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SUMOylation has emerged as an important regulatory mechanism for protein 

function. SUMO-specific proteases (SENPs) are essential for removing SUMO from 

conjugated proteins in many different systems, but the physiological functions of 

SENPs are poorly understood. STAT5 (Signal Transducer and Activator of 

Transcription 5) plays a critical role in the development of lymphoid cells. However, 

it is not known whether STAT5 is regulated by the SUMOylation pathway. Here, we 

showed that SUMOylated STAT5 is accumulated in SENP1-/- lymphoid precursors. 

SENP1 deficiency results in severe defects in early T and B cell development, 

similar to that observed in mice harboring a complete inactivation of STAT5. 

Because STAT5 is SUMOylated and acetylated at the same lysine residue, SENP1 

deficiency blocks STAT5 in the SUMOylation state, resulting in diminished STAT5 

acetylation and phosphorylation, and defective lymphoid development. Thus, our 

results reveal a novel function of SENP1 in the regulation of early lymphoid 

development via an acetylation/SUMOylation switch in STAT5.   
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INTRODUCTION 

 

SUMO (small ubiquitin-like modifier) 

 

In eukaryotes, protein function is tightly regulated by multiple mechanisms, 

such as control of transcription and translation, and post-translational modifications. 

Over the past decade, posttranslational modifications of proteins, including 

phosphorylation, methylation, acetylation and ubiquitination, have been extensively 

studied. SUMOylation, a posttranslational modification of proteins by SUMO, has 

emerged recently as an important regulatory mechanism in cell physiology.  

SUMO was discovered in the mid 1990s. The Saccharomyces cerevisiae 

SMT3 gene was first described as a suppressor of MIF2 protein required for mitotic 

spindle integrity in 1995 (1). In 1996, using the death domain in the cytoplasmic tail 

of Fas/APO-1 and TNF receptor 1 as bait in the yeast two-hybrid system, our 

laboratory reported the isolation of a novel death domain-interacting protein, Sentrin 

(later re-named as SUMO-1), which exhibited homology to ubiquitin, Nedd8 and 

SMT3. Interestingly, Overexpression of Sentrin protected cells from both anti- 

Fas/APO-1 and TNF-induced cell death. However, the mechanism by which Sentrin 

inhibits the cell death signaling remains to be elucidated (2). At the same time, five 

other groups identified different human and mouse homologs of S. cerevisiae SMT3, 

and called them different names, including PIC1 (PML interacting protein 1), GMP1 

(GAP-modifying protein 1), Ubl1 (ubiquitin-like protein 1), SUMO-1 (small-

ubiquitin-related modifier) (3-6), and human HSMT3 (later called human SUMO-2) 
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(7).  Although human SUMO-1 has only a low sequence similarity of 18% to 

ubiquitin, NMR structure analysis revealed that SUMO-1 and Ubiquitin display 

similar 3-D structure (8).  The C-terminal diglycine residues of both SUMO and 

ubiquitin are required for formation of an isopeptide bond with the -NH2 group of 

lysine residue in targeted proteins. 

 Four SUMO homologs have been indentified in mammalian cells. SUMO-1 

shares 47% similarity at the protein level with SUMO-2 and 3, whereas SUMO-2 

and 3 are 95% identical. In contrast to SUMO-1, SUMO-2 and SUMO-3 have a 

consensus SUMOylation site at their N-terminal region and can form poly-SUMO 

Chains (9). SUMO-1, 2 and 3 are ubiquitously expressed in all tissues, while SUMO-

4 expression is limited to immune tissues and kidney (10, 11). The conjugation of 

SUMO-4 to substrates in vivo still remains obscure.  

 

The SUMOylation pathway 

 

All SUMO proteins are synthesized as immature forms that must be 

processed to expose the C-terminal di-glycine motif to generate the mature forms. 

This processing is carried out by the sentrin/SUMO-specific protease (SENP) family. 

The mature form of SUMOs is activated by a SUMO-activating enzyme (E1), a 

heterodimer containing SAE1 (SUMO-activating enzyme subunit 1) and SAE2, 

transferred by a SUMO-conjugating enzyme (E2) UBC9, and in some cases, to a 

SUMO protein ligase (E3) that catalyzes the formation of an isopeptide bond 

between the C-terminal carboxy group of SUMO and the ε-amino group of lysine in 
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protein substrates. Lysine residues subject to SUMO modification are usually found 

within a SUMO modification consensus motif, ψKXE/D (where ψ is a large 

hydrophobic residue and X is any residue). Currently, several SUMO E3 ligases 

have been characterized, including PIAS (protein inhibitor of activated STAT) 

proteins, the nucleoporin RanBP2 and the polycomb protein Pc2 (12, 13).  

The covalent modification of proteins by SUMO can be reversed by SENPs, 

as illustrated in Figure 1. Thus, SENP regulates SUMOylation via (1) its C-terminal 

hydrolase activity required for removing C-terminal amino acids from SUMO to 

reveal the diglycine residues important for conjugation to SUMO substrates and/or 

(2) its isopeptidase activity that is essential for removing SUMO from conjugated 

substrates. Two yeast SENPs, including Ulp1 and Ulp2/Smt4 were characterized first 

(14, 15). Ulp1 has both the C-terminal hydrolase activity and the isopeptidase 

activity, while Ulp2 possesses only the isopeptidase activity.  

In 2000, our laboratory cloned the first mammalian Sentrin/SUMO-specific 

protease (SENP1), which is distantly related to the yeast Ulp1 (16). Currently, six 

SENPs have been identified in mammalian cells. They can be divided into three 

subfamilies on the basis of their sequence homology, cellular localization and 

substrate specificity (17-19). The first subfamily, consisting of SENP1 and SENP2, 

can process either SUMO-1 or SUMO-2/3-conjugated proteins. The second 

subfamily contains SENP3 and SENP5, which prefer SUMO2/3 as substrates and are 

localized in the nucleolus. The third subfamily including SENP6 and SENP7 also 

favors SUMO2/3-modified substrates.     
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Figure 1. SUMOylation vs deSUMOylation. Target protein can be SUMOylated 

by SUMO E1, E2 and E3 ligases, and SUMO-conjugated protein can be 

deSUMOylated by Sentrin/SUMO-specific proteases (SENPs) to remove SUMO 

from target. 
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Biological Function of SUMO-specific proteases  

 

SUMOylation has been shown to play key roles in regulating diverse cellular 

processes, including transcription, DNA repair, cell-cycle progression and signal 

transduction from yeast to human (13, 19). SENPs are essential for reversing 

SUMOylation in many different systems; however, the physiological significance 

and in vivo functions of SENPs are poorly understood. 

 In an attempt to understand the role of SENP1 in development, Yamaguchi 

et al. generated mice from an ES cell line with a retroviral vector that was randomly 

inserted into the enhancer region on the SENP1 gene (20). This random insertion 

reduced expression of the SENP1 transcript, resulting in embryonic lethality between 

E12.5 and E14.5. Interestingly, the mutation caused the accumulation of the 

SUMOylated forms of a number of proteins both in the fetus and placenta. These 

data suggest that SENP1 is important for regulating the levels of SUMOylated 

proteins during embryonic development. However, the exact molecular mechanism 

by which SENP1 contributes to development is not clear. 

Because SENP1 expression in Yamaguchi’s mouse model is partially 

blocked, our laboratory generated complete SENP1 knockout mice to further 

evaluate the contribution of SENP1 in development. SENP1 knockout (KO) mice 

were generated from an embryonic stem cell line with a gene trap vector that was 

inserted into the mouse SENP1 open reading frame at codon 310 (21). This insertion 

completely blocked SENP1 expression. SENP1 deficiency caused embryonic 

lethality between E13 and E15, due to severe fetal anemia (21). SENP1 controls EPO 
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production by regulating the stability of hypoxia-inducible factor 1 (HIF1). In the 

absence of SENP1, hypoxia induced HIF1 SUMOylation, thereby leading to 

HIF1 ubiquitylation and proteasomal degradation. 

Recently, another group created SENP1 KO mice based on a Cre–loxP 

system (22). SENP1lox/lox mice were crossed with β-actin–Cre mice to mediate a 

recombination in vivo, resulting in a complete deletion of SENP1 exon 5 and exon 6 

and a frameshift of the downstream catalytic domain. This global deletion of SENP1 

leads to embryonic lethality between embryonic day 13.5 and postnatal day 1, and 

anemia (22). SENP1 controls GATA1 activation and erythropoiesis through 

deSUMOylation of GATA1.   

Two groups have independently uncovered the role of SENP2 and the 

importance of SUMOylation in development. Chiu and colleagues generated SENP2 

KO mice using the Cre-LoxP system and demonstrated that SENP2-/- mice exhibited 

embryonic lethality between E10.5 to E11.5, due to a placenta defect (23). In the 

absence of SENP2, SUMOylated Mdm2 accumulates in the nucleus, where it is 

unable to promote p53 degradation. Accumulation of p53 in trophoblast progenitors 

causes cell growth arrest and subsequent defect in placental development. Our 

laboratory generated SENP2 KO mice using a gene trap vector inserted into intron 

10 of SENP2 genomic DNA and disrupted the transcript of the catalytic domain of 

SENP2 (24). Deletion of the murine SENP2 gene causes embryonic lethality at E10, 

due to a profound defect in the cardiac development (24). The expression of Gata4 

and Gata6 genes is essential for cardiac development, and is regulated by occupancy 

of Pc2/CBX4, a polycomb repressive complex 1 (PRC1) subunit, on their promoters. 
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In the absence of SENP2, SUMOylated Pc2/CBX4 accumulates and Pc2/CBX4 

occupancy at the promoters of PcG target genes is markedly increased, leading to 

repression of Gata4 and Gata6 transcription (24). The phenotypic differences 

observed in these two SENP2 KO mouse models are difficult to explain. It is 

possible that the KO strategies used to inactivate the SENP2 gene may also 

contribute to the difference in phenotypes observed. Future studies using tissue 

specific gene-targeting (Cre/loxP system) to inactivate the SENP2 gene are needed to 

further characterize the role of SENP2 and its target genes in development. 

A more recent study by Dou et al. has revealed that SENP6 regulates the 

SUMOylation status of RPA70, which plays a critical role in DNA repair through 

homologous recombination (HR) (25). SENP6-depleted cells exhibited the typical 

phenotypes of DNA damage response, including the accumulation of γ-H2AX foci, 

activated cell cycle check points (phosphorylated Chk1 and Chk2) and defective cell 

cycle progression in both S phase and G2/M phases, correlating with the 

accumulation of SUMOylated RPA70. Biochemical experiments further indicated 

that RPA70 SUMOylation serves as HR mediator to facilitate recruitment of Rad51 

to the DNA damage foci to initiate DNA repair through HR. This study clearly 

demonstrates the role of SENP6 in regulating RPA70 SUMOylation and HR. 

However, suppression of SENP6 accumulated DNA damage foci, suggesting that 

SENP6 is also essential for maintaining genomic stability, possibly through 

regulation of DNA replication or telomere elongation/maintenance. Further 

investigations are required to clarify this important issue. 
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Molecular mechanisms by which SUMOylation regulates transcription  

 

SUMOylation plays a critical role in regulating gene expression by various 

mechanisms. Instead of single-site action, many proteins are dynamically modified at 

multiple sites by different modifications, including phosphorylation, acetylation, 

ubiquitination, and sumoylation. This phenomenon is known as multisite 

modification (26). Hietakangas and others identified a PDSM (phosphorylation-

dependent sumoylation motif), containing a SUMO consensus site and an adjacent 

proline-directed phosphorylation site (ΨKxExxSP) (27, 28). This highly conserved 

motif regulates phosphorylation-dependent sumoylation of multiple substrates, such 

as heat-shock factors (HSFs), GATA-1, and myocyte enhancer factor 2 (MEF2). 

Thus, SUMOylation can affect other modifications or function of proteins.  

 Since a lysine residue can be a target of different posttranslational 

modifications, SUMOylation can block alternative lysine-targeted modifications 

such as ubiquitination, methylation or acetylation. Ubiquitination and proteasome-

mediated degradation of IκBα are known to be crucial for activation of NF-κB. In 

1998, Hay’s group demonstrated that IκBα is SUMOylated on K21, which is also 

targeted by ubiquitination (29). SUMOylated IκBα cannot be ubiquitinated and is 

therefore resistant to proteasome-mediated degradation. Thus, by blocking 

ubiquitination, SUMOylation creates a privileged pool of IκBα that is resistant to 

signal-induced degradation (29). Transcriptional activity of transcription factors, 

sush as SP3 and MEF2A, can be regulated by interplay between SUMOylation and 
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acetylation on the same lysine residue (30, 31). Interestingly, an acetylation-

sumoylation switch on MEF2 is further regulated by its phosphorylation (31). 

Many transcription factors, coactivators, or corepressors are SUMOylated, 

resulting in alterations of their cellular localization, stability, and interaction with 

binding partners. In most cases, SUMOylated proteins suppress transcription, 

possibly due to their interaction with co-repressors. Therefore, blocking SUMO 

conjugation to substrates by lysine-to-arginine mutation of SUMOylation sites or by 

overexpression of SENPs can increase the transcriptional activity of transcription 

factors (32).   

An increasing number of studies support the notion that SUMOylation of 

proteins alters their interaction with binding partners, in particular those having a 

SUMO-interaction motif (SIM) (33, 34). The SIM mediates non-covalent 

interactions between SIM-containing proteins and SUMO. This motif consists of the 

short hydrophobic peptide sequence V/I/L-V/I/L-X-V/I/L or V/I/L-X-V/I/L-V/I/L 

and in some cases, are preceded, or followed, by a stretch of acidic amino acids. A 

recent study by Glass group has highlighted the importance of SIM in regulation of 

Toll-like receptors (TLRs) in macrophages (35). Transcriptional activation of many 

TLR-responsive genes is archived by an initial de-repression step that nuclear 

receptor co-repressor (NCoR) complexes are actively removed from the promoters of 

target genes. Ligand-dependent SUMOylation of liver X receptors (LXRs) inhibits 

TLR4-induced transcription potently by preventing the NCoR clearance step. The 

study has demonstrated that SUMOylated LXRs block NCoR turnover by binding to 
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a conserved SUMO2/SUMO3-interaction motif in CORO2A, a component of the 

NCoR complex, and preventing nuclear actin recruitment.  

Another example of SIM is SUMO-targeted ubiquitin Ligase (STUbL) family 

of proteins, which selectively ubiquitinates sumoylated proteins and proteins 

containing SUMO-like domains (SLDs). STUbL recruitment to sumoylated/SLD 

proteins is mediated by tandem SUMO interaction motifs (SIMs) within the STUbLs 

N-terminus (36, 37). Although the roles of STUbLs in regulating transcription and 

DNA repair in yeast have been documented, little is known about their functions in 

mammalian cells.  

 

STAT proteins 

 

It is well known that cytokines play a central role in the regulation of the 

immune system. Three key families of transcription factors that are widely used 

downstream of cytokine-mediated to control gene expression include the signal 

transducer and activator of transcription (STAT) family of proteins, nuclear factor-

kB (NF-kB) and SMA (small body size)-and MAD (mothers against 

decapentaplegic)-related proteins (SMADs) (38). In 1992, STAT1 and STAT2 were 

the first members of STAT proteins identified as mediators of the cellular response 

to interferons (IFNs) (39, 40). Currently, seven mammalian STATs have been 

identified, including STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and 

STAT6, encoded by different genes (41). In the human genome, Stat1 and Stat4 

genes are clustered together on chromosome 2, and Stat3, Stat5a and Stat5b genes 
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are clustered together on chromosome 17, whereas Stat2 and Stat6 genes are 

clustered together on chromosome 12 (42). All STAT proteins share six structural 

regions: an N-terminal domain (ND), a coil-coil domain (CC), a DNA-binding 

domain (DBD), a linker domain (L), a Src homology 2 (SH2) domain, and a 

transcriptional activation domain (TAD) at the carboxy (C) terminus. A single 

tyrosine residue (Y700) located in the TAD is required for STAT activation. 

The JAK (Janus kinase)-STAT signaling pathway consists of three main 

components: a receptor, JAK and STAT. Tyrosine kinases of the JAK family, 

including tyrosine kinase 2 (TYK2), JAK1, JAK2 and JAK3, are physically 

associated with the intracellular domains of many cytokine receptors. After cytokines 

bind to their cognate receptor on the cell surface, JAKs are activated and they then 

phosphorylate the cytoplasmic tails of the cytokine receptors at tyrosine residues, 

leading to recruitment and phosphorylation of STATs. Subsequently, activated 

STATs in the cytoplasm translocate to the nucleus, where they bind to specific DNA 

sites and activate the transcription of their specific genes.  

 

Regulation of STATs by acetylation 

 

In eukaryotic cells, chromatin is composed of DNA, histones and other 

nuclear proteins, and can be broadly classified into condensed heterochromatin and 

decondensed euchromatin. DNA in heterochromatin is inaccessible to enzymes for 

processes such as transcription, recombination and DNA repair while euchromatic 

DNA is accessible and active for these processes. Constitutive heterochromatin is 
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formed at repetitive DNA sequences, such as pericentromeres and telomeres, 

whereas the formation of facultative heterochromatin is inducible, and is often 

associated with a change in cell phenotype.   

A variety of modifications at the N-terminal tail of histones, such as 

acetylation, methylation and phosphorylation form the basis of the “histone code”, 

which can act as either repressive or active marks (43). These histone modifications 

recruit distinct protein complexes that affect chromatin structure. For histone lysine 

methylation (mono-, di-, and tri-methylation), H3 methylated at lysine-4 (K4), K36, 

and K79 are enriched in active chromatin, whereas methylation of H3-K9, H3-K27, 

and H4-K20 is responsible for heterochomatic silencing (44-46). Acetylation of 

histones H3 and H4 is associated with transcriptionally active chromatin. The role of 

histone lysine modifications in transcription regulation is well established; however 

modifications of non-histone proteins, in particular by acetylation, have recently 

emerged as an important mechanism of epigenetic regulation in transcription (47).  

The histone acetyltransferases CREB-binding protein (CBP)/p300 have been 

shown to interact with various STAT family members within both the C-terminal 

TAD and N-terminal domain, and promote STAT-mediated transcription (48-51). 

This raised the possibility that STATs could be modified by acetylation. Several 

studies have been reported concerning the acetylation of different STAT family 

members. STAT6 was the first STAT protein shown to be a target of acetylation 

(52). STAT1 is modified by acetylation at lysines 410 and 413. Interestingly, a 

phosphorylation-acetylation switch regulates STAT1 signaling (53, 54). Recent 

studies by Chin and colleagues reveal that STAT3 is acetylated at lysine 685 by 
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p300/CBP and that this modification is essential for STAT3 to form stable dimers 

and to activate transcription (55), whereas STAT2 acetylation on Lys390 regulates 

STAT2:STAT1 interaction (56), and STAT5 acetylation is required for dimerization 

(57). These studies clearly indicate that modification of STATs by acetylation is 

critical for regulating the JAK-STAT signaling pathway. 

 

 

Regulation of STATs by PIAS (Protein Inhibitor of Activated STAT)  

 

The mammalian protein inhibitor of activated STAT (PIAS) family of 

proteins was initially identified as negative regulators of STAT signaling (58, 59). 

The PIAS family includes PIAS1, PIAS3, PIASx (also known as PIAS2) and PIASy 

(also known as PIAS4). Except for PIAS1, each PIAS protein has two isoforms. 

Biochemical studies have revealed that more than 60 proteins, most of them 

transcription factors, can be regulated by members of the PIAS family through 

multiple mechanisms (38). First, a PIAS protein might block the DNA-binding 

activity of a transcription factor. A study by Shuai’s group showed that Pias1 

Deletion enhanced the antiviral activity of IFN-- or IFN-. As a result, Pias1-/- 

mice showed increased protection against pathogenic infection. This is probably 

because PIAS1 selectively regulates a subset of IFN-- or IFN--inducible genes by 

interfering with the recruitment of STAT1 to the gene promoter (60). Secondly, a 

PIAS protein might recruit other co-regulators, such as histone deacetylases 

(HDACs), to repress transcription. For example, Shuai’s group has recently reported 
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that PIAS1 binding to the Foxp3 promoter leads to recruitment of DNA 

methyltransferases and heterochromatin protein 1 for epigenetic modifications (61). 

Pias1 deletion resulted in promoter demethylation, reduced histone H3 methylation 

at Lys9, and enhanced promoter accessibility. As a result, Pias1-/- mice showed an 

increased natural CD4(+)Foxp3(+) regulatory T (T(reg)) cell population and were 

resistant to the development of experimental autoimmune encephalomyelitis (61). 

Thirdly, a PIAS protein might repress transcription by promoting the sumoylation of 

a transcription factor. Lastly, PIAS proteins might repress transcription by altering 

the localization of transcription factors. Despite their inhibitory roles in 

transcriptional regulation, PIAS proteins can regulate positively several transcription 

factors. For example, PIAS3 activates, whereas PIASy represses, the transcriptional 

activity of SMAD3 (62). 

 

Regulation of STATs by SUMOylation 

 

 PIAS proteins have been shown to function as SUMO-specific E3 ligases 

(63). This raises the possibility that STATs might be regulated by the SUMOylation 

pathway. Several groups have reported that STAT1 is SUMOylated on Lys703 in an 

overexpression system and that its SUMOylation can be greatly enhanced by PIAS 

proteins (63, 64). However, the in vivo function of SUMOylation in the regulation of 

STAT1 activity remains unknown. In addition, it is not known whether other STAT 

proteins can be modified by SUMO. 
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Biological function of STATs  

 

To elucidate the in vivo function of STAT proteins, all STAT genes have 

been gene-targeted in mice. The phenotypes of these mice reveal distinctive 

functions of STAT genes and the importance of these genes in regulating the 

development and function of the immune system (65-68).  

 

STAT1 

 

IFNs are known to regulate cellular antiviral, antiproliferative and 

immunological responses. IFNs include two types of IFNs, Type-I (IFN-α and IFN-

β) and Type-II (IFN-γ), which bind to bind to the Type-I IFN receptor and the Type-

II IFN receptor, respectively. IFN-α/β activates both STAT1 and STAT2, whereas 

IFN-γ stimulates the tyrosine phosphorylation of STAT1 but not STAT2. STAT1−/− 

mice are viable and fertile, but highly susceptible to microbial and viral infections 

and tumor formation due to severely impaired IFN responses (69, 70). In addition to 

IFNs, Stat1 can be activated by many growth factors including IL-6, IL-10, growth 

hormone and thrombopoietin. However, no major developmental defects were 

observed in STAT1−/− mice involving to non-IFN signaling. Thus, STAT1 is 

essential for the IFN-dependent signaling pathways.  
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STAT2 

 

 As discussed above, the major function of STAT2 is involved in IFN-α/β 

signaling. STAT2 knockout mice are fertile and viable but exhibit a number of 

defects in immune response, including an increased susceptibility to viral infection 

and the loss of IFN-α/β responsiveness (71).   

 

STAT3 

 

STAT3 can be activated by IL-6 family members, IFNγ, IL-10, and 

granulocyte-colony stimulating factor (G-CSF). Targeted deletion of STAT3 causes 

embryonic lethality at E7.5, suggesting that STAT3 plays a role during early 

embryogenesis (72). Increasing evidence suggests that STAT3 plays critical roles in 

the immune system, including inhibition of macrophage inflammatory signaling, 

control of dendritic cell differentiation, regulation of steady state and emergency 

granulopoiesis and regulation of B cell development (73-76). For example, Akira’s 

group generated STAT3 conditional KO mice by breeding of mice carrying a loxP-

flanked Stat3 allele with LysMcre mice in which the Cre-recombinase is expressed 

under control of the murine lysozyme M gene regulatory region (73). In these nice, 

STAT3 is deficient specifically in macrophages and neutrophils. The mutant mice 

exhibit increased production of inflammatory cytokines such as TNF-α, IL-1, and 

IFN-γ and impaired suppressive effects of IL-10 on inflammatory cytokine 

production from macrophages and neutrophils (73).    
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It was initially thought that after activation by professional antigen-presenting 

cells (APCs), naive CD4+ T cells were able to differentiate into effector cells, which 

could be divided into two subsets, T helper 1 (Th1) and T helper 2 (Th2) cells based 

on their cytokine-expression profiles and immune-regulatory function (77). Recently, 

three other subsets have been identified. The first new subset of TH cells is CD4+ 

CD25+ regulatory T cells (T reg cells), which play a central role in the maintenance 

of immune tolerance (78-80). Dong and colleagues have characterized two other 

novel TH-cell subsets, including follicular helper T cells and IL-17-producing CD4+ 

T (TH17) cells (also identified by Weaver’s group), which have crucial roles in 

immune regulation (81, 82). Interestingly, STAT3 is crucial for the differentiation of 

the TH17 cells (83). In contrast, activation of STAT5 is a critical factor in the 

induction and maintenance of FOXP3 expression in Treg cells (84). 

 

STAT4 

 

IL-12 promotes naïve CD4+ T cells (Th0 cells) to differentiate into Th1 cells, 

which secrete IL-2 and IFN-γ, and play a critical role in cellular-mediated immunity. 

STAT4 is activated by IL-12. STAT4-/- mice are viable and fertile. However, these 

mice showed impaired Th1 differentiation, IFN-γ production and cell-mediated 

immunity (85, 86), similar to the phenotypes of mice lacking IL-12 or IL-12R 

subunits.  
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STAT6 

 

STAT6 is activated in response to by IL-4 and IL-13. In addition, STAT6 is 

essential for differentiation of Th2 cells important for humoral immunity. 

Accordingly, STAT6-/- mice showed defects in IL-4-mediated functions including 

Th2 helper T-cell differentiation, expression of cell surface markers, and 

immunoglobulin class switching to IgE (87, 88).  

 

STAT5 

 

STAT5 was first isolated as a prolactin-induced transcription factor named 

mammary gland factor (MGF) in mammary gland tissue (89). STAT5 consists of two 

highly related genes encoding STAT5A and STAT5B proteins, which are 96% 

similar at the amino acid level (90). Activated by a number of cytokines, growth 

factors, and hormones, including IL-2, IL-3, IL-5, IL-7, IL-9, IL-15, GM-CSF, 

thrombopoietin, erythropoietin, and growth hormone, STAT5 has been implicated in 

various cellular processes, such as hematopoiesis, immunoregulation, reproduction, 

and lipid metabolism. Among all the STAT family members, only STAT5 has been 

demonstrated to play an essential role in regulating both T and B cell development 

(90).  
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Lymphoid development  

 

All hematopoietic cells are derived from hematopoietic stem cells (HSCs). 

According to a classical model, HSCs differentiate into common lymphoid 

progenitors (CLPs), which give rise to both B and T cells (91), as shown in Figure 2. 

Recent studies have suggested that HSCs differentiate into either common 

myeloid progenitors (CMPs) or lymphoid-primed multipotent progenitors (LMPPs) 

in the bone marrow (BM) (92). Myeloid cells stem from either CMPs or LMPPs, 

while erythroid cells and megakaryocytes develop from CMPs (93). Lymphocytes 

arise from LMPPs, which differentiate into the earliest lymphocyte progenitors 

(ELPs) (94). Subsequently, ELPs differentiate into common lymphoid progenitors 

(CLPs) and early thymic progenitors (ETPs) from which B and T cell development 

occurs in the BM and thymus, respectively. During embryonic development, 

hematopoietic stem cells arise in the aorta/gonad/mesonephros (AGM) region and 

migrate to the fetal liver where hematopoiesis takes places.   

As illustrated in Figure 3, thymocyte development proceeds through multiple 

stages, which can be characterized by the sequential expression of cell surface 

markers. The early immature T cells are CD4-CD8- double-negative (DN) 

thymocytes. They can be divided into four different developmental stages, defined 

based on their surface expression of CD44 and CD25 (95). Similarly, B cell 

development also occurs through various stages, including CLPs, pre-proB, early 

pro-B, late pro-B, pre-B, immature B and mature B cells. Each stage can be 

characterized by their expression of cell-surface markers, such as B220, CD43, 
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CD19, BP-1, HAS, IgM and IgD, and can be defined according to the Hardy 

nomenclature (Figure 4) (96).  

The development of T and B cells is tightly regulated by multiple 

transcription factors and cytokines (97, 98). IL-7 (Interleukin-7) is a non-redundant 

and essential cytokine for the development of both T and B cells (99). Its receptor 

consists of two chains, IL-7Rand common cytokine receptor -chain (C), which 

binds the Janus kinase 3 (Jak3) (100, 101). The C chain is expressed in various 

hematopoietic lineages, whereas the IL-7Rsubunit is preferentially expressed in 

the lymphoid system from CLPs to large pre-B and DN1-DN3 T cells as well as in 

thymic and peripheral CD4+ and CD8+ single-positive (SP) T cells (102).  

 Binding of IL-7 to its receptor triggers activation of Jak1 and Jak3, resulting 

in STAT5 activation, subsequent translocation to the nucleus and regulation of target 

gene transcription (Figure 5) (103). STAT5 contains two highly related isoforms, 

STAT5A and STAT5B, which are encoded by separate genes and play a critical role 

in the development and function of immune cells (90). 
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Figure 2. The lymphoid developmental pathway. Both B and T cells are 

differentiated from hematopoietic stem cells through multiple stages including 

common lymphoid progenitors, pro- and pre-B/T cells, before becoming mature B/T 

cells. 
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Figure 3. The T cell development pathway. T cell development proceeds through 

multiple stages, which can be characterized by the sequential expression of cell 

surface markers, including CD44, CD25, CD4 and CD8. The early immature T cells 

are CD4-CD8- double-negative (DN) thymocytes, which can be divided into four 

different developmental stages (DN1-4). 
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Figure 4. The B cell development pathway. B cell development occurs through 

various stages, which can be characterized by their expression of cell-surface 

markers according to the Hardy nomenclature (Hardy and Hayakawa, 2001).  
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Figure 5. The IL-7R signaling pathway. In unstimulated state, STAT5 resides in 

the cytoplasm. Binding of ligand (IL7) to its receptor leads to phosphorylation of the 

cytoplasmic tail of receptor, resulting in recruitment of STAT5 to the receptor. 

STAT5 is phophorylated by JAK kinases. Phosphorylated STAT5 dimerizes and 

translocates to the nucleus, where it turns on the transcription of STAT5-specific B/T 

cells and then returns back to the cytoplasm. 
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AIM OF THE PRESENT STUDY 

 

SUMOylation has been shown to regulate a number of cellular processes, 

including transcription, DNA repair, cell-cycle progression and signal transduction 

from yeast to human (18, 19). Many transcription factors are SUMOylated, resulting 

in alteration of their function (32).  Previously, we reported that inactivation of the 

murine SENP1 gene results in embryonic lethality prior to embryonic day 16.5 

(E16.5), due to a severe defect in definitive erythropoiesis stemming from deficient 

Epo production (21). SENP1 KO mouse study revealed that SENP1 controls EPO 

production by regulating the stability of HIF1 (21). Despite extensive biochemical 

studies on SENPs in vitro, the physiological significance and in vivo functions of the 

SENPs remain poorly understood. In particular, the physiological function of SENP1 

in the development of lymphoid cells has not been defined. The overall aim of my 

PhD dissertation was to investigate the role of SENP1 in T and B lymphopoiesis 

using SENP1 KO mice that we described earlier (21).   
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RESULTS 

 

SENP1 is highly expressed at the early stages of T and B lymphocytes 

 

To investigate the role of SENP1 in lymphopoiesis, we first analyzed its 

expression pattern in lymphoid cells. Interestingly, SENP1 was highly expressed at 

the early stages of T and B cell development including DN2, DN3 and DN4 T cells 

and, pro-B and Pre-B cells, respectively (Figure 6), raising the possibility that 

SENP1 might participate in T and B lymphopoiesis. 

 

SENP1 deficiency impairs T cell development 

 

We next examined the phenotype of thymus in SENP1-/- embryos. 

Histological examination of thymic sections revealed that both the size and 

cellularity of E15.5 SENP1-/- thymi were markedly decreased compared with those 

of wild-type littermates (Figure 7). To check whether a partial or complete block in T 

cell development could explain thymic hypocellularity and smaller thymus size in 

SENP1-/- embryos, we cocultured hematopoietic stem cells (HSCs) isolated from 

fetal livers (FL) in E14.5 wild-type and SENP1-/- embryos with OP9 stromal cells 

expressing Delta-like 1 (OP9-DL1 cells) in the presence of cytokines Flt3L (FMS-

like tyrosine kinase 3 ligand) and IL-7 (Interleukin-7) to induce T cell differentiation 

in vitro (104). 
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Figure 6. SENP1 mRNA expression in hematopoietic lineage populations. Each 
population was isolated by flow-sorting from the thymus and bone marrow of 4- to 
6-week-old C57BL/6 mice. SENP1 mRNA expression was measured by quantitative 
RT-PCR using TaqMan assay kit from ABI. Gene expression was normalized to 18s 
rRNA level. The relative abundance is displayed as an average of triplicates of 
quantitative PCR in each sample, and error bars indicate ± SD. 
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Figure 7. SENP1 deficiency affects the thymic development. Hematoxylin and 
eosin staining of thymic sections (top panel, original magnification: 100x and bottom 
panel, original magnification: 400x) from wild-type (WT) and SENP1-/- (KO) 
embryos at E15.5. The results shown are a representative of at least four independent 
experiments. 
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After 7 days of co-culture, flow cytometric analysis revealed that most of the 

cells derived from both wild-type and SENP1-/- HSCs were immature CD4-CD8- 

(DN) thymocytes (Figure 8A, top panel). However, further segregation of DN 

thymocytes into distinct subsets (DN1-DN4) showed an increased frequency of DN1 

subset, and decreased frequencies of DN2 and DN3 subsets generated from SENP1-/- 

HSCs (Figure 8A, lower panel). Furthermore, the absolute numbers of DN2, DN3 

and DN4 T cells derived from SENP1-/- HSCs were significantly decreased 

compared with those of wild-type controls (Figure 8B). These results indicate that 

SENP1 is required for early T cell development at or before the DN2 stage.  

Under OP9-DL1 cell co-culture conditions, wild-type and SENP1-/- HSCs 

were unable to generate B and myeloid cells (Figures 9A and 9B). After 14 days of 

coculture on OP9-DL1 cells, despite a substantial decrease in the absolute cell 

numbers, CD4/CD8 double positive (DP), CD4 single positive (SP) and CD8 SP 

could still be generated from SENP1-/- HSCs (Figure 10). These results strongly 

suggest that SENP1 deficiency leads to an incomplete block in early T cell 

development.   
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Figure 8. SENP1 deficiency results in a severe defect in early T cell 
development. (A) FL-HSCs (Lin-c-Kit+Sca1+) from wild-type (WT) and SENP1-/- 
(KO) embryos at E14.5 were cocultured on OP9-DL1 stromal cells in the presence of 
IL-7 and Flt3L. After 7 days of coculture, cells were isolated and analyzed by flow 
cytometry for T cell markers CD4 and CD8 (top panel). Gated CD4-CD8- population 
was further analyzed based on CD44 and CD25 (lower panel). Data shown are 
representative of three independent experiments. (B) Absolute numbers of the 
indicated subpopulations of thymocytes were calculated based on flow cytometry 
(shown in B) and total thymocytes counts, and represented as mean ± SD; n= 5 each. 
*, P<0.05; **, P<0.01; n.s. is not significant. 
 

 30



 

 

 

 

 

 

 

 

 

 

Figure 9. Myeloid development in OP9-DL1 coculture. (A-B) Both wild-type and 
SENP1-/- HSCs cocultured on OP9-DL1 cells were unable to generate B and myeloid 
cells. Sorted FL-HSCs were cultured on OP9-DL1 stromal cells in the presence of 
IL-7 and Flt3L for 7 days. Flow cytometric analysis was performed using B220 and 
CD11b (A) antibodies, and CD11C and CD11b antibodies (B). Data shown are 
representative of three independent experiments.  
 

 

 31



 

 

 

 

 

 

 

 

 

 

Figure 10. T cell development in OP9-DL1 coculture after 14 days. (A-B) Wild-
type and SENP1-/- FL-HSCs were cultured on OP9-DL1 stromal cells in the presence 
of IL-7 and Flt3L for 14 days. T cells were analyzed by flow cytometry using CD4 
and CD8 antibodies (A). Absolute cell number was counted and presented as means 
± SD; n=5 each (B). **, P<0.01. 
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SENP1 deficiency impairs B cell development 

 

Next, we investigated whether B cell development is also affected by the 

absence of SENP1. We first examined B lymphopoiesis in fetal livers from E14.5 

SENP1-/- embryos and found that SENP1-/- embryos displayed a severe reduction in 

the absolute number of B220+CD19+ B cells compared with wild-type littermate 

controls (Figures 11A and 11B). To further assess the effects of SENP1 deficiency 

on B cell development, we co-cultured FL-HSCs with OP9 stromal cells in the 

presence of Flt3L and IL-7 to promote B cell differentiation in vitro (105). After 7 

days of coculture, flow cytometric analysis revealed an increased frequency of early 

pro-B (B220+CD43+BP-1-CD24+) cells generated from wild-type HSCs. In contrast, 

most B cells generated from SENP1-/- HSCs displayed markers of pre-pro-B 

(B220+CD43+BP-1-CD24-) and early pro-B (B220+CD43+BP-1-CD24+) cells (Figure 

12A).  Furthermore, the absolute numbers of pre-pro-B, early pro-B, late pro-B and 

pre-B cells derived from SENP1-/- HSCs were significantly reduced compared with 

wild-type controls (Figure 12B), suggesting a critical role of SENP1 at the earliest 

stages of B cell development.  
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Figure 11. SENP1 deficiency affects B cell development during embryonic 
development. (A-B) Fetal liver cells were harvested from E14.5 wild-type and 
SENP1-/- embryos. B cells were analyzed by staining with B220 and CD19 
antibodies (A), absolute cell numbers of B220+CD19+ B cells were calculated and 
presented as means ± SD (B); n=5 each. **, P<0.01. 
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Figure 12. SENP1 deficiency results in a severe defect in early B cell 
development. (A) Sorted FL-HSCs from wild-type and SENP1-/- embryos at E14.5 
were cocultured on OP9 stromal cells in the presence of IL-7 and Flt3L. After 7 days 
of coculture, cells were isolated and analyzed by flow cytometry for B cell markers 
B220 and CD43 (top panel), CD24 and BP-1 (Gated CD43+B220+ population, lower 
panel). Data shown are representative of three independent experiments. (B) 
Absolute number of B cells in each developmental stage was calculated based on 
flow cytometry (shown in D) and total cell number, and represented as mean ± SD; 
n= 5 each. *, P<0.05; **, P<0.01; n.s. is not significant. 
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Under OP9 cell coculture conditions, myeloid development was not affected 

in the absence of SENP1 since the absolute number of myeloid cells derived from 

both wild-type and SENP1-/- HSCs remained similar (Figures 12B and 13). After 14 

days of coculture, we also found significant reductions in the frequencies and 

absolute numbers of pro-B and pre-B cells (B220+CD19+) (Figures 14A and 14B), 

and immature B cells (B200+IgM+) derived from SENP1-/- (Figures 14C and 14D). 

These results clearly showed that SENP1 is required for B cell development at the 

early stages. 

 

SENP1 deficiency does not affect myeloid cell development  

 

To demonstrate that the hematopoietic defects caused by SENP1 deficiency 

are restricted to the erythroid (21) and lymphoid lineages, but not the myeloid 

lineage, we co-cultured wild-type and SENP1-/- HSCs with OP9 stromal cells in the 

presence of IL3, IL6, SCF, and Flt3L, and analyzed myeloid cells expressing Gr-1 

and CD11b markers after 7 days of culture. Consistent with our previous report (21), 

no defect in myeloid-lineage development was observed in the absence of SENP1 

since the frequency and absolute number of myeloid cells (Gr-1+CD11b+) generated 

from both wild-type and SENP1-/- HSCs were comparable (Figures 15A and 15B).  
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Figure 13. Myeloid development in OP9 coculture after 7 days. Sorted FL-HSCs 
from wild-type and SENP1-/- embryos at E14.5 were cocultured on OP9 stromal cells 
in the presence of IL-7 and Flt3L. After 7 days of coculture, cells were isolated and 
analyzed by flow cytometry for B cell marker (B220), and myeloid cell marker 
CD11b. Absolute number of myeloid cells was calculated and shown in Figure 7B. 
Data shown are representative of three independent experiments.  
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Figure 14. B cell development in OP9-DL1 coculture after 14 days. (A-D) Wild-
type and SENP1-/- FL-HSCs were cocultured on OP9 stromal cells in the presence of 
IL-7 and Flt3L for 14 days. B cells were analyzed by flow cytometry using B220 and 
CD19 antibodies (A), and B220 and IgM antibodies (B), and their absolute cell 
numbers were calculated and presented as means ± SD (C end D, respectively); n=5 
each. **, P<0.01. Data shown are representative of three independent experiments. 
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Figure 15. SENP1 deficiency does not affect myeloid development. (A-B) Wild-
type and SENP1-/- FL-HSCs were cultured on OP9 stromal cells in the presence of 
IL3 (10ng/ml), IL6 (10ng/ml), SCF (50 ng/ml), and Flt3L (50 ng/ml) for 7 days. 
Myeloid cells were analyzed by flow cytometry using indicated antibodies (A). Data 
shown are representative of three independent experiments. The absolute cell 
numbers of myeloid cells (Gr-1+CD11b+) were calculated based on flow cytometry 
and total cell counts, and presented as means ± SD; n=5 each. n.s. is not significant 
(B).  
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SENP1 deficiency leads to intrinsic defects in T and B development 

To further confirm that SENP1 deficiency resulted in defects that are intrinsic 

to T and B cell development, we performed FL transplantation experiments using 

RAG-1-/- mice, which lack mature B and T cells (106). FL cells from E14.5 wild-

type and SENP1-/- embryos were transplanted into lethally irradiated RAG-1-/- mice. 

Six weeks after transplantation, the lymphoid compartments of the recipients were 

harvested, counted and analyzed by flow cytometry. Compared with RAG-1-/- mice 

reconstituted with wild-type FL cells (wild-type recipients), the total cell numbers in 

lymphoid organs of RAG-1-/- mice reconstituted with SENP1-/- FL cells (SENP1-/- 

recipients), exhibited a 10- to 20-fold reduction (Figure 16A). Analysis of T cell 

development in the thymi of recipients showed that the frequency of DP T cells in 

the thymi of SENP1-/- recipients was greatly reduced compared with wild-type 

recipients (Figure 16B). Similarly, analysis of B cell development in the bone 

marrow of recipients revealed that the frequencies of CD19+B220+ and 

B220+IgM+IgD- B cells were significantly reduced in SENP1-/- recipients (Figure 

17). Taken together, our data demonstrated that SENP1 deficiency results in intrinsic 

defects in T and B development.  
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Figure 16. SENP1 deficiency impairs T cell development in fetal liver 
transplantation experiments. (A) Cell counts in lymphoid compartments including 
thymus, bone marrow, spleen and lymph node of RAG1-/- mice reconstituted with 
wild-type and SENP1-/- fetal liver cells. Total cell number was calculated and 
represented as mean ± SD; n= 6 each. **, P<0.01. (B) Flow cytometric analysis for T 
cell markers including CD4 and CD8 in the thymi of RAG1-/- mice reconstituted 
with wild-type and SENP1-/- fetal liver cells. Data shown are representative of two 
independent experiments.  
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Figure 17. SENP1 deficiency impairs B cell development in fetal liver 
transplantation experiments. Flow cytometric analysis of B cells in bone marrow 
from RAG1-/- mice reconstituted with wild-type and SENP1-/- fetal liver cells using B 
cell markers B220 and CD19 (upper panel). Gated B220+ cells were further analyzed 
based on IgM and IgD (lower panel). Data shown are representative of two 
independent experiments. 
 

 

 

 42



SENP1 regulates SUMOylation of STAT5 

 

To check whether SENP1 deficiency may affect transcription of key 

transcription factors crucial for early lymphoid development, we analyzed their 

expression in fetal livers of E14.5 embryos by RT-PCR. Expression levels of PU.1, 

STAT5, GATA3 and E2A from SENP1-/- fetal livers remained unchanged compared 

with those from wild-type littermate controls (Figure 18). To determine whether the 

impaired development of B and T cells in SENP1 deficiency is due to reduced 

expression of IL-7R components, real-time PCR analysis was performed. The 

mRNA levels of IL-7R components including IL-7Rα and γc chains, Jak1 and Jak3 

in fetal livers of E14.4 SENP1-/- embryos were undisturbed, suggesting that the 

expression of genes involved in the IL-7R signaling pathway is intact (Figure 19). 

Indeed, the lymphoid defects in SENP1 deficiency described here are quite similar to 

the one observed in STAT5 deficiency (107-109).  

Given that SENP1 regulated activity of transcription factors (21, 22), we 

therefore hypothesized that SENP1 may control early development of T and B cells 

through altering the SUMOylation status of STAT5. To explore this possibility, we 

first examined SUMOylation of STAT5 in wild-type and SENP1-/- B, T and myeloid 

cells derived from HSC differentiation in vitro after 7 days of coculture by Western 

blot analysis. As shown in Figure 20, the ~95-kDa full-length STAT5 was detected 

in all wild-type and SENP1-/- B, T and myeloid cells, whereas a modified form of 

STAT5 migrating at 135 kDa (~ 40 kDa shift) was observed only in SENP1-/- B and 

T cells. On the other hand, the protein level of another STAT family member, 

 43



STAT3 in SENP1-/- B and T cells was unchanged compared with wild-type B and T 

cells, respectively.  To verify that the ~ 135-kDa band is a SUMOylated form of 

STAT5, lysates of wild-type and SENP1-/- B cells were subjected to denaturing 

immunoprecipitation with anti-STAT5 antibody, followed by immunoblotting with 

anti-SUMO-1 and anti-SUMO-2/3 antibodies. This ~ 135-kDa band displayed in 

SENP1-/- B cells was readily detected with anti-SUMO-2/3, but not by anti-SUMO-1 

or control IgG (Figure 21). These results clearly demonstrate that the modified form 

of STAT5 accumulated in SENP1-/- B and T cells is indeed SUMOylated STAT5. 

Consistent with the accumulation of SUMOylated STAT5, the expression of BCL-2, 

a downstream target of STAT5 was markedly decreased in SENP1-/- B and T cells 

compared with wild-type B and T cells, respectively (Figure 20, third panel). These 

data suggest that deletion of SENP1 results in the accumulation of SUMOylated 

STAT5, which alters its transcriptional activity in early B and T cells.  

To further confirm that SUMOylated STAT5 can be regulated by SENP1, we 

SUMOylated STAT5 by cotransfecting FLAG-tagged STAT5A or STAT5B with 

HA-tagged SUMO-2 constructs in COS-1 cells. In the presence of HA-tagged 

SUMO-2 construct, two major bands migrating at 115 kDa and 135 kDa were 

detected (Figures 22A and 22B). In COS-1 cells, PIAS3 greatly enhanced STAT5 

SUMOylation in a RING-domain-dependent manner (Figure 23). Notably, 

overexpression of SENP1 completely abrogated SUMOylated STAT5, while a 

SENP1 catalytic mutant (C603A mutation) could not deconjugate SUMOylated 

STAT5 (Figure 24). Together, SENP1 plays a critical role in regulating the 

SUMOylation state of STAT5 in vivo. 
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Figure 18. The expression of key transcription factors involved in lymphoid 
differentiation. RNA was isolated from fetal liver cells of SENP1+/+ and SENP1-/- 
embryos at E14.5. RT-PCR was analyzed after normalization with b-actin. The 
results shown are a representative of at least three independent experiments.  

 

 

Figure 19. The expression of IL-7R components. RNA was isolated from fetal 
liver cells of SENP1+/+ and SENP1-/- embryos at E14.5. Quantitative RT-PCR was 
done using TagMan assay kit from ABI. Gene expression was normalized to 18s 
rRNA level. The relative abundance is displayed as an average of triplicates of 
quantitative PCR in each sample, and error bars indicate ± SD. The results shown are 
a representative of at least three independent experiments.  
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Figure 20. Modified STAT5 accumulated in SENP1-/- B and T cells. Sorted FL-
HSCs from wild-type and SENP1-/- embryos at E14.5 were cocultured on OP9 and 
OP9-DL1 cells in the presence of IL-7 and Flt3L to differentiate into B and T cells, 
respectively. After 7 days of coculture, B and T cells were isolated and lysed in 
RIPA buffer. The whole cell lysates were analyzed by immunobloting with anti-
STAT5 (top panel), anti-STAT3 (second panel), anti-BCL-2 (third panel), and anti-
-actin (bottom) antibodies. Wild-type and SENP1-/- myeloid cells derived from 
HSC differentiation on OP9 stromal cells in the presence of IL3 (10ng/ml), IL6 
(10ng/ml), SCF (50 ng/ml), and Flt3L (50 ng/ml) for 7 days were used as controls. 
The results shown are a representative of at least three independent experiments.  
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Figure 21. Endogenous STAT5 is SUMOylated by endogenous SUMO2/3 in 
vivo. B cells isolated from differentiation of wild-type and SENP1-/- FL-HSCs after 7 
days of coculture on OP9 cells were lysed and boiled in denaturing lysis buffer. Cell 
lysates were aliquoted equally for performing immunoprecipitation (IP) by control 
IgG or a mixture of anti-STAT5A and B antibodies. Bound proteins were detected 
by immunoblotting (IB) with anti-SUMO2/3 (top panel), anti-SUMO1 (middle 
panel) or anti-STAT5 (bottom panel) antibodies. Loading samples were 
immunoblotted with anti-STAT5 or anti-actin antibodies. The results shown are a 
representative of at least three independent experiments.  
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Figure 22. Both STAT5A and STAT5B are SUMOylated in an overexpression 
system. COS-1 cells were transfected with FLAG-tagged STAT5A (A) or STAT5B 
(B) and HA-tagged SUMO-2 plasmids. Twenty four hours after transfection, cellular 
protein extracts were immunoprecipitated with anti-FLAG or anti-STAT5B 
antibodies followed by Western blot analysis with anti-HA (top) or anti-FLAG and 
STAT5 B antibodies (bottom). The results shown are a representative of at least 
three independent experiments.  
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Figure 23. SUMOylation of STAT5 is enhanced by PIAS3. COS-1 cells were 
transfected with 1 mg FLAG-STAT5 + 0.5 mg HA-SUMO2 + 0.5 mg Myc-PIAS3wt 
or Myc-PIAS3 mut (mutant ring domain) plasmids. Twenty-four hours after 
transfection, transfected cells were lysed and boiled in denaturing lysis buffer for 5 
min. Protein extracts were immunoprecipitated with anti-FLAG followed by Western 
blot analysis with anti-HA or anti-FLAG antibodies. The input was immunoblotted 
with anti-Myc and anti-HA antibodies. The results shown are a representative of at 
least three independent experiments. 
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Figure 24. SENP1 de-SUMOylates SUMOylated STAT5 in vivo. COS-1 cells 
were transfected with the indicated plasmids. Protein extracts were precipitated with 
anti-STAT5B antibody and analyzed with HA (top) and STAT5 (bottom) antibodies. 
The results shown are a representative of at least three independent experiments. 
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SUMOylation inhibits tyrosine phosphorylation of STAT5  

 

SUMOylation often, but not always, occurs on lysine residues found in the 

consensus motif ΨKXE (where Ψ is any large hydrophobic residue, and X is any 

residue). STAT5 has two SUMO consensus motifs at lysines 384 and 516, and four 

high-scoring non-consensus motifs at lysines 71, 86, 163 and 336 (Figure 25). We 

examined the ability of these sites to be SUMOylated in vivo by introducing single or 

combined mutations (six lysine-to-arginine mutations). Compared with 

SUMOylation of wild-type STAT5, SUMOylation of single mutants or combined 

mutants remained unchanged, suggesting that these lysine residues are not involved 

in SUMOylation of STAT5 (Figure 26).  Previous studies indicate that STAT1 is 

SUMOylated at lysine 703, close to tyrosine 701 (64, 110, 111). Indeed, STAT5A 

contains two lysines at 696 and 700, close to tyrosine 694 (Figure 25). These lysine 

residues of STAT5A/B are well conserved across species including mouse, rat and 

human. SUMOylation of single mutants (K696R and K700R) or double mutant 

(K696/700R) of STAT5A was drastically reduced (Figure 27A). These results 

indicate that lysine residues 696 and 700 are the major sites for SUMOylation of 

STAT5A in vivo. Consistently, the major SUMOylation sites in STAT5B were lysine 

residues 701 and 705 (Figure 27B).  

Since the SUMOylation sites are in close proximity to tyrosine, whose 

phosphorylation is a prerequisite for STAT5 activation, we therefore assessed the 

interplay between STAT5 phosphorylation and SUMOylation. We checked the level 

of STAT5 phosphorylation in SENP1-/- B and T cells derived from HSC 
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differentiation in vitro after 7 days of coculture on OP9 and OP9-DL1 cells in the 

presence of IL-7 and Flt3L, respectively. Western blot analysis showed a marked 

reduction of STAT5 phosphorylation in SENP1-/- B and T cells (Figure 23), 

correlating with an increased SUMOylation (Figure 20). Notably, the 

phosphorylation of STAT5 SUMOylated form could not be detected in SENP1-/- B 

and T cells. These results suggest that in the absence of SENP1, SUMOylation 

inhibits STAT5 phosphorylation and that the accumulation of SUMOylated STAT5 

impairs the activation–inactivation cycle of STAT5 in lymphocytes. 

We further tested the effect of phosphorylation at tyrosine 694 on 

SUMOylation of STAT5. Wild-type STAT5 and constitutively active STAT5 mutant 

N642H were efficiently SUMOylated. In contrast, STAT5 phosphorylation mutant 

Y694A abolished SUMOylation of STAT5 (Figure 29). These results strongly 

suggest that SUMOylation of STAT5 requires a prior phosphorylation or nuclear 

import event since the enzymes involved in SUMOylation are located in the nucleus.  
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Figure 25. Schematic diagram of full-length murine STAT5 protein structure. 
STAT5 contains amino terminal, coiled-coil, DNA binding, linker, SH2, and 
transcriptional activation domains. Arrows indicate approximate locations of two 
putative SUMO consensus motifs at lysines 384 and 516 (Ψ-K-X-E, where ψ 
represents a large hydrophobic amino acid (A, F, I, L, M, V, W) and X represents 
any amino acid), and four other non-consensus motifs at lysines 71, 86, 163 and 336. 
Two lysine residues 696 and 700 located close to Y694 and Y699 of STAT5A and 
STAT5B respectively are underlined.   
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Figure 26. STAT5 is not SUMOylated at lysine residues within the SUMO 
consensus motifs. COS-1 cells were transfected with FLAG-tagged STAT5A and its 
mutants along with HA-SUMO2 plasmids. Protein extracts were immunoprecipitated 
with anti-FLAG and then revealed by Western blot analysis with antibodies to anti-
HA (top) and anti-FLAG (bottom). 5KR: 5 lysine-to-arginine mutations at positions 
71, 86, 336, 384, and 516. 6KR: 6 lysine-to-arginine mutations at positions 71, 86, 
163, 336, 384, and 516. The results shown are a representative of at least three 
independent experiments.  
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Figure 27. mapping STAT5 SUMOylation sites. (A) STAT5A is modified by 
SUMO at lysine residues 696 and 700. COS-1 cells were transfected with FLAG-
tagged STAT5A and its mutants along with HA-SUMO2 plasmids. Protein extracts 
were immunoprecipitated with anti-FLAG and then revealed by Western blot 
analysis with antibodies to anti-HA (top) and anti-FLAG (bottom). The results 
shown are representative of at least three independent experiments. (B) Identification 
of SUMOylation sites in STAT5B. COS-1 cells were transfected with STAT5B and 
its mutants along with HA-SUMO2 plasmids. Immunoprecipitates of STAT5B were 
immunoblotted with anti-HA (top) or anti-STAT5B antibodies (bottom). The results 
shown are a representative of at least two independent experiments.  
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Figure 28. Tyrosine phosphorylation of STAT5 is diminished in SENP1-/- B and 
T cells. Sorted FL-HSCs from wild-type and SENP1-/- embryos at E14.5 were 
cocultured on OP9 and OP9-DL1 cells in the presence of IL-7 and Flt3L to 
differentiate into B and T cells, respectively. After 7 days of coculture, B and T cells 
were isolated and lysed in RIPA buffer. The whole cell lysates (prepared and 
analyzed in Fig. 3A) were further analyzed by immunobloting with anti-P-STAT5 
(top panel) and anti--actin (bottom) antibodies. The results shown are a 
representative of at least three independent experiments.  
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Figure 29. SUMOylation of STAT5 is tyrosine phosphorylation-dependent. 
COS-1 cells were transfected with FLAG-tagged STAT5A (wild-type), STAT5 
phosphorylation mutant Y694A (mutation of tyrosine 694 to alanine) and 
constitutively active STAT5 mutant N642H, and HA-tagged SUMO-2 plasmids. 
Twenty four hours after transfection, Cellular protein extracts were 
immunoprecipitated with anti-FLAG antibody followed by Western blot analysis 
with anti-HA (top) or anti-FLAG antibodies (bottom). The results are a 
representative of at least three independent experiments.  
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SENP1 controls an acetylation/SUMOylation switch in STAT5 

To further understand the effect of SUMOylation on STAT5-mediated 

transcriptional activity, we compared wild-type and SUMOylation-deficient 

STAT5A for their ability to activate transcription in reporter assays. STAT5-

deficient MEF cells stably expressing wild-type STAT5A and its mutants were 

transiently transfected with a luciferase reporter pGL4--Casein. Compared with 

wild-type STAT5A, STAT5A(K700R) exhibited a similar transactivation activity, 

suggesting that SUMOylation of STAT5A at lysine 700 did not play a role in 

transcription regulation (Figure 30). However, STAT5A(K696R) or STAT5A(K696-

700R) showed a markedly decreased in transactivation activity, raising an intriguing 

possibility that lysine 696 may also be subjected to another form of post-translational 

modification.  

Lysine residues can be targeted by multiple modifications, such as 

ubiquitination, SUMOylation, methylation, and acetylation. The carboxy-terminal 

transactivation domain of STAT5 is known to interact with the histone 

acetyltransferase p300/CBP, resulting in enhanced STAT5-dependent transcription 

(112). We hypothesized that lysine 696 is also a target for acetylation. To test this 

possibility, we first checked whether STAT5 can be acetylated by p300. 

Coexpression of p300 in HEK-293 cells significantly enhances STAT5A acetylation 

(Figure 31). Wild-type STAT5A and STAT5A(K700R) mutant, but not 

STAT5A(K696R) and STAT5A(K696-700R) mutants, were acetylated, suggesting 

that lysine 696 is also a major acetylation site (Figure 32). Consistent with our data, a 

recent study indicates that STAT5B acetylation on lysine residues including lysine 
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701 (corresponding lysine 696 on STAT5A) is essential for STAT5B dimerization 

since mutation of lysine 701 to arginine impaired STAT5B dimerization and 

transcriptional activity (57).   

Next, we assessed endogenous STAT5 acetylation in wild-type and SENP1-/- 

FL cells. Protein extracts were immunoprecipitated with anti-STAT5 antibody and 

analyzed by immunoblotting with antibody specific for K701-acetylated STAT5B. 

As shown in Figure 33, endogenous STAT5 was acetylated in both wild-type and 

SENP1-/- FL cells treated with IL-7. Notably, STAT5 acetylation in IL7-treated 

SENP1-/- FL cells was significantly decreased compared with that of IL7-treated 

wild-type FL cells, suggesting that SENP1 regulates the acetylation status of STAT5. 

To confirm the role of SENP1 in the regulation of STAT5 acetylation and 

SUMOylation, HEK-293 cells were transfected with FLAG-tagged STAT5A, MYC-

tagged SUMO3, HA-tagged p300 in the presence of RGS-tagged SENP1 or RGS-

tagged SENP1 mutant plasmids. Overexpression of SENP1 enhanced acetylation and 

inhibited SUMOylation of STAT5A (Figure 34). In contrast, overexpression of 

SENP1 mutant decreased acetylation and enhanced SUMOylation of STAT5 (Figure 

34). Taken together, these results demonstrate that SENP1 plays a critical role in 

regulating an acetylation/SUMOylation switch in STAT5.   
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Figure 30. The K696R mutant of STAT5 impairs its transcriptional activity. 
STAT5A/B-deficient MEFs, infected with an empty lentiviral vector (control, CT) or 
lentiviral vectors directing expression of wild-type STAT5, STAT5K696R, 
STAT5K700R or STAT5K696-700R, were transiently transfected with a luciferase 
reporter (pGL4-b-Casein) in triplicates. After 6-hour transfection, the cells were 
cultured in serum-free medium in the presence or absence of GH (200 ng/ml) for 18 
hours. Samples were harvested and evaluated for luciferase and renilla activity. The 
fold induction was calculated as the ratio of luciferase activity in the presence and 
absence of GH. Data shown are representative of three independent experiments. 
Error bars indicate standard deviation. The lower panel shows STAT5 expression 
levels in different clones measured by Western blot analysis with anti-FLAG and 
anti-b-actin (control) antibodies. 
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Figure 31. STAT5 is acetylated by p300. HEK-293 cells (in 6-well plate) were 
transfected with indicated FLAG-tagged STAT5A and HA-tagged p300 plasmids. 
Immunoprecipitation was performed with EZview Red ANTI-FLAG M2 Affinity 
Gel beads and analyzed with anti-acetyl lysine (top panel) and anti-FLAG (second 
panel) antibodies. The results are a representative of at least three independent 
experiments.  
 
 
 
 
 
 
 
 
 
 

 61



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32. Lysine 696 is also a target for acetylation. Lysates from HEK-293 cells 
transfected with plasmids expressing FLAG-tagged STAT5A or SUMOylation-
deficient mutants of STAT5A and HA-p300 were immunoprecipitated with EZview 
Red ANTI-FLAG M2 Affinity Gel beads and analyzed with the indicated antibodies. 
The results are representatives of at least three independent experiments.  
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Figure 33. Endogenous STAT5 is acetylated in FL cells treated with IL-7. FL 
cells isolated from three to five E14.5 wild-type and SENP1-/- embryos were treated 
with IL-7 for 10 min and lysed in RIPA buffer. Cellular extracts were 
immunoprecipitated with anti-STAT5 antibody and analyzed with anti-aK701-
STAT5B (top panel) and anti-STAT5 (second panel) antibodies. Loading samples 
were immunoblotted with anti-actin antibody. The results shown are a 
representative of three independent experiments.  
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Figure 34. SENP1 regulates the SUMOylation/acetylation status of STAT5. 
Lysates from HEK-293 Cells (in 6-well plate) transfected with plasmids expressing 
FLAG-tagged STAT5A, MYC-tagged SUMO3, HA-tagged p300 and RGS-tagged 
SENP1w (wild-type) or RGS-tagged SENP1m (mutant) were immunoprecipitated 
with EZview Red ANTI-FLAG M2 Affinity Gel beads and analyzed with anti-acetyl 
lysine (top panel), anti-SUMO2/3 (second panel) and anti-FLAG (third panel) 
antibodies. The input was immunoblotted with anti-RGS, anti-Myc and anti-HA 
antibodies. The results shown are a representative of at least three independent 
experiments. 
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DISCUSSION  

 

SENP1 is essential for early lymphoid development 

SUMOylation has emerged as an important regulatory mechanism for protein 

function (13, 19). SENPs are essential for reversing SUMOylation in many different 

systems, but the physiological functions of SENPs are poorly understood. Recently, 

SENP1 has been shown to play a crucial role in regulating erythropoiesis (20-22). 

However, the physiological function of SENP1 in the development of the immune 

system remains unknown. In the present study, we have discovered that SENP1 is 

essential for early T and B lymphopoiesis.  

The IL-7/IL-7R signaling pathway plays a critical role in regulating T and B 

cell development by controlling several cellular processes, such as cell survival, 

proliferation and VDJ recombination through alteration of chromatin structure.  Loss 

of IL-7R, C or Jak3 gene in mice leads to a severe developmental block of T and 

B cells (113-117), and mutations of these genes results in severe combined 

immunodeficiency in humans (118-121). IL-7 signaling is required for early T cell 

development in the thymus, mainly to protect cells at the DN 2 and DN3 stages from 

apoptotic cell death by regulating the expression of the survival proteins Bcl-2 and 

Mcl-1. Two groups independently crossed IL-7R-deficient mice to mice expressing a 

Bcl2 transgene. As a result, enforced expression of BCL-2 was sufficient to partially 

restore T cell development but was unable to rescue B cell development in IL-7R-

deficient mice (122-124). These studies suggested that the IL-7R signaling not only 

promote pro-B cell survival, but also regulates the expression of other genes required 
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for B cell development. Consistent with this notion, a recent study indicates that IL-

7R signaling is required for stage transition in adult B cell development through up-

regulation of the early B cell transcription factor EBF (125).  

The transcription factor STAT5 is a key molecule downstream of The IL-

7/IL-7R signaling pathway. Earlier analysis of STAT5 knockout mice (STAT5ABΔN/ΔN 

mice), which express N-terminally truncated and partially functional STAT5 

proteins, revealed only a mild defect in T and B cell development (126-128). 

However, a complete inactivation of STAT5A/B in mice (STAT5ABnull/null mice) 

exhibited a profound defect in early T and B cell development (107-109). These 

studies clearly indicate the importance of STAT5 in regulating early T and B cell 

development. Our data indicate that SENP1 deficiency results in severe defects in 

early T and B cell development, similar to that observed in STAT5ABnull/null mice, 

suggesting that STAT5 may be a direct target of SENP1. In agreement with this 

hypothesis, we also found that BCL-2, a key downstream target of STAT5 is 

significantly downregulated in SENP1-/- T and B lymphocytes.  

A possible explanation for the impaired development of both T and B cells 

observed in SENP1-/- embryos could be decreased numbers or function of HSCs. 

However, we have previously reported that HSCs were not affected in SENP1-/- 

embryos (21). Consistent with our previous findings, myeloid development is not 

affected in SENP1 deficiency. We also observed that SENP1 is expressed very high 

in HSCs (Figure 6). This suggests that SENP1 may be required for long-term self-

renewal capacity of HSCs. Future studies are needed to address this important issue. 
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STAT5 is regulated by the SUMOylation pathway 

PIAS proteins were initially identified as negative regulators of STAT 

signaling that inhibit the activity of STAT-transcription factors (58, 59). The exact 

molecular mechanisms by which the PIAS proteins inhibit STAT activity remain 

unclear, although several models have been proposed. For example, PIAS proteins 

bind only to activated STAT dimmers in the nucleus and inhibit their DNA-binding 

activity. Other possible explanation for the role of PIAS proteins in the regulation of 

STAT activity is that PIAS protein can recruit other co-regulators, including histone 

deacetylases (HDACs), to repress transcription. A recent study reported that PIAS1 

binding to the Foxp3 promoter leads to recruitment of DNA methyltransferases and 

heterochromatin protein 1 for epigenetic modifications (61). Pias1 deficiency results 

in promoter demethylation, reduced histone H3 methylation at Lys9, and enhanced 

promoter accessibility. Interestingly, deletion of PIAS1 leads to the enhanced 

binding of STAT5, a key transcription factor involved in Foxp3 induction to the 

Foxp3 promoter. As a result, PIAS1-/- mice exhibit the increased frequency of 

Foxp3+ CD4+CD8+ thymocytes (61). In deed, SUMOylation of many transcription 

factors results in alterations of their localization or interaction with binding partners. 

In most cases, SUMOylated proteins suppress transcription, possibly due to their 

interaction with co-repressors. Thus, the mechanism that SUMOylation regulates 

transcription is quite similar to that a PIAS protein suppresses the transcriptional 

activity of transcription factors. It is likely that PIAS proteins regulate the 

transcriptional activity of transcription factors through the SUMOylation pathway. 
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PIAS proteins have SUMO-specific E3 ligase activity, and have been shown 

to promote the SUMOylation of numerous transcription factors, such as p53, LEF1 

and c-Jun (129-131). These studies raised the possibility that STAT activity might be 

regulated by the SUMOylation pathway. It was previously shown that STAT1 are 

SUMOylated on Lysine 703 in an overexpression system (63, 64, 111). However, the 

in vivo function of SUMOylation in the regulation of STAT1 activity remains 

unclear. In addition, it is not known whether other STATs can be modified by 

SUMO. In this study, we found that SUMOylation negatively regulates STAT5 

activity. The accumulation of SUMOylated STAT5 results in suppression of STAT5 

activity and subsequent signaling events in SENP1-/- T and B cells. Although we also 

found that STAT5 SUMOylation is greatly enhanced by PIAS3 in an overexpression 

system, further studies will be required to define whether this SUMO-specific E3 

ligase is involved in regulation of STAT5 activity in vivo.    

 

SENP1 regulate STAT5 SUMOylation  

Protein function is tightly regulated by reversible posttranslational 

modifications to create an on and off state that is crucial for many biological 

processes. Many proteins are dynamically modified at multiple sites by different 

modifications (26). The histone code hypothesis has been proposed that distinct 

histone modifications, on one or more tails, act alone, sequentially or in combination 

to form a 'histone code' that is then read by effector proteins to bring about distinct 

downstream events (132). On the histone H3 tail, lysines 9 and 27 are well-known 

methylation sites, and methylation of these sites is ‘read’ by heterochromatin protein 
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1 (HP1) and Polycomb (Pc), leading to heterochromatin-mediated gene silencing 

(Lys 9) and epigenetic repression (Lys 27), respectively (133, 134). It is noteworthy 

that lysines 9 and 27 are located the “RK9S” or “RK27S” motif. According to the 

“methyl/phos switch” model, serine phosphorylation of the “RKS” motif that 

engages an HP1 or Pc module could lead to consecutive loss of binding (44). 

The interplay between phosphorylation and SUMOylation of neighboring 

sites has been shown to play an important role in regulating the transcriptional 

activity of many transcription factors. For example, heat-shock factors (HSFs), 

GATA-1 and myocyte enhancer factor 2 (MEF2), containing a SUMO consensus site 

and an adjacent proline-directed phosphorylation site (ΨKxExxSP), are regulated by 

phosphorylation-dependent SUMOylation (27, 28, 135). The motif ΨKxExxSP 

couples sequential phosphorylation and SUMOylation and has been referred to as a 

“Phospho-SUMOyl switch” (26). It has been shown that STAT1 SUMOylation at 

lysine 703 inhibits its phosphorylation at tyrosine 701 (136). In addition, STAT1 

SUMOylation at lysine 703 and STAT1 phosphorylation at tyrosine 701 are mutually 

exclusive (137). We have identified two SUMOylation sites of STAT5 at lysines 696 

and 700, located in close proximity to tyrosine 694, whose phosphorylation is a 

prerequisite for STAT5 activation, suggesting a possible interplay between 

SUMOylation and phosphorylation in regulating STAT5 activity. Indeed, 

SUMOylation of STAT5 is phosphorylation-dependent, since STAT5 

phosphorylation mutant Y694A abolished SUMOylation of STAT5 (data not 

shown). We also found that SENP1 deficiency causes increased STAT5 

SUMOylation, correlating with diminished STAT5 phosphorylation and activity in 
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lymphocytes (Figures 20 and 28), suggesting that SUMOylation of STAT5 inhibits 

its phosphorylation and subsequent signaling events. Interestingly, SUMOylation of 

STAT5 observed in the absence of SENP1 appears to be lymphocyte specific, since 

no SUMOylated STAT5 could be detected in SENP1-/- myeloid cells (Figure 20). 

Further investigations are required to resolve this issue. 

 

The acetylation/SUMOylation switch in STAT5 is regulated by SENP1 

Since lysine can be a target of different posttranslational modifications, 

SUMOylation can block alternative lysine-targeted modifications, such as 

ubiquitination, methylation or acetylation. It was previously reported that IκBα is 

SUMOylated on K21, which is also targeted by ubiquitination (29). Transcriptional 

activity of several transcription factors, such as SP3, HIC1 and MEF2A can be 

regulated by interplay between SUMOylation and acetylation on the same lysine 

residue (30, 31, 138). An acetylation-SUMOylation switch on MEF2 is further 

regulated by its phosphorylation (31). In addition to tyrosine phosphorylation, 

acetylation of different STATs has been shown to play a critical role in regulating 

their activity (52, 53, 55, 56). For example, STAT3 acetylation at lysine 685 is 

essential for its dimerization and transcriptional activity (55). Here, our data clearly 

show that STAT5A is acetylated at lysine 696, which is also a target for 

SUMOylation. Acetylation of STAT5 at lysine 696 is essential for STAT5 

activation, since mutation of this lysine diminished the transcriptional activity of 

STAT5 (Figure 30). Consistent with our finding, a recent study has reported that 

STAT5B acetylation on lysine 701 (corresponding lysine 696 on STAT5A) is 
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essential for STAT5B dimerization and transcription (57). Notably, our data provide 

direct evidence that SENP1 regulates an acetylation/SUMOylation switch in STAT5.  

 

Proposed model 

Based on the findings reported here, we propose a model for the role of 

SENP1 in the regulation of an acetylation-SUMOylation switch in STAT5 (Figure 

35). In unstimulated cells, STAT5 exists in the cytoplasm as a monomer. Upon 

activation, tyrosine-phosphorylated and acetylated STAT5 dimerizes, translocates to 

the nucleus, and activates transcription. We currently do not know which signal 

induces the acetylation/SUMOylation switch in STAT5. Since we did not observe 

the phosphorylation of STAT5 SUMOylated form in SENP1-/- B and T cells (Figure 

20), it seems likely that dephosphorylation of STAT5 promotes a switch from 

acetylation (active state) to SUMOylation (inactive state). It is also possible that 

SUMOylation of STAT5 facilitates its dephosphorylation. SENP1 protein, which is 

predominantly present in the nucleus (16), is required for de-conjugating 

SUMOylated STAT5 before it returns to the cytoplasm to complete an activation-

inactivation cycle. In the absence of SENP1, STAT5 is accumulated in the 

SUMOylation state, leading to inhibition of STAT5 phosphorylation and acetylation, 

and subsequent signaling events. Thus, our findings establish a specific role of 

SENP1 in regulating lymphoid development via an acetylation/SUMOylation switch 

in STAT5.  
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Figure 35. A model for the role of SENP1 in the regulation of acetylation-

SUMOylation switch in STAT5. SUMOylation switches STAT5 from an active 

state to an inactive state. SENP1 is required to remove SUMO from conjugated 

STAT5, allowing it to re-enter the activation-inactivation cycle. * is lysine 696 in 

STAT5A or lysine 701 in STAT5B; A is acetylation; P is phosphorylation. 
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In conclusion, our study has provided evidence that SENP1 controls early T 

and B lymphopoiesis through the regulation of an acetylation/SUMOylation switch 

in STAT5. SENP1 deficiency results in severe defects in early T and B cell 

development. Our data clearly demonstrate that SENP1 regulates STAT5 activity via 

an acetylation/SUMOylation switch in STAT5. SENP1 deficiency causes the 

accumulation of SUMOylated STAT5, thus preventing STAT5 to re-enter another 

activation-inactivation cycle, which contributes to defective early T and B cell 

development. The acetylation/SUMOylation switch may acts as an important 

mechanism involving in the regulation of transcription in the immune system to turn 

the signaling ON and OFF in response to cytokines or pathogens.  
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MATERIALS AND METHODS 

Mice 

The generation and screening of SENP1-/- fetuses has been described 

previously (21). SENP1+/- mice were intercrossed, and E14.5 fetuses (date of plug = 

E0.5) were obtained for FL isolation.  RAG1-/- mice were obtained from The Jackson 

Laboratory. All animal protocols used in this study were approved by the 

Institutional Animal Care and Use Committee at The University Texas M. D. 

Anderson Cancer Center. 

 

Plasmids  

The full-length cDNA of murine STAT5A was amplified from the retroviral 

vector pMIG-STAT5 (a gift of Drs. Yong-Jun Liu & Stephanie S. Watowich, UT-

MD Anderson cancer center), and then subcloned into p3xFLAG-CMV™-7.1 

Expression Vector (Sigma, St Louis, MO) using standard techniques. Rat STAT5b 

pcDNA3.1- was a kind gift from Dr. L.-Y. Yu-Lee (Baylor College of Medicine). 

Myc-tagged wild-type mouse PIAS3 and Myc-tagged mouse PIAS3 RING domain 

mutant were generously provided by Dr. Fang Liu (Rutgers University). pGL4 

mouse -Casein reporter plasmid was kindly given by Dr. Koichi Ikuta (Kyoto 

University). pGL4.74 [hRluc/TK] vector was from Promega. HA-p300 plasmid was 

described earlier (139). HA-SUMO2, Flag-SENP1, and Flag-SENP1 catalytic mutant 

plasmids were generated in our laboratory. STAT5 mutants were generated by using 

a QuikChange Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA). 
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Antibodies and Cytokines 

Anti–Flag (M2, F3165) was from Sigma. Anti–HA (influenza hemagglutinin) 

(16B12, MMS-101P) was from Covance. Anti-RGS (34610) was from QIAGEN. 

Anti-Myc (9E10) was from Santa Cruz Biotechnology. Monoclonal anti-SUMO-1 

antibody (anti-GMP-1) was from Zymed. Anti-SUMO-2/3 was purchased from 

Abgent. Anti-STAT5 (C-17) and anti-STAT3 (C-20) antibodies were from Santa 

Cruz Biotechnology. Antibodies for STAT5A and STAT5B were from R&D 

Systems. Anti-phospho-STAT5 was from cell Signaling. Anti-Bcl-2 antibody 

(610538) was from BD Biosciences. Anti-acetylated-lysine antibody (9441s) was 

from Cell Signaling. Anti-aK701-STAT5b was from Dr. Y. Eugene Chin (Brown 

University) and described previously (57). Anti--Actin was from Sigma.  

All cytokines, including murine IL-7, murine Ilt3 ligand, murine IL-3, murine 

IL-6 and murine SCF, were purchased from Peprotech (Rocky Hill, NJ).  

 

Monoclonal antibodies and flow cytometry 

All monoclonal antibodies used in this study were from BD Pharmingen: 

anti-c-Kit (2B8; APC), anti-Sca-1 (E13-161.7; PE and D7; FITC), anti-TER-119 

(TER-119; FITC, APC, PE), anti-CD11b (M1/70; FITC), anti-Gr-1 (RB6-8C5; 

PerCP-Cy5.5), anti-CD19 (1D3; PerCP-Cy5.5), anti-CD4 (RM4-5; PerCP-Cy5.5 and 

GK1.5; FITC), anti-CD8a (53-6.7; PerCP-Cy5.5, APC), anti-CD44 (Pgp-1; FITC, 

IM7; APC), anti-CD25 (7D4; FITC, PE), anti-mouse early B lineage (AA4.1; FITC), 

anti-CD24 (M1/69; FITC), anti-BP1 (6C3; PE, biotin), anti-CD43 (S7; FITC, biotin), 
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anti-B220 (RA3-6B2; APC, PE), anti-IgM (II/41; APC). For detection biotinated 

antibodies, streptavidin-APC and PerCP-Cy5.5 (BD Pharmingen) were used.  

Single-cell suspensions were first incubated on ice with rat anti-mouse 

CD16/CD32 (BD PharMingen) to block nonspecific binding to Fc receptors. 

Subsequently, cells were incubated with indicated antibodies and analyzed using a 

LSR II flow cytometer or FACS-Calibur machine and the FlowJo analyzing software 

(Treestar).  

 

Purification of FL-HSCs  

E14.5 fetal liver cells were harvested and treated with red blood cell lysis 

buffer (Sigma). Then, cells were stained with anti-c-Kit-APC and anti-Sca-1-PE 

antibodies, and a mixture of antibodies to lineage markers: Gr-1, CD11b. TER-119, 

CD19, CD4 and CD8. FL-HSCs (lin- c-KithighSca-1high) were sorted using FACSAria 

cell sorter (BD Biosciences).   

 

B and T cell differentiation in vitro 

OP9 and OP9-DL1 stromal cell lines (generous gifts from Dr. Juan Carlos 

Zúñiga-Pflücker, University of Toronto, Toronto, Canada) were co-cultured as 

previously described (104). Briefly, stromal cells were maintained in alpha-MEM 

(Gibco BRL) containing 20% FBS (Gibco BRL) and penicillin–streptomycin 

(Sigma-Aldrich). Wild-type and SENP1-/- FL-HSCs (1000-3000 cells/well in 24-well 

plates) were placed on OP9 and OP9-DL1 monolayers, for B and T lineage 

differentiation, respectively. Co-culture media contained: alpha-MEM, 10% FBS, 10 

 76



mM HEPES (Gibco BRL), 1 mM sodium pyruvate (Gibco BRL), 2 mM GlutaMax, 

penicillin–streptomycin, 50 mM 2-mercaptoethanol, 5 ng/ml IL-7 and 5 ng/ml Flt3L. 

After 4 days of culture, the cells were passed onto newly prepared OP9 and OP9-

DL1 cells. For myeloid differentiation, wild-type and SENP1-/- FL-HSCs were 

placed on OP9 monolayers in the presence of IL3 (10ng/ml), IL6 (10ng/ml), SCF (50 

ng/ml) and Flt3L (50 ng/ml). 

  

Transplantation experiments  

Two x 106 fetal liver cells isolated from E14.5 wild-type and SENP1-/- 

embryos were injected intravenously into lethally (950 rad) irradiated RAG-1-

deficient mice. Mice were sacrificed 5-6 weeks after transplantation. The lymphoid 

compartments of the recipients were analyzed by flow cytometry. The experiments 

shown in this study represent results from two independent experiments.  

 

RNA Extraction and real time PCR assay  

Total RNA was extracted using the RNeasy Mini Kit from QIAGEN and 

converted into cDNA using Advantage RT-for-PCR Kit (Clontech) according the 

protocols described in the handbooks. Quantitative RT-PCR were performed using 

TagMan gene expression assay from (Applied Biosystems) and analyzed on the 

GeneAmp 7700 sequence detection system (Applied Biosystems). Gene expression 

was normalized to 18s rRNA level. The relative abundance is displayed as an 

average of triplicates of quantitative PCR in each sample, and error bars indicate ± 

SD. All primers were purchased from Applied Biosystems: mouse SENP1 
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(Mm00522968_m1), mouse interleukin 7 receptor (Mm00434295_m1), mouse Janus 

kinase 3 (Mm00439962_m1), mouse Janus kinase 1(Mm00600614_m1), mouse 

interleukin 2 receptor gamma chain (Mm00442885_m1), eukaryotic18s rRNA 

(4319413E). 

RT-PCR was performed using gene specific primers: PU1, E2A and GATA3 

(140). The primers for STAT5 and -Actin were described previously (21).  

 

Luciferase assays  

STAT5 and its mutants were constructed in pCDH-T2AcGFP-MSCV 

(System Biosciences). The lentiviruses were generated according to the 

manufacturer's protocol (System Biosciences). STAT5A/B-deficient MEFs (a kind 

gift from Dr. James N. Ihle at the St. Judes Childrens Research Hospital) infected 

with an empty lentiviral vector (control) or lentiviral vectors directing expression of 

wild-type STAT5A and its mutants including STAT5K696R, STAT5K700R or 

STAT5K696-700R, were transiently transfected with luciferase reporter (pGL4--

Casein) and pGL4.74 [hRluc/TK] plasmids in triplicate using FuGENE HD (Roche). 

After 6-hour transfection, the cells were cultured in serum-free medium in the 

presence or absence of GH (200 ng/ml) for 18 hours. Samples were harvested and 

evaluated for luciferase and renilla activity. The fold induction was calculated as the 

ratio of luciferase activity in the presence and absence of GH. Data are representative 

of three independent experiments. Error bars indicate standard deviation.  

  

Western blot analysis 
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B, T and myeloid cells derived from HSC differentiation on day 7 of 

coculture with OP9 cells and OP9-DL1 cells were harvested and filtered through a 

70-µm filter to exclude pieces of disrupted monolayer. After washing twice with ice-

cold PBS, the cells were lysed in RIPA buffer (50 mM Tris-HCl, 150 mM NaCl, 1% 

Triton X-100, 1% Sodium deoxycholate , 0.1 % SDS, [pH 7.5]) supplemented with 

complete protease inhibitor cocktail and 20 mM N-Ethylmaleimide (NEM, 

Sigma).Whole-cell protein extracts were prepared and quantified by the Bradford 

method (Bio-Rad, Hercules, CA). Equal amounts of protein (20 g/lane) was 

electrophoretically separated on SDS-PAGE and transferred to a PVDF membrane. 

The membranes were blotted with indicated antibodies. An anti-rabbit or anti-mouse 

antibody conjugated to horseradish peroxidase was used as secondary antibodies, and 

the signal was detected using a chemiluminescence kit (PerkinElmer, Wellesley, 

MA).  

 

Immunoprecipitation  

For in vivo SUMOylation assay, COS-1 cells were transfected with indicated 

plasmids. At 24 hr after transfection, cells were lysed with immunoprecipitation 

buffer (10 mM phosphate buffer, 10 mM Tris, 150 mM NaCl, 1% Triton X-100, and 

20 mM NEM [pH 7.5]) containing a protease inhibitor cocktail, and 

immunoprecipitated with the indicated  antibodies or EZview Red Affinity Gel 

matrix (Sigma, St. Louis, MO). For in vivo acetylation assay, HEK-293 cells were 

transfected with indicated plasmids. After 48-hour transfection, cells were lysed in 

RIPA buffer containing a protease inhibitor cocktail, 10 mM nicotinamide and 
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500nM trichostatin A, and immunoprecipitated with the indicated antibodies. For 

denaturing immunoprecipitation, the cells were lysed in 0.2 ml denaturing IP buffer 

(1% SDS, 50 mM Tris, 10 mM DTT, [pH 7.5]) and boiled for 5 minutes. 

Subsequently, denatured proteins were diluted in immunoprecipitation buffer and 

immunoprecipitated with the indicated antibodies. Immunoprecipitated proteins were 

resolved by SDS/PAGE and analyzed by immunoblotting.   

 

Statistical analysis. 

 Data are presented as mean ± one standard deviation (SD); p values were 

calculated using an unpaired two-tailed Student’s t test in the Microsoft Excel 

software. P > 0.05 was considered to be not significant; *, P < 0.05 and **, P < 0.01 

means significant and very significant, respectively.  
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