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February 16, 1998

TO' MEMBERS OF THE RECYCLED PAPER AND SURFACE AND COLLOID
SCIENCE PROJECT ADVISORY COMMITTEES

Attached for your review are the Status Reports for the projects to be discussed at the
Recycled Paper and Surface Colloid Science Project Advisory Committee meeting being
held at the Institute of Paper Science and Technology. The Program Review is scheduled
for Monday, March 23, 1998, from 8:00 a.m. - 12:00 p.m. and the PAC Committee
Meeting will meet on Tuesday, March 24, from 8:00 a.m. to 12:00 p.m.

We look forward to seeing you at this time.

Sincerely,

, i_ / _ ;:i' _
i ,," .,if' :_ _ _'" '_ '_ ..,'

David I. Orloff, Ph.D. 'V _
Professor of Engineering & Director
Engineering and Paper Materials Division
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DUES-FUNDED PROJECT SUMMARY

Project Title: Shear-Induced Agglomeration of Stickies
Project Code' Stickies
Project Number: F00902
PAC: Recycle
Division: Engineering
Project Staff

Faculty/Senior Staff: Sujit Banerjee
Staff: Tom Merchant

FY 98-99 Budget: $94,000
Allocated as Matching Funds:

Time Allocation
Faculty/Senior Staff: 15%
Support: 90%

Supporting Research
M.S. Students: Dave Wilhelm, Steve Makris
Ph.D. Studentsl Howard Corcoran
External:

RESEARCH LINEIROADMAP' Reduce and/or control contaminants in recycled-fiber
pulp using breakthrough technologies to allow complete interchange of recycled pulp
with virgin pulp of similar fiber make-up at economical cost.

PROJECT OBJECTIVE' Develop methodology to reduce the impact of stickies

SUMMARY OF RESULTS: The rate of agglomeration of stickies in water or
whitewater increases with increasing shear and de-
creasing pH. The mechanism through which addi-
tives such as talc, PEI, and DET^C detackify stickies
was studied. It was found that although talc increases
the rate of agglomeration somewhat, its principal ac-
tion seems to be through detackifying the agglomer-
ated material. In contrast, the chemical additives ap-
pear to act on the colloidal stickies by making the zeta
potential of the particles less negative. Talc could
have the added benefit of keeping machine surfaces
free of stickies. However, mills may be using much
more talc than is necessary. In related work, intro-
ducing a temperature difference between forward and
reverse cleaners should greatly increase separation
efficiency.

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Internal Use Only)
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The principal purpose of the work described here is to develop and apply a
method for roproducibly agglomerating stickies in an aqueous suspension. _e main
application of the technique is to screen chemicals and additives used for stickies con-
trol for their efficiency and mode of action, and to optimize their dosage. Shear is used
to agglomerate stickies. When two stickie particles collide with a force strong enough to
overcome their mutual repulsion, agglomeration occurs, the stickies grow to the point
where they destabilize, and the water clarifies. Ifthe turbidity of the water is followed
over time, the clarification can be quantified. Zeta potential and particle size are also
tracked. These values, when considered together with the kinetic data, offer insight into
the mechanism of stickies control, some of which can be used to select additives, and
optimize dosage.

Experimental
Our apparatus consists of a mixing chamber where temperature and stirrer

speed is computer-controlled, and gas or liquid can be automatically introduced. The
equipment (New Brunswick Bioflow 3000, illustrated in Figure 1) was originally acquired
for fermentation in connection with a biotechnology project. The glass tank has a total
volume of 5L, and a working volume of 2.5L. Inserted into the center of the tank is a

stirrer
50-1000 RPM

_ermocouple
housing

stationary
baffles

I impeller
I '

Figure 1' Schematic of the Biofiow 3000 fermenter.

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's lnterna] Use Only)
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metal shaft stirrer with a radial flow impeller that can be controlled between 50-1000
rpm. Four removable metal baffles are placed to reduce solid body rotation and mini-
mize vortex formation. The bottom of the tank is jacketed with a controlled temperature
water bath. A probe placed into the liquid in the tank monitors the temperature, which is
regulated by a microprocessor. The chamber also accommodates a pH probe. Air can
be introduced through a ring-shaped sparger placed directly beneath the impeller.

Agglomeration kinetics were measured under acidic conditions, since agglom-
eration either did not occur, or occurred very slowly at pH>4. Measurements were usu-
ally made at 50°C and at 1,000 rpm by periodically removing samples and measuring
their optical density at 650 nm, the wavelength typically used to measure turbidity. In
late 1997, we acquired a Malvern Zetasizer 3000, which allowed us to measure zeta
potential and particle size. The machine utilizes a laser to measure Z-average particle
size and zeta potential through dynamic light scattering. The method assumes the par-
ticles to be spherical, and between 0.05-5[t, averaged over the entire population. Poly-
dispersivity, a measure of the population distribution of the particles, is also reported.
Samples containing talc (whose particle size of >1.01_ exceeded that of the acrylates)
wero allowed to settle for a day prior to the zota measurement.

Acrylates were obtained from B.F.Goodrich (Carbotac latex). Two batches were
used, one of which was fresh, while the other had been in storage for a few months
prior to use. The particle size of the fresh latex was 0.28_; that of the other was 0.33_.
The higher value probably reflected agglomeration during storage. Preparing a stable
suspension of cured acrylate was quite difficult and the following technique was devised
after much trial and error. A smooth glass plate was cleaned thoroughly and dried to
remove any residual surfactants. The latex (10 mL) was painted as a narrow strip near
the edge of the plate. A wound wire Meyer draw-down rod was then used to spread the
latex evenly across the glass plate, care being taken to avoid the formation of either
thick pools or thin areas of broken film of latex. A stream of hot air from a hair dryer
was then used to dry the latex. The appearance of the material changed from bluish-
white to a clear film that was sticky to the touch, but did not transfer away from the
glass. This film was allowed to further cure overnight before being collected and resus-
pended. Potyvinyl acetate (PVAc) of molecular weight 12,800 was obtained from Al-
drich.

The cured latex film was then removed as rolls from the glass by scraping off
with a razor blade. These rolls were then added to 600 mL of hot deionized water on a
stir-plate with l mL 1.0N KOH and 501JL BRD surfactant (a blend of fatty acids and a
nonionic surfactant), whereupon the rolls loosened and partially unwound, forming
sheets of solid latex in the hot water. The suspension was then chopped into smaller
particles with a high-speed homogenizer. Most of the particles are quite large and settle
to the bottom of the beaker, and the yield of dispersed fine material is quite small. After
cooling to room temperature the solids were further homogenized to produce a milky
suspension, from which some further settling occurred. The decanted liquid was then
used for kinetic work.

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Internal Use Only)
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121 uncured

§
.Q

u_ 4
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0 I
0 1 2 3 4 6

size (u)

Figure 2' Comparison of particle size and dispersion
for uncured and cured stickles.

A target initial optical density of 0.3 or morewas chosen, and the amount of resus-
pended cured latex needed for this target OD was calculated. The reaction chamber
was charged with deionized water (or whitewater), such that the total volume (after the
subsequent addition of resuspended cured latex) would be 2 L. The water was then
stirred at 100 rpm until it reached 50°C, whereupon the impeller speed was reduced to
50 rpm, and the resuspended cured latex added. The pHwas then stabilized to a target
value with 1N HCI or KOH. The impeller speed was then increased to 1,000 rpm, and
the kinetic run begun. Initially, samples were collected every 15 seconds, but the inter-
val was lengthened as the run progressed. Runs were generally continued to about 1-3
half-lives.

As mentioned above, two batches of acrylate were used. One had an average
size of 0.33_, whereas the particles in the other averaged 0.28p. Both suspensions
were fairly monodispersed, having a very narrow range of particle sizes. However, sus-
pensions of the cured acrylates contained particles of both much larger Z-average size
(>0.51_), and of a wider size distribution. Furthermore, both size and range varied
greatly between batches. A typical illustration is provided in Figure 2.

Clarification kinetics were usually of the first-order, although second-order or
mixed-order behavior was frequently encountered. The uncertainty in rate constants
was about 20% for the uncured stickles, but were much higher (at about 100%) for the
cured material, probably because of its higher size distribution.

If the kineticsfollowed the scheme

stickle + stickle --+agglomerate (1)

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Internal Use Only)
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I III

Table 1' Effect of rpm on the agglom- 0.05
eration of PVAc (MW: 12,800, un-
cured)l ·

iD rpm k (min4) rz o.o4
TM4 50 < 0.8
TM5 100 <0.8 _ o.o3

TM6 200 <0.8 .._
TM7 300 5.5E-04 0.85 ._ o.o2
TM8 400 3.9E-03 0.993
TM9 500 9.8E-03 0.997 .... o.ol

TM10 600 1.6E-02 0.998
TM11 700 20E-02 0 9991

· ' 0.00 _ i
TM12 800 2.1E-02 0.999 200 400 eeo soo leo
TM13 900 2.8E-02 0.9993 rpm

· TM14 1000 4.4E-02 0.9993

Figure 3: Dependence of
_20 mL of PVAc in MeOH at 9.9% (w/v) agglomeration rate on rpm
added to 2 L of pH 2.62 water

where the agglomerate was removed from the process, then the agglomeration should
be of the second-order. On the other hand, if the properties of the agglomerate were
similar to that of the initial stickie, i.e., the process

stickie + agglomerate _ re-agglomerate (2)

had the same rate constant as process (1), then the reaction would be first-order. Since
the stickie will grow and fall out of suspension at some point, mixed-order kinetics are
anticipated, with the process being initially first-order, and then becoming more com-
plex. Another complication is that the initial "stickie" is not just a single entity, but
probably reflects a distribution of properties. If a subset of this distribution of stickies
agglomerates faster than the remainder, then the kinetics will be complex, since multiple
processes will be underway.

Effect of shear on agglomeration
The rate of agglomeration increases with increasing shear since the force of col-

lision is more easily able to overcome inter-particle repulsive forces and induce agglom-
eration, if shear can be used to reproducibly agglomerate stickies, then the effect of
other variables such as chemicats and additives that influence agglomeration can be
evaluated. In order to determine the effect of shear on the agglomeration rate, PVAc
(MW: 12,800) was added as a 9.9%-solution in methanol, to water at pH 2.6. The de-
pendence of the agglomeration kinetics on rpm was measured by collecting data at a
given rpm, and then progressively increasing the rpm, with the rate being measured at

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Internal Use Only)
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Table 2: Effect of turbulence on the 
agglomeration of acrylate’ 

ID pH k (miri’) 
without baffles 

I 
TM1 37 2.97 4.4E-02 0.999 
TM138 3.47 l.lE-02 0.98 
TM1 39 4.00 2.8E-03 0.94 

with baffles 
TM140 1.90 1.6E-01 0.999 
TM141 1.94 1.6E-01 0.9993 
TM142 1.98 1.6E-01 0.9991 
TM143 2.03 1.3E-01 0.9992 
TM144 2.13 1.4E-01 0.9995 
TM145 2.34 1.7E-01 0.997 
TM146 2.44 1.2E-01 0.9995 
TM147 2.53 1.6E-01 0.9991 
TM148 2.60 1.5E-01 0.9996 
TM149 2.79 1.2E-01 0.998 

‘5 mL of a 50% acrylate suspension 
(0.33~) added to 2 L of water at 1,000 
rpm 

0.20 circles: without baffles - 
squares: with baffles 

0.16 - * 

1 

0 8 .o 
0.04 .e 

Figure 4: Effect of baffles on 
acrylate agglomeration 

each step. The influence of other variables was therefore minimized. The results, pre- 
sented in Table I and illustrated in Figure 3, show that agglomeration increases linearly 
with shear. Agglomeration was too slow below 300 rpm, and reproducible rates could 
not be measured. 

The Figure 3 relationship is linear only because the data were acquired over a 
single run. Rates measured across different runs were highly variable, probably be- 
cause the size range of PVAc particles in suspension varied with each batch. As will be 
emphasized later, reproducibility deteriorates if the characteristics of the suspension are 
not kept constant. 

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company’s Internal Use Only) 
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i

Table 3' Effect of pH on the agglom- _.oo
erationof acrylate_

ID pH k (min 'l ) rz ;_
TM15 4.75 1.5E-03 0.91 · · _ · ·

; 0.10 - ·

TM16 4.80 5.5E-03 0.95 ;-, ':
TM17 3 95 9 1E-02 0.9997 .s -

· · E '

TM18 i 3.38 1.3E-01 0.9996 ;' -
TM19 3.04 1.4E-01 0.9997 o.ol-
TM20 2.81 1.4E-01 0.9997
TM21 2.76 1.5E-01 0'995

TM22 2.45 1.5E-01 0.9990 o.oo , _ , _ , ,
TM23 2.16 1.6E-01 0.9990 = 3

pH

_5mL of a 50% acrylate suspension Figure 5: Dependence of ac-
(0.331_) added to 2 L of water at 1,000 rylate agglomeration oa pl_
rpm

Removing the baffles in our mixing chamber can reduce shear. Although ex-
periments were usually run with the baffles in place, comparative measurements were
made with acrylate latex (0.331a) with and without the baffles. The agglomeration rates
listed in Table 2 and illustrated in Figure 4 demonstrate that the baffles lead to a pro-
nounced increase in rate, confirming the effect of shear on agglomeration. Finally, ex-
periments were made with and without injection of 1 Ipm air under the conditions used
to generate the Table 2 data with the baffles attached. Inclusion of air increased the
rates by almost an order of magnitude. These results demonstrate that increasing
shear by any means, whether by increasing impeller rpm, installing baffles, or injecting
air, increases the agglomeration rate of both PV^c and acrylate.

Effect of pH on agglomeration
The dependence of the agglomeration rate on pH is illustrated in Figure 5 for ac-

rylates, and the data are provided in Table 3. The break at a pH of about 4 indicates
that stickies will resist agglomeration at higher pH. The likely reason is that zeta is re-
duced under acidic conditions. Mills that deliver acid shocks to remove stickies, should,
therefore, target a pH of slightly less than 4. Unlike the acrylates, there is no clear rela-
tionship between pH and agglomeration rate for PVAc as illustrated by the data in Table
4 and Figure 6. Particle size variability of the stickie suspension in water is probably re-
sponsible. Since the acrylate is introduced as a stable suspension, it will tend to mono-
disperse in water. However, PV^c is introduced in a methanol carrier, and the stickies
will fall out of solution in a variety of particle sizes. Since particle size affects the rate of
agglomeration (as we will show later), the Figure 6 plot is affected by two variables, and
the effect of pH alone is obscured.

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Internal Use Only)
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Table 4: Effect of pH on the agglom-
eration of MW 12,800 PVAc1

ID pH k (min4) r2
TM24 3.30 1.8E-01 0.998

TM25 7.68 1.2E-01 0.994
TM26 3.99 6.4E-02 0.99
TM27 2.75 1.3E-01 0.98
TM28 3.40 1.0E-01 0.997
TM29 2.62 1.6E-01 0.91 1.oo-_

TM30 2.88 6.4E-01 0.97 _ e
TM31 10.77 1.8E-01 0.98 - ·
TM32 2.82 6.6E-01 0.97

i TM33 2.45 1.8E-01 0.999 _. - ee . 1, ·
TM34 2.24 6 7E-01 0 96 '7, · ·· ·

TM35 4.54 7.9E-02 0.99 'r= o.lo- ·
-O ·

TM36 2.94 5.7E-01 0.98 -_ - ·
- _

TM37 2.29 5.0E-01 0.981 · O

TM30 5.27 4.3E-01 0.992
o

TM38 2.42 7.3E-02 0.99
TM39 2.43 6.2E-01 0.99
TM40 2.62 5'9E-01 0.99 o.ol , _ , i , _ ' _ '
TM41 2 96 5.4E-01 0 99 2 4 G 8 10 !1

· ' pH
TM42 2.61 5.0E-02 0.99

TM43 4.62 3.5E-02 0.996 Figure 6: Dependence of
TM44 4.01 2.1E-01 0.99 PVAc agglomeration on pR
TM45 3.59 6.6E-01 0.98
TM46 3.05 4.0E-02 0.997
TM47 4.09 1.9E-01 0.9999
TM48 4.02 2.2E-02 0.996

i

10-30 mL of 10-14% PVAc in MeOH

was added to 2 L of water at 1,000 rpm

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Internal Use Only)
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Table 5: CompariSon of agglomeration of acrylate in distilled water
and whitewater

ID pH white- k (min4) r2 absolute dif-I

water _' ference (%)
i

TM92 4.89 Y 6.3E-03 0.95 15

TM16 4.80 i N 5.5E-03 0 95I
I

TM93 3.05 Y 2.0E-01 0.995
TM109 3.01 Y 3.7E-01 0.99 100
TM19 3.04 N 1.4E-01 0.9997

TM94 2.51 Y 1.9E-01 0.97 36
TM64 2.47 N 1.3E-01 0 999
TM32 2.45 N 1.5E-01 0.990

_0.5-5mL of a 50% acrylate suspension (0.33p) added to 2 L of water at
1,000 rpm

Table 6: Agglomeration of curedlresuspended ac-
rylate _

pH k (rz)
3.5-3.7 O.15 (0.997)

2.5 0.063(0.999)
2.5 0.0033(0.986)
3.0 0.0016 (0.993)

2.7-3.0 0.19 (0.9992)
4.1-4.5 0.15 (0.99)

_inwater except for the last entry which refers to white-
water

Agglomeration in whitewater
Whitewater obtained from Bowater's GNN Millinocket mill was stored cold prior to

use. We are grateful to Bob Moran, Dave Walsh, and Harry Bard for arranging for peri-
odic shipments of whitewater. Agglomeration rates of acrylate (0.33p) in distilled water
and whitewater are compared in Table 5. While the whitewater rates are slightly faster
than those in distilled water, the differences are not large. We conclude that conclu-
sions reached for distilled water will mostly apply to whitewater, and that the additional
constituents of whitewater do not materially influence the rates.

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Internal Use Only)
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Agglomeration of cured/resuspended stickles
The agglomeration rates of cured and resuspended acrylates listed in Table 6

display a much higher variability than those in Table 5 for the uncured material. How-
ever, the median range of 0.06 to 0.15 min'_ is roughly comparable to the rates in Table
5 for uncured acrylate, suggesting that there are no order-of-magnitude differences in
behavior. The high variability of the rates appears to be principally associated with dif-
ferences in particle size. A large drop in particle size tracks a similar decrease in optical
density occurs during early agglomeration as shown in Figure 7. The zeta potential,
however, is relatively stable. The variability in Table 7 can now be understood on the
basis of particle size, since the size distribution is not constant across different prepara-
tions of the cured stickles.

Effect of additives on acrylate (uncured) agglomeration

Talc
Since talc is used to deactivate stickies, its mechanism of action was probed by

adding it to GNN whitewater and measuring its rate of agglomeration. Talc (Mistron-
400) is typically used at 0.4% (ODT) of a 0.9 lb/gallon formulation. Whitewater was
spiked with 0.6 mL of a 50% suspension of acrylate (0.33p), and data were taken at
various impeller speeds. Only the 750 and 1,000 rpm conditions led to first-order kinet-
ics; agglomeration was too slow at lower rates. The kinetic data summarized in Table 7
show that the rates are unaffected by the presence of talc. Although some of the values
in Table 7 are flagged as zero-talc, the whitewater is paper machine whitewater re-
turned from PM #6 to the whitewater tower, and contains some residual talc. Major dif-
ferences occurred in the appearance of the agglomerated stickie. Without talc, the ag-
glomeratewas compact and tacky, and attached to the sides of the chamber. In

0.12- 0.32-

o.o8 _ 0.30-

u_ .
o _.e

0.04- _ 0.28
Q.

0.00 ' i ' I ' i ' I 0.26 ' I ' i ' i '
0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6

minutes minutes

Figure 7: Optical density and particle size changes during cured PSA agglomera-
tion in water at pH 3.3.
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Figure 8: Appearance of the mixer walls with (right) and without (left) talc addi- 
tion. 

Figure 9: Appearance of stickies in the presence of talc. 
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the presence of talc, the agglomerated stickie was feathery, and remained in the water
layer, and the walls were relatively clean, as shown in Figure 8. Figure 9 demonstrates
that the bulk of the agglomerated stickie floated on the water. Clearly, talc detackified
the stickie, but the result was visibly the same at all doses. The levels of talc applied
were lower than the 0.4% conventionally used by GNN, and since no differences were
observed at concentrations exceeding 0.03%, it appears that the mill should be able to
reduce its talc dosage without suffering adverse effects. The level of stickles used in
these experiments far exceeds levels likely to be encountered in the mi!l, and there
should be a sufficient reserve of talc even under reduced dosage to handle stickie
surges.

In order to determine whether stickie particle size influenced agglomeration in the
presence of talc, the 0.281_ latex was suspended in water of pH 2.7-2.8 and agitated at
1,000 rpm. The rates along _th the initial zeta potentials (which did not change during
agglomeration) are recorded in Table 8. The smaller particles agglomerate very much
more slowly, demonstrating that a relatively small difference in size has an enormous
effect on the rate. The 0.281_ material does not agglomerate at all on our time scale,
whereas appreciable agglomeration occurs with the 0.33p suspension. For 0.03-0.05%
talc, the difference in rate is about thirtyfold. Clearly, agglomeration is inordinately sen-
sitive to particle size. In contrast to the Table 7 data for the 0.33_ stickies, the rate for
the smaller particles are linear with talc level. The reason for the difference is not
known. However, the increase is less than an order of magnitude, and as will be Shown
later, much greater increases are obtained with the chemical additives.

We conclude that talc affects the agglomeration rate to at best a small extent,
and that its principal benefit is to detackify the agglomerated material. The benefits of
talc can be realized at dosages much lower than is currently used, and we suggest that
mills that presently use talc progressively lower their application rate. The GNN mill is
currently following our recommendation.

Table 7' Effect of talc on acrylate agglomeration (0.33_ acrylate)
1,000 rpm 750 rpm :

ID pH talc k rz ID pH talc k rz
(%)1 (min-1) (%)1 (min-1),

TM109 3.01 0 3.7E-1 0.987 TM108 3.08 0 6.7E-2 0.99
TM104 2.97 0.03 2.1E-1 i 0.987 TM103 2.98 0.03 6.6E-2 0.996

,,,

0.12 TM98 3.08 0.12 7.1 E-2 0.993
1

TMl14 3.09 0.24 4.4E-1 0.985 i TMl13 3.09 0.24 6.3E-2 0.94
......

, _ofthe talc concentrate (1 lb/gallon); the mill dosage is 0.4%
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Table 8: Effect of talc on acrylate agglomeration (0.28~ acrylate) 
talc (%)’ k (min.‘) r2 

1 
zeta (mV) 

0 B 0 -42 
0.05 I 0.0065 1 0.87 1 -41 

I-- ~~ ~~ 0.15 I 0.014 I 0.83 1 -32 I 
II 05 . I 0.041 I 0.97 I -29 I 

‘of the talc concentrate (1 lb/gallon) in 2L of whitewater; the mill dos- 
/ age is 0.4%; pH:2.7-2.8 

EXPN-3405/ACCLJRAC-187 
The GNN mill uses a combination of EXPN-3405 and ACCURAC-181 at their #6 

paper machine. EXPN-3405, a mixture of polyethyleneimine and a mixed polyamide 
polyamine polymer, is applied at 3 lb/ton. The ACCUFWC is cationic polyacrylamide, 
and is applied at 2.5 lb/ton. The effect of the combination of agglomeration is compared 
to corresponding data for EXPN alone and to a control in Figure 10 with 0.28~ acrylate. 
The rate enhancement is sizeable. As before, the stickie alone does not agglomerate, 
whereas the combination rapidly removes the stickie from suspension. The kinetics are 
neither first- nor second-order, suggesting the involvement of more than one process. 
The zeta potential of the control and of the EXPN stickies remained at about -50 mV 
and about -45 mV throughout. In the presence of the combination, the zeta potential 
started at about -38 mV and decreased to about -50 mV. This suggests that the com- 
bination reduces zeta, and that the stickies that remain towards the end of the run bear 
a high surface charge and resist agglomeration. Only minor differences in particle size 
were observed among the three sets. 

DETAGDl283 
First-order agglomeration rate constants of acrylate added to GNN whitewater 

containing DETAC are reported in Table 9. The mill applies the additive at 4 IblODT. 
Clearly, the rate increases dramatically in the presence of DETAC, and appears to be 
linear with DETAC concentration, although this is based on only two points. DETAC 
has a definite effect on the initial zeta potential as shown in Figure 11. The control re- 
mains at about A4 mV throughout. In the presence of 50 ppm DETAC, the zeta begins 
at roughly the same level, but decreases somewhat throughout the run. At 200 ppm, 
the starting zeta is much lower, and increases a little during agglomeration. The mode 
of action appears to be similar to that of EXPN-3405/ACCURAC-181. 
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+ +' ACCURAC

0.3 ' I ' I ' I ' I
0 2 4 6 8

minutes
Figure 10: Agglomeration rates in the presence of EXPN and ACCURAC

Table 9' Acrylate agglomerate in the 3resence of DETAC
ppm percent of mill dos- l_t-order k(r2)

1
age

0 0 0.0039 (0.97)
50 25 0.032 (0.99)

200 100 0.12 (0.998)

_200 ppm

-25 -

- +
S

-30- $
i

200 ppm
_' -36-
E

_ -4o- oontrol

I '. ' ' '
G0ppm t $ $ I41,

40 , I ' I '
2 4 G

minutes

Figure 11' DETAC-induced changes in acrylate zeta potential
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Figure 12: First- (bottom) and second-order (bottom) 
of the agglomeration kinetics of uncured acrylate. 

Both additives increase the rate of agglomeration by reducing zeta. However, zeta pro- 
gressively decreases in the presence of DETAC, whereas the opposite seems to be 
true for EXPN-3405/AC-CURAC-181, for reasons that are unclear. 

Effect of additives on acrylate (cured) agglomeration 

DETAC-01283 
The effect of DETACDl283 upon cured/resuspended acrylic latex was measured 

against controls. The levels of DETACDl283 used for these experiments were 10, 50, 
100,200, and 500 ppm, which correspond to 5,25,50,100 and 250% of mill use dos- 
age, respectively. Three separate batches of cured/resuspended acrylic latex were 
prepared. Given the differences among batches, the results should be compared within 
each batch, and not across batches. 

The agglomeration rate for the controls were intermediate between first and sec- 
ond order, as shown in Figure 12. Although second-order plots provide a slightly better 
fit, first-order rates are used for comparison in order to maintain consistency with the 
remainder of the report. A major point of difference between the suspensions from the 
cured and uncured material is that agglomeration is quite fast for the cured material, 
whereas no agglomeration was observed with the 0.28~ material. This suggests that 
the cured material contains some easily removable components that rapidly fall out. 
The implication is that the more recalcitrant material will remain in suspension. This 
could explain the complex kinetics since the nature of the stickie changes during the 
run. 

The rates within each batch vary by less than a factor of two, as shown in Table 
10. Particle size decreases during agglomeration, but DETAC does not seem to infiu- 
ence the trend. The only significant difference is the change in zeta at 500 ppm (batch 
2). The zeta potential was constant during agglomeration for all three batches. DETAC 
begins to lower zeta at 500 ppm, whereas the threshold for the uncured stickie was 200 
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Table 10' Effect of DETAC on the properties of stickies

DETAC k (rz) zeta size (;)
(ppm) 1_ order 2nd order (mV) initial final

batch f, pH 2.8
0 0.20 (0.75) 2.4 (0.95) -59 0.48 0.3
10 0.22 (0.79) 3.6 (0.98) -59 0.41 0.3

batch 2, pH 3.8
0 0.11 (0.72) 1.1 (0.86) -47 0.41 0.31

i 50 0.26(0.85) 6.3 (0.997) -42 0.43 0.31
500 0.20 (0.78) 3.2 (0.94) -17 0.45 0.43

batch 3, pH 4.0
0 0.068 (0.84) 0.25 (0.90) 0.37 0.34

100 0.078 (0.93) 0.30 (0.97) 0.38 0.34
200 0.072 (0.94) 0.25 (0.97) 0.39 0.36

ppm. We consider the agreement to be good in light of the wider distribution in particle
characteristics in the cured suspension. The large increase in agglomeration rate in-
duced by DETAC for the uncured stickies (Table 9) is not apparent in Table 10, again,
probably because the suspension from the cured material is not monodispersed, and
the larger particles are removed with shear, masking the benefit of DETAC.

Comparison of stickies control additives
It is risky to make any kind of a recommendation from limited laboratory data.

Hence, rather than rank the performance of the addditives studied, we will highlight the
advantages of each. The rate enhancement observed in the presence of talc is smaller
than those induced by the chemical additives, and the change in zeta is somewhat less
pronounced. This suggests that while talc does interact with the stickies at the colloidal
level, the interaction is stronger with the chemical additives. Talc has one unique attrib-
ute not shared by the other additives. For talc, the agglomerated material at the end of
the run was found in water as non-tacky feathery streaks. Agglomerates in the pres-
ence of other additives were attached to the blade or to the walls. This suggests that
talc may be able to keep machine surfaces free of stickies. Our results suggest that the
dosage used by the mill may be unnecessarily high.

Future efforts
At this stage of the program, we understand many of the interactions among

stickies, fiber, and water and are able to screen and recommend additives for stickies
control. We recommend that this aspect be completed in the following year through
studies in non-newsprint mills. Also, some fundamental aspects of the work, namely the
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effect of pH on zeta and particle size need to be better understood. We have observed
that the effect is quite variable, and are unable to predict it. Finally, we could complete
the study by select additive combinations (e.g., talc and DETAC), or designing new ad-
ditives for optimum effectiveness.

The work described in the Appendix may greatly increase cleaner efficiency, and
is probably the most important result from this year's activities. IPST is filing for a pat-
ent on this. The work was funded outside the PAC, and follow-on efforts in non-
newsprint mills is strongly recommended.

Our recommended time allocations to these activities are as follows:

· Complete fundamental aspects of the stickle-water interactions (40%).
· Extend to non-newsprint mills (40%).
· Start work on improving cleaner efficiency in non-newsprint mills (20%).

PAC input will be sought on these proposed allocations.

In related work, Howard Corcoran will start doctoral work on determining what
causes stickies to attach to surfaces, and will develop means to disrupt them. This ef-
fort will be in collaboration with MacMillan Bloedel through the courtesy of Lynn Jonakin.
Both corporate and the Henderson, KY, mill will be involved.
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APPENDIX

An Option for Better Stickies Removal Through Cleaner Optimization

David K. Wilhelm, Stephen Makris, Sujit Banerjee

The work reported here was conducted by Dave Wilhelm and Steve Makris as a
part of their MS research, with Sujit Banerjee serving as their advisor. Although the
work lies outside the purview of the PAC, it relates to the general subject of stickies
control, and is, therefore, offered as an Appendix. The purpose of the study was to
collect contaminants from various unit operations from two mills (Bowater, GNN and
Augusta Newsprint) and to track their composition as they moved downstream. Ap-
proximately 5-10 contaminants were analyzed from each location. A variety of contami-
nants were found at the front end of both mills. However, the contaminants present af-
ter the final cleaning stage at both mills had a high proportion of a mixture of an acrylate
and a hot melt, suggesting that this combination resisted screening and cleaning.

Some of the contaminants from Augusta Newsprint were placed in cold water,
and the water was slowly heated. The stickies sank initially, but floated at a "transition
temperature." The transition was quite sharp, and occurred over a 1-2°F range. It was
also reversible, i.e. the same transition temperature was obtained when the floating
stickie sank as the water was cooled. Results obtained from two locations are listed in
Table A-l, along with the temperature of the process water at that location. Note that
with one exception, the contaminants at the fine screen accepts have a higher transition
temperature than those at the front end, the magazine repulper. If the 91°F value is
omitted, then the average transition temperature rises from 109°F to 114°F. At the tran-
sition temperature, the stickie would have a specific gravity (p) of one, at which point the
cleaners would be transparent. Hence, the greater the difference between the transition
temperature and the process water temperature, the more efficient will be the centrifu-
gal separation.

The cleaners are run at a temperature of 123°F,so the stickies that survive
cleaning and screening will have p of slightly !ess than one. These are the troublesome
stickies, the ones most apt to be found in whitewater. Improving cleaner technology
target stickies whose specific gravities are very close to one, but there will always be a
window centered at p=l that will defy separation. We offer an alternative.

Consider a situation where two reverse cleaners are operated at different tem-

peratures. A stickle of p=l in one cleaner must have a different specific gravity in the
other, sincethe coefficientof thermalexpansionof a stickieis muchgreaterthanthat of
water. Hence, by mismatching temperatures, the p=l window will be breached, and all
stickies can be potentially removed. The two-cleaner scenario is only provided as an
illustration; Similar results will follow'if the temperatures of the forward and reverse
cleaners are mismatched. There are several other possible configurations. Mismatch-
ing temperatures is central to the process, and there are several ways in which this can
be achieved. The easiest way would be to relocate one set of cleaners to a location
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Table A-I' Transition temperatures (°F) of stickles
fine screen accepts magazine repulper

91 91
109 95
108 99
118 104
119 104

average: 109 99
clnr temp: 123

where the temperature difference between cleaners is maximized.

Mill descriptions
GNN Millinocket

Great Northern Paper's East Millinocket recycle mill produces 100% recycle DIP
from a furnish of 75% ONP and 25% OMG. The stock preparation line consists of an
alkaline loop and an acid loop for deinking and contaminant removal. Each loop has
separate white water circuits and clarification. The alkaline loop consists of coarse and
fine screens, multiple pressurized flotation cells, forward cleaners, thickener/washers
and refiners. The acid loop includes pressurized flotation cells, forward and through
cleaners, and thickener/washers. The white water is diluted with paper mill whitewater
to the desired consistency and pH for high-density storage.

Pulping is done under alkaline conditions in a continuous drum pulper, which is
followed by a high density cleaner, swelling chest, 0.050" coarse screens, and 0.004"
wedge slotted fine screens. The screens are followed by pressurized flotation cells for
deinking. Forward cleaners are then employed for "heavy" contaminant removal. The
pulp is then washed in a double nip thickener followed by a screw press. A refiner used
for dispersion completes the alkaline loop. The stock is subsequently diluted with acid
and acid loop whitewater, and then sent to flotation cells. Cleaning is accomplished
through forward and through hydrocyclones arranged in series. Again the stock is
washed with double nip thickener washers and screw pressed. The pulp is finally di-
luted with paper mill white water for high density storage.

AugustaNewsprint
Augusta Newsprint has a flotation deinking plant that produces 370 metric tons

per day. The recycle furnish consists of an 80/20 mix of ONP to OMG. The newsprint
and magazine are pulped separately in alkaline conditions (approx. pH=10.2, consist.
9.0%). They go through a high density cleaning stage, and are then blended together
prior to coarse screening. After the coarse screens, the pulp is sent through floatation
cells, reverse cleaners, an alkaline disk filter (thickener) and alkaline screw press (thick-
ener). The pulp is then acid shocked to a pH of approximately 5 and sent through the
forward cleaners and fines screens before it is thickened to go to the blend chest of the
paper machine. The paper mill has two Valmet Sym-Formers _at produce recycled
content newsprint with a capacity of 1,045 metric tons per day, and uses 10 million gal-
lons per day of water.

IPSTConfidential Information - Not for PublicDisclosure (ForIPSTMember Company'sInternal UseOnly)



23

FLOTATION DEINKING FLUID MECHANICS

STATUS REPORT

FOR

PROJECT F00903

Ted Heindel

March 23-24, 1998

Institute of Paper Science and Technology
500 10th Street, N.W.

Atlanta, Georgia



24



Project F00903 25 Status Report

DUES-FUNDEDPROJECTSUMMARY

Project Title: FLOTATIONDEINKINGFLUID MECHANICS
Project Code: DEINKFLOW
Project !Number: F00903
PAC: Recycle and Surface and Colloid Science
Division: Engineering
Project Staff

Faculty/Senior Staff: Ted Heindel
Staff: Adele Emery, Krishna Maruvada, Fred Bloom (consultant)

FY 98-99 Budget: $155,445
Allocated as Matching Funds:

Time Allocation
Faculty/Senior Staff: Heindel- 40%
Support: Emery- 70%; Maruvada- 100% (1-15-98); Bloom- 10%

Supporting Research
M.S. Students: 3 IPST students
Ph.D. Students:
External: 1 AF&PA

I RESEARCHUNE/ROADMAP:
Reduce and/or control contaminants (e.g., stickles, dyes, toners) in recycled fiber pulp using

break-through technologies to allow the interchange of recycled pulp with virgin pulp of similar
fiber make up at economical cost.

2 PROJECTOBJECTIVE:
The objective of this project is to increase flotation efficiency by maximizing contaminant

removal from wastepaper while minimizing fiber loss. This objective will be realized by
developing a better understanding of the fundamental fluid mechanic processes involved in
flotation separation.

3 PROJECTSUMMARY:
This report summarizes the progress of this study over the past year in the areas of

modelingthe overall flotation separation process and measuring the bubble size distribution in a
pulp suspension.

Accurate microprocess probabilities are important to effectively model the overall flotation
macroprocess. During the past year, the flotation microprocess of collision has been revisited
and an exact expression for the probability of collision (Pc) has been developed. Detailsof this
research can be found in Member Company Report 4 of this project [1]. Our exact expression for
Pconly assumes that the bubble and particle are spherical and that Rp < Rs. The expression
developed here removes the addition_ assumptions that are typically invoked in the literature

3 2
(i.e., Rp+ Rs = Rs and (Rp/RB) << (Rp/Rs)). In addition to removing these restrictions from the
expression for Pc, we also include the possibility that the particle settling velocity may also
influence the collision probability.

The expression for P_developed in this research is a function of three dimensionless groups:
(i) the magnitude of the dimensionless particle settling velocity, IGI; (ii) the bubble Reynolds
number, Res;and (iii) the ratio of particle-to-bubble size, Rp/RB.This expression was then used
to predict Pcforselected parametric ranges of 0 _<IGI ---5, 0 _<Res_<500, and 0.001 <__Rp/RB _<1.

In general, Pc is independent of Reswhen Rp/RB< 0.05 for all values of IGI.Conversely, Pc is

not significantly influenced by IGIas Rp/R8_ 1 for all values of Res.The additional assumptions
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typically employed in the literature (i.e., Rp + RB= RB and (R,/RB)3 << (Rp/RB)2) are valid only

when Rp/RB<-0.05-0.1, depending on the values of IGIand Res.
Finally, the new prediction for P_ developed during the past year was compared to available

experimental Pcdata from the mineral processing industry. This new expression does a very
good job at predicting measured Pcvalues. The inclusion of the particle settling velocity is very
important, particularly when the particles have a density much higher than that of water.
Additionally, the form of Pcderived from basic principles in this report is much simpler than that
recently proposed by another researcher and it is just as accurate at predicting experimental
results.

The flotation microprocess of attachment by sliding has also been improved during the past
year. A closed-form approximation has been developed for the probability of attachment by
sliding (P_,_.This new expression is an improvement in the P_ expression previously used, and
is a function of the various system parameters (e.g., bubble size, particle size and density, fluid
properties, etc.)and the liquid film thickness between the bubble and particle. This phase of the
research is detailed in Member Company Report 6 of this project [2]. Preliminary results reveal
that P,_ is influenced by bubble and particle size and there may be a particular bubble/particle
size combination that maximizes P,_.

In the area of bubble size measurements, a large amount of qualitative and quantitative data
has been acquired concerning bubble size in a quiescent bubble column with four different
experimental systems: (1) ONP systems with various chemistries and chemistry concentrations;
(2) NBSK systems with various consistencies but no added chemistry; (3) a copy paper system
with no added chemistry; and (4)an ONP system with no added chemistry but a higher gas flow
rate. Details of this research effort have recently been presented in Member Company Report 5
of this project [3].

For the specific chemistries addressed here and added to an air/water system or an
air/water/l% ONP (unprinted) system, the following general conclusions are realized:

· Increasing the BRD 2360 concentration (a fatty acid) results in negligible changes in average
bubble size, except for the 1% ONPwith gasket air injection. It is hypothesized that this
change may be more a result of differences in the fiber network structure, and not BRD 2360
concentration.

· Increasing the BRD 2342 concentration (a nonionic surfactant) in the presence of 1%
results in an increase in the average bubble diameter,with the sparger injection technique
producing larger bubbles than the gasket at Position 2. Clear trends are difficult to discern for
the 0% data.

· Increasing the BRD 2363 concentration (a fatty acid/nonionic surfactant blend) results in a
general increase in the average bubble size in all systems addressed here, except the 1%
ONP sparger data.

· BRD 2342 produced the most foam of all three chemistries.
· By compadng the three different chemistries at fixed concentrations of 1.7 and 3.3 mi/kg, the

BRD2342 produces the smallest average bubble diameter for all systems addressed here,
except the 1% ONP sparger system, where the BRD 2342 produces the largest average
bubble diameter.

· Surface tension did not correlate the bubble results recorded in this study.
The northern bleached softwood kraft (NBSK) had a much longer fiber length than the

used in this study. The longer fibers promoted fiber network formation and bubble coalescence.
The few, but large, bubbles recorded when the air flow rate is 0.25 slpm prevented statistically
significant results from being realized except at the very Iow fiber consistency of 0.1%.
Additional experiments were completed at an air flow rate of 2 slpm. General conclusions from
these results are:

· The higher gas flow rate promotes backmixed flow conditions where small bubbles descend
along the column sides and are eventually reentrained in the bulk nsing column of air.

· The sparger air injection technique results in a higher gas holdup when the air injection rate is
held constant at 2 slpm.
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· The average bubble size increases with NBSK fiber consistency.
· The gasket air injection technique produces larger average bubble diameters at Position 2 and

does not keep the fiber suspension well-mixed, which may lead to fiber network
nonuniform'triesand larger variations in the average bubble size and bubble size distribution.

· The sparger air injection technique produces a bimodal bubble size distribution, with the
majorityof the bubbles in the size range less than 10 n'm in diameter and a peak in the 2-3
mm range. The bubbles in this range all have the same average bubble size (-3 mm) for all
NBSK fiber consistencies addressed here, but the relative frequency decreases with
increasing consistency. Few bubbles are greater than 10 mm in diameter, but those that are,
are typically larger than 25 rna. The number of bubbles that fall in this category increases
with increasing NBSK consistency. These larger bubbles also play an important role by
acting as mobile mixers, which keep the smaller bubbles uniform and the fiber suspension
well-mixed and homogeneous.
The 1% copy paper system produced similar results to those obtained with 1% NBSK,

implying that the NBSK results are representative of those obtained with typical copy paper
found in recycling office-type printing and writing grade papers for the conditions of this study.

Flow patterns observed with the 1% ONP system with an air injection rate of 2 slpm are
similar to those produced by the 1% NBSK system. However, the average bubble size was
smaller with the ONP system. The bimodalbubble size distribution is also observed with the 1%
ONPand sparger system with the air injection rate of 2 slpm, but the number of bubbles larger
than 10 mm is much smaller than thatproduced with 1% NBSK.

This status report will highlight the results from this research effort during the past year.
Specific details can be found in the three Member Company Reports mentioned above [1-3].

4 PROJECTBACKGROUND and DISCUSSION:

4.1 Flotation Modeling
The flotation separation macroprocess is composed of a series of four microprocesses that

must take place in sequence for the successful removal of a contaminant particle by an air
bubble. These microprocesses include: (i) capture or collision of the ink particle by an air bubble;
(ii) adhesion of the ink particle to the air bubble as it slides over the bubble surface; (iii) extension
of a three-phase contact at the bubble/particle/liquid interface; and (iv) stabilization/
destabilization of the bubble/particle aggregate. Member Company Report 1 of this project [4]
summarized the microprocesses in great detail and presented available probability equations for
each microprocess. These microprocess probabilitieswere used to develop a first-generation
kinetic-type model of the overall flotation process, which was also elaborated upon in Member
Company Report 1 [4]. The model is governed by two kinetic constants that are functions of the
various microprocess probabilities, and was used in Member Company Report 2 of this research
effort to predict flotation efficiency and other flotation performance parameters for selected
parametric ranges [5]. Work during the past year in the flotation modelingaspect of this project
included refinement of the microprocess probabilities of the collision (Pc) and adhesion by sliding
(Pasl), and theinitiation of model validation studies. This work is summarized in the following
sections.

4.1.1 Probability of Collision Improvements
Improvements to the probability of collision (Pc) model have recently been summarized in

Member Company Report 4 of this project [1]. Material highlightswill be presented here.
The probability of collision is typically modeled by assuming a particular fluid flow field a

particle is in as it flows toward a bubble. The particle is generally assumed to follow potential
flow conditions, Stokes flow conditions, or an intermediate flow condition between potential and
Stokes flow. The intermediate flow field is typically assumed to follow that proposed by Yoon
and Luttrell [6]. The influence these flows have on Pc is shown in Fig. 1. Stokes flow
corresponds to the intermediate flow of Yoon and Luttrell [6] when Rea = 0 and this flow
predicts the lowest value for Pofor ali Rp/RB -< 1, with Po increasing as Rp/RB increases. The
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values of P, predicted for intermediate flow are a function of ReBand selected ReBvalues are
shown in Fig. 1 for ReB-<500. The applicability of these results at ReB = 500 is questionable
because they were developed for 0 __ReB<- 100; however, Yoon and Luttrell [6] state that it
"may be applicable for ReB> 100, although no experimental (streamline) data [were] available in
the present work." This figure also reveals that P_increases as ReB increases for a fixed Rp/RB,
and these values run parallel to those predicted for Stokes flow. Potential flow predictions are
also shown in Fig. 1 for completeness. Potentialflow predicts the highest values for Pcwhen

Rp/RB< 0.1. One interesting result from this figure is that all three flow conditions predict values

for Pc> 1 as Rp/RB--> 1. This is the result of two assumptions that have been applied in these
derivations, but not emphasized. These assumptions are

Rp+ RB-- RB (1)

Using the intermediat e flow of Yoon and Luttrell [6], we have removed those two
assumptions to yield results presented in Fig. 2. Tho exact and approximate solutions follow
closely to one another for small values of R_RB, and at Rp/RB= 0.1, the approximate solution
prosented by ¥oon and Luttrell [6] over predicts Pc by approximately 25% when ReB = 0 and by
more than 35% when ReB = 500. Increasing Rp/RBfurther toward 1 increasos this differon¢o. By
employing the flow of Yoon and Luttrell [6] in the developmont of the oxact solution for Pc, the
predictions are valid for ReB < 100, but their utility is again suspect for ReB > 100. Howevor,
calculations are shown for ReB = 500 to reveal that the same trends am followed and unrealistic

predictions (Po > 1) result only when R,/RB > 0.3 and ReB = 500. This result will be further
discussed below.

Another parameter that is typically neglected in modeling the collision process between a
partide and bubble is the particle seffiing velocity due to the inertial force. We have included this
force in our improved model for Po, to yield an exact result of [1]

1 1 +

(3)

l+!q

where IGIis the magnitude of the dimensionless particle settling velocity and ReBis the bubble
Reynoldsnumber. This model does not assume Eqs. (1) and (2) are valid. The parameters in Eq.
(3) are described by

G 'A,t)p, (4)
t) B
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with Ar = Archimedes number
g - acceleraaon due to gravity
ReB= bubble Reynolds number
Rep= particle Reynolds number
RB= bubble radius
Rp = particle radius
_)p,= particle settling velocity (= _,_)p,)

_)p,= particle settling velocity in Stokes flow
t)B= bubble rise velocity

X = dimensionless friction factor representing the deviation from Stokes flow

Izz= dynamic viscosity
v_= kinematic viscosity

p_= fluid density

pp = particle density
Hence, Figs. 1 and 2 correspond to the exact solution for Pcwith IGI= 0.

The effect ReBhas on Pois shown in Fig. 3 for IGI= 0.1. This figure represents the general
trends observed when ReBis varied with different values of IG!.The bubble Reynolds number

has a negligible effect on the Pcpredictions when Rp/RB< 0.05, and Pc is constant for a given
value of IGI,with a higher constant value of Pccorresponding to larger values of IGI[1].When

Rp/RB> 0.05, Pc increases exponentially with increasing Rp/RB.Additionally, the increase in Pc is
more abrupt as ReBincreases. When Rp/RB= 1, Po_<1 for ReB-<100. As previously stated, these
predictions are questionable when Res > 100 because the stream function used to generate this
prediction included data only up to Res= 100 [6]. In our predictions, when Res = 500 and Rp/RB>

0.3, Pc> 1, but Pois independent of ReBWhen Rp/RB< 0.05 and Eq. (3) can be used outside its
given Res range under these specific conditions.

Figure 4 shows the effect IGIhas on Pc for ReB= 10 and represents general trends. The
approximatesolution assumes Eqs. (1) and (2) are valid, which is the result found in Yoon and
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Luttrell [6], with the inclusion of the particle settling velocity (IGI).This figure reveals that particle
settling velocity is important, and Eqs. (1) and (2) are valid;at small_values of Rp/R s. Conversely,
as Rp/RB-->1, Eqs. (1) and (2) are not applicable and the inclusion of IGIhas only a secondary
effect.

Additional calculations have been performed for fixed values of Rp/RB when both IGIand Res
are varied. A sample of the resultant contour plots is shown in Fig. 5 for Rp/RB= 0.1, where the
contour lines represent P_ values with logarithmic increments. For small ReB, Pc is a strong
function of IGI.As ReBincreases, P_is independent of IGIwhen IGIis small. At large IGI, Pc is
independent of ReB for all values.

Direct experimental observations of the collision process are very complicated because it is
difficult to isolate this microprocess from the other microprocesses in actual flotation separation.
However, attempts to experimentally record Pc have been made by a few researchers
addressing mineral flotation [6-11]. We compared our predictions for Pc with this available
experimental data in [1]. Figure 6 shows one such comparison with the quartz data of Nguyen-
Van [9]. Nguyen-Van [9] also developed a rather complicated expression for Po, which is
summarized in [1] and is also shown in Fig. 6. Our P_ prediction has a much simpler form and
does a good job at following the experimental data. The largest discrepancy is at the largest RB
values, but this is still within -25% of the experimental data. This deviation between our
predictions and the experimental data may be due to the collision angle having an effect at these
conditions. Predictions of P, assuming Eqs. (1) and (2) are valid, but IGI¢ 0, are also shown in
Fig. 6. This result does not significantly differ from that of the exact solution because the
experimental conditions satisfy the assumptions incorporated into the approximations. The
predictions of Yoon and Luttrell [6] are also shown in Fig. 6 and do not predict the experimental
results very well, indicating that IGIhas a significant effect for these expedmental_conditions.

4.1.2 Probability of Adhesion Improvements
Particle attachment by sliding over the bubble surface is probably the single most important

microprocess in the overall flotation macroprocess, and it is also possibly the most complicated.
We have recently developed a closed-form approximation for P_, the probability of attachment
by sliding, which is a function of the various system parameters and the liquid film thickness
between the bubble and particle. Detailsof this expression can be found in Member Company
Report 6 of this research [2], and a summary will only be provided here. The expression for P_,,
has the form

P_,,: ex - Ps+ P,p k(Rs+ Rp) hor,

where _,represents the deviation of the particle friction factor from that corresponding to Stokes

flow; Cs gauges the mobility of the bubble surface; Rp and Rs are the particle and bubble radii,
respectively; G is the dimensionless particle settling velocity; g(Rs + Rp) and k(R8 + Rp) are
functions of (Rs + Rp)and correspond to intermediate flow of Yoon and Luttrell [6]; and ho/ho_,is
the ratio of initial-to-critical film thickness of the fluid separating the particle and bubble. The
equa_ons for _,and G have been presented above, the remaining values are expressed by

CB= 1; rigid bubble surface (11)
= 4; mobile bubble surface
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II I I 1313 I_ 1 Ps
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Using Eq. (10), P._ has been calculated for a variety of conditions. In these calculations, the
bubble rise velocity has been determined by curve-fitting the data presented by Cliff et al. [12] for
contaminated water systems to generate a relationship for t_B as a function of RB (see, for

example, [5], Fig. 2), CBwas fixed to correspond to a rigid bubble surface (CB = 1) since the
system typically contains surfactants, and the fluid properties correspond to those of water.
Hence, Pa_is only a function of RB,R., p., and ho/h_.. However, Schulze [13] _hasindicated that
ho is a function of particle diameter, viscosity, particle settling velocity, surface tension, and
surface mobility, and it depends on the specific system of interest. In the preliminary calculations
shown here, we have assumed that ho is independent of these variables. More details are
presented in [2].

Figure 7 displays P.._ as a function of bubble radius for selected particle radii and fixed
conditions of ho/hc.t= 5 and I_.= 1.3 g/cm3.The large filled circles on the R. = 200, 300, and 500
pm curves represent conditions when R. = RB,values where calculations are terminated (i.e.,

the model is valid for R. < RB). As shown, P._ covers over four orders of magnitude, depending
on R., with smaller Pas,corresponding to smaller Rp.Also, P_ decreases with increasing RB,
with the largest decline at R. = 100 Izm.Additionally, for very small or very large R., P_ is not a
strong function of RB.

The latter trend is apparent in Fig. 8, where P_ is shown as a function of R. for selected RB
and fixed ho/hc.t= 5 and p. = 1.3 g/cra3.Again, the large filled circles represent conditions when
R. = RB.For a fixed particle radius, Pas,increases with decreasing RB.However, when R. is very
small, Pa.,is almost independent of RBwith Pa_= 0.00033 at R. = 1 pm and the other conditions

as given. Pas,does not increase substantially until R. > 10 !zmfor RB= 0.1 rrm and R. > 100 pm
for R_= 5 mm.

Figure 9 shows the influence particle density has on Pa_for fixed RB= 0.5 mm, R. = 50 pm,
and ho/h_r,TM 5. As the particle density increases, P_ increases. This is expected since
increasing the particle density will increase the particle settling velocity and allow the inertia
force to bring the particle closer to the bubble, promoting attachment by sliding.

At the time of this status report writing (February 9, 1998), additional Pa_ figures were being
generated and parametric influences on ho and/or hc.t were being researched. Details can be
found in Member Company Report 6 of this project [2].

4.1.3 Model Validation Status
Dr. Krishna Maruvada joined our research group as a Post Doc on January 15, 1998 and has

a charge to conduct model validation experiments for our first-generation flotation model. The
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model is a two parameter population balance-type kinetic model for the removal of contaminant
particles from waste paper. The formation of a bubble-particle aggregate has been modeled as a
first order reversible reaction with two rate constants, k_and k2 of the forward and reverse
reactions, respectively. These two constants depend upon the physical properties of the
system, as well as on various other parameters such as bubble size, particle size, particle
density and the hydrodynamic conditions in the flotation cell [4, 5]. To validate this model, w e
propose to conduct experiments under carefully controlled conditions so that the dependence of
the two parameters can be studied as a function of various system variables.

As a preliminary step, we have analyzed available flotation deinking data in light of our model.
Vidotti et al. [14] have recently published experimental results for the deinking of office paper.
Four different paper samples containing the same number of printed characters were repulped
under defined standard conditions. The four experiments differ from each other in the way the
paper was printed. Two were printed using laser pdnters (HP-3LP and HP-4LP) and the
remaining two were printed using copy machines (Cannon and Toshiba). Flotation experiments
were conducted in a pilot plant for each of these samples. Handsheets of the feed stock and
flotation accepts were analyzed by image analysis to determine the particle size distribution.

The following procedure is adopted for our analysis of the Vidotti et al. [14] data. For each

size range, Vidotti et al. [14] tabulated the number of free ink particles (nfp) per 10 cm2 in the
flotation accepts as a function of time (t). Since the original number of particles in each size
range are known from the feed concentration, the number density which is given by the
following equation can be calculated and is plotted as a function of time.

7(t)= nfp(t) (14)
f(t= 0)Bp

Our theoretical model predicts that the .rateof change of particle number density depends on the
two model parameters as given by [5, 15]

dy_ 2 [l_(np ns) k2]7(t)+k 2 (15)dt - -k_np7 (t) + - -

Hencefrom the experimental data, the rate of change of particle number density is plotted as a
function of the number density 7 and a second degree polynomial is fitted to the resulting curve.
From the coefficients of the fitted polynomial the values for the model parameters (k_ and k2) are
obtained for each size range.

The results from this analysis of the four samples are plotted and given below. Figure 10
presents the dependence of k_,the kinetic constant representing particle removal, on the particle
size. Since k_and k2 are obtained by quadratic regression, the experimental data is statistically
insufficient to draw any quantitative conclusions regarding their dependence on the size of the
ink particle. However, the following qualitative observations can be made:

(i) k_is positive indicating that the formation of the bubble particle aggregate is favored for
all particle sizes presented above.

(ii) k_ is small when the particle diameter is small and increases with the particle size.
These observations are qualitatively in agreement with the predictions of our model.

According to the model, k_ is a product of the probabilities of various microprocesses. The
probability of capture indicates that for a given bubble size the probability increases with the
particle size. Accordingly, for small particles the probability is Iow and consequently k_is small.
Hence, for small particles, the model agrees with the experimental observations. As a next step,
the model predictions for k_will be generated for the given experimental conditions so that a
quantitative comparison can be made.

Figure 11 indicates the dependence of k2on particle diameter. Although the data appear to be
scattered, it may be observed that most of the values for k2in the figure are negative. However,
in our model k2 is a kinetic constant representing the destruction of bubble/particle aggregates
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and is a positive number. The negative value physically implies that k2 --' 0 and the bubble/particle
aggregate is very stable for the flotation conditions of Vidotti et al. [14]. Considering that the size
of the bubble in their experiments is of the order of 2 rrm, we may expect that bubble/particle
aggregate to remain stable for small particle diameters.

At the time of this report wdting, an experimental plan was being developed in which a series
of controlled experiments will be conducted in our laboratory to systematically study the
dependence of various variables on the model parameters and overall flotation efficiency. One
possible approach is to identify a material that has similar physical and surface properties to that
of toner particles, but can be obtained in various uniform sizes in the particle size range
applicable to flotation deinking. This material would then be added to a clean fiber slurry and
flotation experiments will be performed to determine removal efficiencies. Alternatively, real
recycled office paper will be repulped using standard TAPPI procedures, which will then be
used for the flotation experiments. Handsheets will be prepared from the flotation accepts and
number of ink particles present will be counted using image analysis. This latter approach is more
realistic, but initial particle size is more difficult to control.

As a first step in our experimental program, we plan to investigate the influence of bubble
size on the overall flotation efficiency and compare the experimental results with our model
predictions. One of the ways to study the dependence of bubble size is by using different kinds
of surfactants. Each surfactant has a specific critical mice!le concentration which uniquely
determines the corresponding surface tension. The equilibrium surface tension can be measured
by the DCA (Dynamic contact angle analyzer) which is available at IPST. By using an appropriate
constant gas injection rate and impeller speed, such that the air bubbles formed will remain in
equilibrium with the bulk solution, bubbles of different sizes can be created by changing the
surfactants. Flotation efficiencies will be plotted as a function of bubble size while keeping all
other parameters constant and compared to model predictions.

4.1.4 Modeling Summary
Research during the past year in flotation modeling has focused on improving the

microprocess probability predictions of capture (Pc) and adhesion by sliding (Pa,_),as well as
modelvalidation experiments.Member Company Reports4 and 6 [1, 2] of this research detail the
efforts in the Pc and P,,_ improvements, respectively. The model validation experiments were
delayed until late January. However, with the arrival of Dr. Maruvada in January, the model
validation experiments are currently underway.

4.2 Bubble Size Measurements
Bubble size is important for effective flotation deinking. Member Company Report 3 of this

project [16] summarized a method to visualize bubble dynamics and measure bubble size
distributions in a fiber suspension at consistencies typical of flotation deinking. Initial results were
also presented for bubble size measurements in an ONP system without added system
chemistry. During the past year, experiments were performed to determine the bubble size in a
quiescent bubble column with four different experimental systems: (1) ONP systems with
various chemistries and chemistry concentrations; (2) NBSK systems with various consistencies
but no added chemistry; (3) a copy paper system with no added chemistry; and (4) an (3qP
system with no added chemistry but a higher gas flow rate. Table 1 summarizes all experimental
conditions addressed during this time. Specific details of this portion of the project have recently
been reported in Member Company Report 5 of this project [3]. This section will highlight the
conclusions of this report.
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Table1: Experimental conditionsaddressed in Member Company Report 5.

.....
teronly 0% 0.25 Noneadded

Water only 0% 0.25 BRD 2360- 1.7 mi/kg I

Water only 0% 0.25 BRD 2360- 3.3 mi/kg I

I Water only 0% 0.25 BRD 2360- 6.7 mi/kg I
Water only 0% 0.25 BRD 2342- 1.7 mi/kg I

Water only 0% 0.25 BRD 2342- 3.3 mi/kg I

Water only 0% 0.25 BRD 2363- 1.7 mi/kg I

I Water only 0% 0.25 BRD 2363- 3.3 mi/kg I

Water °nly 0% 2.0 None added I

(:3qP 1% 0.25 None added I

1% 0.25 BRD2360- 1.7 mi/kg I

OqP 1% 0.25 BRD2360- 3.3 mi/kg I

oqP 1% 0.25 BRD2360- 6.7 mi/kg I1% 0.25 aRB 2342- 1.7 mi/kg I

(3_ 1% 0.25 BRD 2342- 3.3 mi/kg I

1% 0.25 BRD 2363 - 1.7 mi/kg I

O1_ 1% 0.25 BRD 2363- 3.3 mi/kg I

1% 2.0 None added J

NBSK 0.1% 0.25 None added !

NBSK 0.5% 0.25 None added !

NBSK 0.5% 2.0 None added I

NBSK 1.0% 2.0 None added I

NBSK 1.5% 2.0 None added I

Ic°"  a"erI I I

4.2.1 Effect of System Chemistry
The effect of system chemistry conditions on bubble size in an ONP suspension was

addressed by modifying an air/water/l% ONP fiber system with three different deinking
chemistries: (i) BRD 2360, a fatty acid; (ii) BRD 2342, a nonionic surfactant; and (iii) BRD2363, a
fatty acid/nonionic surfactant blend. All system chemistry variations were investigated in 0 and
1% ONP consistency systems. The 0% consistency system corresponds to an air/water
system, where the chemical concentration is based on the mass of dry fiber in the 1%
system. Additionally, all tests were conducted at a constant air flow rate of 0.25 slpm, and both
the gasket and sparger air injection techniques were investigated. Specific experimental details
can be found in [3].

The average bubble diameters at Position2 in our bubble column are summarized in Fig. 12 as
a function of BRD 2360 concentration (the fatty acid). The typical chemical concentration of 3.3
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mi/kg (6 lbs/ton)is recommended by the chemical supplier (Buckman Laboratories) for
deinking, and this concentration is identified for reference. It appears that only the gasket at 1%
ONP consistency is significantly affected by the BRD 2360 concentration. This may be more of a
function of the physical system than chemical concentration. In the air/water system, the
average bubble diameter is not significantly affected by the BRD 2360 concentration for either air
injection method because the bubbles are free to disperse and coalescence is limited.When 1%
ONP is added to the system, the average bubble diameter increases, but it is relatively
unaffected by BRD 2360 concentration when the sparger air injection technique is used. This is
because the sparger head allows air into the system over a relatively large surface area. The
bubbles require a sufficient buoyant force to rise through the fiber network, resulting in the
increasedbubble diameter. Since they enter the system at different locations along the sparger
head, depending on the path of lowest pressure drop, the 1% fiber suspension remains fairly
well-mixed and the bubble diameters remain uniform for each system chemical concentration. In
contrast, for the gasket air injection technique, air enters the system through a single port. The
air bubbles again must have a sufficient buoyant force to rise through the fiber network. If the
system does not remain well-mixed, a fiber network slightly different from the previous test
condition may form, which may require larger (or smaller) bubbles to break through this network.
It is hypothesized that this type of system was present at 3.3 mi/kg of BRD2360 with the gasket
air injection, resulting in a significant change in average bubble diameter.

Figure 13 shows the average bubble diameters as a function of BRD 2342 concentration (the
nonionic surfactant). As expected, the 1% ONP results yield larger average bubble diameters
than the air/water systems (0% consistency) for all test conditions. In the air/water system, the
sparger results show a slight increase in bubble size when the BRD 2342 concentration
increases. The gasket data do not follow this trend. When 1% ONPis added to the system, the
average bubble size reveals an increasing trend with increasing BRD 2342 concentration for
both air injection techniques. Additionally, on average, the sparger produces larger bubbles than
the gasket at Position 2.

A plot of average bubble size as a function of BRD 2363 concentration (the fatty acid/
nonionic surfactant blend) is shown in Fig. 14. Although there are significant standard deviations
associated with each average bubble size measurement, as shown in the figures associated
with [3], a general trend of increasing average bubble size with increasing BRD 2363
concentration is revealed for all test conditions, except the 1% ONP sparger data.

Figure 15 shows the average bubble diameters for the three different chemistries at a
concentration of 1.7 mi/kg. Focusing on the gasket results, the average bubble size trends for
the 0 and 1% ONP consistency systems coincide when the chemistry type is altered. In contrast,
when the sparger is used as the air injection technique, the average bubble size trends for the 0
and 1% ONP systems counter one another when the system chemistry changes. The results
reveal that BRD 2342 produced the largest average bubble diameters at 1% ONP with the
sparger air injection technique. For all other systems, this trend is reversed and BRD 2342
results in the smallest average bubble size. Similar trends are revealed when the chemical
concentration is 3.3 mi/kg (Fig. 16).

It was suggested by various PAC members that surface tension may be a significant
parameter and may make it difficult to determine specific chemistry effects. This was not
recorded for the specific samples utilized in these experiments (but will be recorded for all future
experiments). To determine what effect, if any, surface tension has on the bubble size in the
air/water system, the various chemicals addressed in this study were individually added to
deionized water in the specified concentration. The surface tension was measured with a
VVilhelmyplate balance. In general, the higher the chemical concentration, the lower the surface
tension, indicating that the CMC (critical micelle concentration)was not reached [17].

Figure 17 is a plot of average bubble size obtained in our experiments as a function of
surface tension and shows no significant trends. In bubble size studies in air/water systems by
other researchers, the effect of surfactants is not dear. Klm et al. [18] cite prior work they
completed where increasing the surface tension increased the bubble size only by a small
amount. Nicol and Davidson [19] state that surfactants stabilize the bubble surface and hinder
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bubble coalescence, so their presence should reduce the mean bubble size, assuming
considerable bubble coalescence would occur without the added surfactant. This type of
system was not observed in our quiescent bubble column. Additionally, Schulze [20] provides a
relationship between bubble size, surface tension, fluid density, and mixing intensity which
would indicate bubble size should decrease with decreasing surface tension. In contrast, Lin et
al. [21] conclude that bubble diameter is a complex function of surface tension, fluid density,
bubble contact diameter at the injection port, and contact angle at the bubble-fluid-solid interface
(i.e., the injector location). They further remark that the dominant factor influencing the bubble
size in their system is the contact angle, measured in the fluid at the orifice surface. Therefore,
bubble size is influenced strongly by the surface energy of the injection port. Based on this
literature, and as shown in this study, bubble size is not a simple function of surface tension.

It was also suggested by PAC membersthat viscosity may also play a significant role and
should be measured for each system. However, fluid viscosity measurements in dilute fiber
systems (~1%) are difficult with common viscometers because these devices require the
mediumto be continuous at dimensionssimilar to those of individual fibers. The 1% ONPsystem
used in this study does not satisfy this requirement. Additionally, Chase et al. [22] have indicated
that using rotational viscometers, such as the cup and bob, cone and plate, or spindle types,
resulted in apparent viscosity measurements approaching that of water when testing pulp
suspensions at consistencies as high as 1.5%. They also record viscosities close to that of
water for hardwood pulps with consistencies less than 3% and a freeness of 300-400 mi CSF.
These measurements were recorded in a rotating viscometer they developed. Therefore,
viscosity may not be the most appropriate measure to determine the effect the fibers have on
bubble formation. The crowding factor [23-26] may be a better measure of fiber-fiber interactions
and their effect on bubble size. Research in this area will commence during 1998-1999.

4.2.2 Effect of Fiber Type
Experiments in a quiescent bubble column using northern bleached softwood kraft (NBSK),

copy paper, and ONP have also been completed to determine if various fiber types have a
significant influence on the recorded bubble diameters. The weight-weighted average fiber
length and ash content of the fibers used in this portion of the study are summarized in Table 2.
Deionized water was used as the fiber suspending fluid and no additional chemistry was added
to the various systems.

Table2: Fiber length and ash content of the fiber types used in this study.

Average Fiber Length (mm) Ash Content (%)

OqP 1.4 0.7

NBSK 2.8 O.3

Copy Paper 2.0 6.6

Experiments were first conducted in NBSKwith an air flow rate of 0.25 slpm. These longer
fibers produced large, infrequent bubbles at this air flow rate. Therefore, a series of experiments
were completed in which an air flow rate of 2 slpm was used in the quiescent bubble column.
This air flow rate will be used to compare fiber type effects. Detailed results can be found in [3].

Flash x-rays were taken of a NBSK system at consistencies of 0, 0.5, 1.0 and 1.5% and an
air flow rate of 2 slpm. Both the gasket and sparger air injection technique were used in these
experiments. Figure 18 shows the x-ray composite for the air/water system at 2 slpm with the
sparger air injection. The Tygon tubing used as the air line is clearly visible on the left-hand side
of the column. Many bubbles are observed with this type of air injection, as indicated by the
many dark regions on the radiographs. These bubbles are rather small and rise in a turbulent
fashion and encompass the entire column width. The many rising bubbles carry small amounts of
fluid in their wakes as they rise, moving the fluid from the column bottom to the top. Due to
continuity considerations, this fluid is replaced by fluid descending along the column sides. This
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general phenomenon is typically termed backmixing and results in the many small bubbles
recorded on the left-hand side of Position 1 in Fig. 18. The many small bubbles that descend in
the backmixed flow are eventually entrained in the bulk rising column of air. The large number of
bubbles and backmixing have a visible effect on the gas holdup of the system, defined as the
percent gas by volume, and results in a considerable increase in the height at the air/liquid
interface. The increase in fluid height to approximately 84 cm results in a gas holdup of almost
5% for these conditions.

Adding 1.0% NBSK into the system with sparger air injection results in a significant change in
flow conditions (Fig. 19). Many small bubbles are still present, but periodically very large bubbles
develop near the sparger head and rise through the system. The bulk rising air flow oscillates in
a serpentine fashion, and the larger bubbles follow this pattern. Some of the smaller bubbles are
caught in the backmixed flow, but are eventually entrained in the bulk flow. The increase in gas
holdup is clearly visible, but its value is difficu{t to determine due to the waviness at the air/liquid
interface. This is caused by the large bubbles breaking through the surface, which is just about
to happen in Fig. 19 at Position 4 as three large bubbles are just about to disrupt the air/liquid
interface and exit the system.

Figure 20 shows the bubble size distributions acquired with the sparger air injector at
Position2 in the bubble column. The average bubble size and standard deviation increase with
increasing NBSK consistency, but this is primarily the result of the increase in the number of very
large bubbles as the consistency increases. Most of the large bubbles have an equivalent
diameter greater than 25 mm. Since the column thickness is only 20 mm, these bubbles can span
the entire column depth if they are spherical and the equivalent bubble diameter for these large
bubbles is not the appropriate term. (Recall, by definition, the equivalent bubble diameter is the
diameter of the circle whose area equals that of the bubble area recorded on the x-ray film.)
Although the number of these bubbles is rather small compared to the entire bubble population,
the number clearly increases with increasing consistency. One very apparent feature of Fig. 20
is that the bubble size distribution is bimodal;there is a range of small bubbles and a range of
very large bubbles, but few bubbles in the intermediate size range. The distribution of small
bubbles (bubble diameters less than approximately 10 mm) is similar as NBSK consistency
increases, with a peak in all cases in the 2-3 rr_ range. The main difference is that the
magnitude of the peak decreases as NBSK consistency increases, and is due to the increase in
the number of bubbles greater than 25 rr_ as consistency increases. Focusing on bubble
diameters that are less than 10 _ and neglecting those that are greater, averages can be
generated. For each test condition, the average is 3.0, 3.0, 3.0, and 3.3 _ for the 0, 0.5, 1.0,
and 1.5% consistency systems, respectively, indicating the uniformity in this region.

Although the sparger produces few very large bubbles, which increase in number as the
NBSK consistency increases, these large bubbles serve a very important function. They act as
"mobile mixers" in this fiber suspension and maintain a uniform system throughout the bubble
column.This allows for the majority of the bubbles to remain relatively small and free to move
through the system. In terms of flotation deinking cells, the small bubbles would capture ink
particles, and the large bubbles would keep the suspension homogeneous by preventing fiber
network and air channel formation.

The average bubble size as a function of fiber consistency is shown in Fig. 21 for the NBSK
resu{ts.The ONP results reported in [16] with no added system chemistry are also included for
reference, although they correspond to an air injection rate of 0.25 slpm. Focusing on the NBSK
results, the gasket injection technique produces a larger average bubble diameter for all
consistencies addressed. The large average bubble diameter at 1% NBSK from the gasket
injection is hypothesized to be the result of nonuniform fiber networks between the various
consistencies. There is, however, a general trend of increasing bubble diameterwith increasing
consistency. This trend is more apparent with the sParger air injection technique. As discussed
above, the increase in average bubble diameter for the sparger with increasing consistency is
due to the increase in the number of large bubbles, but constitutes a small percentage of the
overall bubble population.
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Additional bubble size measurements were obtained in a 1% unprinted copy paper (Union
Camp Yorktown xerographic paper as supptied to IPST) and ONP system with a 2 slpm air
injection rate and compared to the 1% NBSK system. The bubble size distributions for the NBSK
and copy paper system are very comparable when the gasket air injection is used (Fig. 22). The
ONP system produces a smaller average bubble size and the bubble size distribution is shifted to
much smaller bubble sizes.

Figure 23 reveals the bubble size distributions when the sparger air injection is used. Again,
the NBSK and copy paper system reveal similar distributions and average bubble diameters.
Additionally, the ONPsystem produces a similar distribution, that is, most of the bubbles for all
systems are confined to bubble diameters less than approximately 10 mm. The differences
between the ONP and chemical pulp systems are found outside this range, where a few bubbles
are found. The ONP system has approximately 1% of its bubble population with a diameter
greater than 10 mm, but these few bubbles are spread out over a variety of diameters. In
contrast, the NBSK system has approximately 5% of its bubble population with diameters greater
than 10 mm, with 3% greater than 25 mm. The few, but very large, bubbles in the NBSK system
cause the average bubble diameter to be larger than that recorded for the ONP system. One
significant feature Fig. 23 displays is the importance of these few large bubbles; they create a
uniformsystem that helps maintain the majority of the bubbles in a relatively narrow bubble size
distribution, regardless of fiber type.

4.2.3 Bubble Size Measurements Summary
A large amount of bubble size data have been obtained over the past year and details are

provided in [3]. For the specific chemistries addressed here and added to an air/water system or
an air/water/l% ONP system, clear trends were difficult to ascertain due to the variations in the
fiber network structure for the different test conditions. However, in general, the nonionic
surfactant produced smaller average bubble diameters, but variations in the general trends were
observed.

The northern bleached softwood kraft (NBSK) studies were conducted at an air flow rate of
2 slpm, which produced severe backmixing. This resulted in the sparger air injection technique
yielding a higher gas holdup and a bim_l bubble size distribution, with the majority of the
bubbles in the size range less than 10 rn_ in diameter and a peak in the 2-3 nlm range. The
bubbles in this range all have the same average bubble size (~3 mm) for all NBSK fiber
consistencies addressed here, but the relative frequency decreases with increasing
consistency. Few bubbles are greater than 10 rn_ in diameter, but there are those that are
typically larger than 25 mm. The number of bubbles that fall in this category increases with
increasing NBSKconsistency. These larger bubbles play an important role by acting as mobile
mixers, which keeps the smatler bubbles uniform and the fiber suspension well-mixed and
homogeneous. Also, the average bubble size increases with NBSK fiber consistency.

Results for 1% copy paper and 1% ONP systems with an air injection rate of 2 slpm were
also obtained and compared to those from 1% NBSK. The most significant difference was that
the ONP system produced the smallest average bubble size.

4.2.4 FXR Flow Loop Status
Future bubble size measurement work utilizing the flash x-ray equipment will focus on

cocurrent bubble columns, where the gas and fiber slurry is rising through the test section. This
will be accomptished with a recently completed flow loop, schematically shown in Fig. 24. The
flow loop consists of two baffled holding tanks to allow any gas in the system to escape, a
pump,a flow meter, associated plumbing,and a bubble column. The bubble column consists of
two 1 m sections attached end-to-end with interior dimensions 10 cm x 2 cm. A fiber slurry will

travel from the Columnbottom to the topl and air will be injected at the column base. The flow
loop will ensure that a uniform fiber suspension is maintainedbecause of the continuous mixing.
The cocurrent flow loop is designed such that countercurrent flow could be produced, or, with
slight modifications to the framing, the column could be orientated horizontally. Tests will be
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conducted to determine the effect of stock flow rate on bubble size. The fiber crowding factor
will also be addressed, and surface tension will be recorded for all experimental conditions. X-
rays will be taken at selected locations, and image analysis will be performed to determine the
equivalent bubble diameters.

4.3 NEWDEINKING TECHNOLOGIES
I have been asked to summarize the latest deinking technologies (N. Sanders November 24,

1997 memo) for the PAC. Of specific interest was the Regenex and packed column technologies.
However, information pertaining to packed column deinking technology was not available in the
open literature. Regenex provided a packet of product literature, which also included a video of
the process [27].

The Regenextechnology is termed a Continuous Batch Fiber Recovery System (CBFRS)and
was adapted from industrial textile and linen laundenng operations. The system consists of a
series of interconnected cylindrical modules which oscillate in synchronization. Material is
transferred from module to module during processing (i.e., each module is one batch, but is
processed in series producing a continuous operation). Each individual module can be likened to
a small reaction vessel where temperature, chemistry, and consistency can be well-controlled.
Any required water is also controlled and flows counter to the material flow.

With a modular design, the Regenex product literature states that paper recycling systems
can be designed for as small as 3 tpd or as large as 200-300 tpd. The modular design also
allows for greater flexibility so that one system can be configured to process multiple recovered
paper grades at different times. Regenex claims that the system has been especially effective in
deinking mixed office paper, milk carton stock, aseptic packaging, and old newspapers.
According to Regenex, the benefits of this system over traditional technologies include:

· A much lower paper demand over conventional deinking systems (approximately 150
kW/hour/ton).

· Lower engineering, construction, and maintenance costs due to the modular design and skid-
mounted system.

· Capacity is easily increased by installing additional modules or processing lines.
· Stock transfer is simplified, eliminating piping, values, pumps, and storage tanks.
· Bleaching is easily integrated into the modular system.

Overall, the Regenex system would work well to recover fiber from very specialized
recovered paper stocks which may be highly contaminated. Alternatively, it could also be
considered if an incremental increase in recycling capacity is required.

In addition to the Regenex technology, a search of recent patents in the area of deinking
equipment has identified two additional technologies that are typically not found in traditional
recycling operations. Extraction technology was utilized by Walker [28] to remove soluble ink
(i.e., water-based) from newsprint. This is an extension of screw-press technology. Marwah
and Gold [29, 30] indicate that magnetic separation may be used to remove ink and stickle
particles from recovered paper. An agglomerator and magnetic material are added to the fiber
suspension and the contaminant particles (inks and/or stickles) coalesce onto the magnetic
particles. The aggregate is then removed through a magnetic separator, leaving clean fiber
behind. Owen [31] also has a recent patent addressing deinking by magnetic forces. In this
patent, it is claimed that given a strong enough magnetic force, most toner particles could be
removed from recovered paper.

This brief review is not a comprehensive summary of all new technologies that may be
applicable to contaminant removal in fiber streams. Additional input from PAC members is
encouraged.

4.4 RELA_ PUBUCATIONS
The following documents authored (or co-authored) by this principal investigator and related

to flotation deinking fluid mechanics have been published since March 1997:
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· Bose, F., Ghiaasiaan, S.M., and Heindel, T.J., "Hydrodynamicsof Dispersed Liquid Droplets in
Agitated Synthetic Fibrous Slurries," Industnaland EngineeringChemistryResearch, 36:11
5028-5036 (1997). (IPST Technical Paper Series Number678.)

· Bloom, F., and Heindel, T.J., "A Theoretical Model of Flotation DeinkingEfficiency," Journal of
Colloid and Interface Science, 190:182-197 (1997). (IPST Technical Paper Series Number
646.)

· Bloom, F., and Heindel, T.J., "Mathematical Modelling of the Flotation Deinking Process,"
Mathematicaland ComputerModelling,25(5)' 13-58 (1997). (IPSTTechnical Paper Series
Number634.)

· Heindel, T.J., and Monefeldt, J.L., "Flash X-ray Radiography for Visualizing Gas Flows in
Opaque Liquid/Fiber Suspensions," 6th InternationalSymposiumon Gas-Liquid Two-Phase
Flows,Vancouver, BC, June 22-26, 1997. (IPST Technical Paper Series Number 639.)

· Heindel, T.J., "The Fundamentals of Flotation Deinking," 1997 TAPPI Pulping Conference,
TAPPI Press, Atlanta, GA, 521-533 (1997). (IPSTTechnical Paper Series Number656.)

· Heindel, T.J., and Monefeldt, J.L., "Observationsof the Bubble Dynamics in a Pulp Suspension
Using Flash X-ray Radiography," 1997 TAPPI Engineeringand Papermakers Conference,
TAPPI Press, Atlanta, GA, 1421-1433(1997). (IPST Technical Paper Series Number 655.)

· . Heindel,T.J., and Bloom, F., "New Measuresfor Maximizing Ink Particle Removal in a Flotation
Cell," 1997 TAPPI Recycling Symposium,Atlanta, GA, TAPPIPress, 101-113 (1997). (IPST
Technical Paper Series Number 635.)

· Heindel, T.J., "FXR Throws 'Light' on the Obscure," TAPPIJournal,80(6): 20,22, (1997).
· Heindel,T.J., Banerjee, S., and Deng, Y., "Recycling Research at IPST,"PaperAge, 113(11)'

23-24 (1997). (IPST Technical Paper Series Number684.)

4.5 RELATEDPROPOSALS
Various non-proprietary research proposals have been submitted during the past year to

enhance the current flotation deinking fluid mechanics research program. The status of these
and related proposals are summarized here.

· "Mixing in Gas/Liquid/Fiber Flows," by T.J. Heindel and submitted to TAPPI Research
Foundation. ($32.8K, 1 year, unfunded)

· "Stickles Removal Through Shear-Induced Coalescence and Breakup," by T.J. Heindel, S.
Banerjee,S.M. Ghiaasiaan, and S.I. AdbeI-Khalik and submitted to the Agenda 2020 Recycling
Task Group. ($540K, 3 years, unfunded)

· "An Analysis of Printing and Writing Recovered Paper Grade Specifications," by T.J. Heindel
and W.P. Moore and submitted to the Agenda 2020 Recycling Task Group. ($70K, 1 year,
unfunded)

· "Bubble Size Control to Improve Oxygen-Based Bleaching," by T.J. Heindel and T.J.
McDonough and submitted to the Agenda 2020 Environmental Performance Task Group.
($682K, 3 years, pending)

· "Gas Flows in Fiber Suspensions," by T.J. Heindel and subm'rttedto the NSF CAREER
Program. ($200K,4 years, pending)

· "Model Improvementsand Model Validationto ImproveFlotation DeinkingPerformance,"by T.J.
Heindel and submitted to the Agenda 2020 Capital Effectiveness Program. ($629.4K, 3 years,
pending)

5 GOALS FOR FY 98-99:
Goals for the next period (March 1998 to March 1999) are grouped into two areas and are

summarized below.
FlotationModeling

1. Perform model validation experiments and compare the experimental results with model
predictions.

2. Extend the theoretical flotation model to relax selected assumptions.
3. Summarize the modelingwork in a Member Company Report.
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Bubble Size Measurements
.i

4. Determinethe effect copy paper consistency has on bubble size in a cocurrent bubble
column.

5. Determine the effect superficial gas velocity has on bubble size in a cocurrent bubble
column filled with unprinted copy paper.

6. Determinethe effect superficial liquid velocity has on bubble size in a cocurrent bubble
column filled with unprinted copy paper.

7. Summarize the bubble size measurementwork in a Member Company Report.

6 DELIVERABLES:
Two Member Company Reportswill be completed during the next year addressing advances

in the flotation model (including validation) and bubble size measurements in a cocurrent bubble
column.

7 SCHB)ULE:
The project is designed such that the two separate areas of flotation modeling and bubble

size measurements can be addressed concurrently throughout the year. Specific task numbers
refer to the goals stated above.

Task Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar
1 X X X X X X X X X X
2 X X X X X X X
3 X X X X
4 X X X X
5 X X X X
6 X X X X X
7 X X X X
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Figure6: Comparisons between experimental and numericalvalues for Pcfor galena particles
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Figure 7: Probabiliity of adhesion by sliding as a function of bubble radius for selected particle
radiiandho/hca= 5andpp= 1.3g/cm3.
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Figure 8: Probability of adhesion by sliding as a function of particle radius for selected bubble
radii and ho/ho.t- 5 and pp- 1.3 g/cm3.
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Figure 9: Probability of adhesion by sliding as a function of particle density for RB - 0.5 mm, Rp
= 50 pm, and ho/hor,= 5.

Confidential Information - Not for Public Disclosure
(For IPST Member Company's internal Use Only)



ProjectF00903 52 StatusReport

0.10
O

0.09 .HP-3LP
O HP-4LP

0.08 _c-Pc
xT-PC X

0.07 - o x
A_

0.06 - ,, ,, x
_ A O

A

kl 0.05 - ©
_

0.04 _ .
O

- x A

0.03- " o x
- 0

0.02 - * *
×

_ o

0.01
x x

0.00 . , , , , , . , , I

0 50 100 150 200 250

Particle Diameter (microns)

Figure 10: Effect on particle size on the model parameter k_ using the experimental data of Vidotti
et al. [14].
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Figure 11' Effect on particle size on the model parameter k2 using the experimental data of Vidotti
et al. [14].
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Figure 12: Effect of BRD 2360 concentration on the average bubble size.
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Figure 13: Effect of BRD 2342 concentration on the average bubble size.
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Figure 14: Effect of BRD 2363 concentration on the average bubble size.
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Figure 15: Effect of BRD type (concentration of 1.7 mi/kg) on the average bubble size.
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Figure 16: Effect of BRD type (concentration of 3.3 mi/kg) on the average bubble size.
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Figure 17: Effect of surface tension on the average bubble size.

ConfidentialInformation- Notfor PublicDisclosure
(For IPST Member Company's Internal Use Only)



Project F00903 6o Status Report

Air '_
Fiber C onsisten cy-

inlet 100 0%
Air Injection Rate:

90 2slpm
Chemistry: None

ded

80 Air/fluid
inte_ace

70 Position4

6O

50 Position 3

"_ .:s:... ...... :::::::.. :_:_!_40 .................._""_'"':___'...-"___::_"_..'_:
!i!!:!:i!iii:i:::..:...:.'.;_z'_,::.:.:.:.:.:.:.:.:._:.:...:.:.:..:...........,..:..............
§:?'_:'_:'''"_:__..:...-_......'_i_{_:,.._!_55_5_:_!_._!5_5i._;_;_5::_;,:i_i_!_ii,.._i?:?..:..?...'_;_i

,..._,W,...-_:.:__,..:_..... :_:!_

'_:_"__:_"'':''_:I Position 2_-5:::'-:'::::::::::::::::::::::::::::::::::::::::::::::!!iii:_::i:_i_i_iii!iii:ii_!::'_'_!._iiii::i::ii!!iii.,.'iiil

..._......_..._..,._.,______:_!!
. .

2O

10
Position 1

Height 0

(em) _20 cm_ Drain

Figure 18: X-ray composite of air bubble flow patterns in an air/water system with air injected at
2 slpm through a sparger with 40 gm openings placed on tho column bottom.
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Figure 19: X-ray composite of air bubble flow patterns in an air/water/l% NBSK system with air
injected at 2 slpm through a sparger with 40 pm openings placed on the column
bottom.
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Figure 20: Bubble size distributions obtained with the sparger air injection technique for various
NBSK consistencies.
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Figure 21' Effect of NBSK consistency on average bubble size.
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Figure 22' Bubble size distributions for 1% NBSK, copy paper, and ONP systems obtained with
the gasket air injection at 2 slpm.
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Figure23: Bubblesizedistributionsfor 1%NBSK,copy paper,and ONPsystemsobtainedwith
the sparger air injection at 2 slpm.
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Figure24: Schematicdiagramof the new cocurrentflow loopto be usedwith the flash x-ray
system.
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PROJECT OBJECTIVES:

a. Study the surface chemistry of different collectors in toner flotation deinking.

b. Study the effect of fiber types on fiber loss.

c. Study the role of surfactant in the ink-fiber detachment.

d. Study the effect of old magazine (OMG) on the ink removal of old newsprint

(ONP).

MAIN RESULTS:

a) Cationic surfactants are the best surfactant systems that have been examined

in this study, and these surfactants can be used as both collector and frothing

agents for the flotation deinking of xerographic papers.

b) Both fiber adhesion and physical entraimment will contnbute to fiber loss, but

the entrainment is the dominating factor.

c) The addition of OMG will not enhance the ink removal of ONP in flotation

deinking. The improvement of ONP brightness in the presence of OMG is

solely caused by introducing more fillers and high-quality fibers.

d) The adsorption of the complex of fatty acid and calcium ions on toner particles

will not increase the hydrophobicity of toner particles.

¢) Nonionic surfactant, TX-100, will reduce the hydrophobicity of ink, fibers,

fines, and fillers.

ABSTRACT

This report is concemed with increasing utilization of recycled fiber and, more

specifically, with minimizing fiber loss and maximimng deinking efficiency in flotation

deinking. The research program was started in May 1995. The results obtained in

Fiscal Years 95-96 and 96-97 have be given in Progress Report I (February 1997).

Two papers based on this study, "Contact Angle Measurement of Wood Fibers in

Surfactant and Polymer SOlutions"and "True Flotation and Physical Entrainment: The

Mechanisms of Fiber Loss in Flotation Deinking," have been accepted for publication by

Wood and Fiber Science and Nordic Pulp and Paper Research Journal, respectively.

The current report will focus only on the results completed in the 97-98 FY.

Although flotation deinking is considered to be one of the most effective deinking

methods, many physicochemical properties, such as ink removal efficiency, froth
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structure, fiber loss mechanisms, and filler flotation during flotation deinking, remain

unclear. To improve deinking efficiency and reduce fiber loss, the surface chemistry of

ink, fiber, filler, air bubble, and other colloid! materials in flotation deinking has to be

studied.

The objectives of the research program conducted in FY 97-98 are to:

a. Study the surface chemistry of different collectors in toner flotation deinking.

b. Study the effect of fiber types on fiber loss.

c. Study the role of surfactant in the ink-fiber detachment.

d. Study the effect of old magazine (OMG) on the ink removal of old newsprint

(ONP).

The main results obtained in this research program indicate that

a) Cationic surfactants are the best surfactant systems that have been examined

in this study, and these surfactants can be used as both collector and frothing

agents for the flotation deinking of xerographic papers.

b) Both fiber adhesion and physical entraimment will contribute to fiber loss, but

the entrainment is the dominating factor.

c) The addition of OMG will not enhance the ink removal of ONP in flotation

deinking. The improvement of ONP brightness in the presence of OMG is

solely caused by introducing more fillers and high-quality fibers.

d) The adsorption of the complex of fatty acid and calcium ions on toner particles

will not increase the hydrophobicity of toner particles.

e) Nonionic surfactant, TX-100, will reduce the hydrophobicity of ink, fibers,

fines, and fillers.

Because the objectives studied in 97-98 FY are relatively broad and independent

of each other, the results accomplished in 97-98 FY will be divided into four sections:

1. Collect chemistry in flotation deinking of xerographic papers;

2. Fiber loss in flotation deinking: effect of fiber types;

3. The role of surfa_ant in the ink-fiber detachment;

4. Effect of OMG on the flotation deinking of ONP, and fiber loss mechanisms.
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1. COLLECT CHEMISTRY IN FLOTATION DEiNKiNG OF XEROG_HIC

PAPERS

1.1. Background

The recycling of wastepaper is of growing importance due to the shortage of fiber

supply and the restricted government regulations on solid wastepaper landfills.

Although the paper recycling rate has increased steadily, the quality and cost of

recycled fibers are still incompatible with virgin fibers.

Flotation deinking is one of the most important separation techniques widely used

in paper recycling industry. Flotation deinking involves three main processes:

detachment of the ink particles from wastepaper fibers, effective adhesion of the ink

particles onto air bubble surfaces, and the removal of ink particles with the froth from

flotation cells [1-3]. It has been well known that the hydrophobicity and the particle size

of ink particles in flotation slurry are two of the most important factors affecting the ink-

air bubble interaction. From a surface chemistry point of view, the higher the

hydrophobicity of particle surface, the easier it is to remove ink particles from pulp slurry

under similar flotation conditions. To improve the hydrophobicity of floated particles, it

is very common to apply a collector in the pulp slurry in mineral flotation.

Many collectors have been successfully used in ore flotation, but few of them

have been used in flotation deinking. The most common collector used in flotation

deinking is fatty acid in the presence of calcium chloride. Many researchers have

focused on the understanding of ink removal by adding fatty acid/calcium collector, but

the mechanism involved in this system have not been well understood [1,2]. Although

the fatty acid/calcium collector has been traditionally used for flotation deinking of old

newsprint and old magazines, Dorris and Page [4] recently indicated that fatty

acid/_lcium collector can also improve the toner removal efficiency during the flotation.

They suggested that the increased hydrophobicity of toner particles due to the

adsorption of fatty acid/calcium complex onto toner surface is the main mason for toner

removal improvement. However, this hypothesis has not been validated by

experimental results. Although fatty acid-calcium chlonde system is an effective

collector for some grades of wastepapers, the deposition of calcium fatty acid pa_cles
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on the flotation equipment and paper machine is a serious problem. Therefore, it will

be beneficial to the paper industry if mom effective collectors that do not have negative

effects on the papermaking process can be developed.

It was found that the deinking of mixed office paper by flotation is more difficult

than other wastepapers because a) toner is usually fused into the pores of papers and

strongly adhered to the fiber surfaces, resulting in a poor toner-fiber separation during

repulping [5,6], and b) the broad particle size distribution and the disk-like shape of

toner particles result in a poor attachment between toner particles and air bubbles [7,

8]. Based on these understandings it is believed that the toner particles must be kept

hydrophobic in flotation cell and the optimum particle size must be achieved in order to

improve the flotation deinking efficiency of toner printed papers.

This study is to develop a fundamental understanding of collector chemistry in

flotation deinking of toner printed papers. The relationship between collector and toner

surface hydrophobicity was studied. The agglomeration of toner particles in different

collector solutions was examined. Finally, the effects of toner hydrophobicity and toner

particle size on the flotation efficiency were investigated.

1.2. Experimental

1.2.1. Chemicals

Triton X-100 (TX-100, a nonionic alkylphenoxy polyethoxy ethanol compound,

analyze grade, J. T. Backer Inc.), kerosene (commercial product), sodium oleic acid

sodium salt [Aldrich, 98%], dodecyltrimethylammonium bromide

[CH3(CH2)11N(CH3)3Br, DTMAB, Aldrich, 99%], cetyltdmethylammonium bromide

[CH3(CH2)15N(CH3)3Br, CTMAB, Aldrich, 95%], and calcium chloride [Aiddch,

analytical pure] were used as received.

1.2.2. Contact angle measurements

The surface tension of liquid was measured by a dynamic contact angle

analyzer (Cahn DCA 312) using a glass plate. Toner samples for contact angle

measurement were made by copying 3 layers of Xerox toner on both sides of a
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transparency. The coated transparency was cut into 20mm x 30mm pieces before use.

The wetting force of coated toner film in different solutions was measured, and the

contact angle was calculated using WHihelmy principle. Both surface tension and

contact angle ,measurements were repeated several times until a stable reading was

obtained.

1.2.3. Particle size measurements

The particle size and size distributions of toner suspension in different solutions

were measured by a !laser diffraction based particle size analyzer (Malvem 2600,

Malvem Instruments, MA). The system consists of 2mW He-Ne Laser (633nm

wavelength), a Transmitter with 9mm beam expansion, a Receiver _th a Fourier

transform lens, and a 31 element solid state detector array in concentric semicircular

annuli design. The sample used for particle size analysis were made by dispersing

Xerox toner in a pulp filtrate in the presence or absence of surfactant.

1.2.4. Flotation deinking

The pulp was made from bond papers printed by Xerox toner with a fixed

· pattern of X. _e papers were pulped at pH of 9.3 and a consistency of 10.5% without

adding any chemicals except sodium hydroxide. A {aboratory flotation cell was used to

conduct the flotation deinking. The deinking cell was made from a polyacrylate pipe

with a height of 80cm and a diameter of 10cm. Nitrogen was blown into the pulp

suspension at a rate of 14_-+0.075SLPM (standard liter per minute) through an air filter

(pole size 50 i_n) at the bottom of the flotation cell. The air flow rate was measured by

an Omega FMA1700/1800 fiowmeter. The consistency of the pulp used in flotation was

0.5%. The flotation time was 10 minutes for all experiments.

The handsheets for brightness analysis were made on a 15-cm B0chner funnel

according to TAPPI standard method T218 om-91. The brightness of a handsheet was

measured by a UV-VIS spectrophotometer (Shimadzu UV-160A) using TAPPI Standard

method T452 om-92.
_:
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1.3. ResuRs and Discussion

1.3.1. CalciUm fatty acid as a collector in toner flotation deinking

In the flotation deinking of mixed office wastepapers, a nonionic surfactant has been

commonly used as a dispersant and frothing agent. However, the addition of a

nonionic surfactant, such as TX-lO0, will reduce the hydrophobicity of toner particles,

therefore the toner removal efficiency by flotation will be decreased. The reduction of

toner particle hydrophobicity due to adsorbed surfactant can be clearly seen from Fig.

1, i.e. the advancing contact angle of aqueous solution on a toner film decreases as the

concentration of TX-lO0 increases. When the concentration of TX-lO0 increases from

0 to 80mg/L (the typical concentration for mixed officewaste deinking in industry

practice), the advancing contact angle decreases from 140 to 75 degrees. With a

further increase in concentration to 200rog/L, the advancing contact angle decreases

to 10 degree or even lower. The significant decrease in the contact angle must result

in a reduction in deinking efficiency as will be discussed later.

Because nonionic surfactant usually leads to a reduction in the contact angle of

toner particles in pulp suspension, it is interesting if there are some collectors that can

restore the contact angle of toner particles. It has been known that calcium fatty acid

can be used as a collector for both old newsprint and mixed office waster papers

[4,9,10]. Therefore, the collector chemistry of calcium fatty acid was first examined in

this study.
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Fig. 1. Advancing contact angle of toner film in aqueous solutions as a

function of A' TX-100 concentration without any other chemicals; B: TX-100

concentration in the presence of 50 mg/L sodium oleic acid and 250 mg/L calcium

chloride; C: sodium oleic acid concentration in the presence of 500 mg/L calcium

chloride.

The contact angle of toner film in water as a function of sodium oleic acid

concentration in the presence of 500mg/L calcium chloride is also shown in Fig. 1. It

can be seen that as the concentration of sodium oleic acid increases, the advancing

contact angle decreases rather than increases.. This suggests that although the

complex formed by sodium oleic acid and calcium chloride is hydrophobic, the

hydrophobicity of toner surface will not be improved by adso_tion of this complex

because the hydmphobidty of toner itself is higher than that of calcium fatty acid

aggregates.
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To effectively remove toner particles from pulp slurry, a relatively stable foam is

essential. The common method to generate a foam layer is to add frothing agent

directly into pulp suspension dunng stock preparation. Therefore, it is very interesting

to know how the interaction between calcium fatty acid and a frothing agent will affect

the hydrophobicity of toner particles in a pulp system. Fig. 1 shows that in the presence

of 50 mg/L sodium oleic acid and 250 mg/L calcium chloride, the toner remained at a

high contact angle (>105 degrees) until the concentration of TX-100 was increased up

to 130 mg/L. Companng that with the contact angle obtained in the absence of sodium

oleic acid/calcium ions (curve A in Fig. 1), it can be seen that calcium fatty acid can

protect the toner surface from the reduction of the hydrophobicity due to the adsorption

of TX-100. This effect is more significant at Iow TX-100 concentrations (< 130 mg/L).

When TX-100 concentration is higher than 130 mg/L, the advancing contact angle of

toner film suddenly decreased from 105 to 45 degrees. Although the mason for this

sharp decrease is not clear, the solubilization of fatty acid by TX-100 at the

concentration close to its critical mice!lization concentration (185 mg/L) may be one of

the possible effects.

Although the hydrophobicity of ink particles is one of the dominating factors in

flotation deinking, the particle size is also critical. Obviously, an effective collector

should not only remain a high contact angle of ink particles in solution, but also

agglomerate the ink particles into an optimum size. Fig. 2 shows the particle size in

aqueous solutions as a function of the concentration of TX-100 or sodium oleic acid. It

has been noted from toner particle size measurements that the number distribution of

toner particle the presence of TX-100 has normal Gauss distribution, regardless of the

concentration of TX-100. It can be seen that, when TX-100 was used alone, the toner

particle size slightly decreased as the concentration of TX-100 was increased. This is

not surprising because although the toner particles can be dispersed in the pulp filtrate

and stabilized by adsorbed anionic trash (they aggregate and floated in pure water),

there must be some small toner aggregates because anionic trash in the pulp filtrate is

not a very effective stabilizer. When TX-100 was added in the suspension, these small

toner aggregates were redispersed by surfactant resulting in a decrease in the average
.

particle size. However, it can also be seen from Fig. 2 that in the presence of 500 mg/L

calcium chloride and 20 mg/L TX-100, the particle size of toner suspension increases
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as the concentration of sodium oleic acid increases. This suggests that toner particles

were aggregated by calcium sodium oleic acid even in the presence 20 mg/L TX-100.

At 90 mg/L of sodium oleic acid solution, the mean toner particle size increased to 27

!_m(Sauter Mean Diameter), which was in the optimum size range for flotation reported

by Ferguson [2]. It was noted that the increase of collector concentration _11not only

increase the number average particle size, but also the particle size distribution. For

example, it is found that the agglomeration of small particles was more significant that

of large particles.
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Fig. 2. Toner particle size as a function of A' TX-100 concentration; and B' TX-100

concentration in the presence of 50 mg/L sodium oleic acid and 500 mg/L calcium

chloride.

The effect of hydrophobicity and particle size of toner in pulp slurry on the

flotation deinking efficiency was investigated by measuring the brightness gain of the

handsheets made from deinked xerographic fibers. The brightness gain as a function

of TX-100 in either the presence or absence of calcium oleic acid is shown in Fig. 3. It

can be seen that in the absence of calcium oleic acid, the brightness gain increases as
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TX-100 concentration increases up to 120 mg/L, then decreases as TX-100

concentration further increases. The initial increase in the brightness at Iow TX-100

concentration is due to the increase in the foam stability, and the decrease in the

brightness at high concentration is due to the decrease in the hydrophobicity of toner

particles by adsorbing TX-100 molecules onto the surface, which is consistent with the

contact angle measurement shown in Fig. 1. This behavior has also been previously

reported [11].

It is reasonable to assume that toner removal can be enhanced by adding a

fatty acid and calcium ions because the toners have a high contact angle in the

solution, as has been reported previously [4]. Surprisingly, our results shown in Fig. 3

indicate that the presence of 50 mg/L sodium oleic acid and 250 mg/L calcium chloride

decreases rather than increases the toner removal in similar pulp systems. Although

the mechanism of this reduction in flotation deinking efficiency is not clear, the effect of

calcium fatty acid on the foam stability and structure must be accounted. It was

observed during the flotation experiments that the foam was much less stable in the

presence of calcium fatty acid compared with that using TX-100 alone. Because the

bubbles were broken during their rise to the top of the flotation cell, some adhered

toner panicles returned back to the pulp slurry, which may results in a decrease in the

flotation deinking efficiency.

1.3.2. Kerosene as a collector in toner flotation deinking

Hydrocarbon materials that have been widely used in the mineral flotation

industry as collectors are geeing attention in the paper industry. Snyder and Berg [7]

described that some hydrocarbon materials can be used as an agglomeration agent for

suspended toner particles. Pelton [12] also found that ink particles are more easily

adhered to hydrocarbon oil coated glass beads. Miller et al. [13] found that the toner

flotation efficiency can be significantly improved by adding 5% tetrahydrofuran or

acetone (based on dry waste) into pulp suspension. In a recent study [14], Oguz

indicated that a mixture of kerosene, detergent and borax can significantly improve ink

removal. Although these findings are interesting, no fundamental study on the collector

chemistry using a mineral °il or hydrocarbon material in flotation deinking has been

reported in the literature. In this study, the kerosene was used as a model hydrocarbon

collector for toner deinking. The contact angle of toner film in water was measured and
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the results are shown in Fig. 4. It can be seen that although the advancing contact

angle of toner decreases slightly as kerosene concentration is increased, it is still as

high as 130 degree at kerosene concentrations of up to 160 mg/L (small kerosene

droplets on the surface of solution will be seen with further increases in concentration).

However, when TX-100 was added into toner suspension in the presence of 50 mg/L

kerosene, the advancing contact angle was decreased. Although this decrease is

significant, by comparing with curve C in Fig. 4, it can be seen that the addition of

kerosene can restore some of the loss in toner ihydrophobicity that is caused by the

adsorption of TX-100.
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Fig. 3. The brightness gain of handsheed made from deinking fibers as a function of A'

TX-100 concentration without other chemicals; B' TX-100 concentration in the presence

of 50 mg/L sodium oleic acid and 250 mg/L calcium chloride.
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The effect of kerosene on the agglomeration of toner particles in the presence

of TX-lO0 was also examined and the results are shown in Fig. 5. Jtcan be seen that

the particle size of toner in the presence of 20 mg/L TX-lO0 increases significantly as

the increase in the kerosene concentration, suggesting a significant agglomeration of

toner particles in this solution. It is believed that the agglomeration of toner particles

was caused by "oil bridging" mechanism as reported by Berg et al. [7] using other

hydrocarbon solvent.
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Fig. 4. Advancing contact angle of toner film in aqueous solutions as a function of A:

TX-100 concentration witho_ any other chemicals; B' TX-100 concentration in the

presence of 50 mg/L kerosene; C: kerosene concentration.
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Fig. 5. Toner particle size as a function of A: TX-100 concentration; B: kerosene in the

presence of 20 mg/L TX-100.

The effect of kerosene on the flotation deinking efficiency of toner printed

papers was studied using TX-100 as a frothing agent. The brightness gain of the

handsheets made of recycled fibers is shown in Fig. 6. It can be seen that in the

presence of 20 mg/L kerosene, the ink removal is higher than that of without kerosene,

particularly at low TX-100 concentration. This is consistent with the contact angle and

particle size measurement, i.e., a high contact angle and an optimum particle size result

in a high deinking efficiency. The results shown in Fig. 6 indicate that kerosene can be

used as a collector for toner flotation deinking when TX-100 is used as a frothing agent.
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Fig. 6. The brightness gain of handsheed made from deinking fibers as a function of A:

TX-100 concentration; B: TX-100 concentration in the presence of 20 mg/L kerosene.

1.3.3. Toner flotation deinking using cationic surfactants

Cationic surfactants have been traditionally used in mineral flotation. One of the

advantages of using cationic surfactants is that these chemicals can function as both a

collector and a frothing agent for some ores. The effect of cationic surfactant structure

on the mineral flotation was studied [15-17]. Although cationic surfactants are very

effective for flotation of some mineral particles, limited research [1,2,18,19] has been

done using cationic surfactants for flotation deinking. There is no report in the literature

on the application of cationic surfactants to deink toner-printed wastepapers..,
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Fig. 7. Advancing contact angle of toner film in aqueous solutions as a function of A:

TX-100 concentration; B: DTMAB concentration; C' CTMAB concentration.

Fig. 7 shows the advancing contact angle of toner film in different cationic

surfactant solutions. It can been seen that the contact angles of toner film obtained in

two different cationic surfactants are much higher than that in the TX-100 solution.

More interesting is that the contact angle increases initially as the concentration of

CTMAB increases, then decreases as further increase in CTMAB concentration. It is

known that the toner particles in wood pulp suspension am negatively charged

because of the adsorption of soluble anionic polymers, such as sulphonated lignin and

fatty acids from wood fibers, onto the toner surfaces. _en cationic surfactant

molecules are adsorbed onto these negatively charged toner surfaces, the

configuration of adsorbed cationic surfactant should be different from that of anionic

and non anionic surfactants. At a Iow concentration of cationic surfactant, the

positively charged surfactant heads anchor to the negatively charged toner surface

leaving hydrophobic tail toward the solution. As a result, the contact angle is increased.

IPST ConfidentiflInfo .rmation-NotFor PublicDisclosure
(ForIPST MemberCompany'sInternalUseOnly)



Project:F00904 85 Status.Report

However, at a high concentration of cationic surfactant, a double layer adsorption can

occur and the hydrophilic heads of cationic surfactant orient to the water phase, which

reduced the contact angle. The configurations of cationic surfactant at different

concentrations are schematically shown in Fig. 8. It should be noted that no contact

angle increase was observed for the cationic surfactant of DTMAB, which may be

attributed to the fact that the DTMAB has a shorter hydrocarbon chain than the

CTMAB, resulting a more hydrophobic adsorption layer on the toner surface.

The effect of cationic surfactants on the agglomeration of toner particles is

shown in Fig. 9. The particle size of toner particles in pulp filtrate was almost a

constant when the concentration of DTMAB was increased, but increased steadily with

the increase of CTMAB concentration up to 90 mg/L. The particle size increase is

consistent with the hydrophobicity increase of toner particles in cationic surfactant

solutions. It is believed that in addition to the hydrophobicity effect, the charge

neutralization between cationic surfactant and negatively charge adsorbed materials on

the toner surface in a pulp filtrate will also affect the toner particle agglomeration.
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Fig. 8. The onentation of cationic surfactant on a negatively charged toner

surface. A: monolayer adsorption at Iow concentration, and B: double layer adsorption

at high concentration.
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Fig. 9. Toner particle size as a function of A: TX-100 concentration; B: DTMAB

concentration; C: CTMAB concentration.

As discussed previously, the toner particle hydrophobicity can remain relatively

high and particle size can be increased in CTMAB solutions. It was also found that

cationic surfactants are effective frothing agents as well as collectors in pulp

suspensions. Therefore, it is not necessary to have a second surface active agent in

flotation deinking if a cationic surfactant is used. This advantage may significantly

reduce the flotation deinUng cost. The bnghtness gain obtained from handsheets

made of deinked fibers as a function of cationic surfactant concentration is shown in

Fig. 10. It was found that cationic surfactants produced much higher brightness gains

than TX-100. The result is consistent with the contact angle and particle size

measurements, i.e. CTMAB and DTMAB are very effective collectors and frothing

agents for toner flotation dein_ng.

[PST Confidential Information -Not For Public Disclosure

(For IPST Member Company's Internal Use Only)
..



Project: F00904 87 Status Report

16

B
14

12 C

O

i A

II1 o

O
gl

4

0
0 50 100 150 200 250

Chem_ Concentration (mg/L)

Fig. 10. The brightness gain of handsheed made from deinking fibers as a function of

A: TX-100 concentration; B: DTMAB concentration; C: CTMAB concentration.

1.3.4. Concluding remarks

1) The contact angle of toner film in water-surfactant solution decreases with the

increase of TX-100 concentration regardless if there is a collector. The balance

between froth stability and hydrophobicity leads to an optimized concentration for

toner removal if TX-100 is used alone.

2) The addition of fatty acid/calcium ions causes particle agglomeration but does not

increase the contact angle of toner particles. The addition of sodium oleic

acid/calcium ions in the flotation process does not enhance the toner removal if

TX-100 is used as a frothing agent.

3) Kerosene can increase the toner particle size and maintain a relatively high

contact angle of toner in TX-100 solution. The flotation deinking efficiency of
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toner-printed papers can be improved by adding a small amount of kerosene if

TX-lO0 is used as a frothing agent.

4) Cationic surfactant can be used as both a collector and a frothing agent. For the

systems investigated in this study, the cationic surfactants provideed the best ink

removal.

2. FIBER LOSS IN FLOTATION DEINKING-EFFECT OF FIBER _PES

2.1. Background

Although the deinking efficiency is closely related to the brightness and

cleanliness of the fibers, brightness figures without any information on the yield of the

deinked fibers have only limited value because the achieved brightness strongly

depends on the yield. Low yield caused by high fiber loss is one of the biggest

problems in flotation deinking. Reported fiber loss is in the range of 4-24 wt%

depending on the processes, equipment, and chemicals used in flotation deinking. For

highly sized or waxed fibers, such as old corrugating containers, fiber loss is even

higher, and the flotation technique cannot be used for these paper products unless a

new technique is established.

Most authors [20-22] have postulated that the fiber loss in flotation deinking is

caused by air bubbles routinely adhering to the fibers during the flotation process. In a

series of studies on fiber loss in flotation deinking, Turvey [20,21], and Schwinger and

Dobias [29] indicated that 1) unpnnted fibers do not float; 2) calcium ions can

significantly increase fiber loss for printed fibers; 3) nonionic fatty alcohol ethoxylate

surfactants cause high fiber loss; and 4) pH plays an insignificant role in fiber loss.

From thesestudies, Turvey [20,21] further concluded that fiber loss is due to the fact

that part of the fiber becomes hydrophobic and adheres to air bubbles. However, no

direct experimental measurement of fiber surface chemistry can support this

assumption. Furthermore, some of the conclusions from Turvey [20] have been argued

by other researchers [4,5,22-24] who indicated that unpdnted fibers, even very clean

bleached fibers, can still float during the flotation deinking process. In contrast to

Turvey 's study, some recent papers [4,5,24] indicated that the fiber loss in flotation
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deinking is solely caused by physical entrainment rather than true flotation. The

conflicting experimental results obtained by different researchers suggest that the

mechanism of fiber loss in flotation deinking has not be well understood.

It was reported that long fibers float easier than wood fines [22,24]. To explain

this phenomenon, Li and Muvundamina [22] assumed that surfactant molecules have

different orientations on the fine and fiber surfaces. It is well known that the surface of

fines is mom hydrophobic than long fibers because of its high lignin content. When

surfactants adsorb onto fines, the hydrophobic tails of surfactant molecules anchor

onto the hydrophobic sites of fines and leave the charged heads (or hydrophilic parts)

toward the Water phase. This leads to an increase of hydrophilicity of the surface of

wood fines and prevents them from adhering onto air bubble surfaces. For long fibers,

on the other hand, the surface is very hydrophilic, and surfactant adsorption is th.rough

the interaction between the hydroxyl groups of fiber surfaces and the charged heads of

surfactant molecules (or hydrophilic parts of: nonionic surfactant), resulting in an

increase of hydrophobicity. Li and Muvundamina [22] believed that the increase in

hydrophobicity of fiber surfaces was the main reason for fiber removal. Once again,

this is only an assumption, and there is no direct experimental measurement to suppoA

it.

It is clear that there are many arguments on the fiber loss mechanism. In order to

study the effect of fiber surface chemistry on the fiber loss, both unsized and AKD-

sized fibers from the same bleached softwood kraft pulp were used in this study. The

average fiber length was 2.83 mm. Because the sized fibers have the same geometric

property as unsized fibers but totally different of su_ace chemistry, the contribution of

fiber surface chemistry and fiber length to the total fiber loss can be separately studied.

The flotation cell used in this study includes a polyacrylate column (12 cm in

diameter; variable in height) and a gas inlet filter. Nitrogen was injected from the

bottom of the flotation cell through a air inlet filter. Two types of inlet filters with pore

sizes of 10 or 2pm were used. Both the fibers that were removed from the cell (fiber

loss) and those that remained in the cell were filtered, oven dried, and weighed. The

detail description of flotation facility and experiments have been given in our lass year's

progress report [25]. In our study, the water loss was controlled by varying the froth

,'

IPSTConfidential ,Information-NotForPublicDisclosure

._, (ForIPST MemberCompany'sInternalUseOnly)



Project:F00904 90 StatusRcpoa

height (adding extra columns to the top of the flotation cell) at a fixed nitrogen flow rate

and flotation time. This method is totally different from previously reported studies

[3,4,24] in which the water loss was controlled by varying the flotation time at fixed froth

height. We believe that our method is more scientific for fiber loss mechanism study

than the method used in previous studies. The detail discussion can be found in our

recently published paper [24].

In the Progress Report of FY96-97 [25] we studied the mechanisms of fiber loss

using a AKD-sized and a clean BSK (bleached softwood kraft) pulps. In this progress

report, the effects of fiber and surfactant types on the total yield are discussed.

2.2. Experimental

The pulp properties used in this study are given in Table I. Atlanta Journal-

Constitutionand New York Times were used as old newsprint (ONP). The average

aging time of ONP used in this study is about 1.5 months. Pump Magazine and Paper

Maker Magazine were used as old magazine (OMG). Old magazines were collected

different times.

Table i. Fiber properties.

Fiber* Ash advancing Advancing Fiber
Content contact angle contact angle length
(%) in water in 100 g/L TX- (mm)

(degree) 100 (degree)
ONP (AtlantaJournal- 0.93% 52 26 1.60

Constitution)
Bond paper 16.24% 28 - 1.79

OMG - -

BSK 0 32 4 2.83

0.2% AKD emulsion 0 76 28 2.83
sized BSK

0.6% AKD emulsion 0 106 34 2.83
sized BSK

*: ONP: Old newsprint; OMG: Old magamne; BSK: Bleached softwood kraft fiber.
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The fiber lengths were determined by image analysis. The width and [umen

diameter of fibem were measured using 400x magnification with the aid of OPTIMAS

image analysis software. The fiber perimeter was calculated from number average

fiber width and lumen diameter. The ash content was obtained at 550 °C according to

the TAPPI standard method (T211 om-93).

The PCC content was analyzed by potential titration using EDTA salt as titrate.

The pulp slurry was fimtly adjusted to pH <3 by adding HCI and stood up for ~0.5 hr.

After calcium carbonate dissolved and CO2 evaporated, -1 mi NH3H20 was added in

the solution to bring pH up to -9.2. The Ca2+concentration was determined by titration

using a 0.002M EDTA (ethylenediamine tetraacetic acid disodium, Aldrich, 99+%)

solution. A calcium selectNe electrode (Fisher product) and a glass pH reference

electrode (Fisher product) were used as the detector. A detail description about the

titration technique can be found from Fisher's product menu.

The sized fibers were made by the reaction of fibers with varying amounts of a

cationic AKD (alkyl ketene dimmer) sizing emulsion (Hercon 70, Hercules Inc.) in --3%

fiber consistency for 5 min. The furnishes were filtered and air dried about 2 hr. The

air-dried fibers were heated to 100oc in a vacuum oven for--30 min.

The handsheets for brightness analysis were made on a 15-cm BQchner funnel

using TAPPI standard method (T452 om-92). The brightness of the handsheets was

measured using a Shimadzu UV-VIS Spectrophotometer (UV-160A).
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2.3. Effect of Fiber Hydropihobicity on the Fiber Loss

The flotation of solid materials can be divided into "true flotation" and

"entrainment." True flotation occurs when solids attach to air bubbles and are floated

with them. A basic requirement for true flotation is that the solid particles must be

hydrophobic enough so that they can strongly adhere onto the bubble surface.

Entrainment occurs when particles enter the froth with the water and occupy the spaces

between the bubbles. When froth raises up, part of the water and particles entrained in

the froth will drain back to the pulp suspension, but the remainders are carded upwards

and scraped off. As a result, fiber removal by physical entrainment should be a

function of water removal, and at ideal conditions, a linear relationship between fiber

removal and water removal is expected. The contributions of true flotation and

entrainment in mineral flotation ihave been discussed, and the follo_ng equation _has

been suggested [26]:

R = A + CVwater (1)

where R is the total recovery of the given solid suspension at experimental conditions;

A is the recovery of the solid by true flotation; C is the concentration of entrained solids

in removed water; and Vw_toris the volume of removed water. At ideal conditions, the

true flotation A and the concentration C of entrained solids in removed water can be

. obtained from the intercept and the slope of removed solids versus removed water,

respectively.

In order to separately study the true flotation and entrainment of fibers in flotation

deinking, a bleached softwood kraft pulp was first used in this study. Direct

measurement of wettability using a separated fiber group technique indicated that the

receding and advancing contact angles of the bleached softwood fiber in a l O0-mg/L

TX-lO0 solution are zero and <5 degrees, respectively. This suggests that the

bleached softwood kraft fibers are very hydrophilic and they cannot adhere to air

bubbles by hydrophobic force in the flotation process. In other words, the loss of these

hydrophilic fibers in the flotation cell should be caused solely by the physical

entrainment.
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Fig. 11, Fiber loss as a function of water loss for unsized and AKD-sized bleached

softwood fibers. The water and fiber losses were measured at different froth heights.

Pore size of air inlet filter: 10 Izm; fiber consistency: 0.52%; concentration of TX-100:

100 mg/L; nitrogen flow rate: 1800 cm3/min;flotation time: 2 minutes.

Fig. 11 shows fiber loss as a function of water loss for different fibers after a 2-

minute flotation. According to Equation (1), a zero intercept of fiber loss against water

loss should be expected for these hydrophilic unsized fibers because these fibers have

a zero receding contact angle and very Iow advancing contact angle (<5 degrees). !n

other words, all floated fibers in this system should be solely caused by physical

entrainment. However, the results of Fig. 11 clearly show that both the slope and

intercept for bleached softwood kraft fibers (unsized) are not zero. This strongly

indicates that although Equation (1) has been used for the mineral flotation system, it

cannot be directly used to describe the fiber loss in flotation deinking. It should be

noted that Equation (1) is based on the assumption that the concentration of entrained

(excluding adhered) solids in the froth phase is a constant during the water drainage,

and all entrained solid particles will be washed back to the pulp phase if the water is
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fully drained from the froth. This may be true if the size of entrained particles is small

and the density of the particles is high, such as mineral particles, but it is not the case

for wood fibers because some entrained fibers cannot pass through the microchannels

between bubbles during the drainage of water in the froth phase due to their large size

and small density. As a result, a nonzero intercept of fiber loss plotting water loss must

be obtained even though the flotation of wood fibers is solely caused by entrainment.

Because some of entrained fibers cannot be washed away during water drainage, a

correction for these "unwashable" entrapped fibers must be made in order to use

Equation (1) for wood fibers. It should be noted that unwashable entrapped fibers are

different from true flotation fibers, although both of them cannot be washed away

during water drainage. Obviously, the consistency of these "unwashable" entrapped

fibers in the froth should be a function of foam structure, fluid dynamics of water in the

froth microchannels, the fiber length, and orientation, etc. If all experimental conditions

remain constant during the foam raising up in the flotation cell, it can be approximately

assumed that the weight of unwashable entrained fibers is constant in the froth.

Therefore, Equation (1) should be modified to

R = A + B + CV_t_r (2)

where B is the weight of unwashable entrained fibers.

Equation (2) indicates that the intercept of the plot of total fiber loss R versus

water removal should equal _e sum of the fiber loss caused by tree flotation A and

unwashable entrapped fiber B rather than true flotation A alone, and this intercept is

independent of total removed water Vwmrat a fixed flotation time. Equation (2) also

indicates that although the true flotation A is zero for hydrophilic wood fibers, the

intercept of the plot of total fiber loss versus water loss should equal B rather than zero.

By ploffing total fiber loss against water removal for unsized fibers shown in Fig. 11, the

weight of "unwashable" entrapped fiber B and the consistency of '_Nashabie"entrained

fiber C were 0.29 g and 0.8 g/L, respectively.

Fig. 11 also gives the comparison of fiber losses for unsized and AKD-sized

fibers. It has been known from our previous study [25] that the advancing contact

angles for 0.2 and 0.6% AKD-sized fibers in a 100mg/L TX-100 surfactant solution are
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28 and 39 degrees, respectively, which are much higher than that of unsized fibers (<5

degrees) in the same solution. From Fig. 11 it can be seen that the fiber losses of

sized fibers are consistently higher than unsized fibers. This result indicates that the

fiber surface chemistry will also contribute to the fiber loss. Because both the sized

and unsized fibers used in this study have the same length, it is reasonable to assume

that the entrainment factors B and C in Equation (2) are the same for all of the sized

and unsized fibers. Therefore, the difference in the fiber loss between unsized and

sized fibers is attributed solely to the true flotation A. Although this assumption may be

too simple, the experimental results of Fig. 11 indicate that the slope C is almost

constant for all throe fibers.

A

35
u. 30 -
C

.o 25 -
O
E 20 - e0.6% sized fiber

c / 0.2% sized fiber
o 15 -

5 -
L.

I'- 0 '

0 100 200 300

Water loss (mi)

Fig. 12. True flotation fraction F as a function of water loss. The true flotation fraction

for uns'_.ed bleached softwood fiber is assumed as zero. Pore size of air inlet filter: 10

gm; fiber consistency: 0.52%; concentration of TX-100:100 rog/L; nitrogen flow rote'

1800 cm3/min; flotation time: 2 minutes.
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In terms of the above assumption, by applying B = 0.29 g and C = 0.8 g/L to

Equation (2), the weights of true flotation A for 0.2 and 0.6% AKD-sized fibers were

obtained and they were 0.025 and 0.15 g, respectively. Comparing the value of true

flotation A _th total entrained fibers B + CVwator,it can be found that true fiotaUon A is

smaller than total entrained fibers even for _highlysized fibers.

The true flotation fraction F is defined as

F = A/R (3)

The plots of F as a function of water loss fiber loss are shown in Fig. 12.1t can

be seen from Fig. 12 that the trueflotation fraction F for 0.2 and 0.6% AKD-sized fibers

is in the range of 8-12 and 25-33%, respectively, depending on the froth heights. The

results suggest that although true flotaUon is one of the mechanisms of fiber loss, most

lost fibers (>88% for 0.2% AKD-sized and >33% for 0.6% AKD-sized fibers) in flotation

deinking are mainly attributed to physical entrainment for these systems. Fig. 12 also

shows that the true flotation factor F increases as the froth height is increased. This is

because the total fiber loss R is decreased, but the true flotation contribution A remains

constant when froth height is increased.

Although water loss in flotation deinking has not been considered as a problem in

the paper mill, the energy saved by reducing water loss can also benefit the paper

industry. Even for a _lly dosed flotation deinking mill, water loss by froth removal can

still be as high as 10% of the total water in the flotation cell, which corresponds to a

water loss of--10 tons/(ton pulp). Because the discharged water contains many

deinking chemicals, such as the surfactant and basic materials, reducing water removal

is also important for a dein_ng mill. The results of a study conducted at IPST indicates

that properly controlling the froth height and froth stability is a cost-effective method to

reduce both water consumption and fiber loss.

2.4. Effect of Fiber Types on Fiber Loss

Fig. 13 shows fiber loss as a function of water loss obtained from different froth

heights. The experimental conditions for all of the experiments am the same except

different fibers were used.

_ST Confidentiflinformation-NotForPublicDisclosure
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Fig. 13. Fiber loss as a function of water loss for different fibers. Fiber

consistency: 0.52%; Surfactant: 100 mg/L TX-100; Nitrogen flow rate: 1800 cm3/min;

flotation time' 2 minutes.

It can be seen that, at the same water loss volume (same froth height), the ONP

gave the highest fiber loss. The single fiber wettability measurement indicates (see

Table I) that the advancing contact angle of ONP in water is 52.2°, that is much higher

than bond paper (28.3°) and unsized BSK (32.0°) fibers. Even in 100 mg/L TX-100

solution (the same concentration as used in flotation deinking), the advancing contact

angle of ONP fibers is still higher than others. Because of this high contact angle, it is

expected that ONP should give a higher fiber loss than bond paper and BSK fibers,

which was confirmed by the experimental results shown in Fig. 13. However, it is

surprising that ONP gave a higher fiber loss than AKD-sized BSK fibers because 0.6%

AKD-sized fiber has a much higher advancing contact angle than ONP in both pure

water and 100 mg/L TX-100 solution (see Table 1). This suggests that the higher fiber

loss of ONP than other fibers cannot be simply explained by hydrophobicity alone. As

discussed in last year's r_ [2_ a_d__ recent publication [23], the physical
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entrainment rather than true flotation is the major contributor to fiber loss. Because the

physical entrainment strongly depends on the geometry of the fibers and froth

structure, the difference in fiber length among these fibers has to been considered. It

can be seen from Table I that the fiber length of ONP is much shorter than that of BSK.

The higher fiber loss of ONP than AKD-sized fibers may suggest that ONP can be

entrapped in the foam network much easier than long BSK fibers. However, more work

is needed for a full understanding of the relationship among fiber geometry, foam

structure, and fiber loss. It is expected that there may be an optimized fiber length that

will causes the highest fiber loss under a fixed foam structure.

2.5. Effect of Different Suffaotants On Fiber Loss

Because many different suffactants, including anionic, cationic, and nonionie,

have been used in flotation deinking, it is necessary to know if the above conclusion

obtained from TX-100 can be applied to other suffactant systems. For this purpose,

fiber loss in an anionic surfactant (SDS) and a cationic surfactant (CIMAB) solution

was studied. However, it was found that the maximum froth height generated by SDS

was only about 20 m, which did not allow us to study the effect of froth height on fiber

loss. Therefore, only cationic suffactant CTMAB was studied in detail. Fig. 14 shows

fiber loss as a function of water loss in a CTMAB solution. Although the foam stability

and microstructure could be significantly different when different surfactants worn used,

a similar trend of fiber loss against water loss was observed for the systems of TX-100

and CTMAB, i.e., sized fibers resulted in a higher fiber loss, and the intercept of fiber

loss as a function of water loss was not zero. This may suggest that although the true

flotation and the physical entrainment will contribute to total fiber loss, the roue between

these two may be different when different surfactants are used.
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Fig. 14. Fiber loss as a function of water loss for unsized and AKD-sized bleached

softwood fibers using cationic surfactant. The water and fiber losses were measured at

different froth heights. Pore size of air inlet filter: 10 _m; fiber consistency: 0.52%;

concentration of CTMAB' 100 mg/L; n;_rogenflow rate: 1800 cm3/min; flotation, time: 2

minutes.

2.6. Concluding Remarks

1) Both physical entrainment and true flotation will contribute to total fiber loss in

flotation deinking, but the physical entrainment is the dominant factor.

2) Old newsprint gives a higher fiber loss compared with other fibers when TX-100

was used as a surfactant. Possible masons for this higher fiber loss may be due to

the short fiber length and high hydrophobicity of ONP.
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3. THE ROLE OF SURFACTANT !N THE INK-FIBER DETACHMENT

3.1. Backgroud

It is quite common in the deinking operation to add a surfactant in pulps before

or during the pulping because most people believe that surfactant can stabilize the ink

particles and improve the ink-fiber detachment. However, it is well-known that the

adsorption of dispersant has many negative effects, such as rendering the ink particles

from hydrophilic to hydrophobic, reducing the agglomeration of ink particles, and

increasing the stearic or electrical repulsion force between ink pa_cles and air bubbles.

To ovemome some of the problems given above, chemicals called disPlectors have

been developed [27,28]. However, the mechanism of dispersant-collector has not

been fully understood, and the effectiveness of this chemical has not been widely

tested.

The process surfactant used in deinking has many negative effects. One of the

problems is that the process surfactant will cause foaming problem in pulpers, which

will reduce the capacity of the equipment. Foaming can also cause overflow of the

process unit. Although the foaming problem can be partially solved by adding a

deformer agent, it is always cheaper to use less surfactant than to add defoamer. The

remaining surfactant in recycled pulp will also cause foaming problems on a paper

machine. Another problem related to the remaining deinking surfactants is that they will

contaminate recycled fibers, therefore, the fiber-fiber bonding and paper quality will be

reduced. The pollution of processing surfactant will also be a serious problem for

paper mills. As discussed above, the reduction of the surfactant consumption in the

deinking process will improve the paper quality and papermaking process, and reduce

the cost of water clarification.

In order to reduce the surfactant consumption, it is important to first understand

_e real role of surfactant in different deinking steps, including pulping, washing,

screening, and flotation. It is interesting to know a)how the surfactant _{I affect the ink

detachment? b) what type of wastepaper needs a dispersant during pulping? c) what

type of dispersant is the most effective for certain paper grades? and d) what addition

point is most effective and gives the least negative effects? This study will focus on the

_.IPSTConfidenti_Information-NotForPublicDisclosure
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role of surfactant in the repulping process, i.e., how the suffactant will affect the ink-

fiber detachment.

Calcium soaps of fatty acids are the classic collector used in flotation deinking.

Borchardt indicated that calcium ions should be added to the pulp simultaneously or

before the fatty acid [29]. The mason for that is because the fatty acid will server as a

dispersant to reduce the particle surface hydrophobicity and particle size. However, it

should be argued that if the fatty acids have formed complexes with calcium ions

before or during the pulping, the ink detachment will also be reduced. In other words, it

may be more effective if this su_actant is added during flotation rather than repulping.

Even for nonionic surfactants that are traditionally added into the pulper, any

differences between adding surfactant before and after pulping am not very clear.

Therefore, it is interesting to know where is the best addition point for flotation deinking

surfactant.

3.2. Experimental

The effect of suffactant on the ink-fiber detachment was studied by comparison

of handsheet brightness. The recycled fibers from either washing or flotation were

used to make a handsheet. Two types of wastepapers were repulped at neutral pH in

the presence or absence of surface activities. For the washing experiment, repulped

- pulps were washed by tap water (--4 times of the volume of pulp slurry) using a..

dynamic drainage jar equipped with a 125-mesh screen. It is assumed that all of the

detached ink in the pulp slurry can be washed away, but the bound ink will still remain

in the fiber suspension after washing. By comparing the brightness of the washed

fibers that were mpu[ped in the presence of different amounts of surfactant, the role of
...

suffactant in the ink-fiber detachment will be evaluated.

A column flotation cell was used in flotation deinking. The initial distance from

pulp suspension to the top of the flotation cell was 5 cm. The wastepaper used for this

study included Atlanta Journal-Constitutionand bond papers. Nonionic surfactant (TX-

100) and anionic surfactant (sodium oleic acid) were used.

It was found that the ink particles printed on the ONP are very small, and they

can pass through the fiber web and screen easily during the handsheet preparation,
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resulting in an increase in the brightness and causing two-sideness problems on the

handsheet. To solve these problems, several retention aids were used during the

handsheet preparation. It was found that polyethylene oxide (PEO)/phenol

formaldehyde resin (PFR) is the best retention system for ink retention during

handsheet preparation. The brightness showed in this study was obtained in the

presence of 4 ppm PEO (Mw = 8 million, Aldrich) and 8 ppm water-soluble PFR

(Cascophen C27, Borden Chemical, Canada) except additional description being given.

3.3. Results and Discussions

3.3.1. The effect of sodium oleic acid on the ink-fiber detachment and ink removal

The brightness of flotation recycled ONP as a function of sodium oleic acid

concentration in the presence of 500 ppm CaCI2 is shown in Fig. 15. The two curves

showed in Fig. 15 were obtained in similar flotation conditions but different addition

sequences of fatty acid, i.e., in one case, the sodium was added before pulping, and in

another case, the sodium surfactant was directly added into the flotation cell. It can be

seen that the two processes resulted in only a small difference in handsheet

brightness. This suggests that although adding fatty acid before pulping (without Ca2+)

may enhance the ink detachment of offset ink from ONP fibers, this enhancement is

not significant. This conclusion was further confirmed by washing experiments, lin

these experiments, the ONP was repulped in the presence of different concentrations

of sodium oleic acid. After repulping, the fibers were extensively washed by tap water

using a dynamic drainage jar. The bnghtness of washed fibers as a function of sodium

oleic acid concentration is shown in Fig. 16. Two conclusions can be drawn from Fig.

16, 1) the brightness of the handsheet increases as sodium oleic acid concentration is

increased regardless of _ether the sodium oleic acid was added before or after

pulping. This is not surprising because sodium oleic acid will act as a stabilizer for

small offset ink pa_cles, which makes ink pa_cles easier to separate from the fiber

surface; 2) the addition order of fatty acid will slightly improve the brightness. This is

consistent with the flotation deinking results showed in Fig. 15, i.e., adding fatty acid

into the pu{per wi{Islightly improve the ink detachment from the ONP fiber surface.
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Fig. 15: Brightness of handsheet prepared from flotation deinked ONP. Pulp

consistency: 0.52%; Nitrogen flow rate' 1800 cm3/min; Calcium chloride concentration:

500 mg/L (added to the pulp after pulping); Flotation time: 2 minutes.
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Fig. 16. Brightness of handsheet made from washed ONP. The wastepaper was

pulped at a Consistency of 1.31% for 30 minutes.
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3.3.2. The effe_ of TX-lO0 on the ink-fiber detachment and ink removal

The effect of the addition point of nonionic surfactant, TX-100, on the ink

removal was studied only by flotation deinking, and the results are shown in Fig. 17. It

can be seen from Fig. 17 that TX-100 did not improve ink removal when it was added

before pulping, but it did enhance ink removal if it was added after pulping. This is

surprising because it is well-known that TX-100 is an effective surfactant for stabilizing

many solid suspensions in water, in other words, it is expected that the addition of a

stabilizer will enhance the detachment of ink particles from the fiber surface, therefore,

improving flotation deinking efficiency. One possible mason for the decrease in the ink

removal efficiency may be due to the fact that TX-100 will reduce the agglomeration of

ink pa_cles if TX-100 is added before pulping. If this is true, the decrease in the

agglomeration of ink particles will result in a decrease particle size; therefore, the ink

removal efficiency in the flotation process will be decreased. In contrast to the flotation
.

results, the brightness of handsheets made from washed ONP was increased with the

increase of TX-100 concentration when TX-100 was added into the pulp before

pulping. This can be seen from Fig. 18. The results obtained from washed ONP

suggest that TX-100 will enhance the ink-fiber detachment. It is clear from the above

discussion that more work is needed in order to obtain a full understanding of the role
.

of TX-100 in the pulping process.
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Fig. 17. Brightness of handsheet made by flotation deinked ONP (Atlanta Journal-

Constitution) as a function of TX-100 concentration. ONP consistence during pulping'

1.31%; Pulp consistency in flotation cell' 0.5%; pH: 6.5; Nitrogen flow rate: 2000

cma/rain; flotation cell: column flotation cell with a 10 !xm-airinlet filter.
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Fig. 18. Brightness of handsheet made from washed ONP. Surfactant was added in

pulper. ONP consistency during pulping' 1.31%.
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4. EFFECT OF OMG ON THE FLOTATION DEINKING OF ONP

4.1 Backround

The deinking mills usually add certain amounts of OMG (10-30 %) to ONP in

flotation deinking because the brightness of final products made from recycled fibers

will increase in the presence of OMG. Because of the increase in OMG pricing, the

paper recycling industry would like to reduce its consumption of OMG. Therefore, it is

important to know what is the role of OMG in the flotation deinking of ONP.

Some authors [30-34] postulated that OMG can enhance ink removal from ONP

pulp by some unknown reasons, but others [35-36] indicated that the addition of OMG

will give no positive effect on ink removal dunng flotation.

Two masons may be possible for the increase in the brightness of recycled ONP

by adding OMG in flotation deinking:

a) Addition of OMG will introduce fillers and high quality fibers into ONP resulting

in an increase in the bnghness, but will not enhance ink removal;

b) There are some interactions among OMG, ONP, and process chemicals

resulting an increase in ink removal effecience.

In order to understand which mechanism is the dominating factor for the.

brightness increase in recycled ONP pulp after flotation, ONP handsheets were made

by adding different ratios of OMG into ONP either before or after flotation deinking, and

the brightness of these handsheets was examined in this study.

4.2. Experimental

ONP and OMG were separately pulped in the absence of surfactant. After

pulping, the ONP and OMG were mixed under different ratios. After adding the

required surfactant, the mixed pulps were subjected to flotation deinking using a
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column flotation deinking cell. The brightness of the handsheet was measured using

the method described in Section 3.2.

4.3. Results and Discussions

Fig. 19 shows the brightness of flotation deinked ONP handsheets as a function

of calcium ion concentration after flotation in the presence of 100 ppm sodium oleic

acid. lit can be seen that, for 100% ONP, the brightness slightly increased with the

increase in catcium concentration. This is consistent with previous reported results, Le.,

water hardness will improve ink removal if fatty acid is used as a deinking chemical.

However, there is almost no effect of calcium concentration on the handsheet

brightness of OMG. This is not surprising because the calcium concentration in OMG

pulps is already high enough due to dissolved calcium-containing fillers.

It also can be seen from Fig. 19 that the brightness of handsheets made of 70%

ONP/30% OMG is a little higher than that of 100% ONP, but is consistently lower than

that of 100 OMG. In order to know if this small brightness gain is due to the

improvement of ONP deinking by adding OMG, two different experiments were

conducted. In the first experiment, the ONP and OMG were separately pulped. After

pulping, the 70% ONP was mixed with 30% OMG. The mixed pulp was deinked using

the flotation technique. In the second experiment, the ONP and OMG were sepamtety

pulped and separately flotation deinked. After flotation deinking, these separately

deinked pulps were mixed- The brightness of these two types of handsheets as a

function of concen_ation of calcium ions is shown in Fig. 20. The assumption is that if

OMG can really enhance the ink removal of ONP, the brightness of the handsheet

should be higher when ONP and OMG are mixed before flotation. It can be clearly

seen from Fig. 20 that the brightness of handsheets is lower if the OMG and ONP am

mixed before flotation (<1 ISO). This result strongly suggests that the increase in

brightness is solely due to the increase of the content of filler and high-quality putp

rather than the improvement of flotation deinking when OMG is mixed with ONP.
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Fig. 19. The handsheet brightness of 100% ONP, 100% OMG, and the mixture of 70%

ONP + 30% OMG as a function of Ca2. concentration after flotation (ONP and OMG

were mixed before flotation). Sodium oleic acid concentration: 100 mg/L; Fiber

consistency: 0.5%; pH' neutral; Nitrogen flow rate: 18 cm3/min. The brightness was

measured from the top side of the handsheet. No retention aid was used for

handsheet making.
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Fig. 20' The brightness of handseets made of 70% ONP plus 30% OMG as a function

of calcium ion concentration. Sodium oleic acid concentration' 100 mg/L; Fiber

consistency: 0.5%; pH: neutral; Nitrogen flow rote- 18 cm3/min. The brightness was

measured from the top side of the handsheet. No retention aid was used for

handsheet making.

The effect of OMG on ONP deinking was further studied by the flotation deinking of

ONP in the presence of OMG filtrate or OMG fines. The OMG filtrate was obtained by

filtering a 1.0% pulp slurry using a filter paper, and the OMG fines were obtained from

the same pulp using a dynamic drainage jar (125 mesh). OMG fines of 453ml were

mixed with the required ONP pulp (1:.0%)to give 0.5% of total solid content. The mixed

pulp slurry was subjected to flotation deinking in the presence of sodium oleic acid and

calcium chloride. It is believed that if the brightness of ONP is improved by adding

OMG filtrate after flotation deinking, the soluble polymers in the OMG filtrate will

contribute to the ink removal of ONP. On the other hand, if the bdg,htnessof ONP will

be improved by adding OMG fines after flotation deinking, the fines (mainly the fillers)

in the OMG filtrate will be the major contributor to the ink removal. The results shown in

IPST Confidential Information -Not For Public Disclosure
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Fig. 21 are surprising because both the filtrate and the fines consistently reduced

rather from increased the brightness of ONP. This observation supports the results

obtained in Fig. 20, i.e., the addition of OMG in ONP will not give any positive effect on

ink removal during flotation when sodium oleic acid/calcium chloride are used as

deinking chemicals.
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Fig. 20: The brightness of handseets made of ONP in the presence of OMG filtrate

and OMG fines as a function of calcium ion concentration. Sodium oleic acid

concentration: 100 mg/L; Fiber consistency: 0.5%; pH' neutral; Nitrogen flow rate: 2000

cm3/min. The brightness was measured from the top side of the handsheet. No

retention aid was used for handsheet making.

4.4. Concluding Remarks

1. The increase of ONP brightness by adding OMG is not caused by

improvement of ONP deinking efficiency, but is solely due to the increase of filler and

high-quality fiber in recycled ONP.

2. Neither the soluble chemicals nor the fillers in OMG will improve the flotation

deinking efficiency of ONP.
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OBJECTIVES OF FY 98-99

1. Examine the filler chemistry (PCC and clay) in surfactan! solutions (TX-100, oleic

acid-calcium chloride, and cationic surfactants).

2. Study the filler flotation (PCC and clay) during flotation deinking.

3. Study the flotation deinking of ONP using cationic surfactants.

4. Investigate the effect of the remaining surfactant on the fiber surface chemistry and

paper properties.

GOALS FOR FY 98-99

]. Fundamental understanding of filler flotation in deinking process.

2. Fundamental understanding of the effect of remaining surfactant on the fiber

properties.

3. Evaluation of the advantages and disadvantages of using cationic surfactant in the

flotation deinking.

DELIVERABLES

Four papers, "Contact angle measurement of wood fibers in surfactant and

polymer solutions", "Effect of fiber surface chemistry on the fiber loss in flotation

deinking", "Flotation deinking chemistry: the current research program at IPST", and

"Collector chemistry in flotation,deinking of xerographic papers_will be submitted to the

scientific joumals for the consideration of publication in FY99.

IPST Confidential.Information-NotFor PublicDisclosure
(ForIPSTMemberCompany'sInternalUse Only)



Project:F00904 112 StatusReport

SCHEDULE IN MONTH

Tasks I 2 3 4 5 6 7 8 9 ,10 11 12

1. Examine the filler chemistry X X X

(PCC and clay)in surfactant

solutions (TX-lO0, oleic acid-

calcium chloride, and cationic

surfactants)

2. Study the filler flotation (PCC X X X X

and clay) induring flotation

deinking

3. Study the flotation deinking of X X X X

ONP using cationic surfactants

4. Investigatetheeffectofthe X X X X

remaining surfactant on the fiber

surface chemistry and paper

properties
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PROJECT OBJECTIVES:

The overall objective of the proposed research is to conduct a feasibility study of

spray wash to control fiber loss, reduce consumption of surfactant, and maintain ink

particle hydrophobicity in a laboratory flotation cell. _e research includes the following

tasks:

(1) Design a laboratory batch type spray wash flotation deinking cell.

(2) Study the effect of spray characteristics, droplet size distribution, momentum, and

spray pattern on the ink particle removal efficiency.· .

(3) Study the effect of spray wash on the selectivity of wash away fibers over ink

particles.

MAIN RESULTS:

The research program was started in October 1997 with a fund of $85,000.

During the last 4 months, the proposed research program was tested using a laboratory

flotation ceil. The primary results indicated that the surfactant spray approach can

reduce fiber loss by 50%, water loss by 75%, and surfactant consumption by 95%

without sacrificing deinking efficiency. The proposed approach can also prevent fiber

from contaminating of process surfactant. More importantly, this study developed a

simple method to mechanically control froth stability when the physicochemical

properties of the pulp source vary.

IPST ConfidentialInformation-NotForPublicDisclosure
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ABSTRACT

.. This report is concerned with increasing utilization of recycled fiber and, more

specificallY, with improving the ink removal efficiency; reducing the fiber loss, the water

loss, the chemical consumption, and the contamination of fibers by processing

chemicals. The research program was started in September 1997. One paper based

on the results obtained in the last 4 months has prepared, and a patent has been filed.

In this report, the fundamental understanding of the flotation deinking process is

first discussed, then experimentally study using innovative approach to control several

key process variables th_ affect ink removal, froth stability, fluidynamics in froth, fiber

contamination, fiber and water losses, and surfactant consumption are discribed.

Instead of adding surfactant into the pulp slurry directly before flotation in the

conventional process, a pressure atomizer was used to spray the surfactant solution

· from the top of the flotation column dunng flotation. Results indicated that the

surfactant spray approach can reduce fiber loss by 50%, water loss by 75%, and

surfactant consumption by 95% without sacrificing deinking efficiency. The proposed

approach can also prevent fiber from contaminating of process surfactant. More

importantly, this study developed a simple method to mechanically control froth stability

when the physicochemical properties of the pulp source vary.
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INTRODUCTION

Flotation deinking is a common practice for removing ink from wastepaper, and it

is becoming a key process in many recycling paper mills. The application of flotation

was successfully introduced to the paper recycling industry in the 1980s, and its

applications in wax removal, sticky control, and fiber fracfionation have attracted great

research interest. The chemistry of the flotation process has been reviewed [1-3]. The

deinking chemistry and the physicochemical interactions among air bubbles, fibers, and

ink particles are very complex. Existing technologies and process designs of flotation

dein_ng are based on experiences obtained from mineral flotation processes. Limited

process control mechanisms are available. Many problems remain unsolved such as

high fiber and water losses [4-9], fiber contamination by dein_ng chemicals, adverse

chemistry modification due to surfactant [1,2,10,11], Iow efficiency in removal of small

ink particles [12-14], etc. Therefore, innovative technologies based on the mechanistic

understanding of flotation processes are greatly needed to solve or alleviate the above

problems. Because of the significant variability in the supply of secondary fibers in

recycling practices, process control in flotation deinking is very important to improve

recycling operations.

UNDERSTANDING THE FLOTATION DEINKING PROCESS

Flotation deinking processes involve interactions among air bubbles, ink

particles, and fibers. A successful flotation process typically has three major efficient

subprocesses: detachment of the ink particles from waste fibers, effective adhesion of

the ink particles onto air bubble surfaces, and removal of froth and ink particles from

flotaU°n cells.

The Roles of Su_actants

The roles of surfactants have been discussed in detail by Ferguson [1,2]. In

general, surfactants play three roles in flotation deinking: as a dispersant to separate

the ink particles from the fiber surface and prevent the redeposition of separated

particles on fibers, as a collector to agglomerate small particles to large ones and

change the surface of particles from hydrophilic to hydrophobic, and as a frother to

_ST ConfidentialInformation-NotForPublicDisclosure
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generate a foam layer at the top of the flotation cell for ink removal. Although

surfactants play important roles, they will also cause some adverse effects on ink

removal, fiber quality, and water muse. For example, both hydrophobicity and ink

removal efficiency will decrease by the adsorption of dispersant and frother [10,11].

The remaining surfactant in recycled fibers is another problem that may cause a

decrease in fiber-fiber bonding, an increase in foams during the papermaking process,

an adverse effect on printing, etc. Because surfactants have both positive and

negative effects, it is of interest whether dispersant, collector, and frother can be

separately controlled.

The surfactants used in mineral flotation may not be necessary in flotation

deinking. For instance, some ink particles, such as xerox toner, are hydrophobic in

nature and no collector is necessary. The dispersant may also be unnecessary 'ff the

ink particles can be removed from fibers by other chemicals, such as sodium silicate,

sodium hydroxide and enzyme, or by mechanical actions, such as magnetic and

electrical fields, and ultrasonic irradiation. Although dispersant and collector may not

be necessary for some pulps, a frother has to be used in order to obtain a stable foam

layer for removing ink particles. Traditionally, the frother and other surfactants are

added in to the pulp suspension duding pulping. However, the surfactant presented in

pulp slurry will not only contribute to the foam stabilization, but also adsorb onto ink

particle surfaces and cause a decrease in the hydrophobicity of ink particles.

Furthermore, the mechanical control of froth stability is very difficult if the surfactant is

directly added into the pulp slurry because the properties of wastepaper may vary

significantly.

Because the foams are stabilized by surfactant only on th® top of the flotation

cell, it is interest to develop a feasible method to directly add the frother to the top of

the flotation cell rather than in the pulp suspension. As a result, a separate control of

the addition of various surfactants to improve the performance of deinking processes

can be achieved.

[PSTCo:nfidential,Information-NotFor PublicDisclosure
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The Mechanism of ink Removal

Ink removal efficiency depends on several factors such as the ability to separate

the ink particles from the fibers, the collision probability between ink particles and air

bubbles, the interfacial energy between ink particles and the air bubble surface, the

specific contact surface area between ink particles and air bubbles, the stability of the

froth for final ink removal, etc. It is well-known that surface chemistry plays a key role in

flotation deinking. It has also been identified that the froth stability is critical for ink

removal. Ink removal efficiency increases with an increase in froth stability, so that

there is an increase in surfactant concentration in conventional flotation systems.

Unfortunately, the increase in surfactant concentration in the pulp suspension will

increase the adsorption of surfactant onto ink particles, resulting in a reduction of the

surface hydrophobicity of ink particles and ink removal [10]. Therefore, there must be

an optimum surfactant concentration and ink removal efficiency. Practically, it is

difficult to optimize the surfactant concentration in a paper recycle mill because of the

variability in the secondary fiber sources. This indicates that a good control of

surfactant concentration and its distribution within a flotation column can significantly

. improve the flotation deinking operation.

The Mechanisms of Fiber and Water Losses

The understanding of fiber loss in flotation is very limited. Turvey [5,6] indicated

that calcium ions can significantly increase fiber loss when a fatty acid soap was used.

Turvey also indicated that nonionic fatty alcohol ethoxylate surfactants cause higher

fiber loss compared to fatty acid soap. It was postulated by Turvey [5,6] and later by Li

and Muvundamina [15,16] that fiber loss was due to fiber adhesion to air bubbles and

then was removed with the froth. This postulation was challenged by Ajersch and

Pelton [7-9] and most recently by Dorris and Page [17]. They found that the

hydrophobicity of a fiber surface does not contribute to fiber loss, and fiber loss is due

to the mechanical entrapment of fibers in the froth. In our recent study [18], it was

found that both physical entrapment of fibers in an air bubble network and adhesion of

hydrophobic parts of fiber surfaces on air bubble surfaces will contnbute to the total

fiber loss. However, the physical entrapment is the major contributor. It was also found

]PSTConfidentialInformation-NotForPublicDisclosure
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that the fiber and water losses are directly related to the froth stability and froth

structure. The fiber entrapment is dictated by the gravitational, buoyant, fluidynamic

drag, and surface forces. In general, a froth with a structure consisting of small

bubbles causes high fiber and water losses due mainly to the high void space between

air bubbles for fiber and water ca_,rryingover.

Because mechanical entrapment of fiber and water in the froth is the major mason

for fiber and water losses, an effective method to mechanically control the stability,

structure, and fluidynamics of froth is critical for reducing fiber and water losses. It is

also clear that, if other parameters remain constant, an effective mechanical control of

the froth Properties can be achieved by controlling surfactant concentration and

distribution in the froth.

THE MECHANICAL CONTROL CONCEPT

Based on the above fundamental understandings of flotation deinking, it is clear

that effectNe controls of key process variables can increase ink removal and reduce

fiber and water losses. In this study, we propose an innovative approach to use one

i: simple mechanical device, i.e. surfactant spray at the top of the flotation column as

shown in Fig. 1, to control several key process variables, i.e., surfactant consumption,

concentration and its distnbution, froth structure and stability, and fluidynamics in the

- froth. Therefore, surfactant (frother)is not directly added into the pulp suspension

during stock preparation, rather it is delivered through a spray during the flotation

process. The surfactant spray concept is conceived based on the following arguments:

1. The froth that is necessary for ink removal can be established and stabilized

by a surfactant spray rather than conventionally adding surfactant directly into

thepulp suspension. The surfactant addition through the spray from the top of

the flotation column will give a degree of freedom to control surfactant addition

in flotation deinking. With this degree of freedom, we can control the froth

stabil:dythrough the change of suffactant concentration of the spray solution or

flow rate of the spray during flotation because the froth structure and stability

are related to these parameters. When a change of the fiber source is

observed, the surfactant application can be easily adjusted. Because the

]:PSTConfiden'ttalInformation-NotForPubic DLsclosure
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surfactant is only applied to the froth layer to stabilize the foam, the amount of

surfactant required will be much less compared with that for conventional· .

flotation through directly adding it into the pulp suspension.

2. The spray will have a wash effect on the froth, i.e., the momentum of the spray

, droplets penetrated into the froth will modify the fluidynamics within the

microchannels of the froth to help the fibers or fiber flocks to overcome the

lifting and the fluidynamic drag forces to flow down under the gravity. The

water wash technique has been applied to mineral flotation processes [19-21]

to increase mineral flotation selectivity. The effect of water drainage in the

froth phase on the fiber loss was also studied [18]. Because the hydrophobic

ink particles have stronger affinity to the air bubbles than fibers, the liquid

drainage in the froth microchannels may move hydrophilic fibers more

effectively than hydrophobic ink particles. Therefore, it can reduce fiber and

water losses but does not significantly affect the ink removal efficiency.

3. For flotation processes that do not require collectors or dispersants, surfactant

spray can control the distribution of surfactant in a flotation column so that

surfactant will be concentrated in the top layer of the froth and will not be

present in the pulp suspension. There is a strong surfactant concentration

gradient in the region of the froth and pulp suspension interface, and the

concentration gradient is supported by the froth liquid holdup capacity and the

bulk convective flow of the pulp suspension driven by motions of the air

bubbles. Therefore, the hydrophobicity of ink particles will not be affected,

and the ink removal efficiency can be increased, or more specifically, the

surfactant consumption will be significantly reduced under the same ink

removal efficiency. Moreover, the contamination of fibers by surfactant can

perhaps also be completely avoided using the surfactant spray approach.

Furthermore, the so-called optimum ink removal surfactant concentration

observed by Epple et al., [10] and the present study in conventional flotation

deinking systems does not exist, easing process control for ink removal.

4. There are significant engineering and economical advantage of using a

surfactant spray to control flotation deinking' the spray is a very simple

[PST ConfidentialInfommtion-NotForPublicDisclosure
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mechanical device; it is very easy to implement a feedback control mechanism

using a surfactant spray for industrial applications without significant

modifications to existing conventional flotation equipment; and it can control

most of the key process variables in flotation deinking.

EXPERIMENTAL

A laboratory batch-type deinking column is used to conduct the feasibility of the

proposed mechanical control concept using surfactant spray. As shown in Fig. 1., the

deinking column has an inner diameter of 10.16 cm, The height of the flotation cell is

86 cra, and the volume of the pulp slurry for each batch run is 6 liters. A pressure spray

nozzle is mounted at the top of the deinking column approximately 2 cm above the pulp

suspension surface to the spray surfactant. The nozzle orifice diameter is about 0.46

mm. The nozzle is operated at a gauge pressure of 0.5 atm with a flow rate of 1.42

g/s. The mean spray droplet size Sauter mean diameter (SMD) is about 50 mm

measured by a laser diffraction instrument (Malvem 2600). The flotation air flow rote is

11-15 SLPM.

The pulp was made from xerox copied bond papers printed with a fixed pattern.

The papers were pulped at a pH of 10 at a consistency of 8% without adding any

chemicals except sodium hydroxide. The water and fiber losses were obtained by a

gravimetric method. The ash contents in the odginal pulp and removed solid were 16

and 8.2%, respectively. The pulp consistency used in the flotation process was 0.5%.

Triton-100 (analyze grade, J.T. Backer Inc.) was used as surfactant. The required

amount of Triton-100 was added directly into the pulp in "conventional flotation", but

was sprayed through a nozzle from the top of the pulp in "surfactant spray flotation".

The equilibrium time for surfactant adsorption in "conventional flotation" was --5

minutes. The handsheets for brightness analysis were made on a 15-cm B0chner

funnel according to TAPPI standard method. The brightness of the handsheets was

measured using a Shimadzu UV-VIS spectrophotometer (UV-160A).
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Fig. 1. Schematic diagram of a batch-type flotation deinking cell with mechanically

controlled surfactant addition through a pressure atomizer.
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The surfactant diffusion in the flotation column was analyzed by the concentration

change as a function of time and depth along the flotation cell. The sudactant diffusion

in the flotation celilwas only conducted in the absence of fibers. The concentration of

the surfactant (TX-100) was measured using a Shinazu UV160U spectrophotometer at

a wavelength of 223 nm. Deionized water was used as a reference.

RESULTS AND DISCUSSION

Froth Establishment by Surfactant Sprays

The froth formation under the application of surfactant spray from the top of a

flotation column was first examined in the absence of fibers. No foam layer was

established when air bubbles were injected from the bottom of the flotation column that

contains only pure water. However, when a small amount of Triton-100 solution was

sprayed from the top of the flotation cell, a stable foam layer was established on the

surface of the pure water phase in less than 0.5 minutes. The rate of foam formation

on the top of pure water depends on the spray rate and surfactant concentration of the

spray solution, and usually a few seconds am needed to generate a constant froth

height.

Surfactant Distribution between Froth and Pulp Suspension

Direct sampling measurements of the surfactant concentration distribution within

the flotation column as a function of spray time and depth from froth/suspension

interface were conducted. It was found that surfactant is mainly concentrated in the

froth rather than in the pulp suspension, and there is a strong surfactant concentration

gradient in the region of the froth and pulp suspension interface. The first set of

' experiments was conducted by taking samples from 20 and 50 cm down from the froth

and pulp suspension interface at various times up to 13 minutes during flotation with

surfactant spray. UV analysis of all the samples found no absorbance at 223 nm,

indicating the surfactant concentration was essentially zero at these two locations. The

similar results were obtained from analysis of the samples taken from different depth (1

cm to 50 cm down from the froth/pulp suspension interface) at the end of flotation (10

minute flotation time), i.e., no detectable surfactant was found in the flotation cell.
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These results strongly suggest that fiber contamination and surfactant adsorption onto

the ink particle surface can be completely eliminated using the proposed surfactant

spray approach in flotation dein_ng.

Comparisons of Ink Removal

Fig. 2 shows the comparison of the brightness gain of handsheets made from

deinked fibers using surfactant spray flotation and conventional flotation under the

same operation conditions, respectively. The results clearly show that the surfactant

consumption used in the surfactant spray flotation is only about 2-3% of that required

for the conventional flotation process in order to achieve the same brightness gain.

This is not su_rising because the surfactant is applied directly to the froth phase to

stabilize the foam in the surfactant Spray flotaUon, but most surfactants dissolved in

pulp in the conventional flotation process will not contribute to froth stabilization.

Theoretically, the surfactant consumption used in the spray flotation process can be

further decreased if the ratio of the height of the flotation column to the surface area is

increased because the surfactant consumption in spraying flotation is independent of

the total volume, but is only dependent on the total surface area of the pulp

suspension.
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Fig.2. Froth heightvs. timewith surfactantsprayat different surfactantsolutionsin the

spray solution. The surfactantconcentrationsin the spray solutionswere 16 and 40

mg/Lfor Spray1and Spray2, respectively. Flotationtimewas 10minutes.
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It can be seen from Fig. 2 that, for conventional flotation, the deinking efficiency

increases _th surfactant concentrations up to 5 g/kg dry pulp, then decreases

suddenly as the surfactant concentration is further increased. An optimum surfactant

concentration in flotation deinking was also observed in previous studies [10,11,18].

Combining present results _th that of previous studies, it is believed that the increase

in deinking efficiency at Iow surfactant concentration is because of the increase in the

froth stability, and the decrease in deinking efficiency at high surfactant concentration is

because of the decrease in the hydrophobicity of ink particle surfaces. Because there

is an optimum surfactant concentration in conventional flotation deinking, it is often

difficult to COntrolsurfactant concentration in industrial applications as it often changes

with fiber sources. In contrast to the conventional flotation method, it is not necessary

to find an optimum surfactant concentration if the suffactant is added from the top of

the flotation cell as indicated by the data shown in Fig. 2.

Comparisons of Fiber and Water Losses

Fig. 3 plots the correlation of fiber loss as a function of brightness gain. The

results show that fiber loss was reduced by 50% when surfactant is sprayed from the

top of the flotation column compared to that obtained using conventional technology at
.,

the maximum ink removal condition. This indicated the success of the proposed

technology in reducing fiber loss without reducing the deinking efficiency. The

reduction in fiber loss, perhaps, can be attributed to the froth structure that affects the

fiber drainage and spray washing that modifies the fluidynamics within the
..,

microchannels of the froth. The results
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Fig. 3. The comparison of the correlation of fiber loss and deinking efficiency between

the surfactant spray flotation and the conventional technology. The surfactant

concentrations in the spray solutions were 16 and 40 mg/L for Spray 1 and Spray 2,

respectively. Fiber loss was measured at different surfactant additions. Flotation time

was 10 minutes.
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Fig. 4. The comparison of the correlation of water loss and deinking efficiency

between the surfactant spray floatation and the conventional technology. The

surfactant concentrations in spray solutions were 16 and 40 mg/L for Spray 1 and

Spray 2, respectively. Water loss was measured at different surfactant additions.

Flotation time was 10 minutes.
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obtained, in mineral flotation [19-23] support this explanation. However, a quantitative

study of the mtationship between fiber loss and froth structure is required,

Fig. 4 plots the correlation of water loss with brightness gain. The results show

that the water loss was reduced by 75% when surfactant was sprayed using the

proposed approach compared to that with the conventional flotation process at the

maximum ink removat conditions. This indicated the success of the proposed

technotogy in reducing water loss without reducing deinking efficiency. The reduction

of water loss can be explained as that for fiber loss. According to our recent survey,

water loss caused by froth entrainment lin flotation deinking is about 10 tons/ton dry

paper. Although the water loss caused by froth entrainment in the flotation deinking

process has not been considered a serious problem, it is believed that this issue will

attract more and more attention as environmental consideration increases.

Comparison of Ink Removal Rates

Fig. 5 shows the time-dependent characteristics of ink removal in the surfactant

spray flotation and the conventional flotation processes. Ink removal increases as an

initial increase in flotation time for all of the four experiments conducted. However, for

the conventional flotation conducted at a surfactant concentration of 2 mg/L, ink

removal efficiency reached a constant value after 80 seconds. A constant ink removal

is solely because there was not enough surfactant in the system after 80 seconds so

that the foam was not stable. The results in Fig. 5 also indicate that the ink removal

rate using the Proposed innovative technology is compatible with that of the

conventional technology even though the surfactant consumption was reduced more

than 95%.
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Fig. 5. Comparison of the time-dependent deinking characteristics between the

surfactant spray flotation and the conventional technology. The surfactant

concentrations ,in the spray solutions were 16 and 40 mg/L for Spray 1 and Spray 2,

respectively. The surfactant concentrations in Conventional 1 and Conventional 2 were

2 and 20 mg/L, respectively.
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CONCLUSIONS

In summary, the proposed approach of applying process control in flotation

deinking using surfactant spray demonstrates several advantages compared with the

conventional flotation deinking process'

]. Spray surfactant at the top of the flotation column can effectively establish a

stable froth for good ink removal

2. Surfactant application through a spray at the top of the column can effectively

prevent the fiber from surfactant contamination, and reduce the modification of

deinking chemistry through surfactant adsorption, resulting in higher ink

removal, lower surfactant consumption, and lower fiber and water losses.

3. Control of surfactant delivery through mechanical devices, such as a spray, is

an excellent approach to control froth stability and to improve the performance

of the flotation deinking process significantly.

4. Control of surfactant delivery is a potential effective method to improve the

roles of dispersant, collector, and frother in flotation deinking.

5. Control of surfactant delivery has potential advantages in whole process

control in flotation deinking, and particularly can be used for stabilizing flotation

operations when pulp sources are changed.

6. Laboratory studies demonstrate that without sacrificing deinking efficiency, the

proposed approach can reduce fiber loss by 50%, water loss by 75%, and

surfactant consumption by 95%.

OBJECTIVES FOR THE NEXT SIX MONTHS

Because the funding is available for only one year (9/97 - 8/98), the objectives

given here am based on the study that will conducted in the next six months.

l. Demonstrate the proposed technology in a pilot scale flotation facility using office

wastepaper.
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2. Perform a feasibility study for ONP papers using the novel surfactant spray

technique.

DELIVERABLES

]. Final report will be sent to the member companies in September 1998.

2. If promise results are obtained from a continue flow flotation cell, we will contact

recycling mills and equipment manufacture to transfer our results.

SCHEDULE IN MONTH

Tasks 1 2 3 4 5 6

X X X
]. Install a continue flotation cell

2. Demonstrate the proposed X X X

technology in a pilot scale

flotation facility using office

wastepaper.

3. Perforrn a feasibility study for X X X

ONP papers using the novel

surfactant spray technique.
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Wet End Chemistry Control Advisor (WECCA)

Introduction

This is the first project proposed for the wet end chemistry research and education
collaboration established between The Institute of Paper Science and Technology
(IPST) and the Miami University Paper Science and Engineering Department. The
objective of the collaboration is to:

Improve the efficiency and productivity of US mills through the
advancementof papermakingchemistryknowledgeand technologyand
the applicationof thisknowledgeandtechnicalin milloperations.

The following two research areas identified by the collaboration are addressed in this
proposal.

1. Invention and application of new papermaking chemistry on-line sensors

2. Development of new papermaking chemistry process control strategies

Since wet end chemistry process control has long been an area of individual interest to
both Miami and IPST, the WECCA project is a logical point from which to launch the
collaboration.

Background

While wet end chemistry has always been important to papermakers, present-day
trends place even more emphasis on this subject. Examples include

· increased use of recycled fibers
· increased filler levels

· closed white water systems,

· decreased basis weights,

· increased machine speeds
· acid-to-alkaline conversions.

All of these developments produce more difficult papermaking conditions at a time when
customers demand ever higher quality, and economic conditions require improved
productivity.

On-line wet end process monitoring has not been as rapidly adopted by process
engineers and paper production managers as was dry-end on-line monitoring. There
are many reasons for this, such as the fact that there are few manpower replacement
costs to be recovered by installing on-line wet end testing equipment. Another
impediment is the fact that output from wet end chemistry sensors is not always
straightforward, and it is often necessary to have a wet end chemistry expert on hand to
interpret the data. For these two reasons, and others, it can be concluded that there is
great potential for the development and implementation of monitoring and control
systems that help papermakers and chemical suppliers deal with variations in pulps,
fillers, and chemicals, and maximize paper quality and machine productivity.
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Papermakers and suppliers understand that wet end chemistry be brought under control
to get the best paper quality and the best paper machine performance. Thus, the
papermaker needs real-time knowledge about what is happening in the mill areas
leading up to, and including, the wet end of the paper machine in order to make rapid
control decisions that affect product quality and paper machine productivity. Currently,
this goal is achieved in piecemeal fashion in most mills and not even approached in
others. This proposal suggests a solution to this problem.

WECCA program goals and objectives

The overall goat of the WECCA project can be stated as:

Maximizingpaper qualityandpaper machineproductivity
throughcomprehensivewet endchemistry control.

The primary objective of this project is to develop an advanced process control system
that combines wet end chemistry knowledge with paper mill measurements and
predictive control models to achieve effective wet end chemistry process control.

WECCA functions

The following functions are envisaged for the WECCA system.

Table I

WECCA Functions
Provide information and advice:
· related to potential paper machi-neproductivity problems
· related to potential paper quality problems
· needed to maintain uniform operation of wet end chemistry

processes
· needed to facilitate wet end chemistry control during grade

changes
· related to the future development of closed loop control systems
· related to the economics of machine operation

WECCA users

The WECCA system is intended for use in the paper mill by stock preparation operators,
machine tenders, production managers, process engineers, and researchers. In
addition, it will also provide support for chemical supplier technical sales and service
personnel.
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Development of the overall WECCA strategy

Deficiencies in current wet end chemistry process control practice that will be addressed
in this research program

The deficiencies in current wet end chemistry control can be boiled down to the following
three major areas.

1. Long lag time between input variable changes and measurement of paper properties
or measurement of the paper machine "reaction" -- The solution to this problem
requires either the installation of appropriate sensors earlier in the process or, where
that is impossible, application of mathematical models that provide accurate
prediction of a property or machine parameter. In a sense, such mathematical
models can be considered to be "software sensors" in that they provide the same
types of information as hardware sensors.

2. Historical absence of "key" on-line sensors to provide real-time data upon which to
base control models and control decisions --In the most recent issue of the Pulp and
Paper Manufacture Textbook Series, Volume 10 ("Mill-Wide Process Control and
Information Systems", page 192), Brewster states that:

Theeffectsof additiverates on thechemicalenvironmentand in turnon retention,
formation,etc. dependon thespecificphysicalenvironment(hydrodynamics,etc.).
For thisreason,theserelationshipsmustbe determined(or confirmed)on-line,
which points to the availability of adequate sensors as being the restraint to
development.

This issue has been aggressively addressed by instrument suppliers and on-line wet
end chemistry measurements are now available to support an advanced control
strategy. However, the industry has not yet adopted them widely. This may be the
result of not knowing how to apply the instruments in a way that provides a clear
return on investment. This project directly addresses this issue.

3. Mathematical control models that relate multiple, interacting wet end chemistry
variables to paper properties and paper machine productivity measures are
unavailable. -- in the same reference cited above, Brewster has the following to say
about control models:

The prerequisiteto design of robust wet-end controlfor any particular
systemis an approximate,quantitativeunderstandingof therelationships
among chemical addition, chemical environment variables, retention,
formation,sizing,etc. Theseare non-linearand interactingrelationships.
Then, the design and implementationof robust multi-variablecontrol
functions,includingoptimizationto take care of the varioustrade-offs,will
be required.
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It is widely accepted that the development of first principles wet end
chemistry control models is impossible and that other modeling
approaches must be adopted. Fortunately, the advancement of
computing capabilities and modeling methods, coupled with the massive
amounts of archived process data available strongly suggests that the
development of empirical control models should be possible.

General description of overall WECCA concept

In the jargon of process control engineers, the proposed WECCA strategy employs
modelpredictivecontrol,coupledwithartificialintelligence(i.e. expertsystems). Figure
1 iillustrates this schematically. In the figure it can be seen that process data is passed
to a mathematical control model whose function is to compute predicted paper
properties or machine runnability parameters, such as first pass retention or tray
consistency.

The computed outputs from the control model are passed to two expert systems and,
possibly, to additive flow controllers. In one sense, the model serves as a "sensor" and
provides values that can be used in wet end chemistry control decision making. Since
most of the model input data comes from the stock preparation area, the predicted
quantities are available for use in control decisions much sooner than if reel
measurements were involved. This greatly reduces the lag times between input variable
measurements and response variable measurements.

The first expert system checks the continuing validity of the model by comparing its
computed paper property or machine parameter output to actual measured values taken
from the produced paper or operating machine and decides whether or not the model
needs to be updated.

The second expert system advises the operator about control actions when the wet end
chemistry gets out of control, as indicated by a difference between a computed paper
property or computed machine parameter and the specification for that property or
parameter. This expert system also has the same process input data passed to it as the
control model and it uses this data to make control decisions for the operator, and to do
other computations and decision making needed by the mill.
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Figure 1. Schematic of general WECCA control strategy

Previously published studies

A literature search using the IPST literature database PaperChem covering the period
1990-1997 discovered a number of references pertaining to the application of expert
systems and neural networks in the paper industry. Table II summarizes the studies
contained in the PaperChem database related to expert systems and Table III does the
same for neural network models.

The objective of the literature search was to determine the level of recent industry
activity in the areas of neural network modeling and expert systems. It is evident from
Tables II and III that the industry has been active in these arenas and that most of the
major processes are represented. Wet end chemistry is an exception. Only two
references- one about sizing and one about pitch-refer to this area. This shortcoming
is addressed by this proposal.

Description of specific WECCA modules

Preliminary control modules have been developed for optical properties, strength
properties, and first-pass retention based on the general control concept outlined above.
Specific descriptions of these three modules follow.

Paper Optical Property Process Control Strategy

Introduction

Opacity, brightness, and color are all paper properties that depend upon interacting
papermaking process and furnish variables. Current process control practice is reactive
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Table II

PaperChem references pertaining to expert systems in the paper industry
Category Reference

Papermachine troubleshooting 1,10
Paper machine optimization and monitoring 2,8
Environmental monitoring of landfills 3
General papers 4,5,6,7,14,20,21,23,25,26,27,28,29,30,3

5,46
Process control of coating operation 9
Process control of fiber recycling operation 11
Control and 0piimization of activated sludge 12,17,40
operation
Assist recovery operation 13,18,32,36,37,38,41,42
LimeKilnautomation 15

Troubleshooting and optimizing dryer steam 16,22
and condensate systems
Kraft pitch problem troubleshooting expert 19,31
system
Recovery unit of recausticizing chemicals- 24
control
Multiple effect evaporator models and 33
control

CD diagnosis in weight control 34
Batchdigestercontrol 39
CMP and mechanical pulp advanced control, 43
tmp refiner control
·WEDGE system' for wet end chemistry 40,44
control and diagnosis
IdentifiCation of visual defects, diagnose 45
their origins, and find solutions
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Table III

PaperChem references pertaining to the applications of neural network modeli,ng
in the paper industry
General applications of neural network models in the paper 47, 57, 58, 59, 60, 61,
industry 63
Feedforward control of an activated sludge process 46
Control of CD basis weight by slice bolt position control 48
Kappa number estimation in continuous Kraft pulp digesters 49, 64
through online measurements of alkali, solids content, and
dissolved lignin
Predictive emissions monitoring systems (PEMS): a 50, 51
computer modeling approach to air monitoring
Predict effect of process variables on deinked pulp 52
brightness and chemical usage; model and test process
changes off-line
Model of the relationship between rosin and alum and paper 53, 54
sizing
Diagnosis of paper web breaks on a commercial newsprint 55
machine
Mathematical simulation of the paper forming process 56
Closed loop control of specific energy in the refining 62
process.

and the operator only makes process changes when a problem is reported by the dry
end testing !ab or when an on-line sensor located at the reel indicates that paper has
gone out of specification.

A few machines have placed opacity, brightness, or color on automatic control. In these
instances, feedback loops are employed and control actions are limited to changing one
or a few input variables. No account is taken of changes in other input variables nor are
feedforward strategies employed. A new strategy is proposed here that addresses
these issues.
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'Figure 2 depicts the more important papermaking process and furnish parameters that
affect optical properties.
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Figure 2. Parameters that affect paper optical properties

Proposed control strategy

A two component control strategy is proposed. (Table IV) The two components are a
mathematical model that will compute paper optical properties from the values of
papermaking process and furnish input variables plus an expert system that compares
the computed optical properties with the desired values and decides whether or a
control action is needed. If so, then the expert system advises the operator of this fact
and provides guidance about what to do.

Table IV
Functions of control components
Component Functions
Opticals control · Receives input data from the stock preparation and paper
model machine areas and computes predicted paper optical properties

· PasSespredicted paper optical properties and ranked input
parameter variabilities to expert system.

Opticals control · Compares predicted paper optical properties with desired
expert system opticals (opticals specifications) and makes decision whether or

not a control action is required.
---If a control action is required, considers parameter variability
input and makes recommendations to operator regarding
preferred control actions

· Compares predicted paper optical properties with measured
paper optical properties and makes decision whether or not the
model is sufficiently accurate
-If model is inaccurate, makes recommendation to appropriate
person that the model needs to be revised.
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The expert system also compares the predicted optical properties with the actual
property values measured at the reel and decides whether the control model needs to
be updated. If so, then the expert system notifies the appropriate person of this fact.
Note that even though only a single expert system is shown in Figure 3, it has both
principal functions assigned to the expert systems in Figure 1 above. It is also assumed
that process input data is passed to the expert system, even though it is not indicated in
Figure 3.
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'Figure 3. Optical property control strategy
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Strength Properties

Introduction

A large number of interacting stock preparation, paper machine, and furnish variables
contribute to the final strength of produced paper. Some of the most important ones are
displayed in Figure 4.
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Machine speed retention
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Softwood

refining _"'1

Figure 4. Papermaking parameters that affect paper strength

A Proposed Process Control Strategy for Controlling Paper Strength

The papermaker has a number of alternative options for controlling paper strength. In
matters of control, operators typically adopt a strategy of reacting to strength problems
as they are reported by dry end test results. As a result, considerable quantities of off-
specification paper can be produced before a problem is identified. A more pro-active,
strength process control strategy is proposed here.

Confidential Information - Not for Public Disclosure.



153
ProjectWECCA StatusReport

The proposed strategy is based on a mathematical model that predicts paper strength
from the values of process and furnish input variables coupled with an expert system
that assists the operator in making control decisions. Automatic control loops are
envisaged at the lowest control levels. All higher level control is accomplished through
the operator via supervisory control. Figure 5 depicts the proposed interactions among
the control model, expert system, and operator and Table V lists the major functions of
each component in the scheme.
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// / Paper strength* data
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parameter data _ i _ r _ _ _ _ \
I_sted in Fig. Ii i i 1 i i i i

I _ Pa erStock Paper Machin _,_
Preparation

Tray consistency

Figure 5. Proposed supervisory control strategy for paper strength

Table V
Functions of control components

Illlll

Component Functions
Strength control · Receives input data from the stock preparation and paper
model machine areas and computes a predicted paper strength

· Passes predicted paper strength and ranked input parameter
variabilities to expert system.

Strength control · Compares predicted paper strength with the strength
expert system specification value and makes decision whether or not a control

action is required.
---If a control action is required, considers parameter variability
input and makes recommendations to operator regarding
preferred control actions (Note that even though it is not shown
in the Figure, the expert system has the same process input
data passed to it as does the controt model.)

· Compares predicted paper strength with measured paper
strength and makes decision Whetheror not the model is
sufficiently accurate
-If model is inaccurate, makes recommendation to appropriate
person that the model needs to be revised.
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First pass retention

Introduction

First pass retention of fines and fibers is known to be affected by a large number of
variables, examples of which are depicted in Figure 6. The best current retention
control practice in the industry involves real-time measurement of tray consistency,
followed by adjustment of retention aid or some other retention control additive. This
approach is effective as long as the stock preparation system remains stable so that
only relatively small changes in tray consistency occur and these can be controlled by
small changes in a single retention control additive.

While a positive development, the above approach suffers from the fact that most large,
high speed paper machines undergo relatively large and frequent excursions in retention
due to changes in incoming raw materials and these deviations are too large to be dealt
with by retention aid alone. The proposed research program will result in a broader
retention control strategy that will overcome this deficiency.

Figure 6. Process variables that affect first pass furnish and first pass fines and
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I
ash retention and the feedback measurements suggested for the proposed
retention control scheme.
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Proposed Retention Control Strategy
The envisaged retention control strategy employs a mathematical model that computes
the retention additive flow rate setpoint required to achieve a desired tray consistency,
given the "state" of the system; and an expert system that advises the operator about
what to do when the tray consistency exceeds specific upper and lower control limits.
Table VI summarizes how these elements are integrated into the control system. Figure
7 schematically illustrates how the various components could be integrated into a
comprehensive retention control strategy.

Table VI
Two control levels and their respective elements

ii i

Level Trigger Control Agent Control Comment
Mode

1 Ct, mini < Ct _( Ct, min2 Retention control Automatic This level is

or, Ct,m,x_< Ct_<Ct, additive transparent to the
max2 operator

2 Ct>Ct, max2OrCt < Ct, Coagulant, Supervisor The operator
m_2 dispersant, or other y carries out one or

appropriate treatment more actions
carriedout in the based on advice

stock prep area by from the expert
anoperator systemcombined

with his/her

experience.

The Ct,Ct,max2, and other related parameters in the table, column two, refer to inner and
outer control limits developed for tray consistency in the mill. When the tray consistency
lies between the two control limits, then level 1 control is in effect. When the tray
consistency lies outside of the outer control limits, then level 2 control is activated.

What needs to be done to bring this about?
Available on-linemeasurements-- The technologies for measuring consistencies, flow
rates, and pH values arewell-established. Fiber fines and fiber length distribution can
be measured with instruments that are relatively new to the market. There are also at
least two instruments available for measuring dissolved cationic demand. One can also
do temperature, conductivity, and specific ions on-line in most streams. The principal
problem is collection of a filtrate sample for these measurements. Thin stock ash
content is possible, as is thick stock ash (in principle).

Development of a mathematical model that will compute the retention aid flow required
to achieve a given tray consistency -- Others have found that neural network modeling is
a good way to approach problems involving many variables and numerous dynamic,
nonlinear interactions, such as the problem posed here. Several examples of the
successful use of this technique have been published in the recent literature.

Development of an expert system that will assist an operator in counteracting retention
excursions beyond the capability of the primary retention control additive -- Expert
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systems have found widespread use in industry and there are many software packages
available for their development.

Integrating data systems -It is envisaged that this entire project will be carried out at a
mill site. The biggest challenge will be to find a mill that is instrumented and networked
adequately enough to provide the data needed to develop a neural network model. The
same mill will be used as the basis for an expert system and for prototyping the control
system. IPST member companies will be surveyed for candidate mills. It will also be
preferable if the selected mill has a single, full-service chemical additive vendor who is
dedicated to working with the project.

.,y, Advice to OperatorJ

J

- Tray consistency ....... _

.... _ _ .............

j .. x_

/ I_etention chemical' ,, "-,
Ranked input x / flow setpont x "x
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Figure 7. Schematic of proposed retention control strategy
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Development and implementation phases and activities for the WECCA project

The following table lists the activities required to develop a neural network model that
will provide the predictive component of the WECCA system. It is expected that this
work will occupy the first year of the project.

Table VII
List of project activities: Year One

Phases Activities
1. Test mitt:siteselection · Define desirable test mill criteria

a. Cooperative mill management and technical
group

b. Installed and operating PI system
c. On-line property or retention measurements :
d. Willingness to turn PI compression off
e. Good sensor calibration program
f. Knowledge of time lags or ability to measure

them
· Advertise needs among tPST member companies
· Evaluate "volunteer" mill against site criteria
· Select test mill site

2. Data set definition · Define input variables to collect
· Define output variables to collect
· Define manual and on-line inputs
· Determine data sampling frequency
· Determine time period or time periods to collect data
· Calibrate sensors
· Turn off PI data compression on monitored variables

3. Time lag determination · Determine time lag relationships among input
variables and output variables.

4. Data collection · Collect data
5. Data reduction · Remove outliers

· Do 'bump' tests to fill in data gaps
· Recollect points, if necessary
· Adjust fortime lags

6. Modeling strategy · Decide whether to purchase a program and do in-
determination house modeling or to collaborate with a vendor, such

as Pavilion.

7. Model creation and · Train neural network with modeling data set
refinement · Validate initial model with additional data

· Refine model
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Year One Timetable

Table Viii contains a proposed timetable for the activities listed in Table IVl.

Table VIII
Preliminary Gantt Chart for the WECCA project

Month-) 1 2 3 4 5 6 7 8 9 1 m1 1
0 1 2

Phase
Test mill selection X
Data set definition X ×

Time lag determinations X X X
Data Collection X X X X X X
Datareduction X

Modelingstrategy X X X
determination
Modelcreationand . X X X
refinement

The specific activities to be undertaken in years two and beyond will depend, in part, on
the achievements of year one. If one assumes that the modeling work in year one is
successful, then year two will focus on testing the model in a mill environment and
developing and expert system development. Table IX lists some expected activities.
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Table IX

Preliminary list of project activities' Years two and on
Test neural network model · Install model in mill with on-line inputs
in production environment · Collect predicted vs laboratory value data set

· Compare predicted with laboratory values and revise
model if necessary

· Repeat steps 2 and 3 until satisfactory performance is
achieved.

Develop wet end chemistry · Decide how to integrate neural network input
control decisions pertaining to input parameter variability, mill practice,
component of system and wet end chemistry knowledge into decision-

making strategies
· Decide how to address interactive response variables

(e.g. what happens to brightness and color if you
make a change to improve opacity?)

· Interview mill personnel regarding wet end chemistry
control practices pertaining to the problem at hand

· Interview chemical suppliers regarding wet end
chemistry control practices pertaining to the problem
at hand

· Define software selection criteria
· Evaluate candidate software packages
· Select software
· Enter knowledge into acquired program and do

necessary coding
· Test prototype expert system by itself

Interface prototype expert
system with neural network
model to produce integrate
prototype WECCA system,,

Test integrated prototype
WECCA system
Modify WECCA system
Implement "product"
WECCA system.
Evaluate performance of · Define success criteria
WECCA system · Define performance measurement parameters

· Collect base-line database
· Collect WECCA database
· Evaluate data and draw conclusions pertaining to

success (effectiveness) of system
· Define steps for system improvement

First year budget

A budget is being developed for the project at this time. It wilt be presented for
discussion at the meeting.
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