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GROWTH  

 

Publication No. _______ 

 

Huijuan Song, MD, MS 

 

Supervisory Professor: Kwong-Kwok Wong, PHD 

 

PAX2 is one of nine PAX genes regulating tissue development and cellular 

differentiation in embryos. PAX2 promotes cell proliferation, oncogenic transformation, 

cell-lineage specification, migration, and survival. Unattenuated PAX2 has been found 

in several cancer types. We therefore sought to elucidate the role of PAX2 in ovarian 

carcinomas. We found that PAX2 was expressed in low-grade serous, clear cell, 

endometrioid and mucinous cell ovarian carcinomas, which are relatively 

chemoresistant compared to high grade serous ovarian carcinomas. Four ovarian cancer 

cell lines, RMUGL (mucinous), TOV21G (clear cell), MDAH-2774 (endometrioid) and 

IGROV1 (endometrioid), which express high-levels of PAX2, were used to study the 

function of PAX2. Lentiviral shRNAs targeting PAX2 were used to knock down PAX2 

expression in these cell lines. Cellular proliferation and motility assays subsequently 

showed that PAX2 stable knockdown had slower growth and migration rates. 

Microarray gene expression profile analysis further identified genes that were affected 
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by PAX2 including the tumor suppressor gene G0S2. Reverse phase protein array 

(RPPA) data showed that PAX2 knockdown affected several genes that are involved in 

apoptosis, which supports the fact that downregulation of PAX2 in PAX2-expressing 

ovarian cancer cells inhibits cell growth. We hypothesize that this growth inhibition is 

due to upregulation of the tumor suppressor gene G0S2 via induction of apoptosis. 

PAX2 represents a potential therapeutic target for chemoresistant PAX2-expressing 

ovarian carcinomas.  
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CHAPTER 1 

INTRODUCTION 
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1.1 Ovarian cancer 

Ovarian cancer begins in the ovaries or fallopian tubes. It is the second most 

common gynecologic malignancy, and the most common cause of death among women 

who develop gynecologic cancers (5). It is also the fifth most common cause of cancer-

related death in females in the United States (5). There were approximately 21,880 new 

cases and 13,850 deaths in 2010 (6). It is called a “silent killer” (7) because in the early 

stage, the symptoms are vague and non-specific (8). The obvious symptoms can only be 

found when the disease has advanced. Thus, the chance of complete cure or remission is 

poor.  

Ovarian carcinomas are a heterogeneous group of neoplasms and are 

traditionally subclassified based on type and degree of differentiation (9). Primary 

ovarian tumors, whether benign or malignant, can arise from three broad types of cells: 

epithelial cells (the cells on the outer surface of the ovary); germ cells (the cells that 

produce ova); and sex cord-stromal cells (the connective tissue cells surrounding the 

germ cells and producing ovarian hormones, such as estrogen and progesterone) (10).  

Epithelial tumors are the most common type of ovarian cancers which comprise 

85-90% of primary ovarian cancers and 60% of all ovarian cancers. Primary peritoneal 

cancers can be epithelial ovarian cancer or relatively related to it because they all come 

from the epithelial lining of the ovary. Later onset is one of the characteristics of 

epithelial ovarian cancers, although they can occur in the early decades of life (11). 

The next common types of ovarian cancers are sex cord-stromal ovarian cancers 

which are derived from the connective tissue of the ovary and form fibroma or 
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fibrosarcoma. Sex cord-stromal ovarian cancers can also be derived from hormone 

producing granulosa cells and form thecoma. This type of ovarian cancer accounts for 

10% to 15% of ovarian tumors and can produce both female and male hormone. They 

are commonly seen in premenopausal females (11). 

Germ cell ovarian cancers are derived from germ cells of the ovary and account 

for 5% of ovarian cancers. Most germ cell tumors are benign dermoid tumors or mature 

teratomas which have a rapid growth rate. Patients with germ cell ovarian cancers are 

relatively young and have more symptoms (11). 

The most common morphological subtype of epithelial cell ovarian cancer is 

serous papillary ovarian cancer which is about 65% (12). Mucinous ovarian cancer 

accounts for 32% of the epithelial cell ovarian cancer (12, 13). The other less common 

histological subtypes are clear cell, endometrioid, transitional (Brenner), and 

undifferentiated ovarian cancer (Figure 1-1) (14).  

 3



Figure 1-1. Genetic alterations of ovarian cancer.  
 
Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research 
UK: (Martin M Matzuk. Nat Med. 2005 Jan;11(1):24-6), copyright (2005) 

In the development of ovarian cancer, the activation of oncogenes and inactivation of 
tumor suppressor genes play a key role. For example, the activation of Kras and 
inactivation of TP53 is the key player in the development of ovarian cancer. Some 
unknown secondary genetic changes are also involved in the ovarian cancer 
development (11). 
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Ovarian cancer treatment depends mainly on the subtype of the cancer and the 

stage of the disease. Other factors that are considered include the general state of the 

patient’s health, whether the individual plans to have children, and other personal 

considerations. Conventional treatment for ovarian cancer is surgery. For some very 

early tumors (stage one, low grade disease), only the involved ovary and fallopian tube 

will be removed (known as "unilateral salpingo-oophorectomy," USO) (15) which is 

suitable for young women who wish to preserve their fertility. In more than 70% of 

cases, the tumor has disseminated beyond the ovaries when diagnosed and the 

combination of surgery and chemotherapy is necessary. First-line chemotherapy with 

platinum drugs (e.g. cisplatin and carboplatin) and taxanes (e.g. paclitaxel) yields a 

response rate of more than 80% (16); however, nearly all patients relapse. At the time of 

relapse, tumors can be re-challenged with platinum drugs and taxanes, with response 

rates proportional to the disease-free interval after the first treatment (17). In addition, 

chemotherapy can be used before surgery (known as neoadjuvant chemotherapy) to 

shrink the cancer and make it easier to be removed (18). 

For low malignant potential (LMP, borderline) tumors, the ovary with the tumor 

and the fallopian tube is usually removed. Chemotherapy and radiation are not generally 

used for these tumors, although they may be used if the tumor recurs after surgery (19, 

20). For early stage epithelial ovarian tumor, chemotherapy is commonly used, although 

radiation therapy can also be used. For stage III and stage IV cancers, chemotherapy is 

usually used after surgery (21, 22). High dose chemotherapy with stem cell rescue (i.e. 

bone marrow transplant) is used for women with recurrent and persistent cancer. This 
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approach has serious side effects and should be used cautiously (23). Thus, many 

targeted therapies using non-chemotherapy drugs to target specific cancer cells are in 

development. Unlike chemotherapy, targeted therapy spares normal cells, and may 

reduce the side effects of other therapies. Although targeting a transcription factor by 

small molecule is not very feasible, recent identification of an immunogenic HLA-

A*0201-binding T-cell epitope of the transcription factor PAX2 provides a promising 

view for cancer immunotherapy by targeting PAX2 (24). 

The prognosis of ovarian cancer is affected by many factors, such as the stage of 

the disease, the type and size of the tumor, the patient’s age and general health, and 

whether the cancer has just been diagnosed or has recurred. Over 90% of ovarian 

cancers are epithelial neoplasms which are classified as serous (30-70%), endometrioid 

(10-20%), mucinous (5-35%), clear cell (3-10%), and undifferentiated (1%) ovarian 

cancers, with the five-year  survival rates of 20-35%, 40-63%, 40-69%, 35-50%, and 

11-29%, respectively. The rest are germ cell or stromal cell ovarian cancers (12, 13). 

The non-serous ovarian cancers are relatively resistant to standard chemotherapy. It is 

important for us to find the proper therapeutic targets for these kinds of ovarian cancers. 

Kurman et al. (25) has divided ovarian cancers into Type I and Type II two groups. 

Type I tumors include low-grade micropapillary serous carcinoma, mucinous, 

endometrioid, and clear cell carcinomas. They are characterized by high genetic 

stability and mutations in KRAS, BRAF, PTEN, or beta-catenin(25). Type I tumors 

develop from LMP tumors which are generally confined to the ovary at diagnosis and 

grow slowly (25). Type II tumors include high-grade serous carcinoma, malignant 
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mixed mesodermal tumors (carcinosarcomas) and undifferentiated carcinomas. They 

are characterized by high genetic instability and mutations in TP53(25). Type II tumors 

when first detected are usually in advanced stages and appear as highly aggressive 

neoplasms, which lack well defined precursor lesions and grow rapidly (25). We found 

that PAX2 was expressed in low-grade serous, clear cell, endometrioid and mucinous 

cell ovarian carcinomas, which are relatively chemoresistant to the standard 

chemotherapy using platinum drugs (e.g. cisplatin and carboplatin) and taxanes (e.g. 

paclitaxel) (26, 27), compared with high grade serous ovarian carcinomas. This gives us 

further insight in the ovarian cancer treatment.  

 

1.2 PAX gene family 

PAX (paired box) genes were first described by Markus in 1986 (28) as a 

conserved sequence in the Drosophila paired and gooseberry genes. In 1988, Deutsch 

et al. (29) used the paired box domain from gooseberry as a probe and isolated the 

related gene sequences from the mouse genome, which is the first cloning of vertebrate 

PAX genes. Subsequently, eight murine (30) and nine mammal PAX genes (31) were 

identified. The nine members of human PAX gene family share a 384 base pair highly 

conserved DNA sequence, the paired box (32). Each human PAX gene is located on an 

entirely different chromosome which suggests that they act singularly and not in 

combination (33). Based on the structural similarity, sequence homology, the presence 

or absence of an octapeptide domain, and either a homeodomain or partial 
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homeodomain, the developmental PAX genes are divided into four subgroups (Figure 1-

2) (34). 
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Figure 1-2. PAX family members.  

Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research 
UK: (Ewan J. D. Robson, Shu-Jie He, Michael R. Eccles. Nat Rev Cancer. 2006 
Jan;6(1):52-62.), copyright (2006) 

The nine members of human PAX gene family share a 384 base pair highly conserved 
DNA sequence, the paired box (32). Each human PAX gene is located on an entirely 
different chromosome which suggests that they act singularly and not in combination 
(33). Based on the structural similarity, sequence homology, the presence or absence of 
an octapeptide domain, and either a homeodomain or partial homeodomain, the 
developmental PAX genes are divided into four subgroups (34). PAX genes regulate 
tissue development and cellular differentiation in embryos by promoting cell 
proliferation, cell-lineage specification, migration and survival (35, 36).  
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 PAX genes regulate tissue development and cellular differentiation in embryos 

by promoting cell proliferation, cell-lineage specification, migration and survival (35, 

36). They control the development of eyes, brain, CNS, vertebral column, neural crest, 

kidney, thyroid gland, immune system, pancreas, oviduct, vas deferens, epididymis, 

myogenic precursors of muscle tissue and a variety of other lineages (Figure 1-3) (35, 

37-48). PAX genes regulate organogenesis and its mutations cause significant 

developmental abnormalities in a broad spectrum of organisms from flies to humans 

(49, 50). Their inactivation generally results in embryonal or neonatal death 

accompanied by striking developmental defects (38). In most cases, PAX gene 

expression attenuates when development is complete (34). Unattenuated PAX genes in 

adult tissues direct organ-specific regenerative events (51) and protect against stress-

induced cell death (52). PAX genes are involved in stem-cell self-renewal, both during 

fetal development and in adult life which is important in tissue morphogenesis, 

regeneration and repair (35). Cancer cells may use the PAX gene pathway to undergo 

proliferation, stem-cell self-renewal and resistance to apoptosis, cell migration and 

invasion. These are some of the hallmarks of malignant growth as suggested by 

Hanahan and Weinberg (35, 53, 54). This indicates that PAX genes are proto-oncogenes 

(55) and deregulation of PAX genes contributes to the tumor formation (Figure 1-4) 

(56). Future research will be focused on the molecular mechanisms of PAX genes’ 

function and their upstream regulators and downstream target genes which will 

contribute to both developmental processes and the molecular mechanisms underlying 

pathogenesis (55). 
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Figure 1-3. PAX2 contributes to the initiation of kidney development. 
 
Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research 
UK: (Seppo Vainio, Yanfeng Lin. Nat Rev Genet. 2002 Jul;3(7):533-43.), copyright 
(2002) 
 
PAX2 is regulated by WT1 in the initiation of kidney development. PAX2 also controls 
the initiation of kidney morphogenesis through controlling Gdnf expression (57). 
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Figure 1-4. PAX2 promotes endometrial carcinogenesis. 
 
PAX2 reactivation leads to E2- and Tamoxifen-induced invasion and metastasis by 
driving E2- and Tamoxifen-mediated cell proliferation and tumor growth through 
estrogen receptor α pathway (58-60).  
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1.3 PAX protein 

PAX genes encode mRNAs ranging from 3.0 to 5.0 kb (61) except PAX-5, 

whose mRNA is 9.5-10 kb in length (62). The protein products of PAX genes, which are 

a family of transcription factors (35), vary from 360 to 480 amino acids in length (55). 

PAX proteins are characterized by the paired domain (PD), a conserved 128-amino acid 

DNA-binding motif at the amino-terminal end of the protein, which makes sequence-

specific contacts with DNA (49). PAX proteins can also interact with DNA through the 

homeodomain located at the amino-terminus (39). The consensus DNA binding site for 

the paired domain is (G/T)T(T/C)(C/A)(C/T)(G/C)(G/C) (63) which is also the PAX 

protein binding site to the other proteins (50). PAX proteins are localized in the nucleus 

and bind to DNA in vitro (55, 64, 65). PAX proteins play an essential role in 

embryogenesis and organogenesis (66). They regulate cell proliferation, differentiation, 

self-renewal, resistance to apoptosis, migration of embryonic precursor cells, cell 

survival through target gene transactivation and specific differentiation programs 

(Figure 1-5) (50, 66). For example, PAX2 and PAX8 double mutants lack kidney 

formation completely (66, 67). PAX genes were found in tissue specific stem cells or 

progenitor cell populations which were found in a number of different adult tissues, 

such as blood, muscle, intestine and the skin. PAX proteins maintain the pluripotency of 

stem cell populations and cell-lineage specification during development by restricting 

lineage specification, resisting apoptosis and repressing terminal differentiation which 

may facilitate the development and progression of specific cancers (50). The anti-
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apoptotic and terminal differentiation repression functions of PAX protein are linked 

directly with cancer progression (50). PAX protein over-expression prompts malignant 

development instead of the initiating or transforming molecular event in tumor 

pathogenesis (50). For example, PAX2, PAX5, and PAX8 are expressed in multiple 

tumor cell lines, including renal cell carcinoma, and PAX2 is expressed in kidney cystic 

and hyperproliferative dysplastic diseases (50). Thus, PAX proteins may be useful as 

diagnostic markers and therapeutic targets for cancers. For instance, PAX2 

immunostaining has been used to distinguish between metastatic ovarian serous 

papillary carcinoma and primary breast carcinoma (66). Transfection of tumor cells 

with PAX antisense oligonucleotides or RNA interference molecules is an effective 

gene-based cancer therapy because it induces cell apoptosis and reduces cell 

proliferation or migration (66). However, the role of PAX2 in ovarian cancer growth 

and development is not clearly understood. Further research will be focused on the 

regulators of PAX genes or target genes of PAX proteins (65) and the role of particular 

PAX proteins in cancer to find prognostic markers and/or potential anticancer 

therapeutic targets (50).  

 14



Figure 1-5. PAX gene subgroups II & III promote tumor growth. 
 
Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research 
UK: (Ewan J. D. Robson, Shu-Jie He, Michael R. Eccles. Nat Rev Cancer. 2006 
Jan;6(1):52-62.), copyright (2006) 
 
PAX gene subgroups II & III promote tumor formation and maintenance via mediating 
cells to acquire tumor characteristics (35).  
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 1.4 PAX2 

PAX2 belongs to the PAX gene subgroup II which is involved in embryonic 

development (68) and tumor growth (35, 69). Human PAX2 gene is located on 

chromosome bands 10q24.3-10q25.1 (70) and composed of 12 exons which spans 

approximately 86 kb (71) and encodes 48-50 KDa PAX2 protein (64) which is a 

transcription factor (46) and regulates the differentiation of urogenital system (37, 43), 

eyes (41), and central nervous system (46, 47) during the early development (Figure 1-

6) (69, 72). Exons 1-4 are the paired box domain which is a highly conserved 128-

amino acid DNA binding motif (71, 73, 74). Exon 5 is the octapeptide sequence which 

is another highly conserved repressor motif (47, 71) in the N-terminal to the 

homeodomain (39). Alternatively spliced exons include exon 6 which includes a 69-bp 

inserted sequence, exon 10 and exon 12 which contain an alternative acceptor splice site 

(71, 75). Exons 7-12 encode the carboxy-terminal portion of the PAX2 protein which is 

essential for transcriptional activation of target genes and has strong activating and 

inhibitory domains (40). PAX2 is abundantly expressed in the kidney (37, 43), ureter 

(42), eye (41), cochlear (44), pancreas (45) and central nervous system (47, 71) during 

embryogenic development and is important for their embryogenic development, 

morphogenesis and organogenesis (44-48). PAX2 is expressed in proliferating cells 

during mesenchymal to epithelial transitions in these tissues; following mesenchymal to 

epithelial transition, PAX2 expression is diminished or absent in the nascent and adult 

epithelial structures (35, 76). PAX2 deficiency causes growth defects of kidney 
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hypoplasia, optic colobomas, and vesicoureteral reflux (77). Conversely, PAX2 

overexpression is associated with epithelial overgrowth with cyst or tumor formation 

(39), such as cystic dysplastic kidneys, renal cell carcinomas, Wilms’ tumors, and 

nephrogenic adenomas (48, 76) which indicates an undifferentiated or de-differentiated 

phenotype (78). High PAX2 expression in developing undifferentiated cells of the 

urogenital system indicates that PAX2 promotes cell differentiation and survival (73). 

PAX2 is important for the growth and survival of several cancers of urogenital origin 

(50) which indicates that PAX2 maybe a proto-oncogene (79). The human PAX2 gene is 

involved in the regulation of several genes, such as WT1 (80), N-myc (81), PAX5, 

PAX6, TP53, and itself (46, 82) and it can be regulated by FGF-8 and PAX6. For 

example, WT1 transcriptionally represses the PAX2 promoter and attenuates PAX2 

expression during kidney morphogenesis (83); on the other hand, PAX2 represses WT1 

expression in the presence of groucho/transducin-like enhancer proteins and 

transcriptionally activates the WT1 promoter (84) in the absence of these proteins (85). 

Thus, there exists the cross-transcriptional control between these two genes, such that 

PAX2 initially modulates the transcriptional activity of WT1 and at a later stage when a 

threshold level of WT1 protein is reached, the WT1 protein level in cells then represses 

PAX2 transcription (40). 
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Figure 1-6. Structure of the human PAX2 gene. 
 
PAX2 gene has 12 exons spanning 86 Kb. Exon 2, 3 and 4 are the paired box domain. 
Exon 5 contains octapeptide domain. Exon 6 and 10 are alternatively spliced exons 
(40).  
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1.5 G0S2 

G0S2 protein was first identified as a small basic nuclear phosphoprotein which was 

encoded by G0/G1 switch 2 (G0S2), one of the G0/G1 switch (G0S) genes that are 

differentially expressed during lymphocytes lectin-induced switch from G0 to G1 

phases of the cell cycle (86). The expression of G0S2 is required to commit cells to 

enter the G1 phase of the cell cycle (87). G0S2 is highly expressed in adipose tissue, 

liver and heart. Its expression increases in response to glucose, insulin and ligands for 

the PPAR family of transcription factors, and decreases upon treatment with TNFα and 

β-adrenergic agonist (88, 89). G0S2 protein, a mitochondrial protein, specifically 

interacts with Bcl-2 and promotes apoptosis through preventing the formation of 

protective Bcl-2/Bax heterodimers (90). DNA methylation of the G0S2 gene was 

significantly more frequent in squamous lung cancer than in non-squamous lung cancer 

(91). G0S2 with a functional PPRE (PPAR-responsive element) in its promoter is a 

direct PPARγ and probable PPARα target gene and may be involved in adipocyte 

differentiation (92). 

 

1.6 Annexins 

The annexins are a superfamily of proteins which present in eukaryotic cells (93). 

Annexins are made up of a conserved α-helical core domain which is constituted by 

four repeats of 60–70 amino acids each, attached to a unique N-terminal region which is 

expelled from the core domain on calcium binding (94, 95). The core domain binds 

calcium ions, allowing them to interact with phospholipid membranes (95). The core 
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domain represents the large majority (80%) of the annexins protein, whereas the N-

terminus likely confers specificity of action to each member of the annexin superfamily 

of proteins which includes annexins A1 and A2 (96). The function of binding with 

negatively charged phospholipids in a calcium-dependent manner is the characteristic 

feature of annexins (93, 94). An important feature of annexins is its capabilities to alter 

conformation upon binding to calcium cations. In the presence of calcium, annexins 

undergo a conformational restructuring which allows phospholipid binding, especially 

binding to acidic phospholipids (96). Calcium-binding motifs sustain the core region’s 

interaction with phospholipids which is concomitant with N-terminal region 

conformational rearrangement to induce its amino acids exposure to the extracellular 

environment (96). These structural changes affect its ability to interact with potential 

receptors (96).   

 

1.7 PAX2 and ovarian cancer 

PAX genes subgroups II and III, which are useful tumor markers, are frequently 

expressed in a wide variety of cancers, and their endogenous expression is required for 

the growth and survival of cancer cells (35). PAX2 gene is frequently expressed in a 

panel of 406 common primary tumor tissues (97) and its expression is significantly 

higher in patients with metastatic disease as it is correlated with the proliferation index 

(98). PAX2 promotes the cancer cell survival, motility and growth (35) and serves as a 

critical component of the multi-step oncogenic transformation process (65, 72, 99, 100). 

PAX2 is a potential cancer therapy target as it suppresses cisplatin-induced apoptosis 
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and the silencing of PAX2 partially overcomes the resistance of renal cell carcinomas to 

chemotherapy in vivo (101). Little is known about the mechanism of PAX2-mediated 

protection from cell death (66). PAX2 which is highly expressed in serous papillary and 

clear-cell ovarian cancers is the best and most highly expressed discriminators of 

ovarian cancer (102). PAX2 protein plays an important role in tumor initiation and 

progression by transcriptional repressing the TP53 gene promoter (99, 103, 104) (Figure 

1-7). PAX2 interacts with Rb (105) and pRB can bind to the activation domain of PAX8 

and activate PAX8 (106). Presently, the function and activation of PAX2 in ovarian 

cancer have not been clearly studied. This will be our future research focus. In this 

study, we further found that PAX2 is also overexpressed in other histological types of 

ovarian carcinomas – mucinous, clear cell and endometrioid ovarian carcinomas. Since 

mucinous, clear cell and endometrioid ovarian carcinomas are less responsive to the 

standard platinum/paclitaxel chemotherapy (26, 27), we explored whether PAX2 would 

be a potential therapeutic target for these ovarian carcinomas that express PAX2.  
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Figure 1-7. TP53 signaling pathway.  
 
TP53 is expressed and undergoes post-translational modification upon DNA damage, 
which induces its accumulation in the nucleus. TP53 activation which is controlled 
through an autoregulatory loop involving Mdm2 turns on the transcription of p21CIP1. 
p21CIP1 subsequently binds to and inhibits cyclin-dependent kinases which causes 
hypophosphorylation of retinoblastoma (Rb) and prevents the release of E2F and this 
blocks the G1-S transition. Deregulated expression of c-Myc, Bcl-2, or E2F can block 
some of the cellular effects of TP53. The binding of Mdm2 to TP53 induces TP53 for 
degradation and inhibits TP53-induced cell-cycle arrest and apoptosis (107-109). G0S2 
encodes a mitochondrial protein that specifically interacts with Bcl-2 and prevents the 
formation of protective Bcl-2/Bax heterodimers which inhibits apoptosis (90). 
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2.1 Cell culture 

Twenty-eight human ovarian carcinoma cell lines RMUGL, TOV21G, 

TOV112D, MDAH-2774, IGROV1, ALST, OVCA432, PEO4, MCAS, OVCA429, 

OVCA433, ES2, SKOV3, RMG1, OVCA420, OVCAR3, RMUGS, MPSC1, HCH, KF, 

KK, KOC7C, OVAS, OVISE, OVSAYO, OVTOKO, ML38, ML46; and one 

immortalized ovarian surface epithelium cell line IOSE29 were obtained from The 

University of Texas MD Anderson Cancer Center, Houston, TX. All cells were cultured 

in Roswell Park Memorial Institute-1640 (RPMI-1640) containing 10% Fetal Bovine 

Serum and 1% penicillin/streptomycin in a humidified 5% CO2 incubator at 37°C. We 

further silenced PAX2 expression in RMUGL, TOV21G, MDAH-2774 and IGROV1 

ovarian carcinoma cell lines. The PAX2 silenced ovarian cancer cell lines, PLKO-puro 

and non-target control cell lines were cultured in RPMI containing 10% Fetal Bovine 

Serum and 1% penicillin/streptomycin with a 1ug/ml puromycin in a humidified 5% 

CO2 incubator at 37°C. 

 

2.2 Human subjects and tissue specimens  

Tissue specimens were obtained from the Department of Gynecologic Oncology 

Tumor Bank at The University of Texas MD Anderson Cancer Center and IRB 

approved. We used six human ovarian surface epithelia (HOSE), twenty-one type I 

ovarian cancer tissue samples and twenty-four type II ovarian serous carcinoma samples 

to perform Affymetrix microarrays gene expression profiling. We further screened 

PAX2 expression in different types of ovarian cancers which included 79 human ovarian 
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cancer tissue samples (16 high-grade serous ovarian cancer samples, 6 clear cell ovarian 

cancer samples, 8 low malignant potential/low-grade serous ovarian cancer samples, 27 

mucinous ovarian cancer samples, 22 endometrioid ovarian cancer samples) and 9 

human ovarian surface epithelium tissue samples using Affymetrix microarray analysis. 

Twenty-four clear cell ovarian cancer tissue sections, Fifty-one mucinous ovarian 

cancer tissue sections, and 263 high-grade serous ovarian carcinoma tissue sections 

were obtained from the University of Texas MD Anderson Cancer Center Pathology 

Department and used for PAX2 expression analysis using immunohistochemical 

analysis (IHC). The specialized gynecologic oncology pathologists in the University of 

Texas MD Anderson Cancer Center reviewed and graded all tissue samples according 

to the grading criteria outlined by Malpica et al (110). 

 

2.3 Stable PAX2 knockdown 

Twenty-eight parental human ovarian carcinoma cell lines were screened for 

PAX2 expression. Four cell lines (TOV21G, RMUGL, MDAH-2774, and IGROV1) 

had robust PAX2 expression. MISSION TRC shRNA Lentiviral Particles (Sigma-

Aldrich SHVRS-NM_000278, St. Louis, MO) targeting various regions of PAX2 

(shRNA 15839, CCGGCGTCTCTTCCATCAACAGAATCTCGAGATTCTGTTGAT 

GGAAGAGACGTTTTT; shRNA 15840, CCGGCCCAAAGTGGTGGACAAGATTC 

TCGAGAATCTTGTCCACCACTTTGGGTTTTT; shRNA 15841, CCGGGATGAAG 

TCAAGTCGAGTCTACTCGAGTAGACTCGACTTGACTTCATCTTTTT) were used 

to transduce the ovarian cancer cell lines RMUGL, TOV21G, MDAH-2774 and 
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IGROV1, which had PAX2 expression. PLKO-puro Control (no insert sequence) 

(Sigma-Aldrich, St. Louis, MO) and shRNA Non-Target Control (insert sequence: 

CCGGCAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTG

TTTTT) (Sigma-Aldrich, St. Louis, MO) were used as negative controls. We used 

multiplicity of infection (MOI) of 0.5, 1, 10 and 50 to transfect cells. The successful 

selecting MOI is 1. We next used 0.5 μg/ml, 0.8 μg/ml, 1μg/ml and 5 μg/ml puromycin 

in RPMI containing 10% Fetal Bovine Serum and 1% penicillin/streptomycin to select 

the stable clones which was transfected with mission TRC shRNA lentiviral particles, 

PLKO-puro control and non-target control particles. We found 1 μg/ml is the best 

concentration for puromycin selection. The selected stable clones were routinely 

maintained in 10% Fetal Bovine Serum with 1% penicillin/streptomycin and 1ug/ml 

puromycin in a humidified 5% CO2 incubator at 37°C. 

 

2.4 Affymetrix microarray analysis 

Tissue specimens were obtained from the Department of Gynecologic Oncology 

at The University of Texas MD Anderson Cancer Center and IRB approved. Frozen 

tissue samples containing more than 70% tumor cells were homogenized before RNA 

extraction. We performed RNA extraction according to Mini-prep RNeasy kit (Qiagen, 

Valencia, CA) per the manufacturer's protocol. Next, we generated cDNA using 5 µg of 

total RNA. We evaluated gene expression profiles using Affymetrix Human Genome 

U133 plus 2.0 (HG U133 plus 2.0) Gene Chips (Affymetrix, Santa Clara, CA) 

according to the Affymetrix Eukaryotic One-cycle protocol. cDNA was fragmented and 
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hydrolyzed at 94°C for 35 minutes in 24 µL H2O and 6 µL of 5× fragmentation buffer 

(Affymetrix).  Fragmented cDNA was hybridized with HG U133 plus 2.0 Gene Chip 

(Affymetrix) for 16 hours at 45°C in an Affymetrix Hybridization Oven 640 

(Affymetrix). We then washed and stained arrays on Affymetrix Fluidics Station 450 

(Affymetrix). Array data was scanned on Affymetrix GeneChip Scanner 3000 and 

fluorescence intensities were obtained using GeneChip Operating Software 

(Affymetrix). We processed raw images results (CEL files) using dChip software (111).  

 

2.5 Antibodies and Taqman real-time RT-PCR primers 

The following antibodies were used for western blot analyses and 

immunohistochemical analysis. Rabbit polyclonal antibody to PAX2 Invitrogen 

immunodetection, 71-6000 (Zymed Laboratories, San Francisco, CA) which recognizes 

the expressed product of the PAX2 gene; mouse monoclonal anti-beta-actin antibody 

(Sigma-Aldrich Inc., St. Louis, MO); rabbit polyclonal PARP-1/2 (H-250) antibody sc-

7150 (Santa Cruz Biotechnology, Santa Cruz, CA) which was raised against amino 

acids 764-1014 mapping at the C-terminus of PARP-1 of human origin; rabbit 

polyclonal anti-Annexin I antibody 71-3400 (Invitrogen, Camarillo, CA); rabbit 

polyclonal Anti-G0S2 antibody HPA010016 (Sigma-Aldrich, St. Louis, MO); goat anti-

rabbit IgG-HRP sc-2004 (Santa Cruz Biotechnology); goat anti-mouse IgG-HRP sc-

2005 (Santa Cruz Biotechnology). The following Taqman real-time RT-PCR primers 

were used in the real-time RT-PCR analysis and they were from Applied Biosystems, 

Carlsbad, CA. Taqman gene expression assay for PAX2 (assay ID number: 
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Hs00240858_m1, HS01057417_m1, HS01057423_m1, HS01062572_g1, 

HS01067916_m1); Taqman gene expression assay for G0S2 (assay ID number: 

Hs00274783_s1) (Applied Biosystems, Carlsbad, CA); and Taqman pre-developed 

assay reagent (human PPIA) which was used as endogenous control for results 

normalization.  

 

2.6 Immunohistochemical analysis 

 Paraffin tissue sections were obtained from The University of Texas MD 

Anderson Cancer Center Pathology Department and reviewed by specialized 

gynecologic oncology pathologists. We used the grading criteria outlined by Malpica et 

al (110). Briefly, immunohistochemical analysis was performed as follows (111). 

Deparaffinized specimens were immersed in 1× Reveal (Biocare Medical, Concord, 

CA) in a Coplin jar for antigen retrieval. Specimens were heated at 121°C for three 

minutes followed by one minute at 95°C in a Reveal decloaking chamber (Biocare 

Medical). Antibodies were placed onto the tissue sections with a 1:200 dilution at room 

temperature for four hours. Subsequently, tissue sections were probed with MACH 3 

rabbit probe (Biocare Medical) and MACH 3 rabbit alkaline-phosphatase polymer 

(Biocare Medical). At last, we stained tissue sections using Vulcan Fast Red 

Chromagen Kit 2 (Biocare Medical) and counterstained them using CAT Hematoxylin 

(Biocare Medical). Nuclear staining and cytoplasmic staining of antibodies was 

analyzed. We took nuclear staining as the active staining for PAX2 because PAX2 

encodes transcription factor which is mainly expressed in the nucleus when activated. 
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We graded the staining results according to the intensity and positive cell percentage as 

described (110).  

 

2.7 WST-1 assay 

The cell proliferation reagent WST-1 (Roche Applied Science, Indianapolis, IN) 

was used to analyze cell viability. Cells were seeded at 8000 cells per well in 96-well 

plates. We then compared the cell viability of the parental ovarian cancer cell lines with 

PAX2 expression and PAX2 knockdown ovarian cancer cell lines at 1, 2, 4, 6, 7, 8 days. 

Before we measure cell proliferation for each date, 10 μl of WST-1 reagent per well 

was added, and plates were incubated from 0.5 to 4 h in a humidified atmosphere (e.g., 

37°C, 5% CO2). Plates were thoroughly shaken for 1 min, and then their light 

absorbance at 450 nm was measured against background controls using a microtiter 

plate reader.  

 

2.8 Wound healing assay 

Parental ovarian cancer cells (RMUGL, TOV21G, MDAH-2774, and IGROV1) 

and PAX2 transfected ovarian cancer cells were cultured to confluence or near 

confluence (>90%) in a 6-well dish. Cells were subsequently rinsed with phosphate-

buffered saline and starved overnight in low serum medium (1.5 ml; 0.5% - 0.1% serum 

in Dulbecco’s modified Eagle’s medium). On the day of the assay, a sterile 200 μl 

pipette tip was used to scratch a cross-shaped wound through the cell lawn. Cells were 

rinsed with phosphate-buffered saline, and the low serum medium was replaced with 

 29



1.5 ml of medium containing 10% fetal bovine serum. After the wounds were created, 

the cultures were photographed using phase contrast at 10X magnification at 0, 5, 10, 

and 24 hours. The TScratch program (Computational Science & Engineering 

Laboratory, Zurich, Switzerland) was used to measure the open areas and analyze the 

data. 

 

2.9 Nucleic acid extraction and cDNA synthesis 

Total RNA was isolated from ovarian cancer cell lines using the RNeasy Mini 

Kit (Qiagen, Valencia, CA). RNA quality and concentration were determined using 

Nanodrop, ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE). 

One micro-gram of total RNA from each sample was used as template. cDNA synthesis 

was conducted using High Capacity cDNA Reverse Transcription kit (Applied 

Biosystems, Foster City, CA). Briefly, each reaction contained 1 µg RNA, 10× RT 

buffer, 25× dNTPs, and 10× random hexamers in a 25 µL solution. The condition for 

cDNA amplification was 1 cycle at 25°C for 10 minutes, at 37 °C for 60 minutes, and at 

95 °C for 5 minutes. One microliter of 50-mM EDTA was used to stop reactions and 

cDNA was diluted to 1:10 using sterile dH2O. 

 

2.10 Taqman real-time RT-PCR 

RNA was extracted from ovarian cancer cell lines. We performed the reverse 

transcript reactions using the cDNA synthesized according to the method described 

above. Five microliter cDNA was combined with 7.5 μl 2x iQ supermix (Bio-Rad 
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Laboratories, Hercules, CA), 1.75 µl dH2O, and 0.75 µl 20x Taqman gene expression 

assay mix (PPIA or test genes) (Applied Biosystems, Carlsbad, CA). Each Taqman real-

time RT-PCR was performed in triplicate. We normalized the results to cyclophilin A 

pre-developed Taqman expression gene assay (Applied Biosystems). mRNA 

quantification was determined using Bio-Rad CFX96 system (Bio-Rad Laboratories, 

Hercules, CA) with the condition of 1 cycle at 95°C for 3 minutes, followed by 40 

cycles of 95°C for 10 seconds and 60°C for 30 seconds. All results were normalized 

using cyclophilin A. The mRNA copy number for tumor cell line samples was 

compared with that of reference RNA (Stratagene, Santa Clara, CA). 

 

2.11 Western blot analysis 

Cells were cultured until 90% confluence and scraped in 2-3ml RPMI culture 

media. Cells were washed twice in 5ml PBS and centrifuged at 2000rpm for 2 minutes. 

We added 200µl cytoplasmic extraction buffer (Tris-Cl pH7.9 10mM, KCl 10mM, 

EDTA 0.1mM, EGTA 0.1mM) to cell pellet and suspended them slowly by pipetting. 

After 10 minutes of incubation on ice, 6.25µl 10% NP-40 was added into the cells. The 

tube was spun for 1 minute at 14000rpm and supernatant was the cytoplasmic protein 

extraction which would be transferred to a fresh 1.5ml tube. One hundred microliter of 

nuclear extraction buffer (Tris-Cl pH7.9 20mM, NaCl 400mM, EDTA 1mM, EGTA 

1mM) was added to pellet which was incubated on ice for 45 minutes, while vortexed 

10 seconds each 15 minutes. The tube was centrifuged at 12000rpm for 5 minutes at 

4ºC. The supernatant was the nuclear protein extraction. Protein concentration was 
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determined using a Beckman DU640B spectrophotometer (Beckman, Fullerton, CA). 

Fifty micro-gram of denatured protein was loaded and electrophoresed onto a 10% 

SDS-PAGE gel (Bio-Rad Laboratories, Hercules, CA), electroblotted on Hybond ECL 

nitrocellulose membrane (GE Healthcare, Buckinghamshire, UK), and probed using 

different first antibodies according to the different target genes, such as rabbit 

polyclonal anti-PAX2 antibody (Zymed Laboratories, San Francisco, CA) at a 1:500 

dilution; rabbit polyclonal anti-Annexin I antibody 71-3400 (Invitrogen, Camarillo, CA) 

at a 1:1000 dilution; rabbit polyclonal anti-G0S2 antibody HPA010016 (Sigma-Aldrich, 

MO, USA) at a 1:250 dilution; rabbit polyclonal PARP-1/2 (H-250) antibody sc-7150 

(Santa Cruz Biotechnology, Santa Cruz, CA) at a 1:10,000 dilution; and mouse 

monoclonal anti-beta-actin antibody (Sigma-Aldrich Inc., St. Louis, MO) at a 1:10,000 

dilution. The second antibodies, goat anti-mouse IgG- horseradish peroxidase sc-2005 

(Santa Cruz Biotechnology) at a 1:10,000 dilution; and goat anti-rabbit IgG-horseradish 

peroxidase sc-2004 (Santa Cruz Biotechnology) at a 1:10,000 dilution were used 

according to the first antibodies. The bound antibodies were detected using an 

Amersham ECL Western blot detection reagent kit (GE Healthcare, Fairfield, CT). 

Nuclear expression of PAX2 was normalized with nuclear expression PARP-1/2. Total 

protein expression of Annexin I and G0S2 were normalized with beta-actin expression. 

 

2.12 Cell cycle analysis 

We analyzed the cell cycle differences between PAX2 expressed ovarian cancer 

cell lines and PAX2 silenced ovarian cancer cell lines. Two million cells were fixed in 
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5ml of 95% EtOH for 1hour at room temperature. The fixed cells were stored at 4°C 

over night. We resuspended pellet and added 1 ml of 50µg/ml Propidium iodide (Santa 

Cruz Biotechnology, Santa Cruz, CA) and 100µl of 1mg/ml RNase (Sigma Chemicals, 

St. Louis, MO). The cells were incubated at 37°C for 30 minutes before cell cycle 

analysis. Cell cycle was analyzed by a Becton Dickinson FACSCalibur flow cytometer 

(BD Biosciences, Mountain View, CA). The data were analyzed using the Becton 

Dickinson CellQuest Pro software package. 

 

2.13 Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling 

assay (TUNEL assay) 

We used the APO-BRDU™ Kit (BD Bioscience, San Jose, CA) to detect the 

apoptosis of parental ovarian cancer cell lines with PAX2 expression and the PAX2 

silenced ovarian cancer cell lines. In brief, one to two million cells were fixed in 70% 

(v/v) ethanol at -20°C over night. Fixed cells were stained by APO-BRDU™ Kit (BD 

Bioscience, Mountain View, CA). TUNEL assay was run on a Becton Dickinson 

FACSCalibur flow cytometer (BD biosciences, Mountain View, CA) which was 

equipped with a 488 nm Argon laser as the light source. 

 

2.14 Side population analysis using Hoechst 33342 dye 

PAX2 expressed ovarian cancer cell lines and PAX2 silenced ovarian cancer 

cell lines were used to compare the side population percentage which represents the 

putative stem cells. The cells were detached by trypsinization, centrifuged and 
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resuspended in tissue culture medium containing 2% serum at a concentration of 1×106 

cells/mL. We used 1x107 cells for analysis. The cells were labeled with 5.0 µg/mL 

Hoechst 33342 dye (Molecular Probes-Invitrogen, Carlsbad, CA) at 37ºC for 90 min 

either alone or in combination with ABCG2 efflux pump inhibitor Verapamil (100 µM) 

(Sigma-Aldrich). Cells were resuspended every 30 min during the incubation by 

inverting the tubes. At the end of the incubation, cells were centrifuged and resuspended 

in cold fresh tissue culture medium with 2% serum. The final concentration for cells is 

106-107 cells/ml. 7-Amino-actinomycin D (7AAD) was added to the cells to a final 

concentration of 2µg/mL prior to FACS analysis to exclude the dead cells from 

analysis. The SP analysis was done using a BD LSRII System (BD Biosciences). The 

Hoechst dye was excited with UV laser and its fluorescence was measured with both 

675LP filter (Hoechst Red) and 440/40 filter (Hoechst Blue).  

 

2.15 Reverse phase protein array (RPPA) 

Cell lysates were extracted by using lysis buffer (1% Triton X-100, 50mM 

HEPES, pH 7.4, 150mM NaCl, 1.5mM MgCl2, 1mM EGTA, 100mM NaF, 10mM Na 

pyrophosphate, 1mM Na3VO4, 10% glycerol, containing freshly added protease and 

phosphatase inhibitors from Roche Applied Science Cat. # 04693116001 and 

04906845001, respectively) and were serially diluted four times from undiluted to 1:16 

dilution before they were arrayed on nitrocellulose-coated slides in a 11x11 format. 

Samples were probed with antibodies by a catalyzed signal amplification system and 

visualized by a diaminobenzadine colorimetric reaction. Slides were scanned on a 

 34



flatbed scanner to produce a 16-bit tiff image. Spots from the tiff images were 

identified, and their density was quantified using MicroVigene (VigeneTech Inc., 

Carlisle, MA). Relative protein levels for each sample were determined by interpolation 

of each dilution curve from the "standard curve" (supercurve) of the slide (antibody). 

All the data points were normalized for protein loading and transformed to linear values 

designated as "linear after normalization.” The "linear after normalization" values were 

then transformed to natural log values and median-centered for hierarchical cluster 

analysis. Samples were probed with 217 antibodies. Based on our Qcsamples which was 

defined by the software, only 207 antibodies were included in the data analysis. A heat 

map was used to express overall patterns. 

  

2.16 Allophycocyanin-Annexin V staining (APC-Annexin V staining) 

One million cells were aliquoted into centrifuge tubes. Cells were centrifuged, 

and the supernatant was decanted. One hundred microliters of diluted (1:20 dilution) 

Annexin V (BD Pharmingen, Bedford, MA) were added to each sample, followed by 

incubation at room temperature in the dark for 15 min. Precipitates were washed with 

the Annexin V binding buffer and resuspended in 400 µl binding buffer. Annexin V 

expression was determined using a FACSCalibur flow cytometer (Becton Dickinson, 

Mountain View, CA), and single color samples were used to set compensation on the 

flow cytometer. Data were analyzed using the Becton Dickinson CellQuest Pro software 

package. 
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2.17 Animal studies 

Ten nude mice were obtained from the Department of Experimental Radiation 

Oncology at The University of Texas MD Anderson Cancer Center. Ovarian cancer cell 

lines TOV21G-non-target control and TOV21G-PAX2KD-shRNA15840 were injected 

to these mice, five per group. Cells were dissolved in 2:1 PBS/matrix gel mixture. One 

million cells in 100µl PBS/matrix gel mixture were subcutaneously injected into each 

mouse left flank. Tumor size was measured at every four days before mice were 

sacrificed. We sacrificed the mouse after the average tumor volume was more than 0.5 

cm3 in any one group of mice. Tumors were weighed after the mice were sacrificed. 

Student’s t-test was used to compare the tumor weight difference between two groups.  
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CHAPTER 3 

THE EXPRESSION OF PAX2 IN OVARIAN CANCERS 

 37



3.1 Introduction 

Ovarian cancer is the second most common gynecologic malignancy, and the 

most common cause of death among women who develop gynecologic cancers (5). 

Over 90% of ovarian cancers are epithelial neoplasms which are classified as serous 

(30-70%), endometrioid (10-20%), mucinous (5-20%), clear cell (3-10%), and 

undifferentiated (1%) ovarian cancers, with the five-year survival rates of 20-35%, 40-

63%, 40-69%, 35-50%, and 11-29%, respectively. The rest are germ cell or stromal cell 

ovarian cancers (12, 13). Low-grade serous ovarian cancer was treated with platinum 

drugs (e.g. cisplatin and carboplatin) and taxanes (e.g. paclitaxel) and had a response 

rate of more than 80% (16). Non-serous ovarian cancers are relatively resistant to 

standard chemotherapy and need especially attention in the ovarian cancer treatment 

(Figure 3-1).                   
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Figure 3-1. Non-serous types of ovarian cancers are less responsive to standard 
chemotherapy.  
 
Non-serous types of ovarian cancers are less responsive to standard chemotherapy 
(platinum and paclitaxel). The response rate to chemotherapy is about 80% in high-
grade serous ovarian cancer, 40% in low-grade serous ovarian cancer. As to clear cell 
ovarian cancer, endometrioid ovarian cancer, mucinous ovarian cancer, the response 
rates are 0%, 60% and 4% respectively.  
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PAX2 is one of the nine PAX genes which have a conserved DNA sequence 

motif called the paired box, a 128 amino acid domain in the amino-terminal portion of 

the protein (40, 73). PAX2 regulates tissue development and cellular differentiation in 

embryos (44, 112-124). PAX2 also promotes cell proliferation, oncogenic 

transformation, cell-lineage specification, migration, and survival (97, 125). 

Unattenuated PAX2 has been found in several cancer types (126) and immunotherapy 

targeting PAX2 is a promising method to treat ovarian cancer patients (24). Thus, 

deciphering downstream targets and functions of PAX2 in the development and 

progression of ovarian cancer will facilitate ovarian cancer immunotherapy.  

Our former research (111) showed for the first time that PAX2 had a high 

expression in low malignant potential and low-grade ovarian serous carcinomas and a 

low expression in high-grade serous carcinomas (Figure 3-2). This enhanced the current 

conception about ovarian cancer development, that is, low grade and high grade ovarian 

cancer developed from different pathways with low-malignant potential tumors 

potentially developing along a disease continuum to low-grade cancers. Our present 

research further verified that PAX2 had a higher expression in the other histological 

types of ovarian cancers including mucinous ovarian cancer, endometrioid ovarian 

cancer and clear cell ovarian cancer. We also evaluated the mechanism of PAX2 

function in ovarian carcinomas in this dissertation. This will provide the theoretical 

basis for individualized ovarian cancer treatment by targeting PAX2. 
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Figure 3-2. PAX2 is highly expressed in LMP and low-grade serous ovarian 
cancer. 
 
Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research 
UK: (Celestine S Tung, Samuel C Mok, Yvonne T M Tsang, Zhifei Zu, Huijuan Song, 
Jinsong Liu, Michael T Deavers, Anais Malpica, Judith K Wolf, Karen H Lu, David M 
Gershenson, Kwong-Kwok Wong. Mod Pathol. 2009 Sep;22(9):1243-50.), copyright 
(2009) 
 
(A) Affymetrix Microarray data for PAX2 expression. Gene expression cluster analysis 
of RNA extracted from samples of three normal human ovarian surface epithelia, ten 
low-grade, and ten high-grade ovarian serous carcinomas. 
 
(B) PAX2 mRNA expression in ovarian cancers. Comparison of PAX2 mRNA 
expression between eight low malignant potential ovarian cancers, seventeen low-grade 
and twenty-three high-grade ovarian carcinoma samples. The box is bounded by the 25th 
and 75th percentile with the median expression level depicted by the line in the box. 
Outlying values are drawn individually. Expression of PAX2 in high-grade is 
significantly lower than either low malignant potential or low-grade tumors (P=0.015). 
 
(C) Western blot examination of PAX2 protein expression in ovarian cancer patient 
samples.  
 
(D) PAX2 expression in ovarian cancer patient samples using immunohistochemical 
staining. Examples of PAX2 immunohistochemical staining of individual paraffin 
sections from low malignant potential tumors, low-grade and high-grade ovarian serous 
carcinomas (×200 magnification). 
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3.2 Aims 

 

According to our former researches, PAX2 is highly expressed in low-grade 

serous ovarian cancers and LMP ovarian cancers, while it has a lower expression in 

high-grade serous ovarian cancers. PAX2’s expression level in the other types of 

ovarian cancers is one question that we need to further explain. Our aim is to clarify or 

characterize PAX2 expression in the other histological types of ovarian cancers. We 

used Affymetrix microarray analysis, immunohistochemical analysis to validate 

PAX2’s expression in the other types of ovarian cancer patient samples.  

 

3.3 Results and Discussion 

 

3.3.1 High PAX2 expression in non-serous ovarian cancers and low PAX2 

expression in high grade serous ovarian cancers 

PAX2 is one of nine PAX genes which regulate tissue development and cellular 

differentiation in embryos by promoting cell proliferation, cell-lineage specification, 

migration and survival (35, 36). Our former research (111) found that PAX2 is one of 

the most upregulated genes in low-grade ovarian serous carcinoma (Figure 3-2A) by 

gene expression profiling. We (111) also validated this result by real-time RT-PCR 

(Figure 3-2B), western blot (Figure 3-2C) and immunohistochemical analyses (Figure 

3-2D).  
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Our gene expression profiling data further confirmed this observation (Figure 3-

3). We initially evaluated gene expression profiles on twenty-one LMP and low-grade 

serous carcinoma samples, twenty-four high-grade serous carcinoma samples and six 

normal ovarian surface epithelia (HOSE) samples from The University of Texas MD 

Anderson Cancer Center using Affymetrix microarray analysis. We found eight highly 

overexpressed genes and fourteen significantly underexpressed genes in LMP and low-

grade serous ovarian cancer compared to high-grade serous ovarian cancer. PAX2 is one 

of the overexpressed genes with a fold increase of 4.78 (p=0.04). Subsequently, we 

evaluated PAX2 expression profiles using Affymetrix microarray analysis on different 

types of ovarian cancer patient samples (eight LMP and low-grade serous carcinoma 

samples, sixteen high-grade serous carcinoma samples, six clear cell ovarian cancer 

samples, twenty-seven mucinous ovarian cancer samples, twenty-two endometrioid 

ovarian cancer samples and nine normal ovarian surface epithelia (HOSE) samples 

(Figure 3-3B). We found that PAX2 was highly expressed in non-serous ovarian tumors 

(clear cell, endometrioid cell, mucinous cell ovarian cancers) which are more resistant 

to the standard chemotherapy using platinum drugs (e.g. cisplatin and carboplatin) and 

taxanes (e.g. paclitaxel). To verify PAX2 expression in different types of ovarian cancer 

samples, we did the immunohistochemical analysis by using twenty-four clear cell 

ovarian cancer tissue paraffin sections and fifty-one mucinous ovarian cancer tissue 

paraffin sections. Tumor sections were either lacked nuclear staining or had robust 

nuclear staining. No weak or moderate strength staining was observed. The number of 

PAX2 positive tumor cells varied from 1-100%. In twenty-four clear cell ovarian cancer 
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tissue sections, 20.8%, 41.7% and 20.8% were 1-25%, 25-50%, and 75-100% positive 

respectively. In 51 mucinous ovarian cancer tissue sections, 24.3%, 28.6% and 20% 

were 1-25%, 25-50%, and 75-100% positive respectively. In our former research about 

263 high-grade serous ovarian carcinoma tissue paraffin sections, 2%, 5% and 3% were 

≤1%, 10-50%, and 75-100% positive respectively. In conclusion, non-serous ovarian 

cancer tissue sections showed robust nuclear staining of PAX2. High-grade serous 

ovarian cancer tissue sections showed no nuclear staining or extremely faint 

cytoplasmic staining of PAX2 (Figure 3-3C). This is consistent with, and further 

supported our former data about PAX2 expression in ovarian cancers (111). According 

to our statistical analysis, non-serous ovarian cancer sections had significantly higher 

robust nuclear PAX2 staining than high-grade serous ovarian cancer sections (p<0.001) 

(Table 3-1). PAX2 may therefore have value as a potential therapeutic target for non-

serous ovarian cancers.  
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Figure 3-3. PAX2 expression in different types of ovarian cancers.  
 
(A) Affymetrix Microarray data for PAX2 expression. Gene expression cluster analysis 
of RNA extracted from normal human ovarian surface epithelia (HOSE), LMP, low-
grade serous carcinoma and high-grade serous carcinoma. PAX2 is one of eight highly 
overexpressed genes in low-grade serous ovarian cancer compared to high-grade serous 
ovarian cancer. (p=0.04) 
 
(B) Microarray analysis revealed PAX2 was highly expressed in non-serous ovarian 
cancers compared with high-grade serous ovarian cancers. PAX2 expression was 
examined in 9 human ovarian surface epithelium samples and 79 human ovarian cancer 
clinical samples that included all ovarian cancer histological subtypes (16 high-grade 
serous ovarian cancer samples, 6 clear cell ovarian cancer samples, 8 low malignant 
potential (LMP)/low-grade serous ovarian cancer samples, 27 mucinous ovarian cancer 
samples, and 22 endometrioid ovarian cancer samples).  
 
(C) PAX2 immunohistochemical staining in ovarian cancer tissue sections. Examples of 
PAX2 immunohistochemical staining of paraffin sections from clear cell ovarian 
cancer, mucinous cell ovarian cancer, endometrioid cell ovarian cancer and high-grade 
serous cell ovarian cancer patient tissue samples (200× magnification).  
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Table 3-1. PAX2 immunohistochemical nuclear staining statistic analysis.  

 

Sample Number of samples with nuclear staining (%) p-value(compared to high-grade) 

Clear cell carcinoma (n=24) 20 (83.3%) <0.001 

Mucinous ovarian cancer (n=70) 51 (72.9%) <0.001 

High-grade (n=263) 27 (10.3%) ----- 
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CHAPTER 4 

SILENCING PAX2 EXPRESSION IN OVARIAN CANCER CELL LINES 

USING LENTIVIRAL TRANSDUCTION SYSTEM 

 50



4.1 Introduction 

As our former immunohistochemical results had shown, PAX2 had a high 

expression in non-serous ovarian cancer, which includes mucinous, endometrioid, and 

clear cell carcinomas, while PAX2 expression was low in high-grade serous ovarian 

cancer. In this chapter, we further validated PAX2 expression at the molecular level by 

using different ovarian cancer cell lines. We silenced PAX2 expression using MISSION 

TRC shRNA Lentiviral Particles transduction system which is relatively reliable and 

consistent as they target genes at the nuclear DNA instead of mRNA processing 

process. We are the first one to explore the function of PAX2 in ovarian cancer 

development and progression. 

 

4.2 Aims 

 

PAX2 is highly expressed in non-serous ovarian cancer patient samples and 

these patients are relatively chemo resistant compared with serous ovarian cancer 

patients. We hypothesize that PAX2 maybe a potential therapeutic target for non-serous 

ovarian cancer patients. Our aim is to identify the role of PAX2 in ovarian cancer 

progression. To validate PAX2’s function, we identified the PAX2 positive non-serous 

ovarian cancer cell lines and knocked down their PAX2 expression. Thus, we used 

Taqman real-time RT-PCR, western blot to screen PAX2 expression in ovarian cancer 

cell lines. MISSION TRC shRNA Lentiviral transduction system was further used to 
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silence PAX2 expression in these PAX2 positive ovarian cancer cell lines. Western blot 

analysis and Taqman real-time RT-PCR were used to confirm PAX2 silencing results.  

 

4.3 Results and Discussion 

 

4.3.1 Screening ovarian cancer cell lines for PAX2 expression 

We screened twenty-eight human ovarian carcinoma cell lines (eight serous 

ovarian cancer cell lines, twelve clear cell ovarian cancer cell lines, three mucinous 

ovarian cancer cell lines, five endometrioid ovarian cancer cell lines) and one 

immortalized ovarian surface epithelium cell line IOSE29 for PAX2 nuclear expression 

by using western blot analysis. Figure 4-1A shows part of ovarian cancer cell lines’ 

PAX2 expression using Taqman real-time RT-PCR. We also confirmed our results 

using western blot analysis at the mRNA level (Figure 4-1B). We found that twelve of 

the cell lines, OVCAR3, OVCA432, TOV21G, TOV112D, RMUGL, HCH, KF, 

KOC7C, OVAS, OVISE, OVSAYO, and OVTOKO, had detectable higher PAX2 

expression from 2 to 3220 folds comparing to the reference RNA (Figure 4-1). These 

PAX2 positive cell lines are mainly non-serous ovarian cancer cell lines, such as 

mucinous ovarian cancer cell line RMUGL, clear cell ovarian cancer cell line TOV21G, 

endometrioid ovarian cancer cell line MDAH-2774 and IGROV1. This is consistent 

with the human samples as to the PAX2 expression. We will further use these cell lines 

which express PAX2 to study PAX2’s function.  
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Figure 4-1. PAX2 is over-expressed in several types of ovarian cancer cell lines.  
 
(A) Screening of 26 ovarian cancer cell lines using Taqman real-time RT-PCR showed 
that PAX2 was overexpressed in clear cell, serous, mucinous, and endometrioid ovarian 
cancer cell lines. (B) Examples of PAX2 expression in different ovarian cancer cell 
lines. Western blot analysis verified the PAX2 expression level in 7 ovarian cancer cell 
lines. 
 

 

 

 

 53



4.3.2 Silencing PAX2 expression in PAX2 positive ovarian cancer cell lines 

We found that fourteen of 28 cell lines, OVCAR3, OVCA432, TOV21G, 

TOV112D, RMUGL, HCH, KF, KOC7C, OVAS, OVISE, OVSAYO, MDAH-2774, 

IGROV1 and OVTOKO, had detectable PAX2 expression from 2 to 3220 fold higher as 

compared to reference total RNA which is extracted from 10 human cell lines derived 

from different tissues providing broad gene coverage (Figure 4-1A). PAX2 expression 

was particularly high in TOV21G, RMUGL, MDAH-2774 and IGROV1 ovarian cancer 

cell lines. These four cell lines were used for our PAX2 silencing experiments and 

future functional study about PAX2. We used MISSION TRC shRNA Lentiviral 

Particles to transfect the ovarian cancer cell lines, TOV21G, RMUGL, MDAH-2774 

and IGROV1. After stable silencing PAX2 expression, we used western blot assay to 

verify efficiency of knocking down at the protein level as shown in Figure 4-2. 

Compared with the PLKO control in the RMUGL cell line, PAX2 expression was 

downregulated by 37.7%, 95.8%, and 91.1% in shRNA 15839-, shRNA 15840-, and 

shRNA 15841-treated cells, respectively (Figure 4-2A, E). It was also downregulated by 

73.3%, 81.0%, and 80.9% in shRNA 15839-, shRNA 15840-, and shRNA 15841-treated 

cells when compared with the non-target control in the TOV21G cell line (Figure 4-2B, 

F). Compared with the non-target control, a knockdown of 46.5%, 46.3%, and 54.2% in 

shRNA 15839-, shRNA 15840- and shRNA 15841-treated cells was obtained for the 

MDAH-2774 cell line (Figure 4-2C, G). Downregulation of PAX2 in the IGROV1 cell 

line was 6.4%, 26.1%, and 58.3% in shRNA 15839-, shRNA 15840-, and shRNA 

15841-treated cells compared with the non-target control (Figure 4-2D, H). We 
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normalized PAX2 nuclear expression with PARP-1/2 nuclear expression. PAX2 

downregulation was also confirmed by Taqman real-time RT-PCR (Figure 4-3). The 

knockdown effect was especially robust using shRNA 15841. RMUGL and TOV21G 

had a larger response to shRNA than MDAH-2774 and IGROV1. In summary, our 

PAX2 Mission shRNA lentiviral particle transduction system was efficient and 

effective. We can use this system to do the future functional study of PAX2.  
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Figure 4-2. Silencing PAX2 expression in different ovarian cancer cell lines using 
MISSION TRC shRNA Lentiviral Particles.  
 
Western blot analysis was used to examine PAX2 expression.  PAX2 expression was 
normalized on the basis of the western blot results. PLKO and non-target shRNA were 
the negative controls. (A, E) Mucinous ovarian cancer cell line RMUGL. (B, F) Clear 
cell ovarian cancer cell line TOV21G. (C, G) Endometrioid ovarian cancer cell line 
MDAH-2774. (D, H) Endometrioid ovarian cancer cell line IGROV1. shRNAs 15839, 
15840, and 15841 were PAX2-targeted shRNAs, which knocked down PAX2 
expression in the ovarian cancer cell lines to various degrees. 
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Figure 4-3. Taqman real-time RT-PCR validation of PAX2 knockdown in ovarian 
cancer cell lines.  
 
Taqman real-time RT-PCR was used to check PAX2 expression in different ovarian 
cancer cell lines after silencing PAX2 expression. All results were normalized using 
cyclophilin A. (A) Mucinous ovarian cancer cell line RMUGL. (B) Clear cell ovarian 
cancer cell line TOV21G. (C) Endometrioid ovarian cancer cell line MDAH-2774. (D) 
Endometrioid ovarian cancer cell line IGROV1. Compared with the control, silencing 
PAX2 expression in these ovarian cancer cell lines was successful. 
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CHAPTER 5 

DOWNREGULATION OF PAX2 SUPPRESSES OVARIAN CANCER CELL 

GROWTH 

 59



5.1 Introduction 

Two aspects will affect the cell growth: cell viability and cell proliferation. 

PAX2 promotes cell growth in prostate epithelial and prostate cancer cell lines (127). 

We hypothesize that PAX2 will have similar effects in non-serous ovarian cancer 

development and progression. After silencing PAX2 expression in PAX2 positive 

ovarian cancer cell lines, WST1 assay was used to measure the cell viability. Flow 

cytometry TUNEL assay was used to measure changes in the cell cycle phases which 

reflected the proliferation rate. 

In mucinous cell ovarian cancer cell line RMUGL, we compared the cell 

viability in PAX2 silenced cell lines and PLKO control PAX2 positive cell lines at days 

1, 2, 4, 6, 8 which reflected the metabolic state of the cells. In clear cell ovarian cancer 

cell line TOV21G, we compared the cell viability in PAX2 silenced cell lines, PLKO 

control and non-target control PAX2 positive cell lines at days 1, 2, 4, 6, 8. In 

endometrioid cell ovarian cancer cell line MDAH-2774 and IGROV1, we compared the 

cell viability in PAX2 silenced cell lines, PLKO control and non-target control PAX2 

positive cell lines at days 1, 2, 4, 6, 7. Subsequently, flow cytometry was used to check 

the changes in the cell cycle phases after silencing PAX2 expression in PAX2 positive 

ovarian cancer cell lines. The cells were subjected to propidium iodide incorporation 

and flow cytometry was used to measure differences in cell cycle phases.  

PAX2 has been shown to increase cell motility in kidney cancer cell lines (127). 

We examined its effect on ovarian cancer cell motility by using PAX2 silencing system 

and examined cell motility by using wound healing assay. We compared the cell 
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motility in PAX2 silenced mucinous ovarian cancer cell lines RMUGL and PLKO 

control PAX2 positive cell lines at 0h, 5h, 10h, and 24h respective. As to the clear cell 

ovarian cancer cell line TOV21G, endometrioid ovarian cancer cell lines MDAH-2774 

and IGROV1, we compared cell motility in PAX2 silenced cell lines, PLKO control and 

non-target control PAX2 positive cell lines at 0h, 5h, 10h, and 24h respectively. 

Subsequently, TScratch program (Computational Science & Engineering Laboratory, 

Switzerland) was used to quantitatively analyze wound healing assay results. 

 

5.2 Aims 

 

The aim is to study the effect of PAX2 downregulation on ovarian cancer 

growth in vitro and in vivo. We used WST1 assay and wound healing assay to measure 

cell viability and cell motility respectively following PAX2 downregulation. Mouse 

xenograft model was used to study the effect of downregulation PAX2 on tumor 

growth. 

 

5.3 Results and Discussion 

 

5.3.1 PAX2 knockdown decreased cell viability 

After successfully silencing PAX2 expression in ovarian cancer cell lines, 

RMUGL, TOV21G, MDAH-2774 and IGROV1, we did WST1 assay on both the 

original ovarian cancer cell lines and PAX2 silenced cell lines. As shown in Figure 5-
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1A, compared with the PLKO control cell line, all the PAX2 silenced RMUGL cell 

lines had a decreased proliferation rate. The same was true for clear cell ovarian cancer 

cell line TOV21G (Figure 5-1B) and endometrioid ovarian cancer cell lines MDAH-

2774 (Figure 5-1C) and IGROV1 (Figure 5-1D). PAX2 silenced cell lines had a lower 

proliferation rate compared with the PAX2 positive control cell lines (P<0.001). As 

WST1 assay measured cell viability which represented the cell metabolism rate, the 

PAX2 silenced cell lines had a decreased metabolism rate compared with the PAX2 

positive control cell line which indicates that PAX2 positive ovarian cancer cell lines 

had a higher metabolism rate. The higher metabolism rate indicates that the cells are 

more active and those cells are more likely to have a higher proliferation rate. The 

consequence of high proliferation rate is a rapid cell growth rate. In brief, we concluded 

that silencing PAX2 expression decreased cell growth in ovarian cancer cell lines. This 

is consistent with the studies of Bose et al (127) which showed that angiotensin II 

upregulated PAX2 expression in prostate epithelial cells resulted in increased cell 

growth. Thus, we concluded that downregulating PAX2 expression decreased ovarian 

cancer cell growth by decreasing cell viability. 
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Figure 5-1. Cell viability analyses confirmed the effects of PAX2 knockdown in 
ovarian cancer cell lines.  
 
The WST-1 assay was used to compare cell viability among the PAX2 knockdown and 
PAX2-expressing ovarian cancer cell lines. PLKO and non-target shRNA were the 
negative controls. (A) Mucinous ovarian cancer cell line RMUGL. (B) Clear cell 
ovarian cancer cell line TOV21G. (C) Endometrioid ovarian cancer cell line MDAH-
2774. (D) Endometrioid ovarian cancer cell line IGROV1. shRNAs 15839, 15840, and 
15841 were PAX2-targeted shRNAs, which knocked down PAX2 expression and 
decreased cell viability to various degrees.  
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5.3.2 PAX2 knockdown decreased cell motility 

We performed a wound healing assay to analyze the effects of silencing PAX2 

expression in ovarian cancer cell lines. We used ovarian cancer cell lines, RMUGL, 

TOV21G, MDAH-2774 and IGROV1. After stable silencing PAX2 expression in these 

cell lines, the cultures were photographed at 0h, 5h, 10h and 24h respectively. We used 

TScratch program to measure the open areas. We found that compared with control cell 

lines which had PAX2 expression, PAX2 silenced ovarian cancer cell lines had bigger 

open areas and lower cell motility as shown in figure 5-2. In mucinous ovarian cancer 

cell line RMUGL, PLKO control cell line had a stable increase of closing area from 0 

hour to 24 hours, while the PAX2 silenced cell lines RMUGL-15839 and RMUGL-

15840 had a stable closing rate of 0.01% from 0 hour to 24 hours which indicated that 

they almost did not move in this periods of time. RMUGL-15841 PAX2 silenced cell 

line began a slow movement at 5 hours and the closing rate is stable and consistent at a 

lower rate comparing to the RMUGL-PLKO control cell line (P<0.001) (Figure 5-2A, 

Figure 5-2E). As to the clear cell ovarian cancer cell line TOV21G, TOV21G-non-

target control cell line had the highest closing rate, followed by TOV21G-PLKO control 

cell line. TOV21G-15839, TOV21G-15840 and TOV21G-15841 PAX2 silenced cell 

lines had a stable slow closing rate from 0 hour to 10 hours which was much lower than 

PLKO and non-target control cell lines (P<0.001) (Figure 5-2B, Figure 5-2F). As to the 

endometrioid cell ovarian cancer cell lines MDAH-2774 and IGROV1, PLKO control 

cell lines had the highest closing rate, followed by non-target control cell lines. 15839, 

15840 and 15841 PAX2 silencing cell lines had a stable slow closing rate from 0 hour 
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to 10 hours which was much lower than PLKO and non-target control cell lines 

(P<0.001) (Figure 5-2C, Figure 5-2D, Figure 5-2G, Figure 5-2H). These results 

confirmed our hypothesis that downregulating PAX2 expression decreased cell motility, 

and suggest that PAX2 is a potential oncogene and can be the therapeutic target for non-

serous ovarian cancer patients.  
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Figure 5-2. Cell motility analyses confirmed the effects of PAX2 knockdown in 
ovarian cancer cell lines.  
 
Wound healing assay in PAX2 knockdown and PAX2-expressing ovarian cancer cell 
lines; PLKO and non-target shRNA were the negative controls. (A, E) Mucinous 
ovarian cancer cell line RMUGL. (B, F) Clear cell ovarian cancer cell line TOV21G. 
(C, G) Endometrioid ovarian cancer cell line MDAH-2774. (D, H) Endometrioid 
ovarian cancer cell line IGROV1. shRNAs 15839, 15840, and 15841 were PAX2-
targeted shRNAs, which knocked down PAX2 expression in ovarian cancer cell lines 
and decreased cell motility to various degrees. 
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5.3.3 Knockdown PAX2 expression decreased tumor growth in in vivo experiments 

Ten nude mice were obtained from the Department of Experimental Radiation 

Oncology at The University of Texas MD Anderson Cancer Center. Ovarian cancer cell 

lines TOV21G-non-target control and TOV21G-PAX2KD-shRNA15840 were injected 

to these mice, five per group. Cells were dissolved in 2:1 PBS/matrix gel mixture. One 

million cells in 100µl PBS/matrix gel mixture were subcutaneously injected into each 

mouse left flank. Tumor size was measured at every four days before mice were 

sacrificed. We sacrificed the mouse after the average tumor volume was more than 0.5 

cm3 in any one group of mice. Tumors were weighed after the mice were sacrificed. 

Student’s t-test was used to compare the tumor weight difference between two groups. 

We found that comparing to the control mice injected with TOV21G-non-target control 

cell line, mice injected with PAX2 silenced cell line TOV21G shRNA15840 had a 

lower tumor weight (P=0.0093) (Figure 5-3). This indicated that tumor grew slowly in 

vivo when we silenced PAX2 expression.  
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Figure 5-3. Tumor grew slowly in mice injected with PAX2 silenced ovarian cancer 
cell lines. 
 
Tumor weight differences between mice injected with TOV21G-non-target control cell 
lines and TOV21G-PAX2KD-shRNA 15840 cell lines. Comparing to the control, mice 
injected with PAX2 silenced ovarian cancer cell lines had a lower tumor weight 
(P=0.0093). 
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CHAPTER 6 

PAX2 KNOCKDOWN UPREGULATED G0S2 EXPRESSION AND ENHANCED 

APOPTOTIC EVENTS 
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6.1 Introduction 

PAX2, 5, 8 belong to the PAX gene family subgroup 2 (55) which are involved 

in a variety of tumor growth and survival (35). Bose (127) found that Angiotensin-II 

upregulated PAX2 expression in prostate epithelial cells and prostate cancer cell lines 

results in increased cell growth. Stuart (99) found that PAX2, 5, 8 proteins can bind 

directly to the TP53 gene 3' end of exon one and inhibit human TP53 expression in 

astrocytoma. PAX proteins may regulate TP53 expression at the transcriptional level 

and initiate tumor growth and progression. The relationship of PAX2 and PAX8 has 

mainly been studied in embryonic development. Batista (128) found PAX8 spinal cord 

expression was regulated by PAX2 in the embryonic spinal cord development and 

PAX8 expression was dramatically downregulated in the absence of PAX2. Liu and 

Shan (13, 129) found that high-grade ovarian serous carcinoma commonly had TP53 

mutations, but such mutations were rare in low-grade ovarian carcinoma. Furthermore, 

low-grade serous carcinoma is characterized by mutations in the KRAS or BRAF 

pathway, as 68% of low-grade and 61% of LMP serous carcinomas have mutations in 

KRAS or its downstream mediator BRAF (13, 129). Thus, it is likely that the oncogenic 

PAX2 promotes ovarian cancer development through a TP53 dependent pathway, while 

PAX8 which is expressed in TP53 mutated high-grade ovarian cancer promotes the 

development of high grade ovarian cancer through a TP53 independent pathway. Our 

study will be focused on PAX2’s function in different types of ovarian cancers, 

especially non-serous ovarian cancers which are more resistant to standard 

chemotherapy. 
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According to our literature research, we found that PAX2 regulates the following 

genes: MITF (130), ITGB3 (131), ITGAV (131), WNT4 (132), PAX2 (131, 133), GCG 

(134), SFRP2 (135), PAX5 (136), VSX2 (130), ROBO3 (137), PAX6 (138), GDNF 

(139), WT1 (133). PAX2 is regulated by the following genes: SHH (140), OTX2 (141-

143), Tlx (144), PAX2 (145), ammonia (146), SIX1 (147, 148), furosemide (149), HMX2 

(150), OTX1 (142), GBX2 (142), Akt inhibitor IV (151), BMP7 (152), FST (152), VAX2 

(153), and HES3 (154). PAX2 binds to the following genes: WT1 (133), GCG (155, 

156), KPNA2 (157), BBS1 (158), BBS2 (158), BBS4 (158), BBS7 (158), MAPK8 (159), 

MAPK8IP1 (159), PAXIP1 (160), ID2 (161), Rb (137), RB1 (137), PAX5 (162), PAX2 

(162). Many of these genes are involved in apoptosis, cell motility and invasiveness, 

cell morphology change, cell growth and organ development, cell commitment and 

aggregation. Formerly, the research about PAX2 is mainly focused on papillorenal 

syndrome or renal-coloboma syndrome. The research about PAX2 in ovarian cancers is 

still a blank until now. The role of PAX2 in ovarian cancer is not well understood. 

In humans, there are 12 different annexin proteins (annexins A1–A11 and A13) 

which have orthologues in most vertebrates (163). Annexin A1 (ANXA1) is a 37 

kDalton protein formed by 346 amino acids which was previously known as lipocortin 

1 (96). ANXA1 is the first member of 13 member protein family annexins which were 

first discovered by several laboratories when they were looking for the mechanisms of 

anti-inflammatory glucocorticoids suppressed prostanoid synthesis in cells (164-166). 

Annexin A1 signals through a seven-membrane spanning G-protein-coupled receptor 

(GPCR) (167) formyl peptide receptor 2 (FPR2) which is also known as ALXR in 
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humans. ALXR is also the receptor for the anti-inflammatory molecule lipoxin A4 

(168). Human ALXR belongs to a small family of receptors which are consisted of 

three members (FPR1, ALXR and FPR3). These members are coupled to Gi proteins 

and are expressed by several cell types, such as human neutrophils, macrophages, 

monocytes, epithelial cells and endothelial cells (169, 170). Annexin A1 and peptides 

derived from its N-terminal region compete with ALXR ligand (serum amyloid protein 

A) and lipoxin A4 (167), for the binding site of ALXR. ANXA1 and lipoxin A4 

(LXA4) analogs induce similar anti-inflammatory, protective effects by stimulating the 

lipoxin receptor LXA4 (ALX)/Formyl Peptide receptor-like 1 (FPRL-1) (171). ANXA1 

is associated with many cellular components, including plasma membrane 

phospholipids, vesicles and cytoskeletal proteins and plays an important role in 

intracellular trafficking (94, 172). ANXA1 also plays an important role in cell 

differentiation, proliferation, apoptosis and plasma membrane repair intracellularly (94). 

ANXA1 is also a downstream mediator of glucocorticoid signaling, where it is an anti-

inflammatory protein that has been implicated in the regulation of the mucosal 

regeneration during periods of inflammation in the host defense system (94, 173). 

Extracellularly, ANXA1 takes part in anti-inflammatory processes by inhibiting 

neutrophil adhesion to endothelial cell monolayers and decreasing transmigration, 

promoting neutrophils apoptosis and macrophage-regulated phagocytosis (168, 171, 

174). We clarified the function of Annexin A1 in the development of ovarian cancer. 

Our data showed that PAX2 knockdown can decrease tumor growth by increasing 
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Annexin A1 expression and promoting apoptosis which is shown in our western blot 

analysis. 

The Annexin V gene is located on human chromosome 4q26–q28 and spans a 

region of 28 kb DNA which contains 13 exons and 12 introns (175). Annexin V is a 35 

kDa plasma protein which is expressed in syncytiotrophoblast and endothelial cells 

(176, 177). Recombinant exogenous Annexin V binds to negatively charged 

phospholipids in a Ca2+-dependent manner, and this binding is important for its 

anticoagulant, antiapoptotic and anti-inflammatory effects (176-178). Munoz et al. 

hypothysized that Annexin V modulates the immune system by inhibiting phagocytosis 

of apoptotic and necrotic cells (179). Apoptotic cell death is characterized by a change 

in plasma membrane structure, the surface exposure of phosphatidylserine (PS), while 

the membrane integrity remains unchallenged. Surface exposed PS can be detected by 

its affinity to phospholipid binding protein Annexin V (180). 

G0S2 protein was first identified as a small basic nuclear phosphoprotein which 

was encoded by G0S2, one of the G0/G1 switch (G0S) genes that are differentially 

expressed during lymphocytes lectin-induced switch from G0 to G1 phases of the cell 

cycle (86). The expression of G0S2 is required to commit cells to enter the G1 phase of 

the cell cycle (87). G0S2 is highly expressed in adipose tissue, liver and heart. Its 

expression increases in response to glucose, insulin and ligands for the PPAR family of 

transcription factors, and decreases upon treatment with TNFα and β-adrenergic agonist 

(88, 89). G0S2 protein, a mitochondrial protein, specifically interacts with Bcl-2 and 

promotes apoptosis through preventing the formation of protective Bcl-2/Bax 
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heterodimers (90). DNA methylation of the G0S2 gene was significantly more frequent 

in squamous lung cancer than in non-squamous lung cancer (91) G0S2 with a functional 

PPRE (PPAR-responsive element) in its promoter is a direct PPARγ and probable 

PPARα target gene and may be involved in adipocyte differentiation (92).  

Stem cells were first described by Alexander Maksimov (181) as the common 

precursor cell of all blood cells. Stem cells are clonogenic, self-renewing progenitor 

cells which are able to generate one or more specialized cell types with the ability to 

differentiate into several different cells (182). Stem cells have the characteristics of self-

renewal, proliferative capacity, and multipotency (183) and are classified into two 

major categories, according to their developmental status: embryonic stem cells and 

adult stem cells (182). Embryonic stem cells are pluripotent cells isolated from the inner 

cell mass of the blastocyst-stage mammalian embryo (184) and adult stem cells are 

found in adult tissues. Pluripotent cells can generate functional tissues during 

development and regenerate these tissues following injury or degenerative processes 

(182). Stem-cell fate is regulated by the combination of extrinsic and intrinsic signals, 

which are not fully understood (185). The molecular mechanisms that regulate stem-cell 

function and the identification of specific stem-cell markers will be the focus of cell and 

developmental biology (186, 187).  

Somatic stem cells promote normal tissue repair and regeneration (188). Ovarian 

somatic stem cells within ovarian epithelial layer divide asymmetrically, yielding an 

undifferentiated self-cope and a daughter cell which proceeds to terminal differentiation 

(189). Multipotent ovarian somatic stem cells regulate ovarian surface epithelium repair 
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and regeneration after ovulatory rupture (188). Repeated asymmetric self-renewal 

increases the probabilities of mutations for somatic stem cells and their immediate 

progenitors, which ultimately lead to cancer stem cell formation and malignant 

progression (189).  

Stem cells and tumor cells have several similarities and this led to the cancer 

stem cell model of tumorigenesis. Tumors are heterogeneous collections of rapidly 

proliferating cells with different phenotypes which is like organs derived from stem 

cells (183). These heterogeneous tumor cells are thought to derive from a self-renewing 

clonal population which produces terminally differentiating progenitor cells. This self-

renewing clonal population within a tumor is termed “cancer stem cell” as they undergo 

similar biological processes as normal stem cells (183, 190). Cancer stem cells were 

first identified in acute myeloid leukemia by Lapidot etc. (191). They were 

subsequently identified in many types of solid tumors such as breast (192), ovarian 

(193, 194), prostate (195), brain (196), lung (197), liver (198), pancreas (199-201), 

colon cancer (202, 203), and melanoma (204). Cancer stem cells play a vital role in 

tumor initiation, growth, chemotherapy resistance and metastasis (186, 205, 206). 

Cancer stem cells are mainly responsible for early metastasis and recurrence (186, 205-

207). They are also the key point for intrinsically resistance to chemotherapy(208) and 

radiotherapy (209) even after the disappearance of bulky tumors (210). BMI1, SHH, 

Notch and Wnt/beta-catenin pathways are characteristically activated in cancer stem 

cells (187, 211). Thorough research about these pathways will help us to identify 

potential therapeutic targets for cancer stem cells (187, 212).  
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Side population cancer cells is a part of cancer cells which is characterized by 

their ability to efflux lipophilic substrates, such as dye Hoechst 33342 and many 

chemotherapy agents(201). Side population cells which are immature, poorly 

differentiated, and highly tumorigenic have a higher expression of stem-cell markers 

and lower expression of differentiation markers in gene expression profiles (189).  

 

6.2 Aims 

 

Downregulation of PAX2 can decrease cell growth. The mechanisms of this 

effect are our research focus. Affymetrix microarray analysis was used to study the 

genes that were affected by PAX2 knockdown. Ingenuity pathway analysis was used to 

study these differentially expressed genes. Taqman real-time RT-PCR was used to 

confirm our microarray data. RPPA was used to study proteins that were affected by 

PAX2 silencing. Cell cycle analysis, TUNEL, APC-Annexin V assay were used to 

study the apoptotic event changes affected by PAX2 silencing. 

 

6.3 Results and Discussion 

 

6.3.1 PAX2 downregulation increased the expression of tumor suppressor gene 

G0S2.  

Expression profiles of genes affected by PAX2 knockdown were obtained by 

analysis of TOV21G cells with PAX2 knockdown by shRNA 15839, 15840, and 15841; 
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these profiles were compared with those of TOV21G, TOV21G-PLKO, TOV21G-non-

target control cells. We found that silencing PAX2 induced upregulation of G0S2, 

WFDC1 and GREM1 which are involved in the apoptotic events (Figure 6-1A, Table 6-

1). Among the genes detected, G0S2 was upregulated 3.85-fold compared with the non-

target control in the TOV21G cell line (Figure 6-1A, Table 6-1). This change was 

confirmed by Taqman real-time RT-PCR (Figure 6-1B) in RMUGL, TOV21G, MDAH-

2774, and IGROV1 ovarian cancer cell lines. In the mucinous ovarian cancer cell line 

RMUGL, transfection with shRNAs 15839, 15840, and 15841 caused PAX2 

downregulation ratios of 2.21, 1.64, and 3.56, respectively, and G0S2 upregulation 

ratios of 2.30, 1.57, and 2.58 compared with the PLKO control. In the clear cell ovarian 

cancer cell line TOV21G, transfection with shRNAs 15839, 15840, and 15841 caused 

PAX2 downregulation ratios of 4.62, 5.03, and 21.32, respectively, and G0S2 

upregulation ratios of 2.49, 5.31, and 3.57 compared with the non-target control. In the 

endometrioid ovarian cancer cell line MDAH-2774, transfection with shRNAs 15839, 

15840, and 15841 caused PAX2 downregulation ratios of 1.45, 1.56, and 3.60, 

respectively, and G0S2 upregulation ratios of 1.84 and 1.58 compared with the non-

target control. We did not see G0S2 upregulation in the shRNA 15839 transfected 

MDAH-2774 cell lines. In the endometrioid ovarian cancer cell line IGROV1, 

transfection with shRNAs 15839, 15840, and 15841 caused PAX2 downregulation ratios 

of PAX2 of 1.45, 1.71, and 3.48, respectively, and G0S2 upregulation ratios of 1.81, 

2.85, and 3.77 compared with the non-target control (Figure 6-1B). In summary, 
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upregulation of G0S2 was usually observed in the ovarian cancer cell lines that had 

downregulated PAX2 expression.  

We further analyzed our microarray data using Ingenuity Pathway Analysis 

(IPA) and found that the main biological functional pathways and canonical pathways 

had been changed obviously when we knockdown PAX2 expression in the TOV21G 

ovarian cancer cell line. The most differentially expressed genes in the PAX2 

knockdown groups have their biological functions in the cellular movement, growth, 

proliferation, development, and tumor morphology and cell death (Figure 6-2A). These 

differentially expressed genes are mainly involved in the cancer development pathways, 

such as HER-2 signaling, estrogen receptor signaling, Wnt/β-catenin signaling, and cell 

cycle G1/S checkpoint regulation (Figure 6-2B). We further summarized these 

pathways affected by these differentially expressed genes in Figure 6-2C. These results 

further explained our observation that cell had decreased viability and mobility when 

we silenced PAX2 expression and confirmed our hypothesis that PAX2 is an oncogene.  
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Figure 6-1. G0S2 was upregulated in PAX2 stable knockdown ovarian cancer cell 
lines TOV21G, RMUGL, MDAH-2774, and IGROV1.  
 
(A) Differentially expressed genes in the PAX2 stable knockdown TOV21G clear cell 
ovarian cancer cell line. (B) Validation of upregulation of G0S2 in PAX2 knockdown 
cell lines by RT-PCR. After PAX2 knockdown in the TOV21G, Affymetrix microarray 
data showed that a list of genes (e.g., G0S2, WFDC1, and GREM1) had been 
upregulated. Taqman real-time RT-PCR further confirmed the overexpression of G0S2 
in PAX2 knockdown ovarian cancer cell lines, TOV21G, RMUGL, MDAH-2774, and 
IGROV1. 
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Figure 6-2. Signaling pathways and biological functional changes induced by 
PAX2 downregulation. 
 
Ingenuity pathway analysis was used to analyze the biological functions and pathways 
affected by PAX2 knockdown. After downregulating PAX2 expression, differentially 
expressed genes were found by Affymetrix microarray analysis. Ingenuity pathway 
analysis was further used to analyze these differentially expressed genes.  
 
(A) Main biological functional changes affected by differentially expressed genes in the 
PAX2 stable knockdown TOV21G clear cell ovarian cancer cell line. (B) Main 
canonical pathways affected by differentially expressed genes in the PAX2 stable 
knockdown TOV21G clear cell ovarian cancer cell line. (C) Differentially expressed 
genes affect cellular movement, tissue development, DNA replication, recombination 
and repair pathway.  
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Table 6-1. Differentially expressed genes between PAX2 knockdown cell lines and 
control cell lines in Affymetrix Microarray Analysis for clear cell ovarian cancer 
cell line TOV21G. 

 
Affymetrix microarray analysis was used to analyze gene expression differences 
between PAX2 positive control cell lines and PAX2 silenced cell lines in clear cell 
ovarian cancer cell line TOV21G. Genes that had been affected by PAX2 silencing 
were listed in this table.  
 



Differentially expressed genes Accession EntrezGene Description 
baseline 
mean 

experiment 
mean 

fold 
change 

lower 
bound 
of FC 

upper 
bound 
of FC 

difference of
means t statistic P value 

Biological 
Function 

SLC7A11: solute carrier family 7, 
(cationic amino acid transporter, y+
system) member 11 AB040875 23657 g13516845 343.91 150.24 -2.29 -1.76 -2.88 -193.67 -4.194 0.044398   
PKDCC: protein kinase domain
containing, cytoplasmic homolog
(mouse) BF528878 91461 Hs.10083.0 805.13 373.41 -2.16 -1.48 -3.37 -431.72 -3.324 0.044942   
TSPAN12: tetraspanin 12 AI056699 23554 Hs.16529.1 676.53 424.87 -1.59 -1.27 -2.01 -251.66 -3.367 0.043844   
DLST: dihydrolipoamide S-
succinyltransferase (E2 component of 2-
oxo-glutarate complex) S72422 1743 Hs.296348.0 675.32 464.25 -1.45 -1.28 -1.65 -211.07 -4.786 0.017593   
GSTCD: glutathione S-transferase, C-
terminal domain containing AA740875 79807 Hs.44307.0 479.75 341.11 -1.41 -1.24 -1.58 -138.64 -4.107 0.039981   

CTBP1:C-terminal binding protein 1 BF984434   Hs.239737.1 811.05 589.91 -1.37 -1.27 -1.48 -221.14 -6.146 0.012158 
Cellular 
Movement 

Hs.47448.0 AW149422   Hs.47448.0 2661.68 1959.72 -1.36 -1.27 -1.45 -701.97 -7.195 0.007474   
Hs.172028.0 N51370   Hs.172028.0 2351.67 3005.77 1.28 1.2 1.36 654.1 6.669 0.006876   
SERINC5: serine incorporator 5 AI700633 256987 Hs.288232.0 746.98 979.37 1.31 1.2 1.44 232.39 5.572 0.014578   
ADCY7: adenylate cyclase 7 NM_001114 113 g4557254 377.65 497.1 1.32 1.23 1.42 119.46 6.976 0.00686   
PTPRK: protein tyrosine phosphatase,
receptor type, K NM_002844 5796 g4506316 630.78 870.44 1.38 1.23 1.57 239.66 4.94 0.022715 

Cellular 
Movement 

FERMT2: fermitin family homolog 2 
(Drosophila) Z24725 10979 g505032 2207.94 3080.68 1.4 1.23 1.61 872.75 4.566 0.021748 

Cellular 
Movement 

POLR2A: polymerase (RNA) II (DNA 
directed) polypeptide A, 220kDa NM_000937 5430 g4505938 698.74 982.44 1.41 1.3 1.53 283.71 7.881 0.008744   
SLC20A1: solute carrier family 20 
(phosphate transporter), member 1 NM_005415 6574 g7382462 1486.6 2156.85 1.45 1.29 1.65 670.25 5.883 0.016278   
CD164: CD164 molecule, sialomucin BF669455 8763 Hs.43910.2 1536.92 2239.71 1.46 1.3 1.64 702.79 5.676 0.011666   
CD44: CD44 molecule (Indian blood 
group) AF098641 960 g3832517 716.6 1044.17 1.46 1.21 1.79 327.57 3.55 0.038195 

Cellular 
Movement 
Cellular 
Movement 

APBB2: amyloid beta (A4) precursor
protein-binding, family B, member 2 BF115739 323 Hs.15740.0 332.91 488.78 1.47 1.23 1.79 155.87 3.924 0.033605 
C5orf13: chromosome 5 open reading
frame 13 U36189 9315 g1244509 255 373.82 1.47 1.21 1.85 118.81 3.442 0.04681 

Cellular 
Movement 

KLHL5: kelch-like 5 (Drosophila) BE501881 51088 Hs.29088.0 457.38 675.14 1.48 1.25 1.76 217.76 3.862 0.04538   

NRG1: neuregulin 1 NM_013960 3084 g7669519 248.73 367.46 1.48 1.24 1.79 118.73 3.714 0.037901 
Cellular 
Movement 

SMAD7: SMAD family member 7 NM_005904 4092 g5174516 548.26 819.47 1.49 1.31 1.73 271.21 5.484 0.012297 
Cellular 
Movement 
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SOCS6: suppressor of cytokine
signaling 6 NM_016387 9306 g7705444 317.96 479.53 1.51 1.25 1.86 161.57 3.721 0.03556   
CD44: CD44 molecule (Indian blood 
group) M24915 960 g180196 1560.1 2426.91 1.56 1.34 1.84 866.81 5.671 0.017411 

Cellular 
Movement 

CD44: CD44 molecule (Indian blood
group) BC004372 960 g13325117 1551.61 2425.07 1.56 1.32 1.9 873.46 4.842 0.019697 

Cellular 
Movement 

SOX9: SRY (sex determining region
Y)-box 9 NM_000346 6662 g4557852 558.23 873.54 1.56 1.29 1.94 315.31 4.002 0.029238   
CAV1: caveolin 1, caveolae protein, 
22kDa NM_001753 857 g4580417 2413.45 3831.29 1.59 1.43 1.76 1417.84 6.746 0.041172 

Cellular 
Movement 

ETS2: v-ets erythroblastosis virus E26 
oncogene homolog 2 (avian) AL575509 2114 Hs.85146.0 188.74 304.16 1.61 1.34 2 115.42 4.482 0.020799 

Cellular 
Movement 

FAM114A1: family with sequence
similarity 114, member A1 AI742174 92689 Hs.59622.0 623.38 1005.83 1.61 1.39 1.9 382.45 5.883 0.009804   
GALNT1: UDP-N-acetyl-alpha-D-
galactosamine:polypeptide N-
acetylgalactosaminyltransferase 1
(GalNAc-T1) NM_020474 2589 g13124890 428.38 708.79 1.65 1.49 1.85 280.41 7.81 0.011602   
AHR: aryl hydrocarbon receptor NM_001621 196 g5016091 315.51 524.32 1.66 1.37 2.05 208.81 4.38 0.03393   
C20orf160: chromosome 20 open
reading frame 160 BF970287 140706 Hs.118987.0 355.74 595.2 1.67 1.46 1.94 239.45 7.275 0.006084   
C5orf13: chromosome 5 open reading
frame 13 NM_004772 9315 g4758865 591.21 1019.05 1.72 1.5 2.01 427.84 6.821 0.007469 

Cellular 
Movement 

GALNT1: UDP-N-acetyl-alpha-D-
galactosamine:polypeptide N-
acetylgalactosaminyltransferase 1
(GalNAc-T1) U41514 2589 g1136284 754.28 1298.95 1.72 1.43 2.15 544.67 5.714 0.017967   
CHST11: carbohydrate (chondroitin 4) 
sulfotransferase 11 AI806905 50515 Hs.64001.0 152.5 269.8 1.77 1.49 2.16 117.3 5.96 0.009469   
Hs.128842.0 AV712346   Hs.128842.0 154.51 273.05 1.77 1.36 2.5 118.54 4.121 0.040324   
CTSC: cathepsin C AV699565 1075 Hs.128065.0 166.78 302.87 1.82 1.43 2.43 136.09 4.569 0.019761   
GALNT1: UDP-N-acetyl-alpha-D-
galactosamine:polypeptide N-
acetylgalactosaminyltransferase 1
(GalNAc-T1) BC038440 2589 Hs2.80120.2 921.55 1689.21 1.83 1.61 2.12 767.66 9.217 0.003804   

SIX1: SIX homeobox 1 N79004 6495 Hs.41295.0 310.78 579.65 1.87 1.42 2.58 268.87 3.876 0.037635 
Cellular 
Movement 

FRMD6: FERM domain containing 6 AL040051 122786 Hs.250705.0 1142.29 2145.48 1.88 1.48 2.57 1003.19 5.279 0.029777   
GALNT1: UDP-N-acetyl-alpha-D-
galactosamine:polypeptide N-
acetylgalactosaminyltransferase 1
(GalNAc-T1) AV692127 2589 Hs.80120.0 687.75 1290.23 1.88 1.74 2.03 602.47 13.246 0.006358   
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AREG: amphiregulin NM_001657 374 g4502198 391.08 737.33 1.89 1.46 2.52 346.26 4.091 0.043639 
Cellular 
Movement 

FRMD6: FERM domain containing 6 N30138 122786 Hs.250705.0 993.83 1875.24 1.89 1.44 2.73 881.41 4.653 0.037928   
PRSS23: protease, serine, 23 AW471145 11098 Hs.25338.0 232.79 452.3 1.94 1.4 3.1 219.51 3.812 0.038181   
DCBLD1: discoidin, CUB and LCCL 
domain containing 1 N22751 285761 Hs.34665.0 244.83 502.36 2.05 1.72 2.54 257.53 8.387 0.005597   
PRSS23: protease, serine, 23 NM_007173 11098 g6005881 452.76 932.3 2.06 1.49 3.05 479.54 3.844 0.043023   
MAP1B: microtubule-associated protein 
1B AA554833 4131 Hs.113368.1 260.89 562.95 2.16 1.69 2.93 302.06 6.118 0.008805 

Cellular 
Movement 

HBEGF: heparin-binding EGF-like 
growth factor NM_001945 1839 g4503412 620.03 1345.7 2.17 1.52 3.66 725.67 4.12 0.027068 

Cellular 
Movement 

CHST11: carbohydrate (chondroitin 4) 
sulfotransferase 11 AI123348 50515 Hs.64001.0 174.99 381.05 2.18 1.56 3.43 206.06 4.374 0.022198   
ST3GAL5: ST3 beta-galactoside alpha-
2,3-sialyltransferase 5 NM_003896 8869 g4506954 337.17 753.37 2.23 1.69 3.18 416.21 5.308 0.014814   
STC2: stanniocalcin 2 AI435828 8614 Hs.155223.0 841.66 2018.28 2.4 1.89 3.1 1176.62 5.933 0.037157   
NKAIN4: Na+/K+ transporting ATPase
interacting 4 AI758937 128414 Hs.46627.0 160.16 399.78 2.5 1.63 4.85 239.62 4.036 0.027952   
ABCA1: ATP-binding cassette, sub-
family A (ABC1), member 1 AF285167 19 g9755158 108.08 321.09 2.97 1.78 8.69 213.01 4.674 0.029427   
LYPD1: LY6/PLAUR domain
containing 1 AL567376 116372 Hs.85339.1 254.22 758.29 2.98 1.75 9.34 504.07 4.308 0.02723   
G0S2: G0/G1switch 2 NM_015714 50486 Hs.95910.0 268.07 1673.14 6.24 4.2 12.01 1405.07 14.098 0.000825   
GREM1: GREMlin 1, cysteine knot 
superfamily, homolog (Xenopus laevis) AF154054 26585 g10863087 182.53 1338.66 7.33 4.21 26.12 1156.13 9.787 0.004685 

Cellular 
Movement 

GREM1: GREMlin 1, cysteine knot
superfamily, homolog (Xenopus laevis) NM_013372 26585 g7019348 112.29 930.82 8.29 4.68 31.71 818.53 9.507 0.010272 

Cellular 
Movement 



6.3.2 PAX2 downregulation in ovarian cancer cell lines promoted apoptotic events.   

RPPA was used to analyze the effects of PAX2 knockdown in ovarian cancer 

cell lines RMUGL and TOV21G. RPPA sample preparation, slide printing, staining and 

data analysis were processed as described (213, 214). Two hundred seventeen 

antibodies were used to probe our samples. Of these, 207 antibodies functioned 

adequately in the array and were used in the analysis. Knockdown of PAX2 expression 

increased the expression of Annexin A1, a marker of early stage apoptosis (Figure 6-

3A). Annexin A1 expression was further confirmed using western blot analysis (Figure 

6-3B, Figure 6-3C). To confirm PAX2’s function in the early stage of apoptosis, 

allophycocyanin-Annexin V staining, which detects an increase of phosphatidylserine 

residues in the outer plasma membrane leaflet during the early stages of apoptosis was 

used to measure apoptotic cells in RMUGL and TOV21G ovarian cancer cell lines with 

or without PAX2 expression (Figure 6-4, Table 6-2). In RMUGL, the percentage of 

apoptotic cells was 6.73%, 9.01%, and 17.15% for cells transfected with shRNAs 

15839, 15841, and 15841, respectively, compared with 8.95% in the PLKO control 

(Figure 6-4A). In TOV21G, the percentage of apoptotic cells was 3.48%, 5.27% and 

7.63% for cells transfected with shRNAs 15839, 15841, and 15841, respectively, 

compared with 3.47% in the PLKO control (Figure 6-4B, Figure 6-4C). Compared with 

the PAX2-expressing ovarian cancer cell line controls, PAX2 knockdown ovarian 

cancer cell lines had an increase in the percentage of Annexin V-positive apoptotic cells 

(Figure 6-4). The RPPA and Annexin V assay data were consistent with each other. We 

also found that in our RPPA data, silencing PAX2 expression did not affect the later 
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stage of apoptosis which is marked by increased TP53 expression. We verified this 

using western blot analysis to check TP53 expression (data not shown). We found that 

silencing PAX2 expression had no effect on the TP53 expression. 
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Figure 6-3. PAX2 knockdowns in ovarian cancer cell lines TOV21G and RMUGL 
affect proteins involved in apoptosis.  
 
Upregulation of Annexin A1 in PAX2 stable knockdown ovarian cancer cell lines. (A) 
Reverse phase protein array (RPPA) analysis showed PAX2 knockdown ovarian cancer 
cell lines had a higher expression of Annexin A1 than control cells. (B) Western blot 
analysis was used to measure Annexin A1 expression in RMUGL ovarian cancer cell 
lines with or without PAX2 knockdown. Compared with the control PLKO, PAX2 
knockdown ovarian cancer cell lines had higher expression of Annexin A1, which 
further confirmed our RPPA results. (C) Western blot results normalization for Annexin 
A1 expression in mucinous ovarian cancer cell line RMUGL. 
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Figure 6-4. Allophycocyanin-Annexin V staining in PAX2 knockdown ovarian 
cancer cell lines.  
 
Flow cytometric analysis of cell apoptosis using APC-Annexin V staining. (A) 
Mucinous ovarian cancer cell line RMUGL. (B) Clear cell ovarian cancer cell line 
TOV21G. (C) Examples of Annexin V staining of clear cell ovarian cancer cell line 
TOV21G. Compared with control cells, PAX2 knockdown ovarian cancer cells had a 
higher percentage of apoptotic cells. 
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Table 6-2. Downregulating PAX2 expression in ovarian cancer cell lines promoted 
apoptotic events as revealed by Allophycocyanin-Annexin V staining.  
 
Summary of Annexin V positive percentage in cell lines with/without PAX2 
knockdown.  
 

Cell Line Name Annexin V+(%) Annexin V& PI+(%) Total Annexin V+(%) 

RMUGL-PLKO 1.30  7.65 8.95 

RMUGL-15839 2.05 4.68 6.73 

RMUGL-15840 0.98 8.03 9.01 

RMUGL-15841 7.73  9.42 17.15 

TOV21G-PLKO 0.57 2.90  3.47 

TOV21G-non-target 0.50 3.09 3.59 

TOV21G-15839 1.13 2.35 3.48 

TOV21G-15840 1.61 3.66 5.27 

TOV21G-15841 3.54 4.09 7.63 
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6.3.3 PAX2 did not promote ovarian cancer growth by affecting later stage of 

apoptosis. 

After successfully silencing PAX2 expression in ovarian cancer cell lines, 

TOV21G, RMUGL, MDAH-2774 and IGROV1, we compared the cell cycle changes 

and apoptotic differences between ovarian cancer cell lines with PAX2 expression and 

PAX2 silenced ovarian cancer cell lines using cell cycle analysis and TUNEL assay. 

We found that these two kinds of cell lines had similar cell cycle pattern and the 

apoptotic cell numbers are similar. The difference had no statistic significance. This is 

consistent with our RPPA date which showed that silencing PAX2 expression had no 

effect on TP53 expression. This indicated that PAX2 might affect cell growth and 

motility through some other pathways instead of regulating cell cycle.  

 

6.3.4 PAX2 did not promote ovarian cancer growth by affecting stem cells.  

Side population analysis was used to compare putative stem cell ratio between 

PAX2 expressed ovarian cancer cell lines and PAX2 silenced ovarian cancer cell lines. 

Cells were labeled with Hoechst 33342 dye (Invitrogen) and analyzed by using BD 

LSRII System (BD Biosciences). We did not find side population in RMUGL ovarian 

cancer cell lines. We did find side population in TOV21G ovarian cancer cell lines, but 

we did not find any difference between PAX2 expressed control TOV21G ovarian 

cancer cell lines and PAX2 silenced TOV21G ovarian cancer cell lines (data not 

shown). Thus, PAX2 did not promote ovarian cancer growth by affecting stem cells 

number.  



 

 

 

 

 

 

CHAPTER 7 

DISCUSSION, FUTURE DIRECTIONS AND SIGNIFICANCE 
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7.1 Discussion 

PAX (paired box) genes were first described by Markus in 1986 (28) as a 

conserved sequence in the Drosophila paired and gooseberry genes. The nine members 

of human PAX gene family share a 384 base pair highly conserved DNA sequence, the 

paired box (32). Each human PAX gene is located on a different chromosome which 

suggests that they act singularly and not in combination (33). PAX genes regulate tissue 

development and cellular differentiation in embryos by promoting cell proliferation, 

cell-lineage specification, migration and survival (35, 36). PAX genes also regulate 

organogenesis and its mutations cause significant developmental abnormalities in a 

broad spectrum of organisms from flies to humans (49, 50). Their inactivation generally 

results in embryonal or neonatal death accompanied by striking developmental defects 

(38). In most cases, PAX gene expression attenuates when development is complete 

(34). Unattenuated PAX gene expression in adult tissues directs organ-specific 

regenerative events (51) and protects against stress-induced cell death (52). PAX genes 

are involved in stem-cell self-renewal, both during fetal development and in adult life 

(35). Cancer cells may signal through the PAX gene pathway to undergo proliferation, 

stem-cell self-renewal, resistance to apoptosis, cell migration and invasion which 

contributes to the malignant growth suggested by Hanahan and Weinberg (35, 53, 54). 

This indicates that PAX genes are proto-oncogenes (55) and deregulation of PAX genes 

contributes to tumor formation (56).  

 Our former research (111) found that PAX2 is one of the most upregulated 

genes in low-grade ovarian serous carcinoma by gene expression profiling. We also 
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validated this result by real-time RT-PCR, western blot and immunohistochemical 

analysis which was the first time for PAX2 to be studied in ovarian cancer (111). 

Subsequently, we evaluated gene expression profiles on twenty-one low-grade serous 

ovarian cancer samples, twenty-four high-grade serous ovarian cancer samples and six 

normal ovarian surface epithelia (HOSE) samples from The University of Texas MD 

Anderson Cancer Center using Affymetrix microarray analysis. We found eight highly 

overexpressed genes and fourteen significantly underexpressed genes in low-grade 

serous ovarian cancer compared to high-grade serous ovarian cancer. PAX2 was one of 

the overexpressed genes with 4.78 times higher expression compared to high-grade 

samples with a p-value of 0.04. To verify PAX2 expression in different types of ovarian 

cancer samples, we did the immunohistochemical analysis using twenty-four clear cell 

ovarian cancer tissue paraffin sections and fifty-one mucinous ovarian cancer tissue 

paraffin sections. Tumor sections were either lack of nuclear staining or had robust 

nuclear staining. No weak or moderate strength staining was observed. The number of 

PAX2 positive tumor cells varied from 1-100%. In twenty-four clear cell ovarian cancer 

tissue sections, 20.8%, 41.7% and 20.8% were 1-25%, 25-50%, and 75-100% positive 

respectively. In fifty-one mucinous ovarian cancer tissue sections, 24.3%, 28.6% and 

20% were 1-25%, 25-50%, and 75-100% positive respectively. In our former research, 

about 263 high-grade serous ovarian carcinoma tissue paraffin sections, 2%, 5% and 3% 

were ≤1%, 10-50%, and 75-100% positive respectively. In conclusion, non-serous 

ovarian cancer tissue sections showed robust nuclear staining of PAX2. This is 

consistent with and further confirmed our former data about PAX2 expression in 
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ovarian cancers (111). Considering that non-serous ovarian cancers are relatively 

resistant to standard chemotherapy, it is imperative for us to find a better method to treat 

these kinds of tumors. PAX2 may be a potential therapeutic target for non-serous 

ovarian cancers.  

We screened twenty-eight human ovarian carcinoma cell lines (eight serous 

ovarian cancer cell lines, twelve clear cell ovarian cancer cell lines, three mucinous 

ovarian cancer cell lines, five endometrioid ovarian cancer cell lines) and one 

immortalized ovarian surface epithelium cell line IOSE29 for PAX2 nuclear expression 

by using western blot analysis. We also used Taqman real-time RT-PCR to confirm our 

western blot results at the mRNA level. We found that fourteen ovarian cancer cell 

lines, OVCAR3, OVCA432, TOV21G, TOV112D, RMUGL, HCH, KF, KOC7C, 

OVAS, OVISE, OVSAYO, MDAH-2774, IGROV1 and OVTOKO, had detectable 

higher PAX2 expression from 2 to 3220 folds comparing to the reference RNA. This 

was consistent with the western blot results. These PAX2 positive cell lines are mainly 

non-serous ovarian cancer cell lines. The cell line screening results were consistent with 

the human samples’ results as to the PAX2 expression. We used these cell lines to do 

the PAX2 functional study.  

Ovarian cancer cell lines TOV21G, RMUGL, MDAH-2774 and IGROV1 had 

obvious PAX2 expression in both western blot analysis and Taqman real-time RT-PCR 

and were used for PAX2 silencing experiments and functional studies. We used 

MISSION TRC shRNA Lentiviral Particles to transfect the ovarian cancer cell lines, 

TOV21G, RMUGL, MDAH-2774 and IGROV1. We first did the sequence blast for the 
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shRNA lentiviral particles to assure that this shRNA will only target PAX2. After stable 

knockdown PAX2 expression, we used western blot analysis to verify the efficiency of 

knocking down PAX2 at the protein level and used Taqman real-time RT-PCR to 

confirm PAX2 knockdown at the mRNA level. We also checked other PAX family 

members, such as PAX8 and found that PAX8 expression was not affected by PAX2 

knockdown. Our PAX2 mission shRNA lentiviral particle transduction was efficient 

and specific.  

After successfully silencing PAX2 expression in ovarian cancer cell lines, 

RMUGL, TOV21G, MDAH-2774 and IGROV1, we did WST1 assay on both the 

original ovarian cancer cell lines and PAX2 silenced cell lines. As shown in Figure 5-

1A, comparing to the PLKO control cell line, all the PAX2 silenced RMUGL cell lines 

had a decreased proliferation rate. The same was observed in clear cell ovarian cancer 

cell line TOV21G (Figure 5-1B), endometrioid ovarian cancer cell lines MDAH-2774 

(Figure 5-1C) and IGROV1 (Figure 5-1D). This indicated that PAX2 silenced cell lines 

had a lower proliferation rate compared with the PAX2 positive control cell lines. The 

consequence of lower proliferation rate is a slower cell growth rate. Thus, knockdown 

PAX2 expression decreased cell growth in ovarian cancer cell lines and this is 

consistent with Khoubehi’s results that PAX2 may be a proto-oncogene (79). This is 

also consistent with Bose’s research for prostate cancer which showed that Angiotensin-

II upregulated PAX2 expression in prostate epithelial cells and prostate cancer cell lines 

resulted in increased cell growth (127). We concluded that PAX2 downregulation 

decreased ovarian cancer cell growth by decreasing cell viability. 
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We also performed the wound healing assay to analyze the effects of silencing 

PAX2 expression in ovarian cancer cell lines. We used ovarian cancer cell lines, 

RMUGL, TOV21G, MDAH-2774 and IGROV1. After stable knockdown PAX2 

expression in these cell lines, the cultures were photographed at 0h, 5h, 10h and 24h 

respectively. We used TScratch program to measure the open areas. We found that 

compared with control cell lines which had PAX2 expression, PAX2 silenced cell lines 

had bigger open areas and lower cell motility as shown in figure 5-2 which indicated 

that silencing PAX2 expression decreased cell motility.   

Mouse model was also used to confirm PAX2’s function in in vivo experiments. 

Ten nude mice were injected with either ovarian cancer cell lines TOV21G-non-target 

control or TOV21G-PAX2KD-shRNA15840, five per group. Tumor size was measured 

at every four days until the average tumor volume was more than 0.5 cm3 in any one 

group. Tumor weight was measured after the mice were sacrificed. We found that 

compared with the control mice injected with TOV21G-non-target control cell line, 

mice injected with PAX2 silenced cell line TOV21G shRNA15840 had a lower tumor 

weight (P=0.0093) (Figure 5-3) which indicated that tumor grew slowly in vivo when 

we silenced PAX2 expression.  

To verify the pathways involved in the development of ovarian cancer, we used 

Affymetrix microarray analysis to compare the gene expression differences between 

PAX2 positive control cell lines and PAX2 silenced cell lines in clear cell ovarian 

cancer cell line TOV21G. We found that silencing PAX2 expression induced 

upregulation of tumor suppressor gene G0S2 (Figure 6-1A). We verified our microarray 
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data using Taqman real-time RT-PCR in four ovarian cancer cell lines, RMUGL, 

TOV21G, MDAH-2774 and IGROV1. We found that Taqman real-time RT-PCR 

results were consistent with the microarray results (Figure 6-1B). PAX2 downregulation 

increased the expression of tumor suppressor gene G0S2. We did not find changes in 

the other PAX gene family members and this had excluded the most possible off-target 

effects.  

We also checked a list of genes that were involved in the different pathways, 

such as AKT, PI3K, EMT and cell dedifferentiation. Our data showed that silencing 

PAX2 expression had no effect on these pathways. We further verified the effects of 

silencing PAX2 expression on different pathways using reverse phase protein array 

analysis. We probed samples with 217 antibodies. Based on our QCsamples, we deleted 

those antibodies that do not function well in the array. We included 207 antibodies in 

the data set. We found that among these proteins, Annexin A1 had a prominent increase 

when we silenced PAX2 expression. We did not find changes in the other PAX gene 

family members which further confirmed that our shRNA lentiviral transduction system 

was specific. We further used western blot analysis to confirm our RPPA data. Since 

Annexin A1 is a marker for apoptosis, our data indicated that PAX2 downregulation 

upregulated Annexin A1 expression and promoted apoptosis. Thus, PAX2 might affect 

cell growth by affecting apoptosis.  

We further confirmed PAX2’s function in the early stage of apoptosis by APC 

Annexin V staining. Apoptotic cell death is characterized by complete membrane 

integrity with the surface exposure of phosphatidylserine which can be detected by its 
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affinity to phospholipid binding protein Annexin V using APC-Annexin V staining 

(180). We found that comparing to the PLKO and non-target control, the PAX2 

silenced cell lines had an increased percentage of Annexin V positive cells in both 

RMUGL and TOV21G cell lines (Figure 6-2E, Figure 6-2F) which indicated that 

knockdown PAX2 expression induced the early stage of apoptosis.  

TP53 is a marker for the later stage of apoptosis and TUNEL assay can be used 

to examine the later stage of apoptosis. We checked TP53 expression in both PAX2 

positive cell lines and PAX2 silenced cell lines and found that silencing PAX2 

expression had no prominent effect on TP53 expression. This was consistent with our 

cell cycle analysis and TUNEL assay results, which indicated that PAX2 did not affect 

cell growth by affecting the later stage of apoptosis. 

In summary, cancer cells may signal through the PAX2 pathway to proliferate, 

develop resistance to apoptosis, and promote cell migration and invasion, which 

contributes to the malignant growth as suggested by Hanahan and Weinberg (35, 53, 

54). PAX2 therefore may be a potential therapeutic target for non-serous ovarian 

cancers which are resistant to standard chemotherapy.  

 

7.2 Future directions and significance 

PAX2 belongs to the PAX gene subgroup II which is involved in embryonic 

development (68) and tumor growth (35, 69). The human PAX2 gene is located on 

chromosome bands 10q24.3-10q25.1 (70) and composed of 12 exons which spans 

approximately 70 kb (71). This gene encodes a 48-50 KDa PAX2 (64) transcription 
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factor (46), which regulates the differentiation of urogenital system, eyes, ears, and 

central nervous system during the early development (69, 72). The PAX2 gene is 

frequently expressed in a panel of 406 common primary tumor tissues (97) and its 

expression is significantly higher in patients with metastatic disease as it is correlated 

with the proliferation index (98). PAX2 promotes the cancer cell survival, motility and 

growth (35) and serves as a critical component of the multi-step oncogenic 

transformation process and is a likely candidate (65) for oncogenesis by stimulating 

proliferation (72, 99, 100). PAX2 may be a potential cancer therapeutic target as it 

suppresses cisplatin-induced apoptosis and the silencing of PAX2 partially overcomes 

the resistance of renal cell carcinomas to chemotherapy in vivo (101). Yet, little is 

known about the mechanism of PAX2-mediated protection from cell death (66). 

Currently, the research about PAX2 is mainly focused on embryonic development and 

kidney carcinoma. Our study about PAX2’s function in the ovarian cancer is a new 

milestone for both PAX2 research and ovarian cancer research. As we know, ovarian 

cancer is the second most common gynecologic malignancy, and the most common 

cause of death among women who develop gynecologic cancers (5). It is also the fifth 

most common cause of cancer-related death in females in the United States (5). It is 

called a “silent killer” (7) because in the early stage, the symptoms are vague, non-

specific (8) and the obvious symptoms can only be found when the disease has 

advanced and the treatment is unfavorable. About 85% of ovarian cancers are low grade 

ovarian cancers which are normally undetectable clinically. Conventional treatment for 

ovarian cancer is surgery, especially for early stage ovarian tumors for which only the 
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involved ovary and fallopian tube are removed (known as "unilateral salpingo-

oophorectomy," USO) (15); this is suitable for young women who wish to preserve 

their fertility. For later stage ovarian cancer, the combination of surgery and 

chemotherapy is necessary. First-line chemotherapy with platinum drugs (e.g. cisplatin 

and carboplatin) and taxanes (e.g. paclitaxel) yields a response rate of more than 80% 

(16); however, nearly all patients relapsed and the side effect is obvious and serious. 

Thus, many targeted therapies uses non-chemotherapy drugs to target specific cancer 

cells are in development. Unlike chemotherapy, targeted therapy spares normal cells, 

and may reduce the side effects of other therapies. Our research data provide the theory 

basis for ovarian cancer target therapy. Although targeting a transcription factor using 

small molecule is not very feasible, recent identification of an immunogenic HLA-

A*0201-binding T-cell epitope of the transcription factor PAX2 provides a promising 

view for cancer immunotherapy (24). We expect to see the PAX2 targeting for ovarian 

cancer immunotherapy in the near future.  

In summary, we demonstrated that PAX2 knockdown in ovarian cancer cells 

suppressed cell proliferation and motility. Stable PAX2 knockdown upregulated the 

tumor suppressor gene G0S2, and promoted the early stages of apoptosis.  We found 

that clear cell, endometrioid, and mucinous cell ovarian cancers had a higher expression 

of PAX2 compared with high-grade serous ovarian cancers; therefore, targeting the 

PAX2 pathway in these ovarian cancers warrants further investigation. Our research is 

focused on the molecular mechanisms of PAX genes’ function and its downstream 

target genes, which contributed to both the developmental processes and the molecular 
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mechanisms underlying pathogenesis of cancer (55). Furthermore, our research also 

provides the theoretical basis for ovarian cancer immunotherapy by targeting PAX2 

gene (24).  

Further research will be focused on finding the exact binding site of PAX2 on 

G0S2 promoter and its exact binding sequence. This will provide a promising aspect for 

ovarian cancer immunotherapy by targeting PAX2. We can first knockdown G0S2 in 

the parental cell lines with PAX2 expression and then knockdown PAX2 expression in 

these cell lines without G0S2 expression. Then, we can check the cell viability and 

motility. If our hypothesis that PAX2 regulates cell growth through downregulating 

G0S2 expression is correct, we should not see the growth inhibition effects of PAX2 

Knockdown among these cell lines. We can further check about the binding sites 

between PAX2 and G0S2. In fact, our ExPlain software analysis had given a 10.5145 

sites/1000bp binding match with a P-value of 0.0036 which showed a very high binding 

possibility between PAX2 protein and G0S2 promoter regions. Our hypothesis that 

PAX2 binds to the promoter region of G0S2 and downregulates G0S2 expression can 

be confirmed by chromatin immunoprecipitation (ChIP) assay. 

We further did the ExPlain analysis for ANXA1 gene which encodes Annexin 

A1 protein. We did not find any binding possibility between them which means that it is 

rarely possible for PAX2 to bind to the ANXA1 promoter or for ANXA1 to bind to the 

Pax2 promoter. There is no meaning of doing ChIP analysis for them. If we want to 

check protein level binding possibility, we need to do mass spectrometry analysis and 

find the potential binding sites. But, in my opinion, there may be some other pathways 
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between these two genes and they may not bind directly according to the preliminary 

literature search. 

Another direction of our study will be focused on further investigating IPA 

signaling pathway data. We can check their binding possibilities with PAX2 and 

knockdown the high possible binding genes and figure out new pathways involved in 

the cancer development and progression. This will be a profound contribution to the 

present cancer research and may open a new chapter for them.  

The most promising part of our future research will be the drug resistance study 

which is directly linked to the clinical patient treatment. We can treat the cell lines 

with/without PAX2 expression using present chemotherapy drugs, such as platinum 

drugs (e.g. cisplatin and carboplatin) and taxanes (e.g. paclitaxel); and observe cancer 

cells response to the chemotherapy. If the cell viability and motility difference between 

the same ovarian cancer cell lines with/without PAX2 expression changed greatly after 

chemotherapy, we may conclude that PAX2 affects cells’ sensitivity to the 

chemotherapy. We can further use mouse xenograft model to prove that PAX2 may be 

related to drug resistance. Chemotherapy drugs can be used to treat mouse injected with 

ovarian cancer cell lines with/without PAX2. If the tumor size and weight differences 

between mice injected with ovarian cancer cell lines with/without PAX2 expression 

changed greatly, our hypothesis that PAX2 is related to drug resistance will be further 

confirmed.  

The most obvious limitation of our study was that we used xenograft mouse 

model to study PAX2’s effect on the development and progression of ovarian cancer. 
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For xenograft ovarian cancer mouse model, we injected human ovarian cancer cell lines 

subcutaneously into the mouse’s flank. This model needs less work and the tumor 

forming time is short. It is a suitable way to evaluation chemotherapy drugs before the 

large scale clinical usage. But, xenograft mouse model doesn’t consider the tumor and 

microenvironment interactions which is very vital for the tumor development and 

progression. Many tumors can have metastasis if we use orthotopic mouse model 

instead of xenograft model. Thus, we need to prove our hypothesis using orthotopic 

model, especially considering that PAX2 may affect metastasis according to our wound 

healing assay.  

Orthotopic ovarian cancer mouse model which implants tumor to the ovary can 

modulate the real ovarian cancer development much better by simulating tumor 

morphology, microenvironment, metastasis potential and drug responses. Thus, we need 

to use orthotopic ovarian cancer mouse model to further verify our present results of 

xenograft ovarian cancer mouse model. This will be another focus of our future 

research.  

In summary, we observed PAX2’s expression and function and validated a 

mechanism for PAX2’s function in the ovarian cancer development and progression. 

These studies provided the theoretical basis for clinical cancer treatment and had 

profound impact on the future ovarian cancer research.  
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