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NOTICE & DISCLAIMER

The Institute of Paper Chemistry (IPC) has provided a high standard of professional service and has exerted its best efforts
within the time and funds available for this project. The information and conclusions are advisory and are intended only for
the internal use by any company who may receive this report. Each company must decide for itself the best approach to solv-
ing any problems it may have and how, or whether, this reported information should be considered in its approach.

IPC does not recommend particular products, procedures, materials, or services. These are included only in the interest of
completeness within a laboratory context and budgetary constraint. Actual products, procedures, materials, and services used
may differ and are peculiar to the operations of each company.

In no event shall IPC or its employees and agents have any obligation or liability for damages, including, but not limited to,
consequential damages, arising out of or in connection with any company’s use of, or inability to use, the reported informa-
tion. IPC provides no warranty or guaranty of resuits.

This information represents a review of on-going research for use by the Project Advisory Committees. The information is not
intended to be a definitive progress report on any of the projects and should not be cited or referenced in any paper or cor-
respondence external to your company.

Your advice and suggestions on any of the projects will be most welcome.
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THE INSTITUTE OF PAPER CHEMISTRY
Post Office Box 1039

Appleton, Wisconsin 54912

Phone: 414/734-9251

Telex: 469289

October 3, 1986

TO: MEMBERS OF PAPER PROPERTIES AND USES PROJECT ADVISORY COMMITTEE

Attached for your review are the Status Reports for the Projects to be
discussed at the Paper Properties and Uses PAC meeting scheduled for
October 21-22, 1986, in Appleton. A meeting agenda can be found inside the
booklet.

For those of you staying at the Continuing Education Center, the attached
pink card gives the combination to the front door so that you can gain
entrance if you arrive after the doors are locked. Room schedules are posted
in the lobby. A room has been reserved for you for the nights of October 20
and 21. If you do not need accommodations for both nights, will be staying
elsewhere, or not attending the meeting, please advise Sheila Burton at
414/738-3259.

We look forward to seeing you on October 21. Best regards.

Sincerely yours,

Director
Paper Materials Division

GAB/sb
Enclosure

x

1043 East South River Street
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MEETING AGENDA

PAPER PROPERTIES AND USES
PROJECT ADVISORY COMMITTEE

October 21-22, 1986
The Institute of Paper Chemistry
Continuing Education Center
Appleton, WI

Tuesday -- October 21

8:30 a.m. Welcome/Introductions Van Liew/Baum

8:45 OVERVIEW OF PROJECTS Baum

9:15 PROJECT REVIEWS
Strength Improvement and Failure Mechanisms Waterhouse
Student Presentation Franke

10:15 COFFEE BREAK

:45 PROJECT REVIEWS

Process, Properties, Product Relationships Baum/Habeger

12:00 noon  LUNCH (CEC Dining Room)

1:00 TOUR OF PAPER MATERIALS DIVISION LABORATORIES
2:15 PROJECT REVIEWS
Internal Strength Enhancement Stratton/Hardacker
Student Presentation Berger, B. F.
3:00 COFFEE BREAK
3:15 PROJECT REVIEWS
Board Properties and Performance Whitsitt/Halcomb/
Dees
On-Line Measurement of Paper Mechanical Habeger/Baum
Properties
5:15 SOCIAL TIME
6:00 DINNER (CEC Dining Room)
7:30 Committee Discussion: Graphics Arts Research
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7:15 a.m.
8:00
9:30
10:00
11:00

11:30 °
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Wednesday -- October 22
BREAKFAST (CEC Dining -Room)

DISCUSSION OF PROJECTS (Krannert 108/109)
COFFEE BREAK o

DISCUSSION OF PROJECTS (continued)
CLOSING COMMENTS

NEXT MEETING - March 25-26, 1987

AD JOURNMENT/LUNCH (CEC Dining Room)

Committee




PAPER PROPERTIES AND USES
PROJECT ADVISORY COMMITTEE

Dr. Gary Van Liew, Chairman -- 6/87*

Department Manager, Shipping
Container & Containerboard R&D

Weyerhaeuser Company

WTC 2h42

Tacoma, WA 98477

(206) 924-6464

Mr. James E. Beatty -- 6/89
Technical Director

Amricon Corporation

800 South Lawe

Appleton, WI 54915

(414) 733-3070

Dr. Robert L. Beran -- 6/89
Research Director

Westvaco Corporation
Covington Research Center
Covington, VA 24426

(703) 962-2111

Mr. Dennis Betz -- 6/89
Assistant Research Director
P. H. Glatfelter Co.

228 S. Main Street

Spring Grove, PA 17362
(717) 225-4711

Mr. Marvin D. Cooper -- 6/89
Resident Manager

Western Kraft Paper Group
Red River Mill

Willamette Industries, Inc.
P.0. Box 377

Campti, LA 71411

(318) 476-3392

Dr. John L. Firkins -- 6/88
Director of Product Development
Thilmany Pulp and Paper Company
P.0. Box 600

Kaukauna, WI 54130

(414) 766-4611

Mr. Richard P. Grant -- 6/89
Senior Engineer

Eastman Kodak Company

1669 Lake Avenue

Rochester, NY 14650

(716) 477-6537

Dr. Peter F. Lee -- 6/88

Director, Pulp and Paper Technology
Mead Corporation

Central Research

8th and Hickory St.

Chillicothe, OH 45601

(614) 772-3528

Dr. R. Heath Reeves -- 6/89
Sr. Research Associate
James River Corporation
Neenah Technical Center
1915 Marathon Avenue
Neenah, WI 54956

(414) 729-8148

Mr. Lowell Schleicher -- 6/89
Director of Basic Research
Appleton Papers Inc.

P.0. Box 359

Appleton, WI 54912

(414) 735-8857

Mr. Robert L. Smathers -- 6/89
Manager of Technical Services
MacMillan Bloedel Inc.

P.0. Box 336

Pine Hill, AL 36769

(205) 963-4391

Mr. David South -- 6/89
Technical Director
Chesapeake Corporation
P.0. Box 311

West Point, VA 23181
(804) 843-5252

Mr. Roger W. Youngs -- 6/89
Manager of Materials Science
Container Corporation of America
450 East North Avenue

Carol Stream, IL 60188

(312) 655-8825

Mr. Gary White -~ 6/89
Supervisor, Materials Development
Owens-I1linois, Inc.

P.0. Box 1035

Toledo, OH 43666

(419) 247-5786

*Date of retirement from committee
9/86




THE INSTITUTE OF PAPER CHEMISTRY

Appleton, Wisconsin

Status Report

to the

PAPER PROPERTIES AND USES
PROJECT ADVISORY COMMITTEE

Project 3469
STRENGTH IMPROVEMENT AND FAILURE MECHANISMS

September 10, 1986




Project 3469 Z2- Status Report
PROJECT SUMMARY

PROJECT NO. 3469: STRENGTH IMPROVEMENT AND FAILURE MECHANISMS
STAFF: J. Waterhouse, W. Whitsitt September 10, 1986

'PROGRAM GOAL :

Identify critical parameters which describe converting and end-use performance
and promote improvements in cost/performance ratios.

PROJECT OBJECTIVE: '

Establish practical methods for enhanc1ng strength properties (especially
compressive strength) during paper manufacture and to evaluate- deformat1on
behavior as it relates to sheet composition and structure.

PROJECT RATIONALE, PREVIOUS ACTIVITY and PLANNED ACTIVITY FOR FISCAL 1986-87 are
on the attached 1986 87 Project Form.

SUMMARY OF RESULTS LAST PERIOD: (October 1985 - March 1986)

(1) The compressive strengths of small pulped wood samples were measured and
compared with compressive strengths measured on paper samples made from the
separated wood fibers. The values for the handsheets (of the same nominal
density as the wood specimens) were typically one-half the values obtained
for the wood samples.

(2) Work has begun in characterizing small wood coupons, differing in lignin
content, using non-destructive measurements. The purpose is to elucidate,
if possible, the maximum strength and/or stiffness potential of pulped
unseparated fibers.

(3) In student related work L. Charles has determined the effects of supercalen-
dering on strength and other physical properties of uncoated Formette
handsheets made with various levels of wet pressing and fiber orientation.

(4) In student related work T. Bither has started work on determining the fac-
tors responsible for differences in strength development which occur by
refining and wet pressing.

(5) In student related work M. Kemps has started work on the measurement of
internal stresses in paper and board using the layer removal technique.

SUMMARY OF RESULTS THIS PERIOD: (March 1986 - September 1986)

(1) In an attempt to determine the compressive strength potential of pulped un-
separated fibers, wood coupons, 16 mm x 16 mm of white spruce have been
ultrasonically characterized after 8 hrs and 12 hrs of acid chlorite treat-
ment. Half of the wood coupons were given a mild caustic treatment to
facilitate fiber separation and 19 mm diameter handsheets were made. Ultra-
sonic characterization and compressive strength measurements were also made
on these handsheets.
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(2)

(3)

(4)

(5)

In student related work B. Allender has completed his research project
"Morphological Factors in the Refining of Eucalypt and Pinus Radiata.
Fibers". A paper has been accepted for the PIRA, Paper and Board Division
International Conference "Advances in Refining Technologies" Birmingham
England, December 1986.

In student related work Tom Bither's doctoral research is entitled, “Strength
development through Internal Fibrillation and Wet Pressing"” Tom has been
evaluating a device for ensuring restrained drying after wet pressing. In
addition the response of three different pulps to wet pressing and refining
is being determined.

In student related work M. Franke (formerly M. Kemps) master's research is
entitled, "Z-direction variation of internal stress and paper properties”.
Marypat is evaluating the layer removal technique using commercial board and
Formette handsheets to determine their Z-direction variation of residual
stress and properties.

A progress report is being prepared on our experience with the Formette
Dynamique. Results for the effects of furnish, differences in jet-wire ‘
speed, consistency, basis weight, refining, wet pressing, drying, synthetic
fibers and additives on fiber orientation and sheet anisotropy are included.
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PROJECT TITLE: Strength Improvement and Failure Dafe: 6/1/86
Mechanisms A : .
Budget: $100,000

PROJECT STAFF: J. Waterhouse/W. Whitsitt

Period Ends: 6/30/87

PRIMARY AREA OF INDUSTRY NEED: Properties related to
end use Project No.: 3469 -

PROGRAM AREA: Improved converting processes and
converted products

PROGRAM GOAL:

Identify critical parameters which describe converting and end-use performance
and promote improvements in cost/performance ratios.

PROJECT OBJECTIVE:

Establish practical methods for enhancing strength properties (especially
compressive strength) during paper manufacture and to evaluate deformation
behavior as it relates to sheet composition and structure.

PROJECT RATIONALE:

Strength properties are important in predicting end use performance. An
improved understanding of failure mechanisms and ways to improve certain
strength properties are important to nearly all grades. The recognized impor-
tance of compressive strength in linerboard and corrugating medium and likely
changes in shipping regulations provide impetus for research on compressive
strength. Research to date suggests that there are ways to approach the objec-
tive through new papermaking strategies.

RESULTS TO DATE:

We have shown that compressive strength is highly related to a product of in-
plane and out-of-plane elastic stiffnesses of paper. The relationship holds for
commercial and experimental sheets made under a variety of conditions. This
development suggests it will be possible to monitor compressive strength in the
mill using ultrasonic techniques.

Compressive strength is enhanced by high densification, which increases bonding,
and high fiber compressive stiffness. Our results on oriented sheets indicate
that compressive strength increases with refining, and further increases can be
obtained by wet pressing to increase density. Within a practical range, higher
CD compressive strength can be achieved by decreased fiber orientation and/or
increased CD restraint during drying. Where limitations to increased refining
and wet pressing exist, low levels of polymer addition could be used as a viable
means to improve compressive strength.

We have developed a torsion mode technique for measuring the out-of-plane shear
stress-strain behavior, and studied ZD shear straining on compressive strength.
Internal stress variations have been determined in the thickness direction
together with the variation of in-plane and out-of-plane properties.
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PLANNED ACTIVITY FOR THE PERIOD:

We will continue investigations of the compressive behavior of board as a func-
tion of composition, structure, and process variables. For the coming period
this will include the effects of HW/SW furnish blends on compressive strength
and a study of the compressive strength potential of pulped wood chips.

STUDENT RELATED RESEARCH:

T. Bither, Ph.D.-1988; L. Charles, M.S.-1986; M. Kemps, M.$.-1987.
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STRENGTH IMPROVEMENT AND FAILURE MECHANISMS .
Project 3469

INTRODUCTION

-In order to improve the strength of paper and board there is a need to
assess the strength potential of the raw materials from which they are made and
to determine how this potential is modified by papermaking and other process
variab}es.; In addition there is an underlying need to understand, the causes. of
failure. By strength we not only refer to compressive strength, a major con-
sideration in.this project, but also for example, combined stress situations

which paper.experfences during converting and end use.

These needs form the basis of our investigations carried out during
this period. The major effort has been directed towards determining the
compressive strength potential of white spruce as outlined in sectiqn'l below.
Section 2 is concerned with student related work involving refiﬁiﬁg’and the
development of techniques for mini-handsheet making and characterization which
were also utilized in the work outlined in Section 1. Sections 3 and 4 outline
our activity and proposals for future work in the area of formation and combined

stress measurements, respectively.

1. COMPRESSIVE STRENGTH IMPROVEMENT
In past work we have explored a number of pathways towards the goal of
improving combressive strength and these include:
1. Raw Materials
e furnish improvement by species selection

e high yield pulps with chemical treatment

e polymer addition
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2. Papermaking Process Variables
e formation and fiber orientation

e wet pressing and drying restraint

‘Work is expected to continué in these and other areas as fresh oppor-
tunities present themselves. Currently we are trying to determine more preci-
sely the compressive strength potential of certain species as a function of
yield. We would also like to determine the losses incurred, if any, in the fiber
separation process, and the appropriate measures which might be taken to reduce
anticipated strength losses with increasing yield. A flow diagram for deter-
mining how the compressive strength potential of wood coupons is related to

handsheet performance is shown in Fig. 1.

W00D
COUPON

DELIGNIFICATION
FIBER
SEPARATION
|
|
| CHEMICAL
Lo TREATMENT

MINI
HANDSHEETS

MEASUREMENTS: 50% RH, in-plane and out-of-plane ultrasonic
measurements, compressive strength, moisture
content etc.

Figure 1. Flow diagram for determining strength potentials.
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Based on the empirical/theoretical model developed for compressive
strength by Habeger and Whitsittl, we now appreciate that compressive strength
is strongly dependent on both in-plane and out-of-plane elastic constants. It
is appropriate therefore that we should be able to measure these elastic
constants on the raw material i.e., wood chip (coupon) and monitor the changes
in them due to de]igniffcation, fiber separation, chemical treatment and
handsheet preparation. With the development of instrumentation for measuring
the out-of-plane properties of paper and board in both the longitudinal and
shear mode, it is now possible in principle to use this equipment to measure the
in-plane and out-of-plane elastic constants of small wood coubons (16 mm x 16 mm)

and handsheets (19 mm dia).

For this study radial sections 3, 4, 5 and 8 of a 36-year-old white
spruce log were se]ectea see Fig. 2. A substantiai data basé on the performance
of this log is available (Chemical Sciences Division). To determine the feasi-
bility of thié'épproach it was decided to use acid-chlorite delignification to
determ1ne the effects of 11gn1n content on handsheet compre551ve strength perfor-
mance. Pre11m1nary experiments were made on wood coupon samp]es to determ1ne
the t1me requ1red for achieving different levels of de11gn1f1cat1on 1n ac1d-

ch]or1te so]ut1ons the results are given in Table 1 below:

Table 1. Delignification trials.

Time Yield* Wood Section
1 hr - -
2 hr. 98.0 : .5
4 hr 92.3 5
8 hr 82.1 3, 5, 8
4

12 hr 71.1

*Coupons were air dried to approximately 93-95%
solids and then treated with acid-chlorite solution.
and then oven dried. Yield = oven dried weight/air
dry weight.
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0/1r,
//;/l‘ //

Figure 2. Location of wood coupon sections in white spruce.

On the basis of these results, a series of wood coupons were pfepared and
individually 1abe1ed. The density of the coupons with excess water removed was‘
measured and ranged from 0.900 g/cm3 to 1.050 g/cm3, two groups were then sub-

jected to acid chlorite delignification for 8 hrs and 12 hrs.

Following acid-chlorite treatment half of the woqd coupons were washed
and then placed between glass slides and clamped in order to minimize shrinkage,
the remainder were used to make mini handsheets. A mild caustic treatment was
required to produce fiber separation which was accomplished using a magnetic
stirring unit. The separation occurred it is believed with minimal fiber damage

although more careful observation of the fibers will be required to verify this.
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The technique for making mini handsheets was developed by B. Allender which he
also utilized in his project concerned with the effects of fiber morphology on
the development of internal fibrillation (see later section in this report).
The handsheets are formed from a dilute suspension of fibers onto a 200 mesh
wire screen located in the end of a 19 mm ID centrifuge tube used to obtain
water retention values. A number of mini handsheets so formed were wet pressed
and dried between blotters using the IPC press and drum dryer combination to
ensure restrained drying. Both the wood coupons and mini handsheets were con-

ditioned to 50% RH 23°C.

The variation of in-plane and out-of-plane elastic constants for 0, 8,
and 12 hrs acid chlorite treatment are shown ianigs. 3-5. A reasonable corre-
lation is obtained with the apparent density of the wood coupon. The increase
in in-plane constants Cil/p and Cp2/p with increasing wood cdupon density and
delignification is respectively attributed to the expected higher moduli of
latewood fibers and reduced lignin content (i.e., by the law of mixtures and E/p
cellulose >> E/o lignin, a reduced lignin content would result in a higher fiber
modulus). It is interesting to note the corresponding, albeit small, reduction
in the out-of-plane constant C33/p with increasing wood coupon density and

delignification.

The correlation between conditioned wood coupon density and initial
wetAwood density is shown in Fig. 6. One purpose of this correlation is to
estimate the conqitiongd density of the wood coupons from which the mini
handsheets were made. Shown in Fig. 7 is the variation of mini handsheet
apparent density with conditioned wood coupon apparent density for 12 hrs acid

chlorite delignification based on the data shownin Fig. 6. The reduction in
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-Figure 3. Variation of specific elastic constant
with apparent density.
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Figure 4, Variation of specific elastic constant
with apparent density.
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0.2 03 ' 0.4 0.5 0.6’ o.r

APPARENT DENSITY, qlcm

Figure 5. Variation of specific elastic constant
. with apparent dens1ty .

handsheet density with increasing wood coupon density is in part attributed to
the greater proportion of latewood fibers present i.e., latewood fibers are less

conformable than earlywood fibers.

Variation of the mean in-plane specific elastic constant with apparent
density for the mini handsheets is shown in Fig. 8, for two levels of delignifi-
cation. No significant difference is shown, however there is an increase in the
elastic constant with handsheet densification. Using the results and correla-
tions shown in Fig. 3 and 6 the elastic constant (for an ideaf fiber network)
has been calculated i.e., C/p ideal = 1/3 Cj1/p wood coupon and is also shown in
Fig. 8. We see that the ideal constant based on wood coupon elastic constant

measurements is below that for the measured handshéet data i.e., the wood coupon

potential underpredicts the handsheet performance at least for this limited
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amount of data. The reduction in modulus with increasing handsheet density is
in accordance with Fig. 7. The 19 mm diameter mini handsheets were carefully
squared to approximately 16 mm x 16 mm and .STFI compression strength measure-
ments were made on them. Unfortunately for quite a‘numberﬁof the samples the
span to caliper ratio was greater than 7 and the compressive strength for these
samples is less than the intrinsic or plateau compressive strength. Using the
simplified form of the Habeger/Whitsitt compressive strengfh relationship and
the appropriate measured values, the compressive strength corré]ation with
span/caliper ratio is shown in Fig. 9. The variation of compressive strength
with apparent density for span/caliper ratios of less than 8 is shown in Fig.
10. It is seen that (intrinsic) specific compressive strength for a well bonded

sheet of white spruce fibers is 37.1 Nm/g.

20

° o‘/u/
Sogx—" x
g N 16§ ') o ]
< Q 5
g o®
> -
- g |2P~ -
53 [ TTe-
wg. =~ <~ EfptEsp,
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zy
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x Bhrs o "
o ' L L s L ) .
0.9 1.0 [N .2 1.3 1.4 1.5

MINI-HANDSHEET APPARENT DENSITY, g/cm®

‘Figure 8. Variation of specific elastic constant
with handsheet density.
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Prediction of Compressive Strength

" At a recent "Progress in Paper Physics Seminar" held at the -
Minnowbrook Center, New York, August 10-13, 1986, Pagezlpresented a simple’
equation for the prediction of compressive strength as follows.

oc/p = - oylp
where oc/p and oy/p are the specific compressive strength and yield strength
respectively. The mechanism of failure is suggested tq be one of shear between
the microfibrtls and the hemice]]u]ose lignin matrir This f]ow process is sup-
posed to occur at the yield point in tension hence, the ratlonale for Eq. (l),
Handsheet ev1dence was provided to substant1ate the equat1on, however, because a
precise measurement of yield stress was not available, a reasonable one-tofonev

correlation was obtained by using the arithmetic mean of stresses measured at

0.1% strain and the estimated yield point.

There are a number of interesting poihts raised by Eq. (1) which we
hope to address in dee course. In view of our own work on cqmpressive strehgth
modeling it is clear that both in-p]ane and out-of—p]ane elastic constants are
1mportant in determ1n1ng compress1ve strength. It 1s poss1b1e therefore, that
if indeed Eq (1) has some validity, then we can pred1ct the yield stress
using ultrason1c measurements. Furthermore if we accept the f1nd1ngs of Htun3
i.e., that dry1ng stress is equal to the yield stress, then we also have a pre-

diction of the drying stress levels in paper and board

2. MORPHOLOGICAL FACTORS IN THE REFINING OF PINUS RADIATA AND
EUCALYPT PULPS - BRUCE ALLENDER.

Some highlights of the investigation recently completed by Bruce

Allender, a special student from APM, Australia, are given below. The specific
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refining effect which we sought to induce and measure, as well as.determine its
effects on paper properties, was internal fibrillation. ‘Unbleached kraft Pinus
radiata and bleached kraft .eucalypt. pulps were. subjected to.different levels of
refining in a PFI mill. In addition.to internal fibrillation, fiber length’
reduction, external fibrillation and fines generation are also likely to be pre-

sent .as a result of PFI refining.

| A number of methods have been suooested for measuring the extent to
which fibers have.heen internally ftbri]]ated and include: 1) water uptake in
the'celldwa11, 2) direct observation'of'ce11.wa11 delamination, 3) increased
fiher f1exibiiity, 45 changes tn ce11.wat1 dimensions 5) crysta1]1n1ty and
crysta1]1te 51ze 6) fiber col]apse, 7) paper propert1es In th1s work we have:

used methods 1, 2, and 7.

1) Direct 0bservat1on of Cell Wall Delamination. | B

in th1s techn1que unref1ned and refined pu]p samp]es were solvent
exchanged using an ethano]/water series and then subJected to cr1t1ca1 po1nt
, dry1ng u51ng €02 to preserve the swollen state of the fiber. The f1bers were
then freeze fractured in 11qu1d n1trogen and after coating w1th go]d pa]]ad1um
were examined in the SEM, Recogn1z1ng that freeze fractur1ng could damage the
cell wall we nevertheless feel that there is ev1dence of 1ncrea51ng ce]] wall

delamination with increased 1eve1s of ref1n1ng as shown in F1gs.'11 and,12.

We believe th1s is the first time cell wal] delamination in hardwoods
has been demonstrated In both the Pinus rad1ata and euca]ypt pu]p samp]es
about 20% of the unrefined fibers showed some ev1dence of delamination while at

the highest levels of nef1n1ng this increased to 95%.
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Figure 11b.  Refined 7000 revolutions PFI latewood Pinus radiata; x 1800.
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Bor7  10.0

FiguFe 12a. Unrefined f{bé} eucé]ypt, x 3600.
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“2) " MWater uptake in the cell wall, = ' ~ - = .7
. The: variation of water retention value W.R.V. (expressed’ as the ratio
of .the weight of water to the weight of fibers) with centrifugal force (i.&.,
g) was used to determine if changes in fiber structure in the wet state could be
measured; A typical WRV curve is shown in Fig: 13 for' the unbleached radiata

pine (whole pulp).

UNBLEACHED RADIATA PINE

Whole Pulps

WRvV
IS
1

log G Vatuea
o Unbeaten + Beaten 3K PR < Beaten 7K PFl

Figure 13. Variation of water retention values with
centrifugal force.

Two distinct regions are observed. In the first region with the
highest slope it can be argued that mainly interfiber water is being expelled
from the mat while the lower slope region denotes loss of intrafiber water

(i.e., from the cell wall). We note that refining affects both regions. The

WRV curves shown in Figs. 14 and 15 are for the unbleached Pinus radiata and

' 3-
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bleached eucalypt pulps respectively with fines removed (i.e., fines/passing 200
mesh). The differences in the curves due to.refining are-now-greatly dimi-
nished.; WRV's at 3000 g are shown in.Figs. 16 and 17 as a function of PFI revo-
lutions. It is assumed. that at 3000 g, the changes- in-WRV are mainly affected. by
changes in. cel] wall structure which could include external fibrillation. A -
small but significant change in WRV for both pulps with increased refining is
seen i.e., 9.05% for the Pinus radiata and 5.44% for the eucalypt. The effect
of air drying on WRV is also shqu forlboth pulps. A large drop in the WRV

value for both pulps with-virtually no change with refining was found.

UNBLEACHED RADIATA PINE

Decrilled Pulps

. log G Values . .. :
Q  Unboaten +  Boaten 3K PF1 - ¢ Beaten 7K PR

Figure 14, Variation of water retention values w1th
< -. centrifugal force. :

3) Papef Properties
" In view of the limited quant1t1es of pulp and the needs of other
project areas (e.g. wood coupon work reported on earlier 1n th1s sect1on) 1t was

decided to eva]uate paper propert1es using mini handsheets. Mini handsheets
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Decrilled Pulps
8.00
' 7.00 ~
6.00
| 200
' § 4.00
3.00 -
l 200 -
1.00 A
l 0.00 T T T L I L 1 T | ! T L - 1 T
1.8 2.2 2.6 3 3.4 3.8 4.? 4.6
l O  Unbeaten +  Beaten (0.5K) 109 © Values ©  Beaten (3.5K5
. Figure 15. Variation of water retention values with
centrifugal force.
l UNBLEACHED RADIATA PINE
: WRVs ot 3000 6
8 |
; i
‘o 1.5 -
g
' ;, 1.4 ! Jt t
1.3 4 "
' 1.2 . Y
o - <. R
3 - e '
14 T T T T T T T ]
o .2 . B T R - NP S I
I ' PRI MILL REVS (X1000) .
] Whole Pulp + Decrilled ) . ° Air Dﬁp? s ,
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~ BLEACHED EUCALYPT
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Figure 17. Variation of water retention va]ue
g with PFI revo]ut1ons s 4

(19 mm diameter) hav1ng a basis weight of 250 g/m2 were made, as described in
section 1 of" th1s report from who]e pulp, f1nes free and air dry pulp samples.

Handsheet properties are summari zed in Table 2.

The vari;tfon of sheet apparent.density'with WRV at 3600 o is shown in
Fig. 18 for the Pinus radiata and eucalypt pulps. The ooﬁioaot;effect of fines
is again seeo when we compare the whole and fines free curves. : At phe highest
refining 1eve1s there is a large reduction in WRV, however the Correéponding
chenge in apparent density is much smaller. The overall change in apparent den-
sity with ref1n1ng for the f1nes free handsheets 1s 23, 4% and 24 2% for the
Pinus radiata and euca1ypt pu]ps respect1ve1y which correspond to changes of

only 9.05% and 5.44% in WRV as noted above. We might therefore conclude that
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Table.2. WRV.and mini-handsheet properties. = - . ST et R

Bleached Kraft Eucalypt

WRV Basis Wt. Density C/o - C33/p Slii
Pulp CSF 3000 g g/m2 g/cc  (km/sec)?  (km/sec)2  Nm/g
EQ 612 1.347 260 0.808 9.14 10.097 249
0.5 555  1.376 258 0.840 10.44 0.193  31.6
El 520  1.537 253 0.886 11.34 0.231  35.3
E2 460  1.486 248 0.889 11.78 0.280  36.1
E3.5 345  1.586 271 0.923 12,13 0.389  37.4
EAO.5  ---  0.893 223 0.737 7.65 - 0.0655  18.4
EA2 -—-  0.894 223 0.773 7.92 10,0751 21.1
EDO e 132 207 0.744 8.80 . 0.0729  23.7
£03.5  ---  1.415 221 0.924 12,78 0.235  36.5
Unbleached Kraft Pinus Radiata
PO 737 1.696 212 0.849 10.63 0.068  31.0
Pl 694 1.766 250 0.908 12.43  0.144 35.4
P3 610 1.897 246 0.941 13.78 0.181  42.6
P5 - 526 - . 1.958 268 0.957 .  14.17 .- 0.181  42.9
p7 420 2,018 . 243 0.994 14.38- - _0.189 - 43.9
PHAO - 1.160 255 0.695 6.99 0.018  17.8
PWAT  -e- 1,190 230, 0.869 9:43 0.106  29.1
PDO  -e- 1.655 228 0.788  9.57  0.086  28.7
Y A 1.804 212 0.972 13.21 © o023 e3d
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apparent density is a more sensitive ‘indicator of -changes in cell wall structiire

(internal fibrillation).

Pinus. - '-f a

Radiata
1.0~  Eucalypt '
FF '
. !
: X w— O
R (]
O.QL l' o/

g
@
T

' APPARENT -DENSITY, pa. g/cm®
o
~
I

N . :
7 WP whole pulp
ied Co ‘FF. fines free

°‘6‘—I‘.3'— |'f ﬁ IL§ | 8 ?'T) E‘z B

WATER RETENTION VALUE ot 3000q

Figure 18. Variation of sheet density with water
. N retention value.

The compressive strength correlation using the Habeger/Whitsitt model:

is shown in Fig. 19 for the Pinus radiata and eucalypt mini handsheets.

3. Format1on Measurements

It has long been apprec1ated that certa1n aspects of format1on
name]y, sma]] scale ba51s ‘weight var1at1on (or d15tr1but1on of mass dens1ty)
p]ay an 1mportant role in failure propert1es. Small scale bas1s weight
variations are also recognized as being important in such converting operations

as corrugating, calendering, supercalendering and printing. Until recently the
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Figure 19. Compressive strength correlation.

only meanS'availabTé for studying formation at the Institute was a Thwing Albert
Formation tester (its operating principle is based on 1ight transmission). In
conjunction with an APl sponsored evaluation of formation instruments, an MK
systems microformation tester has been donated to the Institute. An outline of
the API and joint API/IPC formation studies are outlined in Table 3. As part

of the joint ARI/IPC project a proposal has also been made for the design of a
formation tester as shown'in Fig; 20, This has the c;pability of making light
transmission and reflectance measurements as well as beta particle absorption
measurements. The latter being a true measure of mass density. Further

progress on this proposal is awaiting appropriate funding. A new technology

which is being applied to the measurement of formation is soft x-rays.. This is
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Table 3. Planned formation studies at IPC.

API-IPC FORMATION HEASUREHENT SYSTEM: Joint Development

« Mass density meaeurementa beta radiation
¢ Pml47 source - approx. 0.6 mm aperture
e Solid state detection
¢ QOptical density measurements-400 to 700 nm-
+ Reflectance measurements
« Transmission measurements
* Measurement Positioning - precision x-y table
# Eight inch square specimens’
+ Table positioning and precision - 0 Ol mm
¢« Data acquisition and control system - IBM-XT

API-IRC: EVALUATION OF FORMATION MEASURING INSTRUMENTS

« Two commercial instruments
& Accuray Optipak - on-line
# MKS Microformation - off line and on-line
+ Papermaking factors
# Furnish - each at S "formation" levels
* Tissue
* Newsprint
¢+ Fine paper

& Color (of sheet) at two formation levels

* Basis weight - three levels at two formations . .-
+ Fiber orientation - two levels

.

Commercial vs handsheets -

. Instrumental factors
# Quality of meaeuremente
# Reproducibility
¢ Sensitivity
' @ Calibration and/or standardization
# Instrument stability
: ¢ Instrument drift .
¢ Line voltage fluctuations
. * Response time and warm-up
* Environmental effects
- # Relative humidity
* Ambient light level
‘# Mechanical vibrations
# Dust or other pollutants
* Ease of use and maintenance

o Effecte due to measurement parameters
® Paper web velocity
* Optical properties
* Measurement wvavelength
» Diffuse ve collimated illumination
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API-IRC EVALUATION STUDIES (cont.)

* Comparison between commercial instruments and test instrument

IPC FORMATION STUDY -~ Areas of Interest

# Effect of papermaking variables on formation
« Furnish

-
-«
L
L

Pulping method - fiber type
Bleaching ’
Refining

Chemical additives

# Forming methods - fiber orientation and 2D variations

*
L 4
*
L

Laboratory handsheets
Formette sheets
Fourdrinier papers
Twin wire formers

# Sheet properties

®
L
»

Basis weight
Density
Surface roughness

* Formation changes with process changes

L 4

-
L
*

Wet straining

Restraint during drying
Wet pressing

ZD variation

» Effects of measurement variables

+ Beta
[ ]

measurements
Aperture size
Environmental effects

# Light measurements - transmission and reflectance

[ J
*
L 3
L ]
& Relationships

& Relationships

¢ Relationships

. Relationships

Diffuse vs collimated illumination

Measurement wavelength (into ir)

Aperture size

Environmental effects

between mass density and optiéal density‘éarlétions
between formation and optical properties

betwveen formation and mechaniqal properties

betveen formation and end-use periormqnce
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currently being evaluated by Dr. Ted Farrington of the Engineering Division. At

least two publications on the application of soft x-rays to paper formation
measurements have appeared in Japanese literature from researchers at the '™~

. Faculty of Agriculture, Kyoto University.

STATIONARY

oo, : A \'c' FRAME L
¢ x : ’1 . ' '
P - - _1 i .
v 1 PAPER SAMPLE

1 Max. size 8"xe".

-

XY TABLE
D.C.-68 I .
it Y :
) ' .- LIGHT GUIDE
10— == g t == remote sounce
} o ndh, . o

PHOTOMULTIPLIER \Bﬁf“ SOURCE Pm-i47.

. BETA DETECTOR

7

L
AL

X-¥ CONTROLLERf -

COMPUTER ' L PLOTTER

.. [Figure 20. ,Schématic'of API/IPC formation tester.
Therefore as the need arises in our curﬁent and future projects for
mass density distribution meqsurements we hope that capability will be.

available. ..
4. COMBINED STRESS MEASUREMENTS
" In iany converting processes paper is subjected to various combined

stress situations. In supercalendering for example, paper is subjected to nor-
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mal and out-of-plane cyclic shear stresses. Shear and normal stresses are also

important in corrugating.

In order to study the effects of out-of-plane combined stresses on
paper and board deformation behavior, it is proposed that the device conceived
by Arcan? and shown in Fig. 21 for shear measurements be modified for such

purposes.

{a) {b)

Figure 21. The two constitutive parts of the sample: the significant
sample (between dashed lines) and the exterior one with the
zone governing (a) isostatics, (b) dimensions.

STUDENT RELATED WORK
1. "Strength Development through Internal Fibrillation and Wet Pressing".
This is the title of Tom Bither's doctoral research and we hope that Tom

will report on his work to the committee at some future meeting.
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2. "Z-direction Variation of Residual Stress and Paper Properties". This
is the title of Marypat Franke's masters research project. She will

make a short pregentation on the objectives and progress of the work at

the forthcoming PAC meeting.
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PROJECT SUMMARY

PROJECT NO. 3467: PROCESS, PROPERTIES, PRODUCT RELATIONSHIPS
PROJECT STAFF: G. A. Baum, C. C. Habeger : : . September 10 1986
PROGRAM GOAL :

Develop. reIat1onsh1ps between the critical paper and board property parameters
and .how they ‘are achieved in terms of raw material selection,. pr1nc1p1es of
sheet des1gn,‘and processing conditions. P

PROJECT OBJECTIVE:

(1) To improve our capability of characterizing paper and board mater1aTs,.

(2) to relate measured parameters to end-use performance (espec1a11y in the case
,0f . Z=direction measurements), and - .

(3) Lo relate measured parameters to machine and process var1ab1es

PROJECT RATIONALE, PREVIOQUS ACTIVITY AND PLANNED ACTIVITY FOR FISCAL 1986 87
are on. the. attached 1986-87 Project Form

SUMMARY OF RESULTS LAST PERIOD: (October 1985 - March 1986)

(1) The anisotropy of an in-plane elastic property vs. angle from the MD is
being studied. The area and general geometry of the polar graphs is being
investigated relative to process var1ab1es such as ref1n1ng, wet pressing,
and yield.

(2) For machine made papers the -envelope of elastic properties vS. angIe from the
MD is usuale elliptical. The angular displacement of the major axis from
the MD-is indicative of flows from the paper machine headbox.. These vary
from point to po1nt in the cross machine direction. :

(3) Elastic properties have been examined at intermediate to.high moisture-con-
tents (up to 65%). Generally the.water in the sheet dominates the results
at moisture contents over 40 to 50%.

(45 The new broadband plastic (PVDF) ZD transducers have been perfected and are
in use in the 10ng1tud1na1 ZD apparatus. Automation of the laboratory ZD
measurement equipment is underway. . oo

(5) Work on the effects of refining and yield on the ZD properties is con-
tinuing. Oriented sheets have been made from the laboratory pulps described
_earlier. : : S o

(6) The effects of non-uniform drying“restra1nts on local sheet pFopeFt1eé have
been invest1gated The results are more comp11cated than ant1c1pated
Analysis is underway.

(7) Surface roughness measurements have been made using a stylus type instru-
ment. The results were compared with standard air leak methods for
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(8)

estimating smoothness. The effects‘bf'sdme'papermaking variable on roughness
were also examined.

A new automatic in-plane elastic property measurement systemuts'under:
_development. Improvements in both hardware and software are planned,
"including a computer interface to the IBM fam11y of 8088 ‘machines.

SUMMARY OF RESULTS THIS PERIOD: (April 1986 - September 1986)

(1)

(2)

(3)

(4)

(3)
(6)

(7)‘

(8)

The automatic device for measur1ng the in-plane elastic stiffnesses of paper-

has been improved mechanically in several ways. Plans are underway for the
third generation device which will use the latest technology and
"off-the-shelf" components.

The carriage translation on the in-plane robotic system is now driven by a,
magnetic ‘linear motor resu1t1ng in a great reduction in ma1ntenance.

There also havedbeen a number of software changes in the automatic device.
These include ‘specific software for testing handsheets and changes in the
report1ng format for the po]ar data results.

The apparatus for measuring the out-of-plane specific- st1ffness has been -
automated, sxgn1f1cant1y reducing. operator time. There have been other
1mprovements in transducer design. ' S S

A Four1er ana]ys1s capab111ty was ‘added to the automated ZD system

A study of-rubber to sample coup11ng was undertaken. This could lead 'to
loss tangent measurements on paper at high loading pressures.

Work is underway to elucidate those papermaking variables that affect the
shape and size of the -polar graphs of specific stiffness vs. angle.  During
the past peridd we have been studying (1) CD profiles, (2) the affects of
drying restraints, and (3) stress rélaxation of the sheets by rewetting.

Work on the. impact of refining and yield on the ZD properties is éontinujng;

'Recent ‘work has involved measurements of sing]e'fiber transyersewmodulus.

(9)

(10)
(11)

(12)

A device which will be able to measure specific scattering coeff1c1ents in
‘heavy board mater1a1s is be1ng designed and constructed.

A paper "Automatic Determination of Ultrasound Velocities in Planar
Materials" (Technical Paper Series 181) was subm1tted to Ultrasonics for
pub11cat10n. It is attached as Append1x A.

A paper "E]ast1c Propert1es Paper Quality, and Process Control" (Technfcal
Paper Series 186) was wr1tten for pub11cat1on in Tappi. It is attached as.
Appendix B.. - :

A paper "Roughness An1sotropy in Paper" (IPC Technical Paper Series 190)
has been submitted to J Pulp and Paper Science. It is attached as
Append1x C B
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PROJECT TITLE: Process, Properties, Product Relationships | Date: 6/1/86
PROJECT STAFF: G. Baum, C. Habeger, J. Waterhouse Budget: $180,000

PRIMARY AREA OF INDUSTRY NEED: Properties related to end | Period Ends: 6/30/87
uses

Project No: 3467

PROGRAM AREA: Performance and Properties of Paper and
Board

PROGRAM GOAL :

Develop relationships between the critical paper and board property parameters
and how they are achieved in terms of raw material selection, principles of
sheet design, and processing conditions. :

PROJECT OBJECTIVE:

(1) To improve our capability of characterizing paper and board materials,

(2) to relate measured parameters to end-use performance (especially in the case
of Z-direction measurements), and

(3) to relate measured parameters to machine and process variables.

PROJECT RATIONALE:

It is important to understand the relationships between end-use performance and
properties in order to improve paper and board products or maintain performance
within close tolerances while effectively utilizing available raw materials,
minimizing energy requirements, and minimizing environmental impacts.

RESULTS TO DATE:

Ultrasonic techniques for measuring in-plane and out-of-plane elastic properties |
of paper have been developed. Instruments for measuring these properties have |
been designed, constructed and tested. These include separate instruments for
out-of-plane shear and out-of-plane Youngs modulus, and a robotic tester for
measuring the four in-plane elastic properties. A soft platen caliper gage
which gives values comparable or superior to existing caliper gages has been
designed and constructed. The effects of fiber orientation, wet straining, and
wet pressing on elastic properties have been extensively studied using softwood
kraft furnishes. The in-plane and out-of-plane elastic parameters have been
related to end use tests and converting operations in a number of cases. A
microwave technique for determining fiber orientation has been developed.

PLANNED ACTIVITY FOR THE PERIQD:

1. In-plane and out-of-plane elastic constants will be measured on a representa-
tive group of samples differing in composition and structure (yield and
refining) in different ambient environments. These data will be compared
with use-oriented test results, where possible.

2, A device to measure specific scattering coefficients in heavy board materials
has been designed and is undergoing construction. This will be used to test
boards differing in composition and structure.
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3. Work on automation of the ZD velocity measurements is underway. Improve-
ments in the existing apparatus are anticipated.

4, The effort to establish relationships between properties and end-use perfor-
~ mance will continue. '

5. A fundamental. study of formation is planned. This effort will be comple-

mentary to an existing contract research program with the API
Instrumentation Research Program.

6. A licensing agreement has been prepared concerning the laboratory ultraso-
nic equipment. Negotiations are underway with several instrument manufac-
turers.

STUDENT RELATED RESEARCH:

B. Bergér, Ph.D.-1987; B. Berger, M.S5.-1984; D. Waterman, M.S.-1986;
W. Westerveldt, M.S.-1986.
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INTRODUCTION

| 'This project has been going forward on severa] fronts. Accordingly,
thié-report is divided into different sections. Section 1 deals with fﬁe con-
tinuing work related to polar diagrams and how they are impacted by paper
machine process variables. Section 2 deals with improvements in the laboratory
equipment for measuring both in-plane and out-of-plane elastic stiffnesses.
Section 3 deals with fundamental studies which may lead to improved or new
measurements in the future. Related student work is not described in this

report but, 'in some instances, will be reported at the next meeting.

SECTION 1

Polar Diagrams

The ih-p]ane robotic tester can measure the specific longitudinal or
shéar stiffnesses in the plane of the paper at various angles to the MD. The
shaﬁe.;nd areas enclosed by the resultant polar diagrams are_rg]ated to paper
machine process variables, In the last Paper Properties‘and Uses PAC report,
dated April 1-2, 1986, we discussed the affects of yield, refining, and wet
pressing on the polar diagrams. In general, a decrease in yield or an increase
in refining or wet pressing increased the area of the polar diagram, but did not
change its shape from the usual elliptical pattern. Data on commercial papers
was also presented that indicated that oftentimes the major axis of the ellipse
is tipped away from the machine direction. This behavior has been attributed to

cross flows coming from the headbox which cause some preferential alignment of

fibers at an angle to the MD.
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Work carried out in this area:since April- has been focused in three
areas: (1) verification that the angular-displacement is not related to wet
straining or restraints during drying; (2) a study of how wet straining or
drying restraints affect the genera] shape and area of the po]ar d1agrams, and
(3) a study of a commerc1a1 paper to determ1ne how parameters taken from the
polar d1agrams re]ate to other common]y used parameters Each of these are

descr1bed in some deta11 below.

Rewetting Experiments , s e

Polar diagrams of specific.stiffness were-obtained for a number .of
paper samples:which were then immersed in water for 24 hours,-dried, and
remeasured. The results shonn here .are for samples which had: been.air dried for
24 hours in a 20% relative humidity (low moisture content) env1ronment, and then
conditioned and tested at Tappi standard conditions of 50% RH and 23 degrees
Celsius. The rewett1ng of the paper would be expected to release any stresses
dr1ed 1nto the paper and genera]]y resu]t in 1ower va]ues of spec1f1c st1ffness
No changes in f1ber or1entat1on, however wou]d be expected whether a]ong or at

some ang]e to the MD.

Figure 1 shows polar diagrams for a linerboard (top) and fine paper
(bottom) before and .after rewetting. The linerboard diagram has a.slight clock-
wise angular displacement from the MD of 3.8 degrees with an enclosed area of.
315_(km/s)4. _After wetting and freely drying the -angular displacement :is about
the .same, 4.4 .degrees, but the enclosed area-is only.210 (km/s)%; -a.33% .
decrease. For the fine paper the "before" diagram shows an angu1ar displacement
of . 8.4.degrees .counter clockwise from the.MD with an area of 214 (km/s)4,

After rewetting these two values are 8.2 degrees and 181 (km/s)4, respectively.
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MD ’ MD

MD ' . MD

Figure 1. Top: Linerboard before (A5 and after (B) rewetting}
Bottom: Fine paper before (C) and after (D) rewetting.
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Figure 2 shows four fine paper samples having different angular dis-
placements ranging from about -8 degrees to +4 degrees. (These samples were
from the same CD specimen and were shown in Figure 6 in the last Status Report.)
Figure 2 reveals that rewetting the paper does not change the angular displace-
ment of the major axis of the ellipse from the MD, consistent with the notion

that the angu]ar'disp1acément is related to fiber orientation in the paper.

Angle from MD after wetting, degrees

-10 T
-10 -5
' Angle from MD before wetting, degrees

Figure 2. Angle from MD after wetting vs. angle from MD
before wetting. '

During the above experiménts the question arose as to how accurately
the operator could position the test sample on the rotgting platform from test
to test. For anisotropic handsheets, which are typically smaller than the test
platform, it would be possible to misalign the MD of the specimen with the "MD"
of the instrument. Subsequent testing, however, indicated that a skilled opera-

tor can easily position within about one half of a degree.
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Figure 3 compares the MD/CD stiffness ratios before and after wetting
(and drying). The effect is small, if real, and would be expected if MD and CD
dimensional changes upon rewetting and drying were similar. -Figufe 4 depicts
the areas enclosed by the polar diagrams for the same four fjne paper samples.
The areas enclosed after wetting are considerably less than the initial areas.
The numbers next to each datum are the angular displacement from the MD. They

suggest that there is no relationship between angle and area loss.

3

» » .»
= [ o
'l A

C11/C22 After Wetting

»
~N
s
o

2 2.2 2.4 2.6 28 3
B 4 C11/C22 Before Wetting '

Figure 3. C11/Cpp after wetting vs. C11/Cp2 before wetting.

~The area enclosed by a bo]ar diagram appears to be a useful quantity
but the_ipformation perhaps may be expressed in a more meaningful way. By. .. :
finding the radius of a circle having the same area, we can define an effective
radius, or an "effective stiffness". That is, effective stiffness equals

(Areae11ipse/pi)LQ.. At first glance the effective stiffness would appear to

be similar to the geometric mean stiffness, defined as (C11*C22)LQ, but this




Project 3467 -42- Status Report

280

N
g

:

Area enclosed after wetfing, (km/s)s+4

220 4 o8
' LR
n
-3.9
200 - o
-8.4
180 — e Y Y
180 © 200 220 240 260 280
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Figure 4. Area enclosed after wetting vs. area enclosed
before wetting.

is not thé case as shown in Fig. 5. The specific effective stiffnéss is larger
than the specific geometric mean stiffness, which on1y takes into account

the properties along the MD and CD directions. Later, in Fig. 21, we will see
“that the difference between the two quantities. becomes larger as the polar

diagram becomes more "peanut" shaped.

Fiber Orientation/Wet Straining Studies

-In attempt to e]ucidatelthe effects of fiber orientation, wet straining,
and drying restraints on the shape of the polar diagrams, sheets were prepared
under various conditions and constructions. Two layer composite papers were
made by wet pressing together Formette sheets having a nominal basis weight of ’
about 100-g/m2 and- an elastic anisotropy of 1.62. The resultant 200 g'/m2 sheets

were wet strained or dried under several conditions. Figure 6 shows the polar
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Figure 5. Effective stiffness vs. geometric stiffness.

diagrams from the four constructions and drying conditions. In sample A the two
plies had their MD directions parallel and the sheet was dried under both MD and
CD restraint. Sample B also had parallel plies, but the sheet was dried only

under MD restraint. It was free to shrink in the CD. Samp]e C had parallel

" construction, but after wet pressing was stra1ned about 2% in the MD, and then

dried under both MD and CD restraint. In sample D the two plies were perpen-

dicular to each other and the sheet was dried under both MD and CD restraint.

The shapes of the polar diagrams in Fig. 6 ref]ect‘the different
constructions and drying situations. In A the elliptical shape is due to the
anisotropy of the two layers (tﬁe C11/C22 ratio is 1.54). Sample B, however,
which was a]ioWed to contract in CD while drying is starting to show a "peanut

shape 51m1]ar to that observed in some commercial papers. In C the‘wet

straining changes C11/C22 to 2.05, but the e111pt1ca1 shape is preserved. In D




Project 3467 -44- Status Report

Figure 6. Polar diagrams of sheets made from 2 plies of oriented paper pressed
- together while wet. (A) Parallel plies dried under MD and CD -
restraint. (B) Parallel plies dried under restraint in MD only.
(C) Parallel plies, strained about 2% in MD while wet and dried
under MD and CD restraint. (D) Perpendicular plies dried under
MD and CD restraint. o
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the crossed plies approach the circular shape which would be expected if there

were no fiber orientation at all (C33/Cy2 = 0.98).

Figures 7 and 8 plot MD specific stiffness or CD specific stiffness
versus the MD dimensional change or CD dihensiona] change, respectively. As
expected, MD stiffness increases with increasing dimensional change (caused by
wet straining) and CD stiffness decreases with increasing shrinkage (negative
dimensional change). The ZD specific stiffnesses were also measured for these
sheets. Figure 9 shows this quantity plotted against MD specific stiffness. In
these experiments, where MD stiffness is increased only by wet straining or the
prevention of MD shrinkage, the ZD stiffness is seen to decrease with increasing
MD stiffness. The results would be different in the case of increasing MD
stiffness by increased wet pressing or refining. Figure 10 depicts ZD specific
stiffness vs. the average dimensional change. The latter is simply the average
of the MD and CD dimensional changes for each sample. Figure 10 again shows a
decrease in the ZD stiffness as shrinkage decreases or for positive dimensional
changes. As expected, the areas enclosed by the polar diagrams increase as one
moves toward positive dimensional changes as shown in Fig. 11. The effective
radius or effective stiffness, defined earlier, would behave in a similar way as

shown in Fig. 12.

Figure 13 plots ZD specific stiffness versus effective thickness. For
the wet straining and drying resfraints used here, ZD specific stiffness
decreases over 40% while MD stiffness is increasing about 20%. Figure 14 shows
specific effective stiffness plotted against the geometric mean of the MD and CD

specific stiffnesses. Again, as in Fig. 5, the effective value determined

from the area of the polar diagrams is larger than the geometric mean value.
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Commercial Paper Samples

A large number of commercial samples have been tested. Most of these
have been CD strips in which information about the nature of cross flows from
the headbox was sought. Figure 15 shows one fine paper sample in which polar
data was obtained every eight inches across the width of the machine. In this
case the angular displacement is a maximum on the front side of the machine
(about six degrees) and decreases gradually until it approaches zero on the back
side. Such behavior is somewhat unusual in our experience. Figure 16 shows
polar diagrams taken near the front side, near the center, and near the back
side. In addition to the changing angle from the the MD, the area of the polar
diagram at the center of the machine is noticeably larger than near the edges.
This is depicted perhaps more clearly in Fig. 17 which plots area versus CD
position. Together Figs. 15 and 17 again imply that no re]afionship exists
between the area and angle of lean, consistent with the earlier conclusion based

on the rewetting work.
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Figure 15. Angle from MD vs. position.
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Figure 16. Polar diagrams taken from different CD web positions.
(A) Near front side, (B) near center, (C) near back

side. '
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Figure 17. Area of ellipse vs. position.
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Figure 18 shows the MD specific stiffness (top), the CD specific stiff-
ness (bottom), and the geometric mean stiffness (center) as a function of CD
position. - The slight convex curvature is similar to that observed in many CD
profiles of mechanicé1 properties. Figure 19'compares the geometric mean speci-
fic stiffness and the effective specific stiffness as functions of position in
the cross machine direction. As expected, in general, the latter quantity is
slightly larger than the former all across the width of the paper hachine.
'Figure 20, howeQer; which éhows'effective specific sfiffness'piotted ;géﬁnst the

geometric mean specific stiffness, reveals that the differences between the two
become larger at the lower stiffness levels. This probably just reflects the
fact that, for the paper studied; using the geometric mean value fbr‘a "beanut"
shaped profile or a "tipped" profile gives a value that is too low, while the
effective stiffness value is independent of the profile shapé or angle of incli-
nation. In this respect the effective stiffness parameter may be a more
meaningful quéntity than the geometric mean. The-observétion that MD and par-
ticularly CD stiffness values may be misleading under certain conditions
(leaning or "beanut" shaped polar diagrams) can also be seen in Fig. 21 which
depicts C11/C22 as a function of position. The increases in anisotropy ratio
‘seen at the sides of the web would appear to arise because of low. Cp2 values

near the edges (see also Fig. 18).
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SECTION 2

Improvements to the Automated In-Plane Ultrasonic Gage:

Over the last six months we have made some changes to the robotic
system that have increased its versatility and reliability. The most signifi-
cant improvement is the use of a magnetic, linear motor to translate the trans-.
ducer carriage. Originally we drove the carriage with a doublie-action air
cylinder. Air driven stops engaged rachets to interrupt the carriage translation
at prescribed locations. The timing of the stops was computer calibrated by
translating the carriage and observing the motion through the turning of a
potentiometer coupled to the translation. Maintaining proper timing required
per1od1c (~ weekly) software and/or hardware adJustments In addition‘the
ratchet ‘and stop trans]at1on scheme was the source of about 90% of our run-
nab111ty problems. A major improvement in system re11ab1l1ty was ach1eved when
we switChed the trans]at1on drive to a 11near motor. A linear motor is a mag-
netic driver head mounted through rollers on a metallic p]aten. The driver
trans]ates 1/12000 of an inch each time an e1ectr1ca1 pu]se is sent to an L
electronic control module. We have removed the air cy11nder dr1ve mechan1sm and
mounted the magnet1c driver through ball Jo1nts to the transducer carr1age. tThe

" platen is fixed so that pulsing the linear motor translates the carrlage.
Microswitches are used to detect the extremes of the permitted carriage transla-
tion, The computer "homes" the carriage by moving until a.microswitch engages.
The linear motor has performed f]aw]ess]y for about three months and eliminated

the maintenance headache in operating the robot1c gage.

Another improvement is the addition of a micrometer adJustment for the
transducer drop. This allows rap1d optimization of the ‘transducer to the sheet

coupling when non-standard thickness or modulus samp]es are tested.

—,
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We have also made a number of software enhancements. The most impor-
tant is the development of a handsheet test. . Here, the sample is assumed to be
isotropic in-plane, and the sheet is sampled by platter rotation:' rather than
carriage translation. . Only two velocities (one shear and one longitudinal) are
measured. The positioning of the transducer for ‘the near spacing is maintained
in the middle of the sample as the platter rotates. This means smaller samples
(~6" in diameter) can be tested with no boundary reflection problems and with a

complete sampling of the specimen.

Our. 1mmed1ate plans are to construct a second generat1on robot1c
system. We are now designing a few mechan1ca1 changes The transducers w1]1 be
dead-wetghted and mounted in 1inear bearings. Th1s w111 allow the transducer to-
sample coup]1ng to be constant regard]ess of the ca11per of the samp]e and w111
e11m1nate a]lgnment adJustments A manua] ad justment for the p]atter rotat1on
home setting utll be added A more compact design of the air cy11nder re]ays IS
p]anned, and a cheaper more powerfu] linear motor will be used Off the she]f
1nstruments will rep]ace most of custom bu11t electron1cs Also to speed

operatlon and ease software development the present Apple 2 E computer w111 be

replaced by an IBM PC XT.

Figure 22, 23 and 24 show the current reporting forms for -in-plane

measurements on.commercial sheets, handsheets, and polar diagrams, respectively.’

Attached to this report as Appendix A is a paper‘which descrihes the

automatic in-plane system.

Automat1on of Out- of Plane U]trason1c Velocity Measurements

In the last six months we have comp]eted the deve]opment of our auto-

mated caliper and out-of-plane longitudinal velocity gage. Th1s is a computer




Project 3467 -57- Status Report |

THE INSTITUTE OF PAPER CHEMISTRY
TWO TRANSDUCER VELOCITY MEASUREMENT

OPERATOR :D BRENNAN
DATE :9 14 84
PROJECT: TEST 1

SAMPLE @ H-400

MODE TESTS VELOCITY ST DEV V SGR ST DEV SIG AV
: KM/SEC KM/SEC  KM2/SEC2  KM2/SEC2

MD LONG 16 3.015 .087 ?.10 .53 S

CD LONG 16 2.950 076 g8.71 .45 5

SHEAR 1é " 1.845 .043 3.40 dé 5

45 SHEAR 14 1.852 026 3.43 .09 ]

MODULT CALCULATIONS

MD-CD G. MEAN U SGR = 8.90 KM2/SEC2

STIFFMESS RATIO = 1.04
MUY = 22
NUYX = .23

G. MEAN NU = ,Z2

DENSITY = ,422 OGM/CM3

EX = 5.36 GPA EX/RHO = 8.42 KMZ/SEC2
EY = $.13 GPA EY/RHO = 8.25 KM2/3ECZ
G = 2,12 GPA /RHO = 3.40 KMA/SEC2

THE MD-CD G. MEAN E/RHG = 8.43 KMZ2/SECZ

Figure 22. Typical modulus printout from in-plane robotic
system.
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OPERATOR :D BRENNAN
DATE :9 11 B¢
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THE INSTITUTE OF PAPER CHEMISTRY
TWO TRANSDUCER WELQCITY MEASUREMENT
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SI1G6 AV

PROJECT: HANDSHEET TEST

SAMPLE : Sa 2-1500

MODE TESTS VELOCITY ST DEV Y SGR ST DEV
KM/ SEC KrM./SEC KM2/SEC2 KM2./SEC2

LONG., 18 3.137 057 §.895 . 36

SHEAR 18 1.911 .014 3.45 .05

MODULI CALCULATIONS

NU = .26

DENSITY = ,7046 GM/CM3

E = &.49  GPA E/RHO = 9,19 KM2/5EC2

G = 2.58 GPA G/RHO = 3.45 KM2/SECZ

Figure 23. Typical handsheet modulus printout from in-plane

robotic system. :
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THE INSTITUTE OF PAPER CHEMISTRY .
LONGITUDINAL SPECIFIC STIFFNESS (VEL SGR) VS ANGLE TO MD

OPERATOR: D BRENNAN ’ DATE 19 17 86
PROJECT 3+ FREE DRYING TEST SAMPLE : LBI (11)
ANGLE VEL SOR STD DEV ANGLE VEL SGR S§TD DEV
DEGREES KM2 / SEC2 DEGREES KM2 / SEC2
] 11.84 .47 90 4.04 .33
S 11.70 K 95 4,03 .46
10 11.59 96 160 4.06 .45
15 11.35 .70 105 4.02 .43
20 10.88 76 . 110 4.08 .40
25 ?.82 .53 115 4.21 .33
30 ?.10 . 60 120 4.41 . 36
35 8.19 .49 125 4.66 .37
40 7.33 .39 130 5.03 .39
45 é.59 © .39 135 5.49 .39
50 5.97 .48 140 S5.99 .43
55 5.45 .46 . 145 é.66 .43
60 5.03 .44 150 7.36 91
43 4.66 .37 155 8.14. 61
70 4.34 ’ 31 140 9.04 .69
75 4,25 .31 165 ?.96 .43
80 4.14 31 178 10.71. .51
85 4.01 .30 175 11,38 .48
TEST PER S DEGREE INCREMENT = SIGNALS AVERAGED = ¢
THE ANGLE TO MAJOR PRINCIPAL AXIS STIFFNESS RATIO = 2.93

AREA (KM°4/SEC*4) = 174.4 ", ' : :

cD

MD A ‘ ' K

PLOT OF VEL SQGR VS ANGLE AS SEEN FROM FELT SIDE

Figure 24. Typical in-plane polar plot.
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(IBM PC XT) controlled instrument which allows rapid and repeatable charac-

terization of ZD longitudinal velocity and soft platen caliper on paper samples.

The automated system is an extension of the manually operated gage
which is compqsed-of ﬁicaljper gage. with neoprene faéed, PVDF transducers
attached to each jaw. When the jaws are manually c]oééd, avcalipe}‘reading can
be taken from~an LED display and an ultrasonic pulse is ﬁas;ed through the
sample. fhis Signa1 is disp]ayed on a Hewlett Packard 1980A digital oscillo-
scope. A signé], when thin aluminum foil was inserted, is stored by the
oscilloscope. The signal through sample is manually offset to align a zero
crossing with the foil signal zero crossing. The time translation necessary for
alignment is taken as the time-of-flight differential. Longitudinal, ZD
velocity is operator ca]ﬁu]ated as the caliper divided by the time-of-flight.
This requires the operator to activate jaw movement, record .caliper, adjust

signal alignment, and record'time-of-flight at é fixed time aftér‘jaw closure.

The idea of the automated system is to eliminate the majority of the
operator functions. This is done by 1) interfacing the digital oscilloscope to
a computer; 2) introducing the electronics to open and close the jaws on com-
puter command; 3) interfacing the digital voltmeter, monitoring the LVDT on the
caliper gage, to the computer;:and 4) programming the computer to perform the
necessary calculations. The finished system provides computer calibration of
the caliper readings, a cross corfe]atioﬁ velocity calculation, a reproduceable
delay between jaw closure and sampling, and-a printed report of all the results.
The operator only needs to move the sheet to the sampling locations when the

jaws are automatically separated.
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A principal function of the system is the caliper measurement. In.
fact, the instrument can be operated (without the velocity measurement) simply -
asjaAca1iper gage. In order to make accurate caliper measurements the instru-.
ment must be periodically calibrated. This is done by initiating a calibrate
routine through the computer keyboard. The jaws are opened, and a thin shim of
known thickness is inserted. The jaws are closed and after a prescr%bed delay
the output of the digital voltmeter is read by the computer. The jaws open. A
thick shim is inserted, and the digital voltmeter is read after the same delay.
Assuming a linear relationship between voltage and caliper, the computerbis now
able to prescribe a caliper value to subsequent samples. Even though the

1oadihg‘time is constant, there is a small dependence of the neoprene confor-

.habflityabn the long-time loading history of the neoprene. To reduce this

variébi]ity, a "warm-up“ routine is provided. This merely cycles the jaws at
the same rate encountered in testing. If the "warm-up" routine is run for about
15 minutes before testing and in intefva]s between tests, the neéprene defor-
mation histor& is repeatable between cycles. Once “warmed-up" and ca]ibrated,
samples are simply moved to selected sampling locations as the jaws cycles. A

major advantage of computer control is that sampling can be déne at shorter

4 delays from jaw closure. Initially the neoprene conforms rapidly and jaw

separation changes relatively quickly. In manual operatidn, to get repeétab]e
resd]ts; it was necessary to wait (~30 sec) until the voltage is changing Very
slowly to take a reading. With fhe more reproduceable timing 6f readings pro-
vided by computer control, it was possible to decrease the de]ay (to 5 sec)
without sacrificing repeatability. This obviousTy reduces measurement time |

significantly.

To determine time-of-flight, the signal through the sample is compared

to a signal through a thin (8 um) alumihum foil. A reference signal through
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the foil is recorded before starting'velocity measurements and periodically
during testing to reduce the effects’ of any electronic or mechanical drift. To
do this, the “foil reference" routine is initiated. Here, the foil is inserted

and the resulting signal is recorded after the proper loading delay.

After the caliper}calibration is done and thé feferenpe signal is .
taken, samp]fng can bégin. Since signal level and delay times vary greatly bgt-
ween samples, the first reading on a specimen must be‘used to adjust
osci]]oscope‘gain and predelay for subsequent tgsting. The first signal is,q
takeﬁ with no predelay and at a low digita]izatjon fate to assure that any
reasonab]e signa] will be recorded. The gain is adjusted so that the_fjr%pApeak
is around 80% qf full scale. ‘Theltime of "zero-crossing" after the first peag is
determined. fhe predelay for testing of this sample is adjusted until the first
crossing will appear near the foil first crq;sing when the te;ting digitization
rate of 125 x 106 samples/sec is instituted. Now testing begins in earnest.

The jaws separate and close; so that;.the first sample is tested after the
correct de]ay, Both reference and sampfe signals are displayed on thek
| osci]]bscope and on the.computer CRT with the different predelays. The pwo
‘'signals are mu1tip]ﬁ¢d together wqrdfby-word and the resu]t is summed. This js
repeated at diffe}ent sample gignal delays until a maximum in the sum is
located. The différence in reference and sample signal delays at sum maximum is
the time-of-f]jght.difference. Actually, the three 1ar§est‘§ymsvare fit to a
quadratjc function, and the peak timé of the quadratic is calculated in order to
extrapolate between digitization points. The calculated delay time. through the
foil, 10 useé, is added to the time-of-flight difference to get the timefpf-. ‘
flight. The predelay on the oscilloscope is now changed to align the reference

and sample as determined by the above cross-correlation technique. This allows
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the operator to monitor the computer's alignment procedure. After the first
time-of -flight is calculated, the jaws open allowing the operator to test the
rest of the sheet. After the set number of samplings are complete, the caliper

and ve]ocity'résu1ts are printed. Figure 25 is a typical example.

The system has been checked out and evaluated. The results are very
repeatable, and over a series of quite different samples the results differ from
the manual technique (aligning zero crossings) no more than 2%. As the auto-

mated system does a full cross correlation on the entire pulses, it is insen-

"sitive to phase adjustments of the excitation pulse, and it is taken as the more

exact definition of time-of-flight.

Fourier Analysis

A fundamental problem in time-of-flight measurements arises because
the shape of the transmitted purpose is different through the foil than through
the sample. The sample signal is dispersed since the higher frequency Fourier
components of the pulse are preferably attenuated by the sample. This means
that time-of-flight determination are somewhat arbitrary as there is no absolute
way to line up the signals. The cross-correlation maximum is a good choice
because it is sensitive to the total pulse. In fact it can be shown that, if
attenuation varies linearly with frequency, the‘gross cprre]ation velocity
equals the average of the phase.velocities of the FourierAcompOnents of‘the'
sample signal. However, the relative magnitudes of Fourier components depend on
sample thickness and loss tangent and different samples are being effécfjvély
tested at different average frequencies. It would be better to compare the
phase shift of each Fourier component and measure frequency dependent velocity

directly. Amplitude measurements ;ou1d also lead to frequency dependent loss

tangent.




Project 3467 -64- Status Rebort-

'THE INSTITUTE OF PAPER CHEMISTRY
OUT OF PLANE LONGITUDINAL VELOCITY MEASUREMENT .

OPERATOR: ™M Varn Zummeren

DATE: fAugust 13, 136&

PROJECT: 333z
SAMPLE: Liner sample

TEST NUMBER CALIPER  DELAY

VELOCITY
(microns) (micro sec) (km/sec)
1 S66E. 90 1. lEss . O. B35
o Lo 451
3 1. 1470
4 1. 17558
&
7
&
)
1O L0843
AVERAGE COEET. Lo 1541

STD DEV a € O D64

GRAMMAGE (g/m*2) =  &0%
DENSITY (g/cm*3) =

C33 (GPa) =

STABILIZATION DELAY (secs) = )
CALIBRATION VALUE (microns/volt) = 999, 24
THIN SHIM THICKNESS (microns) = a.0

THICK SHIM THICKNESS (microns) = AETE. O

FOIL CALIPER (microns) =. 8.3l
INTEGRATION WINDOW = 330

THE LARGE PROBES WERE ‘USED

Figure 25. A typical printout for automated out-of-plane

longitudinal velocity gage.
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A fast Four1er transform routine has been added to software in the PC.
We are Just beg1nn1ng to make frequency dependent phase veloc1ty measurements
and compare them with the cross correlation velocities. Preliminary results are

very good and some data will be presented at the October meeting.

We are also hopeful of making loss tangent measurements at high
loading pres;ures. To achieve this‘witﬁout over stressing the motor which
rajses the:upper Jjaw, we have constructed disc trensducersAwith a.0.25 inch
iﬁstead of a 1.0 inch diameter. This allows the necessary pressures to be
reaehed with the automated system. Some software modifications are being made
to ac;ommodate the‘new transducers. When this is complete, we will attempt to
meke loss tangent meaeurements and eventually try to correlate them with other

physical properties.

SECTION 3

Loss Tangent Measurements

The elastic modulus of paber, like any viscoelastic polymeric’
material, has imaginary as well as a real part. Loss tangent is the ratio of

the 1mag1nary to real part. To date, our ultrasonic analysis of paper has dealt

A on]y w1th the real part. A valid characterization of loss processes in the

peper by measurlng loss tangent is yet to be deve]oped. This would add a second
dimensioﬁ tq‘our non-destructive characterization{ and give parameters which
hight correlate with‘things 1ike'stfetch, TEA,'and lack of ply bonding in multi-
1ayerA§heets. At first, it seems that loss measurements are straiéht forward;
éimp]}lmeasure the amplitudelof the transmitted signal; correct for signal

reflection at the transducer to sample interfaces; and cal;u]ate the loss per

unit length in the sample. However, in practice the transmitted signal level is
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strongly effected by the quality of coupling between sample and transducer, and

signal level is more a measure of cbupling than of Toss proéesses'in the pépér.

Since the transducer to sample coup]iﬁg has a profound effect on
signal transmission, it is necessary to study this phenomena in detail., This
might allow the coupling effect to be eliminated or accounted for, and the loss
tangent might be measured. The following discussibn is an effort to do this.

It presents.the'results of a study of the u]trasonic'coupling properties of soft
rubber as a function of sample surface roughness and coupling pressure.' it
demonstrates that the rubber is a less than perfect éoup]ing.agent at pressures
under a few atmospheres. This leads to small errors in timeFof-flight-QéTOCity'
measurements and very large errors in sampie atfenuatioh chéréctériiétions. The
coupling quality is shown to increase dramatically with pressure énd to dégrade
when the sample surface is roughened. Large pressures (>500 kPa} will be .
necessary to obtain attenuation measurements, that characterjze on]yibulk'
properties, on paper samples. A mathematical description which leads a single

complex parameter for characterizing coupling quality, .is. presented.

Determination of the bulk acoustic properties of materials requires
‘the coupling 6f’piezoe1éctr1c transducers to a séﬁp1e and fhe méasurehent of the
resulting time and amplitude changes in a signal. To relate thesé heaéurements
to the properties of the sample, the coup]ing at the transducef-éahp]e interface
must be characterized. The normal procedure is to assume "perfect” coup]%ng.
That is: (1) Stres§ is continuous at the interfécé;'and (2) the two sdrfaces are
so well united that there is no s]ippégé (deformatioh and velocities are con-

tinuous at thé'interface). From these two boundary conditions, the stress
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reflection and stress transmission coefficients for a disturbance incident on

the interface can be derived. The results are

2ITR/{(Z1 + I1R) and (1)
(ZTR-Z1)/(Z1+ITR) ’ S (2)

T
R

where Z1 and Zyg are the mechanical impedances (Z=pv=pw/k) of the materials in

which the sound is incident and transmitted respectively.

Consider the problem of finding the amplitude and phase changes in
the Fouriér components of a pulse transmitted through a sample coupled bepween
identical transducers. If the acoustic properties of the sample and sample
thickness are known, Eq. (1) and (2) can be used to find the amp]itude‘chpnge_‘
and time shift in the transmitted pulse in two special cases. The first case is
when the duration 'of the pulse is smaller than the time-of-flight through the
sample and only the first transmitted pu1se is of interest. For each Fourier
component of the incoming pulse, the transmitted signal is the proddct of the

transmission coefficients at the two interface and the propagation coefficient

through the sample:

- : -ikgl _
ikglg Tg =7 = 4e-'%sls (3)

S=Tr =g e
TS (2 + Is/11 + I7/15)

where K¢ =wpg/Zg, 1g is sample thickness, and pg is sample density. fhe other
situation, which leads to a simple result arises when the pulse duration is
much greater than a single samplé transit time. Here the partial waves from %11
possible multiple reflection paths contribute to ‘the final phase and amplitude

of the Fourier components in the transmitted pulse. Now

w
1}

: : 2 v 4 : .
T —>5 Tg —>71 (e~ Ksls + Rg —>1 e-3iksls + Rg —>7 e-5iksls ...

: 2 N | |
Tr s Ts —>1 emiksls/ (1-Rg —>7 e-2iksls) : (4)
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Taking Tt —>g, Tg —>T, and Rg —>1 from equations (1) and (2), this becomes
S = 47577/0(25+27)2 eiksls-(z5-27)2 e Ksls] (5)

For the special case of sample much thinner than one wavelength [k¢lg (Z7/Zg +
I5/271)<<1], EQ. (5) reduces to
s = e-ikgls(27/2Zg + I5/217). | -~ (6)

If the front plate of the transducer is sufficiently thick and its impedance,
Z1, is known, Eg. (3) or (5) could be used to ea1cu1ate the compTex impedance of
the sample from phase and amplitdde measuremenfs on samples of appropriate
thicknesses. Of course, all this relies on Eq. (1) and (2), i:e.,'the perfeet

coupling assumption.

. The standard techniques to couple transducers and samples for acoustic
characterization requires the use of adhesives or fluid coupling layers. These
provide{exce]leqt acoustic bonds, making Eqs. (1) and (2) valid approximations.
Once corrections are made for the couplant; the acoustic impedances of flat .
samples, which are impervious to fluids, can be determined. These approaches
are, however, unacceptab]e‘fbr thin porous samples which imbibe fluids. The
‘fluids change the effective acouetic properties of the sample by filling voids.
They can also penetrate the matrix material, altering its bulk properties. In
addition, the use of fluid couplants or adhesives often makes the test time con-
suming and destroys the sample. Therefore, there is need for alternate coupling
techniques which will yield fundamenta] parameters for porous media and which

are rapid and nondestructive.

Soft neoprene rubber is an alternative coupling agent. It conforms to
rough surfaces and effectively transfers longitudinal motion into porous media.

It does not damage the sample and is easiiy applied and released. However, it
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is not obvious that it provides perfect coupling. Deviations from Eq. (1) and
(2) could lead to errors when £q. (3) or (5) are used to calculate the impe--
dance. What are the extent of the errors; how are they effected by coupling
pressure and surface roughness; and can imperfect coupling be characterized?

These are the questions addressed below.

The purpose of the experiments is to measure the acoustic transmission
through samples coupled to soft neoprene. The results are compared to those
calculated using the perfect coupling assumption (Eq. (3) or (5)). Surface rough-
ness and coupling pressure are varied and their effects on coupling are

calculated.

The samples are placed between very broad banded piezoelectric trans-
ducers. The front face of the transducer is 0.125" thick neoprene ("super soft
neoprene" of 5-10 durometer from Crane Packing Co.). The top transducer can be
loaded to achieve variable coupling pressures, one transducer is excited with a
single cycle, 1 MHz pulse. A disturbance passes through the sample and is
detected by the second transducer. The received pulse is amplified and
displayed on a digital osti1loscobe. Transmissiéné'through samples of different
composition and thickness are compared by recording one signal and overlaying
the other. The gain and time delay of the 6scilloscope is adjusted until the
two Signa]g align. The oséi]]os;ope has a one nanosecond time delay resolution
and a 0.2% gain réso]ution. The amplitude ratio of the two signal is taken as N
one over the gain ratio and the 1 MHz phase difference is 2r times the delay
difference divided by 1.0 Qsec. A better procedure is to compare the amplitude
and phase .of the Fourier components of the two pulses. We havé adaed Fast

Fourier Transforms to our signal analysis capability, and we will soon be

T
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repeating this experiment with a comparison of frequency dependent phase dif-
ferences and amplitude ratios. For this study, however, we ignore dispersion
assuming phase velocity and attenuation are frequency independent. On rough
samples at low pressure the received signals can be significantly distorted, but

in most cases the sample causes little distortion in the received pulse.

In order to study the efficiency of soft rubber coupling, samples of
known thickness and acoustic impedance must be available. . In addition, the

acoustic impedance of the neoprene must be measured.

Aluminum foils comprise one set of samp]es.h Texfbbok values fgr den-
sity and sound velocity are used to calculate an impedance of 17.3 x 106
kg/mzsec (losses are assumed negligible). The thicknesses (7.95um, 15.5 um,
. and 40.3 um) were calculated from the textbook density and sample weights. For
all thickness the pulse duration is much greater than the once through transit

time and Eq. (5) is valid.

Plastic samples Qere also studied. They were made of poiystyrene and
Kynar. Polystyrene is an example of a plastic with little acoustic attenuation,
.while significant losses arise in the Kynar. The densities were calculated from
the weights of regular shaped specimens. Phase velocities and attenuation coef-
ficients came from transmission time and amplitude comparisions of samples aboﬁt
1/8" and 1/4" thick. This is well into the thickness range where Eq. (3)
applies. The phase shifts and signal losses due to poor coup]ing are indepen-
dent of sample thickness and coupling effects should cancel in the measured time
differences and amplitude ratios. These measurements, made as a function of

loading pressure, are used to calculate the impedances in Table 1.
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- Table 1. [Impedance as a function-of loading pressure.

Neoprene

Loading ' Polystrene ‘ Kynar
. Pressure . Impedance Impedance Impedance -
(kpA) 106 kgm¢/sec 106kgm?/sec 106kgm?/sec
- 50 2.392 (1+0.O'1681') v3.388 (1+0.02485) 1.585
95,7 2.399 (140.01091)  3.405 (1+0.03013)  1.609
137.6 2.402 (1+0.00891) 13.400 (1+0.03131’13‘ .1.625
"226.4 2.404' (1+0.00481) 3..404' ('1+0.0302i). 1.639
318.2 2.408 (1+0.00451) 3.409 (1+0.03111) 1.643
- 405.7 - 2,410 (1+0.00341) 3.419 (1+0.0309i) 1.648

The measured absolute values of the 1mpedancé increase slightly
with pressure. This. is taken as real and the.later calculations of coupling
efficiency accept this pressure dependence in the absolute value of impedance.-
Except for the lowest pressure reading the loss ratio is nearly constant for
Kynar. The average value of the last six readings is used in all future calcu-
lations. The losses in the polystyrene appear to decrease with pressure. The
higher pressure values are very low and are consistent with the known charac-
teristics of polystyrene. I think that the large low pressure values are due to
diffraction (beam broadening), and I will investigate this further in the
future. At any rate the high pressure values are too small to have a signifi-
cant effect on any later calculation, and for simplicity the imaginary part of

the impedance of polystyrene is taken as zero at all pressures.

Neoprene density measurement were found by weighing a-sample.and
finding its volume-as a function. of pressure in a mercury porosimeter.

Measurements made to 2.7 x 104 kPa demonstrated that the rubber was almost

incompressible: -Density was 1108 kg/m3 at atmospheric pressure and 1110 kg/m3 '
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at the top pressure. The neoprene density is taken to be 1108 kg/m3 for these
experiments. Velocity of sound measurement were made on the neoprene to
complete the impedance calculation. The time-of-f]ight.difference between a
single 7.95 um aluminum foil sample and an 0.125" néOprene sample sandwiched
between foils were measured. A small correction for the extra foil transit time
in the sandwich was made. Thickness measurements wefe méde as the sample was
tested. The velocity increased a few percent between 50 aﬁd 500 kPa leading to

the rise in impedance with pressure reported in Tab]eil.‘

As will be shown, poor coupling generally leads to large decreases in
transit signal amplitude and small changes in transit time. However, in the
case of thin films this situation can be reversed. Consider Eq. (6) (the thin
sample limit of Eq. (5)). The total phase shift is 12(Z7/Zs + Zs/Z7) multiplied
by the once through propagation phase shift, kglg. The transmitted pulse is the
combination of multiple reflections back and forth through the sample, and the
signal effectively goes through the sample 12(Zy/Zs + Zg/Z7) times. This number
increases and with impedance mismatch and would be expected to be larger ‘in
 the case of poor coupling. In the limit of Eq. (6), the foil causes no ampli-

tude change and poor coupling should not greatly alter this.

As a test of rubber coupling, amp]itudg ana timé delay differences
were me&sured for the 7.95 um, the 15.5 um and the 40.3 um ff]ms. The
mismatch between aluminum and the neoprene is large (LQ(ZT/ZS + ZS/ZT> =5);
therefore, the perfect coupling delay is about five times greater than the
once through propagation time, kglg/2m(lusec). "In Tables 2 and 3 experimental
and perfect coupling theoretical (Eq. (5)) amplitude ratios and time differences
between the thicker foils and the thin foil are tabulated. The results are the

average of three runs. The standard deviations in the time differences are
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Table 2. T1me dlfference and amp11tude ratio for 40.3 and 7. 95 um |
aluminum foils. . . :

Time Time | Amplitude Amp1itude

Pressure Theory . Theory Ratio : Ratio
kPA nsec nsec Theory Exp.
50 27.23 46.3 0.9788 1.003
95.7 26.84 31.7 0.9795 1,011
137.6 - 26.59 31.3 0.9799 1.002
226.4  26.38 28.0 . 0.9802 0.992
318.2 . 26.32 . 28.0 0.9803 0.987
405.7 . | 26.24 27.0 . 0.9804 . 0.986
494.6 26.21 26.7 0.9805 - 0.978

Table 3. Time differences and amplitude rat1os for 15.5 and 7.95 um
aluminum foils.

Time Time Amplitude Amplitude

Pressure Theory Theory Ratio Ratio
kPA nsec nsec Theory Exp.
50 6.45 13.0 0.9975 1.002
95.7 6.35 8.0 0.9979, 1.013
137.6 6.29 8.0 0.9917 - 1.003
226.4 6.24 7.3 4 0.9977 1.002
318.2 6.22 7.3 0.9977 0.999
405.7 - 6.21 7.1 0.9977 0.997
494 .6 6.20 7.0 H 0.9977 0.997
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about 2 nsec and those of the amplitude ratio are about 0.005. Notice that the
experimenté] times are mﬁch greater thaﬁ.perfegt coupling théory at-lbw
pressure, but approach agreement at higher pressures. Amp]itudes are approxi-
mately equéT to theory; hdwever; they exhibit a significant decrease with
pressure and are greater than 1.0 at low pressures. Agreement in both time and
amplitude are excellent at the highest pressures, an indication that good
acoustic coupling is possible without expoxies or fluids. Figure 26 is a log-
log plot of the:experimental time difference less the theoretical time dif-
ference all divided by the theoretical time difference vs. loading pressure for
the 40.3 ym and 7.95 um foils. - The data approximates a single straight line
with a slope of -3/2. Loading pressure appears to be an efficient method to

improve coupling quality.
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Figure 26. Pressure effects on aluminum-neoprene
coupling (time).




ratios where calculated using Eq. (3) for the plastic and Eq. (5) for the
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The rest of the results are a comparison between plastic samples,
thick enough to safely apply Eq. (3), and the 7.95 ym aluminum foil. Since
time-of-flight measurements are typically done on samples greater than one wave-
length long, these tests will directly relate to cases of most interest. The
comparison is made to the thinnest aluminum since its effects on delay times and
amplitude changes are minimal. (The comparison can not be made to a no sample
condition, as the rubber edges deform less when a rigid sample is in between.)
These results reflect pfimarily transmission through the plastic sample and are
used to assess the consequences of pdur coupling on time-of-flight velocity and

attenuation measurements.

Five different plastic samples where tested. The surfaces of two,
one of Kynar and one polystyreﬁe, were flat. The other three were polystyrene
samples with rough faces. Helical grooves covering about 50% of the two
surfaces were maéhiﬁednfnto each sémple. The depths of the grooves on the
three fough samples were 0.001", 0.002" and 0.004" respectively. All samples
were about 1/8" thick.

Theoretical (perfect coupling) time differences and amplitude

aluminum foil. Comparisons of experimental and theoretical time differences

and amplitude ratios are presented in Fig. 27 and 28.

There is little difference between experimental and theoretical
time differences on smooth samples. Significant differences do arise on
the rough samples but they appear to decrease at the higher pressures. The

level of the high pressure plateaus on the rough samples depends on

thicknesses measurements. These are done between soft rubber platens at 50
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Figure 27. Pressure effects on plastic-neoprene coupling (time).
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kPa loading pressure. This is somewhat arbitrary; therefore, too much signi-
ficance is not placed on high the pressure discrepancies between theory and
experimental time differences. The coupling on rough samples seems to

become satisfactory for time .delay measurements at a threshold pressure that
depends on roughness. The threshold is about 225 kPa for the 1 mil grooves,

about 300 kPa for the 2 mil grooves, and maybe about 700 kPa for 4 mil grooves.

Amplitude difference between theory and experiment are much greater
than time differences; however, they decrease rapidly with loading pressure.
Not1ce that the p]ots for the polystyrene samp]es have approx1mate]y the same
slope (F1g 27) but are d1sp1aced to higher pressures with 1ncreased roughness
The c1rc1ed data in F1g 28 comes from distorted waveforms on rough samp]es at |
1ow pressure and shou]d-not be taken too serious]y As in the case of time
de]ays bn aluminuﬁ foil, 1ncreas1ng 1oad1ng pressure appears to rap1d1y 1mprove
coup11ng eff1c1ency Rough1ng the surfaces causes large amplitude decreases
wh1ch requ1re 1arge pressures for compensat1on A1l this is taken to mean that
time de]ay measurements and therefore phase velocity determ1nat1ons are on]y

slightly tainted by poor rubber coupling except at low pressures an for very

- rough surfaces, while. amplitude measurements (and therefore loss calculations)

are suspect except- for smooth surfaces at high pressure.

Our u1t1mate concern 1s of course, to ach1eve va11d measurements of
phase ve10c1ty and loss ang]es in paper samp]es Other mater1a1s were used here
since their propert1es cou]d be determined 1ndependent1y and coup11ng effects

could be quant1f1ed D1rect determ1nat1ons of the 1nfluence of rubber coup11ng.
are part1cu1ar1y d1ff1cu1t on paper for these reasons: |

(1) Different th1cknesses of paper samp]es with the same propertles J

are not available and acoustic properties can not be determined

independent of coupling, as they were for the plastics;
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(2) paper properties change significantly with loading pressure, ‘and ‘a
leveling off in a property vs. pressure plot -can not be taken as’
a criterion for good coupling; and

(3) surface roughness is hard to characterize and to measure ‘inde-

pendently.

At this point I can only speculate on the errors introduced by poor

coupling in paper samples.

For paper samp]es thick enough (>120 um) for Eq (3) tolbe valtd oooh
coupling probably causes little error in t1me of - f11ght velocity measurements
S1nce fiber diameters are the order of 0.001 inch and the paper surface is more
compliable than the plastic surface, I would think that the coupiing quaiity of
the 1 mil r1dged polysytrene would be a conservat1ve lower 11m1t for paper. |
Typical paper samples have about one half the time delay of the po1ystyrene
samples leading to 1arger percentage effect for the paper. None the 1ess, if ‘
coup]tng pressure is over 100‘kPa;\I expect 1ess than a one percent effect from

poor coupling.

The conclusions are not so favorable for attenuation measurements.
Assuming a 1oss tangent 0.04 in a paper sample 250 m 'thick having a phase -
velocity of 0.3 mm/usec, the signal decreases by about 10% due to»1oss processes
at i MHz. Notice that on the 1 mil ridged polystyrene thereifs a 7% effect at
500 kPa. This is of the order the total eftect due to 1osses‘in a typical_
sample. If the sample were smooth the coup11ng error cou]d be much 1ess
However, remaining conservat1ve, I conc]ude that pressures over 1000 kPa wou]d

be necessary to make reasonable loss measurements on paper.




Project -3467 -79=" Status Report

In the past we have stated that increasing the pressure for out-of-
plane measurements leads to a characterization of fiber bropehties ahd is =
less of an indication of the network structure. This conclusion comes froim
the observation that out-of-plane vélocities become independent of process
variables at high loading pressure. Therefore, it may be feasible to obtain
a loss measurement on paper, thdt is independent of surface characteristicé, but
it will probably relate to the bulk properties of the fiber and not the fiberous

© structure.

R T PE .

In order to achieve the_necessary’pressures without excessively
weighting the instroment, we are preparing to build transducers with smaller
active areas.' This, -along with the Fast Fourier Analysis, will improve the

quality and range of our longitudinal out-of-plane apparatusa

_The.main eonseooence,of ]ess than'perfect coupling is to increase
interface reflection coefficients and decrease transmission coefficients. To
first ohder, this causes a decrease in signal amplitude on thick samp]es and an
increase in delay time on thin samples. A natural thing to do at this point is
to try characterize coupling in terms of a fundamental parameter. This requires

a modeling of the less than perfect interface'between rubber and sample. Two
fundamentally different ways of doing this are apparent to me. One is imagine
and interfacial region with a finite thickness and distinct acoustic properties.
The_other is to play around the boundary’conditions. I pursued both of these.
However,.the second approach was the most fruitful; therefore, it will be

discussed in detail, and I will only ment1on the 11m1tat1ons of the first,

. The cont1nuous stress and velocity boundary cond1t1ons lead directly

to the perfect coupling formulae. Therefore, without interposing an 1nterface,

e
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the only way to develop different results is.to the relax these .boundary con-
ditions. The continuity of stress boundary condition comes straight from
Newton's second Taw, and without interfacial inertia it can not be altered. The
continuity of velocity equation, however, does present possibilities. In fact
slippage at the boundary is intuitively comfortable. Therefore, I make the
following assumptions: (1) when an incident wave encounters a poorly coupled
boundary, the velocity in the incident material will be larger by a factor, B,
at the boundary than in the receiving material, and (2) the parameter, 8, .
depends only on the coupling quality (surface characteristics and loading

pressure) not on relative acodstic'properties of the two media.

The transmission coefficient, T, and reflection coefficient, R, will
now be found as a functions of B, Zy, and Zg under these assumption. Let a '
stress wave Py = ei(Wt'kx), be incident from material R to material T. The ori-
gin of the x-axis is taken at the boundary. The incident wave produées a
reflected wave Rel(Wt+kX) —and a transmitted wave, Tel(Wt-kX) = The boundary
conditions are: | | “

1+R=T  and | | (7)
BLY/Zt - R/ZTI=T/I1 . ‘ : ., .(8)

Solving these for R and T, gives
R = (Zr - BZ])/(Z1 + 8Z) and o (9)
; .

277/(I7 + BI). (10)
Comparing these with Eq. (1) and (2), the impedance of the inciden% material is

effectively increased by a factor, 8.

Now the poor coup]ing analogues of Eq. (3) and (5) are developed. For the thick

sample limit, as before

S = TR —>5 Tg —>g e-iksls . (11)
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Substituting Eq. (10) into Eq. (11).gives the poor coupling version of Eq. (3),

{S = ge-iksls (12)
1+ 82 + g(Zg/Ig + IR/Tg) ~ © ot LT
For a thin sample,
TR L5 Ts—p e~iksls = 7 - (13)
5= 2 Tikels
R . ov - = 1 +Rse Hp.emclKsls
or .
- 41sIp(BIst Ip)
(BZR + I)E(ZR # 8Z5)2 elksls - (8Z5-7R)2 e-Tksls] (14)
in the limit of very thin samples, Eq. (14) reduces to
ikglg IR L
Ig + L \
. (8Is * Iple 77 2O (15)

. (BIs + I5)B: -

Physical intuition leads me to expect that the absolute value of -8 is
greater than one. That is, slippage should lead to relatively Tess motion in
the transmitped matgri§1. A]sq‘l wpu]dn't}be,surprisgq to see a phase lag from
the incident to ;he trénsm%tteq materia]..‘This would give a positivg (prgbably

- small) phase angle to .

‘The differences between Eq. (3) and (12) and between ‘equations’ (6) ‘and
(15) are qualitatively consistent with the experiments. For thick samples, the
major effect of poor coupling (Ed. (12)) is to reduce the amplitude of the
transmitted signal. This, of course, is exactly the conclusion from the experi-
ments. For'thinlsamp}es,'usinghfq,‘(ls) Qe_fiﬁd‘that t(aﬁsit time is most sen-
sitive to cbupling,'aégiﬁ‘égreejnﬁ'with experimgnt.‘ qu.the case testeq (Zg much

larger than Zg), the transit time is increased by_popr_gpup]ing and the ampli-
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tude is changed little (both theoretically and experimentally). Notice that
when Zp > Zg (the paper situation), Eq. (15) predicts that poor coupling would

decrease the transit time,

Physical limitations can be placed on g by requiring that the acoustic
power into the boundary be greater than or equal to the power out. For the case
of real 71 and Zy, and unit input stress amplitude. The average power per unit

area in less the average power out is

| 1 _RR*_TT*
D=PN-Pr-PR=>-""-— 16
IN-PT-PR=g - (16)

Substituting in R and T from Eq. (9) and (10) gives

.

2 * 212 + (B+E*)Z17 2 2
= [Z7¢ + (B+B™) Z1Zr + BB*Z1¢ + (B+B™)ZyZr - BB*IT¢ - 4I1ZT - IT)
21 ] zy + 821 | 2

0= 277, (g+g*-2)  4Zrs(Re() -1)
| zr + 827 |2 |27 +627] 2

For the model to be physiéa]y aéceptabie the‘poWer in hust be’gréater
thdh'or equal tovpower out, i.é.; D> 0:, Therefore,lit i§ neﬁessafy that the
‘real part of B be greater than or equal to 1. It seems reasonable tﬁét poor
cbup]ing (slippage) would lead to energy dissipatation and this is guaranteed if
Re (8) >1. In fact, the ratio of energy lost to energy in, 4Zr (Re(8)-1)/(Z1| Z7
+821|2) is proportional to Re (8)-1.

‘The next step is to see if'the's1ippage model is quantitatiVe]y con-
sistent with the experiments, That is, are there values of B which yield the
“experimental phase shifts and amplitude ratios; do these values of & depend on

coupling conditions (surface roughness,'loading pressure, and rubber conform-
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ability) and not on bulk acoustic properties; and are the calculated values of

8 physically reasonable?

The calculation of B from the two-thicknesses ‘of aluminum foil com-
parison is made by taking a ratio of twp Eﬁ. (14) signals (with different 15's)
and equating it to the experimental comﬁ]ex signal ratids; This reduces to a
quadratic equation in 8. One of the roots has Re (B) >l anq,the absolute value
and phase angle of the pressure dependence of these roots (for the 40.3 um to
7.95 um results) are plotted in‘?ig. 29 and 30 respectively. Notice particularly
that by giving B a small pdsitive phase angle which incfeases with poor coupling,
its possible to explain the rather strange experimental amplitude ratios. That
is, amplitude ratios may be greater than one at low preésures and decrease,
dropping below 1, with better coup]ing. Pﬁysically, it seems reasonable that

poor coupling should. lead to a small phase lag in the transmitted medium.
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Figure 29. The absolute value of the coupling coefficient, B, as a
function of loading pressure.
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.., Figure 30. The phase of the coupling coefficient,
B, as a function of loading pressure.

Values of B are also calculated from the thick plastic to thin foil

. comparison., This time the ratio of an Eq. (12);t0'Eq. (14) signal is set equal
to the experimental ratio. The result is a cubic equation in 8, but only one
root has Re (B) >1. .These results are also plotted.in Fig. 29 and 30. It is
encouraging that, regardless of the wide range in absolute value and phase angle
of the sample impedances, the|8| is the same, within egperimenta] error, for

all the smooth samples. The resuits of surface roughness is, of course, to
increase |3|. For the_thick plastic samples, the calculated phase angle is very
sensitive to small absolute errors in sample thickﬁess and time delay measure-
ments. When determined from the alﬁminum foil cpmpérison, B depends mostly on

the amplitude ratio. I fee]lthat the foil amplifude ratio is the more certain
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measurement and conclude that -the ‘tendencies .of the phase angle to 1ncreasé with
poor coupling (as shown for the foils) is the correct description of what is
happening.

Even though it is a based on an arbitrary assumption, I feel that
slippage model just: presented is-a particularly simple and effective way of
describing poor coupling. With a physically reasonable choice of 8, it is
capable of predicting the amplitude and phase changes due to poor coupling in
both thick and thin samples. It requires no artificial introduction of inter-

facial components, but merely a minor adjustment to a boundary condition.

I played with some other coupling models that gave less satisfying
results. Variations from the perfect coupling equations can be achieved by
mathematically introducing an interface with acoustic properties different from
either material. In fact, there are two ways of producing interfaces: A thin
section with uniform acoustic properties could be inserted; or a combination of
Tumped mechanical elements (masses, springs, dashpots) could perform the
coupling. An example of a first case model is to think of a rough surface as a
region partially of one material and partially void. The phase velocity in this !
region would be unchanged, but the mass density would be decreased. By
adjusting the width and void ratio of the interface, equations analogous to
Eq. (12) and (14) can be derived. These turn out to be unsatisfactory for two
reasons. If it is assumed that the interface is much shorter than one wave-
length, the only effect of this interface (or other first case assumptions) is
to change the phase shift. This is obviously unappropriate in the thick sample
case where amplitude decrease is the main experimental result of poor coupling.

This model leads to no energy losses in the coupling process, a picture I

believe is physically unacceptable. With sufficient patience, the approach of
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inserting lumped parameters is capable of predicting ‘any linear-behavior.
However, the resulting equations are much more :Ccomplex and require more
adjustable parameters. The parameters depend not only on coupling conditions' =
but also on the bulk properties:or the coupled media, and, finally, the use of
springs, dashpots, and masses adds no physical -insight ‘into the coupling mecha-

nisms,
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AUTOMATIC DETERMINATION OF 'ULTRASOUND VELOCITIES IN PLANAR MATERIALS
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Abstractl A _

| A computer contro]]ed fu]] automated 1nstrument wh1ch measures ultra-.
sound ve]oc1t1es in p1anar mater1a1s 1s presented By f1nd1ng two 1ong1tud1na1
andttwo transverse veloc1t1es, it can comp]ete]y character1ze the 1n plane
elastic propert1es of an orthorop1c sheet Even though 1t is spec1f1ca11y

des1gned to ana]yze paper and paperboard samples, other sheet mater1a1s can a]so

be tested

The authors are-at :The Institute of Paper Chem1stry, P.0. Box 1039,
App]eton W1scons1n 54912 U.S.A.
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Introduction S

Paper and paperboard are orthotropic'sheets whose mechanical properties are sub-
Ject to paper machine process changes and variations in the: furnished pulp. In-
plane mechanical integrity (usually determined by strength testing) is important
to end—use performance, and strength measurements are often used for quality
control and to guide adjustments in manufacture. Even though failure testing is
contrived to emulate the critical conditions which the final product must with-
stand, there are serious drawbacks to the standard practice of assigning strength
tests as the indicators of mechanical quality. First of all, it is not feasible
to test strength during manufacture, therefore, quality checks can be made only
after samples are cut from a finished reel. For some grades, it requires about
thirty minutes or more to make a reel of paper which weighs tens of tons and is
worth tens of thousands of.dollars. Since samples are only taken.from the end
of the reel, a very small portion of the product is characterized. Fifteen
minutes can elapse before tests are completed and results are reported. Large
quantities of product, which may be either substandard or needlessly over-built,
are produced before any feedback is received. 1In addition, paper is non-
homogeneous, and its strength properties have large variations. The number of
tests performed in the allotted time is far too small to assign a reasonable
level of confidence to the test average. This situation is greatly compounded
if the papermaker needs to determine variations in strength profiles across the
machine. Here 1s a clear case of too little testing coming too late, which can

only be remedied with a computer—-controlled, on—-line measurement.

Before the principles of computer directed quality assurance and process control
can be effectively utilized in the manufacture of paper, the standards for

mechanical performance must be shifted from the traditional failure criteria
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to other standards which can be applied nondestructively, rapidly, and' on-line.-
The most fundamental and straightforward method to nondestructively assess
mechanical behavior is to look at the relationships between stress and strain at
small strains. The elastic parameters are the common representation of mechani-
cal behavior in this linear regime, where on-line testing must be done. There-
fore, elastic parameters are the natural choice to replace failure criteria as
the standards for mechanical integrity during manufacture. Fortunately, tp;g‘
will not mean that the concept of strength prediction musf be abandoned. Iﬁ
many cases papér strength is highly correlated to elastic parameters. This is
particularly true for the less complex measurements, such as teﬁsile’strength1
and compressive strengthz, in which elastic behavior is an important aspect of
the failure mechanism. In fact, the prediction of strength from continuous, on-
line elastic measurements may well be a better predictor of the strength proper-

ties ‘of the entire reel than a few direct tests on sample from the reel end.

An effective way to determine elastic parameters of paper is to find the phase
velocity of mechanical plate waves.3>4,5 This technique 1is nondestrqctive,

rapid, and has been demonstrated on-line.® As this technology 1s applied at the

paper machine, a great need will arise for laboratory instruments which also

measure ultrasonic velocities. These devices wiil provide thg basis for on-line
testing by allowing papermakers to understana the performance of ﬁheir product
iﬁ terms df eiastic paraméters. Aside from supporging on-liﬁe»inst;umentation,
ultrasonic laboratory testing is important in its own right. It yields rabid,”
repeatéble mechanical 1nfofmation without damag{ng the sample.' It provides a' "

‘.

complete set of in-plane elastic parameters including shear modulus and Poisson

ratios, which are difficult to obtain in other ways.
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The purpose of this paper is to describe an instrument which makes extensive
laboratory testing feasible. It is fully automated and systematically deter-
mines the four independent in-plane elastic parameters of a sheet. It does the--
large number of repetitions necessary on inhomogeneous samples without. being
labor intensive. It is computer controlled, making it versatile and easily

adapted to special needs.

Background

The measurement of ultrasound velocities is a powerful technique for nondestruc-—
tive analysis of the mechanical properties of polymeric and other materials.-
Often, the phase velocity of plane wave propagafion of sound through a material
is equal to the square root of an elastic stiffness divided by the mass density;
Therefore, the value of a mass specific elastic stiffness can be obtained from
velocity calculations. Of particular interest here are planar materials. These
are defined as plates whose lateral dimensions are large compared to the wave-
length of bulk sound waves propagating in—plane and whose thickness is small
compared to theAwavelength of éut-of-plane bulk waves. If the lateral dimen-
sioﬁs 6f a éheet are much greater than the thickness, it is usually possible to
find a frequency range in which the plate can be approximated as a planarl
material. Because of asymmetry in fabrication, the mechanical propertieé of
paper (and many other polymeric sheets) are different‘along the direction of manu-
facture (the MD) than perpendicular to the direction of manufacture (the CD).
Ofﬁen, these sheets have orthotropic symmetrf. That is, there are two orthoéonal
principal directions (the MD and CD) and the material has reflectional symmetry
about planes determined by a principal axis and the sheet normal. If the fre-
quency is low enough to consider the plate to be planar, symmetrié piate waves

are nondispersive.7 The motions constituting these disturbances have a small
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out—-of-plane component, but they are mainly along. the direction-of ‘propagation -/
when traveling in a principal direction. Such modes will be called ‘longitudi- -
nal. The velocity of a longitudinal wave 1in a principal direction is the square
root of a planar stiffness divided by the density, i.e., in the MD, V%md =5'C;1'/p’,"
and in the CD, VEcd" Céz/p. A planar stiffness is defined as the small'strain
limit of the ratio of the normal stress to the normal strain when there is no .
out-of-plane stress and no strain in the other principal direction. Transverse
Plane waves aalso propagate along the principal axes of the plate. Their motion-
has no. out-of-plane component and is entirely along the principal axis perpen-: .
dicular to the propagation direction. These modes are nondispersive -at all -
frequencies, and the velocity squared in both principal directions is the: shear
stiffness, Cgg, divided by density.7 1f desired, engineering elastic parameters

can be calculated from planar stiffnesses.

Since the longitudinal and transverse modes in planar materials are nondispersive,
time-of-flight velocity measurements can be used to characterize the elastic prop-
erties of the material. An orthotropic planar material has four independent

- elastic parameters, and four independent velocities must be measured to completely |
define the elastic behavior of the planar material. Three of these are the
longitudinal in the MD, longitudinal in the CD, and transverse in the MD or CD.
Theselcomprise all the modes along principal axes. The fourth velocity measure-
ment cannot be along the MD or CD. Plane waves which are not in a'principal
direction have in-plane components along and perpendicular to the propagation
direction. If the sheet is not overly anisotropic, there is a plane wave, the

quasitransverse mode, that displaces nearly perpendicular to the direction of

]

propagation at all angles to the MD. Its velocity at 45 degrees to the MD can

be the fourth measurement. However, there is a complication and this selection

-
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needs justification. Even though off-axes normal modes in orthotropic materials
are nondispersive (phase velocity and group velocity are equal and frequency
independent), the time-of-flight velocity measured between point sources does
not equal the phase velocity.8 Roughly, this is because the path of least delay
is not along the straight line from transmitter to receiver. Thefe can be
significant differences between the time of flight velocity and the plane wave
phase velocity for quasilongitudinal waves. This is because quasilongitudinal
phase velocity can vary rapidly with angle in highly anisétropic sheets. For- =
tunately, quasitransverse velocities change only a few perceﬁt between MD and
CD. Thus, assuming that the measured velocity is related to elastic properties
by the phase velocity equation leads to only small errors. The relationships

between the engineering elastic parameters and the phase velocities are3

Glo = V§ | )
w1z = ({12V5(45°) = 1/2(¥pq + VEcq) (2)

- 5212 - 0/20Wng - V12 V2 V8 [Ving,
Va1 = V12 Vend/Vicds , (3)
Fmd/p = Vlz.md((l'vlz“él)’ (8
and Ecd/p = Vfcd/(l—vlszI). | ' o (5)

Here, Vinq and Vi .4 are longitudinal velocities in the MD and CD, Vg and Vg(45)
are the transverse velocities in the principal directions and at 45°, respec-
tively, v's are Poisson ratios, E's are Young's moduli, and G is the shear

modulus.
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General description

This section provides an overview of the operation of the instrument. The spe-
cific details, organized by function (acoustic, mechanical, electronic, and

programming), are discussed later.

The purpose of the instrument is to find the time-of-flight velocities of trans-
verse and longitudinal plate waves in sheets. Fig. 1 is a schematic diagram of
the apparatus, and Fig. 2 is a photograph of the system. Ceramic piezoelectric
transducers,placed on the surface of the sheet are used to couple mechanical’
energy into and out of the sample. A sinusoidal voltage pulse is applied to one
transducer, the -transmitter, which oscillates and sets up wave 'motion in' the
sample. A second transducer, the receiver, responds as the disturbance teaches
it a short time later. The receiver signal is amplified, digitized, and trans-
ferred to a computer, which displays it as a function of time on a CGRT. The
computer analyzes  the signal and adjusts the gain of the amplifier so that the
full range of the A/D is used without saturation. This transmitter pulse ‘and"
receiver signal analysis sequence is repeated for the number of times ‘selected
by the operator. Each receiver pulse is superimposed on the original CRT dis-
play. Under computer control, the transducers are lifted off the sheet, their
separation distance is increased, and they are lowered back on to the sample.
The signal analysis routine is repeated and the "far" signals are also superim-

posed and displayed on the CRT but below the "“near"” signals. The computer _

averages both the near and far sequences and replaces them with averaged
signals. The computer then cross—correlates the two signals and finds the time
shift which has‘a maximum in the cross-correlation function. The time-of-flight
velocity is calculated by dividing the difference in transducer separations by

this time shift.

—,,
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The transducers are then lifted and returned to the near separation,. completing

one velocity measurement.
(Fig. 1 and 2 here)

The transducers oscillate in the plane of the sample, and it is possible to
detect transverse or longitudinal waves by aligning the direction of oscillation
perpendicular to or parallel with the transducer separations. The computer can.
initiate a rotation of the transducers by 90 degrees to alternate the mode of
propagation detected. . The computer can .also translate the carriage holding the
transducers laterally across the sheet. By moving the carriage, the sheet can
be tested at a number of locations, and average values and variances can be
calculated. Finally, the sample is attached to a rotating base driven by a
stepping motor. The computer activates the stepping motor, permitting wave prop-
agation velocities along different sheet axes to be measured. In all, the com—
puter can (1) raise and lower the transducers, (2) choose between two transducer
separations, (3) move the transducer carriage over the sample, (4) rotate the

sample holder, and (5) rotate the transducers by 90 degrees.

The most common test determines the four indépendent in-plane elastic parameters.
Before testing begins, tﬁe operator selects the number of received signals to be
averaged aﬁd‘the number of locations, N, on the sheet, over which each velocity
is to be averaged. A sampie is eut with its edges parallei to the prinéipal

axes and placed 1n-the rotating samplé holder. When the Qperator initiates test-
ing, the instrument first determines the machine- and cross-machine directions in
the sample. It doeé this by orienting tﬁe transducers to study léngitﬁdinal
motions and by making a velocity measurement in both principal directions. The

direction with the largest velocity is designated as the MD, while the other is
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the CD. The MD longitudinal velocities are now measured at N/2 translations of

the carriage. The sample then rotates 180 degrees and another N/2 MD longitudinal
tests are co?dugfed on the other half of the sample. The N velocities are

averaged and ﬁtandard deviations are calculated. The sample then rotates 90 degrees
and the CD longitudinal motion is analyzed in a like manner. Next, the trans-
ducers are rotated about their vertical axes for transverse wave propagation.
Transverse velocity measurements are made N/4 times at each 90° increment from

the MD. The average velocity and standard deviation of the shear mode in the

principal directions are calculated. This measurement series is repeated for

transverse waves at orientations 45° to the principal axes.
p P

The four aﬁerage velocities and their standard deviations and the averége veloc-
ities squared and their standard deviations are printed out. The squared veloc-
ities'of the first thrée modes are planar stiffnesses divided by density. These
mass specific elaétic parameters are appropriate for irregular mater%ils like
paper, whose thiékneés (and therefore density) are hard to define.l However, 1f
the dperatér choosés, a value for density 1is entered, and the engineering
elastic parameters are calculated. The report generated afer tééting é‘typical

sample iélpresented in Fig. 3.
(Fig. 3 here)
Acoustics

Thé purpose of the acoustic portion of the apparatus 1s to generate and receive
plate waves which ha?e phase velocities that are directly related to mﬁs; spe-
cific eléétic baraﬁéters. If the frequency is low enough so that the out-of-plane
wavelengths are iong compared to the sample thickness, the plate waves are non;

dispersive. 1In a-nondisperéive frequency range, the time—of-flight velocity

quals the phase velocity, and time-of-flight measurements can determine elastic
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disturbance and reflections from the boundaries. If CW methods are to be applied,
the direct propagation must be separated from reflections. In other applica-
tions, time delay spectrometry has been used for this ﬁurpose. Here, the trans-—
mitter frequency is swept, the receiver signal is mixed with the transmitter
signal, and the mixed signal is Fourier analyzed. Each transmitter to receiver
path is represented by a low frequency peak in the Fourier transform. In fact,
the transit time 1s proportional to the Fourier transform peak. This approach

was rejected for our application, since the 100kHz upper frequency limit .
resulted in very poor time resolution. Continuous wave techniques are concep-
tually attractive, but no practical scheme is apparent. Time—-of-flight

measurements seem to be the only viable approach.

Even for time~of-flight measurements on short pulses, care must be taken to
avoid reflectional interference. In this system, a single cycle, 60kHz pulse is
used to excite the transmitter. The transducers ring for many cycles, but only
the first half cycle of the received signals are used in the cross-correlation
time delay determination. This permits testing to within about 3 cm of the:
sample edge without concern over errors from reflectional interference. Since
attenuation increases with frequency, the pulse shape is distorted by propaga-
tion through the sample. Therefore, using only the front end of the pulse to
calculate time-of-flight causes an overestimate of the phase velocity. ‘However,
the absolute error amounts to around one percent and is insensitive to changes
in paper variables. This is small compared with differences between samples,

and it can be neglected.

As noted earlier, the apparatus uses only two transducers. In order to measure a

time—-of-flight velocity, their separation distance is changed, and the two recorded
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signals are compared. The mechanical apparatus necessary to implement this
approach is more complex than one using two receivers (or two transmitters)
unequally spaced from a transmitter (or a receiver). The three-transducer
method, however, requires that the response of the two receiving transducers

be closely matched. Our experience with three transducer systems has
demonstrated that it is unrealistic to expect a pair of transducers to maintain
the same interaction with the sample overtime. Two-transducer systems are
repeatable over long periods of time, while three-transducer systems demand
periodic calibration. Here, simplicity of design and speed of operation have

been sacrificed for éonsistency of results.

The pilezoelectric material in the transducers 1s lead zirconate titanate (P2T
5H). This is a dense ceramic with a large mechanical impedance. In order to
impedance match the piezoelectrics to the samples, a parallel biomorph construc-
tion is used. To build a biomorph, two thin (~ 0.25 mm) plates of the PZT are
bonded together with their polarities in the same out-of-plane direction. When
a voltage is applied at the center electrode relative to the outside surfaces,
one plate expands while the other contracts, causing the biomorph to bend. The
bending yields greater motion per unit force than bulk waves in PZT and better
coupling of energy into the sample. Biomorphs with a width of 6 mm are procured
from Vernitron Inc. The edge which contacts the sample is rounded by pressing
it between brass discs, 5 inches in diameter, and sanding off the excess. In
the transducer mount, the biomorph is clamped with a set screw between two brass
half moons. The length of biomorph from the clamp to the rounded free end
determines the transducer's resonant frequency. The length of these transducers
is 8 mm, making the resonant frequency 60kHz. Another advantage of the biomorph

design is that transverse and longitudinal plate waves are generated with the
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same transducers. If the transducer separation is parallel to the biomorph
polarization direction, longitudinal waves propagate between the transducers.
If the separation is perpéndicular to the direction of propagation, transverse
waves are propagated. The modal purity of the transducers can be confirmed by
noting the small signal when one transducer is set for transverse propagation
and the other for longitudinal. This i{s not the first time that biomorph trans-
ducers have been used to generate plate waves in polymeric sheets.l Suitable
commercial transducers are available from the H;M. Morgan Co., but our design
enhances performance. The use of parallel (as opposed to serigs) biomorphs
leads to electrical isolation of the active electrodes and better signal to
noise ratios. Sensitivity is increased by using wider elements. In all, the

signal to noise ratio 1s about twice that of the commercial transducers.
Mechanics

The stepping motor driven, rotating plate which holds the sample is called the

platter. 1Its base is a 13~inch pitch-diameter chain sprocket which is spindle

mounted. It revolves in a bearing attached to the instrument frame. A thin
teflon spacer separates the frame from the platter. A stepping motor, which
turns a one-inch pitch-diameter chain sprocket, is also attached to the frame..
This sprocket drives the platter through a stranded wire reinforced cable chain.
Since the stepping motor increments 1.8 degrees per step, the platter requires
2600 steps for a revolution.' A magnet is mounted on the circumference of the
plétter, and a pulse is generated as the magnet passes a Hall effect detector
secured to the frame. This provides the reference fo; aligning the principal

axes of the sample at a chosen angle to the transducer separation.
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The upper portion of the platter is the sample holder. A square metal plate
with a 1lip on three sides is screwed to the platter base. A grooved Delrin slat
is attached to each 1lip, producing a slot on three sides of the plate. A rec-
tangular tray is machined.to slide into the slotted plate from.the open side. A

sheet sample, which is nominally 8 inches square, is placed on the tray, and the

tray is inserted into the platter slot. A layer of soft rubber separates the metal

tray from the sample. This acoustically isolates the sample from the platter.

The transducers are suspendéd on a carriage above the plagter. The carriage
rides on two hardened steel shafts, mounted on either side of the'frame, through
ball bushings. Translation of the carriage allows the trahsducers to span the
sample. The carriage is driven by a double acting air cylinder; it can be
pulled back to the rear of the sample or pushed toward the front. In order to
position the carriage at discrete, intermediate positions, a serrated aluminum
rack 1s fastened along each side of the carriage. Stops mounted on the frame
are pushed into the rack to interrupt the translation of the carriége at the

proper time. The stops are driven by single-acting, spring-extend air cylinders.

The location of the carriage is sensed with a potentiometer fixed to the car-
riage. A chain sprocket is attached to the shaft of the potentiometer. The

ends of a cable chain are held by clamps on the frame. The chain threads around
the potentiometer wheel and back around another sprocket mounted to the carriage,
as shown in Fig. l. As the carriage translates, the potentiometer shaft rotates,

and the voltage at the wiper of the potentiometer changes.

In order to alternate transducer separations, a second carriage is mounted on
the translation carriage. One of the transducers is attached to this carriage,

which rides on hardened steel shafts through ball bushings. Since the axis of
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these shafts is perpendicular to the axes of the translation shafts, the motion
separating the transducers 1is perpendicular to translation. This carriage 1is-
driven by a double—acting air cylinder fixed to the translation carriage. Rigid
stops insure that the difference in the two transducer spacings, achieved by

pulling or pushing the air cylinder, is constant.

Rotétion of the transducers about vertical axes for ffansverse and longitudinal
operation 1s also achieved by double-acting air cylinders. 'A collaf with .a
slotted lever arm controls the angular orientation of eaéh transducer. The
lineal motion of an air-cylinder is converted to a rotation of a transducer by
putting a yoke in the slot of a collar and applying the air cylinder drivé to
the yoke. Extension of the air cylinder results in a 90° rotation of the trans-~

ducers.

A final pailr of air cylinderé are used to raise and lower tﬁe transducers. Theyv
are.;ounted on the carriageé above the transducers. When air is applied, tﬁése
douBlé-acting cylinders eleiate the transducers by pulling up on caps 6n the end
of the transducer fubes. When released, the transducers descend untii they are
riding on spfings inside the transducer tube. The tension df the springs and

the éitent.of the fall\can be ﬁanually adjustéd. When unusualiy fhin or thick-
sampies are tested, it is necessary to use these adjustments to guarantee that |

there is sufficient transducer contact with no sample damage.
Electronics

The instrument electronics can be divided into three parts: the computer; commer-
cial instruments; and cuétom wired circuitry. The computer which oversees the

measurements 1is an Apple Ile with 64K of memory. Its functions are to initiate
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an acoustic pulse, analyze the received signal, activate the air cylinders and
stepping motor, monitor platter rotation and carriage translation, calculate
velocities and moduli, and display the results. The commercial instruments are
a Wavetek model 143 function generator -to drive the transmitter and a SOS0AE
Panametrics amplifier to preamplify the receiver signal. Home-made electronics
include a }Q MHz analog.to.digital converter for the regeived signal, a buffer
memory to store the digitized signal, a hardware multiply circuit to speed the
cross-correlation cgyculation, a variaple gain amplifier which adjusts the input
signal level to match thg range of the A/D, stepping.motor and air cylinder

i
drive circuitry, and an A/D for the translation carriage potentiometer.

An ultrasonic pulse sequenée begins with a TTL level signal from the computer
triggering the function generator to emit a 60kHz, single-cycle pulse (see

Fig. 1). The pulse amplitude can be adjusted to 30 volts peak-to-peak, but it
is normally set at about 15 volts peak to peak. The initial phase of the sinu-
soidal»outpu; can also be altered. A one-time adjustment of the phase was con-
ducted so that, when a typical sample is tested, the received signal has a
pronounced, positive first response. This signal is used to excite the
transmitter. The resulting electrical signal at the receiver goes to the Pana-
metrics preamﬁ. This is a battery-powered,AZOkHz to 2MHz band pass amplifier
which can be switched to a 40 dB or 60 dB gain. It has been modified to runm off
line power to avoid the nuisance of changing batteries. The signal now goes to
a line receiver in the custom electronics box. From there, it is fed to a
MC3340 variable attenuator. The analog attenuation input of this chip comes
from a digital to analog convertor. The computer sends diéital inputs to the
D/A throﬁgh a parallel outﬁut port. In this mﬁhner, the computer can adjust the
receiver signal level. After this selectable attenuation, the signal is

amplified and passed by a line driver to the A/D board.
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The measurement stategy depends on a digital analysis of the receiver signals.’
In order to resolve the 60kHz signals, a high épeed—analog to digital conversion
15 required. Thiq is achieved with an‘A/D card made by'TRW, built around their
TDC1007 flashAA/D chip which can do con?ersions at up to 30 MHz. In this appli-
cation, it is ruﬂ at 10 MHz, giving a 0.1 usec time.re;olution of the received

signal.

The outputs from the A/D are stored in a specially built ﬁigh-speed buffer -
memory. It 1s made from two each 4k x 4 IMS1421 NMOS static RAM's built by
Inmos. The address and data lines of this memory are normally connected through
tristate buffers to the Apple buses. However, when an A/D cqnvepsionxis trig-
gered (off the same pulse that fired the function generator), ;hese lineg gre o
Eontfolled for a time by the A/D circuitry. To be specific, a set of counters
sequence the address lines. Starting from zero when the transmitter is
triggered, the counters increment the following 2048 A/D conversions, which are
now gated to the RAM_I/O lines, into consecutive address 1pcations. Before
starting a pulse at the "far" spacing, the signal from the "near” spacing is
moved froﬁ the buffer memory, to other locations in memory. A 20 MHz prys;al
oscillator. generates the clock which runs the counters and provides the timing
for the convert signals to the flash A/D. The trigger pulse, which fires the
function generator and starts the A/D, is synchronized with this glock to

preclude any jitter in the received signal.

Thé computer keeps track of the location of the translation carriage by monitor-
ing the voltage at the wiper of the carriage potentiometer. This voltage is
digitized using a D/A and a comparator:. The outputs of an Apple parallel port
are connected to the digital inputs of the D/A. The analog output of the D/A

and the wiper voltage are inputs to the comparator. The computer sequences the
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D/A inputs and monitors the output of the comparator. The value of the digital

input when the comparator switches states is taken as the wiper voitage.

The time-éf—flight determination comes from a cross-correlation calculation.
This requi;es many multiplications and additions of the data representing the
"near” and "far"” signals. Calculation time is decreased by using a TRW TDC1008
8 bit multiplier—accumulator chip. When the proper code is on the address bus,
inputs from the Apple data bus are latched into this chip.. After the calcula-
tions are‘éompleté,'the chip drives the data bus, and the results are available

to the central processor.

There are also drive circuits for the air cylinders.and the stepping motor. The
solenoids.that‘control flow to the air cylinders are activated by AC line voltaée.
The TTL level signals from parallel ports on the compﬁter are buffered in order
to drive the relays that channel power to the solenoids. The stepping motor is
controlled by two TTL lines off a computer ﬁarallel port. A commercial dfiver
board interfaces the parallel port to the stepping motor. Pulsing one of the TTL
lines increments the motor, while the state of the other 11ne~determines the

direction of rotation.
Software

The central function of the computerized data analysis is to determine a time-
-of-flight by performing a cross-correlation calculation on the "near"” and "far"
signals. This operation was outlined in the General Description and is now
discussed in more detail. The main executive programs operating the instrument
are written in Basic. However, Basic is too slow for the many repetitive calcu-
lations needed in the signal analysis routines, and these are done in assembly

language.
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One assembly language signal analysis routine defines the first peék in the
"near"” signal. This begins with a "baseline"” analysis which is a characteriza-
tion of the signal before the arrival of the acoustic pulse. Its purpose 1is to
determine the average value and maximum deviation from the average of the ini-
tial segment of the received sigﬁal. The length of the baseline, which 1s about
50 data points, is adjusted by the software, depending on the anticipated veloc-
ity of the mode being propagated. After the baseline analysis, the computer
starts from the end of the baseline interval and sequehtiélly examines the data
representing the signal. The point at which the signal exceeds the baseline
average plus four times the maximum deviation 1s designated as the beginning of
the first peak. Subsequent data are examined until a baseline crossing is
detected. This is the end of tﬁe first peak and the limit of the "near"” signal'

data in the cross—correlation calculations.

The automatic gain control is also an assembly language routine. When a new
acoustic mode is inifiated, the gain on the input amplifier defaults to a value
that puts typical signals in the proper range for the A/D. If the first peak
saturates the A/D, the gain, which has 256 discrete levels, is reduced by eight,
and a new recelver signal is tested. This continues until an unsaturated first
peak is generated. If the operator decides that this beginning gain is too low,
the program can be interrupted, and the gain adjusted manual;y. After the
carriage translates to a new sample location, the gain increments by eight and
is reduced only if the first peak saturates. The signals taken during the gain
control adjustments are plotted on the CRT display. If more than one pulse was
necessary, the signals are superimposed and the progress of analysis can be

observed.
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Signal averaging is performed after the gain is fixed in the correct range.

Five signals are digitally averaged to generate a composite signal, which has an
improved signal to noise ratio. If the operator intercedes, the number of
signals averaged can be changed. As they are received, the signals are superim-
posed on the CRT display. When the gain adjustment and the signal averaging are
complete on the "near” and the "far" signals,_ﬁll of ﬁhe earlier signals are
removed from the display, and the composite signals are exhibited. Fig.‘4 is

a print-out of the CRT display showing typical composite éignals. Notice in the
top figures the vertical line that designates the limit of the first peak on

the "near” signals and the shorter lines that are the limits of the baselines on

the "near" and "far™ signals.
(Fig. 4 here)

The time-of-flight calculation is accomplishéd with an assembly language cross-
correlation algorithm and an optimization routine writteh in basic. The first
step in the cross—correlation program is to shift the “far" signal back by a
number of data points called the "offset”. Each "near” data point, acquired
before the end of the first peak, 1s multiplied by the "far™ data point which it
correspondé to after the offset. These numbers are added together to give the
value of the cross—correlation function for this offset. Unless an operator
overrides normal procedure, the optimization routine defaults to a beginning
offset that is typical fér the mode being studied. After the first cross—-correl-=
ation calculation is complete, the offset is incremented by one, and the proceés
is repeated. If the second summation is larger than the first, the offset con-
tinues to increment until a maximum is reached. If the first summation is
larger, the offset decrements until a maximum occurs. In either case, a quadra-
tic equation is fit to the maximum and the sums on both sides of the maximum.

he displacement offset value which gives a peak in the quadratic equation is
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taken as the "displacement of the "far" signal from the "near" signal. The time-
of-flight is 100 nsec times this displacement, and the velocity is the separa-—
tion difference divided by the time—of-flight. The CRT now 41splays the "far"
signal shifted to the left by the offset at the haximum.summation. See the
loyer curves on Fig. 4. If the initial offset is grossly in error, the "far"
and the "near" signals could misalign by a wavelength. The operator woul@
observe ﬁhis; interrupt the program, and enter a different starting‘offset.

When the carriage transiateg to a new position on the gamﬁle, the starting off-
set 1§ thg offset at the maximum of the previous positién. After a velocity is
calcuiﬁ£ed it 1s displayed on CRT along with the test number, the running

average, and standard deviation.

The elastic characterization routine most commonly used was described in the
general description section. Another useful program measures the time-of-flight
velocity of the quasilongitudinal waves as a function of angle from the MD.

The operator sets the number of signals to be averaged and the number of test
locations for each angle. The testing begins with an MD determination as per-
formed in the elastic characterization program. Velocities are then measured at
each five degree rotation of the platter. The average velocity squared values '
(specific stiffnesses) and standard deviations are printed out along with a

polar plot of the results. A typical report is presenfed in Fig. 5.
(Fig. 5 here)

The operator can enter an instrument check-out routine from the elastic charac- '
terization or the orientation program. This allows the basic operations of
instrument to be selected and performed individually. The platter can be

rotated, the carriage translated, or the transducers rotated. “Near” and "far”
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signals can be taken and displayed, and the operator can set the preamplifier

gain and the function generator output accordingly.

The ﬁajor basic programs begin with an initialization procedure for platt;r
rotation and carriagé translation. Firsf, the platter rotates to its "home"
position. This 1ea§es the sample holder square with the front of the instrument,
and allows the sample to be place& on the.slide tray and inserﬁed int6 the in-
strument. The computer identifies ho@e as a specific number of steps past the
first detéction of the ﬁagnet by the Hall effect ﬁransducer. Thé carriage ini-
tialization begins by refracting the translation stops, then pushing the carriage
full forﬁard,'and pulling it all the way back. The potentiometer readingé'at

the two extremes are noted. The locations of the intermediate locatidné are
calculated by extrapolation. The potentiometer voltages that trigger release of
the stops in later carriage translations are determined by this calculation.

The carriage then moves to its starting point.
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THE INSTITUTE
TWO TRANSDUCER

OPERATOR :C HABEGER
DATE :2 25 86
PROJECT: 86-4
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OF PAPER CHEMISTRY
VELOCITY MEASUREMENT

SAMPLE : JR I SPECIMEN S

LONGITUDINAL TRANSDUCER SEPARATION = 35.2 MM

SHEAR TRANSDUCER SEPARATION = 35.2 MM

SAMPLE TIME = .1 MICRO SEC

MODE TESTS VELOCITY ST DEV V SGR ST DEV SIG AV
KM/SEC KM/SEC  KM2/SEC2  KM2/SEC2

MD LONG 16 3.101 059 9.62 .36 é

CD LONG 16 2.464 019 é.07 .09 é

SHEAR 16 1.669% 016 2.79 .05 é

45 SHEAR 16 1.668 015 2,78 .05 é

MODULI CALCULATIONS

MD-CD G. MEAN V SOGR = 7.4 KM2/SEC2

STIFFNESS RATIO = 1.58
NUXY = .20
NUYX = .32

6. MEAN NU = .25

DENSITY = .482 GM/CM3

EX = 6.13 GPA EX/RHO
EY = 3.87 GPA EY/RHO
G = 1.90 GPA G/RHO

8.98 KM2/SEC2
5.67 KM2/SEC2
2.79 KM2/SEC2

fHE MD-CD G. MEAN E/RHO = 7.14 KM2/SEC2

3. Printout for the in-plane moduli test.
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4. Composite "near" and "far" signals as displayed by the CRT before (top) and
after (bottom) cross-correlation. Every other digitized point is shown up
to the capacity of the display.
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THE INSTITUTE OF PAPER CHEMISTRY
LONGITUDINAL SPECIFIC STIFFNESS (VEL SGR) VS ANGLE TO MD

OPERATOR: CHUCK DATE  :APRIL 21 1984

PROJECT : 3447 ' SAMPLE : A 31

ANGLE VEL SGR STD DEV ANGLE VEL SGR S§TD DEV

DEGREES KM2 / SEC2 DEGREES KM2 / SEC2
0 13.22 .32 90 3.18 .14
3 13.21 .25 95 3.24 15
10 12.65 .58 100 3.47 A7
15 11.62 .92 1035 3.74 11
20 10.80 .36 110 3.95 .45
25 9.47 .32 115 4.14 .07
30 8.59 .34 120 4.51 .09
35 7.60 .31 125 4.84 .03
40 é.78 <25 130 5.30 16
45 5.98 «35 135 5.86 .18
50 5.41 27 140 6.58 19
55 4.92 W27 145 7.24 .22
40 4.50 .23 150 8.31 .04
65 4.18 .26 155 9.39 .22
70 - 3.92 .20 140 10.46 A1
75 3.73 .07 145 11.42 .11
80 3.47 .20 170 12.37 .27
85 3.24 16 175 13.03 .39

TEST PER 5 DEGREE INCREMENT = 14 SIGNALS AVERAGED = 4

THE ANGLE TO MAJOR PRINCIPAL AXIS = .4

Se

cb

MD

PLOT OF VEL SGR VS ANGLE AS SEEN FROM FELT SIDE

5. Printout for the square of the longitudinal velocity as a function of
orientation.
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ELASTIC PROPERTIES, PAPER QUALITY, AND
PROCESS CONTROL

G. A. Baum . .
Director, Paper Materials Division
The Institute of Paper Chemistry
P.0. Box 1039

Appleton, WI 54912

ABSTRACT

The elastic properties of paper are fundamental
parameters that describe the small strain mechani-
cal response in three dimensions. It is now
possible to routinely measure seven of the nine
elastic stiffnesses associated with paper, all on a°’
single specimen. The elastic stiffnesses are sen-
sitive to paper manufacturing conditions, allowing
one to study the affects of a change in any machine
operating variable on the three dimensional elastic
behavior of the paper. The elastic stiffnesses can
be related to a number of (destructive) end-use
tests, making them useful indicators of product
quality. Some of the elastic stiffnesses can be
measured on the paper machine, providing both con~
tinuous monitoring of product quality and, even-
tually, control of the paper machine itself.

INTRODUCTION

The elastic properties of a material describe its
deformation when a stress or combination of
stresses are applied to it. For an isotropic
material, one which has no directionality, there
would be three elastic properties: a Young's modu~
lus, E, relating axial stress and strain; a shear
modulus, G, relating shear stress and shear strain;
and a Poisson ratio, v, the ratio of the lateral
contraction to the axial extension during uniaxial
stressing. Only two of the three elastic proper-
ties for an isotropic material are independent. If
any two are known, the third can be computed
according to G = E/2(1+v).

For paper, the manufacturing process results in
symmetry conditions which require nine elastic
properties (1,2). These include three Young's
moduli (one in each principal direction), three
shear moduli, and three Poisson ratios. Six of
these parameters are defined in Fig. 1 and 2. The
three Poisson ratios also could be determined from
the three experiments shown in Fig. 1. 1If the nine
elastic properties of paper are known, the three
dimensional response of the paper to applied
stresses is known. Such information is valuable in
characterizing the end-use behavior of paper and
for use in modeling containers or other structures.

Procedures have been developed at The Institute
of Paper Chemistry for measuring the nine elastic
properties of .paper or other sheet materials (3-5).
Seven of these are measured routinely in the -
laboratory. Measurements have been made on essen-
tially all grades of paper and board, nonwovens,
wood, and some plastics. There are limitatioms,
however. The minimum sample size is around 6 by 6
inches, although measurements of elastic properties
in the thickness direction can be made on smaller
specimens. There is a minimum thickness for the z-
direction measurements, however, of about 0.004 to
0.008 inch, depending on the surface roughness.

There is no minimum thickness for elastic property
measurements made in the (MD-CD) plane of the
paper. As a consequence of these physical limita-
tions on sample size, most of the three dimensional
work has been carried out on board samples. The
in-plane elastic properties measured on thin
samples, however, are also useful in understanding
the effect of process variables on properties and
providing improved characterization of end-use per-
formance.

CD STIFFNESS, Eco
(vC22)

ZD STIFFNESS, £,
vCyy)

Fig. 1 Three modes of deformation in uniaxial
‘tension. -

§

]

MD-ZD SHEAR STIFFNESS, cD-ZD SNEARl STIFFNESS,

. Buo-20 Gcp-20
(Cad) (Css)

MD-CD SHEAR STIFFNESS,
Gup-co
(Cea)

Fig. 2 Three modes of deformation in shear.

THEORY

The elastic -properties are determined. by measuring
the velocity of ultrasound in the paper. The
theory has been described in detail elsewhere
(2-5), and only a brief overview will be given
here. The generalized Hooke's Law for a three
dimensional material is .

6
gi = z Cij €3
j=1

vwhere i and j have values from one to six and where
gi is the stress, ej is the strain, and the Cij are




Project 3467 -115-«

the elastic stiffnesses. The nine elastic stiff-
nesses are related to the "engineering elastic
constants" viz. Young's moduli, shear moduli, and
Poisson ratios, see, for example, Ref. 3.

Three of the stiffnesses are easily determined
by measuring z-direction bulk wave velocities:

C33 = pV2p,
Cuy = pszy-z

Cs5 = 9v25x-z
where

Vpz = velocity of bulk longitudinal wave in the
z-direction

Vgy-z = velocity of bulk shear wave polarized in

the y direction

velocity of bulk shear wave polarized in

the x direction

p = apparent density

Vox-z =

The constants C;) and Cy7 can be determined by
propagating longitudinal waves in the machine (x)
and cross-machine (y) directions, respectively.
The velocities of Viy and VLy may then be used to
compute Cj) and Cy9 from:

Ciy = pV2y
€2 = pszy

The coefficient Cqg is easily determined by
measuring the velocity of a shear wave propagated
in either the x or y direction with polarization in
the y or x direction, respectively. The expression
for Cgq is:

Cop = DVsz-y

This shear velocity can be measured on either plate
or bulk materials.

The constant Cj7 is obtained by propagating a
shear wave, polarized in the x-y plane, at a direc-
tion 45° to both the x and y axes. The expression
for Cy; in this case is:

Ciz2 = {[2pV23(45°) - I/Z(Cll + Co9)
- Cggl? - [(cyy - 022)7212}1/2 - Ce6

where Vg (45°) = velocity of the in-plame shear
wave propagated in a direction 45° to the x and y
directions.

The stiffnesses Cj3 and Cg3 are more difficult
to obtain, and are not measured routinely at pres-
ent. The following discussions will relate only
to the seven stiffnesses mentioned above.

The experimental techniques for determining
Vizs Vgy-z,» and Vgx_,, have been previously
described (4). - These velocities are determined by
measuring the transit time of a short burst of sine
waves (pulse) through the specimen. Two piezo-
electric transducers are used as depicted in Fig.
3. These transducers were specially designed by
IPC staff for this purpose. The output pulse from
the function generator is amplified and fed to the

Status Report

sending transducer and coincidently triggers the
oscilloscope and starts a time interval counter.
The mechanical disturbance transmitted through the
specimen is detected by the receiving transeducer
and is converted back to an electrical signal,
vhich is amplified and displayed on the oscillo-
scope. By adjusting a delay-time multiplier knob
on the scope, the instant of triggering of a second
delayed time base is controlled by the operator.
The scope provides visualization of the precise
point of triggering. Coincident with the trigger~
ing of the delayed time base is the delayed GATE
OUT which stops the counter. Delay time intervals
are averaged by the digital display counter. The
measurements are corrected for delays in the trans-
ducers and electronics. By time-averaging the time
intervals, delay times can be measured to the

' nearest nanosecond.

FUNCTION SENERATOR
INTERSTATE P76 tw»——- POWER AWPLIFIER | AMAA—
oYNe OUT H%g} ENI 2e0L
'
2ENDING
it cER
OExr. TRIGeEN Sen g
asaLLOBCOME -
WP, 1T40A sPECIMEN °
MAL
aaTg oone
RECEIVING
START TRANSDUCER
PULSE
TIME INTERVAL o - "“‘;l’“
":":“ M- |_sosoat-iso8 | av—
83008753084

Fig. 3 System for making out-of-plane velocity
measurements.

The type of system used for measuring Vi, Viy»
Vgx-y» and Vg(45) is shown in Fig. 4. These
measurement techniques also have been discussed in
detail previously (3,4). There are two major changes
in the in-plane measuring equipment, however. The
first involves the use of a cross correlation
method to improve the measurements. Briefly, the
idea is to use a linear array of three transducers
with the outer two transducers transmitters, and
the inner one a receiver. The receiver is placed
closer to one transmitter than the other. When the
transmitters are alternately fired, signals with
two different delay times are received by the
middle transducer. These signals are digitized and
their cross correlation function is calculated.

The first maximum in the cross-correlation function
gives the time difference, At, between the arrival
of the two signals. The velocity is then calcu-
lated as the difference in the transducer spacing
divided by At. Variations in sheet structure are
accounted for by sampling over the sheet.

A schematic of the overall operation is pres-
ented in Fig. 5. The transmitter signals are ini-
tiated by a pulse generator, which fires a short
pulse of sine waves from a signal gemerator and

. triggers the analog to digital conversion of the

receiver signal. 1In normal operation, the signal
generator output is a one to five cycle pulsed RF
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signal at 30 to 80 kHz, adjusted to give a 500 Hz
repetition rate.

GATED rf
GENERATOR FEnEaAT
e GENERATOR AL
interstate F77
RECEIVER - TRANSMITTER

i)

LED DELAY TIME
READOUT

DELAY [—3
CONTROL

lAll

-y
PREAMP 0SCILLOSCOPE
Panametrics Hewlett - Packard
5050-A [W| ~ 743-a O
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Fig. 4 SysCem'for making in-plane velocity
measurements.

PUL.
GENERATOR

SIGNAL
GENERATOR

OIOMATION TRANSIENT
RECORDER

- g B

ut TRIG.

IN ouT

L COMPUTER

PAPER }
I ’ ﬂ

COAXIAL
RELAY /™ \

—"\/

PARALLEL (

DIGITAL

INTERFACE K

AMITTER RAER  XWITTEAR,

RUBBER COVERED
BASE PLATE

Fig. 5 System for making in-plane measurements
using the cross correlation method.

The ultrasonic transducers are piezoelectric
bender" transducers, mounted on a ruled scale such
that their separation can be adjusted and measured.
Spring steel regulates the transducer pressure
against the paper and allows the tramsducers to be
pivoted vertically off the sheet without changing
their spacing. The base plate is covered with soft
rubber so the samples are acoustically isolated
from the base. The sample is centered under the
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transducers, in order to avoid the problems caused
by interference from reflections off the sample.
edges.

When activated by the pulsed'RF signal, the
bender transducers oscillate in the plane of the
sheet. If the transducers are placed so that their
direction of motion is parallel to their separa-
tion, a longitudinal plate wave is generated in the
sheet and detected at the receiver after a time
delay. Alternatively, the polarization can be per-
pendicular to the transducer separation, and a
shear wave is generated and detected. In either
case the receiver signal is amplified by a preamp-
lifier and sent to a Biomation analog to digital
recorder.

The digital output of the Biomation. is then
transferred to an Apple II Plus computer. For
rapid data acquisition, the Apple is programmed in
assembly language to control the input signals from
both transducer pairs. The computer can do signal
averaging on the received input signals.

The two received signals appear roughly as in
the computer display shown in Fig. 5. After a dead,
time (flat portion) which is greatest for the long
transducer setting (shown on the bottom), the sinu-
soidal signal is received. To avoid interference
from waves reflected off the sample edges, only the
first peak of the received signal is used in the
analysis. The signal analysis limit, controlled
from the keyboard by the operator, is indicated by
a vertical line on the top CRT curve. The dif-
ference in delay time between the two signals is
calculated using the cross-correlation technique
mentioned above. This program is written in
assembly language to obtain fast operation. The
velocity of sound in the sheet is then found by
dividing the difference in transducer separations
by the time difference. . .

Paper is quite heterogeneous and the measured
sound velocity can vary with transducer position
on the sheet. To get an estimate of the average
velocity and velocity variation in the sheet, a
number of tests are performed. The operator inputs
the number of tests to be averaged and places the
transducers at the first position. The cross-
correlation calculation is done, and the velocity
calculated and displayed. The operator now raises
the. transducers off the sheet, the sheet is moved
to a new position, and the test is repeated. The
CRT displays the latest velocity, the average
velocity, and the standard deviation. The process
is repeated until the prescribed number of tests is
complete, at which time the final velocity average
and standard deviation are displayed on the CRT and
printed. The cross-correlation calculations are
carried out so fast that they are done while the
operator moves the sheet, so data can be taken as
fast as the operator can reposition the sheet and
tap the appropriate key. ’

The second major change is the automation of
the in-plane measurement system. A description,
together with the details of the cross-correlation
method, will be published elsewhere (6). A schema-
tic of the device is shown in Fig. 6. This system
automatically determines MD and CD directions in
the sheet, measures the four velocities and their
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standard deviations, and computes and outputs the
specific elastic stiffnesses (elastic stiffuness/
density), or the engineering parameters if a den-
sity value is inputted. The device is also
programmed to measure the elastic stiffnesses as a
function of angle to the MD. Such measurements
have proven useful in studying transverse headbox
flows and other machine operating variables.
Figure 7 depicts polar graphs of specific longitu-
dinal stiffness where there is a transverse flow
from the headbox, as evidenced by the lean of the
elliptical envelope away from the MD.
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Fig. 6 Automatic system.
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The automatic system takes about 7 to 9 minutes
to measure the four in-plane elastic stiffnesses.
An operator can measure the three~out-of-plane
specific stiffnesses in typically less than one-~
half hour. Thus in less than an hour, seven of the
nine elastic stiffnesses can bé measured, all on a
single specimen of paper. Table 1 gives some typi-
cal values. The following sections describe how
these elastic stiffnesses may be used.

Elastic Properties and Machine Variables

The relationships between paper machine variables
and the in-plane (MD-CD) elastic properties have
been studied by a number of authors (7~-18). Rela-
tionships between process variables and both in-
plane and, out-of-plane parameters have received
less attention. Figures 8-~10 illustrate how the
three longitudinal stiffnesses depend on fiber
orientation, wet pressing ‘(density), and wet
straining (19) for a bleached softwood commercial
kraft pulp refined to about 500 CSF. The fiber
orientation was varied by changing the relative
speeds of the pulp slurry ahd wire in a Formette
Dynamique anisotropic sheet former, and the density
was changed by wet pressing. After wet pressing,
the sheets were strained in the MD while wet (35 to
40X solids) to levels of 1.2 and 2.4%. The sheets
were then restrained in both the MD and CD (but not
the 2ZD) during drying.

Table 1. Elsstic properties.

Apparent

Denaityi Stiffness® (GPa) Engineering constants® (GPa)

P, kg/m> Cy)  Cz3 €33 €1 Cj3 C23 G4y Css  Cee Ex By By vy Vxz Vyz  Gyr  Gxg Gy
Carton stock 780 8.01 3.84 0.042 1.36 0.092 0.91 0.099 0.137 2.04 7.44 3.47 0.040 0.15 0.008 0.021 0.099 0.137 2.04
Linerboard 42 1p 752 0.059 0.050 0.060 2.08 9.98 3.39 ! 0.050 0.060 2.08
Linerboard 90 1b 691 8.12 3.32 0.032 1.19 0.113 0.082 0.104 0.129 1.80 7.46 3.01 0.029 0.117 0.109 0.021 0.104 0.129 1.80
Boxboard 778 0.043 0.083 0.099 1.36 6.03 2.32 0.119 0.083 0.099 1.36
Laboratory BRSWS 121 10.9 6.40 0.172 0.290 0.343 3.09 10.3 6.04 0.182 0.290 0.343 2.97
Corrugating medium 682 0.103 0.046 0.053 1.58 6.89 2.68 0.167 0.046 0.053 1.58
SThree dimensional bulk stiffnees.
Poisson ratios are dimensionless.
CBKSW, bleached kraft softwood.
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Fig. 8 EMD vs. density with changxng fiber
orientatiof and wet straining.
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Fig. 9 Ecp vs. density with changing fiber
orientation and wet straining.

In genetal, the elastic stiffness in the direc-
tion of fiber orientation or the direction of wet
straining increases, while the properties in both
the CD and ZD tend to decrease. The restraint in
both MD and CD directions after wet stretching is
thought to represent the situation existing near
the center of the paper web in a modern, wide, paper
machine. Near the edges of the web CD shrinkage
can -occur. since there is no outward force prevent-
ing it. In the case when CD shrinkage is allowed,
the CD modulus shown in Fig. 9 may not decrease
with MD wet straining (18). Htun (20) has shown
that the solids content 18 1mportant in determining
the magnitude of the wet straining effect. Only
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small increases in modulus are observed upon wet'
straining at solids above about 60%.
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Fig. 10 Ezp vs. density with changing fiber orien-
tation and wet straining.

Of particular interest is the behavior of the
out-of-plane stiffness, C33. The in-plane fiber
orientation has no impact on this out-of-plane
parameter, but wet pressing and wet straining have
very large influences. In Fig. 10 the magnitude of
C33 increases by a factor of ten over the density
range studied. On the other hand, wet stretching a
small amount degrades this property very markedly.

Results similar to those shown in Fig. 8-10 are
obtained for the tensile strengths or compressive
strengths in these directions (19).

Figure 11 shows the behavior of the three ani-

sotropy ratios Reys Rxz, and Ry, as functions of

wet straining at two wet pressing levels (21). The
anisotropy ratios are defined as Rez = Cll7353’

Ryz = C23/C33, and Ryy = C))/Cy3. The in-plane
an1sotropy, Ryys 1ncreases with 1ncreas1ng wet
strain, as expected, since Cj)) is increasing (in
the direction of wet straining) while Cy, is
decreasing. Above about 3.5% wet strain the sample
rup;urés;v'ﬂet pressing should not produce any in~
plane anisotropy. At nonzero wet strains, however,
it may be that higher wet pressing pressures lead
to-a different value for Rx In these experiments
the wet pressxng operation was carried out prior to
wet stra1n1ng, just as on a-paper machine. If
there is an interaction between wet pressxng and
wet straining, it must be small, at least in the
range of densities ‘studied here.

For Ryy or Ry, at zero wet strain, however, the
wet pressing pressure has quite a large effect on
the anisotropy. Increasing the pressure from 25
psi (solid line) to-100 psi (dashed line) decreases
Ry (=Ry, at zero wet strain) from about 75 to 55.
Higher pressing pressures probably would decrease
this ratio even more, although it is unlikely that
the ratio would ever approach one, even with 100%
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bonding, because of the inherent anisotropy of the
collapsed ribbonlike fibers.
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Fig. 11 The three anisotropy ratios as a functlon

of wet straining and wet pressing.

Wet straining of the sample causes both Ry, and
Ryz to increase. This happens even though Cy is
increasing and Cy; is decreasing (as in R,),
because C33 is decreasing faster than Cyj.” It is
apparent that a given level of R, (or Ryz) can be
reached by different combinations of wet” pressing
and wet straining. The additional effects of
refining and fiber orientation, both in and out of
the plane, should also be included in the analysis.
The implications of these anisotropy ratios on end-
uge performance need to be established.

The effects of fiber orientation, wet pressing,
and vet straining on the shear stiffnesses are
similar to those for the longitudinal stiffnesses.
Table 2 summarizes how the stiffnesses behave with
increases in the three variables if the experi-
ments are carried out as described earlier.
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Table 2. Effect of machine variables on elastic
modulid

Fiber WetP
Elastic Orientation Vet Straining
Stiffness (MD) Pressing (MD)
C11 + + +
Ca9 - + -
€33 0 + - (1g)
Cee - ' + 0
Cay - ot -
Css, + (sm) + - (em)

8(+) = increase, (~) = decrease, (0) = no change.

bThese results are for the case where the sheets
were wet strained at 35 to 40% solids and then
dried under restraint in both MD and CD direc-
tions. Other drying conditions may give dlfferent
results. See text.

The effect of these variables on the Poisson
ratios has not been studied extemsively. While
vMp-cD 4and vgp-Mp are functions of wet straining
and fiber orientation, their. product is not very
sensitive to these variables (22)." The quantity
(“MD-CD“CD~MD) 2, is a measure of how interrelated
the tensions in the MD are to those in the CD.

Collectively, the results in Fig. 8-10 and
Table 2 suggest that the elastic stiffnesses for
paper are not independent but that process variables
affecting a given parameter may affect related prop~
erties in predictable ways. An example of this is

‘an empltlcal tealtlonshlp of the form Cgg =

a(cllczz)l/ where a is a constant independent of
machine variables, if C))/Cyy is less than about
3.5 (22). This result is similar to the rela-
tionship between the elastic properties of an
isotropic material, discussed earlier. Htun and
Fellers (18) showed that the geometric mean of MD
and CD propertles are often invariant under the
action of increased fiber orientation and wet
stretching of the web., 1In the case of elastic
stiffnesses, it seems that the geometric mean of

.the longitudinal stiffnesses in any plane is highly

correlated with the shear stiffness in that plane,
since similar relationships exist in the other two
symmetry planes as well. Thus Cgs = b(Cj;C33)1/2
and C4y = c(szC33)1/2, where b and ¢ are
constants. Taken together, a single relationship
exists between the elastic stiffnesses, viz.

C11C22C33 = K(C44Cs55C66) -

The implication is that changes in paper machine
variables change the relative magnitudes of the
longitudinal and shear stiffnesses, but that
changes in the furnish (species, pulping, yield, or
refining) will change the slope of the line, K.
This hypothesis is currently being tested.

Elastxc Parameters and End-Use Performance

Most paper specifications xnvolve tests which are
taken to be descriptive of the end~use performance
of the material. Such tests are usually destruc-
tive, and can only be made on samples taken at reel
turnup. Changes in paper machine variables such

as rush-drag, wet pressing, or wet straining,
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however, often affect the elastic properties and
strength properties in the same way. It is perhaps
not surpriging then, that values for many of the
common paper tests often correlate with certain
elastic parameters, at least over the ranges of
values experienced in the paper mill. (The excep-
tions are apt to be changes in furnish or in
formation.) This observation is significant, since
it is possible to measure the three-dimensional
elastic properties of most papers nondestructively
using the ultrasonic methods. These can then be
used to predict a number of the destructive test
values. In this way it is possible to study the
effect of process variables on end-use tests or to
monitor product quality.

Figure 12 shows how MD or CD temnsile strength
varies with C)| or C92. The data, covering a rather
broad range of tensile strengths (either MD or CD),
fall along a single line. The samples are those
depicted in Fig. 8-10. Figure 13 shows how the ZD
tengile strength (internal bond strength) varies
with C33 for the same array of samples. Such
results suggest that a given elastic stiffness
might be used to predict tensile strength, or to
monitor the changes in MD, CD, and ZD tensile
strength with process changes. Measurements on
only one specimen would be required to do this,
Similar results are obtained if one compares den-
sity specific parameters, i.e., breaking length vs.
C/p (or E/p). Such correlations have also been
found to hold for machine-made papers.
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Fig. 12 MD and CD tensile strengths plotted against
Cy) and Cgy, respectively.

Figure 14 shows MD and CD STFI compressive
strength values plotted against the products of in-
plane and out-of~plane elastic parameters. In this
case a model has been developed which relates
edgewise compressive failure with the product of
elastic stiffnesses (23). It predicts that CD
compressive strength, for example, should correlate
with (022~044)1/2. The experimental data give a
best fit line with a slope of 0.49, in good
agreement with the model.
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Fig. 14 MD and CD STFI compressive strength

plotted against the products C})Cgs and
C29C44, respectively. The regression line
coincides with the expected behavior (23).

Table 3 lists the relationships that have been
studied relating the physical properties of paper
with elastic stiffnesses (24). While such rela-
tionships may not be valid for all paper grades or
basis weights, the use of elastic stiffnesses to
evaluate end-use performance and to study the
interactions between process variables and paper
properties has so far been very productive. Work
is continuing in this area.

On-Machine Meagsurements

A practical sapplication of the relationships be-
tween elastic stiffnesses and paper quality factors
has been made in a device which measures elastic
stiffnesses on the paper machine. The first such
sensors, tested on carton stock and more extensively
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on linerboard, measured C))/p and Cgg/p (25,26).
After correcting these values for moisture and tem-
perature variations, they were used to predict the
bursting strength, CD ring crush, and CD-STFI
compressive strength of the linerboard on a con-
tinuous basis,

Table 3. End use tests and elastic parametera.‘.

Elastic

Property Parameters
MD tensile strength 611 (~Emp)
CD tensile strength Cz9 (~Ecp)
ZD tensile strength C33 (~Ezp)
MD/CD tensile ratio C11/€32
MD compressive strength 011055 (”EHDGHD—ZD)
CD compressive strength - C9C4y (”ECDGCD-ZD)
MD bending stiffness TR &
CD bending stiffness Cy2: 13
Internal bond strength ’ C33
Bursting strength Cj1 + C2
Flutability C)) and Css

Combined board performance C22 and Cuy

47 = caliper, Cij = elastic stiffness.

The real payoff for such a sensor, however,
will probably be in paper machine control. Both
C1) and Cgg are sensitive to process and paper
machine variables, but in different ways, and thus'.
permit "tuning" the paper machine to provide opti-
mum board properties. Eventually this capability -
could lead to automatic control of the papermak1ng
process. Commercial instruments to monitor elastlc
properties on-machine are just now becoming
available (27).

SUMMARY

In’ summary, the elastic properties of paper form a
basic set of parameters which are useful for moni-
toring the effects caused by changes in process
variables, capable of predicting end-use perfor-
mance, and overall, helping us to better understand
the fibrous network we call paper. Elastic parame-
ters also are important in product design and
modeling, e.g., in the construction of tubes,
boxes, food containers, etc. Eventually their use
will help us control the paper machine automatl-»
cally. Because most of the elastic parameters
needed to describe paper can now be determined
easily and nondestructively using wave propagation
methods, the opportunity exists to move forward in
each of these areas.
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ROUGHNESS ANISOTROPY IN PAPER

G. A. Baum and D. R..Watermah

ABSTRACT

The average or root mean square (rms) surface roughness of paper was measured
using a stylus-type profilometer. Measurements in the machine direction (MD)
and cross machine direction (CD) gave different roughness values. The roughness
anisotropy, Ra, defined as Rpq/Rcd, varies from about one to 1.6 and is greatest
on the felt side of the paper. R; increases with increasing levels of fiber
orientation and MD wet straining of the sheet but is insensitive to the level of
wet pressing pressure.

INTRODUCTION

The surface characteristics of paper are important in all grades that will be:
coated, printed, or laminated. Typically a "smooth" sheet is sought. This
might be obtained by proper selection of furnish, paper making conditions, felt
selection, calendering, or supercalendering. Most often paper smoothness (or
roughness) is measured by one of a number of air leak methods. Such measure-
ments are simple to carry out but suffer from a number of problems such as
errors due to the porosity of the sheet or readings changing with changing -
pressure on the paper. Such measurements probably work best in rather narrow
ranges of paper surface smoothness.

Stylus-type instruments are typically used in measuring the surface roughness of
other engineering materials. In these devices a stylus with a small radius tip
is pulled or pushed across the surface to be characterized and the vertical
displacement of the stylus monitored with appropriate transducers. Such
measurements have been made in paper (1-3). There are problems in applying
these methods to paper because of the low stiffness of paper in the thickness
direction.. The local stress of the stylus could deform the paper, leading to
erroneous results. In addition, the radius of the stylus determines the
"quality" of the measurement. One could argue that in the case of paper it is.
not really possible to define a “"surface" as we do for nonporous materials,
since in paper the surface may actually go from one side of the paper to the
other. These same difficulties also enter into the measurement of paper -
thickness (4). :

This papef describes the surface roughness of paper as measured using a modern .
stylus-type instrument and describes how the roughness differs in the MD and CD
as functions of paper machine operating variables.

EXPERIMENTAL

The surface analyzer used in this work was a Federal Products Surfanalyzer 4000.
This device has a stylus tip radius of 100 microinches, with precisions in the
horizontal and vertical positions of 6.1 and 50 microinches, respectively.

The instrument had a digital output via a RS-232 serial port. Software was
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developed to collect information from the surface analyzer, convert it from
hexadecimal to digital format, check for data errors, and save it in a binary
file for later data processing. Data processing software was written to provide
a number of smoothness characteristics, including the average roughness, Ras the
root mean square roughness, RpMs, the mean cube root roughness, RC, and the fre-
quency and size of voids and segments in the profilometer trace. Vo1ds are the
areas of the measured surface profile that 1ie below the algebraic center line
of the trace, and segments are the lengths along the center line between voids.

Ra and RpMs are defined as

(1/L)f| z | o and-
- Rews = [(1/L) f 224x7172,

where L is: the scan length, x is the position along the profile, and z is the
vertical coordinate of the profile, measured from the (algebraic) center line of
the profi]e. Both Ry and Rpys are widely used to characterize rough surfaces
(5). Rpms is the standard 5ev1at10n of the surface height distribution and is
more sensitive to large deviations from the mean line than Ry. For the results
presented here, only the traditional RMS roughness results are discussed. For a
description of the other stat1st1cs the 1nterested reader is referred to
reference 6.

Ra

The profilometer: dlg1ta1 output ‘has a dynam1c range of 4,096 bits, w1th each bit
representing 6.104 microinches. Thus the maximum vert1ca1 d1sp1acement is 0.25
inch. The horizontal position of the stylus is determined by mult1p1y1ng the
number- of sample points times the distance between points. The latter is the
ratio of drive speed (0.01 or 0.1 in/s) to samp11ng rate Scan’ lengths typi-
cally ranged from 0.5 to 0.75 inch. ‘ '

The -paper samples used for the work reported here were from an earlier study
(7). They were softwood kraft sheets prepared on an anisotropic sheet former
with different levels of fiber orientation, and were wet pressed, wet strained,
and dried under various conditions. Table I lists the preparation conditions
and gives the MD/CD ‘elastic stiffness anisotropy ratio for each sample. Surface
prof11es were obtained in the MD and CD on both felt and wire sides. Six traces
were ‘made for each direction or side.

When surface profile measurements are made in a soft material 1ike paper, there
is the possibi]ity of ‘damage, caused by the stylus cutting or tearing the paper
surface as it is pulled across (3). The stylus force was 1.96 mN. Assum1ng
that this.was applied over the entire c1rcu1ar cross section' of the stylus,
local pressure of 96.7 GPa (1.4x10 4 1b/inl) results. To see if such pressures
did, in fact, damage the surface, scanning electron photomicrographs were made
in the scanned area. No evidencé of damage waS apparent in any of the SEM's.

RESULTS AND DISCUSSION

Table II presents the RMS roughness values as wet straining and fiber orien-
tation are varied, at constant wet pressing pressure. The upper left corner of
Table II gives the RMS values in the MD and CD as measured on the wire side of
the sheet for the low wet straining (WS) situation. The effect of increasing
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TABLE I

Experimental Sheets

Sample FO WP WS Emp/EcD
259 L L L 1.69
248 L M L 1.63
257 L H L 1.68
260 L M H 2.51
268 H M L 3.43
269 H M H 5.86

FO = fiber orientation, WP = wet pressing, and WS = wet
straining. For wet pressing the L, M, and H values are
27, 53, and 89 psi, respectively. For wet straining the
L and H values are O and 2.4%, respectively. '

fiber orientation from low to high (FO-L to FO-H) causes a 17% increase in the
roughness anisotropy RA, defined as the ratio of the MD and CD RMS roughness
values. The upper right corner shows the data for the felt side of the sheet.
The results are similar to those for the wire side. The RA is about 1.25 for
either side of the sheet at Tow wet straining and high fiber orientation. The
Tower half of Table II gives the situation for high wet straining levels. At

TABLE II
RMS Roughness and Machine Variables at Medium Wet Pressing

Low Wet Straining:

Wire Side Felt Side
R-MD, R-CD, RA R-MD, R-CD, RA
uin pwin - Hin win
FO-L 209 195 1.07 208 180 1.17'
FO-H 210 168 - 1.25 o 219 178 . 1.23

Change, % 0o - -14 +17 +5 -1 +6
High Wet Straining:

FO-L 206 212 ~0.97 203 174 1.17
FO-H 243 197 1.33 226 156 1.45
Change, % +18 -7 +37 +11 -10 +24
FO = fiber orientation, L = low, H = high, R = RMS roughness;

= lo
RA = roughness anisotropy (= R-MD/R-CD).
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low fiber orientation levels the results are similar to those for the low WS and
low FO case. However, for high WS and high FO, the differences between MD and CD
roughnesses give RA values of 1.33 on the wire side and 1.45 on the felt side.
According to Table II, the effect of increasing MD fiber orientation on surface
roughness is to increase MD roughness and to decrease CD roughness. The dif-
ferences are more pronounced with increased wet straining. Wet straining by
itself, at low FO levels, has little or no effect on roughness anisotropy.

Table III shows the RMS roughness values as wet pressing pressure is changed, at
constant (low) levels of FO and WS. There appears to be no effect of pressing
pressure on roughness or on roughness anisotropy. This is probably a con-
sequence of pressing all three sheets against the same felt. Table III again
shows that the surface anisotropy is greatest on the felt side of the sheet. It
would be anticipated that changing the pressing or dryer felts could change the
overall magnitude of the surface roughness but probably not the anisotropy in
the surface roughness. Calendering or supercalendering would presumably level
out differences between MD and CD roughness, but this was not studied.

TABLE III

RMS Roughness vs. Wet PreSS1ng
at Low Fiber 0r1entat1on and Low Wet Straining

Wire Side . - Felt Side
R-MD,  R-CD, ____RA . 'R-MD, _ R-CD, RA
. Wet Press  min win ' win © yin
Low 216 206 . 1.05 218 183 1.19
Medium 209 195  1.07 . 208 . 180 1.16
High 202 200 1.01 205 180 1.14
Change, % -6 . -3 -4 -6 -2 -4

R ="RMS roughness, RA = roughness anisotropy (= R-MD/R-CD).

The results presented in Table II are for samples 248, 260, 268, and 269 (see
Table I) and had elastic anisotropy ratios of 1.63, 2.51, 3.43, and 5.86,
respectively. The corresponding surface roughness anisotropy ratios are 1.17,
1.17, 1.23, and 1.45 (felt side). Surface roughness anisotropy values measured
on commerc1a1 papers range from 0.7 to 1.1 for silicone release, one time car-
bonizing, MF, and MG papers, and around 1.6 for kraft sack papers. It is quite
likely that large differences between the MD and CD could give problems during
printing or other converting operations involving the surface. It is important
to realize that the surface roughness anisotropy seems to be related primarily
to the level of fiber orientation in combination with wet straining. In grades
where the sheet is not calendered, it may be possible to alter the smoothness by
changes in these variables.

The conclusions based on Tables II and III are supported by two-tailed t-tests
at the 95% confidence level. Table IV gives the geometric mean values (the
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square root of R-MD times R-CD) for the results shown in Tables II and III.
These numbers should be related to the traditional air leak smoothness resuits,
which also average over MD and CD-directions. ‘Table IV shows, in general, that
the felt side is less rough than the wire side. Again, wet pressing pressure
seems to have little effect, except possibly at very low levels. On the felt
side of the sheets, the least rough samples are those that were highly wet
strained, whereas the wire side of these same sheets are among the roughest.
This latter result would be the expected one if the wet straining model proposed
elsewhere is correct (8). More experiments will be required to clarify this
point. ‘ L ' '

TABLE Iv*

- Geometric Mean Roughness Values, nin

Wire Side Felt Side
Low Wet Strain
FO-L o 2 193
CFO-H | 188 197
High Wet Strain . :
FO-L 209 188
FO-H 219 188
Low Wet Strain and FO-L ‘
Low WP - . 211 ‘. ' 200
- ‘Medium WP 202 193
 High WP S 192

*Based on results presented in Tables II and III. WP = wet
pressing pressure.

CONCLUSIONS

Surface roughness is affected by machine process variables such as fiber orien-
tation and wet straining. Together these can produce a surface roughness an-
isotropy as large as 1.5. The anisotropy is largest on the felt side of the
sheet. It is not obvious how increasing MD fiber orientation increases MD
roughness while decreasing CD roughness. It may be possible, however, to mini-
mize the anisotropy effects if they are troublesome, by proper choice of machine
operating conditions.
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PROJECT SUMMARY

PROJECT NO. 3526: INTERNAL STRENGTH ENHANCEMENT

PROJECT STAFF: R. Stratton, J. Becher, K. Hardacker September 10, 1986
PROGRAM GOAL: Bring new attributes to fiber based products

PROJECT OBJECTIVE:

To improve internal strength and moisture tolerance in paper and paperboard.
The short term goals are to establish those parameters fundamental to inter-
fiber and intra-fiber bonding in conventional and ultra high yield pulps and to
control these parameters, if possible, by chemical or mechanical treatments.

PROJECT RATIONALE, PREVIOUS ACTIVITY, AND PLANNED ACTIVITY FOR FISCAL 1986-87
are on the attached 1986-87 Project Form,

SUMMARY OF RESULTS LAST PERIOD: (Octbber 1985 - April 1986)

(1) The duopolymer systems comprised of CMC/PAE and PAA/PAE were found to be
effective bonding agents in a spruce chemimechanical pulp as had been found
previously in softwood unbleached kraft and TMP pulps. Also, as previously
noted, the duopolymer combinations were more effective (relative to the
blank controls) in the classified pulp than in the whole pulp.

(2) A study of fines and polymer combinations in a softwood unbleached kraft
pulp showed that re-addition of fines to the classified pulp failed to
match the original whole pulp in dry and moist strength properties. This
differs from the previously tested TMP in which case re-addition of fines
produced dry breaking length, Et, and moist tensile properties which were
roughly comparable to or greater than those of the whole pulp, when measured
at the same moisture content. Once again, maximum strength was generally
obtained when the polymers were added to the long fiber fraction.
Although, in this case, the duopolymer systems were more effective than PAE
in both the classified and whole pulps.

(3) Available results indicate that PAE is as effective as CMC/PAE and/or
PAA/PAE in improving moist compressive strength.

(4) In a continuing study of bonding mechanisms in duopolymer systems, several
series of tests were carried out using diffuse reflectance FTIR analysis.
The results revealed that rather substantial strength improvements can be
achieved in the absence of covalent bonding; more specifically, in the
absence of ester formation. However, the maximum strength levels attained
thus far under these conditions are notably lower than those produced by
ester formation.

(5) ~ New bonding and handling techniques were developed to permit the use of the
FLER II for measurement of single fiber/fiber bond strengths.
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(6) Better defined bond area measurements via Page's vertical polarized light
method were obtained by bonding an undyed fiber to a fiber dyed black.

(7) Measurements of bond strength, bonded area, and lTocus of failure for an
unrefined, loblolly pine springwood, kraft pulp revealed a broad distribu-
tion of the quantitative results. Poor correlation between bond failure
load and bonded area, in agreement with previous workers, may suggest that
Page's technique is not a valid measure of bonded area. SEM micrographs
showed permanent deformation in the bonded area but little fiber wall
tearing or disruption.

(8) The measurements were repeated on the same pulp which had been treated with the
PAE/CMC additive combination found effective for conventional kraft pulps
in the earlier handsheet studies. Increases in average load at failure,
bonded area, and specific bond strength (load/area) of 150, 20, and 80%,
respectively were found. In contrast to the untreated fibers, examination
of the formerly bonded areas by SEM now showed extensive tearing and
picking of the fiber walls.

(9) There has been little activity in development of the FLER II in the last
six months. Nevertheless, a new differential lead screw has been obtained
and installed. Operation of the instrument is now satisfactory.

Techniques are being developed for testing fiber/fiber bond strength by
mounting a fiber on the edge of a microscope glass cover slip, placing two
such mounted fibers in the FLER II at right angles to each other, wetting
them, applying a small compacting load, then tensile testing the bond after
it has dried. Early tests have been partially successful.

A small, 90-degree, glass prism has been mounted at the "fixed" specimen
clamp of FLER I. One face forms a surface for fiber lateral compaction;
another permits direct viewing of the fiber as it is being compacted.
Compacting is done with a narrow flat ground on the edge of a razor blade
mounted in the "movable" clamp. The technique is being further developed.

It will be desirable to photograph the fibers as they are being tested in
the several possible modes. A video camera has been considered, but its
resolution would not be adequate as it would have to be used. Consequently,
we are looking at suitable photographic equipment.

During the next period we intend to bring the bond testing and the compac-
tion techniques to working order and begin the investigation of fiber
characteristics.

SUMMARY OF RESULTS THIS PERIOD: (April 1986 - September 1986)

(1) The effectiveness of the CMC/PAE and PAA/PAE bonding systems was expanded
to include a wide range of pulps in whole and classified conditions
including a softwood bleached kraft. The results show that these agents,
particularly CMC/PAE, were effective in all pulps with some variations in
the degree of success. Of the whole pulps, the bleached kraft and a) once-
dried, average-yield southern pine unbleached kraft tended to be the most
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(2)

(3)

(4)

(5)

(6)

(7)

responsive. Of the classified pulps, the TMP was the most responsive and a
softwood CMP, the least responsive. Generally speaking, higher strength
levels were attained with the whole pulps in the presence of the bonding
agents but the greatest increases in strength due to the additives
generally occurred in the classified pulps.

The study of bonding agents was expanded to include carboxymethylated
starch as an anionic polymer in combination with PAE. While anionic
starch/PAE combinations did not quite match the overall performance of
CMC/PAZ, anionic potato starch/PAE approached or equalled CMC/PAE in some
strength properties including moist Et and compressive strength.

The incorporation of carboxymethylated fiber and PAE into a classified
bleached kraft pulp failed to provide equivalent strength to that achieved
by the addition of an equal amount of water-soluble CMC in the presence of
PAE. In fact, the addition of up to 10% of carboxymethylated fiber failed
to attain the same level of strength afforded by the external addition of
0.4/1.0 CMC/PAE. This is assumed to be due to lower accessibility of the
reactive groups in the fibrous form of CMC.

Diffuse reflectance/FTIR analysis indicated that covalent bonding (ester
formation) occurred in the bleached kraft pulp whether the carboxymethyl
group was included in the fibrous component or in an external treatment.
FTIR analysis of papers treated with anionic potato starch/PAE also indi-
cated the presence of covalent bonding. On the other hand, no evidence of
covalent bonding was found in papers containing PEI or polydiallyl dimethyl
ammonium chloride (a cationic polymer) alone or in combination with PAA in
spite of the fact that several of these papers possessed strength proper-
ties approaching or equalling those containing PAE or PAE/PAA.

A brief examination of the external treatment of unbleached kraft
handsheets with polystyrene in solvent solution indicated that high levels
of moist Et and compressive strength can be achieved while maintaining high
tensile properties. It would appear, however, that high add-on levels
would be required to achieve these desired effects.

Work is continuing in the development of techniques for measuring the axial
and transverse mechanical properties of single fibers and of Z-direction
deformation of single fiber/fiber bonds using the FLER II.

Measurements of bond strength, bond area, and locus of failure for a well-
refined, classified southern pine provide a contrast to the unrefined
sample reported previously. Frequent tearing of the fiber wall was now
found for both untreated and chemically-treated fibers. However, extensive
external fibrillation of the fibers make an unambiguous assessment of the
damage due to bond failure difficult. Both breaking load and bond strength
are considerably higher for the refined compared with the unrefined fibers.
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PROJECT TITLE: Internal Strength Enhancement Date: 6/1/86
PROJECT STAFF: R. Stratton/J. Becher/K. Hardacker Budget: $230,000

PRIMARY AREA OF INDUSTRY NEED: Properties related to end | Period Ends: 6/30/87
use

Project No.: 3526

PROGRAM AREA: Moisture tolerant, superior strength paper
and board

PROGRAM GOAL: Bring new attributes to fiber based products
PROJECT OBJECTIVE:

To improve internal strength and moisture tolerance in paper and paperboard.
The short term goals are to establish those parameters fundamental to inter-
fiber and intra-fiber bonding in conventional and ultra high yield pulps and to
control these parameters, if possible, by chemical or mechanical treatments.

PROJECT RATIONALE:

Major limitations of paper and board for many uses are low internal bond
strength and poor moisture tolerance. Improved internal strength and enhanced
moisture resistance would allow a number of present grades to be produced using
less fiber and would also allow new end uses to be developed.

At present, commercial papers do not attain strength levels that realize the
full potential of the wood fibers. Most paper mechanical properties are
markedly degraded with increasing moisture content. We need to better
understand the nature of the changes in fiber properties and fiber-to-fiber
bonding with increasing moisture content if we are eventually to improve the
moisture tolerance of paper.

RESULTS TO DATE:
PART ONE: Improved bonding via chemical additives.

Results presented in previous reports indicated that cationic/anionic duopolymer
additives (primarily CMC/PAE and PAA/PAE) were very effective in improving the
strength properties of several softwood unbleached kraft pulps as well as a
softwood TMP, In addition to high Tevels of dry, moist, and wet tensile proper-
ties, these combinations significantly improved tensile energy absorption (TEA),
extensional stiffness (Et), and stretch. The addition of these bonding agents
to the softwood TMP revealed that superior results were generally obtained when 1
added to the long (classified fiber) fraction. A subsequent study of fines and
bonding agents in an average yield softwood unbleached kraft pulp showed that
readdition of fines to the classified pulp failed to match the original whole
pulp in any of the measured dry or moist tensile properties. This differs
somewhat from the TMP where readditions of fines produced dry tensile and Et
values rough]y comparab]e to the whole pulp. As was found in the case of the
TMP, maximum strength in the kraft pulp was generally achieved when CMC/PAE was
added to the long fiber fraction.
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CMC/PAE and PAA/PAE also proved to be effective bonding agents for a spruce
chemimechanical pulp. One or both of these combinations has proved effective in
all pulps tested thus far. This favorable result is somewhat tempered by the
fact that their efficiency is generally lower in whole pulps than in classified
pulps.

Diffuse reflectance FTIR analysis has indicated that covalent bonding occurs
when the duopolymer systems are applied to cellulose, but it has not been
established if the bonding occurs between the added polymers or between the
polymers and cellulose. This work is being extended to include polymer systems
where covalent bonding is not possible but where other forms of bonding may
occur.

PART TWO: Fundamentals of bonding.

A literature search has been conducted. An instrument to measure axial or
transverse fiber mechanical properties and fiber-fiber bond strength has been
designed and constructed and is currently being readied for data gathering.

Techniques were developed to study the details of the fracture of the bond be-

tween two single fibers. They consisted of:

a) forming the fiber/fiber bond,

b) measuring the bond area using vertical polarized illumination,

c) determining the bond strength, and

d) determining the locus of failure of the bond using the scanning
electron microscope.

Results on 1oblolly pine earlywood fibers revealed a normal distribution of bond
areas and a bimodal distribution of bond breaking loads. Examination of the
formerly bonded areas with the SEM showed permanent deformation where the fibers
had been pressed together but Tittle rupture (tearing) of the external fiber
surfaces.

A vibrating reed instrument has been developed to measure the bending modulus of
paper and board samples. A range of temperature from ambient to 200°C and a
range of relative humidities from O to 95% at room temperature can be covered.

PLANNED ACTIVITY FOR THE PERIOD:
PART ONE:

(1) The study of bonding agents will continue. While several anionic/cationic
polymers combinations have been found to be quite effective, other materials
will be given consideration based on chemical structure and known proper-
ties.

(2) The utilization of duopolymer bonding agents will be expanded to include one
or more bleached pulps.

(3) Means will be sought to improve the efficiency of polymer bonding agents in
whole (fines-containing) pulps.
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(4) The study of bonding mechanisms through chemical analysis will be continued
in an effort to differentiate between polymer-to-polymer bonds and polymer-
to-fiber bonds.

PART TWO:

(1) We plan to measure single fiber properties as functions of moisture content,
refining, yield, and pulping method. The measurements will include both
axial and transverse properties. The initial work will be with softwoods.

(2) Failure of single fiber/fiber bonds will be continued, with correlations
expected among bonded area, bond strength, and locus of failure.

(3) Effective chemical additives identified in Part One will be used in forming
single fiber/fiber bonds, whose failure will then be examined as above.

(4) Studies on the effects of pulp yield and refining on mode of bond failure
will begin.
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Project 3526

PART ONE: Improved Bonding Via Chemical Additives

INTRODUCTION

Progress Report Two covering work in Part One of the program for the
past 112 - 2 years has been issued to the membership. In review, several anionic
polymer/PAE combinations produced strength properties approaching or equa]]iné
those the "standard" CMC/PAE and PAA/PAE combinations. Of these, carboxy-
methylated corn and/or potato starch appear to offer the best balance of
strength and feasibility. While these materials produced 16wer breaking length
than CMC/PAE, they tended to produce relatively high moist Et and compressive

strength.

In most cases, polymer additives and cbmbinations were found to be
more effective in improving strength in classified pulps than the whole
(unclassified) pulps. This was supported in fines-bonding agent studies uti-
lizing two widely differing pulps. In general, the results indicate that
superior Strength can be achieved by adding the bonding agentsAto the long fiber
fraction rather than to the fines. A softwood TMP proved more sensitive to the

presence of fines than a softwood unbleached kraft pulp.

Analysis of polymer - bonded papers using diffuse reflectance FTIR
indicates that substantial improvements in strength over blank controls can bé
achieved in the absence of PAE and covalent (ester) bonds. Presumably ionic
along with hydrogen bonds occur in systems containing cationic polymers such as
polyethylenimine. In some cases, the ionic bonds were found to provide higher

levels of moist Et and compressive strength but lower wet tensiles than were
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afforded by the covalently bonded systems. The lower wet tensile would be
expected to translate to improved repulpability. Overall, however, higher

strength levels were generally attained in covalently bonded papers.

Finally, the external application of polystyrene to unbleached soft-
wood kraft handsheets was found to provide high levels of Et and compressive
strength while maintaining tensile and TEA levels roughly comparable to those

achieved by the internal addition of PAE or CMC/PAE.

RESEARCH RESULTS

Some of the more interesting results (in Progress Report Two) obtained
since the last Sfatus'Report are presented in the following sections. Work with
duopolymer systems was extended to include several anionic carboxyl-bearing
polymers in combination with PAE.. Among these were two samples of carboxy-
methylated starch. Carboxymethylated cornstarch (CMCS) and potato starch (CMPS)
dispersions were prepared by heating aqueous suspensions for 20 minutes at 95°C.
These materials along with PAE were added to a classified softwood unbleached
kraft pulp over a range in addition levels. PAE wés stirred into 0.5% con-
sistency pulp first followed by the starch and further agitation. Handsheets
(2.5 g) were formed in a Noble &4W00d mold at 0.04% consistency in tap water.
The handsheets were pressed and dried in the manner previously described in the
project, i.e., 5 minutes pressing at 50 psig and 7 minutes drying at 220°F. The
handsheets were tested for the usual dry and moist tensile properties and for
: STFI'compressive strength; Results are recorded in Table 1., Selected strength
properties as a function of starch:PAE ratio at a constant PAE addition of 1%
are presented in Fig. 1-5. While the starch/PAE combinations did not match the

overall performance of CMC/PAE, several combinations approached or equalled the
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reference controls in most strength properties. This would apply in particular
to CMPS/PAE and to those properties which are of specific interest to this
project, i.e. moist Et and compressive strength (Fig. 4 and 5). These anionic
starches have a degree of substitution (DS) of approximately 0.11 - 0.12 com-
pared to a D.S. of 0.7 for CMC and 1.0 for PAA. This may account for the
greater amount of starch required to improve bonding strength relative to CMC

and PAA,

Another series of interest is presented in Table 2 and Figs. 6-13.
This series compares the effectiveness of PAE, CMC/PAE, and PAA/PAE in a classi-
fied and whole bleached softwood kraft and it also examines the effect of substi-
tuting carboxymethylated fiber (DS=0.7) for unmodified fiber. With respect to
additive effectivness, the bleached kraft pulp responded to the bonding agents
in about the same manner as previously tested pulps. In general, CMC/PAE was
found to be the most effective followed by either PAA/PAE or PAE. Actually, the
response of the whole pulp to CMC/PAE was the highest of all pulps tested thus
far while the increase in the classified pulp was roughly comparable to the
average-yield unbleached kraft pulps. Adding fibrous CMC in combination with
PAE (Sets 25-28; Figs. 12 & 13) produced rather interesting results 1n‘that the
fibrous form was not as responsive to PAE as CMC in aqueous solution. In fact,
adding up to 10% of fibrous CMC failed to match the performance of 0.4% of water.
soluble CMC combined with 1% of PAE. Diffuse reflectance FTIR analysis of sets
23 and 25 indicates that a higher level of ester formation (covalent bonding)
occurs with external addition. It is postulated that the carboxyl groups in the
blended pulp are less accéssib]e to covalent bonding compared with external

addition or, alternatively, homocrosslinking plays an important role in the
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Figure 1. The effect of anionic starch/PAE ratio on dry breaking length
(classified softwood unbleached kraft - pulp no. 4).
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Figure 2.
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The effect of anionic starch/PAE ratio on moist breaking length

(classified softwood unbleached kraft - pulp no. 4).
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Figure 3. The effect of anionic starch/PAE ratio on dry Et
(classified softwood unbleached kraft - pulp no. 4).
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Figure 4. The effect of anionic starch/PAE ratio on moist Et
(classified softwood unbleached kraft - pulp no. 4).
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Figure 5. The effect of .anionic potato starch/PAE ratio on
STFI compressive strength (classified softwood
unbleached kraft - pulp #4).
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Figure 13. The effect of CMC fiber content on Et (bleached
softwood kraft with 1% PAE added).

external addition of CMC/PAE as opposed to the inclusion of CMC fibers in the

furnish where only co-crosslinking could occur.

In a continuing study of bonding mechanisms, tests were carried out
using polymers which were capable or incapable of forming covalent bonds with
‘cellulose or with themselves. For example, polyethylenimine (PEI) cannot form
covalent bonds with cellulose but the combination of PEI/PAA could conceivably
form covalent bonds with cellulose through the PAA part of the combination. The
‘results of physical strength tests as well as FTIR analysis for sheets formed
from a classified softwood unbleached kraft pulp incorporating PEI and various
"other polymers are presented in Table 3. These results revealed that rather

substantial strength improvements can be achieved in the absence of covalent
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bonding, more specifically in the absence of ester formation. However, maximum
overall strength levels attained under these conditions were generally lower
than those produced by ester formation. Nonetheless several noteworthy results
were obtained under conditions where only ionic and hydrogen bonding could
occur. For example, PEI alone or combined with polystryene sulfonic acid (PSFA)
or PAA produced rather substantial increases in strength. Likewise, polydially!l
dimethylammonium ch}oride (PDDAC), a cationic polymer incapable of forming
covalent bonds with cellulose) produced significant strength increases when com-

bined with PSFA or PAA. Of particular interest are the high moist Et and

compressive strengths produced by PEI, PEI/PAA, and several PDDAC combinations

leading to the conclusion that ionic bonding may be adequate for the moist

strength properties sought in this program.

In the final segment of work, a preliminary evaluation was made of the
potentia]kfor treating paper externally with a high modulus material. To this
end, handsheets formed from a whole unbleached softwood kraft pulp were treated
with 10 and 20% polystyrene solutions in toluene. The sheets were immersed in
the solvent solutions for 10 seconds and then blotted lightly to remove the
excess solution. The treated papers were drum dried in the usual manner (7 min.
at 220°F) and then subjected to the full range of physical tests. The results
of these tests along with the results for handsheets treated internally with the
usual reference agents (PAE, CMC/PAE etc.) are presented in Table 4. The
results show that high moist Et and compressive strength were achieved while
maintaining high levels of dry and moist tensile. It would appear, however that
high add-on Tevels may be required to attain these properties. This unit of
work was not intended to be of any immediate practical value but only to indi-

cate the potential of external treatments for future consideration.
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FUTURE WORK

Information accumulated within the past 12 months indicates that
covalent bonding may not be required to provide high levels of moist Et and
compressive strength as sought in this program. Future work will include
further examination of ionically bonded systems as viable alternatives to
covalently bonded paper which is presumably difficult to repulp. Cationic poly-
mers other than PEI and PDDAC will be sought to replace PAE in duopolymer systems
and comparisons will be made of the repulpability of ionically and covalently-
bonded papers. Means will be sought to improve the efficiency of polymer

bonding agents in whole pulps. The study of bonding mechanisms through chemical

_analysis will be continued in an effort to differentiate between polymer-to-

polymer and polymer-to-fiber bondsl. Finally consideration will be given to
external treatments which are more amenable to practical mill operations than

the solvent applications described in this report.

LITERATURE CITED
1. Westfelt, L. Cellulose Chem. Technol. 13:813-25 (1979).




Status Report
INTERNAL STRENGTH ENHANCEMENT
Project 3526
PART TWO: Fundamentals of Bonding.

A. DEVELOPMENT OF TECHNIQUES FOR FLER II
We have been able to pursue the development of techniques for the use

of the FLER II at only a minimum level during this period.

Bond strength measurements made by gluing fibers to the edges of
microscope cover - glass slips were tried for a few fibers. These were unsuc-
cessful because the fractured edges of the slips were not flat and perpendicular

to the plane of the slips, resulting in glass-glass or glass-fiber contact

" rather than fiber-fiber contact during the initial compressive preloading for

bonding. Careful selection of slip edges will be needed when further tests are

" made.

The electronic balance used for load sensing has enough compliance that
the movable clamp is not held extremely rigidly. As a consequence, it is not
possible to install pin-mounted fibers for tensile testing without breaking them
during the installation. It has been found that this difficulty can be overcome
by cementing only one end of a fiber to a pin, clamping that pin in the movable
clamp, and then pushing the free end of the fiber into a bit of molten hot-melt
adhesive on the fixed clamp. Cobling the hot melt completes the preparation
for testing. We are still looking for a suitable hot melt, since those we have
tested so far either wick into the fiber wall and lumen, suffer brittle fracture
in the joint area, or do not adequately grip the fiber. Adhesive and hardness/

toughness characteristics similar to those of the epoxy resin used are needed.
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A 35-mm camera has been purchased for attachment to the microscope on
the FLER II to enable use to photograph the individual fibers as they are being
tested. This is a necessary adjunct for lateral compaction tests, where it will

be used to record the fiber area under compaction.

B. SINGLE FIBER/FIBER BONDS

Van den Akkerl has reviewed the parameters that are important to the
strength of paper. Both experimentally and theoretica]]_y2 tensile failure is
found to depend on a) individual fiber strength and b) the extent and strength
of fiber/fiber bonding. A specific objective of this project is to improve the
strehéth of the individual ffber/fiber bond. This bond depends upon (a) the
‘'strength of the interactibn between the two fibers and (b) the area over which
these interactions occur (or the bonded area). In absence of additives the in-
teractions'are thought to be hydrogen bonds plus the ubiquitous van der Waals
bonds. Chemical additives can supplement these interactions to produce improved
wet or dry strength. If the fiber/fiber interactions are strong enough, the
locus of failure may be between the S1 and S2 layers of one of the fibers. It
is important that we know the location of the failure so that we may direct the
chemical additives to this weak spot. Our research is focused on characterizing
the strength .of the fiber/fiber bond and on its dependence on bonded area and

" locus of failure.

We form the bonds by crossing two wet fibers at right angles in a
~ sandwich between two teflon-faced }ubber disks. The sandwich is then placed
under a static load (nominal pressure 17 psi) in an oven at 105°C for one hour.

The now-bonded fiber pair is then cemented to a jig for subsequent measurements.
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The vertical polarized light method to measure the bond area optically
was developed by Page and associates3-3, Page3 has argued that the areas of

optical contact do indeed represent bonded areas but see below.

After measurement of - the bond area, the sample is mounted in the
FLER II dinstrument. Strain in the bond is produced by pulling on the end of one
of the fibers while holding the ends of the other fiber fixed. This results in
a nominal shear strain in the fiber/fiber bond region. In practice the second
fiber experiences some deformation in the direction of the extension as well as
some rotation about its axis. Thus the geometry of the strain in the bonded
region is a combination of shear and peeling. The relative contributions of
these two strains likely varies from sample to sample and may partly account for
the wide distribution of breaking loads observed for a given sample population.
The load at which failure occurs is noted and can be converted to a bond

strength by dividing by the bond area determined previously.

It might be expected that breaking load should vary directly with the
bond area. However, both for the present data and that of earlier workersﬁ, no
correlation between the two parameters'exists. This is probably a result of the
variability in strain geometry noted above and also to the basic heterogeneity
of WOod fibers. Cell wall thickness, S2 fibrillar angle, and pit architecture
are among the important factors which vary within a fiber population. Button’
has shown that ce]]ophéne strips apparently follow linear elastic theory where
breaking load decreases with increasing bond area due to stress concentration
effects. Application of this concept to the present data did not produce any
clear trend, again perhaps due to the variable fiber population and strain

geometry.
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Observation of the formerly bonded areas was carried out in a scanning
electron microscope (SEM) after coating the samples with gold/palladium to eli-

minate electrostatic charging effects.

Results have been obtéined from two sets of fibers to date. The first
is a loblolly pine conventional kraft cook using only springwood chips. After
they were washed, the chips were gently defibered to yield individual fibers,
probably with the S1 layer intact. Fiber/fiber bonds from this population
(denoted "untreated") were formed and tested. The averages from 34-45 bonds are
given in the second column of the upper half of Table 5. A slurry of a portion
of the same fibers was treated with the combination PAE/CMC found to be an
effective strength aid in Part One of this project. The dosage was 1% PAE
followed by 0.4% CMC based on fiber weight. A series of fiber/fiber bonds from
this population (denoted "treated") was likewise formed and tested. The average
values are given in the third column of Table 5. The ratio of the results for
the treated to the untreated are presented in the last column. As previously
alluded to, the parameters of the individual bonds vary widely. Bond area shows
a norha] distribution while breaking load gives a skewed distribution on both
tHe norma]iand log normal scales. In spite of the broad distribution the effect
of the polymer treatment is significant at a 98% confidence level. The table
sths that the breaking load, bond area, and bond strength increase by 159, 17,
and 77%; respectively, wﬁen the chemical treatment is applied. These improve-
ments are in line with those found in the handsheet studies of Part One of this
project. The increase in bond area suggests the polymer may bring about closer

contact along the periphery of the bond.

The SEM results were quite revealing. For the untreated fibers almost

no fiber wall damage was observed. Formerly bonded areas were easily identified
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Table 5. Average values for single fiber/fiber bond

properties.
Arithmetic Mean Treated/
Property Untreated Treated Untreated
Unrefined Fibers
Breaking Load, g 0.44 1.14 2.59
Bond Area, um? - 2530 2970 1.17
Bond Strength, 220 390 1.77
ug/um
Refined Fibers
Breaking Load, g 0.75 1.47 1.96
Bond Area, pm2 1350 1600 1.19
Bond Strength 600 1030 1.72

ug/um

by the impressions (permanent deformations) each had left in the other along the
edges of the crossover area. The bond areas, however, for the most part were

smooth and unfractured.

Dramatically different results were found for the treated fibers.
Here the majority of the fibers showed picking and tearing of their walls.
Apparently, the chemical additive shifted the locus of failure, thereby

increasing the strength.

We next looked at the effect of refining. The second set of fibers
was a conventional kraft cook of a southern pine which was then beaten to 370 mL
CSF. This pulp was then classified on a 65 x 35 mesh twill wire followed by
washihg of the long fibers in a Britt drainage jar fitted with a 60 mesh bronze
wire. Few fines should remain. Fiber bonds were formed and tested as before.

Fibers were either "untreated" or "treated" with the same levels of PAE/CMC as
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was the first set. The results are presented in the lower half of Table 5.
Again, significant improvements in breaking load, bond area, and breaking
strength are achieved when the strength additives are used. Note that although
the breaking load and bond strengtH of the refined fibers are greater than the
values for the ﬁnrefined fibers, the bond areas for the latter are much less.
This is likely due to the refined fiber population being comprised of both

springwood and summerwood.

Although the SEM work showed clear differences between treated and
untreated fiber bonds for the unrefined samples, this was not the case with the
refined fibers. Formerly bonded areas of the latter showed extensive picking
‘and tearing of both treated and untreated fibers. In addition there was a great
deal of loosened fibrillar material (S1 layer?) along the fiber. It was not
possible to unambiguously conclude that the additives changed the locus of
failure. Further work with less heavily refined fibers may clarify the

situation.

From the results to date we can conclude that additives have a strong
effect on individual fiber/fiber bonds. In the case of unrefined fibers the
increase in bond strength is apparently (at least in part) a result of a shift
} in the locus of failure. For the refined fibers the additives produce a similar
enhancement in strength, but a possible shift in the locus of failure is
unclear.

Future studies on bond strength will examine:

o the effect of light refining,
e the difference between summerwood and springwood,
e the effect of additives on a high yield (TMP or other) pu]p; and

o the effect of "all-ionic" bonding agents as used in
Part One of this project.
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PROJECT SUMMARY

PROJECT NO. 3571: BOARD PROPERTIES AND PERFORMANCE September 10, 1986
PROJECT STAFF: W. J. Whitsitt, R. A. Halcomb
PROGRAM GOAL:

Develop relationships between critical paper and board property parameters and
how they are achieved in terms of raw material selection, principles of sheet
design, and processing conditions.

PROJECT OBJECTIVE:

eTo develop relationships between container performance, combined board and
component properties.

eTo improve the performance/cost ratios of combined board (including medium).

eThe short term goals are directed to (1) using structural models to assess
the impact of papermaking factors on combined board and box performance and
(2) improving medium end-use and converting performance properties.

PROJECT RATIONALE, PREVIOUS ACTIVITY AND PLANNED ACTIVITY FOR FISCAL 1986-87 are
on the Project Form that follows.

SUMMARY OF RESULTS LAST PERIOD: (October 1985 - March 1986)
Section 1 - ECT/Box Compression

(1) Experimental linerboards were made to test the effects of changing liner-
board compressive strength-to-flexural stiffness ratios on combined board
and box performance. These linerboards were made into C-flute combined
boards on the Institute's pilot corrugator. In other work we have experi-
mentally varied medium properties.

(2) Our results indicate that ECT is primarily dependent on the compressive
strengths of the liners and medium. The flexural stiffness of the liners
plays a minor role.

(3) ECT can be satisfactorily related to the elastic stiffnesses of the liner-
board and medium,

(4) We have also related the elastic stiffnesses of the components.to the
flexural stiffnesses of the combined board, taking into account flute
geometry.

(5) Box compression predictions indicate that top load compressive strength
increases as the linerboard and medium are densified by wet pressing.
Making a squarer linerboard also increases box compressive strength,
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Section 2 - Process Research

(1) Fracture speeds predicted with our runnability model decrease with
increasing basis weight of medium, This is the same trend as is obtained
experimentally.

(2) The stress ratios calculated from the model are correlated with the
occurrence of high-lows for mediums of different basis weights.

(3) Work is underway to make mediums with various combinations of fiber orien-
tation, refining, pressing, and weight. " In terms of end-use the results
will show how to balance flat crush and ECT demands. They will also provide
information on some of the parameters entering into our runnability model.

(4) The strength degradation of the medium as speed is increased is under study.
Preliminary results show that the tensile strength of the formed medium
decreases with increasing speed. The reductions in strength are related to
the applied stresses and changes in draw factor.

SUMMARY OF RESULTS THIS PERIOD: (April 1986 - September 1986)
‘Section 1 - ECT/Box Compression

(1) Models are being developed to evaluate the impact of papermaking improve-
ments on ECT strength per unit weight of fiber in the components.

(2) Preliminary results suggest that the following papermaking factors can
improve strength-to-weight ratios.
a) Increased fiber-to-fiber bonding of the liners and medium.
b) Decreased MD/CD ratios (directionality).

Section 2 - Medium Improvement

(1) For a given Concora, CD STFI strength can vary over a wide range. Higher CD
STFI strengths are favored by increased wet pressing, refining, and less
directionality.

(2) For heavy weight mediums at least, it should be possible to reduce flat
crush levels but increase ECT strengths.

Section 3 - Runnability Modeling

(1) Our runnability model shows that flute fracture speeds and high-lows depend
on four properties of the medium. They are MD tensile, MD stretch, hot
coefficient of friction and thickness.

(2) Linear and curvilinear relationships between stress ratios calculated from
the model and high-lows have been developed. Both forms show high correla-
tions. '

(3) At a constant high-low level, a sensitivity analysis shows that changes in
stretch and thickness have the greatest effect on operating speeds.
Friction and MD tensile have slightly lower effects than the other two
properties.
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Section 4 - Periodicites in high-low flute formation.

(1) Activities during this period have concentrated on spectral analysis tech-
niques. A significant periodic component with a period of about 5-6 flutes
continues to be observed.

Section 5 - Flat crush modeling.

(1) The use of different medium physical properties (Emp, Gmp-zp and caliper)
produced significant changes in the load-deflection curves generated by the
finite element analysis. Knowledge of the fluted medium physical proper-
ties, both before and during loading, will determine the accuracy of the
flat crush finite element analysis.

(2) A finite element program capable of material and geometric nonlinear
analysis will be necessary to conduct extensive studies of paper materials.
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end uses.

Project No: 3571

PROGRAM AREA: Performance and Properties of Paper
and Board

PROGRAM GOAL :

Develop relationships between critical paper and board property parameters and
how they are achieved in terms of raw material selection, principles of sheet
design, and processing conditions.

PROJECT OBJECTIVE:

eTo develop relationships between container performance, combined board and com-
ponent properties.

“eTo improve the performance/cost ratios of combined board (including medium).

sThe short term goals are directed to (1) using structural models to assess
the impact of papermaking factors on combined board and box performance and
(2) improving medium end-use and converting performance properties.

PROJECT RATIONALE:

There are many aspects of container and component performance which have not
been adequately related to board properties through structurally sound models.
Such structural models identify the critical board properties needed for end use
performance. They can then be used to select papermaking approaches to maintain
or improve box performance at less cost. An important step is to incorporate
the elastic stiffnesses of the board into such models if possible. This will
allow us to use our developing knowledge on how papermaking factors affect the
elastic stiffnesses to make board improvements,

RESULTS TO DATE:

Rayleigh-Ritz methods have been used to analyze container failure under several
types of load. Finite element techniques have been used to model the bending
behavior of container board. Analysis of present ECT vs. component Tocal
buckling models indicates they fail to predict ECT performance when the liner or
medium density is changed. Therefore new models have been developed which show
that combined board ECT is primarily dependent on the compressive strength
and/or elastic stiffnesses of the liners and medium. The bending stiffness of
the liners appears to have only a minor effect on ECT. These results have been
experimentally validated and are being extended to box compression. In the case
of medium we have shown that the compressive strength is lowered by high bending
and shear stresses imposed during forming. These losses in strength lower flat
crush and ECT. The losses are inversely related to the density and Z-direction
elastic stiffness of the medium. Densification via wet pressing is one way to
improve end-use performance of medium,
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Our current forming models indicate that satisfactory high speed runnability on
the corrugator is dependent on at least four medium properties as well as nip
geometry and medium web tension.

PLANNED ACTIVITY FOR THE PERIOD:

The relationships being developed will show how the elastic stiffnesses and
compressive strengths of the components will affect combined board ECT and box
compression strength. The analysis will help us assess the relative importance
of compressive strength and the bending stiffnesses of the liners and medium in
determining box performance. We will confirm and validate the relationships
using components made under various papermaking conditions as well as commercial
boards.

We plan to use finite element techniques to model flat crush lToad-deformation
characteristics in relation to medium properties and flute geometry. This work
will better define how crushing of board during conversion and end-use degrades
box performance. The same technique will be considered as a way to improve our
understanding of the bending stresses during fluting.

Our research on medium shows that densification via wet pressing improves

‘strength retention during fluting and gives higher ECT and flat crush in the

combined board. We will continue and extend this research to consider other
ways to improve formability and performance. This will include work on sheet
directionality, pressing, and refining.

As an outgrowth of this and related work for FKBG, we will investigate ways to
show what properties of the linerboard and medium are required for high-speed
runnability on the corrugator. Runnability refers to the critical speeds asso-
ciated with strength retention, the development of high-lows and flute fracture.

We are also considering initiating work in fracture mechanics as related to
flute fracture and the application of power spectral density techniques to flute
uniformity.

POTENTIAL FUTURE ACTIVITIES:

Application of similar techniques to end-use failures involving flexure, shear
and combined tension, flexure and shear.
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The objectives of this program are to: (1) develop relationships
between container performance, combined board and component properties, and
(2) determine ways to improve the cost/performance ratios of medium and liner-
board. To fulfill these objectives we must consider both end-use performance
and processing runngbi]ity on the corrugatof. Therefore our current work is
divided into several parts, namely, (1) ECT and box compression performance,
(2) medium improvement, (3) runnability modeling, (4) high-low periodicity, and

(5) flat crush modeling.

" ECT and Box Compression Relationships

An important part of our past work has been directed to developing
relationships between combined board ECT and the properties of ,the linerboard
and medium which will be valid under most papermaking conditions. A specific
goal is to incorporate the elastic stiffnesses of the components in such rela-
tionships. This will allow us to usé nondestructive ultrasonic techniques to
characterize board and box performance. It also enables us to use our
developing knowledge on how papermaking factors affect elastic stiffnesses to

assess ways to improve performance.

After study of alternatives we modeled ECT in the same way as the
Institute top load box compression forhu]a. This is termed the miniature plate
approach. Conceptually ECT is set equal to the sum of the maximum strengths of
the individuai liner and medium plate elements. Following this approach the
contributions of the liners and medium are formulated as the product of two
terms:
Liner: (compressive strength)b x (mean flexural stiffness of liner)l-b

Medium: (compressive strength)C x (mean flexural stiffness of medium)l-C
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The constants b and c must be experimentally determined and their
magnitudes will reflect the relative importance of the two properties. For
compressive strength we employ either short span compressive strength values or

the in-plane and out-of-plane elastic stiffnesses.

As discussed in the last status report we obtained good predictive
accuracies using this approach. The magnitudes of the exponents indicated that
ECT is primarily dependent on the compressive strength characteristics of the
liners and medium, The flexural stiffness of the medium has a negligible
effect; the flexural stiffness of the liners appears to have only a small effect

on combined board ECT.

To validate these results experimental linerboards were made wherein
we varied the ratio of CD compressive strength to flexural stiffness. This was
accomplished by varying the density via wet pressing, direcfiona]ity and incor-
porating additives. Good agreement was obtained between observed and predicted
ECT values. Thus we are now able to relate ECT to either short span compressive
strength or the elastic stiffnesses of the liners and medium. For the last
meeting combined board flexural stiffness was also modeled. Good agreement was
obtained with experimental results. Use of these models on box compression pre-

dictions was begun.

Currently we are studying ways to optimize ECT and box strength-to-
weight ratios. As an initial step in developing optimization procedures we have
considered the effects of selected papermaking changes to improve liner and/or

medium properties on ECT strength-to-combined board weight ratios.

We used the following equation:

ECT = 1.375 X STFI + 1.101_X STFIy + 1.212 (1)
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where ECT is combined board edge crush (1b/in.) and STFI and STFIM are the CD
short span compressive strengths (1b/in.) for the liner and the medium respec-
tively. This equation was determined from the experimental data base, reported
on at the last meeting, which included combined boards made with liners and
mediums of varying basis weights, densities and MD/CD ratios. This equation may

be written in the form:

ECT =.1.375 X BW_ X SS_ + 1.101 X BWm X SSy + 1.212 (2)
BW_ = basis weight of liner (1b/1000 sq ft)
BWM = basis weight of medium (1b/1000 sq ft)
SS_ = CD liner specific compressive strength
((1b/in.)/(1b/1000 sq ft))
SSM = CD medium specific compressive strength

((1b/in.)/(1b/1000 sg ft)).

In Eq. 2 the STFI strengths in Eq. 1 have been reformulated as the product of
basis weight times specific compressive strength, i.e. compressive strength per

basis weight.

- In this form it is possible to investigate how improved specific
compressive strengths will influence the amount of fiber required. It is
assumed in Eq. 2 that the basis weights may be changed independently of the spe-
cific strength values. For the purpose of the current study the specific
strength properties of the three liners and two mediums frqm our past experimen-
tal data base were selected. Table 1 below gives the specific compressive
strengths for the five components, their codes and an explanation of how the

enhanced strength were experimentally achieved.

Three discrete liner and medium basis weights (26, 29 and 32 1b/1000
sq ft) were chosen to illustrate the dependence of ECT on component basis

weights for the component specific compressive strength given in Table 1. Each
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Table 1. Component specific compressive strengths.

Specific
Compressive Strength
Component  (1b/in.)/(1b/10000 sq ft) Code Comment

Liner 0.4975 NL "Normal" Tliner

Liner 0.5648 HL High density liner achieved
by wet pressing

Liner 0.6558 1L Low ratio Ex/Ey liner

: achieved by controlling
fiber alignment

Medium 0.5918 NM "Normal" medium

Medium 0.6569 HM High density medium

'of the three liner basis weights was combined with each of the three medium basis
. weights in the calculations giving a total of nine different combined boards as

shown in Table 2.

Téb]e 2. Basis weight combinations.

Basis Weight, (1b/1000 sq ft).
Liner 26.0 26.0 26.0 29.0 29.0 29.0 32.0 32.0 32.0
Medium 26.0 29.0 32.0 26.0 29.0 32.0 26.0 29.0 32.0
Combined Board 89.4 93.8 98.1 95.4 99.8 104.1 101.4 105.8 110.1

In Fig. 1 we have plotted predicted ECT (using Eq. 2) versus combined
board basis weight for tHe 9 basis weight combinations shown in Table 2. The
specific strengths used for the points plotted in Fig. 1 were those of the
"normal” liner (NL) and "normal" medium (NM) in Table 1. As an illustration the
data Pdint 1 in Fig. 1 is the predicted ECT of 41.9 1b/in. for a 29-32-29 com-

bined board (total basis weight 104.1). (Note: these 9 points represent the
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base case where the increase in ECT has been obtained by adding component basis

weights only without enhancing the component specific strengths).

o NL — NM

42 \Ng @

ECT. Ib/In

-
84 88 92 96 100 104 108 112 118
BASIS WEIGHT, Ib/1000 sq ft

Figure 1. Predicted ECT vs. combined board basis weight.
For explanation of numbered data point see text.

Figure 2 shows ECT vs. weight values for the case where "normal"
liners are combined with a higher density medium (NL-HM). As would be expected
using a stronger medium results in higher ECT values at a given basis weight
than for the base case using "normal" components. For about the same ECT value
(42 1b/in.) as Point 1 of the base case, Point 2 of the NL-HM case uses about 6

1b/1000 sq ft less basis weight.

Figure 3 shows the ECT data points plotted in Fig. 2 together with the
predicted ECT values for two more cases. In one case the high density liner is

combined with the normal medium (HL-NM) and in the other case the high density °
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liner is combined with the high density medium (HL-HM).
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For about the same ECT

value (42 1b/in.) as Point 1 of the base case, Point 3 of the HL-HM case uses

93.8 1b of fiber suggesting a savings of about 10 1b over Point 1.

5‘ -
80 —~
46 + NL ~ HM
[
2 \ a  NL-NM
: A
42 +
B
+ o
38 o O
34
30 ] L L LA L) 1§ i L} L
84 G} 82 96 108 112 118
BASIS WEIGHT, 1b/1000 sq ft
Figure 2. Predicted ECT versus combined board basis weight.

For explanation of numbered data points, see text.

Figure 4 shows how the predicted ECT for base case (NL-NM) compares

against the case where the low directionality liner is combined with the normal

medium (1L-NM) and the case where the low directionality liner is combined with

~ the high density medium (1lL-HM).

For about the same ECT value (42 1b/in.) as

Point 1 of the base case, Point 4 of the 1L-NM case uses 89.4 1b of fiber

suggesting a savings of about 14 1b.
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Figure 3. Predicted ECT versus combined board basis weight.
For explanation of numbered data points, see text.
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Figure 4. Predicted ECT versus combined board basis weight.
For explanation of numbered data points, see text.
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As indicated by the above preliminary results, the strength models can
be used to look at ways to optimize ECT strength for a given weight of fiber.
The examples shown suggest that the following papermaking changes would give the
same ECT values for less basis weight:

1. increased wet pressing of the liner and/or medium to
give high CD compression strength,

2. decreased MD/CD ratio of the liner.

In our future work several alternative ways of optimizing the selec-
tion of the components to achieve a given ECT are being considered. Another
possibility is to determine what ECT levels can be achieved for components

" having a given basis weight.

Medium Improvement ‘

Med{um reduirements include both MD and CD strengths for end use.
Good runnability requires consideration of MD strength, coefficient of friction
aﬁd thickness. As papermaking changes are made to increase medium strength it
should be possible to square up the sheet to improve CD strength for improved

ECT while maintaining reasonable levels of flat crush and good runnability.

We have begun to develop information on papermaking ways to optimize
medium properties considering both flat crush and CD compressive strength as
well as runnability. As an initial step experimental mediums have been made on
the Formette former using combinations of pressing, refining, directionality and

~ basis weight.

The furnish is comprised of 75% NSSC pulp with 25% softwood kraft.
The following experﬁmental combinatioﬁs have been made and tested at this time.

1) Refining: Low and high refining (about 400 and 475-550 CSF).
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2) Wet pressing: Low and high levels.

3) Fiber orientation (elastic stiffness rafios of about 1.0+,
2.0+, and 2.5+,

4) Basis weights: 26 and 40-1b/1000 ft2.

Presently this corresponds to a partial factorial design; we will

expand on the design and add other factors as is appropriate.

After preparation of the Formette sheets they were fabricated into
corrugated board on the Institute's pilot corrugator. Corrugating speeds ranged
from 400 - 800 fpm depending on the basis weight and other characteristics of

the medium,

Table 3 summarizes selected compression properties of the mediums and
the combined board made therefrom. In Fig. 5 the 40-1b CD STFI results are
plotted vs. Concora Index results for the several conditions; Fig. 6 shows the
corresponding combined board properties of ECT vs. flat crush. For these 40 1b
mediums the graph configurations are somewhat similar but not identical. In
general, however, increasing directionality reduces CD STFI or ECT while
increasing Concora or flat crush. On the other hand increased fiber-to-fiber
bonding via refining or wet pressing increases both ECT and flat crush or CD

STFI and Concora strengths.

For a given minimum Concora level in Fig. 5, say 1.9 Nmz/g, CD STFI
strengths can vary widely depending on the pressing, refining and directionality
levels. For this furnish and conditions employed, CD STFI strengths could vary
between about 16 to 30 Nm/g. If minimum values for both Concora and CD STFI are
prescribed, say Concora and CD STFI indexes of 1.9 and 21 respectively,‘then the
acceptable operating conditions for these conditions would lie in an upper right

quadrant above the respective minimums,




o Lss 69" 79 8°621 9°28 9°1 06z L°18 Loz Al 1 08s 00° L61 ybTH ybTH Mo €€-T9LE

| 4

mm 5°9¢ £6°8S L°50T v°L8 6°1 0°2¢ Lz L°12 LBg 79¢ 08°Tel ybtH  wntpal MO TE-T9LE

[~ 4

% L®6S vZ°9% 8°6L 9°68 €6°1 8 1y 1°¢S ©°9¢C 0°0¢ 1419 06°L81 YoTH LU MO 62-19L€

o

m 0°¢s oy Z°L6 Z°9L 19°1 L°8C 8°¢8 S 61 s'gy £9S 0L° 602 MO7 . ybtH MO ZTY-T9LE
L°28 T1°¢¢ L°18 8 2L L7801 862 [AR 72 112 6L £ 00* L61 MOl WNTPBW oY TP-19LC
$°8S 8 1€ L°29 2°28 8L°T 9y 6°0¢ 6°92 v°82 92s 09° <61 MO MO Mo 6€£-T9LS
z'09 vi°¢8 0°9¢T 9°101 20°2 9°¢¢ 9°L6 1°62 2°0¢ 5L 0v* %02 no1 ubtH ubtH  1$-T9.L¢
6°29 S£°89 8°L01 9°101 96°1 o1 1°v8 s L2 €9y 6ZL 08° 102 Mo  wntpaW  ubBTH  06-T9L¢
D°89 66°95 8°06 2° 601 82°2 LAE14 $°29 €€ 6°¢< £0L oy Lel Mo MO ubtH  BY-T9L¢
oLy 91° 18 Z°18 8¢y 16°1 L LT 7°9s A 2" 62 686 09°821 yb1H ybtH Mo BZ-T9L¢

mw 5°8v v6° LY 8°18 2°2 60'2 022 €96 2°st $°62 98¢ 09°¢£T ybtH  wnTpay MO L2-T9L€

i

' 6°¢S b6’ 8¢ 2°L9 729 L1 L°T¢ 0°1 8°0¢ 1° 22 09s 00°TYT ybtH LN MO $2-T9L€
9y L6°CY L°SL v oy LA A 0°91 L°2s ARG Y . Z° 62 0ss 02°¢£T Mo7 ybtH Mo L€-T9LE
St 9y LLtLg rAS ~] AR a1 1°81 LAY LARAL 1°62 ovs 00°L2T LN WNTPaW MO 9¢-T9LC
1°6Y 89°L2 8°Ly 9Ly 91T v° 827 8°¢¢ LT 6°LT 1243 00°szt  moq Mo MO HE-T9LE
S°1s $%0°9¢ £°68 0°0s . 2Lt 9°61 L°€9 1°sT L3R4S 1394 0L°T€T Mo7 ybTH ubtH  9¥-T19L¢
0°£S 88°LY 218 0°0s €8°T $°Z¢ LIS 9°91 6°62 65L 07°0¢T Mo  wntpaW  UBTH . ¢y-T9L¢
1°65 16°6¢ 0°8s 91§ £1°2 0°%¢ 6°2y 0°1¢ 8°1¢ [AZ4 08°621 Mo L Wbty €v-19L¢

e e L R N S 5. . R i IS itk s
3et4 ®Q o7 (] ¢ I al 7] K3tsuag sTseq 8103084 189]

Project 3571

*swnTpaw TBjuUaWIIadxe Jo sITISTIAIEIBYD TBITSAY4 ° € aIqe]




Project 3571 -182- Status Report
3ir
401b Medium
2
13
Z 26F Low
Dir
o] Low Ref
ow Re
% High Pr
— High Ref
= Low Pr
(72}
fa) -
5 21
Medium
Low Pr Dir
16 . . ! L —
1.4 1.9 2.4 2.9 3.4

CONCORA, Nm’/g

Figure 5. Relationships between CD STFI compressive strength
and Concora for 40-1b mediums.
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Figure 6. Relationships between ECT and flat crush for
40-1b medium combinations (42-1b liners).
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Figure 6 can be interpreted in the same manner. It directly shows
how changes in medium papermaking conditions affect flat crush and ECT
strengths. In general higher ECT strengths at a given flat crush level are
favored by papermaking conditions resulting in better fiber bonding and less
sheet directionality. For heavy weight mediums it may be quite possible to
reduce flat crush target levels if this makes it possible to maintain ECT

strengths more economically.

Figure 7 and 8 show the corresponding results for the 26-1b mediums.
The STFI vs. Concora Index results in Fig., 7 are esentially similar to the 40-1b
medium results in Fig. 5 because basis effects are removed. As in the case of
40 Tb results, there may be opportunities to shift the balance between Concora

and CD compressive strengths by adjustment of papermaking conditions.
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Figure 7. Relationships between CD STFI compressive and
Concora strengths for 26-1b medium.
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Figure 8. Relationships between ECT and flat crush for
26-1b medium combinations (42-1b liners).

" Figure 9 shows that the CD STFI results increase with density in the
expected manner as refining and wet pressing were changed. Separate curves are

obtained depending on the directionality induced during forming.

The CD ring crush results show more complex trends with density
because of the buckling mode of failure on thinner sheets (Fig. 10). This
probably accounts for the lower strengths per unit weight of the 26-1b mediums

and their tendency to exhibit a maximum as density was increased.

We plan to expand our data base to include other papermaking ways to
enhance medium strength. At the same time we will analyze the results to show
how runnability on the corrugator would be affected by changes in Concora/CD

STFI short span compression strength balance. OQur current results show that
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1) For a given Concora, CD STFI strengths can vary over a wide range.
Higher CD STFI strengths are favored by increased wet pressing and

refining and less directionality.

2) For heavy weight mediums at least, it should be possible to reduce
flat crush levels but increase ECT strengths. Savings in medium

fiber can result from this approach, depending on papermaking factors.

Runnability Modeling

To gupp]ement our research on high speed runnability for the FKBG we
are developing models which will explain how critical corrugating speeds are
dependent on medium properties, nip geometry, and operational factors. The
mdde]s are based on physical analysis of the corrugating process but are empiri-
cal at this time. We believe the model has application to high-low flute for-
mation, flute fracture, and to strength losses during fluting. A discussion of

the model concepts is contained in previous status reports.

Applied Stresses and Flute Fracture

The following equation is being used to predict the speed at which
flute fractdre is observed.
(To + k1S¢)ewd + koTp = Ty (3)

where T, = brake tension

S¢ = fracture speed

8 = total wrap angle in labyrinth 2 3.09 rad.

u = coefficient of friction

Th = tension in outer layer induced by bending

Tf = tensile strength of medium

k1 = empirical constant * 1/297

Ko = empirical constant = 0.0979
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At present the bending strain Ty is being estimated as follows.

Th = 50 Tet/[e(R + t/2)] (4)
where T¢ = tensile strength of medium
t = thickness of medium
e = medium stretch, %
R = radius of curvature of flute tip

Equation 1 gives the following relationship for the fracture speed Sf:

S¢ = (370/e"8)[T¢ - koTh - Toe'®1] (5)

Based on avefage results for.26, 33 and 40-1b mediums Fig. 11 shows
‘that estimated fracture speeds decrease with basis weight and web tension in the
expected way. We expressed these as relative speeds because some allowance for
the decreased flank clearance in the corrugating nip or shear effects may be

necessary for very thick mediums.

Figure 12 shows that observed and predicted fracture speeds are in
good agreement for 26-1b mediums. Most of the predictions for 33-1b mediums
were also in good agreement with the observed fracture speeds. These results
lend credence to the model. Thus flute fracture appears to be dependent on the
| four properties incorporated in the model, namely, friction, MD tensile, MD

stretch, and thickness.

If S js given some value less than the fracture speed, then the left
side of Eq. 3 is an estimate of the total applied tensile stresses at that
speed. As speed is increased the total stress increases. Fracture occurs when
the applied stress exceeds the tension stress. Dividing the applied stress at a
given speed by the tensile strength provides an estimate of the applied stress

intensity ratio at the given speed.

J
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Figure 11. Estimated average relative speeds to flute
fracture for 26, 33 and 40-mediums.
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High-lows are a manifestation of form instability, i.e. the medium
attempts to relax back to a flat shape but in a non-uniform way. A portion of
the strain applied during forming will be non-recoverable, the remaining portion
will be recoverable and contribute to form changes. In general, both components
should increase as the applied stress increases. This would explain why high-

lows become more pronounced as speed increases. Also as the stresses increase

toward fracture, local variations in stress and strain which are associated with -

paper machine formation should become more pronounced. These local variations
in strain would manifest themselves as differences in recoverable and non-

recoverable stretch (or TEA) in localized regions.

From this- viewpoint high-low flute formation should depend on the
applied stress intensity. The latter will depend on the material and process

factors associated with the model.

In Fig. 13 the average high-lows greater than four mils for 26? 33
and 40-1b mediums are plotted vs. stress ratio. As expected the occurrence of
high-lows decreases with medium basis weight at a given speed. When the stress
ratios exceed about 0.85 the occurrence of high-lows increases rapidly. Thus
mediums with combinations of friction tensile, stretch and thickness which yield

lTower stress ratios at a given speed should exhibit less high-lows.

For prediction purposes high-lows were correlated with the applied
stress ratio in two ways. Initially two straight lines were fit to the data in
Fig. 13, one line for stress ratios (R) less than 0.85 and a second line for

ratios greater than 0.85. The resulting equations for high-lows > 4 mil were:
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RELATED TO STRESS RATIOS DURING CORRUGATING

Figure 13. High-Tows increase greatly as the stress
ratio approaches unity and fracture occur.

Stress ratio < 0.85
High-low, % = 56 R - 31; r = 0.83 | (6)
Stress ratio > 0.85

High-low, % = 215 R - 160; r = 0.96 (7)

Generally these equations give predictions which are in good agreement

with results on our corrugator under normal steaming and tension conditions.

However, for sensitivity purposes analysis it apbeared desirable to
fit a curvilinear function to the data in Fig. 13. The following equation was

obtained.

High-Tow, % = -3.30 + 59.63 R%; r = 0.96 (8)

Figure 14 illustrates that the power function fits the data quite well.
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Figure 14. Curvilinear relationship between high-lows and the

applied stress ratio. (High-low = =3.3 + 59.6 R,
R = stress ratio.)

The effects of changes in medium properties on high-lows were estimated

using Eg. 8 in conjunction with the runnability model equation. Each of the four

properties was varied over a range of ¥30% about the following average values.

1)
2)
3)
4)

Hot coefficient of friction, = 0.3

MD tensile strength, Tf = 40 1b/in.

MD stretch, = 1.3%

Thickness (IPC soft platen), t - 0.008 in.

Figure 15 shows how changes in test properties affects speed for a

constant high-low percentage of 10%. The base medium with average properties

had a Sbeed of 800 fpm. Figure 15 indicates that at a constant high-low level,

changes in stretch and thickness have the greatest effect on operating speed.

Friction and tensile strength have significant but lesser effects than the other

two properties.
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We also estimated the effects of changes in properties on high-low
magnitudes, keeping speed constant at 800 fpm (Fig. 16). The property rankings
remain the same, i.e. stretch and thickness have somewhat larger effects than

friction and tensile strength.

These results illustrate that papermaking factors which give higher
stretch and tensile strength and lower friction and thickness will promote
operation at higher speed with less high-lows. Many papermaking changes will
affect more than one of theSe properties. Changes which simultaneously improve
tensile and stretch and reduce friction or thickness will be particularly

beneficial.

In addition we are developing further information on other flute pro-
files to test and expand our modeling. For this purpose flute profile casts
have been obtained as follows:

1) A-flute,

2) B-flute,

3) special C-flute, larger diameter rolls.

The profile data is being analyzed to compare with our present

Langston C-flute rolls.

Periodicities in High-low Flute Formation

OQur goal is to identify periodicities in high-low flute formation

. using power spectral analysis techniques and to determine what machine elements
cause these periodicities. Using a microcomputer statistical software package
called Statgraphics, we obtained the periodogram shown in Fig. 17 of 1000 con-

secutive flute height differences produced at 1000 fpm on the corrugator. The
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periodogram indicates that there are important cyclic components with periods
near 5 - 6 flutes, 10 flutes, and others with longer periods. Similar patterns
are obtained at other speeds. While we can see definite frequency components
present, the software is limited in the amount of analysis it can perform. For
this reason we switched to the more advanced BioMedical Computer Programs (BMDP)
statistical software package on our mainframe computer. It is capable of uni-
variate and bivariaﬁe spectral analysis using data tapering, spectral smoothing,

and a feature which allows us to magnify a small section of the spectrum.

50 ) LU
' . 1000 fpm

Yo ] T DR TS S S I
>
Lo
(72}
2
w
R o] O, N A R R R R IR
-
- ¢
@
5 ‘ ) : )
S P00} KRR R S I I A | R N I
o
[72]

10

FLUTES/CYCLE

Figure 17. - Power spectrum for flute height differences at
1000 fpm suggests that a number of long-period
components may be present.
Confidence intervals, necessary for the interpretation of spectra, are
calculated manually and depend on the following items: the amount of data

tapering, the shape and width of the smoothing function, and the desired level

of confidence. Data tapering refers to tapering both ends of the data sequence
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to reduce errors in the spectra. We tapered 10% of each end of the sequence, or

a total of p = 20% of the data. The correction due to tapering is

1 128 - 93p . ;116 (9)
2 (8 - 5p)?

To smooth the periodogram we used a cosine bell smoothing function encompassing
5 periodogram ordinates. The correction due to smoothing is

5

S=3 c¢j?=0.3 (10)

i=1
where the cj's are the individual weights of the smoothing function. The equiv-
alent degrees of freedom is then v= 2/ST =6. Next, for a 90% confidence inter-
val wjth 6 degrees of freedom, the Chi-Square (X%) distribution table gives the
points 1.64 and 12.59. Finally, the confidence interval about a spectral esti-
mate g(w) is given by log g(w) + log (v/X%); log g(w) + 0.563 (upper limit) and
log g(w) - 0.322 (lower Timit). Note that to narrow the confidence interval it
is necessary to increase the amount of smoothing, but this results in a loss of

detail in the spectra.

Using the BMDP software on the same data we produced the power spectrum

shown in Fig. 18, essentially a smoothed version of the periodogram in

Fig. 17. Figure 18, plotted on a log scale, highlights the same frequency
“components but with less detail. Again the dominant peak is around 5-6

flutes/cycle. The area of the spectrum around this peak is shown enlarged

in Fig. 19, complete with confidence bands. The single peak in Fig. 18 is now
"resolved into two closely spaced 5eaks. The confidence bands indicate only two

peaks: the left peak cannot be resolved into smaller components. Analysis of a

differént section of the same board shows these peaks in the same area, though

not as dominant. We plan on testing other samples from our pilot corrugator to
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ensure that these peaks are real, then looking at the corrugator for the cause

of these and other peaks.
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Figure 18. Power spectra of f]ute-bright-difference difference
data of Fig. 1, using data tapering and spectral
smoothing. ,
A full corrugator width sample of commercial single-face board pro-
duced at a speed of 600 fpm has been cut into 12-inch wide strips and corre-

sponding groups of 1000 flutes have been measured on the middle, drive side, and

operator side of the board. The analysis of this data is in process.

Our plan for future work includes the following:

1. Frequency spectra. In this phase we plan to identify the signifi-
cant vibrational frequencies influencing high-Tows using single-
faced boards fabricated on our pilot corrugator and on commerical
board. Among the variables to be studied are speed, liner and
medium web tension, idler roll balance, parent roll condition,
flute size and medium weight or type. Concurrently we are con-

ducting a literature search on possible machine vibration causes. -
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Figure 19. Detailed closeup of largest peak in Fig. 2 with
90% confidence 1imits (dashed lines).

2. Instrumentation. The second step will be to instrument the corru-
gator with vibration sensors to experimentally identify machine

elements which cause high-lows.

Flat Crush Modeling

Corrugated board must be able to resist compressive forces in the
thickness direction because if it is crushed during fabrication or end-use, box
compressive strength will suffer. The maximum resistance of the fluted struc-
- ture to thickness direction compression forces is termed ftat crush strength.
This is a commonly measured property of combined board. However the entire

compression load vs. deformation curve can be of importance to performance

The medium is the primary element in corrugated board resisting

compressive forces in the thickness direction. A typical flat crush load -
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deflection curve for single-faced board is shown in Fig. 20. The curve normally
has three distinct regions described as follows: 1) Initially the curve is
nearly linear and the corrugated board behaves elastically. In this region the
board resists compression forces with a relatively small decrease in thickness.
The first yield point occurs as the top arch-shaped portion of the flute flat-
tens. 2) The compression resistance increases to a second yield point asso-
ciated with a flattening of the bottom flute tip which is adhered to the liner.
3) Further increases in compression resistance occur until the third yield point
is reached. At the thifd yield point the straight-leg portion of the flute
rotates to a vertical position. Final failure results from a buckling of the

straight-leg portion of the flute.

- S —
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12_W 3rd yield
2nd y161d\//

104 1st yield

LOAD (Ib)
\

/ l
/
0 -+ i I 1 T 1 T —
0 0.02 0.04 . 0.06
DEFLECTION (in)

Figure 20. Typical flat crush load-deflection curve. (Load
values equivalent to a l-inch wide section of
one C flute.)

 —

In flat crush test results the maximum load applied to reach the third

yield point portion of the load-deflection curve is normally reported. However,
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the corrugated board undergoes irreversible damagé before the maximum flat crush
load is reached. If compression forces exceed the first yield point, permanent
damage occurs to the board. Thus the initial portion of the curve is more cri-
tical than the maximum load in assessing whether a given amount of crushing will
damage the board. The initial portion of the curve is presently under study

using finite element analysis techniques.

The finite element method is a numerical analysis technique based on
classical méchaﬁics principles. The method assumes that a system can be modeled
as an assembly of parts called elements. The elements are connected only at
discrete points called nodes. A finite element structure resembles.the actual
‘structure. Using the finite element method, a structure of arbitrary geometry
can Be modeled with elements of various types, sizes and shapes. Arbitrary sup-
port conditions and loading may be applied to the structure. Composite struc-

tures made up of materials with different properties can also be modeled.

The most common finite element analysis assumes that displacement of
the structure is extremely small and that the material is linearly elastic. A
second class of finite element analysis involves non-linear behavior of a struc-
ture. Non-linear behavior may occur due to time-dependent and time-independent
_ material non-linearity or because of large displacements which alter the shape
of the structure so that applied load change their distribution or magnitude.
Analysis of paper structures quickly enter the non-Tlinear range from both large

~ deflections and material reasons.

The accuracy of a finite element analysis depends on knowledge of the
basic material properties. If the structure being modeled remains within the

Tinear elastic range, only one set of elastic properties needs to be determined.
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Non-linear analysis requires the knowledge of the entire stress-strain curve.
Present knowledge of the stress-strain relationship for paper materials is quite
limited, especially in compression and shear. ATso, the state of stress in the
fluted medium prior to flat crush loading is not well established. The elastic
properties of the medium can be determined prior to corrugating. However, the
éorrugating operation which stretches and bends the medium in the machine direc-
tion and compresses portions in the thickness direction probably reduces the
elastic properties. It is also likely that the elastic properties vary along
the flute. The lack of extensive knowledge of the medium properties, both

before and during flat crush loading make the finite element analysis extremely

difficult,

The finite element modeling of flat crush has been conducted using a
program called MSC/PAL; This program is capable of analyzing structures
comprised of materials which remain in the linear elastic/small deflection
Eange. An estimate of the non-linear effects due to large deflection can be
obtained though an iterative ]oading‘approach. The MSC/PAL program recalculates
the system equations after each load increment. However, the program was not
capable of keeping track of the total nodal deflections or element forces. A
scheme was developed in which the results from each iteration were imported into

a spreadsheet program and added to previous results.

An initial flat crush finite element model comprised of 36 beam ele-
ments was developed as shown in Fig. 21. The fluted shaped was assumed to be
sinusoidal. A l-inch wfde section of a C-type flute was used in the initial
model. The flat crush test apparatus was modeled as a moveable steel beam above
the flute and a fixed base below. The flute was loaded by moving the steel beam
downward in increments of 0.002 inches. The load resistance of the fluted shape

was determined from the reactions at the ends of the steel beam.
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Figure 21. Flat crush finite element model.

Medium physical properties which affect the accuracy of the finite
element model .are as follows:

1) Compressive elastic modulus in the machine direction (Eyp)

v2) Qut-of-plane shear modulus (Gmp-zp)

3) Thickness

| . The effect of changes in the three parameters were studied initially.

The first set of finite element analyses involved three different
elastic modulus values. The shear modulus (GMp-zp) was set at 5 x 103 psi and
| the medium caliper at 0.010 inches. The results of the three runs are shown on

Fig. 22. After a load-head deflection of 0.010 inches the following flat crush

compression forces were obtained:
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four runs are as follows:

the shear deflection was eliminated (Gmp-cp == ).
set at 5 x 109 psi and the caliper at 0.010 inches.

from the finite element analysis are presented in Fig. 23.

Emp (psi) Flat Crush Load (1b)
10 x 105 23.4
5 x 105 16.7
2.5 x 109 9.4
28 -
24 - /E EMD =10 x 105 psi
-
20 — /
L = 5 i
) 16 — / . EMD 5 x 10° psi
g )’ ,/
12 /’
. ”/' - Ewp = 2.5 x 105 psi
8 — ) ﬁ/ . B /.r’
. /Jf’/x; ‘(/ —a
* R o
P L e
0 = i I 4 ¥ 1 T T 1 1 1 T L
o 0.002 0.004 0.006 0.008 0.01 0.012 0.014
DEFLECTION (In)
Figure 22. Load-deflection results from finite element

analysis with 3 different values of Epp.

A second set of runs was conducted to determine the effect of dif-
ferent shear modulus (Gmp-zp) values on the flat crush load-deflection curve.
Three different shear modulus values were used and also an‘additional case where
The elastic modulus (Emp) was

The load-deflection results

The results of the
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Figure 23. Load-deflection results from finite element analysis

with 4 different values of Gmp-zp-.

A third set of finite element runs was conducted to assess the effect

of. caliper on the initial portion of the flat crush curve.

(0.012, 0.010, and 0.008 inches) where used in the analysis.

Three calipers

The elastic modu-

Tus (Emp) was set at 5 times 105 psi and the shear modulus (Gmp-zp) set at

5 x 103 psi.

The results of this analysis are plotted in Fig. 24.

The results

of the flat crush load after a 0.010 inch deflection are as follows:
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Caliper (in.)’ Flat Crush Load (1b)
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Figure 24. Load-deflection results from finite element analysis
with 3 different values of caliper (t).

Significant changes were observed in the flat crush load resistance
when different values of Evp, Gyp-zp and caliper were used in the finite element
analysis. Knowledge of the level of these parameters will be necessary for an

accurate analysis.

Presently an assessment of the elastic properties in the fluted medium
is being conducted. The best estimates of the properties will be made and the

finite element analysis compared with actual test data. Future work will




Project 3571 -205- Status Report

include an analysis of the effects of various flute geometries. Also, a search
for a finite element program which would have the capacity for geometric and
material non-linearities is being conducted. This may allow the analysis to

proceed beyond the first yield portion of the flat crush curve.
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PROJECT TITLE: On-Line Measurement of Paper Date: 6/1/86

Mechanical Properties
Budget: $100,000

PROJECT STAFF: C. Habeger/G. Baum
Period ends: 6/30/87

PRIMARY AREA OF INDUSTRY NEED: Properties related
to end uses Project No.: 3332

PROGRAM AREA: Control of manufacturing processes
PROGRAM GOAL: Develop way§ to measure and control manufacturing processes
PROJECT OBJECTIVE:

To develop the capability to measure elastic parameters on a moving paper web.
Current emphasis is on out-of-plane measurements.

PROJECT RATIONALE:

The ability to measure mechanical properties on the paper machine is valuable
from several standpoints. It provides a potential means for control of process
variables. It also provides a non-destructive way to assess product quality on
a continuous basis.

RESULTS TO DATE:

Developed theory of ultrasound propagation in paper, and developed devices for
measuring paper and board in-plane elastic parameters on-machine. Successfully
tested devices in mill environments. Constructed and tested a version useful for
light weight grades which is also self-calibrating. Developed cross correlation
technique for use with in-plane velocity measurements, and initiated work
relating to on-line measurements of z-direction properties. Developed a high-
frequency, low impedance out-of-plane transducer using a plastic film piezo-
electric material which is superior to commercial ceramic transducers.

Developed superior in-plane "bender" transducer. Developed equipment for
measuring moisture and temperature effects on paper elastic properties.

PLANNED ACTIVITY FOR THE PERIOQD:

We intend to continue studies to explore the possibility of making out-of-plane
ultrasonic measurements on a moving paper web. We will build high frequency,
broad banded, and low impedance transducers that are mounted in wheels. We plan
to look at both ceramic and plastic piezoelectric transducer constructions.
Hardware and software for a high speed data acquisition system will be designed
and built., On-line caliper measurements techniques will be investigated to be
used with the ZD measurement system.

RELATED ACTIVITIES:

The proposal submitted to the Department of Energy to investigate possible
control strategies on the paper machine and to develop a sensor to measure out-
of -plane properties has been approved. Work should be underway by March, 1986.

STUDENT RELATED RESEARCH: Bernie Berger, Ph.D.-1988.
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PROJECT SUMMARY

PROJECT NO. 3332: .ON-LINE MEASUREMENT OF PAPER MECHANICAL PROPERTIES

PROJECT STAFF: C. C. Habeger, G. A. Baum September 10, 1986
PROGRAM GOAL : Deve]op'ways to measure and control manufacturing processes.
PROJECT OBJECTIVE:

To develop the capability td measure elastic parameters on a moving paper web.
Current emphasis is on out-of-plane measurements.

PROJECT RATIONALE, PREVIOUS ACTIVITY, AND PLANNED ACTIVITY FOR FISCAL 1986-87
are on the attached 1986-87 Project Form.

SUMMARY OF RESULTS LAST PERIOD (October 1985 - March 1985)

(1) New broadband plastic (PVDF) ZD transducers for use in wheels are being
designed for use in an out-of-plane measurement on a moving paper web.

(2) Implementation of a high speed signal processing system for use with on-
machine ZD measurements is underway using a LeCroy transient recorder and
related equipment. The LeCroy system will be integrated with an IBM-XT.

(3) The above will also be incorporated into a laboratory system which will make
ZD measurements at low web speeds.

(4) The study of transient effects in the mechanical properties vs. changing
moisture content continues on both theoretical and experimental levels.

(5) The DOE broject concerned with an in-plane and out-of-plane sensor for on-
machine measurements and subsequent machine control is expected to be funded
by April 1, 1986.

SUMMARY OF RESULTS THIS PERIOD: (April 1986 - September 1986)

(1) Several preliminary PVDF wheel transducers have been built and tested.
Development of improved models continues.

(2) A high speed data acquisition system has been developed for ZD operation.
This is described in the report for Project 3467 but most of the work is
directly applicable to on-line measurements of ZD properties.

© (3) A paper "On-line Estimates of Strength" (IPC Technical Paper Series 187) was
presented at the 1986 Control Symposium in Stockholm and will be published
in the proceedings of that meeting. It is attached as an Appendix.

(4) Thé DOE project, concerned with combined in-plane and out-of-plane measure-
ments on the paper machine is expected to be initiated in the near future.
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During the last six months we have focused on the development of ZD
wheel transducer for eventual on-line application. These are modeled after the
low-impedance, broadband, disc transducers which we recently built for labora-

tory testing.

Figure 1 is a drawing of a disc transducer. The active piezoelectric
elements are polarized polyvinylidene fluoride (PVDF or Kynar) films. Compared
to standard ceramic piezoelectrics, the films have a very low mechanical impe-

dance (making them more efficient in coupling energy into paper) and a very low

“quality factor (making broadband transducer construction practical). A stack of

four films, each 110 um thick were used. The polarization direction of the two
layers on the top is opposite the two on the bottom of the stack. The trans-
ducer electrode is the stack center and the two outer surfaces are ground. To
feduce backside reflections (and increase bandwidth) one end of the stack is
epoxied to an unpolarized Kynar'disc; The front of the stack is a polystrene
disc. It has low acoustic loss and improves the impedance match to the soft
neoprene front face. The soft neoprene conforms to the sample surface giving.
good acoustic coupling and a resemble value for caliper. The thickness of the
Kynar, polystyrene, and neoprene are all greater than one wavelength of sound at
1.0 MHz, the excitation frequency. This means that a single pulse can be iso-
lated in the received sigﬁa] and that this pulse has no interference from
multiple reflections betweeﬁ transducer interfaces. Cross-correlation tech-
niques can then be used to establish a delay time difference between a sample

and a thin aluminum foil.
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Figure 1. Kynar disc transducer.




Project 3332 . -211- Status Report

The aim of the present work is to adapt this design to a wheel trans-
ducer, The wheels should be equally active over their circumference
They will make rolling contact on opposite sides of the paper and transmit
signal through the paper. Initially we hope to use this in the laboratory.
Here, the wheels would be motor driven, and a sample would be fed through the
nip. This would give us experience with dynamic caliper and delay time measure-
ments, and perhaps provide a useful instrument for profiling soft caliper and ZD

longitudinal velocity.

OQur first attempt was an axially symmetric transducer with the same

layering as the discs. A Kynar disc 2 3/8" in diameter and 12" thick is the base

~of the transducer. A small v-shaped notch was cut across the disc at one point

on the circumference. The films were cut and conductive epoxy was used to
secufe them to the Kynar disc one at a time. To achieve the intimate contact
necessary for acoustic coupling, the films are wrapped around the disc and
placed in a circular vise made of teflon. The vise was tightened, extruding
epoxy around the periphery. Pressure was maintained until the epoxy has cured.
A polystyrene ring about 1" thick was epoxied to the outer flum. Tb get good
contact, the ring which was undersized a few thousands of an inch, was heated
and carefuT]y placed around the core. As the ring contracted a bead of epoxy
was extruded at the interface. After the final layer of conductive epoxy had
cured, the edges of the layered film ring were machined to remove excess epoxy.
Electrical contact to the ground planes at the inner and oyter surfaces of the
film ring was achieved as in the disc transducers. That is bare copper wire was
inserted in a small hole drilled through the plastic to the surface. Conductive
epoxy was forced into the holes making electrical contact when the curing load

was applied. The electrical contact to the film center was made at the notch in
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the inner Kynar wheel. A hole was drilled through the wheel to the notch. A
copper wire was threaded through this hole. During film stack assembly the ends
of the two inner films were bent to the sides of the notch while the two outer
films were attached to the polystyrene ring. The end of the wire was fixed with
conductive epoxy to the stack center in the notch gap. Finally a 1/8" thick

layer of soft neoprene was glued to the rim of the wheel.

Transducers constructed in this manner were promising, but had some
distinct limitations. Compared to the disc transducers, they had fair sen-
sitivity, and they were slightly less broadbanded. We had hopes that the wheels
would be of uniform sensitivity over their circumference; however, we encoun-
tered a factor of two variabi]ity. This was due not only to inhomogenities in
. the electrode contact regions, but also to nonuniform epoxy thickness at film
interfaces. Perhaps the conductive epoxy is too viscous to form uniform film
and perhaps uniform pressure is not applied by the ring clamp. At any rate it
wés unacceptable. Another problem resulted from the physical properties of the
polystyrene. It is a brittle p]astic'with a Tower thermal expansivity than the
Kynar. This made fitting of the undersized, heated ring to the cool core dif-
ficult and stress fractures were often observed in the polystyrene after

assembly. Any heating of the competed wheel increased the chance of fracture.

The second wheel design was modified to eliminate these shortcomings.
We decided to sacrifice the better impedance match and transmission coefficient
~realized from the polystyrene ring and make both plastic pieces from Kynar.
Kynar is very tough and has a large thermal expansivity. This allowed us to
machine a smaller inner diameter to the outer ring and produce a tighter wheel.

The tougher Kynar did not fracture and (as the design was all Kynar) stresses
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were not increased by temperature changes. To achieve circumferential sen-
sitivity uniformity, we made radical changes in the acoustic coupling of the
films and in the method of electrode attachment. Instead of using conductive
epoxy. We metered a thin film of silicone grease onto the film surface.
Electrical contact was achieved by inserting copper wire flattened to a thick-
ness of 10 um in the appropriate interfaces. The ring clamp was unnecessary as
coupling at all interfaces was established as the outer ring cooled. The main
concern in this design is that the silicone does not interfere with electrical

contact between wire and films.

The initial wheels built in this manner were circumferentially uni-

“form, The improved acoustic coupling compensated for the poorer impedance

match, and the sensitivity was approximately equal to that of the sensitive
regions of the first wheels. Some contact difficulty was encountered on one of
the leads, If necessary, we think we can assure good contact by applying a small
émount of silver paint to the flattened electrode. Wg could also make electri-
cal contact by leaving tabs on the ff]ms; however, this would be a less rugged

design and increase changes on the films shorting.

From experience building disc transducers of different radii, we think
that increasing wheel thickness would lead to a more broadbanded transducer.
This would also increase sensitivity to what we feel is an acceptable level for
practical transducers. Our present plan is to build the first serviceable
transducers to a one-inch thickness and with silicone grease coupling. We are

still experimenting to determine is film tabs are necessary.
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APPENDIX

ON-LINE ESTIMATES OF STRENGTH

Charles C. Habeger, Jr.
Research Associate,
Paper Materials Division

Gary A. Baum
Director,
Paper Materials Division

The Institute of Paper Chemistry
P.0. 1039
Appleton, Wisconsin 54912

Virtually all paper products must meet mechanical prop-
erty specifications. This usually requires destructive
testing that cannot be performed on the paper machine.
It is possible, however, to measure other properties
on-line which are also indicators of product quality

or can be correlated with the strength properties. The

elastic stiffnesses of paper are such properties.

The elastic stiffnesses* of any material are the ratios
of stress to strain in the limit of small strain. For
a material which has three mutually perpendicular sym-
metry planes, such as paper, nine independent elastic
parameters are required to describe the three dimen-
sional elastic response. The elastic properties of
paper are very sensitive to paper machine operating.
variables (1) and also can be correlated with many of
the usual strength tests (2).

Seven of the nine elastic properties of paper can-be
routinely measured nondestructively using ultrasound
velocity techniques (3). The velocity of sound in a
material depends upon the elastic properties and the
material density. Using the appropriate propagation
directions and wave polarizations, mass specific
elastic properties of paper can easily be determined by
measured ultrasound velocities. The square of the
velocity (for a particular mode) is an elastic property
divided by density, i.e., a mass specific elastic
stiffness. Details of such measurements may be found
elsewhere (3). At present, only three of the seven
elastic stiffnesses have been measured on a moving
paper web. These are the longitudinal planar stiff-
nesses in the machine direction, MD, and cross machine
direction, CD, C11 and Cpp, respectively, and the shear
modulus, Cgg. Poisson's ratio, vvp-cp, could be deter-
mined from on-machine measurements, but this has not
been done yet.

Our first on-line instrument, tested about six years
ago (4), used piezoelectric transducers mounted inside
of wheels which rolled along the paper (see Fig. 1).
The piezoelectric element in each wheel was coupled to
a section of the rim of the wheel by an aluminum
“"button". Three such wheels were used, one serving as
a transmitter and two as receivers. The receivers were
positioned relative to the transmitter, with one about

*We avoid the use of elastic "constant", because for
paper these parameters are seldom constant because of
their extreme sensitivity to machine variables.

20 cm away in the MD and the other about 20 cm away in
the CD. A1l three wheels were synchronized so the
buttons contacted the web at the same time. At web
contact, the transmitter was excited with a burst of
sine waves, so that it vibrated and created a mechani-
cal disturbance in the paper. This disturbance propa-
gated away from the transmitter in all directions. The
MD receiver detected the longitudinal displacements of
the disturbance after a time delay At;. This time was
corrected for nonpaper delays (determined during
calibration) and the longitudinal velocity in the MD,
Vi -Mp, was calculated as the transducer separation
distance divided by the corrected delay time. The
value of C11/p is (Vi.Mp)2. C11 is the elastic stiff-
ness which is closely related to the MD Young's modu-
lus, Eup. Emp is typically 95% of C3). The CD
receiver detected a shear component of the initial
mechanical disturbance, allowing Cgg/p (or GMp-cp/p),
the specific shear stiffness, to be determined. From
the two measured specific elastic stiffnesses, it is
possible to predict Cpp/e (approximately Egg/e) (5).

Another instrument, developed later for application to
lower basis weight sheets, has its transducers mounted
in a cylindrical shell. To avoid cross-talk through
the cylinder, the transducers are acoustically isolated
from the shell of the cylinder. Laboratory tests with
the cylinder have been made on a variety of coated and
uncoated paper gradss. Basis weights from about

12 g/mé, to 500 g/m<, at web speeds up to 650 m/min,
have been studied. The cylinder device has improved
the performance by using two receivers for each
velocity measurement. These are spaced at different
distances from the transmitter so that two delay times
are determined. The velocity is then computed by
finding the ratio of the difference in separation
distances between receivers and transmitter to the dif-
ference in delay times. This procedure reduces the
sensitivity of the measurement to the environment or to
coupling variables between the transducers and the web,
and eliminates the need for separate calibration to
eliminate nonpaper delay times.

Figure 2 shows a typical output obtained during an
extended mill trial (6,7) using a wheel type system.
The NOW column is updated approximately every 40
seconds. The first two entries in this column are
C11/e and Cgg/p. These were corrected for moisture
content and temperature variations in the web, using
moisture and temperature measurements taken from the
scanning (Measurex) sensor. The third and fourth
entries are the first two, respectively, multiplied by
the basis weight (BW) at the location of the sensor.
Next is (Coo/p) BW, computed as noted above.
Squareness is the ratio, C11/C22. CD ring crush,
Mullen (bursting strength), and CD STFI compressive
strength are estimated from the measured values using
empirical relationships established in the Taboratory
on samples taken from-many reel turn-ups. The two
columns on the right are the running reel averages and
twice their standard deviations.

A11 of the work described thus far has been carried out
by The Institute of Paper Chemistry, in part sponsored
by the Fourdrinier Kraft Board Group of the American
Paper Institute. The technology described has been
licensed to two instrument manfacturers, AccuRay and
Measurex. Both companies have prototypes and are nego-
tiating with customers. I will discuss them in alpha-
betical order.

The AccuRay device uses the roll approach with a
transmitter and two receivers. The transducers may be
oriented to measure either shear or longitudinal waves
in the paper. That is, Cgg/p and C22/p are measured.
C11/p can be determined from the two measured values.
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Figure 3 shows the sensor mounted on a corrugating
medium machine during a mill test.

The Measurex system, shown in Fig. 4, apparently
measures Emp and Egp. This device has been tested in
several mil?s, as outlined in Fig. 5, including liner-
board, multiwall sack, specialty kraft, and newsprint
grades. Fig. 6 shows CD profiles of MD tensile
strength for weights of linerboard. The agreement
between the laboratory results and the predictions from
on-machine measurements is good., The decrease in
mechanical properties at the edges of the profile is
commonly observed, even though the basis weight and
moisture profiles may be flat. Figure 7 is a plot of
CD tensile, as measured in the laboratory, versus CD
tensile as estimated from on-machine measurements.
Figure 8 is a similar graph showing laboratory MD STFI
compressive strength vs. values estimated from on-
machine measurements.  Figure 9 shows end of reel data
for bursting strength in a newsprint grade. Note the
change in Mullen with time (or reel number), and the
good agreement between lab and on-machine estimates.

A1l of the systems discussed so far are capable of con-
tinuously monitoring product quality in real time. The
operators can immediately determine when product
quality fluctuates. At the same time, the effects of
changes made on the machine on mechanical integrity can
be rapidly monitored (6). In this way the paper
machine can be "fine-tuned” to give optimum product
quality at the lowest possible cost.

The next step will be to use the sensor in automatic
process control. For this purpose the basic measured
parameters, the elastic properties, should be used to
control setpoints. An important question to ask is,
"What should be controlled on the machine?". You know
the old papermaker said "Paper is made in the beater.",
but the old papermaker was not completely right.
Today's grades, whether commodity or specialty grade,
require careful adjustment of the machine. In addition
to refining, paper machine variables which should be
considered include jet-to-wire speed differentials, wet
pressing pressure levels, wet straining, and drying
restraints. Of course, we cannot neglect furnish
variables, yield or bleaching levels, HW to SW ratios,
etc. We are now in a position, however, to monitor the
impact of these process variables on sheet properties
and to provide real time input for process control.

If more than one elastic parameter is measured on the
machine, it should be possible to separate the effects
of some of the papermaking variables. Measurements of
in-plane shear stiffness, Cgg or Gmp-cp, are sensitive
to changes in density due to refining or wet pressing.
They are less sensitive to those factors which affect
directionality, such as jet-to-wire speed differen-
tials, wet straining, and drying restraints. Cj] and
Cop are sensitive to all of the above machine varia-
bles. C33, on the other hand, is independent of fiber
orientation effects, but is extremely sensitive to wet
straining (or draws), and is considerably more sen-
sitive to refining than either C11, C22, or Cgg. Thus
the three measurements, C11, Cgg. and C33 would allow
three of the machine variables, viz., refining, fiber
orientation, and wet straining (assuming other vari-
ables are not changing) to be monitored separately.

It is conceivable that these three paper machine
variables could be controlled automatically. However,
CD control of mechanical properties on the machine will
be considerably more difficult than for the MD case.
Remember that CD profiles of mechanical properties can
vary even though basis weight and moisture content are
constant across the web. Since CD variations are pri-
marily caused by local changes in fiber orientation and
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nonuniform CD shrinkage, it will be a challenge to
control them. Bell-shaped profiles, like those in
Fig. 6, might be flattened by a spreader roll that
resisted the normal CD shrinkage near the edges.

As on-machine measurements of elastic properties become
more widespread and our experience grows, there will be
more emphasis on their use as inputs for control pur-
poses. Prior to that time, they will find immediate
application as product quality monitors. Ultimately,
these devices will lead to increases in machine produc-
tivity, more efficient use of raw materials and energy,
and better product uniformity.
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Figure 2.

CRT display for IPC field trials.
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Figure 3. AccuRay prototype during field trials.
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DIGITAL STRENGTH SENSOR

INSTALLATIONS
CUSTOMER LOCATION PRODUCTS MEASUREMENTS
1. Longview Fibre Longview, WA 26-33# Linerboard Mullen, MD & CD Tensile,
(127-161 GSM) MD & CD STFI

50-754 Multl-Wall Bag
(81-122 GSM)

80-685# Gumming Paper
(81-106 GSM)

21¢ Speclality Kraft

(103 GSM)
2. U.S. Confidential Confidential 26-61# Linerboard Mullen, MD & CD Tensile,
(127-298 GSK) MD & CD STFi
3. Consolidated Shawinlgan, QUE 30# Newsprint Mullen, MD & CD Tensile,
Bathurst (48 GSB&A) MD & CD TEA
4. Consolidated Shawmﬂgm, QUE 30#% Newsprint Mullen, MD & CD Tensile,

Bathurst (48 GSi) MD & CD TEA

Figure 5. Measurex field trials.

LINERBOARD
MD Tensile (Ibs/in) + Sensor ® Lab
90.
80. -

33# (161 GSM) 6/11/85

26# (127 GSM) 6/10/85

I O O O
40. §0.

Slice

Figure 6. Linerboard CD profiles.
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26&33# LINERBOARD, JUNE '85

40.

30.
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30.

MX CD Tensile

40.

Figure 7. Comparison of laboratory measurements and on-machine
estimates of CD tensile strength.
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Figure 8. Comparison of laboratory measurements and on-machine
estimates of STFI compressive strength in the MD,
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30# (48 GSM) NEWSPRINT, SCAN AVG. NOV '85-JAN '85

Mullen (kPa) 4+ Sensor ® Lab
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Figure 9. Changes in bursting strength plotted against reel number.
Laboratory measurements compared with on-machine estimates.
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acid-chlorite
delignification

breaking load
bond area

bond strength

classified pulp
cMC
CMCS

CMPS

co-crosslinking

combined out-of-
plane stresses

Concora flat crush
- or CMT:

conversions

corrugating medium

diffuse reflectance

distribution of mass
density

DS

earlywood

ECT

GLOSSARY
H20 + glacial acetic acid and sodium chlorite.
Force in grams to cause failure of a single fiber/fiber

bond in the quasi-shear deformation geometry.

Optical contact area in the crossed fiber region deter-
mined by Page's vertical polarization technique.

For single fiber/fiber bonds, the ratio of breaking load
to bond area.

Pulp with fines removed.

Carboxymethyl cellulose.

Carboxymethyl cornstarch.

Carboxymethyl potato starch.

Bonding between fiber and added polymer.

Stresses which act together e.g. normal stress o33/0 and
shear stresses t1p/p or 123/0.

Refers to flat crush strength of medium fluted in the
Concora fluter.

Pressure: 1bs/in x 6.895 x 103 = Pascals Pa.

Specific elastic constants: E/p or c/p (km/sec)? x 103 =
' Nm/g.

Specific strength: o/p or oc/o breaking length K.M. x
9.80 = Nm/g

Paperboard used in forming the fluted portion of corru-
gated board.

Reflectance in all directions.

Small scale basis weight or gramage variation.

Degree of substitution - in this case, the number of car-
boxyl groups per monomer unit.

Thin walled fibers.

Edge Crush Test, an edgewise compressive test made on com-
bined board. ’
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effective stiffness

engineering
constants
elastic and Cij:
engineering
constants
Ej:
ij.
S1'j:
\J-iJ‘:
€9
01':
elastic
stiffnesses
extensional
stiffness
flat crush:

FLER II

flexural rigidity

fixed clamp
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The effective stiffness is the radius of a circle having
the same area as that enclosed by a polar diagram.

The set of elastic constants including Young's moduli,
shear moduli, and Poisson ratios.

Elastic stiffnesses with units of force/area (GPa). i and
j range from 1 to 6. For paper, considered to be an
orthotropic material, the only non-zero elastic stiff-

nesses are C11, C22, €33, C44, Cs5, Cees C12, C13, and C23.

Young's modulus in the i direction, where i is either 1,
2, or 3 (or x, y, or Z, or MD, CD, or ZD). E; is con-
sidered an "engineering" elastic constant having stress
units.

Shear modulus in the ij plane.
constant.

G is an engineering

Elastic compliances with units of inverse stress
(area/force). In general, i and j range from 1 to 6. For
paper the only possible values for i and j are those com-
binations listed under Cjj.

Poisson ratio in the ij plane. v is an engineering
constant. In a uniaxial stress test, it is the ratio of
the lateral contraction to the axial extension. It is
therefore unitless.

Strain (dimensionless). i goes from 1 to 6.

Stress (force/area). o; has a range from 1 to 6.
The Cij defined above. The specific elastic stiffnesses
are measured in ultrasonic tests.

The product of elastic stiffness and caliper or an engi-
neering stiffness and caliper. In an Instron test,
plotting load/width vs. elongation, it is the initial
slope of the load-elongation curve.

The force required to crush the corrugations in a specimen
of corrugated board.

Fiber Load-Elongation Recorder, Model II.

A measure of bending stiffness, define as EI, where E is
Young's modulus and I is the second moment of the cross-
section.

Specimen-holding clamp of FLER which remains fixed in
position during a test.




Glossary

FTIR analysis

geometric mean

high-lows

latewood

linerboard

medium

MD, CD, ZD

MC

mini-handsheets

"moist"

Moist compressive
strength factor

moist tensile factor

movable clamp

NSSC
PAA
PAE
PDDAC
PEI

polar diagram

PSFA
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Fourier transform infrared analysis.

The square root of the product of an MD and CD progerty,
e.g. geometric mean stiffness would be (C13*Cpp)** /2,

In single faced combined board, a term denoting flutes
that are greater than or less than the average. Most
often a "high" is followed by a "low".

Thick walled fibers.

Paperboard used for the flat facings of corrugated fiber-
board.

See corrugating medium.

Machine direction, cross machine direction, and thickness
direction, respectively, in a commercial paper. Other
notations used include x, y, and z or 1, 2, and 3.
Moisture content, %.

19 mm diameter made in centrifuge tubes on a 200 mesh
screen,

Refers to papers conditioned at 91-93% RH usually
resulting in a moisture content of 14-16%.

The moist breaking length of the treated handsheet
divided by that of the untreated control.

The moist breaking length of the treated handsheet
divided by that of the untreated control.

Specimen-holding clamp of FLER to which a push or pull
force is applied and which moves as the specimen deforms.

Neutral sulfite semichemical medium.
Polyacrylic acid.

Polyamide polyamine epichlorohydrin,
Polydiallyldimethyl ammonium chloride.
Polyethyleneimine. -

A polar graph plotting longitudinal or shear stiffness as
a function of angle from the MD.

Polystyrene sulfonic acid (sodium salt of).
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PVDF Polyvinylidene fluoride, a plastic material which can be
polarized to be made piezoelectric.
ring crush One of several methods in use for measuring the ultimate
compressive strength of paperboard.
soft x-rays Low energy x-rays.
specific elastic Elastic stiffnesses divided by sheet density or Cij/density.
stiffnesses These are the quantities determined in ultrasonic measure-
ments. They are equal to a square of a sound velocity.
STFI Swedish Forest Products Laboratory
STFI short span A test devised by the Swedish Forest Products Laboratory
.compressive to measure the ultimate compressive strength of paper-
strength test board.

wet tensile factor The wet breaking length of the treated handsheet divided
by that of the untreated control.

Whitsitt/Habeger oc/o = E/00.75¢,/00.25,
compressive
strength correlation
wood coupon 16 mm x 16 mm tangential wood sections.
WRY Water retention value, the water remaining in fiber mat

after centrifuging (gms of water/gm of fiber).
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