
TV Watcher : Distributed Media Analysis and Correlation ∗

David Hilley, Ahmed El-Helw, Matthew Wolenetz, Irfan Essa, Phillip Hutto, Thad
Starner, and Umakishore Ramachandran

College of Computing
Georgia Institute of Technology

801 Atlantic Dr.
Atlanta, GA 30332

{davidhi, ahmedre, wolenetz, irfan, pwh, thad, rama}@cc.gatech.edu

ABSTRACT
The explosion of available content in broadcast media has cre-

ated a desperate need for applications and prerequisite system

architectures to support automatic capture, filtration, categoriza-

tion, correlation, and higher level inferencing of streaming data

from distributed sources. We present TV Watcher, an archetyp-

ical example of such an application. TV Watcher performs user-

controlled correlation of live television feeds and allows the user

to automatically navigate through the available channels based

on content of interest. We introduce the Symphony architec-

ture for distributed real-time media analysis and delivery to meet

the system requirements for applications with such needs. TV

Watcher is built on top of the Symphony architecture, and cur-

rently uses closed-captioning information to correlate television

programming. We present the results of a user study that shows

the correlation engine is consistently able to pick significantly

useful and relevant content.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Distributed Systems; H.3.1 [Information Storage And
Retrieval]: Content Analysis and Indexing

1. INTRODUCTION
Recent trends in computing and entertainment technolo-

gies have enabled users to gain access to an overwhelming
amount of media. Choosing a single source is increasingly
limiting since television, radio, and now the Internet pro-
vide so much constantly-available content. Television guides
feature extremely limited and potentially out-dated informa-
tion about the true content of shows, and many programs are
broadcast live, making it impossible to discern most content
before viewing. A system to support the automatic capture,
filtration, categorization, correlation, and higher level infer-
encing of streaming data from distributed sources based on
user interests is needed to combat the growing problem of
information overload.

In this paper we introduce Symphony, a new distributed
architecture designed to facilitate the real-time analysis of

∗The work has been funded in part by an NSF ITR grant
CCR-01-21638, NSF grant CCR-99-72216, HP/Compaq
Cambridge Research Lab, the Yamacraw project of the State
of Georgia, and the Georgia Tech Broadband Institute. The
equipment used in the experimental studies is funded in part
by an NSF Research Infrastructure award EIA-99-72872,
and Intel Corp.

Figure 1: TV Watcher: The “Preview Mode”

live, high-bandwidth media streams. Using our prototype
of Symphony as a framework, we have implemented an ap-
plication called TV Watcher, which provides users with a
mechanism for navigating through a large number of media
streams based on their interests. The Symphony architec-
ture is general enough to support a multitude of different
applications. For example, the Symphony infrastructure can
be harnessed to create an automated distributed surveillance
system. Symphony’s architecture is also well suited to ap-
plications such as the Event Web [12], which monitors and
analyzes sensor data from sensor rich environments.

There are several important aspects of TV Watcher that
are best supported by the distributed analysis and deliv-
ery architecture of Symphony. For example, TV Watcher
must provide a reasonable comparison of the semantic con-
tent of video streams in real-time. Architecturally, latency
and stream synchronization are important especially with
live media streams, and the sheer amount of data required
for high resolution video streams necessitates an efficient
transport mechanism. In addition, any reasonable analy-
sis of high-bitrate media streams is resource-intensive. The
computational cost of performing expensive analyses on live,
high-bandwidth streams is mitigated by Symphony’s dis-
tributed architecture.

The contributions of this paper are threefold:

1. We present the Symphony architecture, an infrastruc-
ture for the distributed real-time analysis and delivery
of media streams.

2. We introduce TV Watcher, a novel application built on
Symphony for user-controlled correlation of live televi-

Figure 2: TV Watcher: The “Correlation Mode”

sion feeds.

3. We present and analyze the results of an experiment
conducted to assess the usefulness of the correlation
engine in TV Watcher.

In the upcoming sections we provide technical details of
the TV Watcher application (Section 2), the Symphony ar-
chitecture (Section 3), the correlation engine (Section 4),
and the details of our experiments (Section 5), as well as
future correlation work (Section 6) and related work (Sec-
tion 7).

2. THE TV WATCHER APPLICATION
TV Watcher allows a user to navigate through multiple

televised video streams and identify currently relevant con-
tent. First, a user will select a video stream of interest (the
target stream) from the set of available sources. The cho-
sen stream is then correlated against all available streams
(or a user-selected subset) and the results are used to dis-
play available content strongly related to the target stream.
The information used for correlation can also be used to
locate relevant webpages via the TV Watcher Web Search
Plug-in.

TV Watcher’s user interface currently supports two ba-
sic modes of operation: preview mode and correlation
mode. After starting the application, a user selects a stream
of available media that is interesting to him or her. Correla-
tion mode can be entered by double-clicking on a stream of
interest or selecting the “Correlation” option from a chosen
stream’s options menu.

TV Watcher Preview Mode: Pictured in Figure 1, TV
Watcher’s preview mode shows all of the available media
streams at thumbnail size (and full frame rate if possible).
In addition, the closed captioning text of a single stream
is displayed in the lower portion of the interface – the se-
lection is changed by clicking on a video window. Each
individual media stream may have many configurable pa-
rameters (based on the limitations of the media provider),
and a per-stream popup menu enables the user to change
these parameters. For instance, the capture servers utiliz-
ing the Brooktree capture card (many consumer-level video
capture cards use Brooktree chipsets) allow the user to se-
lect the cable television tuner or video input, and the video

Figure 3: TV Watcher: The Web Search Plug-in

can be streamed at a custom resolution as uncompressed raw
frames or motion-JPEG compressed video. When necessary,
the user can also change the current channel of a television
stream.

TV Watcher Correlation Mode: In correlation mode,
TV Watcher’s interface is as shown in Figure 2: the user-
selected stream of interest is now displayed at full size, and
thumbnail-sized video streams from the other sources are
arranged around the stream of interest. Each video window
has a colored border with a label; the color is a visual in-
dicator of the correlation strength and the label gives the
numeric percentage. This correlation measure is currently
based on the content of a stream’s closed captioning text.
Additionally, the most important words (as determined by
our text correlation algorithm) in the stream of interest can
be sent to a plug-in application that performs web searches
on these terms.

TV Watcher Web Search Plug-in: The Web Search
plug-in for TV Watcher, pictured in Figure 3, is intended to
provide additional information when presenting the correla-
tion results. This application performs limited web searches
on the most important words appearing in the stream of in-
terest (the algorithm for finding these words is covered in
Section 4) and displays the top results in embedded browser
windows. Although the plug-in is intended to run simulta-
neously with TV Watcher, it can also be used to harvest
links relevant to keywords in documents.

3. THE SYMPHONYARCHITECTURE
Figure 4 shows the elements of the Symphony architec-

ture. The five entities of the system are as follows: capture
servers, stream servers, the media analysis engine, clients,
and the distributed programming framework. In the sys-
tem diagram, each rectangle represents one of these compo-
nents, all of which interact through the distributed program-
ming framework. The media providers, called the capture
servers, simply provide various media streams for use. A
stream server provides stream location facilities including
searching and filtering based on metadata. The media anal-
ysis system runs on a cluster of workstations and handles the
analysis, correlation and interpretation of media; the type of

Figure 4: A configuration of the Symphony architec-
ture

analysis performed is, of course, specific to the application
using Symphony. The clients utilize media from the capture
servers and the results provided by the media analyses: mul-
tiple clients may exist in the system at any given time, and
can share media and correlation resources via Symphony. Fi-
nally, the distributed programming framework provides the
glue connecting all of the other components.

In our tests, the clients are easily run on machines only
connected via a consumer-level Internet connection (1.5Mbit
/ 256Kbit ADSL). The connections between the “cluster
machines” should be high-speed links to facilitate the dis-
tributed computation, and the connections between cap-
ture servers and the cluster machines should be relatively
fast if the streaming media is bandwidth-intensive.

The dotted lines represent logical connections between the
different entities of Symphony. Although the stream server
is logically a central point of control in the system, the ac-
tual media streams are fully distributed. The clients receive
their streams of interest directly from the appropriate cap-
ture server and only use the stream server to locate the ap-
propriate media. Likewise, the cluster machines directly re-
trieve the necessary media streams from the capture servers.
The lack of a centralized media provider allows the cluster
machines and clients to receive different streams from the
capture servers; this is extremely useful because the cluster
machines may require higher resolution streams for media
analysis, while the clients show thumbnail media streams or
aggressively compressed content (as may be necessary for
servicing clients across lower-bandwidth Internet links).

Capture Servers: The capture servers provide media stre-
ams to interested entities in the system and are the sources

of data for distributed analysis. Additionally, the hosts run-
ning the capture servers may be physically located outside of
the media analysis cluster and may depart the computation
at any time. If real-time analysis of streams is to be per-
formed, however, it is advantageous if the media providers
are physically located on the same network as the media
analysis machines (reducing latency and increasing host-to-
host bandwidth). The ability to add and remove stream pro-
ducers (and consumers) at any time is key to the flexibility
to the system. A single capture server may provide mul-
tiple media streams – for instance, in the standard testing
setup of TV Watcher, each capture server provides a stream
of audio, video and text from the same source (broadcast
television or video input).

Capture servers also provide static and dynamic meta-
data used to locate and classify media streams. Upon startup,
a capture server will provide some static stream informa-
tion to the stream server which is used to by clients to lo-
cate relevant streams. For instance, the supported output
resolutions, available video sources, supported compression
methods, and other capabilities are examples of static meta-
data. Dynamic meta-data varies based on the stream source
but frequently includes attributes like the current television
channel, video source, output resolution, compression statis-
tics and the name of the content (if available).

Stream Servers: The stream server is a central component
of the Symphony system and provides an interface between
media producers and consumers as well as a mechanism for
controlling distributed media analysis. Although the sys-
tem diagram shows the stream server located on the same
high-speed local network as the cluster machines, this is not
an architectural requirement (in fact, the stream server uses
relatively small amounts of bandwidth): our prototype im-
plementation of Symphony simply assumes this particular
configuration.

Different distributed entities contact the stream server to
locate media streams, and the stream server’s internal list of
available content contains meta-data which may be used to
locate appropriate entries. Each capture server maintains a
status register that provides the dynamic stream meta-data
(such as current television channel, resolution, source, etc.).
The stream server observes the status of all known capture
servers and provides a single data stream of changes to each
client.

Media Analysis System: One of the key features of Sym-
phony is the ability to perform distributed real-time me-
dia analysis. Resource-intensive computation for media in-
terpretation and correlation is distributed over a cluster of
workstations, enabling an application to perform many ex-
pensive analyses on live streaming media. The details of the
media analysis engine are specific to each application using
Symphony.

Typically, clients will control the parameters of the analy-
sis based on user input: for instance, with the TV Watcher,
a user selects a specific television program and the system
performs various correlation operations to find related con-
tent. In other cases, a capture server may utilize the me-
dia analysis system directly for gathering statistics about
streams.

Clients: Clients in Symphony are specific to a particular
application and are typically used for user-interaction: the

previously described TV Watcher user interface and web
search plug-in are both instances of clients. Clients are sim-
ply applications within the Symphony framework that use
the streaming media analysis infrastructure. Client applica-
tions are not required to be media consumers, as some may
use available media streams indirectly by requesting media
analysis results on available sources.

TV Watcher’s client is an application that displays the
video streams and analyzes the available closed captioning
text streams. It only interacts with the stream server upon
startup when retrieving descriptions of the currently avail-
able media streams. After receiving the static stream in-
formation, the application also initializes a thread to mon-
itor the stream server’s meta-data channel for updates to
streams’ dynamic meta-data. Through this mechanism, the
TV Watcher application can robustly handle a stream provid-
er going off-line while still maintaining connections to the
other stream sources.

Distributed Programming Framework: Applications
implemented on top of Symphony utilize a distributed pro-
gramming framework that provides the interface between
the aforementioned system components. To properly sup-
port real-time media analysis applications, this framework
must provide distributed transport of stream-based data
with high throughput and reasonable latency. In addition,
Symphony requires high-level abstractions suitable for tem-
poral correlation of media streams, such as time-stamped
data items and stream synchronization. As previously noted,
the ability to dynamically add and remove stream producers
or consumers is also needed to flexibly support many dif-
ferent applications. Our current Symphony prototype uses
D-Stampede [1], a distributed cluster-oriented programming
system, but Symphony can utilize any transport satisfying
the properties described above.

D-Stampede provides a distributed, high-level transport
on which the Symphony prototype is built. The D-Stampede
system presents a set of abstractions through which dis-
tributed applications share data and synchronize activities
between nodes in a cluster of workstations (as well as client
devices outside of the logical “cluster”). D-Stampede sup-
ports globally visible data abstractions called channels,
which provide for transport of time-sequenced data. Chan-
nels are convenient for media streams because they allow
retrieval of data based on temporal information. Our pro-
totype also uses registers as containers for dynamic sta-
tus data, such as stream resolution and compression infor-
mation. D-Stampede’s real-time guarantees are also use-
ful for supporting media-oriented applications. Finally, D-
Stampede’s support for heterogeneous computing environ-
ments adds flexibility to Symphony.

4. TEXT CORRELATION
The Symphony architecture provides a general real-time

media analysis infrastructure, but one of the most resource-
intensive and useful forms of analysis is stream correlation.
While gathering statistics about a single stream is also pos-
sible, TV Watcher requires the comparison of multiple video
streams. Since the general goal of the application is auto-
matic selection of content suited to a user’s viewing pref-
erences, comparing a “reference stream” to other available
media sources is a natural way of finding other interesting
content.

Because TV Watcher focuses on standard television str-
eams, the natural components to consider for correlation
are video, text and audio. Currently, text correlation is the
most complete form of correlation implemented in the ap-
plication: closed captioning text is decoded and analyzed as
a text document (with timing information). Video correla-
tion techniques are currently being developed and integrated
into TV Watcher. Efforts on other modes of correlation are
covered in Section 6.

Although audio and video are promising candidates for
correlation of television streams, textual transcripts are a
simple starting point and provide a wealth of easily-extracted
semantic information. Text correlation algorithms such as
TF/IDF (term frequency / inverse document frequency) [20]
are well established, and the popularity of the World Wide
Web fuels continual development and refinement of text cor-
relation techniques. As noted earlier, the text correlation
results can also be used to search for relevant documents on
the World Wide Web.

The most obvious form of text available with television
media streams is closed captioning. Not all television shows
are captioned, but captioning is an increasingly common
practice; in fact, the FCC requires standard, over-the-air
broadcasters to meet captioning quotas during a majority
of the day (6am to 2am) [7]. Even live news broadcasts are
often captioned, though mistakes (misspellings, omissions,
etc.) do occur and may affect the quality of the correlation
results.

Correlation Algorithm: The text correlation system uti-
lized in TV Watcher is a flexible, stand-alone correlation
engine based on the standard TF/IDF algorithm [20]. Ini-
tially, the system calculates the frequencies of each term in
the two text streams being compared and creates a dictio-
nary of all relevant terms. Next, the inverse document fre-
quency is calculated and normalization factors and weights
are determined. The final computation involves taking the
dot product of the weighted term vectors to find the overall
similarity of the two documents. The resultant value pro-
vides a relative measure of the pairwise correlation between
two text documents. Also, since the process includes weight-
ing of terms, we can easily obtain the most heavily weighted
terms that contribute to this similarity; ideally, the heavily
weighted terms represent the most “important” words in a
document.

Correlation Implementation: In addition to the basic
algorithm above, our correlation engine implements several
enhancements to improve the results. First, we use a sto-
plist to remove words that provide little semantic mean-
ing or are extremely common in everyday speech. We have
also integrated the Porter stemming algorithm [16] to re-
duce words into their stems (for instance, “eating” would
be stemmed to “eat”).

One of the challenges inherent in TV Watcher is maintain-
ing usefulness and relevance of correlation results over long
time periods. For instance, after capturing hours of text,
the results of a comparison between channels may be unrea-
sonably biased by history (much of which is irrelevant to the
current content). To avoid this problem, our correlation en-
gine allows correlation queries based on limited windows of
time. For instance, a user could request the correlation score
obtained by comparing the last 30 seconds of CNN with the
last 2 minutes of CBS. This process can be exploited in the

future to allow for correlation of a particular prerecorded
video clip against material on live television. Additionally,
our correlation engine admits multiple simultaneous queries
over a particular dataset. Overall, these specific features of
our implementation allow for a highly flexible text correla-
tion engine for TV Watcher.

Closed Captioning Text: While the text correlation al-
gorithm implemented in TV Watcher is designed for generic
document correlation, several issues specific to closed cap-
tioning affect the correlation process. Closed captioning
text is digital data encoded in an undisplayed portion of the
video content. Although closed captioning text is generally
a good transcript of the audible dialogue (as well as impor-
tant sound effects), there are several problems inherent to
the closed captioning system. First, since closed caption-
ing is transmitted as analog video data, the quality of the
decoded text is dependent on the quality of the video feed:
noise and interference on the television feed will cause errors
in the closed captioning. The standard for closed captioning
transmission includes only one parity bit for error checking
and no method of error recovery, so closed captioning de-
coders must drop characters which fail the parity check.

In addition to the bizarre misspellings and spliced words
created by dropped letters and whitespace, live captioning
often suffers from similar mistakes caused by human error
(and thus inherent in a correctly received stream). Dur-
ing live news broadcasts, proper nouns are occasionally mis-
spelled and long words may be abbreviated. Since real-time
captioning must occur extremely quickly, systems for cre-
ating captions are based on gesture recognition [19], so an
incorrect or unclear gesture will often cause a completely
different word to be substituted, making sentences incoher-
ent. Additionally, captions generated in real-time are almost
always entirely in uppercase, and this eliminates semantic
information for determining names and other proper nouns.

Pre-generated captions, such as those on commercials,
movies and other non-live television programming, are ex-
tremely unlikely to contain the aforementioned errors (other
than bad decoding due to poor reception). Most “offline”
captioning contains proper, mixed-case text and may also
include positioning data, color tags and other potentially
useful extra information. Although our captioning decoder
currently discards color and positioning data, it would not
be difficult to utilize it as extra semantic information to im-
prove correlation results when available.

5. CORRELATION PERFORMANCE
In order to assess the usefulness of the TV Watcher text

correlation using closed captioning, we conducted an ex-
periment to determine the user-rated quality of the corre-
lation algorithm results. We hypothesize that, using the
Web Search Plug-in, the existing prototype will retrieve web
pages rated as both relevant to a video segment and useful
in synthesizing new reports based on the topic that segment.
Our experiment design is similar to that of the text correla-
tion experiments in [18].

Experiment Methodology: We selected and recorded ten
news stories at random from CNN Headline News: CNN is
a particularly good choice for our purposes because the be-
ginning of each new story is clearly delimited in the closed
captioning stream. While future versions of TV Watcher

may segment content using cues from the video and audio,
the pre-segmented CNN stories allow us to isolate the effec-
tiveness of the engine without the potential for segmentation
errors. The closed captioning text from each story was used
as input to the correlation engine; the five most heavily-
weighted words were then extracted from each stream and
sent to TV Watcher’s Web Search plug-in. From these re-
sults, we picked the top three web pages reported by our
system. As a control, three web pages for each story were
retrieved by choosing five random words from the article and
using the same search mechanism. Each of the web pages
was then assigned a unique ID.

Ten subjects unfamiliar with this project were recruited
for our experiment. The subjects were instructed to watch
each of the ten news stories in turn; after watching a news
story, they were told to rate each of the six retrieved web
pages for both relevancy and “usefulness” on a scale from
1 to 7 – weakest to strongest. A webpage is defined to
be relevant if it covers the same topics as the news story.
Usefulness, in this case, is defined as how beneficial the web
page would be if the subject was going to create a report
based on the topic of the video news story. The distinction
between relevancy and usefulness is important. For example,
an exact transcript of the news anchor’s dialog would be
relevant to the video, but not useful because it presents no
new information. Similarly, a webpage with a one sentence
summary of the news story is also strongly relevant but not
useful.

For convenience, both the video segments and links to the
web sites were presented on a webpage personalized for each
subject – the order of the hyperlinks was randomized per-
subject. Subjects could review a video segment or change
their evaluation ratings at any time during the experiment,
though most did not. This process required approximately
one hour per subject, and the subjects were compensated
with $10 for their time. Each subject watched 10 news sto-
ries and rated six web pages per news story per metric for
a total of 120 ratings per subject.

Experimental Results: On average, the subjects rated
the web pages suggested by TV Watcher at a relevancy level
of 4.6 versus 1.3 for the web pages retrieved by searching on
random words from the article. The mean usefulness rating
is 4.3 for our engine versus 1.4 for the control. For nine
of the ten subjects, the web pages retrieved by TV Watcher
were rated more relevant than the control with a significance
level of p < 0.00000011 or less when using an unpaired, two-
tailed t-test on distributions with unequal variances. Sim-
ilarly, these subjects ranked our system’s results as more
useful with a significance level of p < 0.000004. The first
subject rated both sets of web pages at an average level less
than 2 for both relevancy and usefulness, so the test did not
show significance between the two conditions. We believe
this anomaly is caused by the test subject’s misunderstand-
ing of the directions. It may also be a limitation of our
experimental methodology, which can be refined.

Given the above results, we can conclude that TV Watch-
er’s correlation engine is indeed successful in retrieving rel-
evant and useful web pages for users given the closed cap-
tioning text of a news segment. In addition, the results
suggest that the text correlation engine’s selection of the
most salient words for the web search is significantly more
successful than selecting random words from the article for

the search. While this last result may seem obvious, closed
captioning contains many mispellings and noise errors that
could have significantly affected the performance of the sys-
tem.

6. EXTENSIONS TO CORRELATION

6.1 VBI Data
Closed captioning text is transmitted in the vertical blank-

ing interval (VBI) of NTSC video. The vertical blanking
interval is the initial, undisplayed 21 lines of video which do
not contain picture content: closed captioning text is only
encoded in the last line of the vertical blanking interval,
leaving extra bandwidth in the VBI for data transmission.
The first nine lines of the VBI are reserved for video syn-
chronization, but the other eleven lines frequently carry in-
teresting information. For instance, the 10th line is reserved
for silent radio – silent radio carries information frequently
displayed on LED boards at bars, airports and hotels such
as sports scores, weather information, stock quotes, and lot-
tery numbers. The 12th, 13th and 15th lines are reserved for
PBS datacast, and the 14th line is reserved for a television
guide service called Starcast. Cable and satellite providers
may also place other data signals in the VBI information.
Although much of the available data is not relevant to the
programming, the most promising non-captioning VBI data
is called XDS.

XDS stands for “eXtended Data Service” and is a stream
of data transmitted on line 21 of the second NTSC field
(closed captioning text is transmitted in the first field). The
XDS stream contains various data related to the current pro-
gram, including relevant web links (utilized by WebTV), the
program’s name, episode information, ratings, the station’s
call-sign, and other potentially useful meta-data. Some de-
vices, most notably the “V-Chip”, may use XDS informa-
tion to censor content that is offensive or inappropriate for
children [19].

Although the TV Watcher application currently discards
the XDS information, rudimentary XDS decoding is avail-
able in the closed captioning decoder and the capture servers
could easily be modified to provide XDS streams. This in-
formation could be used to augment the text correlation,
and the provided web page addresses could be sent directly
to the TV Watcher web search plug-in.

6.2 Video Correlation
Video correlation is potentially the most unique and in-

teresting feature of TV Watcher: the ability to perform
real-time video correlation is explicitly enabled by the Sym-
phony architecture. More importantly, video correlation is
an archetypical example of the type of intensive media anal-
ysis which actually prompted the development of the Sym-
phony architecture. Presently, the extensive analysis of mul-
tiple real-time video streams is computationally infeasible
on a single personal computer. The approach of Symphony
allows computationally expensive media analysis to be dis-
tributed over a cluster of available machines.

The biggest challenge of video correlation is the lack of
common or general-purpose algorithms; even the general
comparison of still images is an open problem in the field of
computer vision. Part of the work in creating TV Watcher is
developing metrics by which television video streams may be
compared. Video correlation is currently under development

for TV Watcher, and several different algorithms have been
implemented but it is still unclear whether video informa-
tion can be used as a primary method of stream comparison
or if it is better suited to simply augment the results of the
text correlation. Currently we are exploring video corre-
lation algorithms which add information to strengthen the
results of the existing closed captioning correlation.

Figure 5: Face Detection, Extraction and Temporal
Density Plots. Top – an image from video with faces
marked. Bottom – density of faces over time (left
to right) in a stream.

Face Detection and Recognition: Some of the most vi-
sually obvious aspects of the television programs are related
to faces: face density, frequency, location, size, motion and
identity are all properties that provide semantic information
about the content of a media stream. Certain types of televi-
sion programs exhibit specific patterns of face appearances.
For instance, daily news broadcasts in which one or more an-
chors read the news often feature centrally positioned, large
faces that typically do not change location. Other heuristics
provide semantic information about the content of the pro-
gram (as opposed to information about the program itself).
As a very simple example, high facial density can indicate a
crowd such as an audience.

In addition to detecting faces, identifying and recogniz-
ing faces can also provide information about the content of
streams. For news-related television programming, finding
the same face in two different streams often indicates that
the streams are related. Immediately following an impor-
tant political speech, for example, news programs and polit-
ical commentary shows will typically cover the speech, often
showing video clips. In this case, detecting the face of the
speaker on multiple channels may indicate related content.

Obviously this mechanism is sensitive to some specific
quirks of television: actors and prominent people frequently

covered in many news stories may appear in multiple streams
in different, unrelated contexts. Detecting the face of a
popular actor in two streams does not necessarily indicate
content-level correlation. Similarly, detecting the face of
the president on two different channels is not indicative of
strongly related content. However, face recognition can be
used to augment the results of text correlation, and match-
ing against a database of known news anchors, talk show
hosts, actors and other celebrities may provide useful auxil-
iary information about the network and type of show.

Currently, we have prototype implementations of face recog-
nition and detection algorithms running on video streams
and are in the process of integrating them into TV Watcher’s
correlation engine. Figure 5 shows a standalone prototype
application that detects and extracts faces while displaying
a graphical representation of face density over time. The
face detection algorithm is a fast, free implementation [11]
of the Viola-Jones object detection algorithm [24] with a
classifier cascade trained for faces. The face recognition is
performed by our own implementation of a PCA (principle
component analysis) face recognition algorithm [23].

Scene Detection: Scene and program segmentation also
provide valuable information to assist the closed-captioning
text correlation. One of the factors affecting the accuracy of
text correlation is the overall history of a particular stream:
the content of live television obviously changes dramatically
from program to program, and potentially even between seg-
ments of a program (news stories, chapters, etc.). Also, most
television networks feature intermittent commercials, which
may also be closed captioned, but this text should not be
included in the correlation results.

Segmenting television content based on the captioning
alone is a difficult problem: although some shows may add
delimiting information to the closed captioning feeds, there
is no common convention for doing so and it is relatively
rare. For example, captioning on CNN news broadcasts
typically contains the string “>>>>” before each individual
news story, but the same string may also appear to sepa-
rate the dialog of different speakers or in other contexts. On
the other hand, commercial detection using video analysis is
relatively straightforward. Some consumer video recording
products, such as the ReplayTV, feature or have featured ex-
tremely accurate commercial detection. Scene segmentation
in video is also an open problem, but several reasonably ac-
curate algorithms already exist [10, 17], and we are currently
investigating the feasibility of integrating a general purpose
one-pass scene detection algorithm into TV Watcher’s cor-
relation engine.

Other Video Characteristics: In addition to face recog-
nition and scene detection, many other aspects of a video
stream provide semantic information that can be utilized.
For instance, motion in video can provide useful clues to the
type of program: news programs tend to have less camera
motion, causing the background to remain relatively static
between editing cuts. Statistics about color content can also
be analyzed to predict the type of television content. Car-
toons, filmed content and content produced on video all have
different color characteristics which are easily recognizable
to the average viewer. Other features to consider adding to
TV Watcher include object detection, gesture/action recog-
nition and figure tracking.

7. RELATED WORK
TV Watcher utilizes the abstractions provided by the Sym-

phony architecture. The Media Broker [13] architecture pro-
vides facilities for distributed stream registration, discovery,
and transformation. The functionality of the stream server
in Symphony is similar to that provided in the Media Broker.
Our future plans include exploring this overlap and using
the higher-level, media-friendly abstractions of the Media
Broker in future prototypes of Symphony. In addition, the
AuraRT system [4, 5] is similar to Symphony, but targeted
towards more controlled environments and applications re-
quiring low-latency delivery of streams.

The Informedia project [25] is concerned with video in-
dexing, information extraction and content-based queries:
in particular, the News-On-Demand project [9] performs
speech-based content queries on a database of stored news
broadcasts. Both IBM’s CueVideo effort [2] and the Al-
tavista Media Search project [6] attempt to index video
streams offline for future searching and browsing by content.
Although we are primarily concerned with video, much work
has been done on querying still images by content, such as
QBIC (query by image content) [14], VisualSEEk [21], and
Photobook [15]. Additionally, [22] provides a good overview
of current techniques used in multi-modal video indexing
systems.

Many of the aforementioned projects use available tex-
tual information when indexing media content; some use the
text from captioning data while others attempt to transcribe
speech present in the audio streams. Closed captioning in-
dexing and segmentation as it pertains to a specific subset
of television content (late-night talk shows) is extensively
covered in [3]. In [10], closed captioning data is used to seg-
ment video content from television news broadcasts, and the
related News-On-Demand project [9] uses closed-captioning
to extract “keywords” for semantic categorization (similar
to the function of the TV Watcher web search utility).

8. CONCLUDING REMARKS
Distributed capture, correlation, and dissemination of mul-

timedia streams is an important avenue of system explo-
ration with the potential for use in many application sce-
narios. In this paper, we have given a concrete instance
of such an application, TV Watcher, and have presented
the requirements of that application. We have developed a
distributed architecture, Symphony, to support such appli-
cations. A prototype of TV Watcher has been implemented
on the Symphony architecture, and we have conducted user
studies on text-based correlation and demonstrated its ef-
fectiveness in enabling the selection of related content.

Future avenues of exploration for the TV Watcher project
follow two basic paths: work on TV Watcher’s correlation
engine, and new developments for the Symphony architec-
ture. Advancements in the fundamental architecture of Sym-
phony will not only facilitate the development of new dis-
tributed media analysis applications, but also improve the
potential range of media analyses feasible in the TV Watcher
application. Potential additions to the correlation system
have already been mentioned, and future architectural im-
provements include building Symphony on top of the Media
Broker [13] infrastructure, and using Grid computing [8] for
more flexible resource management. In addition, augment-
ing Symphony with historical stream persistence would allow

the infrastructure to support more media analysis applica-
tions.

9. REFERENCES
[1] Adhikari, S., Paul, A., and Ramachandran, U.

D–Stampede: Distributed Programming System for
Ubiquitous Computing. In Proceedings of the 22nd
International Conference on Distributed Computing
Systems (ICDCS). (July 2002), pp. 209–216.

[2] Amir, A., Srinivasan, S., Ponceleon, D., and
Petkovic, D. CueVideo: Automated indexing of
video for searching and browsing. In Proceedings of
SIGIR’99 (1999).

[3] Bacher, D. R. Content-based indexing of captioned
video. Submitted to the Department of Electrical
Engineering and Computer Science at MIT in partial
fulfillment of the requirements for the degree of B.S.
in Computer Science and Engineering, May 1994.

[4] Dannenberg, R. B. Aura as a platform for
distributed sensing and control. In Symposium on
Sensing and Input for Media-Centric Systems (SIMS
02). (2002), Santa Barbara: University of California
Santa Barbara Center for Research in Electronic Art
Technology, pp. 49–57.

[5] Dannenberg, R. B., and van de Lageweg, P. A
system supporting flexible distributed real-time music
processing. In Proceedings of the 2001 International
Computer Music Conference (2001), San Francisco:
International Computer Music Association,
pp. 267–270.

[6] Eberman, B., Fidler, B., Iannucci, R., Joerg,
C., Kontothanassis, L., Kovalcin, D., Moreno,
P., Swain, M., and Thong, J. M. V. AltaVista
media search: Indexing multimedia for delivery over
the internet. In Third International Conference on
Visual Information Systems (June 1999).

[7] Federal Communications Commission. Closed
Captioning: FCC consumer facts, September 2003.

[8] Foster, I., Kesselman, C., and Tuecke, S. The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of Supercomputer
Applications 15, 3 (2001).

[9] Hauptmann, A., and Witbrock, M. Informedia
News on Demand: Multimedia information acquisition
and retrieval. In Intelligent Multimedia Information
Retrieval, M. T. Maybury, Ed. AAAI Press/MIT
Press, 1996.

[10] Hauptmann, A. G., and Witbrock, M. J. Story
segmentation and detection of commercials in
broadcast news video. In Advances in Digital Libraries
(1998), pp. 168–179.

[11] Intel. OpenCV: Open source computer vision library.
http://www.intel.com/research/mrl/research/opencv/.

[12] Jain, R. Experiential computing. Communications of
the ACM 46, 7 (2003), 48–55.

[13] Modahl, M., Bagrak, I., Wolenetz, M., Hutto,
P., and Ramachandran, U. Media Broker: An
Architecture for Pervasive Computing. In Proceedings
of the IEEE Conference on Pervasive Computing and
Communications (Orlando, FL, March 2004).

[14] Niblack, W., Barber, R., Equitz, W., Flickner,
M., Glasman, E., Pektovic, D., Yanker, P.,

Faloutsos, C., and Taubin, G. The QBIC project:
querying images by content using color, texture, and
shape. In Storage and Retrieval for Image and Video
Databases, Proc. SPIE 1908 (1993), pp. 173–187.

[15] Pentland, A., Picard, R. W., and Sclaroff, S.
Photobook: Tools for content-based manipulation of
image databases. In Proceedings of the SPIE
Conference On Storage and Retrieval of Video and
Image Databases (February 1994), vol. 2185,
pp. 34–47.

[16] Porter, M. F. An algorithm for suffix stripping. In
Program (1980), vol. 14, pp. 130–137.

[17] Rasheed, Z., and Shah, M. Scene Detection In
Hollywood Movies and TV shows. In Proceedings of
the IEEE Conference on Computer Vision and
Pattern Recognition. (June 2003).

[18] Rhodes, B. J. Just-In-Time Information Retrieval.
PhD thesis, MIT Media Laboratory, Cambridge, MA,
May 2000.

[19] Robson, G. D. Closed captions, V-Chip, and other
VBI data. Nuts & Volts (January 2000).

[20] Salton, G., Allan, J., and Buckley, C.
Automatic structuring and retrieval of large text files.
Communications of the ACM 37, 2 (1994), 97–108.

[21] Smith, J. R., and Chang, S.-F. VisualSEEk: A
fully automated content-based image query system. In
ACM Multimedia (1996), pp. 87–98.

[22] Snoek, C., and Worring, M. Multimodal video
indexing: A review of the state-of-the-art. Multimedia
Tools and Applications (2004). In press.

[23] Turk, M., and Pentland, A. Eigenfaces for
recognition. Journal of Cognitive Neuro Science 3
(1991), 71–86.

[24] Viola, P., and Jones, M. Rapid object detection
using a boosted cascade of simple features. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2001).

[25] Wactlar, H. D., Kanade, T., Smith, M. A., and
Stevens, S. M. Intelligent access to digital video:
Informedia project. Computer 29, 5 (1996), 46–52.

	Introduction
	The TV Watcher Application
	The Symphony Architecture
	Text Correlation
	Correlation Performance
	Extensions to Correlation
	VBI Data
	Video Correlation

	Related Work
	Concluding Remarks
	REFERENCES -9pt

