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Abstract 

Antiangiogenesis is a promising anti-tumor strategy through inhibition tumor vascular 

formation to suppress tumor growth. Targeting specific VEGF/R has been shown 

therapeutic benefits in many cancer types and become a first approved 

antiangiogenic modalities by Food and Drug Administration (FDA) in United States. 

However, interruption of homeostasis in normal tissues that is likely due to the 

inhibition of VEGF/R signaling pathway induces unfavorable side effects. Moreover, 

cytostatic nature of antiangiogenic drugs frequently causes less tumor cell specific 

killing activity, and cancer cells escaped from cell death induced by these drugs 

even gain more malignant phenotypes, resulting in tumor invasion and metastasis. 

To overcome these issues, we developed a novel anti-tumor therapeutic EndoCD 

fusion protein which linked endostatin (Endo) to cytosine deaminase-uracil 



 v

phosphoribosyl transferase (CD). Endo targets unique tumor endothelial cells to 

provide tumor-specific antiangiogenesis activity and also carries CD to the local 

tumor area, where it serves nontoxic prodrug 5-fluorocytosine (5-FC) enzymatic 

conversion reaction to anti-metabolite chemotherapy drug 5-fluorouracil (5-FU). We 

demonstrated that 5-FU concentration was highly increased in tumor sites, resulting 

in high level of endothelial cells and tumor cells cytotoxic efficacy. Furthermore, 

EndoCD/5-FC therapy decreased tumor growth and colorectal liver metastasis 

incident compared with bevacizumab/5-FU treatment in human breast and colorectal 

liver metastasis orthotropic animal models. In cardiotoxicity safety profile, 

EndoCD/5-FC is a contrast to bevacizumab/5-FU; lower risk of cardiotoxicity 

induction or heart function failure was found in EndoCD/5-FC treatment than 

bevacizumab/5-FU does in mice. EndoCD/5-FC showed more potent therapeutic 

efficacy with high safety profile and provided stronger tumor invasion or metastasis 

inhibition than antiangiogenic drugs. Together, EndoCD fusion protein with 5-FC 

showed dual tumor targeting activities including antiangiogenesis and tumor local 

chemotherapy, and it could serve as an alternative option for antiangiogenic therapy. 
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CHAPTER 1: INTRODUCTION  

 

1.1 Tumor angiogenesis  

Tumors initially grow as avascular nodules by absorbing nutrient and removing 

waste through simple diffusion.  However, the growing beyond the size of 

approximately 1 mm diameter, the tumors require a delicate network of blood 

vessels to supply the nutrient and oxygen and remove waste products (Folkman, 

1971). The neovasculation process in tumors is so called “tumor angiogenesis” or “ 

angiogenesis switch” (Bergers and Benjamin, 2003). Classically, the transition of 

vascularization results from the angiogenesis switch driven by hypoxia. Tumors can 

produce several angiogenic activators to attract and activate endothelial cells, which 

is a critical step to mediate angiogenesis. Activation of endothelial cells initiates the 

cell proliferation, which in turn induces sprouting from exiting vessels, migration, and 

adhesion of endothelial cells to from a lumen. New formation of vessels under 

angiogenesis process continues to provide the necessary nutrients for cancer cells 

to grow and survive (Bergers and Benjamin, 2003). Moreover, recent literatures 

show that glioblastma cancer stem cell by itself can differentiate to endothelium 

phenotype, and the neo-formed vessels contribute to tumor progression and 

metastasis (Bautch, 2010; Ricci-Vitiani et al., 2010; Wang et al., 2010b). Tumor 

angiogenesis may therefore occur through two distinct mechanisms, which by 

attracting endothelial cells to from vessels (classical angiogenesis process), or by 

differentiating from cancer stem cells themselves.  
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1.2 Antiangiogenesis therapeutic strategy 

Classical angiogenesis process involves the interaction between angiogenesis 

factors as an inducer and endothelial cells as a responder. This angiogenesis 

process could be indirectly inhibited by neutralizing ligands (for example, vascular 

endothelial growth factor (VEGF), platelet-derived growth factor (PDGF)); blocking 

receptors tyrosine kinase activity (for example, vascular endothelial growth factor 

receptors (VEGFR), platelet-derived growth factor receptors (PDGFR)); or directly 

suppressed endothelial cell proliferation and migration. Therefore, these can be 

classified two kinds of method to inhibit angiogenesis process. One is “direct 

antiangiogenesis” and another one is “indirect antiangiogenesis” (Kerbel and 

Folkman, 2002). The inhibitors that serve direct antiangiogenesis include endostatin 

(O'Reilly et al., 1997), angiostatin (O'Reilly et al., 1994), tumstatin (Sudhakar et al., 

2003), and others (Cao, 2001). Most of them are endogenous proteins to be directly 

targeted to endothelial cells and restrain endothelial cell proliferation and migration. 

Indirect antiangiogenic inhibitors include VEGF (Kim et al., 1993) or PDGF 

monoclonal antibodies; or receptor tyrosine kinase inhibitor (TKI) (Ivy et al., 2009), 

which inhibit neovascularization by either neutralizing angiogenesis-inducing ligands 

or preventing receptors involved in angiogenesis pathways. Inhibition of tumor 

growth through antiangiogenesis therapeutic strategy may present certainly 

advantage of safety and low incident of drug resistant, and antiangiogenesis have 

potential to inhibit tumor invasion, and metastasis (Folkman, 2006). 
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1.3 Antiangiogenic drugs  

There are many antiangiogenic targeting molecules tested in the clinical trials 

and pre-clinical studies. However, one of well recognized angiogenesis factor is 

vascular endothelial growth factor (VEGF), which has been demonstrated to play a 

crucial role in regulating tumor angiogenesis (Petrova et al., 1999) and normal 

vascular development (Fong et al., 1995; Shalaby et al., 1995). VEGF is secreted by 

starving cancer cells and bind to the receptors in endothelial cell to elicit several 

endothelial cells response including microvascular permeability (Dvorak et al., 1995), 

secretion of matrix-degrading enzymes, endothelial cell proliferation, migration, and 

survival (Terman and Stoletov, 2001). Therefore, antiangiogenesis by inhibiting of 

VEGF/VEGFR signal pathway was considered a good strategy for anti-tumor 

treatment. United states Food and Drugs Administration (FDA), up-to-date, has 

approved several antiangiogenic drugs which are shown promising anti-tumor 

results in the cancer patients in the clinic (Folkman, 2007). Bevacizumab (Bec or 

Avastin) is a monoclonal antibody that neutralizes VEGF to prevent new vascular 

formation. Bevacizumab is a first approved antiangiogenic drug in 2004 for 

combinational treatment with chemotherapy for metastatic colorectal cancer (Cohen 

et al., 2007b; Ratner, 2004) . Continuingly, bevacizumab was approved for treatment 

of patients with non-small cell lung cancer (Cohen et al., 2007a), metastatic breast 

cancer (Spalding, 2008), galioblastoma (Cohen et al., 2009), and renal cell cancer 

(Summers et al., 2010). However, currently FDA recommends removing 

bevacizumab from the treatment for metastatic breast cancer patients because 

clinical outcome doesn’t show significant tumor inhibition and better patent survival 
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(Burstein, 2010). Sorafenib and sunitinib are small molecular inhibitors that can 

block not only VEGFR tyrosine kinase activity but also PDGFR activity as well 

(Gotink and Verheul, 2010).  In July 2011, FDA announces that bevacizumab is 

alternative option for some patients who treat in combination with chemotherapy. 

Sorafenib was approved by FDA for treatment of patients with renal cancer in 2005 

(Eto and Naito, 2006) and hepatocellular carcinoma in 2007 (Flaherty, 2007); 

Sunitinib was first antiangiogenic drugs approved for two different cancer types at 

same time, renal cell carcinoma (RCC) and imatinib-resistant gastrointestinal stoma 

tumor (GIST) in 2007 (Rock et al., 2007). So far, three FDA approved antiangiogenic 

drugs (Bevacizumab, Sorafenib and Sunitinib) are all belong indirectly strategy to 

inhibit vascular growth.  

 

1.4 Antiangiogenic drugs clinical hindrances  

Ideal, anti-tumor drugs should have superior therapeutic window, i.e. high 

therapeutic efficacy and high safety. Chemotherapy can provide good anti-tumor 

activity (Morgan et al., 2004) but low safety because it lacks cancer cell specific 

targeting, resulting in frequently severe side effects (Orditura et al., 2004). On the 

other hand, antiangiogenic strategy is a quite different anti-tumor strategy from 

chemotherapy by blocking oxygen and nutrients supply to the tumors to suppress 

tumor growth. Because of this unique therapeutic strategy, it proposed a couple of 

advantages. First, it would be less possibility to induce drug resistance because it 

targets genetically stable endothelial cell instead of targeting genetically unstable 
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tumor cells. Second, it would have less off-targeting issues because tumor 

associated endothelial cells are uniquely proliferating which are different from 

quiescent normal endothelial cells (Augustin et al., 1994; Denekamp, 1984). In vitro 

preclinical data and in vivo animal models indeed provided the experimental results 

to support these predictions that antiangiogenic therapy is effective therapeutic 

strategy with low incident of drug resistance and without virtual toxicity (Boehm et 

al., 1997). Compared to side effects induced by traditional chemotherapy, the toxicity 

could be ignored in antiangiogenic treatment. However, accumulating clinical 

evidence has changed these principles and shown that antiangiogenic agents still 

induce drug resistance (Schmidt, 2009) and side effects (Hasani and Leighl, 2011).   

 

1.4.1 Drug resistance 

When cancer patients are treated with antiangiogenic agents, several 

mechanisms will respond to the inhibition of tumor vascular formation to avoid it. 

Those emerging mechanisms can generalize two models of antiangiogenic drug 

resistance, in specially targeting VEGF/VEGFR pathway: one, adaptive resistance; 

and the other, intrinsic (pre-existing) non-responsiveness resistance. 

For adaptive resistance, tumor cells initially respond to anti-VEGF/VEGFR 

therapy and then adapt to treatment by inducing other angiogenic mechanisms to 

lead tumor relapse and progression. The induction of tumor vascular formation can 

be regulated by redundantly several angiogiogenesis mechanisms which contain at 

least four different mechanisms: activation other pro-angiogenic factors from tumor 
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cells, tumor-associated fibroblast, or stem cells (Fischer et al., 2007); bone marrow-

derived progenitor cells recruitment; increasing vessels protection by pericyte 

coverage; and enhancement of tumor cell invasion for oxygen and nutrients 

requirement (Ebos et al., 2009; Paez-Ribes et al., 2009). 

For intrinsic resistance, tumor vascular formation may regulate by multiple 

redundant angiogenesis factors which does not respond to antiangiogenesis 

monotherapy (Kerbel, 2009). Combination therapy to reduce drug resistance and 

further enhance therapeutic efficacy has been proposed; however, adverse effects 

cause patients in shorter progression-free survival (Tol et al., 2009).  

 

1.4.2 Side effects 

Anti-VEGF/VEGFR antibodies can block or neutralize angiogenesis induced 

by VEGF/VEGFR stimulation, and their less tumor specific targeting activity 

frequently lead off-target effects. In addition to tumor growth and survival, VEGF 

signaling pathway play an important role in normal physiological process to maintain 

homeostasis (Verheul and Pinedo, 2007). Example of side effects induced by anti-

VEGF/VEGFR drug treatment includes hypertension, proteinuria, and impaired 

wound healing. In addition to management side effects, antiangiogenic treatment 

also induces potential life-threatening complications, gastrointestinal perforation 

responds in short-term treatment and cardiac function failure under long-term 

treatment (Force et al., 2007; Kramer and Lipp, 2007). 
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1.5 The concepts of antiangiogenic therapy potential prevent drug resistance 

Multiple clinical trials have demonstrated that antiangiogenic therapy has clinical 

benefits, and some of antiangiogenic agents were approved by FDA. However, the 

emergence of drug resistant tumors in clinic has largely been unexpected compared 

with antiangiogenesis original principles. The potential mechanisms of drug 

resistance have been predicted by researchers and clinicians. They suggest some of 

possible treatment methods to ameliorate or avoid drug resistance. 

 

1.5.1 Chemotherapy strategy contain antitangiogenic effect 

The dose of chemotherapeutic agents is determined based on well 

established concept of maximum tolerant dose (MTD) in order to provide the best 

antitumor efficacy. However, 'the more frequent is better' or 'less is more' is a 

controversial issue. Higher dose is expected more anti-tumor effects but less 

survival benefits due to adverse effects in patents (Nieto, 2003; Roche et al., 2003). 

On the other hand, low dose of chemotherapy, which is also known as metronomic 

therapy, has been found to be able to reduce adverse effects but show 

antiangiogenic effects. In such low dose of chemotherapy, the dose sufficient to 

inhibit endothelial cells proliferation to from new vascular in tumor microenvironment 

but lower than the dose required killing the tumor cells is used (Citron et al., 2003; 

Tuma, 2003).   
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1.5.2 Combination therapy of antiangiogenic and chemotherapy agents 

The anti-tumor efficacy of chemotherapeutic agents also depends on 

blood stream. Thus, one potential rationale for the combination of antiangiogenic 

agent and chemotherapy is that antiangiogenic therapy can normalize vascular flow, 

resulting in increased oxygenation and delivery of chemotherpetic agents (Brown 

and Giaccia, 1998).  The other potential reason is that VEGF can serve as an anti-

apoptotic molecule that protects endothelial cells as well as cancer cells from 

apoptosis induced by standard treatment. Therefore, it is reasonable to combine 

chemotherapy with antiangiogenesis to enhance therapeutic efficacy of both the 

cytostatic and cytotoxic effect (Sweeney et al., 2001). 

 

1.5.3 Combination therapy of multiple antiangiogenic agents 

In tumor progression process, VEGF is not the only angiogenic factor 

secreted by tumor cells. It has been already known that several angiogenic factors 

can redundantly regulate tumor angiogenesis. When patients are treated by anti-

VEGF antibody, the hypoxia will be induced in tumor microenvironment. Not only 

tumor cells but also tumor-associated fibroblasts and microphages are stimulated by 

hypoxia, and then secret other angiogenic factors than VEGF to rescue hypoxia 

condition (Ivy et al., 2009). Therefore, it is not sufficient to inhibit tumor angiogenesis 

by monotherapy. Beside of VEGF, there are up to six different angiogenic factors 

and several intracellular factors have been recognized to modulate angiogenesis in 

different stages of breast cancer cell development (Relf et al., 1997). Thus, 
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treatment with multiple antiangiogenic agents may reduce the emergence of drug 

resistance risk in clinic. 

 

1.5.4 Combination therapy of antiangiogenic agents and biological 

molecular targeting agents 

Tumors with epidermal growth factor receptor (EGFR) overexpression/ 

mutation or human epidermal growth factor receptor-2 (HER-2) overexpression can 

be specifically selected for the treatments with the targeting agents that inhibit these 

receptor tyrosine kinases such as monoclonal antibodies or small molecule tyrosine 

kinase inhibitors. Because VEGF expression can be regulated by the EGFR family 

tyrosine kinases in tumors, these targeting agents also reach antiangiogenesis 

effects (Bruns et al., 2000; Clarke et al., 2001; Maity et al., 2000). However, clinical 

evidence shows that some tumor cells eventually become resistant to anti-EGFR 

antibody treatment, resulting in tumor recurrence because of increased VEGF 

expression (Viloria-Petit et al., 2001). Therefore, the combination therapy of 

antiangiogenic agents and biological molecular targeting therapy may be the 

alternative strategy to overcome targeted therapy resistance in some types of 

tumors. 

 

1.5.5 Antiangiogenic agents itself as multiple targeting therapy 
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As mention previously, several angiogenic factors can contribute to tumor 

progression in different stages. Currently, next-generation antiangiogenic agents that 

target multiple molecules have been developed. For example, Sunitinib or sorafenib 

as multiple tyrosine kinase inhibitors which can inhibit PDGFR and VEGFR activity. 

These agents block multiple molecular targets, resulting in  increased antitumor 

activity and decreased drug resistant potential at the same time (Teicher, 2010). 

  

1.6 Broad-spectrum angiogenesis inhibitors  

Over 100 years of cancer research, many critical signaling pathways involved in 

tumor initiation/progression has been identified. Now, it has been believed that 

several important signaling pathways can interplay with each other to redundantly 

regulate tumor progression. Therefore, even though one important oncogenic 

molecule is blocked by anti-tumor therapy, the other similar function molecular will 

express to rescue tumor development. Therefore, development of broad-spectrum 

angiogenic inhibitors is a new challenge for antiangiogenic agents.   

 

1.6.1 Endostatin 

Endostatin is an endogenous angiogenesis inhibitor which is divided from 

C-terminal of collagen XVIII to become a 20 kDa fragment molecule. O’reilly and 

collogues discovered endostatin in 1997 (O'Reilly et al., 1997) and determined it can 

inhibit endothelial cell proliferation, migration by binding to α5β1, αvβ3, and αvβ5 
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integrin receptors (Sudhakar et al., 2003).  Endostatin contains the broadest 

antiangiogenic spectrum activity though downregulation several angiogenesis 

pathway (Abdollahi et al., 2004) but induces less toxicity in mice (Zhang et al., 

2010). Under phase I clinic trail, endostatin showed virtually no toxicity and no drug 

resistance respond from patients who were received endostatin treatment everyday 

over 3 years. However, no significant clinical outcome in multiple endostatin clinical 

trials was observed (Herbst et al., 2002; Yang et al., 2006) due to poor anti-tumor 

efficacy and short half-life (Fu et al., 2009; Kulke et al., 2006). In China, Wang and 

collogues succeed to overcome short half-life issue of endostatin. Endostatin was 

approved by the State Food and Drug Administration (SFDA) to use in non-small cell 

lung cancer in China (Wang et al., 2005).  Although endostatin is not the only one 

factor containing broad antiangiogenic spectrum activity, this endogenous 

antiangiogenic protein has been tested in clinical trials more than any other proteins 

in recently decade.  

 

 1.6.2 Endostatin fusion protein 

In order to overcome the weakness of endostatin, researchers have 

attempted to modify this protein to increase either protein stability and/or anti-tumor 

efficacy. It has been shown that Fc domain of IgG is linked to N-terminal of 

endostatin to prolong endostatin protein stability and anti-tumor efficacy in 

comparison with original endostatin (Lee et al., 2008). An additional metal-chelating 

sequence (MGGSHHHHH) was integrated at the N-terminus of endostatin to provide 
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additional zinc binding site, and the zinc-binding significantly reduced thermal 

induced protein degradation (Jiang et al., 2009). This modified endostatin, which is 

named as endostar, is approved for the treatment of non-small cell lung cancer 

patients in China. Moreover, endostatin has been fused with HER2 monoclonal 

antibody, angiostatin, or antagonist integrin receptor RGD peptide to increase anti-

tumor efficacy and antiangiogenic activity in multiple cancer types including colon 

cancer, ovarian, and pancreatic cancer. (Belur et al., 2011; Jing et al., 2011; Shin et 

al.; Tysome et al., 2009; Tysome et al., 2011).  

 

1.7 Enzyme-prodrug therapy 

Enzyme-prodrug therapy is one of anti-tumor therapeutic strategies which need 

to metabolize or transform an inactive prodrug to an effective drug. Example of 

Enzyme-prodrug therapy are focused on inhibition of cell proliferation that preferable 

kill proliferation cell by blocking cell DNA/RNA synthesis and replication level.  

Enzyme-prodrug therapies can provide large amounts of tumor cells killing activity in 

short treatment cycles (Frei et al., 1988). However, there are some limitations for 

prodrugs in clinical application, including less tumor cell specific targeting activity, 

normal tissue off-targeting toxicity, and insufficient drug concentration in tumor sites 

by systemic treatment (Denny and Wilson, 1998; Evrard et al., 1999; Springer and 

Niculescu-Duvaz, 2000). When the cytotoxic drugs suppress tumor cell growth, they 

also kill the normal cell as well, particularly in the proliferating tissues such as bone 

marrow. Therefore, development of tumor specific targeting strategies for prodrug 

therapy becomes a big challenge in cancer research. After decades of cancer 
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research, researchers have identified several ways to activate prodrugs specifically 

in tumor sites, such as gene-directed enzyme prodrug therapy (GDEPT) (Dachs et 

al., 2009), virus-directed enzyme prodrug therapy (Grove et al., 1999), and antibody-

directed enzyme prodrug therapy (Bagshawe, 2009).  

Cytosine deaminase is a yeast enzyme which can catalyze enzymatic 

conversion of 5-flucytosine (5-FC) prodrug into chemodrug 5-fluorouracil (5-FU) 

(Pandha et al., 1999). Under this metabolism process, the cytosine deaminase 

linked with uracil phosphoribosyl transferase (we will refer to this fusion gene as CD) 

has been found to be able to enhance the enzymatic conversion compared to 

cytosine deaminase alone (Chung-Faye et al., 2001). This fusion strategy has been 

well established to enhance therapeutic effects in cancer cells (Erbs et al., 2000; 

Ramnaraine et al., 2003). However, systemic treatment with prodrugs induces off-

target effects link to side effects, and general disadvantage of prodrug system is still 

tumor targeting difficulty as described above.  

 

1.8 Working model Hypotheses  

As we mentioned before, indirect antiangiogenic drugs are more likely to induce 

drug resistance than direct ones because their targets are genetically unstable 

cancer cells. Recently, it has also been found that glioblastoma cancer stem-like 

cells could differentiate to endothelial cells which continue to provide nutrient to 

cancer cells and maintain cancer cells growth and survival. Alternatively, the 

strategy for antiangiogenesis should specifically target tumor endothelial cells rather 
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than cancer cells, and then it would provide greater clinical benefits than targeting 

tumor cells (Bautch, 2010). Therefore, it is promising to choose direct antiangiogenic 

agents which specifically target genetically more stable endothelial cells (Kerbel and 

Folkman, 2002; Kerbel, 1991). However, the direct antiangiogenic agents are mostly 

endogenous molecules and have some disadvantages including low protein stability 

and low anti-tumor activity. By linking with therapeutic molecules, their weak anti-

tumor activity and protein stability could be improved. In our study, we engineered 

endostatin used with CD in order to complement individual weakness and further 

provide a good therapeutic window including higher anti-tumor activity as well as low 

side effects and emergence of drug resistance. The major concept of this study is 

that EndoCD fusion protein has dual-targeting function. Not only does it have the 

capabilities of limiting endothelial cell growth (cytostaticity, by endostatin) but also 

killing cancer cells (cytotoxicity, by conversion of 5FC to 5FU at the tumor site). 

Endostatin is able to specifically target the fusion protein to tumor endothelial cells. 

CD is brought to tumor sites by its fusion with Endostatin, and therefore, 5-FC is 

converted to cytotoxic 5-FU only at the tumor sites. Therefore, EndoCD/5-FC 

provides dual targeting actvites including tumor antiangiogenesis and chemotherapy.  
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CHAPTER 2: MATERIAL AND METHOD  

 
2.1 Reagents.  

5-fluorouracil was purchased from InvivoGen (San Diego, CA), 5-fluorocytosine 

from Sigma (St. Louis, MO), and bevacizumab from the Department of Pharmacy at 

MD Anderson Cancer Center. 

 

2.2 Cell Lines.  

MDA-MB-231 and murine 4T1 breast adenocarcinoma cell lines were 

maintained in Dulbecco’s modified Eagle’s (DMEM)/F12 medium supplemented with 

10% fetal bovine serum (FBS). HUVECs were cultured in endothelial cell medium-2 

(Cambrex, East Rutherford, NJ). This colon cancer cell line was generated by our 

laboratory after several cycles of preselection from an orthotopic colon model that 

produced 100% liver metastasis and was maintained by G418 selection. 

 

2.3 Recombinant Protein Purification.  

The coding sequence of the human endostatin (Endo) was amplified from 

pPICZaA/hE (EntreMed) by polymerase chain reaction and cloned into the pET28 

bacterial expression vector (Novagen) to generate pET28Endo. The yeast cytosine 

deaminase-uracil phosphoribosyl transferase (CD) was sub-cloned from pORF5-

Fcy::Fur into pET28 (pET28CD). To generate pET28EndoCD, the fragment 

containing CD coding sequence was ligated to the 3’ end of Endo to allow 

expression of the fusion protein as a single polypeptide. Recombinant proteins 

(Endo, CD, and EndoCD) were expressed from pET28Endo, pET28CD, and 
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pET28EndoCD and purified from a liter of IPTG-induced bacterial culture based on 

the procedures previously described (Huang et al., 2001). The pellet was 

resuspended in Buffer A (0.1 M Tris-HCl, pH8.0 and 5 mM EDTA, 0.1% sodium 

deoxycholate) and incubated at 4C with the addition of lysozyme to a final 

concentration of 50µg/ml. The cells were sonicated and centrifuged at 8,000 X g for 

10 min. The pellet was washed twice with Buffer A and resuspended in Buffer B 

(0.05 M Tris-HCl, pH 8.0, 1% sodium lauroyl sarcosine (SLS), and 1 mM DTT) 4C 

overnight. After centrifugation, cleared supernatant was dialyzed sequentially 

against the following solution at 4C: Buffer C (0.05 M Tris-HCl, pH 8.0, and 1 mM 

DTT), Buffer D (0.05 M Tris-HCl, pH 8.0), and Buffer E (0.05 M Tris-HCl, pH 8.0, 

0.01 mM oxidized glutathione, and 1 mM reduced glutathione). A final dialysis step 

against 0.05 M Tris-HCl, pH 8.0 was performed to remove glutathione. The 

recombinant proteins were determined to be endotoxin free, and protein 

concentration was quantitated by using Bio-Rad dye method as described in the 

commercial protocol. The proteins were stored in aliquots with 0.05 M Tris-HCl, pH 

8.0 buffer in the -80C. The molecular weight of Endo, CD, and EndoCD is 20 kDa, 

40 kDa, and 60 kDa, respectively. Therefore, an equimolar ratio (1:2:3) of the 

proteins was used for all experiments. 

 

2.4 Cell Viability Assay.  

5 X 104 cancer cells MDA-MB-231 were passed in a 96-well plate overnight. 

Endo, CD and Endo-CD recombinant proteins with 100 g/ml 5-FC were put into 

each well. After 48 hr, MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 



 17

bromide) solution at 50 l per well (2 mg/ml; Sigma) was added into the cell culture 

and incubated for 2 hours, followed by addition of 100 l of dimethyl sulfoxide 

(Sigma) to each well. Absorbance at 570 nm was measured immediately using a 

multi-well scanner (Labsystems, Helsinki, Finland). 

 

2.5 Endothelial Tube Assay. 

Matrigel (BD Biosciences, San Jose, CA) was added to each well of a 96-well 

plate and allowed to polymerize.  A suspension of 5  103 HUVEC cells was passed 

into a Matrigel-coated well. The cells were treated with Endo, CD or EndoCD, and 

the treatment concentration was determined based on their respective molecular 

ratios. The cells were incubated for 4-6 hr at 37°C and viewed under a microscope. 

Five fields were viewed, and tubes were counted and averaged. All assays were 

performed in triplicate. 

  

2.6 Migration Assay.  

The inhibitory effect of endostatin on VEGF-induced chemotaxis was tested by 

using an 8-m Boyden chamber (Costar, Acton, MA) assay. HUVECs (1 X 104) were 

seeded in the upper chamber wells with 2% fetal bovine serum in the EBM medium 

(Cambrex, East Rutherford, NJ) and mixed together with Endo, EndoCD, or CD, and 

the treatment concentration was determined based on their respective molecular 

ratio. EGM2 medium (Cambrex) containing several growth factors were placed in the 

lower chamber as a chemo-attractant. The chamber was incubated at 37°C for 24 

hr. After the non-migrated cells were discarded and the upper wells were washed 
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with PBS, the filters were scraped with a Q-tip, and the cells were fixed in 4% 

formaldehyde in PBS and stained with 4',6-diamidino-2-phenylindole (DAPI) 

fluorescent dye. Three fields were viewed under a fluorescence microscope, and the 

cells were counted and averaged. All assays were performed in triplicate. 

 

2.7 Animal Models.  

All animals were maintained in the animal facility and experiments were carried 

out under the institutional guidelines of The University of Texas MD Anderson 

Cancer Center. For the syngeneic model, BALB/c mice were inoculated (mammary 

fat pad) with 1 X 105 4T1 murine breast adenocarcinoma cells. After the tumor 

volume reached 3-5 mm in diameter, equamolar amount of proteins (Endo, CD and 

EndoCD) were injected via tail vein (Endo 2.5 mg/kg) every other day. One hour 

after protein treatment, all groups received 5-FC (500 mg/kg) by intraperitoneal 

injection.  

For the orthotopic xenograft model, nude mice were inoculated with 3 X 106 

MDA-MB-231 human breast cancer cells in the mammary fat pad or 3 X 106 620-L-1 

human colon cancer cells in the cecal wall. After tumors were established 7 days 

post injection, EndoCD (60 mg/kg, twice per week) or bevacizumab (Avastin, 10 

mg/kg, once every two weeks) (Kabbinavar et al., 2003) was intravenously injected, 

and 5-FU (15 mg/kg, once per week) (Kabbinavar et al., 2003) or 5-FC (500 mg/kg; 

given 1 hr after EndoCD treatment) was administered by intraperitoneal injection. 

For practical clinical reasons, the treatment protocols for bevacizumab and 5-FU 

were essentially derived from previously established clinical doses and schedules 
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(Kabbinavar et al., 2003). Mice which received 10 mg/kg bevacizumab (once every 

two weeks, the clinical dose and schedule used in treating breast and colon cancer) 

or 60 mg/kg EndoCD (twice per week; protein dosage was based on endostatin 

clinical dosage 20 mg/kg and schedule was based on protein stability) via tail vein 

injection. Tumor volume was monitored by measuring luciferase signals using IVIS 

(In Vivo Imaging System; Xenogen, Alameda, CA). In a reduced-treatment 

experiment, the number of treatments given was decreased from 10 to 5. All protein 

treatments were given intravenously while chemical drugs were administered by 

intraperitoneal injection. 

 

2.8 Immunofluorescence Staining.  

Frozen sections (4-m) were fixed in cold 100% acetone for 5 min and then air-

dried. After immersion in 1X PBS for 15 min, the slides were incubated with rat 

monoclonal anti-CD31 antibody (BD Biosciences, San Jose, CA) at room 

temperature for 1 hr, rinsed with 1X PBS and then incubated with goat anti-rat 

immunoglobulin G conjugated to Texas Red (1:200; Jackson ImmunoResearch 

Laboratory, West Grove, PA) in the dark at ambient temperature for 60 min. CD31-

positive blood vessels were counted in 10–30 fields at 200X magnification in a 

blinded fashion. 

 

2.9 In vivo Apoptotic (TUNEL) Assay.  

For in vivo apoptotic assay, tumors were fixed in 10% formalin and embedded in 

paraffin blocks. Tissue sections were incubated with proteinase K (20 mg/ml in 
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10mM Tris-HCl, pH 7.4–8.0, for 15 min at 37oC), permeabilized in 0.1% Triton-X-100 

in 0.1% sodium citrate, and then labeled with the TUNEL (deoxynucleotide 

transferase-mediated dUTP-biotin nick end labeling) reaction mixture (Promega, 

Madison, WI) according to the manufacturer’s protocol. Briefly, biotinylated 

nucleotide mix and TdT enzyme were added and incubated at 37oC for 1 hr. The 

slides were washed in PBS, blocked in hydrogen peroxide, incubated in streptavidin 

horseradish peroxidase, developed in 3, 30-diaminobenzidine, and then 

counterstained with hematoxylin. The apoptotic cells (brown staining) were counted 

under a microscope. In each sample, 5 fields were randomly counted for the 

apoptotic cells. 

 

2.10 In vivo BrdU Incorporation Assay.  

MDA-MB-231 breast cancer cells were first injected into the mammary fat pad of 

nude mice, and when tumors reached 10 mm in diameter, mice were then treated 

once only with purified Endo (20 mg/kg), CD (40 mg/kg), EndoCD (60 mg/kg) 

proteins plus 500 mg/kg 5-FC, a clinically sufficient dose of 5-FU (15 mg/kg; 1X 5-

FU), or 10 times the clinically sufficient dose (150 mg/kg; 10X 5-FU). The choice of 

20 mg/kg Endo was based on a previous preclinical study(O'Reilly et al., 1997) and 

is also within the dosage range tested in the Phase I clinical trial(Herbst et al., 2002) 

(15-600 mg/m2 in human is equivalent to 4.8-194.4 mg/kg in mouse (Freireich et al., 

1966)). BrdU was intraperitoneally injected at 1 mg/kg 18 hr before tumors were 

harvested. Tumor sections were stained by BrdU antibody as previously described 
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(Mizoguchi et al., 2009), and the percentage of BrdU-positive cells was calculated by 

Automated Cellular Imaging System (ACIS III, Dako).  

 

2.11 LC/MS/MS.  

The HILIC and mass spectrometry condition was modified based on the 

previous studies (Kosovec et al., 2008; Pisano et al., 2005). First, tumor-bearing 

mice were administered with 500 mg/kg 5-FC, 10X-5-FU, or 60 mg/kg EndoCD plus 

500 mg/kg 5-FC. Tumor samples were harvested after 5-FU or EndoCD/5-FC 

treatment for 2 hours. Depending upon the weight of the tissues to be processed, a 

100 mg/mL tissue suspension in methanol containing 100 ng/mL of 5-Bromouracil 

(5-BrU, Sigma) was prepared as an internal standard; calculate the tissue volume as 

1 µL per mg of tissue weight. Tissue weight >200 mg prepare 100 mg/mL 

suspension; tissue weight <200 mg prepare 50 mg/mL suspension. (For example: 

250 mg tumor tissue = 250 µL volume; to prepare a 100 mg/mL suspension in 

methanol add 2250 µL of methanol + 100 ng/mL 5-BrU, the final volume upon 

homogenization will be 2500 µL at 100 mg/mL concentration). Tumor was 

homogenized by Mistral Ultrasonic tissue homogenizer and samples centrifuged for 

5 min at maximum speed at 4˚C to pellet any solid material. The cleared supernatant 

was then transferred into a sample vial for analysis by LC/MS/MS. 

 

2.12 Small Animal MRI.  

Cardiac MRI was carried out as previously described (Wang et al., 2010a). 

Mice were anesthetized with isoflurane in a circulatory heating stage throughout the 
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procedure. The dose was adjusted to maintain a respiratory rate between 20 and 50 

breaths per minute. Magnetic resonance imaging of the heart was conducted with a 

Bruker 7.0T scanner located in Small Animal Imaging Facility at the University of 

Texas MD Anderson Cancer Center. Image streams of serial short axis sections 

covering the whole heart (1.0 mm in thickness) were obtained with IG-Flash-cine 

sequences. End-systolic volume (ESV) and end-diastolic volume (EDV) of each 

section were manually segmented, and left ventricular ejection fraction was 

calculated by the following formula: LVEF = (ΣEDV-ΣESV)/ΣEDV. 

 

2.13 Hydroxyproline assay.  

This assay was modified from a previously described protocol (Kliment et al., 

2009; Woessner, 1961). Hearts harvested from treated and untreated mice (13-18 

mg) were hydrolyzed in 6N HCl at 50°C overnight in a glass tube and neutralized 

with NaOH and vacuum dried at 40°C. The pellet was resuspended in 1 ml of 5 mM 

HCl. A 1:10 dilution of each samples in a total volume of 200 µl was mixed with 100 

µl of chloramine T solution (2 ml H2O, 0.14 g chloramine-T, 8ml hydroxyproline 

assay buffer (11.4 g sodium acetate anhydrous, 7.5 g trisodium citrate dihydrate, 

and 77 ml isopropanol; final volume was 200 ml with H2O, pH 6.0, and 1.25 ml of 

Erlich’s reagent containing 6 g p-dimethylaminobenzaldehyde, 18 ml 60% 

perchlorate, and 78 ml isopropanol). The samples were incubated at 55°C for 20 min 

and read at OD570 nm. Trans-4-hydroxy-L-proline was used as standard curve to 

determine hydroxyproline concentration.  The control group was set as basal level 1. 
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2.14 Masson’s trichrome staining.  

Masson’s trichrome staining solution was purchased from Sigma. Tissue 

section was deparaffinized, rehydrated and put in Bouin's Solution at room 

temperature overnight. The samples were washed in running tap water for 5 min to 

remove the yellow color from the section, stained in Weigert's Iron Hematoxylin 

Solution for 5 min, washed again in running tap water for 5 min, and then stained in 

Biebrich Scarlet-Acid Fuchsin for 5 min. The slides were then placed in 

phosphomolybdic/ phosphotungstic acid solution for 10 min, transferred to Aniline 

blue for 5 min, placed in 1% acetic acid solution for 3 min, and then rinsed in distilled 

water.  Finally, the section was washed with 1% acetic acid for 1 minute and rinsed 

in distilled water. 
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CHAPTER 3: ENDOCD FUSION PROTEIN PURIFICATION 

 

In our previously study, we used gene therapy based strategy to determine anti-

tumor activity and antiangiogenic function of EndoCD (Ou-Yang et al., 2006). 

Although the technology of gene therapy is conceptually encouraging, it requires 

improvements in delivery methods to be efficiently used in clinical settings and to 

enhance its therapeutic effectiveness. The major concerns of gene therapy include 

delivery difficulties, low transfection efficiency, and unpredictable dose response. 

However, the technology for using protein therapy (e.g., antibodies) has been well 

established over the past decade. It has advanced to the extent that targeting 

delivery and dose responsiveness are all well controlled. Thus, the FDA has 

approved multiple antibodies for cancer therapy, and protein therapy has now 

become one of the important strategies in cancer treatment. Therefore, we expect 

that EndoCD fusion protein therapy will overcome deficiency of gene therapy and 

provide a new strategy for targeting angiogenesis and targeting chemotherapy to 

increase anti-tumor activity and reduce side effects. 

 

3.1 Construction of EndoCD protein expression  

To obtain EndoCD fusion protein, we first constructed human endostatin (Endo) 

or yeast cytosine deaminase-uracil phophoribosyl transferase (CD) protein 

expression plasmid (Figure 1A). Each Open Reading Frame (ORF) was subcloned 

into pET28 protein expression vector. We also subcloned both Endo and CD into a 

single pET28 vector to link Endo DNA sequence with CD DNA sequence (Figure 
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1B). Then, we purified each protein as described in Materials and Methods. For 

further experiments, we need to adjust each protein concentration to become 

equimolar. The approximately 1:2:3 ratios was based on 20 kDa of Endo, 40 kDa of 

CD, and 60 kDa of EndoCD protein molecular weight and would perform in the all 

experiments (Fig. 2).  
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Figure 1. Construction of Endo, CD, and EndoCD protein expression vector. 

 

 
(A) Vector map of the Endo, CD, and EndoCD fusion protein. EndoCD was clone 

into the pET28 vector (Novagen) and expressed in Escherichia coli (BL21) with 

an N-terminal histidine tag. 

  

(B) Amino acid sequence of EndoCD fusion protein. Endostatin (red), CD (blue). 
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Figure. 1  

A. 

 

 

 

 

 

 

 

 

 

 

 

 

B. 

MHSHRDFQPVLHLVALNSPLSGGMRGIRGADFQCFQQARAVGLAGTFRAFLSSRLQDLYSIVRRA

DRAAVPIVNLKDELLFPSWEALFSGSEGPLKPGARIFSFDGKDVLRHPTWPQKSVWHGSDPNGRR

LTESYCETWRTEAPSATGQASSLLGGRLLGQSAASCHHAYIVLCIENSFMTASKEFVTGGMASKW

DQKGMDIAYEEAALGYKEGGVPIGGCLINNKDGSVLGRGHNMRFQKGSATLHGEISTLENCGRLE

GKVYKDTTLYTTLSPCDMCTGAIIMYGIPRCVVGENVNFKSKGEKYLQTRGHEVVVVDDERCKKIM

KQFIDERPQDWFEDIGEMNPLFFLASPFLYLTYLIYYPNKGSFVSKPRNLQKMSSEPFKNVYLLPQT

NQLLGLYTIIRNKNTTRPDFIFYSDRIIRLLVEEGLNHLPVQKQIVETDTNENFEGVSFMGKICGVSIVR

AGESMEQGLRDCCRSVRIGKILIQRDEETALPKLFYEKLPEDISERYVFLLDPMLATGGSAIMATEVL

IKRGVKPERIYFLNLICSKEGIEKYHAAFPEVRIVTGALDRGLDENKYLVPGLGDFGDRYYCV#  
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Figure 2. Endo, CD, EndoCD protein purification 

 

(A) SDS-PAGE analysis of the purified Endo, CD, and EndoCD protein. 

      Molecular weights of Endo, CD, and EndoCD are 20, 40, and 60 kDa, 

respectively. 
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Figure 2.  

 

A. 
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CHAPTER 4: INVESTIGATION OF ENDOCD FUSION PROTEIN BIOLOGICAL 

FUNCTION 

 

4.1 To study EndoCD antiangiogenic function and cell killing activity in vitro  

To characterize the biological activities of EndoCD, we purified the His-tagged 

recombinant proteins by using bacteria protein expression system. We then tested 

the antiangiogenesis activity of purified Endo and EndoCD by tube formation and 

migration assays using human umbilical vein endothelial cells (HUVEC). As shown 

in Figure 3, inhibition of angiogenesis by EndoCD was similar to that of Endo as both 

significantly decreased tube formation (Figure 3, upper panels) and the number of 

migrated cells (Figure 3, lower panels) compared with control (mock) or CD 

treatment. Next, we examined CD activity by measuring the enzymatic conversion of 

the prodrug 5-FC to cytotoxic 5-FU activity by using a cell viability assay in different 

cancer cell lines including 4T1 mouse mammary carcinoma; panO2 mouse 

pancreatic adenocarcinoma; MDA-MB-231, MDA-MB-468, and MCF7 human breast 

cancer cells; BE3, BIC-1, and SKG-4 human esophageal cancer cells lines (Figure 

4A-C). As shown in Figure 4, EndoCD evidently suppressed cell viability nearly as 

effectively as CD alone, suggesting the fusion protein maintains the 5-FC prodrug 

converting enzyme activity. 
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Figure 3. Antiangiogenic activites of EndoCD protein in vitro.  

 

Human Umbilical Vein Endothelial Cell (HUVEC) was treated with 2.5 M Endo, CD, 

or EndoCD. Upper panels, inhibition of HUVEC tube formation by EndoCD was 

similar to that of Endo. Tube formation was counted in three randomly selected 

areas. Lower panels, HUVEC migration was blocked by EndoCD under VEGF-

attracted condition.  
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Figure 3.
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Figure 4. Cancer cell killing activities of EndoCD/5-FC protein in vitro. 

 

Cancer cells lines that were treated with 100 g/ml of 5-FC and various 

concentrations of Endo, CD, or EndoCD. The cell viability of 5-FC alone group was 

set as 100%. , Endo/5-FC; , CD/5-FC; , EndoCD/5-FC.  

(A) Mouse 4T1 mammary carcinoma and panO2 pancreatic adenocarcinoma;  

(B) Human MDA-MB-231, MDA-MB-468, and MCF7 breast cancer cell lines;  

(C) Human BE3, BIC-1, and SKG-4 esophageal cancer cell lines
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Figure 4A. 

4T1                                                                    panO2
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Figure 4B. 

 

MBA-MB-231                                                         MBA-MB-468 

  

MCF7 
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Figure 4C. 

 

BE3                                                                       BIC1 

 

 

SKGT-4 
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4.2 To investigate EndoCD/5-FC biological activities in vivo 

4.2.1 To investigate the anti-tumor efficacy of EndoCD/5-FC in vivo 

We tested EndoCD/5-FC antitumor activity in vivo in a syngeneic 

mammary tumor model in which 4T1 breast cancer cells were injected into the 

mammary fat pad of BALB/c mice. An equamolar of each protein (2.5 mg/kg of 

Endo, 5 mg/kg of CD or 7.5 mg/kg of EndoCD) was administered into the tail vein of 

mice every other day (marked by arrows) for a total of 10 treatments, with 500 mg/kg 

5-FC (Chung-Faye et al., 2001) injection given 1 hr after protein treatment. The 

EndoCD/5FC-treated mice showed more potent tumor suppression (Figure 5A) and 

prolonged the overall mean survival rate (Figure 5B) compared with Endo/5-FC- or 

CD/5-FC-treated ones. These results indicate that the EndoCD fusion protein inhibits 

tumor growth more effectively than the two proteins alone.  

 

4.2.2 To investigate the biological function of EndoCD/5-FC-induced anti- 

         tumor and antiangiogenic activities in vivo 

The tumor samples were harvested from the protein-treated mice to 

analyze angiogenesis suppression as well as cancer cell death caused by the 

protein therapy. Tumor tissues were subjected to immunofluorescence staining with 

CD31 (a marker for endothelial cells) antibody and terminal deoxynucleotidyl 

transferase dUTP nick end labeling (TUNEL) assay to characterize program cell 

death. The results showed that EndoCD/5-FC decrease tumor vascular density and 

cause endothelial and cancer cell apoptosis more significantly than Endo/5-FC and 

CD/5-FC alone. We further merged signals from blood vessels and apoptosis by 
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double staining in all protein-treated tumor samples. One important finding, which 

was specially observed in the EndoCD/5-FC treatment tumor samples, is the 

majority of apoptotic signals (green color) surrounded and existed in endothelial cells 

(red color) (TUNEL/CD31 panel and inset, Figure 6). These phenomena indicate that 

apoptosis was ongoing in tumor endothelial cells treated with EndoCD/5-FC. 

Furthermore, apoptosis signals around the endothelial cells suggest that tumor cell 

also underwent program cell death process in EndoCD/5-FC treated tumor samples 

but not in other protein treatment samples. These results suggest that the specific 

cytotoxic activity observed in EndoCD/5-FC treated mice may come from increased 

5-FU local concentration. 

On the other hand, we also investigate the effects of EndoCD/5-FC protein 

on cancer cell proliferation.  We established orthotopic human breast cancer animal 

model and treated them with the fusion protein with the 5-FC or 5-FU under clinical 

condition. Then, we further determined the effects of fusion proteins on cell 

proliferation by in vivo BrdU incorporation analysis. The results indicate that the cells 

in EndoCD/5-FC-treated tumor samples exhibited less cell proliferation activity than 

the cells from tumor samples treated with other protein/prodrug combinations (Figure 

7A). This cell proliferation suppression activity of EndoCD/5-FC is even 10 times 

more potent than 5-FU treatment (Figure 7B), which encouraged us to measure 5-

FU concentration at local tumor area. 

 

4.2.3 To quantify 5-FU concentration in tumor  
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In order to further verify whether induction of cancer cell apoptosis and 

inhibition of cancer cell proliferation are indeed caused by high concentration of 5-

FU, we further determined 5-FU local concentration by liquid chromatography-mass 

spectrometry (LC/MS/MS) in tumors. According to LC/MS/MS analysis, 5-FU 

concentration from EndoCD/5-FC-treated tumors was about 7 times higher than that 

detected from the 10X 5-FU-treated tumors (Figure 8). Together with those in vivo 

function assays, we conclude that EndoCD/5-FC possesses ability to decrease 

density of tumor blood vessels and accumulate 5-FU concentration in tumor to 

induce apoptosis in both tumor and tumor endothelial cells. 
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Figure 5. EndoCD/5-FC anti-tumor activity in breast cancer orthotopic animal 

model 

 

(A) BALB/c mice were injected with 4T1 cells into mammary fat pad. Equimolar of 

each protein was injected intravenously and all mice were given 5-FC by 

intraperitoneal injection 1 hr after protein treatment. Arrow marker represents protein 

treatment times. EndoCD/5-FC had the best therapeutic efficacy in suppressing 

tumor growth and prolonged the overall mean survival of mice (B).
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Figure 5. 

A. 4T1 

 

 

 

 

 

 

 

 

 

B 
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Figure 6. Biological activity by EndoCD/5-FC in tumor microenvironment.  

 

Immunofluorescence staining of tumor tissues from mice treated with the indicated 

proteins and 5-FC combination (from Figure 5). Blood vessel was stained with 

vascular marker CD31 antibody (red) and apoptosis signal was detected by TUNEL 

assay staining (green). EndoCD/5-FC induced tumor vascular density reduction and 

endothelial and tumor cell apoptosis. Represent imaging is shown in left and 

quantification of each signal is shown in right.  
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Figure 6.  
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Figure 7. Inhibition tumor cell proliferation by EndoCD/5-FC  

 

(A) Tumor samples were labeled with BrdU (brown) antibody.  

(B) Quantification of BrdU signals. EndoCD/5-FC has more potent to inhibit cancer 

cell proliferation than with 10X 5-FU.  
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Figure 7.  

A. 

 

 

 

 

 

 

 

 

 

 

B. 
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Figure 8. Increased 5-FU concentration by EndoCD/5-FC in tumor 

microenvironment.  

 

5-FU concentration was detected by LC/MS/MS in tumor. Mice injected 5-FC, 10X-5-

FU via intraperitoneal injection, or EndoCD/5-FC via intravenous injection. 
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Figure 8.  
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CHAPTER 5: INVESTIGATION OF ENDOCD PROTEIN STABILITY 

To analyze the protein stability, we mixed an equimolar amount of each protein 

(Endo, CD, and EndoCD) with mice serum and incubated at 37 degree for the 

number of days. The samples were then subjected to western blotting and 

hybridized by anti-his-tag antibody. Quantification result shows that the half-life of 

Endo protein is less than one day, which consistent with reports from previous 

clinical (Eder et al., 2002). However, the EndoCD fusion protein has much longer 

half-life, which is about three days in the presence of mice serum (Figure 9).  
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Figure 9. The protein stability of EndoCD fusion protein.  

 

The stability of the EndoCD fusion protein is longer than Endo. (a) 12.5 M of each 

Endo, CD, or EndoCD were incubated in mice serum, and at the indicated time 

points, protein samples were harvested and analyzed by immunoblotting. (b) Protein 

bands were quantified and normalized to the day 0. , Endo; , CD; , EndoCD. 
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Figure 9.
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CHAPTER 6: INVESTIGATION OF ENDOCD/5FC TOXICITY 

To studies the acute toxicity of EndoCD fusion protein, mice were given 60 

mg/kg EndoCD by intravenous injection and then 500 mg/kg 5-FC intraperitoneally 

injected 1 hr after protein treatment. Mice blood were collected from orbital sinus 

every other day for one week, and liver functional markers aspartate 

aminotransferase (AST) and alanine aminotransferase (ALT), as well as kidney 

function markers blood urea nitrogen (BUN) and creatinine in mice blood were 

detected. The analysis results indicate that all organ functional markers of liver and 

kidney (AST, ALT, BUN and creatinine) in EndoCD/5-FC-treated mice were in the 

normal range (Khatri et al., 2006) (Figure 10). Moreover, there were no sick signs 

found in EndoCD/5-FC treatment group. For example, no mice died more than two 

months, nor exhibited less appetite, less activity, and hair loss (data no shown). 

Together, the results indicate that EndoCD/5-FC would not have any acute toxicity 

nor induce anylife-threaten side effects in mice.  
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Figure 10. Acute Toxicity Assay of Endo, CD, and EndoCD fusion protein.  

 

EndoCD/5-FC has virtually no toxicity in mice. 20 mg/kg of Endo, 40 mg/kg of CD, or 

60 mg/kg of EndoCD was given to mice by intravenous injection, and all mice were 

injected with 500 mg/kg of 5-FC intraperitoneally 1 hr after the protein injection. Mice 

blood were then collected from orbital sinus every other day for one week, and liver 

and kidney function markers in the blood were determined. AST (A) and ALT (B) 

represent liver function; creatinine (C) and BUN (D) represent kidney function. The 

red line indicates the normal value. AST, aspartate aminotransferase; ALT, alanine 

aminotransferase; BUN, blood urea nitrogen.  
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Figure 10.
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CHAPTER 7: ANTI-TUMOR ACTIVITY COMPARISON BETWEEN ENDOCD/5-FC 

AND BEC/5-FU 

To demonstrate EndoCD/5-FC would be a novel anti-tumor drug in clinic, we 

should compare therapeutic efficacy of EndoCD/5-FC and current clinical drugs. 

Based on biological function, Endo provide antiangiogenesis activity while cancer 

cell killing effects mostly come from 5-FU that is converted from 5-FC by CD. The 

mechanism of anti-tumor function of EndoCD/5-FC is similar with bec/5-FU which is 

used in several cancer types including metastatic colorectal cancer, non-small cell 

lung cancer (NSCLC), and breast cancer.  

To compare the therapeutic efficacy of EndoCD/5-FC and bec/5-FU, we 

performed two orthotopic tumor models including human breast cancer (MDA-MB-

231) and human liver metastasis colorectal cancer (620-L-1). SW620 is highly liver 

metastasis colon cancer cell line which was generated by several times re-

transplantation liver metastatic cancer cell in colon. 620-L-1 was developed by our 

laboratory and stably expresses luciferase protein for in vivo life image detection. 

Breast cancer cells and colon cancer cells were injected into mammary fat pad and 

cecal wall of colon, respectively. One week after tumor cell injection, EndoCD/5-FC 

or bec/5-FU was injected into the mice at equivalent clinical dose and treatment 

schedules. The results shows that EndoCD/5-FC provided significantly better anti-

tumor activity than bevacizumab or 5-FU alone (Figure 11A and 12A) and also 

prolonged overall mean survival rate than bev/5-FU (p=0.004) in the colon cancer 

model (Figure 12B). However, EndoCD/5-FC showed a similar therapeutic efficacy 

to bev/5-FU under this treatment schedules (Figure 11A and 12A).  
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To compare the therapeutic efficacy of EndoCD/5FC and bev/5-FU, we 

reduced total drug treatments which from 10 times treatment reduce to 5 times 

treatment and results shows that EndoCD/5-FC had better tumor suppression 

activity than bev/5-FU in the MDA-MB-231 breast cancer mouse model (Figure 11B) 

and the metastatic colon cancer mouse model (Figure 12C) when the tumor sizes 

were majored on tumor inoculation Day 42 and Day 35, respectively. 

As we mentioned in Chapter 1, anti-VEGF/VEGFR drug treatment could 

suppress tumor angiogenesis and tumor growth; however, it has recently been 

suggested that tumor cells escaped from cell death induced by these therapies may 

become refractory tumors  with high invasive and metastatic properties (Loges et al., 

2009). To further determine whether EndoCD/5-FC therapy also has this clinical 

weakness, we used 620-L-1 liver metastasis colorectal cancer cells as an analysis 

model. To monitor cancer cell growth and indicate metastatic tumors, 620-L-1 

cancer cells were trasnfected to stably express luciferase protein, which can be 

tracked by IVIS-100 live image system. On 35 days after tumor inoculation, mice 

treated with EndoCD/5-FC did not show significant liver metastasis, while the 

significant liver metastasis was observed in the mice treated with bev/5-FU (Figure 

13). Taken together (Figure 11, 12, and 13), these results suggest that EndoCD/5-

FC has potent therapeutic activity to control tumor growth and survival as well as 

metastasis.  
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Figure 11. Anti-tumor activity comparison of EndoCD/5-FC and bev/5-FU in an 

orthotopic human breast cancer mouse model.  

 

(A) Mice bearing 231 breast tumors were treated with the indicated drug 

combination, and growth of tumor volumes were monitored. EndoCD/5-FC showed 

significantly better anti-tumor activity than bevacizumab or 5-FU alone. However, 

EndoCD/5-FC showed a similar therapeutic efficacy to bev/5-FU under this 

treatment schedules. Arrows represent each protein treatment. 

(B) Reduced total drug treatments and EndoCD/5-FC had tumor suppression activity 

better than bev/5-FU in MDA-MB-231 breast cancer mouse model on tumor 

inoculation Day 42. (For detail schedule of reduced treatments, please refer to 

material and method.)  
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Figure 11. 

A. MDA-MB-231 

 

 

 

 

 

 

 

 

B. MDA-MB-231     
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Figure 12. Anti-tumor activity comparison between EndoCD/5-FC and bev/5-FU 

in an orthotopic human liver metastasis colorectal cancer mouse model.  

 

(A)EndoCD/5-FC shows significantly better anti-tumor activity than bevacizumab or 

5-FU alone and also prolong mice overall mean survival rate than bev/5-FU 

(p=0.004) in colon cancer model (B). However, EndoCD/5-FC did not show a 

significantly better therapeutic efficacy than bev/5-FU under this treatment 

schedules.  

(C) Reduced total drug treatments and EndoCD/5-FC had tumor suppression activity 

better than bev/5-FU on tumor inoculation Day 35. Arrows represent each protein 

treatment. (For detail schedule of reduced treatments, please refer to material and 

method.)  
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Figure 12. 

A. 620-L-1                                                           B. 620-L-1 

 

C.620-L-1
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Figure 13. Liver metastasis comparison between EndoCD/5-FC and bev/5-FU 

in an orthotopic human liver metastasis colorectal cancer mouse model.  

 

Mice bearing 620-L-1 colon cancer expressing luciferase were treated by EndoCD/5-

FC or bev/5-FU. Tumor metastasis signal was tracked by IVIS-100 image on Day 35 

after inoculation. The result shows EndoCD/5-FC treatment did not increase liver 

metastasis compared with bev/5-FU treatment group.
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Figure 13. 

620-L-1 
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CHAPTER 8: COMPARISON OF CARDIOTOXICITY BETWEEN ENDOCD/5-FC 

AND BEC/5-FU 

It has been known that bevacizumab can cause 1.7 to 3% left ventricular 

dysfunction incidence, and 5-FU is also well studied to induce ischemic 

complications in cancer patients (Yeh and Bickford, 2009). To determine the 

cardiotoxicity effects of those drugs including EndoCD/5-FC and bev/5-FU, we 

harvested serums from drugs-treated mice (from figures 11 and 12) to further detect 

troponin I, which is a biological marker for damage of cardiomyocyte. Troponin I 

serum level was dramatically increased in bev- and bev/5-FU-treated breast cancer 

mice model. On the other hand, mice treated with bev/5-FU are the only group 

showed high level of troponin I in colon cancer model (Figure 14). These results 

suggest bev/5-FU treatment may cause cadiomyocyte damage but EndoCD/5-FC 

may not. 

To further examine whether EndoCD/5-FC protein treatment affects cardiac 

function, we used small animal MRI to analyze end-diastolic volume (EDV) and end-

systolic volume (ESV) that allowed us to calculate the left ventricular ejection fraction 

(LVEF; LVEF = (ΣEDV-ΣESV)/ ΣEDV) (Wang et al., 2010a) of mice before 

(pretreatment basal level) and after treatment with bev/5FU or EndoCD/5FC. 

Representative EDV and ESV images are shown in upper panel of figure 15 and 

LEVF amounts are shown in lower panel of figure 15. LEVF was significantly 

decreased in bev/5FU-treated mice in post three-month treatment. On the other 

hand, LEVF was only slightly changed in EndoCD/5FC-treated mice even after six-
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month treatment. Therefore, EndoCD/5-FC protein therapy may provide great 

advantage because of minimal cardiac impact. 

To study the effect of EndoCD/5-FC and bev/5-FU on heart tissue, we 

analyzed the incidence of cardiac fibrosis which has abnormal collagen 

accumulation. Collagen amounts in heart tissues can be determined by indirectly 

detecting hydroxyproline or direct collagen trichrome staining. The heart tissues 

were collected from mice used in figure 15, and we found that higher hydroxyproline 

amount (Figure 16A) and collagen accumulation (blue color, Figure 16B) in heart 

from bec/5-FU-treated mice than hearts from the control mice and EndoCD/5-FC-

treated mice. 

One of critical VEGF biological function is maintain myocardial angiogenesis; 

and it has been demonstrated that ischemic cardiomyopathy would be induced by 

loss of VEGF in mice (Carmeliet et al., 1999). To exam the effects of EndoCD/5-FC 

and bev/5-FU on mice myocardial angiogenesis, we measured serum VEGF levels 

and also determined coronal vessels density by staining with vascular marker CD 31 

antibody. Then, we found that circulating VEGF levels significantly reduced in mice 

treated bev/5-FU but not in one treated with EndoCD/5FC (Figure 17). Moreover, CD 

31 signals, which indicate coronal vessel density, were also decreased in heart 

tissues of mice treated bev/5-FU but not in one treated with EndoCD/5FC (Figure 

18). Together, these results indicate that bev/5-FU treatment would potentially 

induce cardiomyopathy and/or cardiac function failure compared to EndoCD/5-FC 

treatment in cancer patients.   
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Figure 14. Cardiotoxicity Assay by detecting troponin I level. 

 

Drug-treated mouse serum were collected from two orthotopic mice tumor model 

including human breast cancer model (MDA-MB-231) and human liver metastasis 

colorectal cancer model (620-L-1) to detect circulating troponin I level by ELISA. 

EndoCD/5-FC treatment group did not induce cardiotoxicity in both mice tumor 

therapy model. Bec, bevacizumab 

 

(A) High troponin I level induced by bec or bec/5-FU treatment group in breast 

cancer model, indicating that Bec and bec/5-FU treatment could cause mice 

cardiacmyocyte damage. 

(B) Cardiactoxicity was observed only in bec/5-FU treatment mice in human liver 

metastasis colorectal cancer model.
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Figure 14. 

A. MDA-MB-231 

 

 

 

 

 

 

 

 

B. 620-L-1 

 



 66

Figure 15. Cardiac function detection by magnetic resonance imaging (MRI) in 

drugs-treated mice 

 

Upper panel is representative image of EDV (end of diastolic volume) and ESV (end 

of stoic volume). 

Left ventricular ejection fraction (LVEF) was calculated by (ΣEDV-ΣESV)/ ΣEDV 

from each treatment mice and shown in lower panel. Before drugs treatment, LVEF 

value was set as mice normal value. LVEF value was significantly reduced in bev/5-

FU treatment group and there was no significant change of LVEF value in 

EndoCD/5-FC treatment group after three- and six- month treatment. NS, no 

significance. (For detail schedule of reduced treatments, please refer to material and 

method.)  
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Figure 15. 
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Figure 16. Cadiac fibrosis detection in EndoCD/5-FC and bec/5-FU treatment 

mice heart. 

 

(A)Hydroxyproline assay. 

The hearts were harvested from mice treated with EndoCD/5-FC or bec/5-FU. We 

also collected the same age of mice heart as a normal control. The detection amount 

was normalized with the weight of heart tissue. The high proline hydroxylation was 

detected in the bev/5-FU treatment group, which is significantly higher than control 

mice. In contrast, there was no significant difference in proline hydroxylation 

between EndoCD/5-FC group and control mice. NS, no significance. 

 

(B) Trichrome staining.  

Direct method shows fibrosis phenomena in mice heart. The presence of fibrosis is 

shown in blue by trichrome staining of heart histological section. Similar results as 

(A) are shown.
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Figure 16. 

A.Hydroxyproline assay. 

 

 

 

 

 

 

 

 

B. Trichrome staining 
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Figure 17. Circulating VEGF level comparison in EndoCD/5-FC and bec/5-FU 

treatment mice 

 

Circulating VEGF level was lower in bev/5-FU-treated mice than control mice and 

there were no significantly changes in EndoCD/5-FC-treated mice compared with 

control mice. NS, no significance 
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Figure 17. 
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Figure 18. Coronal vessels density comparison in EndoCD/5-FC and bec/5-FU 

treatment mice 

 

Upper panels are representative images of coronal vascular density hybridizing by 

CD31 antibody (red) in mice heart tissue.  

Lower panel shows that coronal vascular density was significantly decreased in 

bev/5-FU treatment mice compared to control mice but not in EndoCD/5-FC-treated 

group. NS, no significance 

 



 73

Figure 18. 
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CHAPTER 9: SUMMARY OF CHAPTER 3 TO 8 AND DISCUSSION 

Antiangiogenesis, the novel anti-tumor concept by Judah Folkman, has 

become reality during over last three decades and been applied in clinic. Inhibition 

tumor growth by anti-VEGF/VEGFR monoclonal antibodies became a first approved 

antiangiogenic modality in clinic. Although anti-tumor efficacy was fully tested in 

preclinical studies, accumulating clinical reports have shown that these drugs have 

cytostatic function without curative potent and further induced tumor recurrence, 

tumor invasion and metastasis (Loges et al., 2009). Although targeting therapy 

provides predictable safety profile, systemic treatment interrupts normal organ 

homeostasis to induce side effects (Verheul and Pinedo, 2007). Therefore, 

development of the strategies to enhance therapeutic efficacy and targeting 

specificity under center principle of Judah Folkman will become a new challenge in 

next decade.  

In this study, we set up this challenge as a goal. Namely, we have attempted 

to develop a novel antiangiogenic drug which provides high therapeutic efficacy and 

decreases incident of tumor recurrence and the risk of tumor invasion and 

metastasis. Moreover, to provide the high efficacy, we also tried to increase 

targeting specificity to prevent off-target side effect and increase safety. Then, we 

finally developed a novel fusion protein EndoCD. Endostatin is broad-spectrum 

antiangiogenesis protein which can specifically target tumor vascular system 

(Avraamides et al., 2008). In addition, the fusion protein can increase 5-FU 

concentration, which is converted from 5-FC by CD, in the tumor microenvironment. 

Thus, EndoCD/5-FC offers not only antiangiogenesis by tumor vascular targeting but 
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also tumor targeting chemotherapy. Dual targeting effect shown here will provide 

curative benefits to cancer patients.   

Clinical antiangiogenic drugs belong to indirect antiangiogenesis agents that 

selectively target VEGF pathway. Although, VEGF pathway is important for tumor 

angiogenesis, it is also known essential for normal physiological maintenance 

(Verheul and Pinedo, 2007). Indirect antiangiogenesis agents also block VEGF 

function in normal organ, and it perhaps causes side effects. In the principle of 

EndoCD fusion protein, it is directly targeted to uniquely proliferating endothelial cell 

in tumor sites, and thus it would have decreased off-target potential (Kerbel, 1991). 

Moreover, by carrying chemotherapeutic drugs to tumor area, EndoCD enhances 

cytostatic effect at the same time. In order to prove the concept, we purified EndoCD 

fusion protein from bacteria expression system and determine antoangiogenic and 

cell killing activities in vitro and in vivo. EndoCD/5-FC induced endothelial cells and 

tumor cells apoptosis and inhibited tumor cell proliferation, and these anti-tumor 

activities further reduced tumor cell invasion and metastasis. We also demonstrated 

that EndoCD/5-FC fusion protein has dual targeting tumor antiangiogenic and tumor 

local chemotherapeutic activities. Together, EndoCD is expected to be able to 

decrease potential tumor recurrence and tumor metastasis.  

In the present study, we also compared EndoCD/5-FC anti-tumor activity and 

safety with a clinical antiangiogenic drug, bevacizumab and 5-FU combination. 

EndoCD/5-FC showed better anti-tumor and metastasis inhibition activities than 

bec/5-FU. In the safety profile, EndoCD/5-FC provide virtually no toxicity, especially 

cardiotoxicity and cadiac function failure, while bec/5-FU exhibited these toxicities. 
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Therefore, our studies demonstrated that EndoCD/5-FC may resolve the weakness 

of antiangiogenic and chemotherapeutic drugs and reveal a novel potential of 

antiangiogenic modality in clinic.  
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CHAPTER 10 FUTURE DIRECTIONS  

10.1 Improvement of currently protein expression system 

In our current protein purification system, when EndoCD fusion protein was 

expressed in E. coli, the majority of protein become aggregated and found in 

inclusion body of bacteria. Therefore, we first purified the inclusion body to get high 

purity of EndoCD protein, and then EndoCD was denatured and refolded though 

dialysis procedures. During dialysis procedure, EndoCD structure may be refolded 

from linear structure to different stages of tertiary structure. The quality of protein in 

each purification batches may vary due to dialysis procedure.. Therefore, we need to 

improve or modify currently protein expression system for future clinical application. 

 

10.1.1 To improve protein solubility in different protein expression. 

To improve protein solubility, we will test different approaches in our 

currently expression system including different expression vectors, different 

induction temperature, and modification of the linker. In figure 19A modification 

strategy map, we can either change linker or use different tag to test in different 

induction temperature. In this expression vector, high solubility of EndoCD protein 

can be induced in room temperature (23 ºC) or 4 ºC degree (Figure 19B). We will 

further purify soluble protein in large scale E. coli expression system.
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Figure 19. Solubility improvement of EndoCD protein in E. coli system 

 

(A) The strategy map of protein expression map. 

 

(B) EndoFlexCD protein (red color arrow) induction in different temperature. RT, 

room temperature; sup, soluble protein; pet, insoluble protein
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Figure 19. 

A. 

 

 

 

 

B. 
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10.2 To test the cancer stem cells (CSCs, TICs: tumor-initiating cells) killing 

activity of EndoCD/5-FC. 

Clinical data now suggest that antiangiogenic therapy leads to the 

progression of tumors by increasing invasion and metastasis, likely due to activation 

of the cancer stem cell population (Ebos et al., 2009; Paez-Ribes et al., 2009). 

Cancer stem cells (CSC, or tumor-initiating cells, TICs) have been considered to 

contribute to cancer initiation, progression and chemotherapeutic resistance (Al-Hajj 

and Clarke, 2004; Reya et al., 2001; Rossi et al., 2008). It has also been shown that 

glioma initiating cells have a greater ability to promote vascular endothelial growth 

which may confer enhanced angiogenesis for tumor cell survival and proliferation 

(Ricci-Vitiani et al., 2010; Wang et al., 2010b). Currently, there are no effective ways 

to target CSCs.  CSCs in different types of cancer have been gradually identified. 

For example, breast cancer stem cells (BCSCs, alternatively called breast tumor 

initiation cells, BTICs) can be isolated by sorting for CD44+CD24-/low cells (Al-Hajj 

et al., 2003) or Hoechst negative side population (SP) cells (Patrawala et al., 2005), 

and can also be enriched by spheroid culture and serial transplantations in 

immunodeficient mice (Ponti et al., 2005). These CSCs not only harbor the capability 

of self-renewal, but also are able to differentiate into multiple lineages of tumor cells 

growing in various types of distal organs. They have been shown to be resistant to 

the standard chemotherapy. Thus, we hypothesized that EndoCD/5-FC may 

selectively reduce breast cancer stem cells populations. 

 

10.2.1 To determine EndoCD/5-FC CSCs killing activities 
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After EndoCD/5-FC protein treatment, we found that EndoCD/5-FC 

selectively reduced the MDA-MB-231 and MCF-7 CD44+/CD24- population in a dose 

dependent manner (Figure 20A) as well as mammosphere formation (Figure 20B). 

These results suggest that EndoCD/5-FC may inhibit BCSC growth. We will expand 

the experiments to multiple breast cancer cell lines even primary tumor samples with 

different criteria of CSC phenomena in vitro and in vivo. The molecular mechanism 

for EndoCD/5FC-mediated BCSCs suppression should be interesting to further 

pursue.  For instance, if Endo is critical for targeting BCSCs, integrin αvβ1 in BCSCs 

may be important for maintenance of BCSC.  Once it becomes clear, we will logically 

pursue the appropriate direction. Alternatively, we can always use a nonbiased 

approach such as antibody arrays to identify which signal pathways might be 

activated/inactivated by EndoCD/5-FC treatment.  
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Figure 20. EndoCD/5-FC can selectively reduce breast cancer stem cell 

population. 

 

(A) To detect the CSC (TICs) population, surface markers CD44+/CD24- serve as 

an index. After EndoCD/5-FC treatment in two human breast cancer cell lines (MDA-

MB-231 and MCF-7) for 48 hours, 1X106 cells were processed for staining with 

FITC-conjugated CD44 and PE-conjugated CD24 antibodies, respectively, and then 

analyzed or sorted with BD flow cytometer. EndoCD/5-FC decreased breast stem 

cell population by dose dependent manner.  

 

(B) CSC (TICs) population was also validated by culturing mammospheres using 

MammoCultTM medium containing 4 ug/ml Heparin and 0.48 μg/ml hydrocortisone. 

EndoCD/5-FC has ability to inhibit breast cancer mammopheres formation. 
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Figure 20. 

A.MDA-MB-231                                                     MCF-7 

 

 

B. 
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