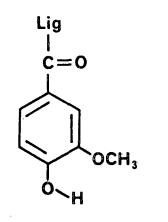

١.

Softwoods and hardwoods generate the very same chromophore

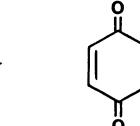
White spruce RMP sheet: The absorption band caused by yellowing with sunlight

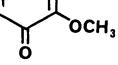

•

White spruce RMP sheet: The absorption band of 3,5-di-tert.butyl-o-benzoquinone

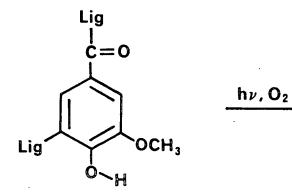

- 130 -

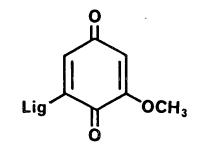
- .* · `




White spruce RMP sheet: The absorption band of 2,6-di-tert.butyl-p-benzoquinone

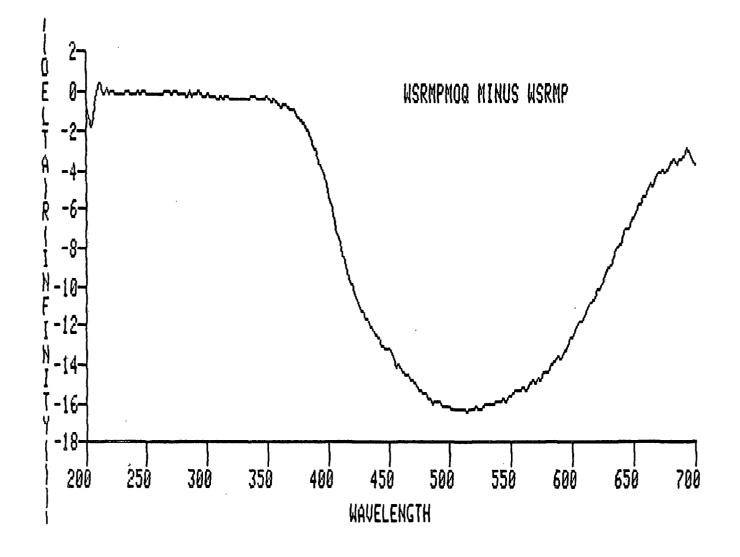
2


۰.



· • · ·

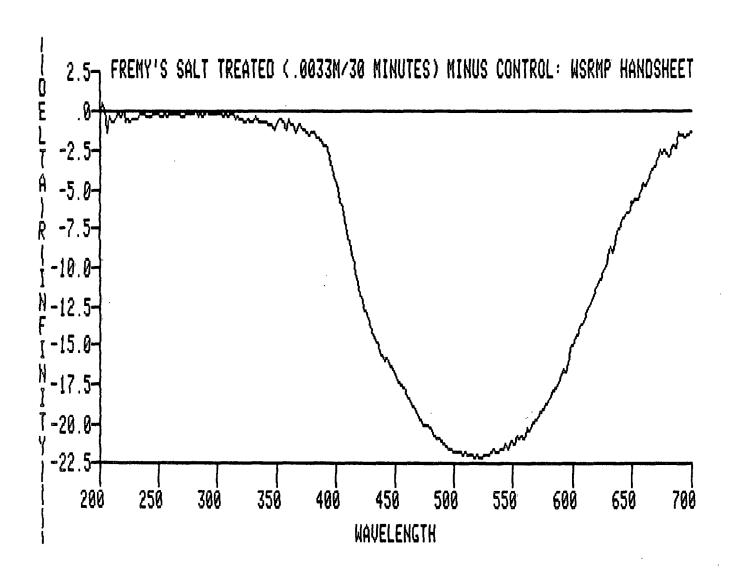
sublimation


linked to lignin

•

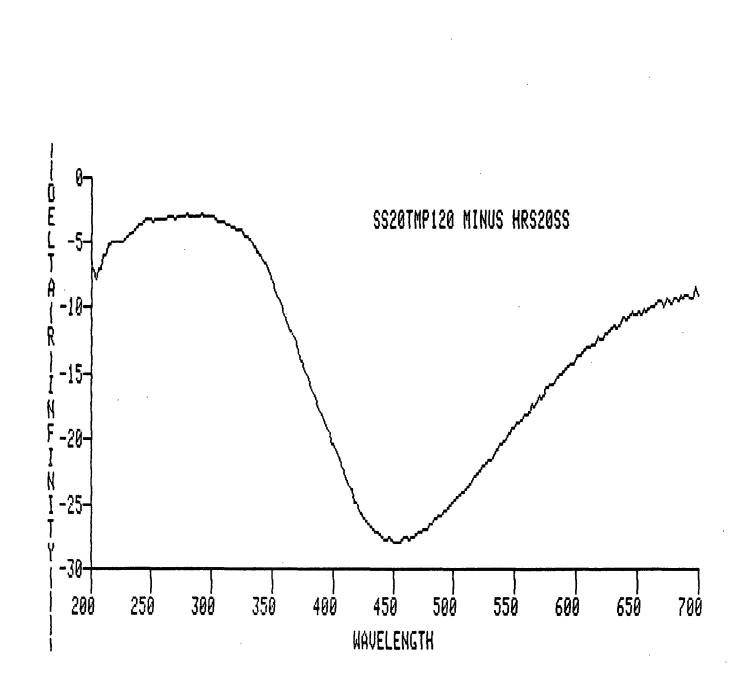
1.

What is the likelihood for p-quinones to be major contributors to the color?


 $h\nu$, O_2

White spruce RMP sheet: The absorption band of 2-methoxy-o-benzoquinone

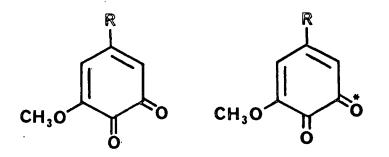
•


- i

White spruce RMP sheet: The absorption band of o-benzoquinones formed from the lignin in the sheet by treatment with Fremy's salt. Theoretically, phenolic guaiacyl units should be converted to 3-methoxy-o-benzoquinonoid structures.

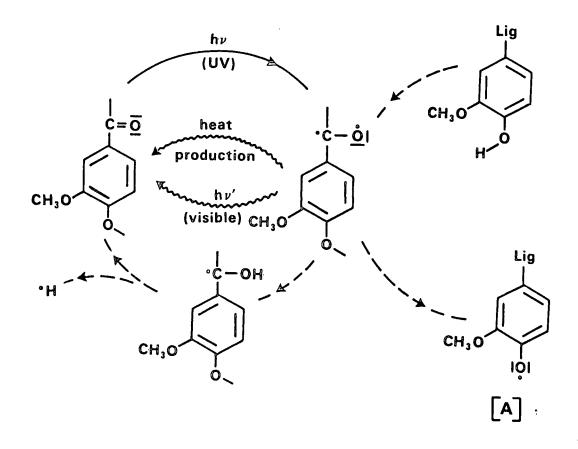
1

- 134 -

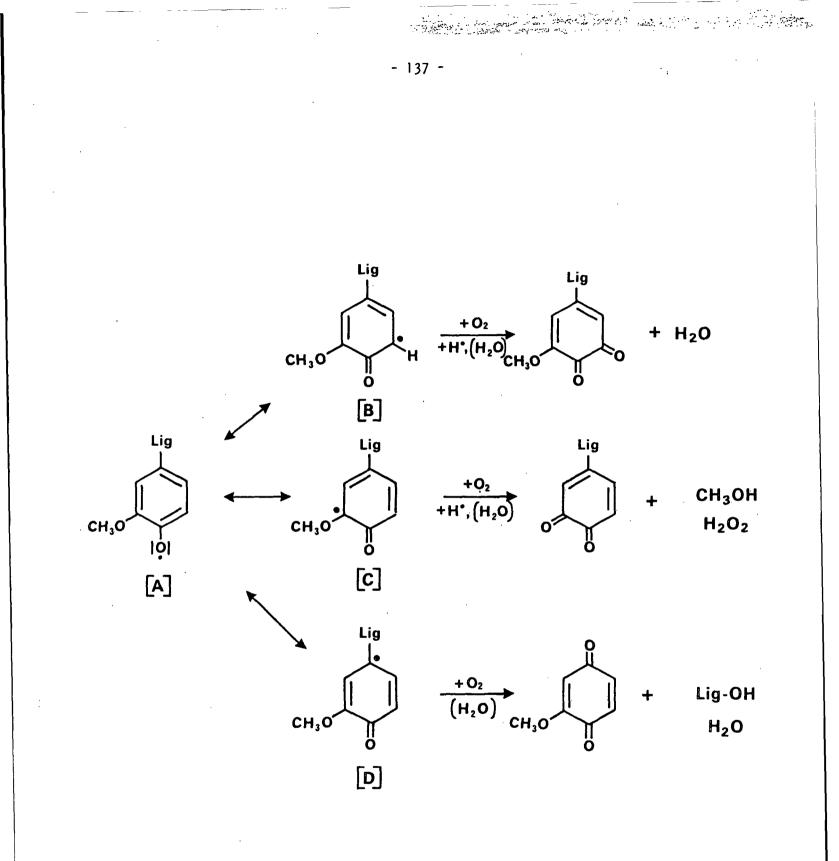


White spruce RMP sheet: The absorption band of o-quinones produced by sunlight (determined through treatment with trimethylphosphite)

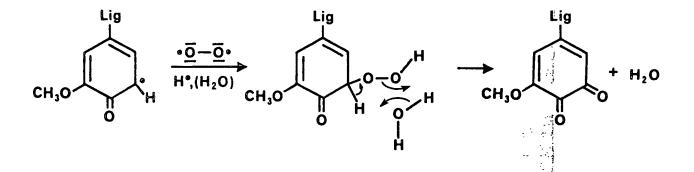
- 135 -


:

1.



(Pat Medvecz; MS thesis)


Supportive Model Studies

The Photochemical Induction Cycle

The various products formed in the "dark reaction"

Humidity assisted rearrangement

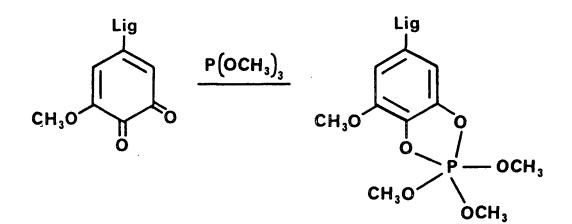
FUTURE WORK

• EVIDENCE FOR PROPOSED YELLOWING MECHANISM

• BRIGHTNESS STABILIZATION


EVIDENCE FOR PROPOSED YELLOWING MECHANISM

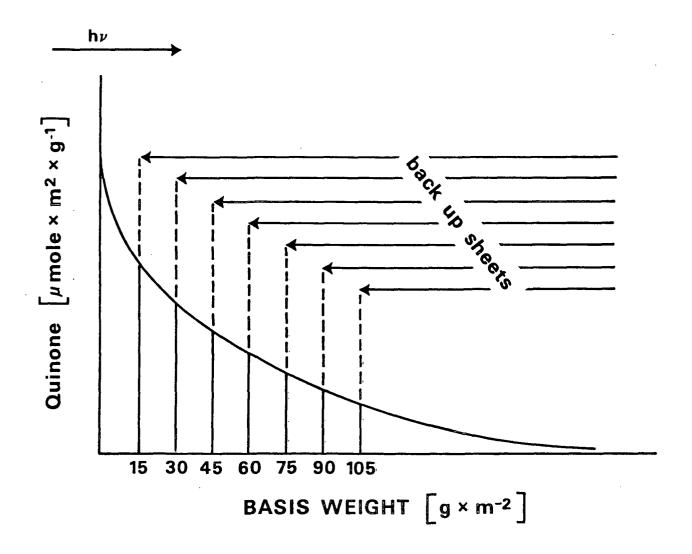
- INCORPORATION OF 18-OXYGEN GAS (IR, MS)
- 0-QUINONE SPECIFIC REACTIONS (P-31 NMR) - PHOSPHITE ESTERS
 - DIELS-ALDER REACTIONS
- QUINONE CONCENTRATION PROFILE ALONG CALIPER - PHOSPHITE ESTERS (STEM, P ANALYSIS)
 - VARIATION OF BASIS WEIGHT
 - VARIATION OF EXPOSURE TIME
- BY-PRODUCT ANALYSIS
 - METHANOL
 - 2-METHOXY-P-BENZOQUINONE


الأرغام والمتجدوريهان والاساسية م

14

.

18-Oxygen Studies



(Stuart Lebo, PhD thesis)

An "ortho-quinone specific" reagent

• •

1

Phosphor analysis of yellowed and trialkyl phosphite treated sheets should provide information on concentration and concentration gradient.

. .

.

1.

·

. •

.

BRIGHTNESS STABILIZATION

• NEW BLEACHING METHODS - CONTROL PHENOLIC HYDROXYL INCREASE - PHENOL BLOCKING REACTIONS

• ANTIOXIDANTS

- 1

ą

ł

.1

• FLUORESCENT DYES

NaBO3 • 4 H2O

NaBO2 • H2O2 • 3 H2O

 $CH_3CO(OH) + [H_2O_2] \iff CH_3CO(OOH) + H_2O$

Peracetic acid formed in situ

٢.

- 141 -

an na sana na sana sa sa sa sa sanggeget na sang pengang sa sa sang pengang sa s Sa sa sa sa sa sa sa sa Project 3566

SEPARATION OF STRONG, INTACT FIBERS

T. J. McDonough

÷.,

. .

PROJECT 3566 STAFF

Project Leaders Tom McDonough Salman Aziz

TECHNICAL STAFF Harry Grady Amy Malcolm Kristie Rankin

OBJECTIVE

MINIMIZE THE CHANGES IN FIBER STRENGTH AND GEOMETRY THAT ACCOMPANY FIBER SEPARATION

MEDIUM RANGE GOAL

IDENTIFY FACTORS GOVERNING RETENTION OF FIBER STRENGTH, INTEGRITY AND DEVELOP CONTROL METHODS

Manyasata and the second se

•

- 144 -

PLAN

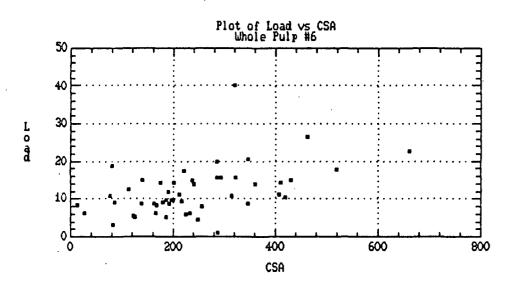
0	DETERMINE	FIBER LENGT	H AND STRENGTH	I IN WOOD
	AND IN HIG	GH YIELD PUL	P MADE FROM IT	ſ

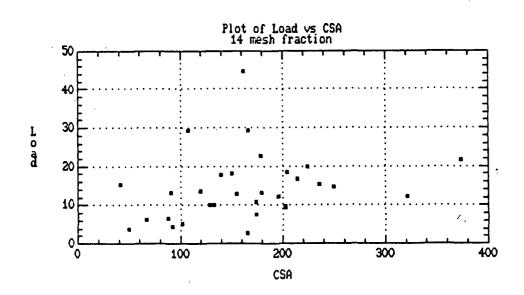
• DETERMINE RELATIONSHIP OF STRENGTH AND LENGTH LOSSES TO PULPING VARIABLES

PINE SINGLE FIBER PROPERTIES AND THEIR STANDARD ERRORS

PULP	LOAD,	AREA.	STRESS, <u>kg/mm2</u>	MODULUS, <u>KG/MM</u> 2
RMP	32 <u>+</u> 2	580 <u>+</u> 35	59 ± 4	1100 ± 135
CMP	34 ± 2	590 ± 30	59 <u>+</u> 2	1350 <u>+</u> 80
BK*	15 ± 1	250 ± 20	62 <u>+</u> 3	580 <u>+</u> 30
UBK	22 <u>+</u> 3	250 <u>+</u> 20	86 <u>+</u> 9	1040 ± 140

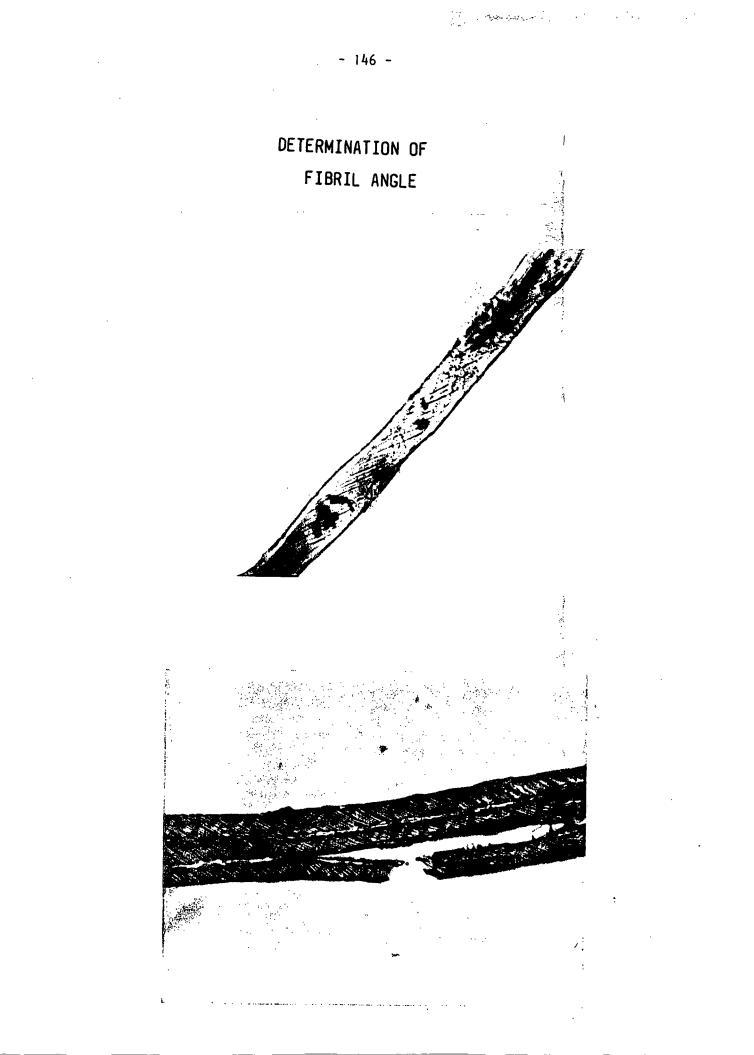
* COMMERCIAL BLEACHED KRAFT

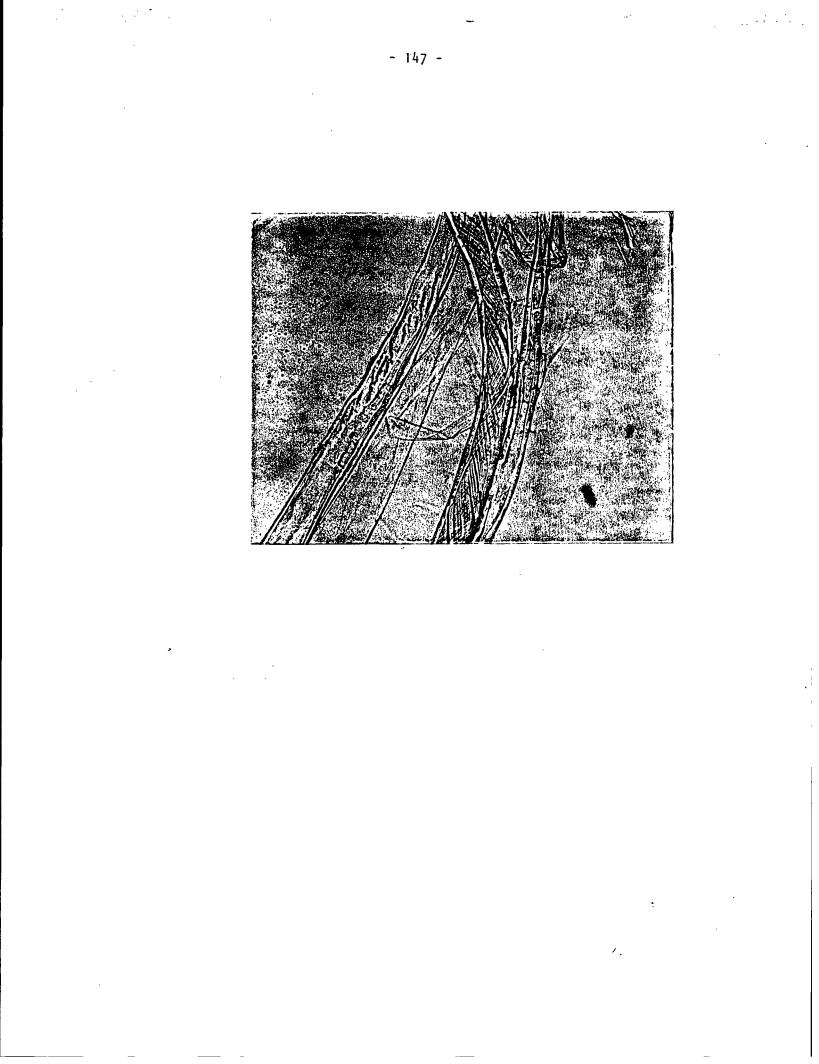

.


SPRUCE SINGLE FIBER PROPERTIES AND THEIR STANDARD ERRORS

Pulp	Mesh Size	LOAD, G	AREA, MM2	STRESS, KG/MM2	MODULUS, <u>kg/mm</u> 2_
RMP	14	14 ± 2	165 <u>+</u> 15	100 <u>+</u> 15	1930 <u>+</u> 340
	28	12 ± 1	170 <u>+</u> 10	90 <u>+</u> 15	1690 <u>+</u> 230
	48	10 <u>+</u> 1	150 <u>+</u> 15	90 <u>+</u> 20	2040 <u>+</u> 425
CMP	14	12 <u>+</u> 1	200 <u>+</u> 10	60 <u>+</u> 4	850 <u>+</u> .60
	28	13 <u>+</u> 2	195 <u>+</u> 15	65 <u>+</u> 5	640 <u>+</u> 50
	48	9 <u>*</u> 1	180 <u>+</u> 10	55 <u>+</u> 5	6ĺO 🛬 50

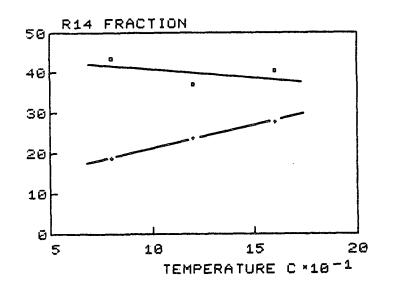
SPRUCE SINGLE FIBER PROPERTIES AND THEIR STANDARD ERRORS: ANOMALOUS FRACTIONATION EFFECTS


Pulp	FRACTION	LOAD, G	AREA.	STRESS, <u>kg/mm2</u>	MODULUS, <u>kg/mm</u> 2_
RMP	WHOLE	12 ± 1	240 <u>+</u> 20	72 <u>+</u> 13	1410 <u>+</u> 230
	14 Mesh	14 ± 2	165 ± 15	100 <u>+</u> 14	1930 <u>+</u> 340
CMP	WHOLE	14 ± 1	155 <u>+</u> 10	91 <u>+</u> 6	1270 <u>+</u> 130
	14 MESH	12 ± 1	200 <u>+</u> 10	58 ± 4	850 <u>+</u> 60



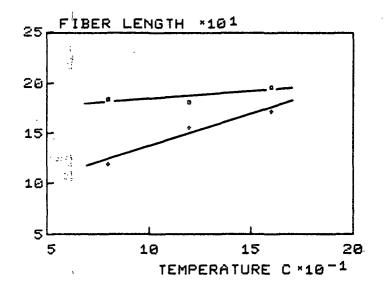
- 145 -

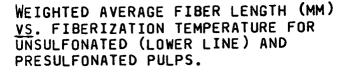
۰,

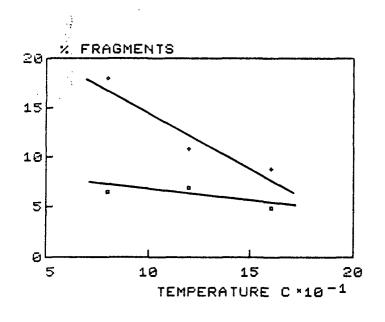


RELATING FIBER PROPERTIES TO FIBERIZATION VARIABLES

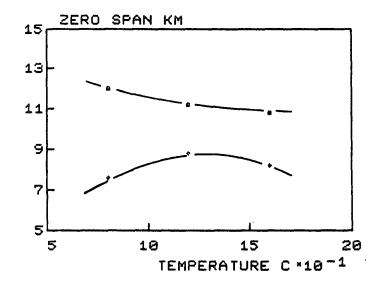
ASPLUND MILL FIBERIZATION EXPERIMENT ACCEPTS AND LONG FIBER DATA

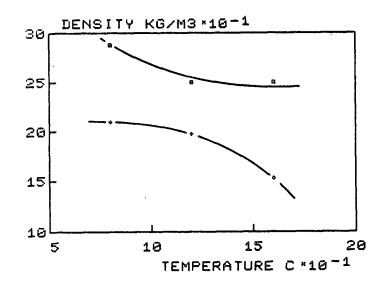

		UNSULFONATED		SULFONATED	
TEMP.,	TIME,	ACCEPTS,	RI4,	ACCEPTS,	RI4,
	MIN	% Wood	<u>% Pulp</u>	% WOOD	<u>% Pulp</u>
80	1	39	26	64	44
	2	59	15	79	46
	4	72	15	*	39
120	1	42	24	60	38
	2	55	22	75	38
	4	63	24	77	36
160	1	48	26	44	41
	2	52	29	55	40
	4	58	27	*	40


* SPURIOUS DATA DUE TO EQUIPMENT MALFUNCTION.

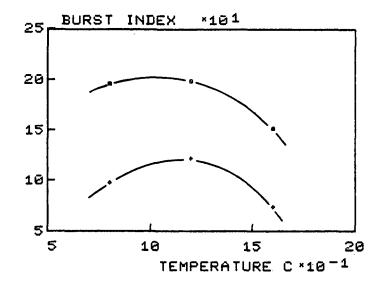


LONG FIBER FRACTION (% RETAINED ON 14 MESH SCREEN) <u>VS</u>. FIBERIZATION TEMPERATURE FOR UNSULFONATED (LOWER LINE) AND PRESULFONATED PULPS.

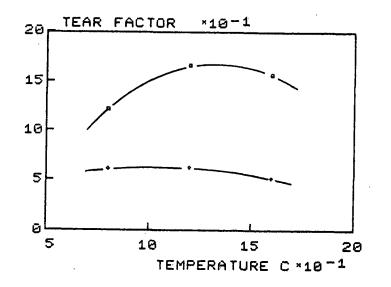

1.



CONTENT OF FIBER FRAGMENTS (ARBITRARILY DEFINED AS % OF PULP HAVING FIBER LENGTH LESS THAN 0.4 MM) <u>VS</u>. FIBERIZATION TEMPERATURE FOR UNSULFONATED (UPPER LINE) AND PRESULFONATED PULPS.



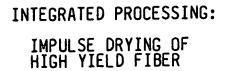
MAXIMUM ZERO-SPAN BREAKING LENGTH <u>VS</u>. FIBERIZATION TEMPERATURE FOR UNSULFONATED (LOWER LINE) AND PRESULFONATED PULPS.



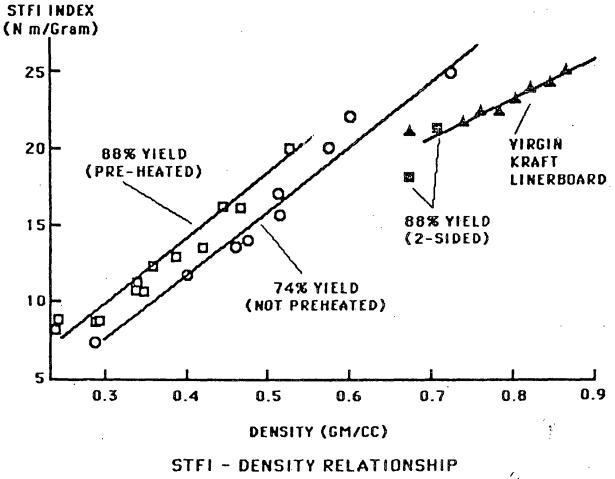
MAXIMUM HANDSHEET DENSITY <u>VS</u>. FIBERIZATION TEMPERATURE FOR UNSULFONATED (LOWER LINE) AND PRESULFONATED PULPS.

- 150 -

MAXIMUM BURST INDEX <u>VS</u>. FIBERIZATION TEMPERATURE FOR UNSULFONATED (LOWER LINE) AND PRESULFONATED PULPS.

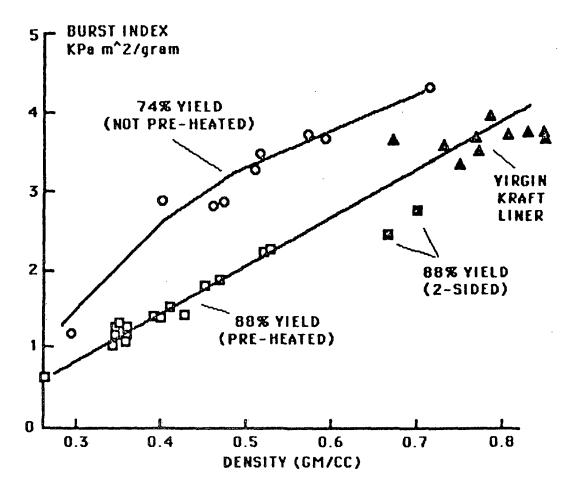

MAXIMUM TEAR FACTOR <u>VS.</u> FIBERIZATION TEMPERATURE FOR UNSULFONATED (LOWER LINE) AND PRESULFONATED PULPS.

- 151 -


ŧ,

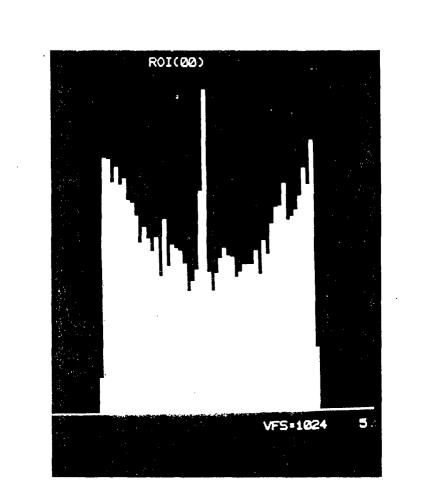
1.

τ.



1

HIGH-YIELD CMP SAMPLES


· ...

1

and the second second

SULFUR CONCENTRATION (STEM-EDS SULFUR COUNTS) ALONG A LINE TRAVERSING A DOUBLE CELL WALL IN A RADIAL CROSS SECTION OF A SULFONATED SOUTHERN PINE CHIP.

1

an in the second se The second sec

- 155 -

RELATED ACTIVITIES

0	PH.U.	KESEARCH	I: I. HEAZEL (SULFUR DISTRIBUTION)
0	M.S.	Research	I: T. CORNBOWER (BIOCHEMIMECHANICAL PULPING)
0	Proje	ст 3470 ((IMPULSE DRYING)
_		71/0	

- PROJECT 3469 (ULTRASONIC CHARACTERIZATION OF PRETREATED WOOD)
- PROJECT 3526 (INTERFIBER BONDING AT HIGH YIELDS)
- USDA FOREST PRODUCTS LAB (ZERO SPAN TESTING OF PRETREATED WOOD)

PLANS

- SINGLE FIBER STUDIES
 - RESOLVE FRACTIONATION ANOMALY
 - EXAMINE FAILURE MECHANISMS, SITES
 - DETERMINE EFFECT OF SULFONATION ON AREA
 - DETERMINE EFFECT OF FIBERIZATION VARIABLES
 - RELATE TO FIBRIL ANGLE
 - RELATE TO FIBER SHORTENING

PLANS

- COMPLETE SPRUCE FIBERIZATION FACTORIAL EXPERIMENT
- ARTIFICIAL BONDING EXPERIMENTS
- EFFECT OF YIELD ON IMPULSE DRYING BEHAVIOR
- LITERATURE REVIEW: FACTORS AFFECTING FIBER STRENGTH
- INVESTIGATE MATHEMATICAL CELL WALL MODELS
- REPORTS: PRELIMINARY EXPERIMENTS WOOD SECTION ZERO SPAN STRENGTH FIBERIZATION STUDIES

PLANS

- MOUNT EFFORT TO OBTAIN PILOT REFINER
- IDENTIFY SITE AND PREPARE REFINER PULPS FOR FIBER CHARACTERIZATION STUDIES

and the standard stand Standard stan

۰.

1.