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Liposomes, also known as nontoxic, biodegradable, and non-immunogenic therapeutic 

delivery vehicles, have been proposed as a carrier for drugs and antitumor agents in cancer 

chemotherapy. Echogenic liposomes (ELIP) have the potential to entrap air or bioactive gas to 

enhance acoustic reflectivity in ultrasound and are used as a contrast agent. The innovative part 

of this study is based on a novel concept to encapsulate nitric oxide (NO) gas into ELIP, deliver 

it to breast cancer cells, and control its release via direct ultrasound exposure. Studies on the 

effect of NO in tumor biology have shown that a high levels of NO (> 300 nM) leads to 

cytostasis or apoptosis by decreasing the translation of several cell cycle proteins and stimulating 

cancer cell death by activating the p53 pathway. The central hypothesis is that NO gas can be 

packaged and delivered through a delivery methodology to breast cancer cells to facilitate tumor 

regression with minimal systemic toxicity. The primary goal of this thesis is to develop an 

echogenic liposomal solution that has the ability to encapsulate NO, to release NO locally upon 

ultrasound exposure, and to induce breast cancer cell death. NO-containing echogenic liposomes 

(NO-ELIP) were prepared by the freezing-under-pressure method previously developed in our 

laboratory. It was necessary to evaluate stability of NO-ELIP and release of NO from NO-ELIP 

by measuring echogenicity using intravascular ultrasound images. Breast cancer cell lines, 

MDA-MB-231 and MDA-MB-468, were selected to investigate the cytotoxic effects of NO 
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liberated from NO-ELIP and their response to NO concentration. Ultrasound-triggered NO 

release from NO-ELIP using ultrasound activation was studied. It was demonstrated that NO-

ELIP remained stable for 5 hours in bovine serum albumin. Delivery of NO using NO-ELIP 

induced cytotoxicity and programmed cell death of MDA-MB-231 and MDA-MB-468 after 5 

hours of incubation. Enhancement of the NO-ELIP effect for therapeutic application was 

observed with ultrasound activation. This work demonstrates that NO-ELIP can incorporate and 

deliver NO to breast cancer cells providing increased NO stability and ultrasound-controlled NO 

release. Improved therapeutic effect with the use of NO-ELIP is expected to be found for breast 

cancer treatment. 
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1.1. Epidemiology of breast cancer  

Breast cancer is the most common type of cancer occurring among women in the United 

States (1). Breast cancer also remains principal cause of death among women aged 30-55 years 

(2). According to survey from the American Cancer Society, there were an estimated 207,090 of 

new breast cancer cases in 2010. About 28% of women are expected to be diagnosed with breast 

cancer in their life time in the United States (1).  

In 2002, Baum and Schipper reported that the increase incidence of breast cancer is 

mainly related to ages, environmental risk factors, and genetic factors (2). Approximately 50 % 

of breast cancers occur in women aged 50-64 years and 30 % occur in women over the age of 70 

(2). In terms of environmental factors, there is a higher incidence in women from developed 

countries (2, 3). However, the incidence rates are rapidly increasing in developing countries. A 

family history of breast cancer, as a genetic factor, is also accepted as a risk factor for breast 

cancer (2). Women with a first-degree relative with breast cancer have 2-3 fold increase in the 

risk of breast cancer (2, 3).  

Breast cancer is a heterogeneous disease since there are several prognostic factors and 

clinical forms (4). There are numerous factors to influence the incidence of breast cancer and its 

origin (5,6). It is important to understand breast microenvironment in order to elucidate the 

physiological features and development of breast cancer (6).    
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1.2. Anatomy of breast  

The breast consists of glandular, fatty and fibrous tissue positioned over the pectoral 

muscles of the chest wall (7). As shown in Fig 1.1, the glandular tissues are composed of 15-20 

lobes containing numerous lobules known as milk glands (4). Lobules are linked by ductules that 

transport milk from lobules to the nipple (7). Lobules and ducts are surrounded by two layers of 

fibrous tissue; a superficial layer and thicker deep layer connected by Cooper’s ligaments (2). It 

is essential to understand the surrounding tissue of breast because breast cancer is associated 

with tissue sites of adenocarcinoma (8). Additionally, tissue microenvironment can profoundly 

affect on the incidence of invasive breast cancer (8). 

Most malignant breast cancers arise from a group of abnormal cells in ducts and lobules 

shown in Fig 1.2 (2). The origins of breast have invaded to surrounding tissues which support 

the lobules and ducts of the breast (5). About 90 % of breast cancer consist of invasive ductal 

cancer (5). Invasive lobular carcinoma is the second most common type of breast cancer (2). 

Lobular carcinoma in situ is not invasive, however, there is rapid increase of abnormal cell 

proliferation in the breast lobule (2). When the origin of breast cancer is well understood, breast 

cancer treatment would be more effective (2). 
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Figure 1.1 Structure of normal breast (2)       

Adapted from Baum, M. 

The diagram depicts the anatomy of breast. Breast lobules are linked to ductules to transport 

milk to the nipple. Lobules and ducts are surrounded by Cooper’s ligaments which are connected 

to fibrous tissue. The intraductal system is erratic and strongly correlated with the incidence of 

breast cancer. 

 

Figure 1.2 Types of breast cancer (2) 

Adapted from Baum, M. 

Invasive breast cancer are generated from lobules and ductules, which invade the surrounding 

tissue. Lobular carcinoma in situ stimulates abnormal cell proliferation, yet does not metastasize 

to breast tissues around the ducts and lobules.  
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1.3. Conventional breast cancer therapy 

1.3.1. Hormone therapy 

Breast cancer cells express proteins called estrogen receptor (ER) and progesterone 

receptor (PR) (9). ER can modulate breast cancer cell growth in response to one of the sex 

hormone, estrogen, and its overexpression leads to faster breast tumor growth (9). Hormone 

therapy, known as adjuvant endocrine therapy, is used to treat pre-menopausal women with 

hormone receptor (HR)-positive breast cancer and post-menopausal women who have aromatase 

inhibitor (10). ER, a transcription factor, is one of the nuclear hormone receptors superfamily 

that regulates transcription of target genes (11). When ER binds to estrogen, ER undergoes 

receptor dimerization and activation. Ligand-bound ER translocates to the nucleus followed by 

full activation of transcription of genes, which can stimulate cancer growth.  

Tamoxifen has been commonly used as an anti-estrogen drug for invasive breast cancer 

treatment (11, 12). Tamoxifen binds to ER, prevents ER from interacting with estrogen, and 

reduces breast cancer cell proliferation (11). Hormone therapy with tamoxifen in patients who 

suffer from ductal carcinoma in situ (DCIS) decreases the risk of developing invasive cancer 

(10).  

Hormonal therapy reduces relapse of breast cancer and extends patient survival by 10 

years (9, 13). However, it has been reported that the clinical effect of tamoxifen relies on ER/PR 

status (9). ER/PR-positive breast tumor has about 80 % chance to respond to tamoxifen, while 

there is 40 % chance in response to tamoxifen with the expression of ER (10). The combination 

of hormone therapy such as tamoxifen and goserelin is needed to overcome the limitation of a 

single hormone therapy (14). 
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1.3.2. Immunotherapy 

The prevalence of human epidermal growth factor receptor 2 (Her-2) is expressed in 

approximately 25 % of breast tumors (9). Her-2 has potential to be used as a prognostic marker 

for the detection of early invasive breast cancer (15). The overexpression of Her-2, a receptor 

tyrosine kinase, on the surface of a breast cancer cell membrane induces cell proliferation 

through the Ras-Raf-mitogen-activated protein kinase (MEK)/ERK pathway as well as survival 

signaling through phosphorylation of Akt followed by the onset of transcription of growth-

associated gene (9).  

Trastuzumab, anti-Her-2 Mab; Herceptin, is a monoclonal antibody and targeted anti-

Her-2 oncoprotein and is commonly used to treat patients with invasive breast cancer (16). 

Trastuzumab inhibits Her-2 dimerization by binding the extracellular domain of Her-2 and 

reducing high proliferation rate (9). In a phase comparison trial, trastuzumab in combination 

with chemotherapy has improved overall survival for patients who have Her-2-positive 

metastatic breast cancer (17). The addition of trastuzumab to chemotherapy leads to better 

results such as a 25.1 more months median survival than standard chemotherapy alone (9, 17). 

Adjuvant chemotherapy with trastuzumab has become standard in patients with Her-2-positive 

early-staged breast cancer  and shown the improvement of response rate and overall survival 

(15). 

 

1.3.3. Anti-cancer therapy 

Cytotoxic drugs affect the inhibition of malignant cell proliferation and growth (18). 

Anthracyclins, one of cytotoxic drugs, is widely used in chemotherapy for early-staged and 

advanced breast cancer (19) . However, the cumulative anthracyclines dose induces cardiac 

toxicity and myelosuppession that in turn limits medical use (18, 20). Therefore, many studies 
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have focused on preserving cytotoxic drug delivery systems for better drug safety profiles and 

therapeutic efficacy (20). 

Liposomal doxorubicin has been approved to prolong circulation of drugs and utilized 

for the treatment of breast and ovarian cancer (21). Pegylated liposomes, known as sterically 

stabilized liposomes, are capable of carrying doxorubicin which is one of the most commonly 

used anthracyclines (18). The use of pegylated liposomal doxorubicin (PLD) offers prolonged 

circulation time, increase in permeability, and non-toxic circulation (20). PLD enhances 

therapeutic index with monotherapy and in combination with chemotherapy (20). It has been 

proven that PLD enhances the therapeutic efficacy with less cardiotoxicity compared to the 

effect of conventional doxorubicin (19, 22).  

Liposomes are non-toxic and biodegradable. This characteristics offer liposomes as a 

cytotoxic drug and anticancer agent carrier directed to specific tumor site (20). It is crucial to 

develop nanocarriers such as micelles and liposomes by means of cytotoxic agent carriers with 

minimal detrimental effect on host cells and maximal drug encapsulation efficiency (20, 23). 
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1.4. Types of nanocarriers  

1.4.1. Polymeric micelles 

Micelles are made up of one or two fatty acyl chains self-forming a hydrophobic core-

hydrophilic shell structure in an aqueous solution (24). The hydrophobic effect of polymeric 

micelles allows for fatty acids to aggregate and prevent water molecules from internal core (24). 

Polymeric micelles, an advanced form of copolymers, have two different chemical properties 

(25). One is a hydrophobic blocks internal core and the other consists of a dense bush of poly 

(ethylene oxide) (25). These features of polymeric micelles allow them to be used as a 

hydrophobic drug carrier (25-28).  

The size of polymeric micelles (10-150 nm) increases circulation time (27). The 

hydrophilic shell can protect loaded drug and sequester and inhibit payload leakage (28). It is 

also possible that polymeric micelles can be engineered by attaching of fatty acid side group to 

enhance their encapsulation efficiency (28). Several formulations of micelles have been studied 

in clinical trials (27). Polymeric micelles have been used to load paclitaxel which is one of the 

cytotoxic drugs for cancer treatment with conjugation of cancer-specific peptide p160 using the 

dialysis method (26). 

However, there are numerous limiting effects with the use of polymeric micelles from 

bench to clinic (28). Polymeric micelles as a drug carrier contain low drug encapsulation 

efficiency, low permeability through the cell membrane, and poor circulation condition (25-28). 

The engineered micelle shell and the improvement of micelle stability for spatial and temporal 

drug delivery may be needed to not only overcome these obstacles but also to enhance the 

therapeutic index of drug delivery carrier (27, 28).     
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1.4.2. Liposomes 

Liposomes have been utilized as drug and gene delivery agents for therapeutic and 

medical application due to their non-immunogenic, and biodegradable characteristics (23). 

Liposomes consist of amphipathic phospholipids self-forming into a lipid bilayer surrounding an 

internal aqueous compartment (23, 29, 30). As shown in Fig 1.3, the hydrophobic core is 

composed of two esterified fatty acyl chains which are aggregated to each other to form a lipid 

bilayer (29). The assembled bilayer prevents the diffusion of water-soluble solute across the 

membrane (24, 29). The head groups, hydrophilic portion of liposomes, strongly interact with 

water molecules and face outward to form an internal aqueous compartment (24). This 

characteristic of liposomes allows to carry hydrophilic and hydrophobic therapeutic material 

such as drugs and genes (30-32). Water-soluble materials can reside in the aqueous core. 

Liposomes can also contain water-insoluble and lipophilic drug inside the lipid bilayer (30). 

Liposomes can encapsulate drug, gene and gas either separately or simultaneously (30). 

The composition of phospholipids can determine both the degree of bilayer fluidity and 

the physical properties of the liposomes (24). As depicted in Fig 1.4, Phosphatiylcholine (PC), 

saturated fatty acids, are less fluid and reside in the exoplasmic face to provide membrane 

curvature. The cylindrical shape of PC generates a flat monolayer. Phosphatidylethanolamine 

(PE) contains long tails and a small head group that make corn-shaped lipids. These corn-shaped 

PE are more fluid and form a curved bilayer. Cholesterol, one of major sterols in animals, plays 

a key role in cellular membrane. Cholesterol restricts the random movement of long 

phospholipid tails through an increase in thickness of the bilayer. The curvature of the bilayer is 

influenced by the polar head groups and non-polar tails of its constituent phospholipids.  

The physical properties of liposomes can provide therapeutic applications for targeted 

delivery with reduced systemic toxicity and minimal premature degradation (33). Several 

methods have been developed for liposomes to incorporate drug and gene. Liposomes have the 
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potential to carry small molecular weight drug and short DNA fragment for the treatment of 

cardiovascular diseases and cancers (30, 32, 34). Tissue plasminogen activator (tPA)-loaded 

liposomes were used as a targeted drug delivery agent for treatment of thrombolysis (30). 

Doxorubicin and small molecular weight drugs can be encapsulated into liposomes for cancer 

therapy (32). Plasmid DNA (pEGFP-N1) encapsulation in liposomes can increase the 

encapsulation efficiency of DNA to interact with cells (35).  

 

 

 

Figure 1.3 Structure of lipids in a bilayer membrane to form liposomes (36) 

Permission to Use Granted by Elsevier  

Liposomes self-forming into lipid bilayer are clearly separated into hydrophilic region and 

hydrophobic region. Hydrophilic polar heads are attracted to the water and generate an aqueous 

core of liposomes. Hydrophobic non-polar tails are directed to each other and form a lipid 

bilayer.  
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Figure 1.4 Effect of lipid composition on bilayer curvature  (24)                                                

Adapted from Lodish, H  

The lipid structure of PC is made up of a large hydrophilic head and short hydrophobic tails. 

However, PE is characterized by a small hydrophilic head and long hydrophobic tails. The 

interaction between PC and PE generates membrane curved structure. A small hydrophilic head 

of PE generates better incorporation with inner leaflet. Highly hydrophilic PE resides in 

exoplasmic face and directs toward water molecule. The mixture of PE and PC forms lipid 

bilayer.  

 

1.5. Introduction of Echogenic liposomes    

1.5.1. Ultrasound contrast agent (UCA)  

 Ultrasound contrast agent (UCA) refers to particles that reflect and scatter diagnostic 

ultrasound waves (33). The use of UCA leads to the enhancement of ultrasound images by 

increasing ultrasonic backscatter (37). The enhancement of backscatter intensity is one of the 

most crucial factors for the increase of echogenicity for the detection of underlying physiological 
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features (37, 38). Echogenicity is used for clinical diagnosis of cardiovascular diseases such as 

thrombus (30, 39). 

Echogenic liposomes (ELIP) are developed as a UCA for medical ultrasound imaging 

and for non-invasive delivery of drugs and genes (33). Ultrasound reflectivity and stability of 

ELIP can be determined by different lipid formulations and surfactants such as mannitol or BSA, 

and with varying freezing conditions (40). ELIP formulations have been studied in a multiple 

number of combinations of phospholipids and cholesterol.  

Lipid components of ELIP consist of Egg phosphatidylcholine (EPC), dipalmitoyl-sn-

glycero-3-phosphocholine (DPPC), dipalmitoyphoshati-dylethanolamine (DPPE), and 

diapalmitoyl phosphate-dylglycerol (DPPG) with a molar ratio of 27: 42: 8: 8 (41). EPC is 

unsaturated phospholipids and plays a role in making the lipid a phage region, although it 

reduces echogenicity (40, 42). Three different saturated phospholipids such as DPPC, DPPG and 

DPPE participate in the enhancement of ELIP reflectivity. DPPG is negatively charged and 

facilitates bilayer hydration and prevents liposomes from aggregation (23). Only 8 mole % of 

DPPG can be used due to toxicity of higher concentration of DPPG (42). Higher concentration 

of DPPE affects the aggregation of phospholipids. Cholesterol, mostly hydrophobic among the 

lipid composition, restricts the random movement of phospholipid by increasing the rigidity of 

lipid bilayer (23, 24).  

Mannitol is utilized as a surfactant in ELIP preparation due to its ability to generate 

ultrasound reflectivity in freeze-thawing cycle (23). The role of mannitol is essential for the 

disruption of the hydrophobic lipid bilayer which is exposed to air and incorporated with gas (23, 

40). Concentration of 0.32 M mannitol can increase the size of liposomes and acoustic stability 

(40). The optimal concentration of lipid compositions and mannitol solution is crucial for ELIP 

to be utilized as a UCA to increase ELIP sensitivity to ultrasound application (30). 
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1.5.2. Gas-containing echogenic liposomes (ELIP) 

 The amphipathic structure of ELIP provides a design to encapsulate gases allowing 

direct gas delivery to target tissue (23). ELIP have been developed to contain a wide range of 

bioactive gases such as argon, nitric oxide, xenon, hydrogen sulfide, and carbon dioxide by 

elevated pressure with the gas of interest (30).  

Several liposomal formulations to incorporate gas and hydrophilic drug into liposomes 

have been developed by lyophilization and pressurization procedures. (30). Gas-containing ELIP 

were prepared by the freezing-under-pressure method previously developed in our laboratory (23, 

41). After drying and hydrating of the lipid film, liposomes undergo the gas injection process 

using the elevated pressure-freeze method. Five milligrams of lipids can encapsulate 10 μl of gas 

using relatively low pressure (23). As shown in Fig 1.5, gas entrapped into ELIP may reside in 

hydrophobic surface by the difference of surface tension in the amphipathic lipids. Insoluble gas 

forms a lipid monolayer-covered gas bubble in the aqueous compartment (33). 

Gas-containing ELIP have been employed as a UCA for intravascular IVUS images (33). 

The difference in density between entrapped gas and the lipid dispersion interface can create 

ultrasound reflectivity and thus high contrast in IVUS images (30). Acoustically active gas-

containing ELIP have potential to be visualized in IVUS images in real time (40).  

Ultrasound can stimulate release of the payload of ELIP with the interaction with ELIP 

(37). When gas entrapped into ELIP is exposed to ultrasound, they diffuse from the lipid shell by 

the expansion of the gas bubbles and the oscillation effect on the liposome’s membrane (23, 30). 

This acoustically active characteristic of gas-containing ELIP allows ultrasound-triggered 

release of payload as well as ultrasound imaging  (40).  

The encapsulation of nitric oxide (NO) into ELIP, i.e. NO-ELIP, has the potential to 

protect NO from being removed by NO scavengers as well as the possibility of liberating NO 
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from NO-ELIP with ultrasound stimulation (41). The effect of NO-ELIP as a gas delivery carrier 

has been studied for inhibition of intimal hyperplasia in cardiovascular disease treatment (41). 

The use of NO-ELIP can provide a tool for a targeted bioactive gas delivery.  

 

               

 

Figure 1.5 Structure of gas-containing ELIP with an internal aqueous phase and a gas bubble 

between two monolayers (33).  

Permission to Use Granted by Elsevier 

Two different phages of ELIP allow to encapsulate water-soluble drug into the internal core 

liposomes and water-insoluble drugs in the bilayer. ELIP can encapsulate gas between two 

monolayers of lipid hydrophobic face.  
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1.6. Physiological role of nitric oxide 

1.6.1. Role of NO in cancer 

Nitric oxide (NO) is a signaling molecule that regulates biological processes through 

reactions by second messengers (43). The role of NO is highly complex in tumor biology (44). 

NO has the potential to induce either cancer progression or cancer cell apoptosis depending on 

intra-tumoral NO concentration (44, 45).  

Recent studies have shown that high levels of NO leads to cytotoxic effects on cancer 

cells by the reaction with O2
-
 to generate the formation of peroxynitrite that acts as an apoptosis 

inducer and toxic species during immune surveillance (46). High levels of NO also results in 

DNA damage followed by the accumulation of p53 which is a major pro-apoptotic protein and 

tumor suppressor. The accumulation of p53 meditates release of cytochrome C from 

mitochondria, also known as intrinsic apoptosis (24).  

On the other hand, low level of NO stimulates angiogenesis by the accumulation of 

vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and plate-derived 

growth factor (PDGF) (44). Cancer cells are able to proliferate the accumulation of VEGF (44, 

47). Angiogenesis leads to tumor cell proliferation providing nutrients for growth and is a key 

factor for tumor cells to metastasize (43).  

A number of studies have been recently conducted to identify the use of NO as an onco-

preventive agent for cancer treatment (47, 48). The role of NO in tumor biology is associated 

with the properties and concentration of NO in the tumor microenvironment (44, 46).  
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1.6.2. NO-induced pathway in breast cancer cells 

The role of NO in tumor biology has been studied for more than 40 years, but the dual 

function of NO for either pro-tumoral or anti-tumoral effect still remains unclear (48). An 

increasing number of studies has demonstrated that there is a correlation between NO chemistry 

and cytotoxicity in cancer (46).  

The cell cycle, sequence of events for cell proliferation, consists of four phases shown in 

Fig 1.6 (24). Cell growth is regulated by extracellular growth factor or hormonal signal, mitogen 

growth factor during G1 phage. The restriction check point is located at G1 phage of the cell 

cycle, which determines whether the cell grows enough to divide or postpone division or enter a 

resting stage known as G0. The check point is mainly regulated by the cycline-dependent protein 

kinase (CDK) inhibitor p16. p16 inhibits activity of cyclin complex, especially CDK 4 and 

cyclin D1 (49). The down-regulation of cyclin D1 is essential for the inhibition of tumor cell 

proliferation and tumor regression (49). It has been reported that NO-induced cytotoxicity in 

cancer is associated with high levels (> 300 nM) of NO. A high levels of NO rapidly develops 

cytostasis on cancer cells (44).   

MDA-MB-231, a highly metastatic and undifferentiated human breast cancer cell, 

undergoes NO-induced long lasting cytostasis in a high levels of NO  (49). Cytostasis refers to a 

halt in the cell cycle event that results from decreasing the translation of several cell cycle 

proteins (24). Down-regulation of cyclin D1 prevents retinoblastoma protein (pRb) function 

which controls the G1-S transition of the cell cycle depicted in Fig 1.6. Hypophosphorylation of 

pRb induces an inactive E2F transcription factor followed by anti-progression of the cell cycle. 

This inactive pRb is also known as a tumor suppressor (50). 

It has been shown that NO in high concentration leads to MDA-MB-468 cell death 

through the intrinsic activation with long-term exposure shown in Fig 1.7 (51, 52). The loss of a 



 １７ 

 

fully functional apoptotic program is regarded as the hallmark of all types of tumor cells (50). 

The mitochondria are known to generate adenosine triphosphate (ATP) for cell respiration and 

survival and make glucose metabolites (24). However, it has been shown that the mitrochondria 

participates in apoptosis, known as intrinsic apoptotic pathway, which determines cell life or 

death. The B-cell lymphoma 2 (BCL-2) protein consists of pro-apoptotic and anti-apoptoic BCL-

2 family based on regions of BCL-2 homology (51). The multidomain pro-apoptotic proteins in 

the large family of BCL-2 family are subgrouped into Bax and Bak family that reside in the 

outer membrane of mitrochondria (24). The activation of Bax and Bak, integral members of 

intrinsic apoptosis, is correlated with the interaction between anti- and pro-apoptotic BCL-2 

proteins. BH3-only proapoptotic proteins; BIM, BID and PUMA are major upstream regulators 

of Bax and Bak activity (51). As apoptosis occurs, Bax and Bak trigger the release of 

cytochrome c and a total collapse of the primary ATP-generating machinery (24). Cytochrome c 

resides in the intermembrane space of mitochondria and acts as the primary biochemical 

messenger in apoptotic process (49). After the initiation of apoptosis, the outer membrane of 

mitochondria becomes depolarized and releases cytochrome c from the mitochondria surface 

into the cytosol (24). Released cytochrome c activates caspase cascade that activates caspse-9 

and other caspases. The levels of BCL-2 family proteins regulate whether cytochrome c is 

located in the mitochondria or the cytosol.  

There are two theories about the role of NO in the intrinsic activation (51). NO promotes 

the activation of Bax and Bak which results in mitochondrial outer membrane permeabilization 

(MOMP). This induces cytochrome c spilled out from the intermembrane space to the cytosol 

followed by activating the caspase-dependent apoptotic signaling cascade (47, 51). Many studies 

have confirmed that the combined loss of Bax, Bak and caspase-9 activity inhibits NO-induced 

cell death in MDA-MB-468 cells (51, 52). NO-induced activation of intrinsic apoptotic pathway 

induces programmed cell death in MDA-MB-468.    
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Figure 1.6 NO-induced cytostasis in MDA-MB-231 (24) 

Adapted from Lodish, H  

MDA-MB-231 exposed to high concentration of NO is arrested at G1 phase of the cell cycle. 

Cyclin D1 and CDK4 complex plays a key role to transition from G1 to S phase of the cell cycle.  

NO-induced down- regulation of cyclin D1 inactivates pRb phosphorylation which activates 

E2F1-3 transcription factor to generate cyclin/CDK complex for entering S phage of the cell 

cycle. The down- regulation of cyclin D1 can induce NO-induced long lasting cytostasis. 
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Figure 1.7 NO-induced apoptosis in MDA-MB-468 (24) 

Adapted from Lodish, H  

High levels of NO induce the intrinsic apoptotic pathway in MDA-MB-468 cell.  NO activates 

Bax and Bak proteins to release cytochrome C from mitochondria. Cytochrome C activates 

caspase cascade followed by inducing cell apoptosis.  
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CHAPTER 2 

 

Specific Aim 1 - Development of NO-ELIP for Breast Cancer Treatment 
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 2.1. Materials and methodologies 

2.1.1. NO-ELIP preparation by the freezing-under-pressure method 

NO-ELIP was prepared by the previously developed freezing-under-pressure method 

with the modification of lipid composition (41). All phospholipids and cholesterol were 

purchased from Avanti Polar Lipids (Albaster, AL, USA). Echogenic liposomal dispersion 

consists of Egg L-α-phosphatidylcholine (EPC); 1,2-dipamitoyl-sn-glycero-3-phosphocholine 

(DPPC), L-α-dipalmitoylphosphatidyl-ethanolamine (DPPE), 1,2-diapalmitoyl-sn-glycero-3-

[phosphor-rac-l-glycerol] (DPPG) and 3β-[N-(N’,N’-dimethylaminoehane)-carbamoyl] 

cholesterol hydrochloride (DC-Cholesterol·HCl) with a molar ratio of 27:42:8:8:15. The molar 

percentage of saturated lipid was previously studied to increase the retention of echogenic 

stability. The saturated phospholipid, DPPC is essential for the lipid formulation to increase 

echogenicity. The stability of echogenicity of NO-ELIP was maximized at the amount of 42 

mole % DPPC. The use of DC-Cholesterol·HCl, positively charged lipids, generates a cationic 

polar head group of liposomes. The surface of positively charged liposomes improves the 

interaction with negatively charged BCC membrane. The optimal concentration of cholesterol 

was determined to be 15 mole % to maximize the acoustic stability of NO-ELIP and generate 

substantial response with BCC. 

Four phospholipids and cholesterol hydrochloride were dissolved in organic solvent 

(chloroform and methanol at 9:1 ratio) to obtain lipid solution. The lipid solution underwent dry 

process to form a thin lipid film using argon in a 50 °C H2O bath. Remaining organic solvent 

was completely removed by high vacuum at ≤ 100 mTorr overnight. The lipid film was placed 

under ultraviolet (UV) light for 15 minutes for sterilization. The hydration of the lipid film was 

performed with deoxygenated 0.32 M mannitol. The final concentration of liposomal dispersion 

was 10 mg/ml. Liposomal dispersion was sonicated for 5 minutes in a bath sonicator. The 

sonicated liposomal dispersion was transferred into a 1.8 ml screw-cap borosilicate glass vial. It 
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is essential to keep the hypoxic condition in solution to reduce NO reaction with oxygen. Nine 

milliliters of NO washed and deoxygenated using the crystal form of sodium hydroxide (NaOH) 

was injected into the glass vial through the use of a 12 ml syringe with a 0.5” needle applying 

elevated pressure. Liposomal dispersion containing NO, known as NO-ELIP, was incubated for 

30 minutes at room temperature. Pressurized liposomes were placed in -80 °C freezer for 

overnight.   

 

2.1.2. Measurement of echogenicity using intravascular ultrasound  

Echogenicity of NO-ELIP was measured with the use of a 20-MHz high-frequency 

intravascular ultrasound (IVUS) imaging catheter. NO-ELIP, resuspended in 5 ml of phosphate 

buffered saline (PBS) in a 12×16 glass vial, was diluted to a concentration 0.1 mg/ml for IVUS 

imaging. The catheter was inserted into the glass vial containing 50 µl of resuspended NO-ELIP 

in 5 ml of PBS. The retention of ultrasound reflectivity of NO-ELIP was determined by 

measuring the mean gray scale value (MGSV) in a region of interest (ROI) in the IVUS image. 

MGSV of NO-ELIP resuspended in 10 mg/ml of BSA in PBS (PBS/BSA) was measured every 

10 minutes until the first hour, and then once per hour up to 5 hours. Images of diluted NO-ELIP 

were recorded in real time for subsequent playback and image analysis. Ultrasound images were 

digitized with 8-bit (256 gray level) 640×480 pixel spatial resolution. As shown in Fig 2.1, the 

region of interest was manually traced between the vial wall and the imaging catheter to 

calculate MGSV of NO-ELIP excluding the area of the strut artifact of the IVUS images catheter. 

MGSVs in the ROI were quantitated using Image-Pro Plus software (Version 4.1, Media 

Cynernetics, Silver Spring, MD).  
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Figure 2.1 IVUS image of a glass vial containing NO-ELIP 

Outer ring indicates the glass vial containing 0.1 mg/ml of NO-ELIP. The black dot in the center 

of the IVUS image represents the catheter. The red line between the glass vial wall and catheter 

indicates ultrasound responsive liposomes. This area was set as an ROI. The brightness in the 

ROI was quantitated as a MGSV.  
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2.1.3. BCC lines and cell culture conditions 

Two BCC lines, MDA-MB-231 and MDA-MB-468 from the America type culture 

collection, (ATCC, VA, USA), were obtained from Dr. Sharina’s laboratory in the Division of 

Cardiology at the University of Texas Health Science Center at Houston (UT-HSCH). These 

BCC lines respond differently to high level of NO with the induction of different cellular 

pathways. MDA-MB-231 is a highly undifferentiated BCC line with the absence of endogenous 

NO production (49). This cell line was originally isolated from an aneuploid female with 

mammary gland ductal carcinoma. On the other hand, MDA-MB-468 was isolated from a 51-

year-old female patient with metastatic adenocarcinoma of the breast and has relatively high 

arginase activity which is a common substrate from L-Arginine (52). 

The BCC lines were maintained with Dulbeccos’s modified Eagle Medium (DMEM-

High Glucose) supplemented with 10% fetal bovine serum (FBS), 5% penicillin streptomycin, 

5% 100 mM sodium pyrurate, 5% MEM non-essential amino acids, 5% 1M HEPES at a 

temperature of  37 °C in 0.5% of CO2.   

 

2.1.4. Identification of BCC growth rate 

It is important to determine the growth rate of BCCs to optimize breast cancer cell 

culture conditions and estimate the cell cycle of each BCC line. The number of BCCs was 

counted at different time points (0, 12, 24, and 48 hours) using a hemacytometer. The use of this 

hemacytometer evaluates the number of cells per unit volume of a cell suspension by counting 

cells under microscope. The instrument consists of a glass cover slip, counting chambers and a 

sample introduction point. After the trypsinization of BCCs, uniform suspension of cells was 

diluted to avoid overlapping of cells in the counting chamber. Ten microliters of cell suspension 

was introduced at the edge of v-shape of the chamber per slide. The hemacytometer was placed 
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on the microscope stage at 100 times magnification and cells above four 1 mm
2 

areas of the 

counting chamber were counted. The total number of cells was calculated as follows.  

 

 

2.1.5. Determination of BCC density 

3-(4, 5-dimethylthiazol-2-yl)-2-5diphenyltetrazolium bromide (MTT) viability assay 

was utilized for quantitative identification of cellular proliferation with response to growth factor 

and cytokines. BCCs were plated into a 96 well plate with a final volume of 100 μl. Cell 

suspension was diluted using 1:2 dilution in order to find optimal cell density for MTT assay. 

Thiazoly blue tetrazolium bromide dissolved in PBS was prepared as a MTT solution. BCCs 

were incubated with 10 μl of MTT solution (5 mg/ml in PBS) for 2 hours at 37 °C in 0.5 % of 

CO2. The MTT solution was allowed to be metabolized and the cleavage of formazan dye 

recorded by spectrophotometer. Resuspended formazan in 100 μl Dimethylsulfoxide (DMSO) 

was utilized to read optical density at 580 nm using a SpectraMax®  M5 spectrophotometer 

(Molecular Devices, California, USA), to determine a correlation with cell quantity.  
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2.2. Results 

2.2.1. Stability of echogenicity of NO-ELIP  

As depicted in Fig 2.2, MGSVs of NO-ELIP resuspended in PBS/BSA decreased over 

time. NO-ELIP resuspended in PBS/BSA showed high echogenicity with MGSV of 174 ± 17 at 

0 minute. While there was a stiff decrease of echogenicity until 60 minutes, the rate of 

echogenicity reduced afterwards. MGSV of NO-ELIP with PBS/BSA reduced to 60 ± 2 in an 

hour. NO-ELIP retained echogenicity with MGSV of 30 ± 12 at 5 hours.  

NO-ELIP resuspended in PBS lost echogenicity over time as shown in Fig 2.3. There 

was a rapid decrease of echogenicity in the first hour with MGSV of 13 ± 5 and the echogenicity 

disappeared at 3 hours. The stability of NO-ELIP in PBS lasted for 3 hours. 

Fig 2.4 shows the combined data of the echogenicity of NO-ELIP resuspended in PBS 

and in PBS/BSA. There was a 40% enhancement of echogenicity of NO-ELIP in the presence of 

PBS/BSA as compared to that in PBS at 1 hour (p < 0.01). Echogenicity of NO-ELIP 

resuspended in PBS disappeared within 3 hours, yet that in BSA remained their echogenicity up 

to 5 hours. Echogenicity of NO-ELIP resuspended in BSA/PBS was different from that in PBS 

(p < 0.05).  
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Figure 2.2 Echogenicity of NO-ELIP resuspended in PBS/BSA 

The graph depicts the stability of NO-ELIP in PBS/BSA up to 5 hours. MGSVs of NO-ELIP 

resuspended in PBS/BSA were measured up to 5 hours. NO-ELIP were diluted to 0.1 mg/ml in 

10 mg/ml of BSA containing PBS.  
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Figure 2.3 Echogenicity of NO-ELIP resuspended in PBS 

The graph depicts the stability of NO-ELIP in PBS up to 5 hours. MGSV2 of NO-ELIP 

resuspended in PBS was measured up to 5 hours using IVUS images. NO-ELIP were diluted to 

0.1 mg/ml in PBS.  
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Figure 2.4 Echogenicity of NO-ELIP resuspended in PBS/BSA and in PBS 

The top line indicates MGSV of NO-ELIP resuspended in PBS/BSA. The bottom line represents 

MGSV of NO-ELIP resuspended in PBS. Echogenicity of NO-ELIP suspended in PBS/BSA was 

different from that in PBS (p < 0.05).  
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2.2.2. Identification of growth rate and density of BCC 

The growth rate and cell density of BCC were evaluated to optimize culture conditions. 

As shown in Fig 2.5, the doubling time of MDA-MB-231 cells was found to be 24 hours in the 

middle of the exponential growth phase. On the other hand, the number of MDA-MB-468 cell 

became almost doubled after 36 hours as depicted in Fig 2.6. The growth rate of MDA-MB-468 

was slower than that of MDA-MB-231. 

As depicted in Fig 2.7, MDA-MB-231 cell concentration was measured by optical 

density evaluated by the turbidity of cell suspension to estimate cell density. Optimal cell 

densities of MDA-MB-231 cells were determined in the linear range of detection. Five hundred 

thousands cells/ml of MDA-MB-231 were seeded in a 96 well plate at approximately 80 % of 

cell confluency. As shown in Fig 2.8, optimal concentration of MDA-MB-468 cells was also 5 × 

10
5 

cells/well in linear range of detection. These cell concentrations were used for subsequent 

MTT assay studies. 
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Figure 2.5 MDA-MB-231 growth curve 

MDA-MB-231 cell growth rate was determined by counting the number of cells from 12 hours 

up to 48 hours. Results are shown as mean and standard deviation of MDA-MB-231 cell 

concentrations from four independent experiments.  
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Figure 2.6 MDA-MB-468 growth curve 

MDA-MB-468 cell growth rate was measured by counting the cell number from 12 hours to 48 

hours. Results are expressed as the mean and standard deviation of MDA-MB-468 cell 

concentrations from four different experiments. 
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Figure 2.7 MDA-MB-231 cell densities 

Various cell concentrations of MDA-MB-231 cell were seeded into 96 well plate to determine 

optical density for MTT assay. Optical density increased as MDA-MB-231 cell concentration 

increased. Red line indicates the optimal density (5 × 10
5 
cells/ml) of MDA-MB-231 determined 

in the linear range of detection for MTT assay.   
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Figure 2.8 MDA-MB-468 cell densities 

Various cell concentrations of MDA-MB-468 cell were seeded into 96 well plate to determine 

optical density for MTT assay. Optical density increased as MDA-MB-468 cell concentration 

increased. Red line indicates the optimal density (5 × 10
5 
cells/ml) of MDA-MB-468 determined 

in the linear range of detection for MTT assay.   
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2.3. Discussion 

The primary objective was to determine liposomal formulation of NO-ELIP for breast 

cancer treatment. NO-ELIP was prepared by the freezing-under-pressure method as described. 

The stability of NO-ELIP was evaluated by measuring of MGSVs in a region of interest in IVUS 

images. The condition of breast cancer cell culture was optimized by measuring of growth rates 

using hemacytometer and optimal cell densities using MTT viability assay.  

The lipid formulation was previously identified as EPC: DPPC: DPPE: DPPG: DC-

cholesterol·HCl, with a molar ratio of 27:42: 8: 8: 15 (42). The use of 0.32 M mannitol 

improved ultrasound reflectivity of NO-ELIP indicating that lipid fusion to incorporate gas of 

interest occurred during the freezing process (30). The addition of DC-Cholesterol·HCl in NO-

ELIP preparation generated positively charged NO-ELIP and preserved lipid bilayer structure.  

The stability of NO-ELIP was evaluated by the measurement of echogenicity over time. 

Previous studies in our laboratory have shown that NO gas entrapped in the lipid bilayer of ELIP 

has the potential to generate ultrasound reflectivity and to be visualized in IVUS images (23, 30). 

Fifty percent of NO resuspended in PBS/BSA was released from NO-ELIP in 1 hour and 24 % 

of NO slowly diffused up to 5 hours. On the other hand, NO-ELIP resuspended in PBS released 

50 % of NO in 20 minutes and 96 % of NO diffused out of NO-ELIP by 1 hour. The results 

indicate that the use of BSA for resuspension of NO-ELIP can provide a more stable 

environment. The surface of positively charged NO-ELIP interacted with the anionically charged 

BSA molecule following the coating effect produced by BSA molecule on the surface of ELIP 

(30). The BSA-coated NO-ELIP may prevent gas leakages and stiffen the lipid structure.  

BCC doubling time is described by plotting a growth curve at various time points 

throughout the growth cycle. Time-dependent BCC growth rate is crucial for the optimization of 

BCC culture conditions in-vitro and the quantification of different treatment modalities (2). 
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BCCs enter exponential growth during which the cell population doubles over a definable period 

and characteristic for each BCC lines. MDA-MB-231 cell population became doubled at 24 

hours allowing the cells to recover from trypsinization, construct their cytoskeleton and enable 

them to re-enter the cell cycle. Population doubling of MDA-MB-468 was at approximately 36 

hours. The determination of doubling time of BCCs provides the consistency of experimental 

condition for BCC preparation.  

Cell densities imply that the cells are attached and affect cell proliferation and 

differentiation (6). At a high level of cell density, there is limited nutrient perfusion and limited 

incidence of apoptosis in differentiated cells. On the other hand, low cell density is prone to 

induce nutrient deprivation and induces the absence of cell contact signaling. It is crucial to 

identify optimal cell density of BCC lines to conduct MTT assay. Optical density measurement 

is important to convert into BCC viability in MTT assay. Therefore, a strong signal on optical 

density within the linear range of detection is required to determine BCC viability. Five hundred 

thousand cells per ml were determined as the optimal cell density for both BCC lines.  
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CHAPTER 3 

 

Specific Aim 2 – Efficiency of NO Delivery Strategy Using NO-ELIP 
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3.1. Materials and methodologies 

3.1.1. NO-donor treatment for BCC lines 

MDA-MB-231 cells were seeded into a 96 well plate at a density of 5 × 10
5
 cells/well in 

100 μl. After 24 hours, the cells reached approximately 80% of cell confluent. They were serum-

starved overnight and washed once with PBS. The stock solution of Spermine-NONOate was 

1mM. A serial dilution using a dilution factor of 3 was performed with 0.1 M solution of NaOH. 

Synchronized cells were exposed to 100 μl of the mixture of 4.1 μl of Spermine-NONOate and 

410 μl of serum free medium, and placed at 37 °C and 0.5 % of CO2 for 24 hours.  

MDA-MB-468 cells were plated into a 96 well plate at a density of 5 × 10
5
 cells/well in 

100 μl. After 36 hours, the cells were serum-starved overnight and washed once with PBS. 

DETA-NONOate in 1 mM was diluted by a factor of 3. One hundred microliters of the mixture 

of 4.1 μl of DETA-NONOate and 410 μl of serum free medium were treated to synchronize 

MDA-MB-468 cells. The cells were exposed to DETA-NONOate for 24 hours at 37 °C and 

0.5 % of CO2.  

MTT viability assay was performed introducing 10 μl of MTT solution 5 mg/ml in PBS 

into each well for 2 hours. One hundred microliters of solubilization solutions were added into 

each well and incubated for an hour at 37 °C and 0.5 % of CO2. Purple formazan crystal was 

completely solubilized, which allowed the quantitation of absorbance of purple formazan crystal 

at 570 nm using SpectraMax®  M5 spectrophotometer (Molecular Devices, CA, USA).  
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3.1.2. NO-ELIP treatment for BCC lines 

3.1.2.1. Effect of NO-ELIP on BCCs in PBS 

Breast cancer cells, MDA-MB-231 cells and MDA-MB-468 cells were prepared in a 48 

well plate at a density of 5 × 10
5 
cells/well and allowed to grow depending on their growth rate. 

After reaching 80 % of cell confluence, BCCs underwent serum starvation overnight and was 

washed once with PBS. PBS underwent a degassing process using a vacuum machine followed 

by the introduction of 30 ml of argon gas. Degassed PBS was sterilized using 0.45 µm of filter 

(Millipore, Co Cork, Ireland). BCCs were treated with a serial dilution of NO-ELIP using a 

dilution factor of 2 resuspended in degassed PBS. BCCs were exposure to 100 μl of NO-ELIP 

with 400 µl of base medium at 37 °C and 0.5 % of CO2 for 5 hours. After 5 hours, BCCs were 

washed twice with PBS. An MTT viability assay was performed. The yellow MTT solution was 

made up of 5 mg of thiazoly blue tetrazolium bromide in 1 ml of PBS which allowed a final 

concentration of 5 mg/ml. BCCs were incubated with 10 μl of MTT solution at 37 °C and 0.5 % 

of CO2 for 2 hours. One hundred microliters of DMSO was introduced into each well. Optical 

density was measured at 570 nm using SpectraMax®  M5 spectrophotometer (Molecular Devices, 

California, USA).     

 

3.1.2.2. Effect of NO-ELIP on BCCs in BSA 

 BCCs were plated in a 48 well plate at a density of 5 × 10
5 

cells/well and allowed to 

grow depending on their growth rate. They underwent serum starvation overnight and were 

washed once with PBS. Ten milligrams of BSA was added into 1 ml of degassed PBS which had 

been filtered 0.45 µm for sterilization. NO-ELIP underwent serial dilutions of 1, 0.9, 0.5, 0.25, 

and 0.125 mg/ml with filtered PBS/BSA. BCCs were treated with 100 µl of NO-ELIP and 400 

µl of medium and placed in an incubator 37 °C and 0.5 % of CO2 for 5 hours. An MTT viability 
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assay was performed after the treatment with NO-ELIP in order to determine BCC viability. The 

yellow MTT solution was made up of 5 mg of thiazoly blue tetrazolium bromide in 1 ml of PBS. 

BCCs were incubated with 10 μl of MTT solution at 37 °C and 0.5 % of CO2 for 2 hours. One 

hundred microliters of DMSO was introduced into each well and optical density was measured 

at 570 nm using SpectraMax®  M5 spectrophotometer (Molecular Devices, CA, USA). 

 

3.1.3. Data analysis 

Optical density obtained from the MTT assay was transformed to a percentage of cell 

viability with respect to a control with no treatment. The lowest measured value of cell viability, 

as a baseline response, was subtracted from all other data. The highest measured value was 

regarded as 100% allowing all data to be normalized to the 100% scale. 

 Dose response curves were determined by nonlinear regression curve fitting using the 

equation of 
)log( 50101

100
IC


  with the slope factor. This method can provide regression and 

outlier removal. A sigmoidal dose response curve was generated that follows Gaussian or normal 

distribution function (Graphpad Prism 3.0, GraphPad Software Inc, CA, USA).  

IC 50, known as a half-maximal inhibitory concentration, is the concentration of a 

cytotoxic agent to induce approximately 50 % decrease of cell viability (53). IC50 is also defined 

as the concentration to generate a half way response between the baseline and maximal response 

(53). The IC50 values of the NO-donors were obtained in logarithmic scale as a log IC50. The 

anti-logarithm of IC50 is required to convert to the concentration of NO-donors. For example, 

NO-donor concentration were 1, 3, 10, 30, 100, 300, 1,000, 3,000, and 10,000 μM and converted 

to logarithmic scale; 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0. However, it was not necessary 

to transform the concentrations of NO-ELIP to logarithmic scale due to the short range order in 

concentration.  
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3.2. Results 

3.2.1. NO-dose dependent MDA-MB-231 cell viability by spermine-NONOate treatment  

Dose response curves for MDA-MB-231 cell viability with spermine-NONOate 

treatment are depicted in Fig 3.1. Each point is presented with mean ± standard deviation for 14 

samples. IC50 values ranged from 0 to 4 log μM of Spermine-NONOate (corresponds from 1 to 

10,000 μM). Spermine-NONOate with concentration ranged from 0 to 2 μM in a logarithmic 

scale (corresponds from 1 to 30 μM) showed little cytotoxicity on MDA-MB-231 cell viability. 

The IC50 value in MDA-MB-231 was 2.82 μM in a logarithmic scale (corresponds to 656 μM). 

This result indicates that MDA-MB-231 responded to Spermine-NONOate in a dose-dependent 

manner and approximately 50% inhibition of MDA-MB-231 cell viability was induced from 656 

μM spermine-NONOate.  

3.2.2. NO-dose dependent MDA-MB-468 cell viability by DETA-NONOate treatment  

The cytotoxic effect of DETA-NONOate on MDA-MB-468 cell viability was examined 

as illustrated in Fig 3.2. Data shown are as mean ± standard deviation with 14 samples. DETA-

NONOate with concentration ranged from 0.47 to 2 μM in a logarithmic scale (corresponds from 

3 to 100 μM) had little effect on MDA-MB-468 cell death. The IC50 value of DETA-NONOate 

was 2.59 μM on a logarithmic scale (which is equal to 397 μM). DETA-NONOate in 397 μM 

concentration induced 50% inhibition of MDA-MB-468 cell viability. Higher concentration of 

DETA-NONOate over the IC50 potentiated to induce maximal cytotoxicity on MDA-MB-468 

cell viability. 



 ４２ 

 

 

 

Figure 3.1 MDA-MB-231 cell viability with Spermine-NONOate 

MDA-MB-231 cell viability was determined by MTT assay. Data are shown as mean ± standard 

deviation from fourteen independent experiments. The dose response curve was obtained. IC50 

value of Spermine-NONOate was 656 ± 3.02 μM. 
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Figure 3.2 MDA-MB-468 cell viability with DETA-NONOate 

MDA-MB-468 cell viability was determined by MTT assay. Results are shown as mean ± 

standard deviation from fourteen independent experiments. The dose-response curve was 

obtained. IC50 value of DETA-NONOate was 397 ±3.98 μM. 

 



 ４４ 

 

3.2.3. Dose dependent BCC response to NO-ELIP resuspended in PBS  

To confirm NO-induced cell death and lipid effect on BCCs, NO-saturated mannitol and 

empty ELIP were treated to BCCs.  As shown in Fig 3.3, only 1 % MDA-MB-231 cells were 

alive with NO-saturated mannitol. On the other hand, 85 % MDA-MB-231 cells remained viable 

with 1 mg/ml of empty ELIP. Sixteen percent of MDA-MB-468 cells were alive with NO-

saturated mannitol as depicted in Fig 3.4. There was 77 % MDA-MB-468 viability after treated 

with 1 mg/ml of empty ELIP. The results represent that NO-induced cytotoxicity is not from 

lipid toxicity but mainly due to the NO-saturated mannitol.  

NO-ELIP induced concentration-dependent cytotoxic effect on MDA-MB-231 is 

depicted in Fig 3.5. NO-ELIP in concentrations of 0.125 and 0.25 mg/ml generated little 

cytotoxicity on MDA-MB-231. The NO-ELIP concentration of 0.7 mg/ml was determined to be 

the cytotoxic IC50 at which MDA-MB-231 cell growth was inhibited to around 50 %. There was 

only 1 % of MDA-MB-231 cells remained alive with 1 and 2 mg/ml of NO-ELIP. The 

concentration of NO-ELIP over 1 mg /ml was effective to induce maximum cytotoxic activity on 

MDA-MB-231 cells. This result indicates that MDA-MB-231 cells respond to NO-ELIP 

depending on concentration, and 0.7 mg/ml of NO-ELIP is the critical concentration to inhibit 

50% of MDA-MB-231 cell growth. 

The concentration response curve on MDA-MB-468 is shown in Fig 3.6. NO-ELIP in 

concentrations of 0.125 and 0.25 mg/ml induced in high MDA-MB-468 cell viability. The 

cytotoxic IC50 value of NO-ELIP inhibiting MDA-MB-468 cell growth by approximately 50 % 

was 0.47 mg/ml. The concentration of NO-ELIP over 0.7 mg/ml can effectively induce MDA-

MB-468 cell death. The data indicates a dose-dependent relationship between NO-ELIP 

concentration and MDA-MB-468 cell response. NO-ELIP in concentration of 0.47 mg/ml   has 

potential to be used as the critical concentration of NO-ELIP to induce approximately 50 % of 

MDA-MB-468 cell death.  
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Figure 3.3 MDA-MB-231 cell viability with NO-saturated mannitol and empty ELIP 

MDA-MB-231 cell viability was determined by MTT assay. Data are shown as mean ± standard 

deviation from nine different experiments. These results demonstrated a difference between the 

two groups (p< 0.001).  
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Figure 3.4 MDA-MB-468 cell viability with NO-saturated mannitol and empty ELIP  

MDA-MB-468 cell viability was determined by MTT assay. Data are shown as mean ± standard 

deviation from three different experiments. These results demonstrated a difference between the 

two groups (p< 0.001).  
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Figure 3.5 MDA-MB-231 cell viability with NO-ELIP in PBS 

MDA-MB-231 cell viability was determined by MTT assay. Data are shown as mean ± standard 

deviation of MDA-MB-231 cell viability from ten independent experiments. The dose-response 

curve was generated. IC50 value of NO-ELIP in PBS was 0.70 ± 0.35 mg/ml.  
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Figure 3.6 MDA-MB-468 cell viability with NO-ELIP in PBS 

MDA-MB-468 cell viability was determined by MTT assay. Data are shown as mean ± standard 

deviation of MDA-MB-468 cell viability from twelve independent experiments. The dose-

response curve was obtained. IC50 value of NO-ELIP in PBS was 0.47 ± 0.03 mg/ml.  
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3.2.4. Dose dependent BCC response to NO-ELIP resuspended in PBS/BSA 

The effect of NO-ELIP resuspended in PBS/BSA on MDA-MB-231 cell viability is 

shown in Fig 3.7. At the concentration of 0.125 and 0.25 mg/ml of NO-ELIP resuspended in 

PBS/BSA, 60 % of MDA-MB-231 cells remained alive. The cytotoxic IC50 value of NO-ELIP 

was 0.5 mg/ml. MDA-MB-231 cell viability dramatically decreased with the concentration of 

0.5 mg/ml. The data indicate that MDA-MB-231 cells respond to NO-ELIP concentration 

resuspended in PBS/BSA in a dose-dependent manner, and 0.5 mg/ml of NO-ELIP is the critical 

concentration to inhibit 50% MDA-MB-231 cell growth.  

The dose response curve of MDA-MB-468 is shown in Fig 3.8. NO-ELIP in 

concentrations of 0.125 and 0.25 mg/ml reduced 80% of MDA-MB468 cell viability. NO-ELIP 

concentration of 0.41 mg/ml was determined as the cytotoxic IC50. However, 20% of MDA-MB-

468 cells were viable with 1 mg/ml of NO-ELIP treatment. The data indicate that MDA-MB-468 

cells respond to NO-ELIP in a dose-dependent manner. 
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Figure 3.7 MDA-MB-231 cell viability with NO-ELIP resuspended in PBS/BSA 

MTT assay was performed to determine MDA-MB-231 cell viability. Data are shown as mean ± 

standard deviation of MDA-MB-231 cell viability from ten different experiments. The dose-

response curve was generated. IC50 value of NO-ELIP in PBS was 0.51 ± 1.02 mg/ml.  
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Figure 3.8 MDA-MB-468 cell viability with NO-ELIP resuspended in PBS/BSA 

MTT assay was performed to identify MDA-MB-468 cell viability. Data are shown as mean ± 

standard deviation of MDA-MB-468 cell viability from four independent experiments. The dose-

response curve was obtained. IC50 value of NO-ELIP in PBS was 0.41 ± 0.18 mg/ml.  



 ５２ 

 

3.3. Discussion 

The data demonstrates that high levels of NO entrapped in NO-ELIP can induce 

cytotoxic effects on MDA-MB-231 and MDA-MB-468 after 5 hours of treatment. The specific 

aim of the study was to determine the efficiency of NO delivery strategy using NO-ELIP. The 

efficiency of NO delivery of two NO-donors such as spermine-NONOate and DETA-NONOate 

were compared with that of NO-ELIP. A MTT viability assay was conducted after the treatments 

with NO-donors and NO-ELIP to identify BCC viability.  

The half life of Spermine-NONOate is 39 minutes at 37 °C (52). Approximately 50% of 

MDA-MB-231 cells underwent apoptosis with 656 μM of Spermine-NONOate in response to 

spontaneous NO release from Spermine-NONOate. The cytotoxic effects of approximately  50% 

of MDA-MB-468 cell death was produced by DETA-NONOate at 397 μM of concentration due 

to steady-state NO release with 20 hours of half-life at 37 °C (45). The concentration of NO-

donors over the cytotoxic IC50 potentiated to effectively induce BCC death. There was a dose-

dependent relationship between the concentration of NO generated by NO-donors and BCC 

viability.   

NO-ELIP, the NO delivery carrier used in this study, induced a cytotoxic effect on 

BCCs in a dose-dependent manner. The improvement of NO-ELIP stability generated by the 

coating effect of BSA was determined by the comparison with NO-ELIP in the absence of BSA 

on BCC response. There was 28.6 % decrease in the cytotoxic IC50 value of NO-ELIP in the 

presence of BSA on MDA-MB-231 cell viability. MDA-MB-468 cells responded to NO-ELIP 

resuspended in BSA with 12.8 % decrease in its cytotoxic IC50 concentration. These results 

indicate that BCCs are more sensitive to NO-ELIP resuspended with PBS/BSA. It can be 

assumed that MDA-MB-231 are more sensitive than MDA-MB-468 in regard to cell death. 

However, higher concentrations of the cytotoxic IC50 are required for MDA-MB-231 due to its 

highly metastatic characteristic.   
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The use of NO-ELIP was effective to regulate the amount of NO delivered to BCCs and 

in prohibiting NO from being scavenged by hemoglobin in the systemic circulation (41). 

Decrease of NO exposure time during systemic delivery is crucial to reduce reaction with 

oxygen followed by the formation of nitrite (NO2). NO2 induces cytotoxicity in non-malignant 

cells and in the microenvironment (41). This study demonstrated that NO can be packaged using 

NO-ELIP and delivered to BCCs for NO-induced cytotoxic effect. The cytotoxic IC50 value of 

NO-ELIP may provide a therapeutic index of NO-ELIP for breast cancer treatment.  
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CHAPTER 4 

 

Specific Aim 3 - Enhancement of NO Release with Ultrasound Application 
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 4.1. Materials and Methodologies 

4.1.1. Ultrasound-triggered NO release from NO-ELIP 

An ultrasound-triggered NO release study was performed with the experimental setup as 

shown in Fig 4.1 (40).  The setup was made up of a transwell insert allowing to hold NO-ELIP 

solution inside the transwell (30). Eight hundred microliter of NO-ELIP was introduced inside 

the transwell. The bottom of the transwell insert was made up of 0.4 μm pore polyester 

membrane. The transwell insert was placed on an acoustic absorber to eliminate acoustic 

reflectivity (23). A layer of water was placed between the transwell insert and the acoustic 

absorber to remove the air interference and avoid ultrasound reflection. Sonitron 1000 (Rich Mar 

Inc, TN, USA) was utilized with ultrasound parameters of 1 MHz, 1 W/cm
2
 intensity and 100% 

duty cycle for 10 seconds of duration using a  probe size with 1.2 cm diameter. Ten minutes after 

thawing the NO-ELIP, they were exposed to mechanical ultrasound. Right after the ultrasound 

was applied, echogenicity was measured using IVUS imaging for 5 hours. 

 

Figure 4.1 Experimental setup for ultrasound-triggered release study (40) 

Adapted from Huang, S. L.  

Resuspended NO-ELIP were introduced into the transwell insert. The use of the acoustic 

absorber and water layer allowed to remove the air interference and avoid ultrasound reflectivity. 

Ultrasound was applied and echogenicity of N-ELIP was measured. 
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4.1.2. Measurement of echogenicity of NO-ELIP 

NO-ELIP were reconstituted to a lipid concentration of 0.1 mg/ml. The release of NO 

from NO-ELIP was measured using IVUS imaging at 0, 10, 20, 30, 60, 120, 180, 240, and 300 

minutes. Fifty microliters of NO-ELIP collected from the transwell after ultrasound application 

put in 5 ml of PBS/BSA in a 12×16 glass vial at room temperature (21 to 22 °C). The IVUS 

imaging catheter was inserted into the glass vial containing reconstituted NO-ELIP. IVUS 

imaging was performed at different time points with fixed instrumental setting such as gain, 

zoom, and reject. At each time point, an IVUS image of reconstituted NO-ELIP was recorded in 

real time. The regions of interest in the recorded images were manually traced between the vial 

wall and the imaging catheter to calculate MGSV (23). MGSV was computed using the Image-

Histogram function in Image-Pro Plus software (Version 4.1, Media Cynernetics, Silver Spring, 

MD). Background MGSV of PBS/BSA was determined as the lower limit of the measurement. 

The MGSV measurement of NO-ELIP were reduced by the background value of MGSV (23). In 

order to identify ultrasound-triggered NO release from NO-ELIP, the percentage retention of 

MGSV was calculated using the initial MGSV of each sample regarded as 100%. The MGSV of 

each time point was divided by the initial MGSV and multiplied by 100. Therefore, MGSVs of 

NO-ELIP were normalized to percentage retention. The percentage retention of MGSV of six 

samples were averaged.   
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4.2. Results 

4.2.1. Ultrasound-triggered NO release from NO-ELIP 

Ultrasound application improved NO release from NO-ELIP compared to spontaneous 

NO release. Comparison of the percentage retention of echogenicity of NO-ELIP with (■) and 

without (□) ultrasound application is depicted in Fig. 4.2. The top line indicates the percentage 

retention of echogenicity of NO-ELIP without ultrasound application. The bottom line represents 

the percentage retention of echogenicity of NO-ELIP with ultrasound application. Ultrasound 

application performed 10 minutes after the reconstitution of NO-ELIP caused significant 

increase in NO release from NO-ELIP. Ultrasound application enhanced NO release at 10 

minute as depicted in Fig 4.3. The black bar indicates the MGSV of NO-ELIP without 

ultrasound application. The gray bar represents the MGSV of NO-ELIP with ultrasound 

application. NO-ELIP without ultrasound application showed higher echogenicity with a MGSV 

of 116 ± 18. However, MGSV of NO-ELIP with ultrasound application was reduced to 71 ± 16. 

There was an average of 26% increase in NO release from NO-ELIP with ultrasound application.  

Although NO-ELIP were exposed to ultrasound only one time, the loss of echogenicity 

with ultrasound application was significantly increased (p< 0.05). The echogenicity of NO-ELIP 

with ultrasound application dramatically decreased and almost disappeared at 2 hours. However, 

the decrease in NO-ELIP echogenicity without ultrasound application was steady up to 5 hours. 

The results demonstrate that there was ultrasound-triggered release of NO from NO-ELIP, 

indicating ultrasound application can improve NO release from NO-ELIP. 
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Figure 4.2 Percent retention of echogenicity of NO-ELIP with and  

without ultrasound application 

This graph illustrates percentage of retention of echogenicity at different time points. Red arrow 

indicates the time point of ultrasound application 10 minutes after NO-ELIP reconstitution. This 

ultrasound-triggered NO release study was carried out with the use of ultrasound parameters of 1 

MHz, 1 W/cm
2
 and 100% duty cycle for 10 seconds of duration. After ultrasound application, 

echogenicity of NO-ELIP was measured by IVUS imaging. The top line indicates percentage 

retention of NO-ELIP without ultrasound application. The bottom line represents the percentage 

retention of NO-ELIP with ultrasound application. Results are represented as mean ± standard 

deviation from six independent experiments. These results showed significant difference (p< 

0.05).  
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Figure 4.3 MGSV of NO-ELIP with and without ultrasound 

application 

This bar graph clearly represents the comparison of MGSV at the 10 minutes time point with and 

without ultrasound application. Black bar indicates the MGSV of NO-ELIP without ultrasound 

application. Gray bar represents the MGSV of NO-ELIP applied ultrasound at 10 minutes. 

Results are shown as mean ± standard deviation from six independent experiments. These results 

showed a significant difference (p< 0.001).  
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4.3. Discussion  

The principal objective of this chapter was to investigate ultrasound-triggered NO 

release from NO-ELIP and to evaluate the enhancement of NO release efficiency with 

ultrasound stimulation. The hypothesis is that ultrasound can enhance NO release from NO-

ELIP.  

Ultrasound was applied to thawed NO-ELIP 10 minutes after thawing process with 

ultrasound parameters of 1 MHz, 1 W/cm
2
, and 100 % duty cycle for 10 seconds of duration 

time. NO release from NO-ELIP was quantitated by measuring echogenicity in IVUS images. 

Decrease of echogenicity of NO-ELIP after ultrasound application indicates increase of NO 

amount liberated from NO-ELIP stimulated by ultrasound application. The rapid decrease in 

NO-ELIP echogenicity was observed at 10 minutes. Echogenicity of NO-ELIP disappeared 2 

hours after ultrasound application. The results indicate that ultrasound application induces an 

average of 26 % enhancement of NO release from NO-ELIP.  

Ultrasound-triggered gas diffusion is determined by liposomal composition, the 

encapsulated gas properties, and ultrasound parameters (30). It was hypothesized that ultrasound 

can induce oscillation behavior of liposomes and force NO diffused from NO-ELIP at a low 

acoustic power. Ultrasound-controlled NO release has the potential to be utilized for targeted 

monotherapy of breast tumor treatment (54). 

Ongoing research has demonstrated ultrasound-induced release of air and other inert 

gases from ELIP (33). To investigate the mechanism of NO release from NO-ELIP using 

ultrasound application, direct measurement of the NO amount diffused out of NO-ELIP must be 

evaluated in future research. The most crucial ultrasound characteristics are correlated with 

power input and duration of Sonication effects (37). Ultrasound parameters need to be optimized 

to maximize the NO release profile from NO-ELIP.  
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CHAPTER 5 

 

Summary and Future Directions 
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5.1. Summary 

NO-ELIP have the potential not only to encapsulate and deliver NO to BCCs, but also to 

control NO release via direct ultrasound exposure. The present study includes a number of in-

vitro studies to demonstrate the efficiency of NO-ELIP as NO gas delivery agent for BCC 

treatment.  First, the stability of NO-ELIP over time was investigated with the measurement of 

echogenicity using ultrasound imaging. Secondly, NO dose-dependent response of BCCs with 

two known NO donors were determined and compared to those with NO-ELIP. Lastly, 

ultrasound-controlled NO release from NO-ELIP was evaluated by ultrasound application 

utilizing the measurement of echogenicity. 

As described in Chapter 2, the echogenicity of NO-ELIP resuspended in PBS/BSA was 

more stable than that of NO-ELIP in PBS up to 5 hours. This result may provide important 

information as to design experiments of NO-ELIP treatment for BCCs. BCCs were exposed to 

NO-ELIP for 5 hours in order for NO-ELIP to generate a cytotoxic effect on BCCs viability.  

The utility of NO-donors verified the NO dose-dependent characteristics of the BCCs. 

The effect of NO-ELIP on BCC death was highly dependent on concentration compared with 

that of NO-donors in Chapter 3. In order to demonstrate NO-induced cell death, NO-saturated 

mannitol solution and empty ELIP were used to investigate NO-induced cytotoxicity on BCCs. 

This study revealed that NO-induced cytotoxicity was not by lipid effect, but mainly by NO.  

Chapter 4 shows that NO-ELIP were able to liberate encapsulated NO triggered by 

ultrasound application. There was an average of 26 % enhancement of NO release from NO-

ELIP after applying ultrasound. Ultrasound application induces a rapid NO release rate from 

NO-ELIP.  

In this study, a unique cytotoxic gas delivery system using NO-ELIP has been developed 

for breast cancer treatment. NO-ELIP can encapsulate NO gas more stably with the 

improvement of purified NO gas injection. The use of BSA enhances NO-ELIP stability and 
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induces a stable rate of NO release. Cytotoxic efficacy of NO released from NO-ELIP on BCC 

viability was determined and compared with NO-donor treatments for the BCCs. Ultrasound 

application over NO-ELIP can enhance the rate of NO release. 

 

5.2. Future directions  

Previous research demonstrated that stead-state release of NO is more effective for 

generating programmed tumor cell death (49). The spontaneous NO release from NO-ELIP, in 

an initially rapid and then later slower pattern, may limit the cytotoxic effect of NO-ELIP on 

BCC viability. The enhancement of prolonged NO release from NO-ELIP is needed for further 

investigation with modification of lipid shell composition. The use of 50 mole % of DPPG may 

enhance the echogenicity and the toxic effect of NO-ELIP. Positively charged NO-ELIP with 

further optimized DC-Cholesterol·HCl mole % may improve the interaction between NO-ELIP 

and BCCs and enhance the efficacy of NO delivery to BCCs. 

It has been shown that the presence of mannitol in the freezing step is essential for the 

preparation of gas-containing liposomes (40). The freezing mannitol solution generates lipid 

fusion followed by the formation of a gas bubble in the lipid bilayer. The use of mannitol not 

only improves encapsulation efficiency of gas but also enhances echogenicity (23). However, the 

use of mannitol was less effective for increasing permeability through the BCC membrane. 

Other carbohydrates and surfactants may be utilized to enhance the permeability of NO-ELIP to 

BCC. Moreover, NO-ELIP conjugated to specific biomarkers of BCCs such as Her-2, ER, PR, 

and EGFR may increase the permeability of NO-ELIP through the BCC membrane and provide 

targeted NO gas delivery. 

In the present study, NO release from NO-ELIP was indirectly quantitated using IVUS 

images. We assumed that loss of echogenicity from NO-ELIP would correspond to NO release 



 ６４ 

 

from NO-ELIP due to ultrasound responsive characteristic of NO and NO-ELIP. The amount of 

NO encapsulated into NO-ELIP needs to be directly measured by a chemiluminescence 

technique to identify the therapeutic index of detrimental NO concentration for breast cancer 

treatment.  

Ultrasound parameters need to be optimized for an improved NO release profile from 

NO-ELIP and improved efficacy of NO-ELIP as ultrasound contrast agent. Ultrasound-triggered 

spatial and temporal NO releases needs to be evaluated through in-vivo experiments for targeted 

monotherapy of breast tumor treatment. The application of clinical Doppler ultrasound may 

improve the therapeutic effect of NO-ELIP as a toxic agent delivery carrier. In order to improve 

ultrasound effect on the mechanism of NO release, the sensitivity of NO-ELIP to ultrasound may 

be enhanced with modification of lipid formulation. BCC response to ultrasound-driven NO 

release needs to be studied to verify the enhancement of NO-ELIP on therapeutic application.  
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Appendices 

 

 

Figure A.1. IVUS images of NO-ELIP resuspended in PBS/BSA 

 

 

 

Figure A.2. IVUS images of NO-ELIP resuspended in PBS 
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