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REGULATION OF SET1-MEDIATED METHYLATION OF DAM1 

 

Publication No.__________ 

 

John Andrew Latham, B.A. 

 

Supervisory Professor: Sharon Y. R. Dent, Ph.D. 

 

Eukaryotic genomes exist within a dynamic structure named chromatin in which DNA is 

wrapped around an octamer of histones forming the nucleosome.  Histones are modified 

by a range of posttranslational modifications including methylation, phosphorylation, and 

ubiquitination, which are integral to a range of DNA-templated processes including 

transcriptional regulation.  A hallmark for transcriptional activity is methylation of 

histone H3 on lysine (K) 4 within active gene promoters.  In S. cerevisiae, H3K4 

methylation is mediated by Set1 within the COMPASS complex.  Methylation requires 

prior ubiquitination of histone H2BK123 by the E2-E3 ligases Rad6 and Bre1, as well as 

the Paf1 transcriptional elongation complex.  This regulatory pathway exemplifies cross-

talk in trans between posttranslational modifications on distinct histone molecules.  Set1 

has an additional substrate in the kinetochore protein Dam1, which is methylated on 

K233.  This methylation antagonizes phosphorylation of adjacent serines by the Ipl1 

Aurora kinase.  The discovery of a second Set1 substrate raised the question of how Set1 

function is regulated at the kinetochore.  I hypothesized that transcriptional regulatory 

factors essential for H3K4 methylation at gene promoters might also regulate Set1-
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mediated methylation of Dam1K233.  Here I show that the regulatory factors essential for 

COMPASS activity at gene promoters is also indispensable for the methylation of 

Dam1K233.  Deletion of members of the COMPASS complex leads to loss of 

Dam1K233 methylation.  In addition, deletion of Rad6, Bre1, or members of the Paf1 

complex abolishes Dam1 methylation.  The role of Rad6 and Bre1 in Dam1 methylation 

is dependent on H2BK123 ubiquitination, as mutation of K123 within H2B results in 

complete loss of Dam1 methylation.  Importantly, methylation of Dam1K233 is 

independent of transcription and occurs at the kinetochore.  My results demonstrate that 

Set1-mediated methylation is regulated by a general pathway regardless of substrate that 

is composed of transcriptional regulatory factors functioning independently of 

transcription at the kinetochore.  My data provide the first example of cross-talk in trans 

between modifications on a histone and a non-histone protein. Additionally, my results 

indicate that several factors previously thought to be required for Set1 function at gene 

promoters are more generally required for the catalytic activity of the COMPASS 

complex regardless of substrate or cellular process.  
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Chapter 1 

Introduction 

 

Chromatin structure and function 

Eukaryotic genomes do not exist as naked DNA within the nucleus.  Rather, genomes 

exist as a dynamic structure of DNA and proteins, which was named chromatin by 

Walther Flemming in 1879.  The term chromatin is derived from the Greek word for 

color khroma due to its pronounced staining with basophilic dyes (Paweletz, 2001).  Soon 

after the discovery of chromatin, Albrecht Kossel in 1884 isolated from goose 

erythrocytes the highly basic proteins from chromatin naming them histones (Hnilica et 

al., 1989).  Originally, chromatin and histones were thought to mainly serve a structural 

role as a DNA scaffold allowing for its compaction into the nucleus.  It was not until the 

midpoint of the 20th century that it was hypothesized that histones may serve another 

function as gene repressors (Stedman, 1950).  Eventually, it was shown through the work 

of a large body of researchers that chromatin dynamically regulates a number of 

processes essential for normal cellular functions (Groth et al., 2007; Li et al., 2007). 

 

The fundamental unit of chromatin is the nucleosome (Kornberg, 1974).  The nucleosome 

consists of an octamer of histone proteins comprised of two heterodimers of the core 

histones H2A and H2B and a heterotetramer of the core histones H3 and H4.  Around this 

octamer of proteins is wrapped 146 base-pairs of DNA (Luger et al., 1997).  Histones 

contain a central globular domain that forms the major architecture of the nucleosome 

and a flexible, unstructured N-terminal tail that protrudes outside of the nucleosome 
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(Luger et al., 1997).  Binding to the DNA as it enters and exits the nucleosome are linker 

histones such as H1 (Happel and Doenecke, 2009).  The roles of the linker histones are to 

stabilize the nucleosome and help in compaction and formation of higher order chromatin 

structures.  The structure of uncondensed nucleosomes on DNA is called “beads on a 

string” due to its resemblance to that structure (Olins and Olins, 1974).  The first order of 

chromatin compaction is into a solenoid structure called the 30-nanometer fiber 

(Tremethick, 2007).  Chromatin can be further compacted through mechanisms that are 

not yet clear into the highly condensed mitotic chromosomes (Woodcock and Ghosh, 

2010).    

 

Chromatin is divided into two main categories, heterochromatin and euchromatin 

(Lamond and Earnshaw, 1998).  Heterochromatin is tightly compacted resulting in 

restricted access to the underlying DNA by RNA polymerases and other DNA binding 

proteins (Bühler and Gasser, 2009).  A well-characterized example of heterochromatin 

regulating DNA-templated activity is X-chromosome inactivation (Payer and Lee, 2008).  

In S. cerevisiae, heterochromatin inhibits transcription at the silent loci of centromeres, 

telomeres, and mating loci (Bühler and Gasser, 2009).  In contrast, within euchromatin 

nucleosomes are less tightly compacted.  Euchromatin is the chromatin environment at 

actively transcribed genes, genes poised for transcription, and genomic loci undergoing 

DNA repair (Groth et al., 2007; Li et al., 2007).  In order to establish or maintain 

euchromatin and heterochromatin, cells utilize different histone variants, ATP-dependent 

chromatin remodeling complexes, and different combinations of posttranslational 

modifications of the histones (Bassett et al., 2009). 
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Histone posttranslational modifications 

Dynamic chromatin structures are governed in part by posttranslational modifications of 

the histones (Kouzarides, 2007).  Using the example of gene regulation, posttranslational 

modifications actively determine whether a particular locus is silenced, repressed, or 

transcribed.  These modifications were first discovered in the 1960s (Allfrey et al., 1964), 

but it was not until the end of the 20th century that a link between gene regulation and 

histone modifications were found, when a transcriptional activator was determined to 

acetylate histones (Brownell et al., 1996).  Since then, it has it become clear that covalent 

histone modifications play critical regulatory roles in gene regulation and other DNA-

templated processes (Kouzarides, 2007).   

 

A large number of residues within the histones are modified by posttranslational 

modifications (Figure 1) (Latham and Dent, 2007).  Lysines are subject to acetylation.  In 

addition, lysines within histones can be monoubiquitinated, serving a signaling role rather 

than a role in protein degradation.  Serines and tyrosines are modified by 

phosphorylation.  Both lysines and arginines are modified by methylation.  Arginines can 

be modified by up to two different methyl groups while lysines can be methylated up to 

three times.  Furthermore, the degree of methylation can result in different functional 

outcomes (Latham and Dent, 2007).   

 

Covalent histone modifications are associated with specific regulatory functions.  For 

instance, acetylation is associated with active gene transcription while lysine methylation 
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Figure 1.  Common histone posttranslational modifications 

Several different histone residues undergo posttranslational modification.  Shown are the 

types of amino acids and the modifications covalently linked to them.  Adapted from 

(Latham and Dent, 2007).
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is associated with both gene transcription and repression depending on which lysine is 

modified and whether it is mono-, di-, or trimethylated (Kouzarides, 2007).  The most 

well characterized modifications occur on the flexible N-terminal tails of histones, 

especially H3 and H4.  However, modifications also occur within the globular regions 

and the C-terminal regions of histones (Hyland et al., 2005).  It is thought that 

modifications within the central-fold domain of histones mediate contact with the DNA 

and other histones, whereas modification of the N-terminal tails serve as docking sites for 

histone modification “readers”.  

 

Covalent histone modifications serve as binding sites for effector molecules (Taverna et 

al., 2007).  These “readers” bind to posttranslational modifications through modification 

specific binding domains such as PHD domains for lysine methylation and bromo 

domains for acetylated lysines (Taverna et al., 2007).  Additionally, modification(s) can 

serve as inhibitors that prevent the binding of specific proteins.  These effects serve as the 

basis of the histone code hypothesis, which posits that patterns of histone modifications 

and their binding by effector molecules lead to specific downstream functions (Strahl and 

Allis, 2000; Turner, 2000). 

 

Modification of histones occurs in distinct patterns that can predict a specific DNA-

templated activity at a given locus.  These patterns are established by “cross-talk”, in 

which modification on one residue can influence the modification of the same residue or 

another residue (Latham and Dent, 2007).  Cross-talk between modifications on the same 

residue is called cross-talk in situ (Latham and Dent, 2007).   An example of in situ 
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regulation is acetylation or methylation of H3K9.  Methylation of H3K9 is a 

transcriptionally repressive mark, and it prevents acetylation of this residue, which is a 

mark of transcriptional activation.  Conversely, when H3K9 is acetylated, methylation is 

prevented (Latham and Dent, 2007).   

 

Cross-talk between posttranslational modifications on the same histone molecule is called 

cross-talk in cis.  This type of cross-talk between modifications is exemplified by 

phosphorylation of H3S10 blocking methylation of H3K9 and vice-versa, methylation of 

H3K9 inhibiting phosphorylation of H3S10 (Latham and Dent, 2007).  Examples of 

cross-talk in cis are found not only on histones, but have been found on non-histone 

proteins such as p53 (Latham and Dent, 2007). 

 

Regulation of H3K4 methylation by H2B ubiquitination 

The canonical example of cross-talk between histone modifications in trans is regulation 

of H3K4 methylation by H2B ubiquitination at active gene promoters (Figure 2) (Dover 

et al., 2002; Sun and Allis, 2002).  This pathway is unidirectional, as deletion of the 

H3K4 methyltransferase Set1 or mutation of H3K4 has no effect on H2B ubiquitination 

(Sun and Allis, 2002).  This “trans-tail” pathway of histone modifications is conserved 

from budding yeast all the way to humans.  In yeast, H2BK123 ubiquitination is required 

for H3K4 methylation; while in humans, ubiquitination of H2BK120 is required (Dover 

et al., 2002; Sun and Allis, 2002; Zhu et al., 2005).  Not all levels of H3K4 methylation 
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Figure 2.  Regulation of H3K4 methylation at promoters 

Set1-mediated methylation of H3K4 is highly regulated at active promoters.  Rad6 is 

phosphorylated by Bur1-Bur2.  Rad6 and Bre1, together with the Paf1 complex, 

ubiquitinate H2BK123.  H2B ubiquitination is negatively regulated by Ubp8 or Ubp10.  

Rpt4 and Rpt6 link H2B ubiquitination to H3K4 methylation mediated by the COMPASS 

complex. 
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require H2B ubiquitination as it is not required for H3K4 monomethylation, but only for 

H3K4 di- and trimethylation (Dehe et al., 2005; Shahbazian et al., 2005).  Interestingly, 

Dot1-mediated methylation of H3K79 within the H3 globular domain also requires 

H2BK123 to be ubiquitinated (Ng et al., 2002b).  The conservation of the “trans-tail” 

pathway across evolution allows for use of the S. cerevisiae model organism to study a 

pathway directly applicable to human biology.  Over the last several years, regulation of 

this pathway has been extensively studied and determined to be regulated by a number of 

factors, as illustrated in Figure 2 and described in detail below. 

 

H2B ubiquitination is mediated by Rad6-Bre1 and the Paf1 complex 

H2B ubiquitination at K123 is catalyzed by the E2 ubiquitin conjugating enzyme Rad6 

and the E3 ubiquitin ligase Bre1 (Hwang et al., 2003; Robzyk et al., 2000; Wood et al., 

2003a).  These enzymes are conserved, as the human orthologues of Rad6 are HR6A and 

HR6B and the Bre1 orthologue is RNF20 (Table 1) (Kim et al., 2005; Koken et al., 1991; 

Roest et al., 2004).  Deletion of Rad6, Bre1, or mutation of H2BK123 to a residue that is 

unable to be ubiquitinated results in loss of H3K4 di- and trimethylation (Dover et al., 

2002; Sun and Allis, 2002).   

 

Bre1 is recruited to promoters independently of Rad6, likely through interaction of 

transcriptional co-activators (Hwang et al., 2003).  However, Rad6 recruitment to 

promoters is dependent on Bre1, reflecting a two-step process for H2BK123 

ubiquitination (Kao et al., 2004).  Rad6 is phosphorylated on S120 by the Bur1/Bur2 

cyclin dependent kinases (Wood et al., 2005).  Phosphorylation on S120 is not required  
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Table 1: Human orthologs of H3K4 methylation regulatory proteins 

 

 

Protein 
complex 

S. 
cerevisiae Human 

 
Set1 

 
MLL 

Bre2 
Spp1 ASH2L  

COMPASS 
Swd1 
Swd2 
Swd3 

RBBP5 
WDR5 

Rad6 HR6A, HR6B 
Rad6-Bre1c 

Bre1 RNF20 

Paf1 hPaf1 

Ctr9 hCtr9 Paf1c 

Rtf1 hRtf1 

SAGA Ubp8 USP22 
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for recruitment of Rad6 to promoters (Wood et al., 2005).  However, the kinases are 

required for the catalytic activity of Rad6 towards H2BK123 (Laribee et al., 2005; Wood 

et al., 2005).  Despite the role that Bur1/Bur2 play in H2BK123 ubiquitination, they only 

regulate H3K4 trimethylation through a mechanism that is not yet understood (Laribee et 

al., 2005).  

 

Bur1/Bur2 are also essential for recruitment of the Paf1 complex to promoters, which is 

necessary for H2BK123 ubiquitination (Laribee et al., 2005).  The conserved Paf1 

transcriptional elongation complex includes Ctr9, Rtf1, and the Paf1 protein itself (Table 

1) (Krogan et al., 2003b; Ng et al., 2003a; Wood et al., 2003b).  While the Paf1 complex 

is not necessary for Rad6 or Bre1 recruitment to promoters, it is required for their 

catalytic activity (Wood et al., 2003b).  Additionally, the Paf1 complex mediates 

association of Rad6-Bre1 with elongating RNA polymerase II (Wood et al., 2003b).  

Deletion of the Paf1 complex member RTF1 results in Rad6 retention at the promoter and 

failure to associate with the elongating RNA polymerase II (Xiao et al., 2005).  In in vitro 

studies, Bre1 binds directly to the Paf1 complex, and this interaction is required for the in 

vitro ubiquitination of H2BK123 (Kim and Roeder, 2009).  This mechanism for H2B 

ubiquitination also holds true in human cells as active transcription is required for 

H2BK120 ubiquitination (Kim et al., 2009).  Since the Paf1 complex is required for 

H2BK123 ubiquitination, it is also required for H3K4 di- and trimethylation at promoters 

(Krogan et al., 2003b).  Additionally, in in vitro methyltransferase assays, ubiquitinated 

H2B directly stimulates H3K4 methylation (Kim et al., 2009).   A direct role for 

transcription in regulating H2B ubiquitination has been observed, as a temperature 
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sensitive allele of the RNA polymerase II C-terminal domain (CTD) serine 5 kinase 

KIN28 results in a global loss of H2B ubiquitination (Xiao et al., 2005).  However, 

mutation of RNA polymerase II serine 5 to an unphosphorylatable residue results in only 

modest decreases in H2BK123 ubiquitination suggesting that the role of Kin28 in H2B 

ubiquitination in not solely through CTD serine 5 phosphorylation (Xiao et al., 2005).   

 

H2BK123 is also regulated by deubiquitination.  Deubiquitination of H2B is carried out 

by two different ubiquitin specific proteases, Ubp8 and Ubp10.  Ubp8 is part of the 

SAGA complex (Table 1) and requires association with the SAGA complex for its 

catalytic activity (Henry et al., 2003; Lee et al., 2005).  Ubp8-mediated H2B 

deubiquitination occurs at active gene promoters, where H2B undergoes rounds of 

ubiquitination and deubiquitination (Henry et al., 2003).  Deletion of Ubp8 results in an 

increase in H3K4 methylation in a gene specific manner (Shukla et al., 2006).   

 

In contrast, Ubp10 regulates H2BK123 ubiquitin levels at silenced genomic loci such as 

telomeric and rDNA (Emre et al., 2005; Gardner et al., 2005).  The role of Ubp10 in gene 

silencing is to target the histone deacetylase Sir2 to silenced regions of the genome and to 

maintain low levels of H3K4 methylation through H2BK123 deubiquitination (Calzari et 

al., 2006; Emre et al., 2005; Gardner et al., 2005). 

 

Set1-mediated methylation of H3K4 

Set1 is a 1080 amino acid protein and contains a C-terminal SET (Su(var)3–9, Enhancer 

of zeste, trithorax) domain for which it is named.  Set1 is orthologous to the MLL 
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proteins and hSET1 in humans (Table 1).  Set1 was first discovered as a transcriptional 

repressor (Nislow et al., 1997).  Later it was determined that Set1 is a lysine (K) 

methyltransferase that modified histone H3 N-terminal tails on K4 (Briggs et al., 2001).   

 

Set1 resides within an eight-member complex named COMPASS (COMPlex of Proteins 

ASociated with Set1) (Table 1) (Miller et al., 2001; Nagy et al., 2002; Roguev et al., 

2001).  Set1 is the only catalytic member of this complex.  However, an intact complex is 

required for the catalytic activity of Set1.  Interestingly, specific subunits are required for 

different degrees of H3K4 methylation.  Swd1, Swd2, and Swd3 are required for all 

degrees of H3K4 methylation.  Sdc1 and Bre2 form a heterodimer and are required for 

H3K4 di- and trimethylation.  Spp1 is only required for trimethylation of H3K4.  

Deletion of SHG1 does not affect the levels of H3K4 methylation and its function within 

the complex is unclear (Dehe et al., 2006; Schneider et al., 2005).  Set1-mediated 

methylation of H3K4 at promoters is also dependent on association with elongating RNA 

polymerase II via the Paf1 complex (Shilatifard, 2006). 

 

How H2B ubiquitination is required for H3K4 methylation is not yet fully understood.  

However, recent evidence suggests that H2BK123 ubiquitination is a prerequisite for 

association of the essential Swd2 subunit with the rest of the COMPASS complex.  Loss 

of H2B ubiquitination does not affect recruitment of the rest of COMPASS to active 

promoters, but is required for Swd2 association and therefore Set1 catalytic activity (Lee 

et al., 2007).  Swd2 itself is ubiquitinated by Rad6 and Bre1.  Loss of Swd2 

ubiquitination results in loss of H3K4 trimethylation (Vitaliano-Prunier et al., 2008).  
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Additionally, it has been suggested that the proteosomal ATPases Rpt4 and Rpt6 are 

required for H3K4 di- and trimethylation.  Rpt4 and Rpt6 recruitment to active promoters 

is dependent upon H2B ubiquitination.  However, hypomorphic mutations of these 

ATPases have no effect on H2B ubiquitination (Ezhkova and Tansey, 2004).  The 

mechanism by which these ATPases are required for H3K4 methylation is still not clear. 

 

Recently, additional factors that regulate H3K4 methylation but not H2B ubiquitination 

have been uncovered.  Deletion of CCR4/NOT mRNA processing complex members 

results in increased H3K4 trimethylation, but does not affect H2B ubiquitination (Laribee 

et al., 2007).  However, another group found that the CCR4/NOT complex affects H3K4 

trimethylation through recruitment of the Paf1 complex and therefore H2B ubiquitination 

(Mulder et al., 2007).  Deletion of members of the Ctk cyclin-dependent protein complex 

that phosphorylates RNA polymerase II at serine 2 during transcriptional elongation 

results in a decrease in H3K4 monomethylation and an increase in H3K4 trimethylation 

(Wood et al., 2007).  Together, the role of these complexes may help in regulating the 

transition from H3K4 trimethylation at promoters to H3K4 dimethylation within the 

coding regions of active genes. 

 

Set1 and the Ipl1 Aurora kinase are functionally connected 

Another modification to the histone H3 C-terminal tail is phosphorylation of serine 10 by 

Ipl1, which peaks during mitosis and therefore serves as a mitotic marker (Wei et al., 

1999).  Ipl1 is the only member of the Aurora kinases in budding yeast.  In mammals, 

there are three Aurora kinases, Aurora A, Aurora B, and Aurora C.  While Aurora A has 
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a primary role in centrosome function and Aurora C functions within germ cells, Aurora 

B most closely resembles Ipl1 (Vader and Lens, 2008).  Aurora B, like Ipl1 in yeast, 

phosphorylates H3S10 in humans and nematodes during mitosis (Hsu et al., 2000). 

 

In higher eukaryotes, H3S10 phosphorylation undergoes cross-talk in cis inhibiting 

methylation of the adjacent lysine 9 on the histone tail.  S. cerevisiae lack methylation of 

H3K9 but histone H3 is methylated at K4 by Set1.  Deletion of SET1 suppresses the 

temperature-sensitive phenotype of the well-characterized ipl1-2 allele containing a 

hypomorphic kinase domain (Zhang et al., 2005).  Surprisingly, this genetic interaction is 

not through posttranslational modification of histone H3 but is mediated through 

modification of another shared substrate, the Dam1 kinetochore protein (Zhang et al., 

2005).   

 

The Dam1 complex 

The Dam1 complex is a 10-member stoichiometric complex in which every member is 

present at a 1:1 ratio (Table 2) (Cheeseman et al., 2001b; Janke et al., 2002).  In addition, 

every member of the Dam1 complex is essential for viability.  The Dam1 complex 

resides in the outer kinetochore and is anchored to the rest of the kinetochore by the 

Ndc80 complex, specifically through physical interaction with the Ndc80 and Nuf2 

proteins (Shang et al., 2003).  The Dam1 complex binds to kinetochore microtubules 

initially at the lateral side then transitions to form plus-end attachments to the 

microtubules (Shimogawa et al., 2006; Tanaka et al., 2007).  This binding tethers the rest 

of the kinetochore and the centromere to the microtubules.  To do this, approximately  
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Table 2:  Dam1 complex members 

 

Dam1 complex 

Ask1 

Dam1 

Duo1 

Dad1 

Dad2 

Dad3 

Dad4 

Spc19 

Spc34 

Hsk3 
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sixteen Dam1 complexes oligomerize to form a ring around a microtubule (Miranda et 

al., 2005; Westermann et al., 2005).  Formation of this ring structure around microtubules 

is important for chromosome segregation during mitosis as the ring harnesses the power 

of depolymerizing microtubules to pull the chromosomes pole-ward (Asbury et al., 2006; 

Westermann et al., 2006).  Before chromosome segregation begins, proper bipolar 

kinetochore-microtubule attachments must occur in order to ensure accurate segregation 

of chromosomes.  This checkpoint is mediated by Ipl1 (Biggins et al., 1999; Tanaka et 

al., 2002).  While several members of the Dam1 complex are phosphorylated by Ipl1, 

phosphorylation of the Dam1 protein itself on the C-terminus seems to be the most 

important modification for mitotic progression (Cheeseman et al., 2002).  When a proper 

bipolar spindle forms, there is tension between the sister chromosomes.  However, if 

there is an improper setup, Ipl1 senses the lack of tension between sister chromosomes 

and phosphorylates members of the Nuf2 and Dam1 complexes including Dam1 itself 

(Akiyoshi et al., 2010; Cheeseman et al., 2002; Pinsky et al., 2006).  This 

phosphorylation causes disruption of the protein-protein interactions between the two 

complexes, separating the microtubules from the kinetochore (Cheeseman et al., 2002).  

The Glc7 PP1 phosphatase then removes the phosphate groups, allowing the protein-

protein interactions to be reformed.  If a proper mitotic spindle is formed, then mitosis 

proceeds (Cheeseman et al., 2002).  If improper attachment occurs again, another round 

of phosphorylation and dephosphorylation occurs until a proper bipolar spindle is set up 

(Cheeseman et al., 2002). 
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Dam1 is methylated by Set1 

Our lab discovered that Set1 and Ipl1 share a second substrate in Dam1, and that Dam1 

methylation inhibits its phosphorylation (Zhang et al., 2005).  Mutagenesis of conserved 

lysines in Dam1, along with mass spectroscopy analysis, identified K233 in Dam1 as the 

primary site of Set1 methylation (Zhang et al., 2005).  To confirm that Dam1K233 is 

methylated by Set1 in vivo, we raised an antibody specific to Dam1K233me2.  Our lab 

showed that Dam1K233 is dimethylated and this methylation was abolished in set1! cells 

indicating that Set1 does indeed methylate Dam1 on K233 (Zhang et al., 2005).    

  

Hypothesis and original goals 

Our previous results raise the question: what regulates Set1-mediated H3K4 methylation 

versus Dam1K233 methylation?  My hypothesis was that transcriptional regulatory 

factors essential for H3K4 methylation at gene promoters might also regulate Set1-

mediated methylation of Dam1K233.  In this dissertation, I investigate the regulation of 

Dam1 methylation using the regulation of H3K4 methylation as a model.  I demonstrate 

that Set1 requires a functional COMPASS complex regardless of substrate, suggesting 

that the catalytic activity of Set1 requires association with its complex.  I determine that 

the E2 and E3 ubiquitin ligases Rad6 and Bre1 as well as the Paf1 transcription 

elongation complex are essential for Dam1 methylation.  I demonstrate that methylation 

of Dam1 is not dependent on the Kin28 RNA polymerase II kinase indicating that 

methylation of Dam1 is independent of transcription.  In addition, I discover that the 

ubiquitin specific protease Ubp8 regulates the level of Dam1 methylation.  I also make 
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the surprising discovery that Dam1K233 methylation is dependent on lysine 123 within 

H2B, indicating that ubiquitination of H2BK123 is a prerequisite for Dam1 methylation.  

I demonstrate a close physical association between Dam1 and H2B that is dependent on 

H2BK123 illustrating for the first time cross-talk between modifications on histones and 

a non-histone protein.  In addition, I show that regulation of Set1-mediated methylation is 

substrate independent and not specific to H3K4 methylation at promoters.  Finally, my 

results demonstrate previously unknown functions in mitosis for transcription regulatory 

proteins.
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Chapter 2 

Materials and Methods 

 

Yeast Strain Construction 

All S. cerevisiae strains used in this study are listed in Table 3.  All yeast growth 

conditions and microbial techniques were performed as previously described (Amberg et 

al., 2005).  All yeast were grown in rich media YPD or the appropriate selective media.   

 

Unless otherwise noted, all gene replacement was performed with the KanMX cassette by 

transforming yeast with a PCR product containing KanMX along with an arm of 

homology to the gene of interest as previously described (Güldener et al., 1996).  The 

primers for amplifying the KanMX cassette for each gene deletion are listed in Table 4.  

The PCR was performed at 94oC for 5 minutes, then 35 cycles of 94oC for 1 minute, 54oC 

for 30 seconds, and 72oC for 2 minutes followed by 72oC for 7 minutes.  All KanMX 

replacements were genotyped by PCR with either a primer specific to 5’ or 3’ of the 

coding region and a primer specific to the KanMX insert using primers listed in Table 4.  

Prior to genotyping by PCR, yeast colonies were spheroplasted by incubating for 10-15 

minutes at 37oC in 10!L of Zymolyase solution (2.5mg/mL Zymolyase, 1.2M sorbitol, 

0.1M NaPO4 pH 7.4).  PCR was then performed on the spheroplasted cells for 94oC for 5 

minutes, then 35 cycles of 94oC for 30 seconds, 55oC for 30 seconds, and 72oC for 1.5 

minutes followed by 72oC for 7 minutes.  All gene deletion strains affecting H3K4me2 

levels were further confirmed by immunoblotting for H3K4me2 from whole cell extracts 
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Table 3: Yeast strain used in this study 

Name Genotype Source 
 
CCY 1076-
28B 

 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP 

 
(Zhang et al., 

2005) 
CCY 1076-
28B set1! 

MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, set1!::KanMX 

(Zhang et al., 
2005) 

CCY 1076-
28B paf1! 

MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, paf1!::KanMX 

(Zhang et al., 
2005) 

yJL46 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, swd1!::KanMX This study 

yJL47 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, sdc1!::KanMX This study 

yJL48 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, spp1!::KanMX This study 

yJL1 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, bre1!::KanMX This study 

yJL2 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ctr9!::KanMX This study 

yJL3 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, rtf1!::KanMX This study 

yJL4 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, set2!::KanMX This study 

yJL5 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, set3!::KanMX This study 

yJL6 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, set4!::KanMX This study 

yJL7 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, set5!::KanMX This study 

yJL8 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, set6!::KanMX This study 

yJL9 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, set7!::KanMX This study 

yJL10 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, dot1!::KanMX This study 

yJL11 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ubr1!::KanMX This study 

yJL12 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, rad18!::KanMX This study 

CC 1077-6C 
 

MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP ipl1-2 

(Zhang et al., 
2005) 



 

23 

CC 1077-6C 
set1! 
 

MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2, set1!::KanMX 

(Zhang et al., 
2005) 

CC 1077-6C 
paf1! 
 

MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2, 
paf1!::KanMX 

(Zhang et al., 
2005) 

yJL49 

MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2,  
swd1!::KanMX This study 

yJL50 

MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2,  
sdc1!::KanMX This study 

yJL51 

MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2,  
spp1!::KanMX This study 

yJL13 

MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2, 
bre1!::KanMX This study 

yJL14 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2, ctr9!::KanMX This study 

yJL15 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2, rtf1!::KanMX This study 

yJL16 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2, set2!::KanMX This study 

yJL17 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2, set3!::KanMX This study 

yJL18 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2, set4!::KanMX This study 

yJL19 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2, set5!::KanMX This study 

yJL20 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2, set6!::KanMX This study 

yJL21 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2, set7!::KanMX This study 

yJL22 

MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2, 
dot1!::KanMX This study 

yJL23 

MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2, 
ubr1!::KanMX This study 

yJL24 

MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2,  
rad18!::KanMX This study 
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ZK1 
MATa, ade2, his3-!200, ura3-52, leu2-!101, lys2-
!101::HIS3::lys2-!102 

(Zhang et al., 
2005) 

yJL25 
MATa, ade2, his3-!200, ura3-52, leu2-!101, lys2-
!101::HIS3::lys2-!102, rad6!::hisG-URA3-hisG This study 

ZK2 
MATa, ade2, his3-!200, ura3-52, leu2-!101, lys2-
!101::HIS3::lys2-!102 ipl1-2 

(Zhang et al., 
2005) 

yJL26 

MATa, ade2, his3-!200, ura3-52, leu2-!101, lys2-
!101::HIS3::lys2-!102 ipl1-2, rad6!::hisG-URA3-
hisG This study 

ZK3 MAT!, lys2-801, his3-d200, ura3-52 
(Zhang et al., 

2005) 

yJL27 

MAT!, lys2-801, his3-d200, ura3-52, 
htb1!::HphMX3, htb2!::KanMX, <pJL2 [URA3, 
htb1K123R]> This study 

ZK4 MAT!, lys2-801, his3-d200, ura3-52, ipl1-2 
(Zhang et al., 

2005) 

yJL28 

MAT!, lys2-801, his3-d200, ura3-52, ipl1-2, 
htb1!::HphMX3, htb2!::KanMX, <pJL2 [URA3, 
htb1K123R]> This study 

KT1112 MATa, leu2, ura3-52, his3 
(Stuart et al., 

1994) 

ZK5 MATa, leu2, ura3-52, his3, dam1::DAM1-HA3 
(Zhang et al., 

2005) 

ZK5 set1! 
MATa, leu2, ura3-52, his3, dam1::DAM1-HA3, 
set1!::KanMX 

(Zhang et al., 
2005) 

ZK5 
dam1K233R MATa, leu2, ura3-52, his3, dam1::dam1K233R-HA3 

(Zhang et al., 
2005) 

yJL29 
MATa, leu2, ura3-52, his3, dam1::DAM1-HA3, 
swd1!::KanMX This study 

yJL30 
MATa, leu2, ura3-52, his3, dam1::DAM1-HA3, 
sdc1!::KanMX This study 

yJL31 
MATa, leu2, ura3-52, his3, dam1::DAM1-HA3, 
spp1!::KanMX This study 

yJL32 
MATa, leu2, ura3-52, his3, dam1::DAM1-HA3, 
bre2!::KanMX This study 

yJL33 
MATa, leu2, ura3-52, his3, dam1::DAM1-HA3, 
rad6!::KanMX This study 

yJL34 
MATa, leu2, ura3-52, his3, dam1::DAM1-HA3, 
bre1!::KanMX This study 

yJL35 
MATa, leu2, ura3-52, his3, dam1::DAM1-HA3, 
ubp8!::KanMX This study 

yJL36 
MATa, leu2, ura3-52, his3, dam1::DAM1-HA3, 
ubp10!::KanMX This study 
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yJL37 
MATa, leu2, ura3-52, his3, dam1::DAM1-HA3, 
ctr9!::KanMX This study 

yJL38 
MATa, leu2, ura3-52, his3, dam1::DAM1-HA3, 
rtf1!::KanMX This study 

Y131 

MATa, ade2-1, his3-11,-15, ura3-1, leu2-3,-112, 
trp1,hta1-htb1"::LEU2, hta2-htb2", <pRS426 
[URA3, HTA1-HTB1]> 

(Robzyk et al., 
2000) 

Y133 

MATa, ade2-1, his3-11,-15, ura3-1, leu2-3,-112, 
trp1,hta1-htb1"::LEU2, hta2-htb2", <pRS426 
[URA3, HTA1-htb1K123R]> 

(Robzyk et al., 
2000) 

yJL39 

MAT", ade2-1, leu2, ura3, his3, leu2-3,-112, hta1-
htb1"::LEU2, hta2-htb2", dam1::DAM1-HA3, 
<pRS413 [HIS3, HTA1-htb1K123R]> This study 

yAV394 
MATa, trp1, leu2, ura3, his4, cup1::LEU2PM, SKI7-
HA3::KanMX4 van Hoof lab 

ZK3 
h2bK123R 

MAT!, ade2-1, his3, ura3, leu2-3,-112, trp1, lys2-
801, hta1-htb1"::LEU2, hta2-htb2", <pRS426 
[URA3, HTA1-htb1K123R]> 

(Zhang et al., 
2005) 

ZK4 
h2bK123R  

MAT!, ade2-1, his3, ura3, leu2-3,-112, trp1, lys2-
801, ipl1-2, hta1-htb1"::LEU2, hta2-htb2", 
<pRS426 [URA3, HTA1-htb1K123R]> 

(Zhang et al., 
2005) 

yJL40 

MAT!, ade2-1, his3, ura3, leu2-3,-112, trp1, lys2-
801, hta1-htb1"::LEU2, hta2-htb2", <pRS426 
[URA3, HTA1-htb1K123R]> This study 

yJL41 

MAT!, ade2-1, his3, ura3, leu2-3,-112, trp1, lys2-
801, ipl1-2, hta1-htb1"::LEU2, hta2-htb2", 
<pRS426 [URA3, HTA1-htb1K123R]> This study 

yJL42 

MAT", ade2-1, his3, ura3, leu2, trp1, dam1::DAM1-
HA3, hta1-htb1"::LEU2, hta2-htb2", <pRS426 
[URA3, hta1-4K/R-htb1K123R]> This study 

yJL43 
MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, chd1!::KanMX This study 

yJL44 

MAT", lys2, his3, ura3, leu2, trp-1, ura3::URA3-
tetO112, leu2::LEU-tetR-GFP, ipl1-2, 
chd1!::KanMX This study 

Sc657 
MATa, can1-100, ade2-1, his3-11, -15, leu2-3, -112, 
trp1-1, ura3-1, sug1-3 

(Ezhkova and 
Tansey, 2004) 

Sc660 
MATa, can1-100, ade2-1, his3-11, -15, leu2-3, -112, 
trp1-1, ura3-1, sug1-25 

(Ezhkova and 
Tansey, 2004) 

Sc671 
MATa, can1-100, ade2-1, his3-11, -15, leu2-3, -112, 
trp1-1, ura3-1, sug2-1 

(Ezhkova and 
Tansey, 2004) 

yJL45 

MAT", can1-100, ade2-1, lys2, his3, ura3, leu2, trp1-
1, ura3::URA3-tetO112, leu2::LEU-tetR-GFP ipl1-2, 
sug1-3 This study 
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yJL46 

MAT", can1-100, ade2-1, lys2, his3, ura3, leu2, trp1-
1, ura3::URA3-tetO112, leu2::LEU-tetR-GFP ipl1-2, 
sug1-25 This study 

yJL47 

MAT", can1-100, ade2-1, lys2, his3, ura3, leu2, trp1-
1, ura3::URA3-tetO112, leu2::LEU-tetR-GFP ipl1-2, 
sug2-1 This study 

BY4741 MATa, his3!1, leu2!0, met15!0, ura3!0 
(Brachmann et 

al., 1998) 

yJL48 
MATa, his3!1, leu2!0, met15!0, ura3!0, <pRS426 
[URA3, Ubiquitin-3XHA]> This study 

TAP-Spc24 
MATa, his3!1, leu2!0, met15!0, ura3!0, SPC24-
TAP::HIS3 

Open 
Biosystems 

TAP-Nuf2 
MATa, his3!1, leu2!0, met15!0, ura3!0, NUF2-
TAP::HIS3 

Open 
Biosystems 

TAP-Duo1 
MATa, his3!1, leu2!0, met15!0, ura3!0, DUO1-
TAP::HIS3 

Open 
Biosystems 

yJL49 
MATa, his3!1, leu2!0, met15!0, ura3!0, SPC24-
TAP::HIS3, <pRS426 [URA3, Ubiquitin-3XHA]> This study 

yJL50 
MATa, his3!1, leu2!0, met15!0, ura3!0, NUF2-
TAP::HIS3, <pRS426 [URA3, Ubiquitin-3XHA]> This study 

yJL51 
MATa, his3!1, leu2!0, met15!0, ura3!0, DUO1-
TAP::HIS3, <pRS426 [URA3, Ubiquitin-3XHA]> This study 

yJL52 

MAT", leu2, ura3-52,his3, dam1::DAM1-HA3, 
ubp8!::KanMX , <pRS426-pCUP1 [URA3, His7-
ubiquitin-G76A]>  This study 

yJL53 

MAT", leu2, ura3-52,his3, dam1::DAM1-HA3, 
bre1!::KanMX, <pRS426-pCUP1 [URA3, His7-
ubiquitin-G76A]> This study 

yJL54 
MAT", leu2, ura3-52,his3, dam1::DAM1-HA3, 
<pRS426-pCUP1 [URA3, His7-ubiquitin-G76A]> This study 

YTX031 

MATa, hta1-htb1!::LEU2, hta2-htb2!, 
kin28!::KanMX,  leu2-3,-112, his3-11,-15, trp1-1, 
ura3-1, ade2-1, can1-100, <pZS145 HTA1-Flag-
HTB1 CEN HIS3>, <pGK13-KIN28-HA> 

(Xiao et al., 
2005) 

YTX032 

MATa, hta1-htb1!::LEU2, hta2-htb2!, 
kin28!::KanMX, leu2-3,-112, his3-11,-15, trp1-1, 
ura3-1, ade2-1, can1-100, <pZS145 HTA1-Flag-
HTB1 CEN HIS3>, <pGK33-kin28-ts16-HA> 

(Xiao et al., 
2005) 

yJL39 

MATa, hta1-htb1!::LEU2, hta2-htb2!, 
kin28!::KanMX,  leu2-3,-112, his3-11,-15, trp1-1, 
ura3-1, ade2-1, can1-100, <pZS145 HTA1-Flag-
HTB1 CEN HIS3>, <pGK13-KIN28-HA>, <pRS416-
DAM1-HA3> This study 
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yJL40 

MATa, hta1-htb1!::LEU2, hta2-htb2!, 
kin28!::KanMX, leu2-3,-112, his3-11,-15, trp1-1, 
ura3-1, ade2-1, can1-100, <pZS145 HTA1-Flag-
HTB1 CEN HIS3>, <pGK33-kin28-ts16-HA>, 
<pRS416-DAM1-HA3> This study 

SBY3 
MATa, ura3-1, leu2-3,112, his3-11, trp1-1, can1- 
100, ade2-1, bar1 

(Biggins et al., 
1999) 

SBY164 
MATa, ura3-1, leu2-3,112, his3-11, trp1-1, can1- 
100, ade2-1, bar1+, LYS2+, ndc10-1 

(Biggins et al., 
1999) 

SBY1117 

MATa, ura3-, leu2-, his3-, trp1-, bar1+, ndc80-1 (Furuyama and 
Henikoff, 

2009) 

yJL41 
MATa, ura3-1, leu2-3,112, his3-11, trp1-1, can1- 
100, ade2-1, bar1, <pRS414-DAM1-HA3> This study 

yJL42 

MATa, ura3-1, leu2-3,112, his3-11, trp1-1, can1- 
100, ade2-1, bar1+, LYS2+, ndc10-1, <pRS414-
DAM1-HA3> This study 

yJL43 
MATa, ura3-1, leu2-3,112, his3-11, trp1-1, can1- 
100, ade2-1, bar1, <pRS414-DAM1-HA3> This study 

yJL44 MATa, leu2, ura3-52, his3, CSE4-myc12:URA3 This study 

yJL45 
MAT", leu2, ura3-52, his3, dam1::DAM1-HA3, 
CSE4-myc12:URA3 This study 
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Table 4:  List of primers used in this study 

Name Sequence Gene and purpose 

JL1 

GACCGAGTCCTTTTAGTTTGTGTATATCAGC
TGGTTCTTTTCGTTCAGCTGAAGCTTCGTAC
GC 

SWD1 forward 
KanR replacement 

JL2 

ATGACTGCATCTTAATTATCCTCGTATAATC
TGTAGGGATTGTGAGCATAGGCCACTAGTG
GATCTG 

SWD1 reverse KanR 
replacement 

JL3 TGTATGTACACATTTCTGCTGATG 

SWD1 KO 
genotyping 5’ 
forward 

JL4 TAATGGGTCGAACATGTGCT 

SWD1 KO 
genotyping middle 
of gene reverse 

JL5 CGTGCTCCTATCAAAGTGAGAT 

SWD1 KO 
genotyping 3’ 
reverse 

JL6 

CCTTCATAAGCAGGTTCTCTTAAGAGAATT
AGGGAAACCTATACACAGCTGAAGCTTCGT
ACGC 

SDC1 forward KanR 
replacement 

JL7 

GTAAGGAAAAATAAATACACATGTATATTT
ATATAATTATGGTTAGCATAGGCCACTAGT
GGATCTG 

SDC1 reverse KanR 
replacement 

JL8 ATGTTCTGTGTTGTGTGCTTCG 

SDC1 KO 
genotyping 5’ 
forward 

JL9 TCAGAGTTATTATTGTGATTGCCA 

SDC1 KO 
genotyping middle 
of gene reverse 

JL10 CAACATGGAACAAGAGAAGTTCTG 

SDC1 KO 
genotyping 3’ 
reverse 

JL11 

GAAAAGGCTACTTCGACCTCAATAATTTCT
CAGCCTATCTTTCTACAGCTGAAGCTTCGTA
CGC 

SPP1 forward KanR 
replacement 

JL12 

TATATATATATGTAGAAACTGATATTTGATT
AGGCTCCAACGCCGGCATAGGCCACTAGTG
GATCTG 

SPP1 reverse KanR 
replacement 

JL13 TAACCCAAGGCGGGTAAAAT 

SPP1 KO 
genotyping 5’ 
forward 

JL14 CATAAGGTTTTTGGCAAGCTCC 

SPP1 KO 
genotyping middle 
of gene reverse 
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JL15 CTGAGGAGTGGTGCTTTTTCAT 

SPP1 KO 
genotyping 3’ 
reverse 

JL16 

AGGGCTTTCACCGTTTTTATGCTAATCGTGC
TAGCTGATAATAATCAGATCAGCTGAAGCT
TCGTACGC 

BRE1 forward KanR 
replacement 

JL17 

TATGTGGAGGATATAACACAAACAGTGGA
AAAGTGGTAGAATAATTAGTAGCATAGGCC
ACTAGTGGATCTG 

BRE1 reverse KanR 
replacement 

JL18 GATCGTACTTTGATCAAACCATCG 

BRE1 KO 
genotyping 5’ 
forward 

JL19 CAAGGCTTCAAAGTCGACTCTT 

BRE1 KO 
genotyping middle 
of gene reverse 

JL20 TCTTTGGAAACATGCGACAG 

BRE1 KO 
genotyping 3’ 
reverse 

JL21 

ATCCGCAAGTGAGCATCACAGCTACTAAGA
AAAGGCCATTTTTACTACTCCAGCTGAAGC
TTCGTACGC 

RAD18 forward 
KanR replacement 

JL22 

TTAACAAATGTGCACAAGCTAACAAACAGG
CCTGATTACATATACACACCGCATAGGCCA
CTAGTGGATCTG 

RAD18 reverse 
KanR replacement 

JL23 ACTAAGTACCACTTGAGCAATGCC 

RAD18 KO 
genotyping 5’ 
forward 

JL24 GCTTCGGTATCCTTAGTGCATCTA 

RAD18 KO 
genotyping middle 
of gene reverse 

JL25 AATACTCCTGTTTCCCGAATGC 

RAD18 KO 
genotyping 3’ 
reverse 

JL26 

GGTCACCAGTAATTGTGCGCTTTGGTTACA
TTTTGTTGTACAGTACAGCTGAAGCTTCGTA
CGC 

DOT1 forward 
KanR replacement 

JL27 

CTACTTAGTTATTCATACTCATCGTTAAAAG
CCGTTCAAAGTGCCGCATAGGCCACTAGTG
GATCTG 

DOT1 reverse KanR 
replacement 

JL28 TGTCAGCTGCTTCGCTACAT 

DOT1 KO 
genotyping 5’ 
forward 

JL29 CTTTTGCAGCTTTTGGCTTC 

DOT1 KO 
genotyping middle 
of gene reverse 
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JL30 TTCTCTGCCTCCTCCTTCAA 

DOT1 KO 
genotyping 3’ 
reverse 

JL31 

TCCCTAATCTTTACAGGTCACACAAATTAC
ATAGAACATTCCAAT 
CAGCTGAAGCTTCGTACGC 
 

UBR1 forward 
KanR replacement 

JL32 

TATATACAAATATGTCAACTATAAAACATA
GTAGAGGGCTTGAATGCATAGGCCACTAGT
GGATCTG 

UBR1 reverse KanR 
replacement 

JL33 CCTTTTTCTTCGCATCTTCG 

UBR1 KO 
genotyping 5’ 
forward 

JL34 GCAACCACACTCATGACACC 

UBR1 KO 
genotyping middle 
of gene reverse 

JL35 GCTCATCGGTGGGAAACTAA 

UBR1 KO 
genotyping 3’ 
reverse 

JL41 CTTCTGTGCGGACAAACTCA 

BRE2 KO 
genotyping middle 
of gene reverse 

JL42 

AAGTTTGTAATTGTATTGCACTAATTTGTTG
AGAGCACTATAGAACAGCTGAAGCTTCGTA
CGC 

RTF1 forward KanR 
replacement 

JL43 

ATAAATATAAATATATTTTTACAAACACTG
AAATTGTCCTGCCTAGCATAGGCCACTAGT
GGATCTG 

RTF1 reverse KanR 
replacement 

JL44 CGCTGCCTTGAATCATGTAA 

RTF1 KO 
genotyping 5’ 
forward 

JL45 AGGTGCTCTCTGTCGCTCTC 

RTF1 KO 
genotyping middle 
of gene reverse 

JL46 ACTATGCATGGCCTTGTTCC 

RTF1 KO 
genotyping 3’ 
reverse 

JL57 

CCAAAGATTATTTTTAGGCAGACAGAGACT
AAAAGATAAAGCGTCCAGCTGAAGCTTCGT
ACGC 

RAD6 forward 
KanR replacement 

JL58 

ATAATATCGGCTCGGCATTCATCATTAAGA
TTCTTTTGATTTTTCGCATAGGCCACTAGTG
GATCTG 

RAD6 reverse KanR 
replacement 

JL59 GGGGTAGCCGGAGTAGAAAG 

RAD6 KO 
genotyping 5’ 
forward 
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JL60 TTGACATGCGGTGGCTTAT 

RAD6 KO 
genotyping middle 
of gene reverse 

JL61 TGGAGGAATAGAAAGCAAACG 

RAD6 KO 
genotyping 3’ 
reverse 

JL67 

TTCTAATTGTCTGGTCCATTTGTGTTGAGAG
CAAGAAAAAAAAACCAGCTGAAGCTTCGT
ACGC 

CTR9 forward KanR 
replacement 

JL68 

TCTTTAAAAGTCTTGATTCTAACCCTCGCCT
CTTCTTAGAACAATGCATAGGCCACTAGTG
GATCTG 

CTR9 reverse KanR 
replacement 

JL69 GGCAATCACCAAATTTTCCA 

CTR9 KO 
genotyping 5’ 
forward 

JL70 CAGACCTGTGGTCTTCAGCA 

CTR9 KO 
genotyping middle 
of gene reverse 

JL71 AGGACACGAAAAGGTGGATG 

CTR9 KO 
genotyping 3’ 
reverse 

JL72 CCTTGAGCTAAGGCCAACTG IPL1 forward 
JL73 TTCACGCAAGTCTGTTCGAC IPL1 reverse 

JL74 ATAGATGCATGGGCTCTTGG 
ipl1-2 sequencing 
forward 

JL75 CGACAAAGGCGAAAGAAAAG 
ipl1-2 sequencing 
reverse 

JL76 GAGACGAGCTTTGGAAATGG SUG1 forward 
JL77 AACAGCTTGGCGACAGAAAT SUG1 reverse 

JL78 CTGGAAGCTCAAAGGAATGC 
sug1-3 and sug1-25 
sequencing forward 

JL79 CGACACTTGGAGGTGGAAAT 
sug1-3 and sug1-25 
sequencing reverse 

JL80 ATCAACGGTGGGAACTTTTG SUG2 forward 
JL81 CAGCCTCGAAGTCAAATTCC SUG2 reverse 

JL82 CACCCAACAGTCACACGAAC 
sug2-1 (A56V) 
sequencing forward 

JL83 CCGAATTCCTAACTCCGACA 
sug2-1 (A56V) 
sequencing reverse 

JL85 TCTAGTCTACCGGGCCTCAA 
sug2-1 (E300K) 
sequencing forward 

JL93 

TAGTATCTGTAAATCCGTCCTATTGTCATAT
CACAATCACAGACTCAGCTGAAGCTTCGTA
CGC 

UBP10 forward 
KanR replacement 
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JL94 

GCTAATAAAAATGCCTATGAAAAGAGGAA
AATCCAGGAATATCGAGTTTTTGCATAGGC
CACTAGTGGATCTG 

UBP10 reverse 
KanR replacement 

JL95 CTAAAAACGGCAAACCCGTA 

UBP10 KO 
genotyping 5’ 
forward 

JL96 AAGGAGGCTCCGTAGAAAGC 

UBP10 KO 
genotyping middle 
of gene reverse 

JL97 CAACCCGTGCTTTAGGAGAG 

UBP10 KO 
genotyping 3’ 
reverse 

JL98 
CTACTTGAAACCCTGCTTTTTTTATTTGTTA
TTAATAATTCAGCTGAAGCTTCGTACGC 

UBP8 forward 
KanR replacement 

JL99 

GCTTTTTCTTCTTTTTTGTTTTATTATTATTG
TTGAATGCTATTTGCTGAAGCATAGGCCAC
TAGTGGATCTG 

UBP8 reverse KanR 
replacement 

JL100 GCAAGCCCATGTAACATCAA 

UBP8 KO 
genotyping 5’ 
forward 

JL101 AGGAACCATGGTCTTTGTGC 

UBP8 KO 
genotyping middle 
of gene reverse 

JL102 TCCAGCCTTTGCTCTTTTGT 

UBP8 KO 
genotyping 3’ 
reverse 

JL118 TCCTGACTATGCGGGCTATC 
HA tag forward on 
pRG145 

JL119 GGAATGCCTTCCTTGTCTTG 
UBI4 reverse on 
pRG145 

JL120 GAACGAAGGAAGGAGCACAG 
URA3 forward on 
pRG145 

JL121 AAGGCAGCGTTTTGTTCTTG 
URA3 reverse on 
pRG145 

JL153 

ACCCAATTCAAAGCAGAACCTTTTCTAATT
TAATTCTCACTTATACAGCTGAAGCTTCGTA
CGC 

CHD1 forward 
KanR replacement 

JL154 

TATGGGGGGAAGGAACAATGGAAAATGTG
GTGAAGAAAAATTGTTGCATAGGCCACTAG
TGGATCTG 

CHD1 reverse KanR 
replacement 

JL155 TCGAAACTGTACCACGAGAAAC 

CHD1 KO 
genotyping 5’ 
forward 

JL156 ATCTTCGGCGGTAACGTATG 

CHD1 KO 
genotyping middle 
of gene reverse 
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JL157 GATGGCATCACGACAGACAC 

CHD1 KO 
genotyping 3’ 
reverse 

JL163 TGGTTAGACGCTCAATGTCG 
HTB1 genotyping 5’ 
forward 

JL164 CAGTGTCAGGGTGAGTTTGC 

HTB1 KO 
genotyping 3’ 
reverse 

JL165 GCAAACTCACCCAGACACTG 
HTB2 genotyping 5’ 
forward 

JL166 TTTTGTTTAGCGGACGTGTG 

HTB2 KO 
genotyping 3’ 
reverse 

JL167 GGACCAAATAGGCAATGGTG 
LEU2 genotyping 5’ 
forward 

JL168 AAGGAAGACGATGGTGATGG 

LEU2 KO 
genotyping 3’ 
reverse 

JL169 AGAAAGCATGCGAGATCGAG 

HTB2 KO 
genotyping 5’ 
forward 

JL170 

ATTCAGTACAATAGAACAGTGCTCATAATA
GTATAAAGGGTCACACAGCTGAAGCTTCGT
ACGC 

PAF1 forward KanR 
replacement 

JL171 

AAGAACTACAGGTTTAAAATCAATCTCCCT
TCACTTCTCAATATTGCATAGGCCACTAGT
GGATCTG 

PAF1 reverse KanR 
replacement 

JL172 CGAAAAGCACCGATCCTTAG 

PAF1 KO 
genotyping 5’ 
forward 

JL173 CATCCGAATCTCCATCATCC 

PAF1 KO 
genotyping middle 
of gene reverse 

JL174 CATATTGGCAATTGGGAAGG 

PAF1 KO 
genotyping 3’ 
reverse 

JL175 

CTGATTGCTCTATACTCAAACCAACAACAA
CTTACTCTACAACTACAGCTGAAGCTTCGT
ACGC 

HTB2 forward KanR 
replacement 

JL176 

TAATAAAAAGAAAACATGACTAAATCACA
ATACCTAGTGAGTGACGCATAGGCCACTAG
TGGATCTG 

HTB2 reverse KanR 
replacement 

JL177 CACCGCTTCGCCTAATAAAG 

HTB2 KO 
genotyping 5’ 
forward 
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JL178 ACGGCATGTTTAGCCAATTC 

HTB2 KO 
genotyping middle 
of gene reverse 

JL179 GCTTTCAGTCCGAAAACAGC 

HTB2 KO 
genotyping 3’ 
reverse 

JL187 

CCTATATAGACAAGTCAAACCACAAATAAA
CCATACACACATACACAGCTGAAGCTTCGT
ACGC 

HTB1 forward KanR 
replacement 

JL188 

CCATATAAATAATAATATTAATTATAACCA
AAGGAAGTGATTTCAGCATAGGCCACTAGT
GGATCTG 

HTB1 reverse KanR 
replacement 

JL189 TGGTTAGACGCTCAATGTCG 

HTB1 KO 
genotyping 5’ 
forward 

JL191 GCGCATTCCCTCTATGAGAC 

HTB1 KO 
genotyping 3’ 
reverse 

JL198 CCTCACTAAAGGGAACAAAAGC T3 
JL199 TAATACGACTCACTATAGGGCGA T7 

JL202 TATCCACGCCCTCCTACATC 
hphR genotyping 5’ 
reverse 

JL203 ACTCGCCGATAGTGGAAACC 
hphR genotyping 3’ 
forward 

JL204 GCAAACTCACCCTGACACTG 

HTB1 KO 
genotyping middle 
of gene reverse 

JRB93 GGGGACGAGGCAAGCTAAACA 

KanR genotyping 
middle of gene 
reverse 

JRB94 CGACATCATCTGCCCAGATGC 

KanR genotyping 
middle of gene 
forward 

KE100 GACAACAGAGACAAGAGG 

Dam1 forward to 
genotype HA-Dam1 
tag 

KE137 GTCCGGGACGTCATAGGG 

HA tag reverse to 
genotype HA-Dam1 
tag 

dam1-
500F-
AS GTAACGTGGTATGGCCTTTC 

Forward primer to 
clone HA-Dam1 500 
bp upstream of start 
site 
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dam1-
500R-
AS CTCCCGTCTCTTCCATAAAA 

Reverse primer to 
clone HA-Dam1 500 
bp downstream of 
stop site 
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as described below.  

 

yJL25 rad6" and yJL26 rad6" were created using the RAD6 deletion plasmid p46 (a gift 

from Mary Ann Osley) linearized by digestion with BamHI (New England Biolabs) and 

transformed into yeast strains ZK1 and ZK2.  Transformants were selected for by growth 

on ura- SC plates and the genotype was confirmed by immunoblotting for loss of 

H3K4me2.   

 

yJL40 and yJL41 were created by mating strain ZK4 to strain Y133, respectively.  The 

resulting diploid cells were selected for by growth on ade-/lys- SC plates and sporulated.  

Haploid cells were isolated by tetrad dissection using a Singer MSM dissecting 

microscope (Singer Instruments).  Haploids containing the pRS426-HTA1-htb1K123R 2! 

plasmid as well as hta1-htb1"::LEU2 were selected for by growth on ura-/leu- SC plates.  

The lack of a wild-type HTB1 allele was confirmed by immunoblotting for loss of 

H3K4me2.  The presence or absence of the ipl1-2 allele was tested by failure of the 

haploid to grow at 37oC and confirmed by sequencing.  Later sequencing revealed that 

the pRS426-HTA1-htb1K123R 2! plasmid was in fact pRS426-hta1-4K/R-htb1K123R.  

Therefore yJL41 contains point mutations at lysines at K119, K120, K123, and K126 

within HTA1 and K123 within HTB1. 

 

yJL42 and yJL82 was created by mating ZK5 to Y133 and Y131, respectively.  The 

resulting diploid cells were selected for by growth on ade-/leu- SC plates and sporulated.  

Haploid cells were isolated by tetrad dissection using a Singer MSM dissecting 
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microscope (Singer Instruments).  Haploids containing the pRS426-HTA1-HTB1or 

pRS426-HTA1-htb1K123R 2! plasmid as well as hta1-htb1"::LEU2 were selected by 

growth on ura-/leu- SC plates.  The lack of a wild-type HTB1 allele was confirmed by 

immunoblotting for loss of H3K4me2.  The presence of the HA-DAM1 allele was 

determined by PCR for the HA tag using primers listed in Table 4 and confirmed by 

immunoblotting for HA.  Later sequencing revealed that the pRS426-HTA1-htb1K123R 

2! plasmid was in fact pRS426-hta1-4K/R-htb1K123R.  Therefore yJL42 contains point 

mutations at lysines at K119, K120, K123, and K126 within HTA1 and K123 within 

HTB1. 

 

yJL27 htb1K123R and yJL28 htb1K123R were created by gene replacement of the HTB1 

coding region with KanMX.  Positive transformants were transformed with the 2! 

plasmid pJL2 containing htb1K123R.  Finally, gene replacement of HTB1 with HphMX3 

was performed as previously described (Goldstein and McCusker, 1999).  Positive 

transformants were confirmed by immunoblotting for loss of H3K4me2 and by 

sequencing.  

 

 yJL39 htb1K123R was created by mating ZK5 with Y131 (from Mary Ann Osley).  The 

resulting diploids were selected for on ura-/trp- SC plates and sporulated.  Haploid cells 

were isolated by tetrad dissection using Singer MSM dissecting microscope (Singer 

Instruments).  Haploids containing the pRS426-HTA1-HTB1 2! plasmid as well as hta1-

htb1"::LEU2 were selected by growth on ura-/leu- SC plates.  Cells were tested for the 

presence of the HA-DAM1 allele by PCR with primers specific to the DAM1 coding 
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region and specific to the HA epitope.  Colonies were tested for deletion of the HTA2-

HTB2 locus by failure to grow on 5-FOA and sequencing was performed for further 

confirmation.  Next, HA-Dam1 hta1-htb1"::LEU2, hta2-htb2", pRS426-HTA1-HTB1 

cells underwent a two-step plasmid shuffle with pJL7 containing HTA1-htb1K123R first 

by selection for growth on his- SC plates, followed by growth on 5-FOA plates.  Positive 

transformants were confirmed by sequencing and loss of H3K4me2 by immunoblotting. 

 

yJL45, yJL46, and yJL47 were constructed by mating CC 1077-6C to Sc657, Sc660, and 

Sc671, respectively.  The resulting diploid cells were selected for by growth on ade-/lys- 

SC plates and sporulated.  Haploid cells were isolated by tetrad dissection using a Singer 

MSM dissecting microscope (Singer Instruments).  The presence of the ipl1-2 allele was 

tested by failure of the haploid to grow at 37oC and confirmed by sequencing.  The 

presence of sug1-3, sug1-25, or sug2-1 was determined by sequencing. 

 

yJL49, yJL50, yJL51, and yJL52 were constructed by transforming TAP-Spc24, TAP-

Nuf2, TAP-Duo1, and TAP-Ipl1, respectively, with pJL1.  Positive transformants were 

selected for by growth on ura- SC plates and confirmed by immunoblotting for HA-

ubiquitin. 

 

Strains yJL39 and yJL40 were created by transforming strains YTX031 and YTX032, 

respectively, with pJL8 and selecting for growth on trp- SC plates.  Positive 

transformants were confirmed by immunoblotting for HA-Dam1.
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Strains yJL41, yJL42, and yJL43 were created by transforming strains SBY3, SBY164, 

and SBY1117, respectively, with pJL9 and selecting for growth on ura- SC plates.  

Positive transformants were confirmed by immunoblotting for HA-Dam1. 

 

Plasmid Construction 

All plasmids used in this study are listed in Table 5.  All restriction enzymes were from 

New England Biolabs.  To construct plasmid pJL1, 3XHA-Ubiquitin along with the 

TDH3 promoter was excised from plasmid pRG145 (courtesy of Richard Gardner) with 

HindIII/KpnI.  The resulting fragment was ligated into pRS426 with T4 ligase 

(Invitrogen).     

 

To construct plasmid pJL2, the pRS426-hta1-4K/R – htb1K123R plasmid was isolated 

from strain Y133 (courtesy Mary Ann Osley) (Robzyk et al., 2000) using Zymoprep 

Yeast Plasmid Miniprep II (Zymo Research) following the manufacture’s instructions.  

The entire htb1K123R coding region as well as 783 base pairs 5’ of the start site was 

amplified by PCR from the pRS426-hta1-4K/R – htb1K123R plasmid using an upstream 

primer containing a BamHI restriction site and the downstream primer containing a XhoI 

restriction site.  The resulting 1.2kb fragment was digested with the aforementioned 

restriction enzymes, and then ligated with T4 ligase (Invitrogen) into XhoI-BamHI 

digested pRS426.   

 

Plasmid pJL5 was constructed by digesting pRS426-hta1-4K/R – htb1K123R with Xho1 

and Not1.  The excised fragment containing the entire htb1K123R was ligated into  



 

40 

Table 5:  List of plasmids used in this study  

 

Name Genotype Source 
pJL1 pRS426-pTDH3-ubiquitin-3XHA, URA3 This study 
pRG145 YIp–pTDH3-ubiquitin-3XHA, URA3 Gardner lab 
pJL2 pRS426-htb1K123R, URA3 This study 
pJL5 pRS426-HTA1-htb1K123R, URA3 This study 
pJL7 pRS413-HTA1-htb1K123R, HIS3 This study 
pJL8 pRS414-DAM1-HA3, TRP1 This study 
pJL9 pRS416-DAM1-HA3, URA3 This study 

pSB246 yiplac211-CSE4-myc12, URA3 
(Buvelot et 
al., 2003) 

pRS426-hta1-4K/R – 
htb1K123R pRS426-hta1-4K/R – htb1K123R, URA3 

(Robzyk et 
al., 2000) 

p46 pRS406-rad6::hisG-URA3-hisG Osley lab 

pCUP1 pRS426-pCUP1-His7-ubiquitin-G76A, URA3 

(Geng and 
Tansey, 
2008) 
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pRS426-HTA1-HTB1 isolated from Y131 (courtesy Mary Ann Osley) (Robzyk et al., 

2000) that was also digested with Xho1 and Not1 resulting in pRS426-HTA1-htb1K123R.   

 

Plasmid pJL7 was constructed by digesting pJL5 with XhoI and NotI and ligating the 

excised fragment into pRS413 at the XhoI and NotI sites. 

 

Plasmid pJL8 was constructed by amplifying the entire HA-Dam1 coding region as well 

as 500 base pairs upstream of the start site contain the endogenous promoter and 500 base 

pairs downstream of the stop site from genomic DNA isolated from strain ZK5.  The 

resulting fragment (containing HA-Dam1) was ligated into pCRII-TOPO (Invitrogen) 

following the manufacture’s instructions.  The resulting plasmid was digested with NsiI.  

The excised 2.4 kb fragment containing HA-Dam1 from pCRII-TOPO was ligated into 

pRS414 digested with PstI resulting in plasmid pJL8.   

 

pJL9 was constructed by digesting pJL8 with SalI and XbaI and ligating the 2.4 kb 

fragment containing HA-Dam1 into the same sites in pRS416. 

 

Sequencing 

All sequencing was performed by the DNA Analysis core facility at MDACC.  

Sequencing alignments were done by weighted ClustalV using Lazergene 8 

(DNASTART). 
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10-fold serial dilution growth assays 

10-fold serial dilution growth assays with the ipl1-2 temperature sensitive allele were 

performed as previously described (Zhang et al., 2005). 

 

Immunoprecipitation and immunoblotting 

Immunoprecipitation of Dam1 and immunoblotting with the Dam1K233me2 specific 

antibody was performed as previously described (Zhang et al., 2005) with the following 

changes.  500mL or 1L cultures of yeast were grown to an OD600 of 1.0.  After 

preclearing with Protein A agarose beads (Millipore), whole cell extracts were incubated 

with HA affinity beads (Roche) overnight.  For co-immunoprecipitation of HA-Dam1 

with histones, lysates were incubated with 100!g/mL ethidium bromide on ice for thirty 

minutes prior to preclearing.  Immunoblotting with the Dam1K233me2 antibody (Zhang 

et al., 2005) for Figures 13 and Figure 20 was done at a concentration of 1:2500 in 5% 

milk/TBST overnight.  Immunoblotting with the Dam1K233me2 antibody generated for 

this work (see below) (Figures 6, 10, 15, and 23) was performed at a concentration of 

1:5000 in 5% milk/TBST overnight.  Immunoprecipitated HA-Dam1 and 

immunoprecipitation inputs were immunoblotted with yeast specific histone H2A, yeast 

specific H2B, and H3 (Active Motif) 1:2000 overnight.   

 

For immunoblotting from total protein extracts from COMPASS deletion strains, yeast 

cultures of indicated strains were grown to 1.5 OD600 , harvested, and then pellets were 

frozen with liquid nitrogen.  The pellets were then lysed with NaOH, and proteins were 
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precipitated with TCA as previously described (Ooi et al., 1996).  Total protein extracts 

were immunoblotted with H3K4me2 and H3 antibodies (Active Motif) 1:5000 overnight.  

 

For all other immunoblotting from total protein extracts, 5-10mL overnight yeast cultures 

were harvested, washed with ddH2O, and resuspended in 200!L of 2X protein extraction 

buffer (200mM Tris pH 8.0, 400mM (NH4)2SO4, 10mM MgCl2, 1mM EDTA pH 8.0, 

10% glycerol, 1X PMSF, 1X pepstatin, 1X, leupeptin, 1X benzamadine).  The 

resuspended pellet was shaken on a Vortexer with glass beads for ten minutes at 4oC, 

after which another 200!L of 2X protein extraction buffer was added.  The extract was 

removed from the beads and centrifuged at 14,000 RPM for five minutes at 4oC.  The 

supernatant was transferred to a new Eppendorf tube, 4X Laemmli sample buffer was 

added, and the samples were incubated at 100oC for five minutes.  Quantification of 

immunoblots was performed using ImageJ (http://rsbweb.nih.gov/ij/). 

 

Dam1K233me2 antibody purification  

Streptavidin beads (Sigma) were washed three times with 50mM sodium phosphate pH 

7.5.  10mg of either biotinylated N-CFVLNPTNIGMSKSSQ-C or biotinylated N-

CFVLNPTNIGMSK((CH3)2)SSQ-C Dam1 peptide (Keck Biotechnology Resource 

Laboratory, Yale University) was dissolved in 1mL of 50mM sodium phosphate pH 7.5.  

All of the following steps were carried out at 4oC.  The peptides were incubated with the 

streptavidin beads overnight.  After incubation, the beads were washed twice for five 

minutes with 50mM sodium phosphate pH 7.5, and followed by a single wash for five 

minutes with 1M NaCl2, 50mM sodium phosphate pH 7.5.  The beads were next 
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incubated with ten bead-volumes of 100mM ethanolamine pH 7.5 overnight.  The next 

day, the beads were washed twice with PBS pH 7.4, and then transferred to a small Poly-

prep column (Bio-rad).  The column was washed with ten bead-volumes of 10mM Tris 

pH 7.5, ten bead-volumes of 100mM glycine pH 2.5, ten bead-volumes of 10mM Tris pH 

8.8, followed by ten bead-volumes of 10mM Tris pH 7.5.  Whole serum was diluted 1:10 

in 10mM Tris pH 7.5 and ten bead-volumes were added to the column containing the 

dimethylated Dam1 peptide bound to streptavidin beads.  The serum and peptide-bound 

beads were incubated overnight.  The next day, the column was washed with twenty 

bead-volumes of 10mM Tris pH 7.5 followed by twenty bead-volumes of 500mM NaCl2, 

10mM Tris pH 7.5.  The antibodies were eluted with ten bead-volumes of 100mM 

glycine pH 2.5 into a tube containing one bead-volume of 1M Tris pH 8.0.  The column 

was washed with 10mM Tris pH 8.8, and then with 10mM Tris pH7.5.  The column was 

then stored in 10mM Tris pH 7.5, 500mM NaCl2, 0.02% NaN3 at 4oC.  

 

 The eluant from the methylated Dam1 column was then added to the column containing 

the unmethylated Dam1 peptide bound to streptavidin beads and incubated for two hours.  

The column was washed with twenty bead-volumes of 10mM Tris pH 7.5 followed by 

with twenty bead-volumes of 500mM NaCl2, 10mM Tris pH 7.5.  The antibodies were 

eluted with ten bead-volumes of 100mM glycine pH 2.5 into a tube containing one bead-

volume of 1M Tris pH 8.0.  The columns were then washed with 10mM Tris pH 8.8, then 

with 10mM Tris pH7.5.  Incubation with the unmethylated Dam1 peptide was repeated 

twice more.  The columns were then stored in 10mM Tris pH 7.5, 500mM NaCl2, 0.02% 

NaN3 at 4oC.  
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Dam1K233me2 antibody generation 

An additional Dam1K233me2 specific antibody was generated for this study.  

Biotinylated peptides C-PTNIGMSK((CH3)2)SSQGH-N and C-PTNIGMSKSSQGH-N 

were constructed by Ynzym Antibodies.  Ynzym then used the dimethylated Dam1 

peptide to raise polyclonal antibodies in rabbits.  The antisera was purified against the 

dimethylated Dam1 peptide and negatively selected against the unmethylated peptide by 

Ynzym. 

 

Tandem affinity purifications (TAP) 

Cell extracts were made from twelve liters of yeast cultures grown to an OD600 of 1.0.  

Cells were collected by centrifugation and washed once with sterile ddH2O.  The cells 

were resuspended in # 0.2 volumes of lysis buffer (50mM Tris-HCl pH 7.4, 100mM 

NaCl, 5mM EDTA, 1mM DTT, 10mM iodoacetate, 10mM N-ethylmaleimide, 1X PMSF, 

1X leupeptin, 1X pepstatin A, 1X benzamidine).  The cells were flash frozen in liquid 

nitrogen and then ground with dry ice in a Waring blender.  The lysed cells were 

transferred to centrifuge tubes and thawed at 4oC.  When partially thawed, # 1 volume of 

lysis buffer was added to the lysates.  When completely thawed, the lysates were 

centrifuged at 15,000rpm for fifteen minutes then ultracentrifuged in a Ti-70 rotor for two 

hours at 34,000rpm.  Glycerol was added to the supernant to a 7.5% final concentration, 

Triton X-100 to a 1% final concentration, and NaCl to final concentration of 400mM.  

This solution was the binding buffer.  The lysate was then incubated with 150µL agarose 

beads for one hour, then IgG sepharose for four hours at 4oC.  The IgG sepharose was 

transferred to a micro Bio-rad column and washed 3X for ten minutes with the binding 
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buffer, then 1X with TEV buffer (50mM Tris-HCl pH 7.4, 0.1% Triton X-100, 150mM 

NaCl, 1mM DTT) for five minutes.  The IgG sepharose was then incubated in 100U 

AcTEV protease in 300!L TEV buffer overnight at 4oC.  The TEV eluate was collected 

and the IgG sepharose was washed with 300!L calmodulin binding buffer (10mM Tris-

HCl, 0.1% Triton X-100, 2mM CaCl2, 10mM !-ME).  The 300!L wash of calmodulin 

binding buffer was added to the TEV elute.  100!L of calmodulin agarose suspension 

was added to a new column and the suspension was eluted.  The calmodulin was then 

equilibrated with 500!L of calmodulin binding buffer and the calmodulin agarose was 

incubated with 500!L of the TEV eluate and 500!L of calmodulin binding buffer for two 

hours at 4oC.  Next, the calmodulin beads were washed 2X for five minutes with ten 

column volumes of calmodulin binding buffer and then for five minutes with ten column 

volumes of calmodulin wash buffer (10mM Tris-HCl pH 7.4, 0.1% Triton X-100, 

500mM NaCl, 0.1mM CaCl2, 10mM !-ME, 1X PMSF).  The calmodulin beads were 

incubated for five minutes with two column volumes of calmodulin elution buffer (10mM 

Tris-HCl pH 7.4, 0.1% Triton X-100, 150mM NaCl, 3mM EGTA, 10mM !-ME, 1X 

PMSF).  The eluate was collected and designated the first fraction.  Five subsequent 

fractions were collected of two column volumes each of calmodulin elution buffer.  The 

samples were then boiled for five minutes in 4X Laemmli sample buffer and then run on 

4%-12% Nupage gels (Invitrogen).  Gels were then either immunoblotted for "-CBP 

(Openbiosystems) or "-HA (Roche) at a 1/5000 dilution overnight in 5% milk with 1X 

TBST or silver stained.  
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For silver staining, 4%-12% Nupage gels (Invitrogen) gels were incubated for fifteen 

minutes in 50% methanol on an orbital shaker, fifteen minutes in 5% methanol, and 

fifteen minutes in 32!M DTT.  The gel was rinsed 2X for a few seconds each with 

ddH2O and then a small amount of silver staining solution  (0.1% AgNO3).  The gel was 

incubated shaking in silver staining solution for fifteen minutes.  The gel was rinsed 2X 

for a few seconds in ddH2O and then 2X in developing solution (3% Na2CO3, 0.05% 

CH2O).  The gel was incubated in the developing solution until bands were of the desired 

intensity.  Most of the developing solution was decanted and citric acid (C6H8O7) was 

added to stop the reaction.  ddH2O was added and washed 3X in ddH2O for fifteen 

minutes each. 

 

Prior to mass spectroscopy analysis, 4%-12% Nupage gels (Invitrogen) were stained with 

colloidal blue using the colloidal blue staining kit (Invitrogen) according to the 

manufacture’s instructions.  The bands were cut out of the gels, placed in siliconized 

tubes, and trypsin digested prior to mass spectroscopy.  For the trypsin digestion, the 

bands were incubated in 400!L destain solution (50% methanol, 5% acetic acid).  After 

destaining, the gel slice was dehydrated with 200!L acetonitrile, and then air-dried at 

room temperature.  The gel slices were incubated with 10mM DTT for thirty minutes and 

then in 50mM iodoacetamide for thirty minutes.  The gel was washed in 200!L 100mM 

ammonium bicarbonate for ten minutes, twice for five minutes in 200!L acetonitrile, and 

then air-dried again.  20!L trypsin (Promega) (10!g/mL in 50mM ammonium 

bicarbonate) was added to the slices at 4oC to rehydrate.  After rehydration, excess 

trypsin was removed, 20!L 50mM ammonium bicarbonate was added, and incubated 
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overnight at 37oC.  The next day, 10!L of 5% formic acid was added, the samples were 

vortexed briefly, centrifuged at 150,000 RPM for two minutes, and the supernatant was 

transferred to a new siliconized tube.  Another 10!L of 5% formic acid was added to the 

gel, the samples were vortexed briefly, centrifuged at 150,000 RPM for two minutes, and 

the supernatant was transferred to the same tube containing the supernant from the 

previous step bringing the total volume to 20!L.  The trypsinized samples were sent to 

Dr. Maria Persons at the University of Texas at Austin who performed the mass 

spectroscopy. 

 

In vitro ubiquitination assays 

In vitro ubiquititination assays were performed using the ubiquitin conjugation reaction 

buffer kit (Boston Biochem) according to the instructions provided by the manufacture.  

For the ubiquitination ligation, the reactions were incubated at 30oC for one hour.  

Mammalian ubiquitin and the yeast E1 enzyme Ube1 were obtained from Boston 

Biochem.  TAP-Rad6 and TAP-Bre1 purified using the TAP tag were the E2 and E3 

enzymes in this assay.  Ndc80 and Nuf2 complexes purified using the TAP tag from 

strains yJL50 and yJL51 were used as substrates along with recombinant yeast histone 

generated by Dr. Diane Edmondson.  To analyze the results of the in vitro ubiquitination 

assays, the samples were run on a 4-12% NuPages gels (Invitrogen) and immunoblotted 

overnight with "-HA (Roche) at 1:5000, "-CBP (Sigma) 1:2500, or "-H2B antibody 

1:1000 raised previously by the Dent lab. 
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Chapter 3 

Results 

 

Suppression of ipl1-2 by deletion of SET1 is independent of H3K4 methylation 

In investigating possible functional connections between different histone H3 modifying 

enzymes, our lab discovered a genetic interaction between the Set1 methyltransferase and 

the Ipl1 Aurora kinase (Zhang et al., 2005).  Set1 is the sole methyltransferase of lysine 

(K) 4 on the histone H3 tail, and Ipl1 phosphorylates serine (S) 10 (Briggs et al., 2001; 

Wei et al., 1999).  Our lab determined that deletion of SET1 suppresses the temperature 

sensitive (ts) growth defects of ipl1-2, a well-characterized hypomorphic allele of IPL1 

that contains a point mutation within its kinase domain (Chan and Botstein, 1993; Zhang 

et al., 2005).  A possible mechanism for this suppression is that deletion of SET1 

abolishes H3K4 methylation, somehow affecting ipl1-2 cell viability at higher 

temperatures.  To investigate this possibility, I compared the ability of a K4 mutation in 

H3 to suppress the ipl1-2 mutation with the suppression of ipl1-2 by SET1 deletion.  In 

collaboration with a former student, Ke Zhang, I performed plate spot assays comparing 

the growth of wild-type, h3K4R, ipl1-2, and ipl1-2 h3K4R strains (Figure 3).  In these 

ipl1-2 suppression assays, cells were 10-fold serially diluted, spotted on rich media 

(YPD) plates, and grown at permissive and restrictive temperatures for 2-3 days.   

 

At 25oC, all the strains grew normally indicating that equal numbers of cells for each 

strain were loaded onto the plates (Figure 3).  At higher temperatures, deletion of SET1 

strongly suppressed the temperature sensitive phenotype of ipl1-2, as we had previously 
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Figure 3.  h3K4R does not suppress ipl1-2 to the degree of set1!    

Wild-type, h3K4R, ipl1-2, ipl1-2 h3K4R, and ipl1-2 set1! yeast strains were serially 

diluted 10-fold, spotted onto rich media (YPD) plates, and grown at 25oC or 32.5oC for 3 

days.   
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Figure 3 
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determined (Zhang et al., 2005).  However, mutation of H3K4 to arginine only partially 

suppressed the ipl1-2 temperature sensitive phenotype and was approximately 10-100 

fold weaker than deletion of SET1  (Figure 3).  These results, together with results 

described elsewhere (Zhang et al., 2005), strongly indicate suppression of ipl1-2 by set1! 

is not mediated through loss of H3K4 methylation, implying that effects on another 

shared substrate, such as Dam1, are important in regulating Ipl1 functions. 

 

SET1 is the only known or putative lysine methyltransferase that suppresses the 

ipl1-2 ts phenotype 

The modulation of Ipl1 function by Set1 raises the question of whether Set1 is the only 

methyltransferase in yeast that regulates Ipl1 function.  There are seven SET domain-

containing proteins and one non-SET domain containing lysine methyltransferase in S. 

cerevisiae (Briggs et al., 2001).  Other than Set1, only two other lysine 

methyltransferases have been identified.  Set2 methylates histone H3K36 and Dot1 

methylates the H3 C-terminal core on lysine 79 (Feng et al., 2002; Ng et al., 2002a; 

Strahl et al., 2002; van Leeuwen et al., 2002).  Substrates for Set3 through Set7 are yet to 

be identified.  To determine whether any of these other known or putative 

methyltransferases regulate Ipl1 function, I individually deleted each of these SET 

domain-containing genes and the DOT1 gene from wild-type and ipl1-2 cells and 

performed ipl1-2 suppression assays (Figure 4).  Deletion of these known and putative 

methyltransferases had little to no effect on ipl1-2 temperature sensitivity compared to 

the suppression observed upon deletion of SET1  (Figure 4).  This suggests that Set1 is 

the primary lysine methyltransferase in yeast that regulates Ipl1 function.  
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Figure 4.  Deletion of known and putative methyltransferases do not suppress ipl1-2  

The indicated yeast strains were serially diluted 10-fold, spotted onto rich media (YPD) 

plates, and grown at 25oC or 32oC for 3 days.   
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Figure 4 
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The COMPASS complex is essential for Dam1 methylation 

Set1 functions within an eight-member complex termed COMPASS (Miller et al., 2001).  

In addition to Set1, several additional non-catalytic COMPASS subunits are required for 

H3K4 methylation (Dehe et al., 2006; Krogan et al., 2003b; Schneider et al., 2005).  To 

determine whether Set1 methyltransferase activity at the kinetochore occurs within the 

context of the COMPASS complex, I performed ipl1-2 suppression assays in cells 

deleted for individual COMPASS subunits to determine whether loss of any of these 

genes suppresses the ipl1-2 temperature sensitive phenotype as does deletion of SET1  

(Figure 5).  I created strains bearing deletions in SWD1, which is required for all H3K4 

methylation, SDC1, which is required for H3K4 di- and trimethylation, BRE2, which is 

required for full dimethylation and whose deletion completely abolishes trimethylation, 

and SPP1, which is required only for H3K4 trimethylation (Dehe et al., 2006; Krogan et 

al., 2003b; Schneider et al., 2005).  My results demonstrate that deletion of the SWD1, 

SDC1, and BRE2 COMPASS subunits, but not SPP1, suppresses the ipl1-2 temperature 

sensitive phenotype to a degree similar to that observed upon deletion of SET1 itself 

(Figure 5).  These results suggest that Set1 requires the COMPASS complex to function 

at the kinetochore, and imply that mono- or dimethylation of a COMPASS substrate is 

important in regulating Ipl1 functions.  

 

To determine directly whether suppression of the temperature-sensitive phenotype of the 

mutant ipl1-2 allele by deletion of members of the COMPASS complex is due to changes 

in Dam1K233 dimethylation, I examined Dam1 methylation levels by 

immunoprecipitating HA-Dam1 expressed from the native DAM1 locus from cells 
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Figure 5.  Deletion of COMPASS subunits suppresses ipl1-2  

The indicated COMPASS deletion yeast strains or deletion of PAF1 were serially diluted 

10-fold, spotted onto rich media (YPD) plates, and grown at 25oC or 32.5oC for 3 days. 
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Figure 5 
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containing the same COMPASS subunit deletions used in the ipl1-2 suppression assays 

described above.  I then immunoblotted with a Dam1K233me2 specific antibody (Figure 

6).  If methylation is reduced upon deletion of COMPASS subunits, then Set1 normally 

methylates Dam1 as part of the COMPASS complex.  My data revealed that similar to 

the set1" control, SWD1, SDC1, and BRE2 are essential for Dam1K233 dimethylation 

(Figure 6).  However, loss of SPP1 has no effect on Dam1K233 methylation, consistent 

with my genetic findings above (Figure 5 and 6).  These results demonstrate that 

suppression of the ipl1-2 temperature phenotype is tightly linked to Dam1 methylation 

status and suggest that suppression of ipl1-2 can serve as an indicator of a requirement 

for Dam1 methylation. 

 

To compare the role of the COMPASS subunits in Dam1K233 dimethylation to H3K4 

methylation, I made total protein extracts from HA-Dam1 COMPASS deletion cells and 

immunoblotted with an antibody specific for H3K4 dimethylation.  As expected, deletion 

of SWD1 completely abolished H3K4me2 while deletion of SPP1 had little effect on 

H3K4me2 levels (Figure 7).  Contrary to previously published results, deletion of either 

SDC1 or BRE2 completely abolished H3K4 dimethylation (Figure 7).  Other labs had 

previously determined that deletion of either of these two COMPASS subunits only 

partially decreased the levels of H3K4me2 (Dehe et al., 2006; Krogan et al., 2002; 

Mueller et al., 2006).  The difference in results may reflect a difference in strain 

background or the antibody used to immunoblot for H3K4me2.  My results show a 

striking correlation between the roles of these factors in H3K4 methylation and their roles 

in Dam1K233 dimethylation (Figure 8).  Deletion of SWD1 abolishes the integrity of the  
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Figure  6.  Set1 requires the COMPASS complex to methylate Dam1 

Endogenously tagged HA-Dam1 was immunoprecipitated from wild-type or COMPASS 

deletion strains.  Immunoblots were then probed with either a HA or  Dam1K233me2 

specific antibody.  The HA-Dam1 set1" strain serves as a negative control.  The HA 

blots serve as loading controls. 
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Figure 6
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Figure 7.  Role of the COMPASS complex in H3K4 dimethylation 

Total protein extracts of COMPASS deletions in HA-Dam1 strains were immunoblotted 

for either H3K4me2 or H3.  H3 serves as the loading control.
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Figure 7 
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Figure 8.  Comparison of the roles of the COMPASS complex in ipl1-2 suppression, 

Dam1K233me2, and H3K4me2 

Summary of COMPASS complex requirements for Dam1K233me2, ipl1-2 suppression, 

and H3K4me2. 
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Figure 8 
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COMPASS complex (Dehe et al., 2006), therefore loss of Dam1K233me2 in the swd1" 

strain suggests that a functional COMPASS complex is required for the catalytic activity 

of Set1 regardless of substrate.  Similarly, loss of Dam1 dimethylation upon deletion of 

either BRE2 or SDC1 indicates that Set1-mediated dimethylation requires this 

heterodimer for both of its substrates identified to date (Figure 7). 

 

The Paf1 complex is required for Dam1 methylation 

The Paf1 transcription elongation complex is required for Set1 and COMPASS 

recruitment to histones for H3K4 methylation (Krogan et al., 2003b).  The Paf1 complex 

is also required for H2BK123 ubiquitination through an unknown mechanism 

(Shilatifard, 2006).  If deletion of members of the Paf1 complex suppresses ipl1-2 

temperature sensitivity, this would imply that the Paf1 complex is more generally 

required for Set1 functions.  I therefore deleted RTF1 and PAF1 and a rotation student I 

supervised, Shanzhi Wang, deleted CTR9 from ipl1-2 cells.  Deletion of any of these 

three subunits abolishes H3K4 methylation (Krogan et al., 2003b).  However, deletion of 

PAF1 or CTR9 did not suppress the ipl1-2 temperature sensitive phenotype (Figure 9).  In 

contrast, deletion of RTF1 did suppress the ipl1-2 temperature sensitive phenotype 

(Figure 9).  These findings indicate either that Rtf1 has a unique function in regulating 

Ipl1, or that other phenotypes associated with loss of Paf1 and Ctr9 mask the ability to 

score suppression of the ipl1-2 mutant phenotype.  In fact, loss of either PAF1 or CTR9 

leads to cell wall defects that result in temperature sensitivity (Betz et al., 2002).  These 

defects are suppressed by the addition of an osmotic stabilizer such as sorbitol to the 

growth medium (Betz et al., 2002).  When I repeated the ipl1-2 suppression assays on 
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Figure 9.  Deletion of Paf1 complex members suppress ipl1-2  

The indicated yeast strains were serially diluted 10-fold, spotted onto rich media (YPD) 

or YPD containing 1M sorbitol, and grown at 25oC or 31oC for 3 days.  
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Figure 9 
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media containing sorbitol, deletion of either PAF1 or CTR9 suppressed the ipl1-2 

temperature sensitivity to a degree similar to that observed upon deletion of RTF1 (Figure 

9).  Importantly, the addition of sorbitol did not affect the temperature sensitivity of the 

cells containing only the ipl1-2 allele.  Together, my data indicate that the Paf1 complex 

negatively regulates Ipl1 functions at the kinetochore, as does Set1. 

 

 To directly determine whether the Paf1 complex is required for Dam1K233 methylation, 

I deleted CTR9 and RTF1 from HA-Dam1 cells.  I then immunoprecipitated HA-Dam1 

followed by immunoblotting for Dam1K233 methylation.  Deletion of either of these 

Paf1 complex subunits resulted in loss of Dam1K233 dimethylation (Figure 10).  

Together, my results indicate that the Paf1 complex plays an integral role in Set1-

mediated methylation regardless of the substrate and shows for the first time that the Paf1 

complex has functions outside of its roles in transcription.  

 

Dam1 methylation is independent of transcriptional elongation 

Our finding that the Paf1 transcriptional elongation complex is essential for Dam1 

methylation raises the question of whether transcription is required for Dam1 

methylation.  The H3K4 methylation pathway at active gene promoters is dependent on 

transcription as H2BK123 ubiquitination and Set1 recruitment to specific gene promoters 

is dependent on Kin28 mediated phosphorylation of serine 5 in the C-terminal domain 

(CTD) of RNA polymerase (Krogan et al., 2003a; Ng et al., 2003b; Xiao et al., 2005).  

Phosphorylation of RNA polymerase by Kin28 is required for progression of 

transcriptional initiation to elongation (Cismowski et al., 1995; Valay et al., 1995).  To  
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Figure  10.   Paf1 complex is required for Dam1 methylation 

HA-Dam1 was immunoprecipitated from wild-type or Paf1 complex deletion strains then 

probed with either a HA or Dam1K233me2 specific antibody.  The HA-dam1K233R 

strain serves as a negative control along with set1".  The HA blot serves as a loading 

control.
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determine whether Dam1 methylation is dependent on transcription, Dam1K233 

dimethylation levels were measured in the kin28-ts16 mutant strain.  Cells containing the 

kin28-ts16 temperature sensitive allele are deficient in RNA polymerase II CTD serine 5 

phosphorylation (data not shown) (Xiao et al., 2003).  No difference in Dam1 

methylation levels was observed upon inactivation of Kin28 at the restrictive temperature 

of 37oC (Figure 11).  We were unable to determine whether the kin28-ts16 allele 

suppresses the ipl1-2 temperature sensitive phenotype at the restrictive temperature since 

the ipl1-2 mutant is inviable at 37oC.  These results indicate that Dam1 methylation, in 

contrast to H3K4 methylation, is not dependent on active transcription. 

 

Methylation of Dam1 requires kinetochore association 

The above results indicate that several transcription factors are required for Dam1 

methylation, raising the question of whether this modification occurs at kinetochores, 

where Dam1 is localized (Cheeseman et al., 2001b).  To address this question, we asked 

whether mutations that disconnect the kinetochore from the centromere (in NDC10) or 

the Dam1 complex from the rest of the kinetochore (in NDC80) affect Dam1K233 

methylation (Janke et al., 2002).  At the restrictive temperature, ncd10-1 cells exhibited 

characteristic clusters of cells characteristic of their inability to complete cytokinesis, and 

the ndc80-1 cells were arrested in metaphase as expected (data not shown) (Bouck and 

Bloom, 2005; McCleland et al., 2003).  Dam1 methylation was severely decreased upon 

inactivation of either Ndc10 or Ndc80 at 37oC (Figure 12).  As with the kin28-ts16 

mutant, we were unable to determine whether ndc10-1 or ndc80-1 suppress ipl1-2 due to 

the high temperature required to induce the ndc10-1 and ndc80-1 phenotypes.  Together 
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Figure  11.  Mutation of KIN28 has no effect on Dam1 methylation  

HA-Dam1 was immunoprecipitated from wild-type or kin28-ts16 cells incubated at either 

25oC or cells heat shocked at 37oC for 3 hours.  The immunoprecipitated HA-Dam1 was 

then probed with either a HA or Dam1K233me2 specific antibody. 
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Figure  12.  NDC10 and NDC80 are required for Dam1 methylation 

HA-Dam1 was immunoprecipitated from wild-type, ndc10-1, or ndc80-1 cells incubated 

at either 25oC or heat shocked at 37oC for 3 hours.  The immunoprecipitated HA-Dam1 

was then probed with either a HA or Dam1K233me2 specific antibody.
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Figure 12 



 

76 

with my results above, these findings strongly indicate that the Paf1 complex functions at 

the kinetochore, in the absence of active transcription, to promote methylation of Dam1. 

 

Dam1 methylation is regulated by Rad6 and Bre1 

Ubiquitination of histone H2BK123 is required for H3K4 methylation, constituting the 

only known example of regulatory cross-talk in trans between histone modifications 

(Shilatifard, 2006).  H2B ubiquitination is catalyzed by the E2 ubiquitin conjugating 

enzyme Rad6 and the E3 ubiquitin ligase Bre1.  Deletion of RAD6, BRE1, or mutation of 

H2BK123 to arginine, which cannot be ubiquitinated, abolishes H3K4 methylation 

(Shilatifard, 2006).  Since Rad6 and Bre1 play such a pivotal role in regulating H3K4 

methylation, I determined whether these enzymes were also required for Set1 function at 

the kinetochore.  I deleted either RAD6 or BRE1 from wild-type and ipl1-2 cells and 

performed ipl1-2 suppression assays.  Each of these suppression assays contained 

multiple individual isolates of ipl1-2 rad6! or ipl1-2 bre1! (Figure 13 and 14).  My 

results clearly indicate that loss of either of these enzymes suppresses the ipl1-2 

temperature sensitive phenotype, suggesting that both Rad6 and Bre1 are required for 

Set1 function in opposing Ipl1 at the kinetochore (Figure 13 and 14).   

 

To directly determine whether Rad6 and Bre1 are required for Dam1K233 dimethylation, 

I deleted RAD6 and BRE1 from cells containing HA-Dam1.  I immunoprecipitated HA- 

Dam1 from these cells and immunoblotted with the Dam1K233me2 specific antibody.  
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Figure 13.  Deletion of RAD6 suppress ipl1-2  

Wild-type, rad6!, ipl1-2, or ipl1-2 rad6! yeast strains were serially diluted 10-fold, 

spotted on rich media, and grown at 25oC or 32oC for 3 days.   Shown are three individual 

isolates of rad6! and ipl1-2 rad6! strains.
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Figure 14.  bre1!  suppresses ipl1-2  

Wild-type, bre1!, ipl1-2, or ipl1-2 bre1! yeast strains were serially diluted 10-fold, 

spotted on rich media, and grown at 25oC or 32oC for 3 days.   Shown are three individual 

isolates of bre1! and ipl1-2 bre1! strains.



 

80 

 

 

 

 

 

 

 

 

 

 

Figure 14 
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My results showed that both Rad6 and Bre1 are required for Dam1K233 methylation 

(Figure 15).  These data suggest that Rad6-Bre1 mediated ubiquitination of H2B or 

another Rad6-Bre1 substrate regulate Dam1K233 methylation. 
 

Other E3 ligases of Rad6 do not suppress ipl1-2 temperature sensitivity 

Rad6 functions with two other E3 ligases; Ubr1 and Rad18, which participate in N-rule 

mediated protein degradation and the DNA damage response, respectively.  In order to 

determine whether Bre1 was the only E3 ligase of Rad6 that functions in regulating 

Dam1 methylation, I deleted either UBR1 or RAD18 from ipl1-2 cells and performed an 

ipl1-2 suppression assay.  Deletion of either of these genes did not suppress ipl1-2 

suggesting that Bre1 is the sole E3 ligase of Rad6 that regulates Dam1 methylation 

(Figure 16). 

 

Ubp8 regulates proper levels of Dam1K233 methylation 

Removal of the ubiquitin moiety from H2BK123 is performed by the deubiquitinating 

enzymes Ubp8 and Ubp10 (Henry et al., 2003; Zhang et al., 2008).  Deletion of either 

UBP8 or UBP10 results in increased levels of H2B ubiquitination and subsequently, 

increased levels of H3K4 methylation at gene promoters (Shukla et al., 2006).  If deletion 

of these enzymes also resulted in an increase in Dam1 methylation, this would be further 

evidence that persistent ubiquitination of H2B (or another protein) continuously promotes 

Dam1 methylation.  Therefore, I immunoprecipitated Dam1 from ubp8" and ubp10" 

cells and immunoblotted for Dam1K233me2.  The level of Dam1K233 methylation in  
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Figure 15.  Rad6 and Bre1 are required for Dam1 methylation 

HA-Dam1 was immunoprecipitated from wild-type, rad6", or bre1" strains then 

immunoblotted with either a HA or Dam1K233me2 specific antibody.  The HA-Dam1 

set1" strain serves as a negative control.  The HA blot serves as a loading control. 

ND indicates that the Dam1K233me2 was not detectable by quantitation. 
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Figure 16.   Deletion of RAD18 or UBR1 do not suppress ipl1-2 

The indicated yeast strains were serially diluted 10-fold, spotted on rich media, and 

grown at 25oC or 32oC for 3 days.   Shown are two individual isolates of ubr1! and ipl1-

2 ubr1! strains and three individual isolates of rad18! and ipl1-2 rad18! strains.
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ubp10" cells was slightly diminished compared to wild-type levels of methylation 

(Figure 17).  However, deletion of UBP8 resulted in a substantial increase in Dam1K233 

methylation (Figure 17).  My findings suggest that Ubp8 is important for modulating 

proper levels of Dam1 methylation, likely through removal of a ubiquitin moiety ligated 

to its substrate by Rad6 and Bre1.  Furthermore, my data illustrate the importance of 

H2BK123 ubiquitination in regulating Dam1K233me2. 
 

Deletion of CHD1 does not suppress the ipl1-2 temperature sensitive phenotype 

Chd1, like Ubp8, is a member of the SAGA complex (Pray-Grant et al., 2005).  It has 

been suggested that Chd1 binds to methylated H3K4 (Pray-Grant et al., 2005) although 

some controversy over this result remains (Flanagan et al., 2007; Okuda et al., 2007; 

Sims et al., 2005).  The histone code hypothesis proposes that the mechanism through 

which lysine methylation controls downstream functions is through binding of an effector 

molecule.  It is currently unknown whether any protein binds to Dam1K233me2.  Since 

Ubp8 regulates methylation of Dam1K233 and Ubp8 catalytic activity is dependent on 

the presence of at least a sub-module of the SAGA complex, Chd1 seemed a likely 

candidate for binding to Dam1K233me2.  I therefore deleted CHD1 from wild-type and 

ipl1-2 cells and performed an ipl1-2 suppression assay.  If Dam1K233 dimethylation 

inhibited Ipl1 phosphorylation of flanking serines though facilitation of Chd1binding to 

Dam1K233me2, then I would expect loss of CHD1 to suppress the ipl1-2 temperature 

sensitive phenotype.  However deletion of CHD1 had no effect on ipl1-2 temperature 

sensitivity (Figure 18).  While this does not necessarily rule out the possibility that Chd1 

binds to Dam1K233me2, it suggests that Chd1 does not modulate Ipl1 function in vivo. 
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Figure 17.  Ubp8 regulates Dam1 methylation levels 

HA-Dam1 was immunoprecipitated from wild-type, ubp8", or ubp10" strains then 

immunoblotted with either a HA or Dam1K233me2 specific antibody.  The HA blot 

serves as a loading control. 
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Figure 17 
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Figure 18.  chd1!  does not suppress ipl1-2  

The indicated yeast strains were serially diluted 10-fold, spotted on rich media, and 

grown at 25oC or 32oC for 3 days.   Shown are four individual isolates of ipl1-2 chd1!.
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Figure 18 
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Dam1 and Ndc80 complexes are not ubiquitinated by Rad6-Bre1 

My data thus far suggest that ubiquitination of some unknown substrate is required for 

Dam1K233 dimethylation.  Our lab had previously shown that ubiquitination of 

H2BK123 was likely not required for Dam1K233 dimethylation as mutation of 

H2BK123 to arginine (R), which is unable to be ubiquitinated, did not suppress the ipl1-2 

temperature sensitive phenotype (Zhang et al., 2005).  By using the role of H2BK123 

ubiquitination as a prerequisite for H3K4 methylation as a model, I reasoned that a 

protein closely associated with Dam1, or even Dam1 itself, was likely a novel substrate 

for Rad6-Bre1 mediated ubiquitination.  The two most likely candidates were the ten-

member Dam1 complex or the closely associated Ndc80 complex.  In support of this 

idea, Bre1 interacts with the Ndc80 complex member Nuf2 as determined by yeast-two 

hybrid analysis (Newman et al., 2000). 

 

To determine whether a member of the Dam1 complex was ubiquitinated, I transformed 

strains containing a TAP-tagged member of the Dam1 complex with an episomal plasmid 

bearing HA tagged ubiquitin driven by the TDH3 promoter.  I then performed 

immunoprecipitations for the TAP tag from strains containing HA-ubiquitin, the Dam1 

complex member TAP-Duo1, or TAP-Duo1 HA-ubiquitin.  I confirmed that I had 

successfully immunoprecipitated TAP-Duo1 by immunoblotting for protein A (Figure 

19).  To determine whether ubiquitinated proteins were associated with TAP-Duo1, I 

immunoblotted for HA-ubiquitin using an HA antibody.  Several bands were present in 

the lane containing TAP-Duo1 HA-ubiquitin that were not present in the TAP-Duo1 lane 

(Figure 19).  These bands were likely ubiquitinated proteins that associate with Duo1.   
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Figure 19.  The Dam1 complex is not ubiquitinated 

TAP-Duo1 was purified from cells expressing only TAP-Duo1 or TAP-Duo1 and HA-

ubiquitin under control of the TDH3 promoter.  Cells expressing only HA-ubiquitin 

serves as a negative control.  Bands in the HA blot that were present in the TAP-Duo1 

HA-ubiquitin lane but not in the TAP-Duo1 were lane were identified by mass 

spectroscopy.  These bands are marked with asterisks.
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Figure 19 
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The bands were cut out of a sister gel stained with colloidal blue and analyzed by mass 

spectroscopy by Dr. Maria Persons at the University of Texas at Austin.  None of the 

proteins identified by mass spectroscopy were members of the Dam1 complex or other 

kinetochore members.  In addition, I performed a similar experiment with the Ndc80 

complex in which I did a TAP purification from cells containing HA-ubiquitin, TAP-

Nuf2, or TAP-Nuf2 HA-ubiquitin (data not shown).  Bands that were only present in the 

TAP-Nuf2 HA-ubiquitin lane were sent to Dr. Persons for identification by mass 

spectroscopy, but again failed to reveal a member of the Ndc80 complex or other member 

of the kinetochore suggesting the Dam1 and Ndc80 complexes may not be ubiquitinated 

(data not shown).    

 

One reason I may not have detected ubiquitination of either the Dam1 or Ndc80 

complexes was that the ubiquitination was either too transient or too labile a modification 

to be detected by the methods described above.  However, Rad6 ubiquitinates H2B in 

vitro suggesting that Rad6 and Bre1 may also be able to ubiquitinate a member of the 

Dam1 or Ndc80 complexes in vitro (Sung et al., 1988).  Therefore, I performed in vitro 

ubiquitination assays using purified Dam1 or Ndc80 complexes as substrates and TAP- 

Rad6 and TAP-Bre1 as the E2 and E3 ligases.  However, Rad6 and Bre1 failed to 

ubiquitinate either of these complexes in vitro (data not shown). 

 

Since I had previously shown that Ubp8 regulates Dam1K233 dimethylation, likely 

through deubiquitination, I reasoned that deletion of UBP8 would increase the likelihood 

of detecting ubiquitinated proteins.  I therefore deleted UBP8 and BRE1 from HA-Dam1 
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strains containing His-ubiquitin-G76A.  This mutation within ubiquitin inhibits its 

removal from substrates by deubiquitinating enzymes.  I immunoprecipitated HA-Dam1 

and immunoblotted for His-ubiquitin.  If Dam1 or any other protein co-

immunoprecipitated by Dam1 was ubiquitinated by Rad6-Bre1, I expected this 

ubiquitination to be increased in the ubp8! lane and abolished in the bre1! lane.  

However, I was unable to detect any ubiquitination of HA-Dam1 or any other protein co-

immunoprecipitated by Dam1 (data not shown).  All together, despite using three 

different strategies, I was unable to identify a novel substrate(s) for Rad6 and Bre1 at the 

kinetochore.   

 

Lysines within histones H2A and H2B are required for Dam1 methylation 

As I was not able to identify a novel Rad6-Bre1 substrate at the kinetochore, I decided to 

re-examine whether H2BK123 ubiquitination is required for Dam1 methylation.  To do 

this, I repeated the ipl1-2 suppression assays containing h2bK123R as the only source of 

histone H2B.  As we had previously observed, mutation of H2BK123 to arginine did not 

suppress the ipl1-2 temperature sensitive phenotype (data not shown) (Zhang et al., 

2005).  I therefore decided to test whether the h2bK123R strains lacked H3K4 

dimethylation, which would confirm the h2bK123R mutation.  Surprisingly, in all the 

isolates tested, H3K4 dimethylation was still present, suggesting either these isolates 

were not in fact h2bK123R mutants or that some other issue existed with these isolates 

(Figure 20). 
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Figure 20.  H3K4me2 is still present in ipl1-2 h2bK123R strains 

Total protein extracts of ipl1-2 h2bK123R mutants were immunoblotted for either 

H3K4me2 or H3.  H3 serves as the loading control.  The ipl1-2 and h2bK123R strains 

serve as negative and positive controls.
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Figure 20 



 

98 

I therefore decided to construct new h2bK123R ipl1-2 strains by mating h2bK123R cells 

with ipl1-2 cells.  In order to make sure that the only source of H2B contained the K123R 

point mutation, I made total protein lysates and immunoblotted for H3K4me2 to confirm 

that methylation was abolished in these isolates, which it was (data not shown).  To 

determine whether H2BK123 modulates Ipl1 function, I performed ipl1-2 suppression 

assays.  Surprisingly, seven of the nine isolates suppressed the ipl1-2 temperature 

sensitive phenotype (Figure 21).  This was surprising because in the past when doing 

ipl1-2 suppression assays with other gene deletions or point mutants, all isolates gave the 

identical phenotype.  This suggested to me that perhaps other functions of H2BK123 

confounded our genetic analysis or that something was still amiss with the h2bK123R 

strains. 

 

To determine whether there was something amiss with the genetic analysis, I decided to 

directly assess Dam1K233 dimethylation in the h2bK123R strain.  I therefore constructed 

a HA-Dam1 h2bK123R strain.  I immunoprecipitated HA-Dam1 and then immunoblotted 

with the Dam1K233me2 specific antibody.  In all isolates tested, Dam1K233me2 was 

abolished in the h2bK123R background similar to deletion of SET1 suggesting that 

H2BK123 ubiquitination is indeed required for Dam1K233 dimethylation (Figure 22). 

 

I then went back to my h2bK123R ipl1-2 strains and sequenced the plasmid containing 

H2A and H2B to confirm the presence of the h2bK123R point mutation.  The H2B gene 

contained the K123R mutation as expected (Figure 23).  To my surprise the H2A also 
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Figure 21.  Some h2bK123R isolates suppress ipl1-2  

The indicated yeast strains were serially diluted 10-fold, spotted on rich media, and 

grown at 25oC or 31oC for 3 days.  Shown are nine individual isolates of ipl1-2 

h2bK123R.
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Figure 22.   Lysines within H2A and H2B are important for Dam1 methylation 

HA-Dam1 was immunoprecipitated from wild-type or h2bK123R strains then 

immunoblotted with either a HA or Dam1K233me2 specific antibody.  Shown are three 

individual isolates of HA-Dam1 h2bK123R.  The HA blot serves as a loading control and 

set1! as a negative control. 
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Figure 22
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Figure 23.  Sequencing of ipl1-2 h2bK123R isolates 

The entire HTA1-HTB1 locus was sequenced from the ipl1-2 h2bK123R strains in Figure 

21 as was wild-type (Y131) and h2bK123R (Y133).  Shown is the sequence of the 3’ 

region of both genes.  Highlighted in red are point mutations from lysine to arginine 

within Y133 and the ipl1-2 h2bK123R strains at K123 within HTB1 and K119, K120, 

K123, and K126 within HTA1. 
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contained four lysine to arginine point mutations at K119, K120, K123, and K126 (Figure 

23).  It was previously published that mutation of these five lysines within H2A and H2B 

leads to pronounced mitotic and meiotic defects (Robzyk et al., 2000), which would 

compromise my ability to measure the effects of the h2bK123R mutation on ipl1-2 

temperature sensitivity and likely explains why only some, but not all of the h2bK123R 

isolates suppressed the ipl1-2 temperature sensitive phenotype.  I then sequenced the HA-

Dam1 h2bK123R strains used in the experiments described in the preceding paragraph 

and found that all five of these lysines within H2A and H2B were mutated to arginine 

(data not shown).  Therefore, I was unable to conclude that the mutation of H2BK123 to 

arginine was responsible for the loss of Dam1K233 dimethylation rather than the other 

four K to R point mutations within H2A. 

 

Ubiquitination of histone H2BK123 regulates Dam1 methylation 
To determine whether the h2bK123R mutation alone could suppress the ipl1-2 phenotype, 

I constructed new ipl1-2 strains containing only the h2bK123R point mutation.  

Sequencing confirmed the presence of the h2bK123R mutation and no other mutation in 

H2B or H2A and immunoblotting for H3K4 dimethylation revealed that methylation was 

abolished in the ipl1-2 h2bK123R mutants (data not shown).  In all isolates tested, the 

h2bK123R mutation suppressed the ipl1-2 temperature sensitive phenotype suggesting a 

role for this lysine in regulating Set1 functions at the kinetochore  (Figure 24).  I next 

constructed new HA-Dam1 h2bK123R strains and again sequenced to confirm no other 

mutations were present and confirmed loss of H3K4 dimethylation (data not shown).  

When I immunoprecipitated HA-Dam1 and immunoblotted with the Dam1K233me2  
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Figure 24.   Mutation of H2BK123 suppresses ipl1-2  

The indicated yeast strains were serially diluted 10-fold, spotted on rich media, and 

grown at 25oC or 31.5oC for 3 days.   Shown are two individual isolates of ipl1-2 

h2bK123R. 
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Figure 24 
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specific antibody, Dam1K233 dimethylation was abolished similar to that in the set1" 

and dam1K233R control strains (Figure 25).  These data, together with the role of Rad6, 

Bre1 and Ubp8 in Dam1 methylation, strongly argue that ubiquitination of H2BK123 is a 

prerequisite for Dam1K233 methylation (Figures 15, 17, and 25).  My results 

demonstrate for the first time that cross-talk between posttranslational modifications can 

occur in trans between a histone protein and a non-histone protein. 

 

Histone and Set1 association with Dam1 is dependent on H2BK123 

Intriguingly, histones H2A, H2B, and H4 were identified by others upon mass 

spectroscopy of immunoprecipitates of Dam1 complexes (Janke et al., 2002).   I 

confirmed Dam1-histone interactions using our HA-DAM1 allele.  Histones H2A and 

H2B co-immunoprecipitated with HA-Dam1 (Figure 26).  Importantly this association is 

dependent on Dam1 as immunoprecipitation with HA conjugated beads in a strain 

containing untagged Dam1 or in a control strain containing the exosome Ski7 protein 

endogenously tagged with HA coimmunoprecipitated little to no H2A or H2B (Figure 

26).  However, histone H3 did not appear to associate with Dam1 (Figure 26). 

Importantly, all histones were present at equal levels in the immunoprecipitation inputs 

(Figure 26).  

 

 In S. cerevisiae, centromeres contain nucleosomes consisting of histones H2A, H2B, H4, 

and the centromere-specific H3 variant histone Cse4 (Meluh et al., 1998).  The lack of 

association of Dam1 with H3 is consistent with the replacement of this histone by the 

Cse4 H3 variant at the centromere.  In fact, interaction between Dam1 and Cse4 was 
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Figure 25.   H2BK123 is required for Dam1 methylation 

HA-Dam1 was immunoprecipitated from wild-type or h2bK123R strains then 

immunoblotted with either a HA or Dam1K233me2 specific antibody.  The HA blot 

serves as a loading control.  The set1! and dam1K233R strains serve as negative controls. 
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Figure 25 
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Figure 26.    Dam1 associates with H2A and H2B 

HA-Dam1 and HA-Ski7 were immunoprecipitated and then immunoblotted for HA, with 

antibodies specific to yeast histones H2A or H2B, and with general H3 or H4 antibodies.  

The immunoprecipitant inputs were also immunoblotted for histones to confirm their 

presence at equal levels in all strains.  HA-Ski7 serves as a control for the HA tag.
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demonstrated by others by both a two-hybrid analysis and in vitro binding assays (Shang 

et al., 2003).  I also confirmed that Cse4 and Dam1 interact as Cse4 tagged with the myc 

epitope at its endogenous locus coimmunoprecipitated HA-Dam1 (Figure 27).  The close 

physical interaction observed between Dam1 and H2B suggests that H2B ubiquitination 

may directly trigger Dam1 methylation. 
 

To further explore the relationship of H2B ubiquitination with Dam1 methylation, I 

sought to determine whether Dam1 co-immunoprecipitates with ubiquitinated H2B.  

Therefore, I immunoprecipitated HA-Dam1 from cells containing either wild-type H2B 

or in which H2BK123 was mutated to arginine.  As expected, HA-Dam1 co-

immunoprecipitated H2B (Figure 28).  However in the h2bK123R point mutant, this 

association is abolished (Figure 28).  This suggests that Dam1 associates only with the 

ubiquitinated isoform of H2B.  We had previously shown that Dam1 and Set1 co-

immunoprecipitate (Zhang et al., 2005).  I therefore wished to determine whether 

association of Set1 with Dam1 was dependent on ubiquitinated H2B.  I 

immunoprecipitated HA-Dam1 from either wild-type, set1!, or h2bK123R cells.  As we 

had seen previously, HA-Dam1 co-immunoprecipitated Set1 and this interaction was 

abolished in the set1! lane  (Figure 28).  Intriguingly, the association between Set1 and 

Dam1 is abolished in the h2bK123R mutant suggesting that association of Set1 with 

Dam1 is dependent on ubiquitinated H2B (Figure 28).  This is in contrast to the model in 

which Set1 and COMPASS recruitment to promoters is not dependent on H2BK123 

ubiquitination with the exception of the Swd2 subunit (Lee et al., 2007).  Together, my  
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Figure 27.    Dam1 associates with Cse4 

Endogenously tagged myc-Cse4 under its own promoter was immunoprecipitated from 

either wild-type or HA-Dam1 cells and then probed with an antibody specific to either 

the myc or HA tags.  The immunoprecipitant inputs were immunoblotted for HA to 

confirm their presents at equal levels in all strains.
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Figure 27 
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Figure 28.  Set1 and H2B association with Dam1 is dependent on H2BK123 

HA-Dam1 was immunoprecipitated from wild-type, set1!, or h2bK123R cells and HA-

Ski7 was immunoprecipitated from wild-type cells and then immunoblotted for HA, 

H2B, or Set1.  The immunoprecipitant inputs were immunoblotted for H2B and Set1 to 

confirm their presents at equal levels in all strains.  HA-Ski7 serves as a control for the 

HA tag.
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Figure 28 
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results in both Figure 26 and Figure 28 strongly suggest that H2BK123 ubiquitination is 

directly required for Dam1 methylation by Set1. 

 

A role for Rpt4 and Rpt6 in Dam1 methylation is inconclusive 

The proteosomal ATPases Rpt4 and Rpt6, which are also known as SUG2 and SUG1, 

respectively, affect the levels of H3K4 di- and trimethylation (Ezhkova and Tansey, 

2004).  However, these ATPases have no effect on H2BK123 ubiquitination indicating 

that their requirement in H3 methylation is downstream of H2B ubiquitination (Ezhkova 

and Tansey, 2004).  Both RPT4 and RPT6 are essential genes in yeast.  To determine 

whether Rpt4 and Rpt6 also regulate Dam1 K233 dimethylation, I mated the 

hypomorphic alleles sug2-1, sug1-3, and sug1-25 with the ipl1-2 strain.  After 

sporulation, I performed an ipl1-2 suppression assay using the four spores from a single 

tetrad that resulted in a wild-type spore, a sug2 or sug1 mutant spore, an ipl1-2 spore, and 

a spore containing both mutant alleles.  Neither sug1-3 nor sug1-25 suppressed the 

temperature sensitivity of ipl1-2 (Figure 29).  However, while sug2-1 failed to suppress 

ipl1-2 from one tetrad, sug2-1 did suppress ipl1-2 using a second tetrad (Figure 29).  The 

role for Rpt4 and Rpt6 in H3K4 methylation was demonstrated by immunoblotting for 

H3K4 methylation from cells grown at the sug1-3, sug1-25, and sug2-1 restrictive 

temperature of 37oC (Ezhkova and Tansey, 2004).  However, the ipl1-2 suppression 

assays were performed at 32.5oC, which may not be a high enough temperature to affect 

the enzymatic activity of Rpt4 and Rpt6.  In ipl1-2 suppression assays performed at 37oC, 

both ipl1-2 and the double mutant strains were unable to survive (data not shown). 
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Figure 29.   Suppression of ipl1-2 rpt4/rpt6 mutants is inconclusive  

The indicated yeast strains were serially diluted 10-fold, spotted on rich media, and 

grown at 25oC or 31.5oC for 3 days.    
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Figure 29 
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Due to the ipl1-2 suppression assays being inconclusive, I mated the sug2-1 strain with 

the HA-Dam1 strain to directly determine whether the proteosomal ATPases are required 

for Dam1K233 dimethylation by immunoprecipitation and immunoblotting for 

Dam1K233me2.  I only used the sug2-1 strain, as the SUG1 gene is located on the same 

chromosome as Dam1 making recovery of a HA-Dam1 sug1 mutant strain very difficult.  

However in characterizing these mutants, I was never able to replicate the previously 

published results that the sug2-1 mutation decreases the levels of H3K4me2 at the 

restrictive temperature of 37oC (Figure 30).  Since I was not able to replicate the previous 

published results and due to the extremely slow growth of the HA-Dam1 strain at 37oC 

(data not shown), I decided not to pursue the question of whether Rpt4 or Rpt6 regulate 

Dam1K233 methylation further.       
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Figure 30.  The sug2-1 mutant has no effect on H3K4me2 

Total protein extracts of either HA-Dam1 or sug2-1 mutants were immunoblotted for 

either H3K4me2 or H3 after growth at the indicated temperatures.  H3 serves as the 

loading control.  Rpt4 is the same as SUG2.  It was previously shown that H3K4me2 is 

markedly reduced at 37oC in the sug2-1 mutant (Ezhkova and Tansey, 2004).
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Figure 30 
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Chapter 4 

Discussion 

 

My studies define a conserved pathway that regulates Set1-mediated methylation 

regardless of substrate.  All previous studies on the regulation of Set1 catalytic activity 

focused on methylation of histone H3 at active promoters.  By studying the regulation of 

Dam1 methylation by Set1, I revealed unexpected roles for transcriptional regulatory 

factors outside of transcription in mitosis.  I determined that Set1 requires a functional 

COMPASS complex for its catalytic activity as deletion of COMPASS subunits suppress 

the ipl1-2 temperature sensitive phenotype and are required for Dam1 methylation.  In 

addition, I demonstrated a link between suppression of ipl1-2 and a requirement for 

Dam1K233 dimethylation indicating that suppression of ipl1-2 serves as an indicator of 

Dam1K233 dimethylation.  I determined that methylation of Dam1 is dependent on 

Rad6-Bre1 mediated ubiquitination of H2BK123 and the Paf1 transcriptional elongation 

complex.  I showed that Dam1 methylation is not dependent on transcription and occurs 

at the kinetochore.  In addition, I demonstrated a tight association between Dam1 and 

histone H2B that is dependent on H2BK123 ubiquitination.  Together, my results indicate 

that cross-talk in trans occurs not only from H2BK123 ubiquitination to H3K4 

methylation, but may also occur in trans outside of the nucleosome to Dam1.  

Importantly, this is the first example of a histone modification regulating the modification 

of a non-histone protein in trans.  Moreover, my studies suggest a substrate independent 

pathway for Set1-mediated methylation and reveal previously unknown functions for 
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transcriptional regulatory proteins in mitosis.  These data provide new insights to the 

regulation of Dam1 functions and provide a new fundamental insight to the regulation of 

protein functions by post-translational modifications.  

 

COMPASS is essential for Set1-mediated methylation 

The catalytic activity of Set1 toward H3K4 is dependent on an intact COMPASS 

complex (Dehe et al., 2006; Krogan et al., 2002; Morillon et al., 2005; Mueller et al., 

2006).  Deletion of either SWD1 or SWD3, which together with Swd2 form the core of 

the COMPASS complex, completely abolishes all H3K4 methylation.  SWD2 is essential 

for viability and therefore cannot be deleted.  However, studies with various swd2 

mutants support the argument that it is essential for at least H3K4 di- and trimethylation 

(Cheng et al., 2004).  Deletion of either member of the SDC1-BRE2 heterodimer affects 

both H3K4 di- and trimethylation but does not affect monomethylation.  My results that 

SWD1, SDC1, and BRE2 are required for Dam1K233 dimethylation mirror the role of 

these subunits in H3K4 methylation.  In addition, SPP1 has little effect on H3K4 

dimethylation and deletion only results in loss of H3K4 trimethylation.  I demonstrated 

that SPP1 has little effect on Dam1K233 dimethylation levels indicating that the function 

of this subunit of COMPASS is conserved as well.  I do not have an antibody specific to 

trimethylated Dam1K233 and I was therefore unable to test whether deletion of SPP1 

affects Dam1 trimethylation.  Together, my results demonstrate that COMPASS is 

required for Set1 function regardless of substrate.  This idea is reinforced by the lack of 

catalytic activity of Set1 on substrates in vitro, as methyltransferase assays require 

purification of an intact COMPASS complex (Krogan et al., 2002).  In addition, my data 
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indicate that the COMPASS subunits role in regulating the processivity of Set1-mediated 

methylation is conserved for both substrates.  My results further predict that Set1 will 

require an intact COMPASS complex for any Set1 substrates identified in the future. 

 

Previous published reports indicate that deletion of the BRE2 subunit has little effect on 

H3K4 dimethylation, but is required for H3K4 trimethylation (Dehe et al., 2006; Krogan 

et al., 2003b; Schneider et al., 2005).  In contrast, my data demonstrate that deletion of 

BRE2 results in complete loss of Dam1K233 dimethylation.  This result initially 

suggested to me that Bre2 might confer substrate specificity for Set1 to Dam1 versus H3.  

However, when we tested the requirement of BRE2 for H3K4 dimethylation with our 

H3K4me2 antibody and in our HA-Dam1 strain background, deletion of BRE2 abolished 

H3K4 dimethylation.  Therefore, Bre2 does not play a role in the substrate specificity for 

Set1 and it is unlikely that the COMPASS complex itself plays a role in directing Set1 to 

specific substrates. 

 

A regulatory pathway required for Set1-mediated methylation regardless of 

substrate 

Over the past decade, a large body of research has revealed a complex pathway 

regulating Set1-mediated methylation of H3K4 at promoters (Weake and Workman, 

2008).  These studies showed that ubiquitination of H2BK123 by Rad6 and Bre1, as well 

as the Paf1 transcription elongation complex, are essential for H3K4 di- and 

trimethylation (Hwang et al., 2003; Krogan et al., 2003b; Ng et al., 2003a; Robzyk et al., 

2000; Wood et al., 2003a; Wood et al., 2003b).  In addition, the Ubp8 ubiquitin-specific 
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protease regulates H2BK123 ubiquitination leading to gene-specific regulation of H3K4 

methylation (Henry et al., 2003).  In this dissertation, I showed that this pathway is 

conserved in regulating methylation of the other known substrate of Set1, the kinetochore 

protein Dam1, on lysine 233.  Prior to my work, the consensus within the field was that 

the role of all these transcriptional regulatory factors in regulating H3K4 was to recruit 

COMPASS to promoters in order to trimethylate H3K4 at promoters and dimethylate 

H3K4 within the body of actively transcribed genes.  My results counter this model and 

instead suggest a model by which this pathway is a general pathway for regulating Set1-

mediated methylation regardless of substrate (Figure 31). 

 

I discovered a slight difference between regulation of Set1-mediated methylation of 

H3K4 and Dam1K233 in that Ubp8, but not Ubp10, regulated Dam1 methylation.  

Deletion of UBP8 results in an increase in Dam1K233 methylation.  This finding 

suggests that in the absence of UBP8 continuous H2B ubiquitination signals for more 

Dam1 methylation.  This is supported by the fact that H2B at promoters is known to 

undergo rapid cycles of ubiquitination and deubiquitination (Henry et al., 2003).  Ubp8 is 

part of the SAGA complex (Henry et al., 2003).  Also within this complex is Gcn5 whose 

acetyltransferase activity is important for gene activation (Grant et al., 1997).  The 

catalytic activity of Ubp8 requires Sgf11 for association to the rest of the SAGA complex 

(Ingvarsdottir et al., 2005; Lee et al., 2005).  This suggests that the SAGA complex might 

also be closely associated with Dam1 and raises the possibility that SAGA may have 

other substrates at the kinetochore if not Dam1 itself.  In contrast, deletion of UBP10 did  
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Figure 31.  Model of regulation of Set1-mediated methylation  

Multiple signaling pathways control Set1-mediated methylation.  Methylation of H3K4 is 

dependent on H2BK123 ubiquitination and the Paf1 complex.  H2BK123 is ubiquitinated 

by Rad6-Bre1, which also ubiquitinates the COMPASS subunit Swd2.  I showed that 

H2BK123 ubiquitination also signals changes in methylation of at least one non-histone 

protein, Dam1K233, providing a mechanisms for connecting changes in chromatin 

structures to cellular processes independent of gene transcription. 
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not lead to an increase in Dam1 methylation.  While Ubp10 also regulates H2BK123 

ubiquitination, this does not occur at active gene promoters.  Instead, Ubp10 associates 

with Sir2 to maintain silenced chromatin at telomeres (Emre et al., 2005; Gardner et al., 

2005).  This suggests there is a specific pathway through H2BK123 deubiquitination by 

Ubp8 regulates Dam1 methylation. 

 

I investigated the roles of Rpt4 and Rpt6 in H3K4 and Dam1K233 dimethylation.  Also 

called SUG2 and SUG1 respectively, Rpt4 and Rpt6 are ATPases that associate with the 

19S proteosome (Ferdous et al., 2001).  These two proteosomal subunits are required for 

efficient transcriptional elongation by RNA polymerase II (Ferdous et al., 2001).  In 

addition, mutation of these essential proteins results in decreased H3K4 di- and 

trimethylation, but has no effect on H2BK123 ubiquitination levels (Ezhkova and 

Tansey, 2004).  When I tested the role of Rpt4 in H3K4 dimethylation, I determined there 

was no difference between wild-type cells and the rpt4 mutants.  Thinking that there was 

something amiss with these strains, I received new rpt4 mutants from the Tansey lab and 

tested for H3K4 dimethylation.  Again, I saw no difference in H3K4 methylation in the 

rpt4 mutants compared to wild-type.  This suggests that Rpt4 and Rpt6 do not in fact 

regulate H3K4 dimethylation and are unlikely to regulate Dam1K233 dimethylation. 

 

Certain members of the H3K4 methylation regulatory pathway specifically regulate 

H3K4 trimethylation.  Since they do not regulate H3K4 dimethylation, I have not 

investigated their roles in Dam1K233 dimethylation.  The Bur1 and Bur2 cyclin 

dependent kinases phosphorylate Rad6 on S120.  While phosphorylation impairs the 
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catalytic activity of Rad6 to ubiquitinate H2B, Bur1 and Bur2 only affect H3K4 

trimethylation.  The COMPASS subunit Swd2 is ubiquitinated by Rad6 and Bre1.  

Similarly, Swd2 ubiquitination only affects H3K4 trimethylation and has no effect on 

H3K4 dimethylation.  In addition, members of the CCR4/NOT mRNA processing 

complex are also required specifically for H3K4 trimethylation.  The role of all these 

factors in specifically regulating H3K4 trimethylation may reflect the need to fine tune 

the processivity of Set1-methylation between the promoters where H3K4 trimethylation 

peaks and the gene body where H3K4 dimethylation is predominant.  Since these factors 

are specific in regulating H3K4 trimethylation, it is unlikely that they regulate 

Dam1K233 dimethylation.  To date, we have been unsuccessful in raising an antibody 

specific to Dam1K233me3 to test whether these factors regulate Dam1K233 

trimethylation or if Dam1 is in fact trimethylated at K233.  This remains an open question 

that we would like to address in future studies. 

 

Are there factors that specifically regulate Dam1K233 methylation? 

Since I have shown there is a substrate-independent pathway for Set1-mediated 

methylation, this raises the question of how substrate specificity of Set1 is achieved.  This 

might be as simple as which substrate is available for methylation by Set1.  It may be that 

Set1 is recruited to both active promoters and centromeres.  H3 is present only at 

promoters and not centromeric DNA where H3 is replaced by the centromere specific 

histone variant Cse4 (Meluh et al., 1998).  Dam1 localizes to centromeres by chromatin 

immunoprecipitation (Jones et al., 2001).  Therefore, at centromeres Dam1 is the only 

substrate available for methylation by Set1.  My results showing that Dam1 does not 
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physically interact with H3 but does interact with Cse4 support the idea that Dam1 is the 

primary substrate available for Set1 at centromeres.    

 

Alternatively, substrate selection between H3 and Dam1 may be achieved by protein 

regulators of Dam1K233 methylation that do not regulate H3K4 methylation.  To identify 

factors that regulate H3K4 methylation, a proteomic screen was employed using the yeast 

non-essential deletion library (Dover et al., 2002).  Each deletion in the library was tested 

by immunoblotting to determine whether deletion of that particular gene affected the 

levels of H3K4 methylation (Dover et al., 2002).  Unfortunately, a proteomic approach 

such as this will not be possible to identify novel regulators of Dam1 methylation.  Dam1 

methylation is not detectable from whole cell extracts due to the low abundance of Dam1 

within the cell.  Rather, Dam1 must first be immunoprecipitated for Dam1 methylation to 

be detected making screening of the #4800 gene deletion library a daunting prospect.   

 

Another possibility to address this question is to employ a genetic screen for additional 

Dam1K233me2 regulatory factors.  My data show a tight link between suppression of 

ipl1-2 and a requirement for Dam1K233 dimethylation.  Therefore, a potential approach 

to identify novel Dam1K233me2 regulators would be to cross the yeast deletion library 

into strains harboring the ipl1-2 mutation.  However, this approach is also infeasible.  

Most genetic screens of this nature screen for lethality (Boone et al., 2007).  Even the 

more sensitive high throughput screens such as a synthetic genetic array analysis (SGA) 

still rely on synthetic sick lethality (SSL) (Tong et al., 2001).  In our genetic assay, 

deletion of genes essential for Dam1K233 methylation suppressed the ipl1-2 temperature 
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sensitivity and did not rescue the temperature sensitive phenotype.  Therefore, all 

screening would have to be done at the non-restrictive and restrictive temperature using 

serial dilutions of the yeast.  Unless a robotic system could be adapted for this type of 

screen, it would be an extremely laborious project to undertake.   

 

However, a different type of genetic screen may be suitable for identifying novel factors 

required for Dam1K233 methylation should proof of principle experiments determine it 

to be a viable method.  The balance of phosphorylation and methylation in Dam1 is 

highly regulated by Set1, Ipl1, and the Glc7 phosphatase (Zhang et al., 2005).  The ipl1-2 

mutant has a point mutation in its catalytic domain resulting in decreased kinase function 

(Francisco et al., 1994).  One mechanism for the temperature sensitivity of ipl1-2 is 

through diminished phosphorylation of Dam1.  However, deletion of SET1 allows ipl1-2 

to better phosphorylate Dam1 resulting in suppression of ipl1-2 temperature sensitivity 

(Zhang et al., 2005).  In addition, combination of the glc7-127 mutation with set1!, 

which would likely result in unimpeded phosphorylation of Dam1 by Ipl1, is inviable 

(Zhang et al., 2005).  However, the glc7-127 ipl1-2 set1! triple mutant is viable and 

actually less temperature sensitive than the ipl1-2 mutant alone suggesting that restoring 

Dam1 phosphorylation to appropriate levels is important (Zhang et al., 2005).  Therefore, 

one might predict that overexpression of SET1 would compromise the ability of ipl1-2 to 

phosphorylate Dam1 in the double mutant cells even more severely than already is the 

case in the ipl1-2 mutant alone.  Given that disrupting the balance of Dam1 methylation 

and phosphorylation in all other mutants tested previously resulted in observable 

phenotypic changes (Zhang et al., 2005), I expect overexpression of SET1 would enhance 
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the temperature sensitivity of ipl1-2.  This would lead to lethality of the double mutant at 

a lower temperature than the ipl1-2 mutant alone or perhaps even inviability.  In addition, 

overexpression of other Dam1 methylation regulators such as COMPASS complex 

members, BRE1, or RTF1 would be tested for enhancement of ipl1-2 temperature 

sensitivity.  If the phenotype is severe enough, an overexpression screen could be 

performed in which a library of overexpressed genes is crossed into the ipl1-2 

background to identify genes that enhance the ipl1-2 temperature sensitive phenotype.  

Currently, an overexpression library is available that covers approximately 97% of the 

yeast genome making this a feasible genetic strategy to identify addition Dam1K233 

methylation regulators (Jones et al., 2008).  In addition, such an approach would be 

unbiased, and would recover both essential and non-essential genes in the yeast genome. 

 

Factors important for transcription have other functions in mitosis 

Rad6 functions with other E3 ligases outside of transcription.  Rad6 pairs with Ubr1 and 

functions in the N-end rule pathway for protein mediated degradation (Dohmen et al., 

1991).   The N-end rule pathway degrades proteins containing destabilized N-terminal 

amino acids.  A second E3 partner of Rad6 is Rad18 (Bailly et al., 1997).  Rad6-Rad18 

are involved in DNA repair through ubiquitination of PCNA (Hoege et al., 2002).  

However, when I deleted either of these other E3 ligases of Rad6, neither suppressed 

ipl1-2 comparable to deletion of BRE1 suggesting that the role of Rad6 in regulating 

Dam1 methylation is only through partnering with Bre1.  In addition, others have shown 

that deletion of UBR1 or RAD18 has no effect on H2BK123 ubiquitination or H3K4 

methylation (Hwang et al., 2003).  Bre1 is not reported to have any other function in 
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yeast other than partnering with Rad6 to ubiquitinate H2B.  Together, my results show 

for the first time functions for the Rad6-Bre1 E2-E3 complex outside of transcription. 

 

The Paf1 complex plays a role in transcriptional elongation.  Deletion of either PAF1 or 

CTR9 leads to slow growth, large cell size, and temperature sensitivity (Mueller and 

Jaehning, 2002; Shi et al., 1996).  However, deletion of the Paf1 complex only affects the 

expression of a subset of genes (Porter et al., 2002; Shi et al., 1996).  In addition, deletion 

of Paf1 complex members does not affect the distribution of RNA polymerase II along 

coding regions (Mueller et al., 2004).  The Paf1 complex plays a posttranscriptional role 

in processing RNAs in 3’-end formation (Penheiter et al., 2005; Sheldon et al., 2005).  

The severity of phenotypes in Paf1 complex deletions suggests alternative roles in the 

cell, perhaps Dam1 methylation.  Deletion of RTF1 results in loss of association of the 

other four members of the Paf1 complex from chromatin and actively transcribing RNA 

polymerase II (Mueller et al., 2004).  My results that Rtf1 is required for Dam1 

methylation suggest that either Paf1 association with chromatin and RNA polymerase II 

is necessary for Dam1 methylation or that Rtf1 has a function independent of Paf1 

complex association with chromatin in regulating Set1-mediated methylation.  

Interestingly, ctr9" cells have chromosome segregation defects and undergo chromosome 

loss at a 110-fold higher rate than wild-type cells (Foreman and Davis, 1996).  My data 

indicate that deletion of CTR9 suppresses the temperature sensitive phenotype of ipl1-2 

cells associated with the chromosome segregation defects (Chan and Botstein, 1993; 

Francisco and Chan, 1994).  The findings that Set1-regulated Ipl1 functions trump the 
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mitotic phenotype in ctr9" cells highlight the importance of the methylation-

phosphorylation switch within Dam1 (Zhang et al., 2005). 

 

Transcription does not likely play a role in Dam1 methylation 

My finding that suppression of ipl1-2 phenotypes correlates strongly with Dam1 

methylation changes indicates that the role of Rad6, Bre1, and the Paf1 complex in 

regulating Ipl1 functions is not likely related to changes in the gene expression profiles of 

yeast bearing deletions of these genes.  Additionally, others have shown that deletion of 

RAD6 or mutation of H2BK123 to arginine has no effect on SET1 expression (Sun and 

Allis, 2002), further indicating that these proteins influence methylation of H3K4 and 

Dam1K233 through regulation of Set1 localization and catalytic activity (Sun and Allis, 

2002). 

 

H2BK123 ubiquitination at gene promoter requires active transcription by RNA 

polymerase II at the locus, as both events are dependent on phosphorylation of serine 5 in 

the C-terminal domain (CTD) of RNA polymerase by the Kin28 kinase (Ng et al., 2003b; 

Xiao et al., 2005).  Phosphorylation of RNA polymerase by Kin28 is required for 

progression of transcriptional initiation to elongation (Cismowski et al., 1995; Valay et 

al., 1995).  My results demonstrate that H2BK123, but not Kin28, is required for Dam1 

methylation.  Together, these data suggest that Kin28 is essential for H2BK123 

ubiquitination at promoters, but is not required for H2BK123 ubiquitination at 

centromeres.  The proportion of H2B ubiquitinated is quite small and therefore it would 

be very difficult to detect the small amount of ubiquitinated H2B remaining at the 
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centromere in kin28-ts16 cells.  In addition, my data indicate that in contrast to H3K4 

methylation, Dam1 methylation is not dependent on active transcription. 

 

In addition to being required for H2BK123 ubiquitination, Kin28 and active transcription 

are also required for Set1 recruitment to gene promoters.  However, the kin28-ts16 allele 

has no effect on Dam1 methylation, indicating that Kin28 is not required for recruitment 

of Set1 to Dam1.  Biochemical and genetic studies from a number of labs also indicate 

that Dam1 functions primarily at the kinetochore, and our data clearly indicate that Dam1 

methylation is dependent on association of Dam1 with the kinetochore through Ndc10 

and Ndc80.  Therefore, it seems highly likely that Rad6, Bre1, and the Paf1 complex act 

independently of gene promoters to activate COMPASS for Dam1 methylation and that 

this event occurs at kinetochores.  

 

Interestingly, parallels between S. cerevisiae CEN sequences, which nucleate 

kinetochores, and gene promoters were noted several years ago due to the shared 

functions of Cbf1 at both the Met16 promoter and centromeres (Hemmerich et al., 2000).  

In addition, several factors that influence CEN function also regulate transcription, 

including Spt4 and H2A.Z (HTZ) (Basrai et al., 1996; Crotti and Basrai, 2004; 

Mizuguchi et al., 2007).  Given these results, it is not surprising that additional 

transcriptional regulatory factors such as Rad6, Bre1, and the Paf1 complex would 

associate with centromeres.   
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A recent genome-wide ChIP analysis for RNA polymerase II occupancy revealed 

localization of polymerase II subunits to centromeric DNA (Steinmetz et al., 2006), 

although no transcripts have been reported for CEN sequences in S. cerevisiae and CEN 

sequences provide a strong barrier to transcription initiated from external promoters 

(Doheny et al., 1993).  In fact, the yeast centromeric nucleosome induces positive DNA 

supercoils making transcription through this region by RNA polymerase II topologically 

impossible (Furuyama and Henikoff, 2009).  However, my data cannot rule out the 

possibility that RNA polymerase II localization to centromeres is required for Dam1 

methylation.  My kin28-ts16 results, together with the lack of transcription at the 

centromeres, strongly argue that transcription is not required for Dam1 methylation. 

 

Histone H2BK123 ubiquitination undergoes cross-talk with Dam1 methylation 

The Dam1 complex bridges interactions between inner kinetochore complexes and 

microtubules.  While it is not typically thought to be in immediate proximity to 

centromeric DNA or CEN-associated histones, Dam1 localizes to centromeric sequences 

by chromatin immunoprecipitation (Jones et al., 2001).  In addition, my data and previous 

observations indicate that Dam1 co-purifies with a subset of histone proteins, including 

H2B and the centromeric H3 variant Cse4 (Janke et al., 2002).  The physical interaction 

between H2B and Dam1 that is dependent on H2BK123, the lack of association of Set1 

with Dam1 in the h2bK123R strain, and the effects of the h2bK123R mutation on Dam1 

methylation all strongly support trans-regulation of Dam1K233me2 by H2BK123 

ubiquitination.  Moreover, despite extensive efforts, I have not found any evidence of 

Rad6-Bre1 mediated ubiquitination of kinetochore proteins known to be in proximity to 
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Dam1, in vivo or in vitro, further indicating the effects of Rad6 and Bre1 on Dam1 

methylation are mediated through H2B. 

 

One question that cross-talk between H2B and Dam1 raises is a requirement for co-

localization of these two proteins for Dam1 to be methylated.  We currently know little 

about the function of Dam1 methylation or even when in the cell cycle methylation 

occurs which will be discussed further below.  Dam1 predominately associates with 

kinetochore microtubules, but was observed to localize to centromeric chromatin and 

kinetochores even upon treatment with the microtubule disruptor nocodazole (Cheeseman 

et al., 2001a).  I showed that Dam1 colocalizes with H2B and H2A suggesting that Dam1 

associates with centromeric chromatin.  Interestingly, not only do Dam1 and Cse4 

interact in a yeast two-hybrid analysis, but the Dam1 complex also directly interacts with 

Cse4 in in vitro binding assays (Shang et al., 2003).   My data confirm that Dam1 and 

Cse4 interact in vivo.  In addition, I demonstrated that Dam1 methylation is dependent on 

an intact kinetochore.  Together my results strongly argue that Dam1 methylation occurs 

at the kinetochore and centromere.  

 

Possible roles for Dam1 methylation 

Methylation of Dam1K233 inhibits phosphorylation of serines S232, S234, and S235 

flanking either side of Dam1K233 (Zhang et al., 2005).  These serines are phosphorylated 

by Ipl1 and provide a mechanism by which deletion of SET1 suppresses the temperature 

sensitivity of ipl1-2 (Zhang et al., 2005).  Ipl1 phosphorylates Dam1 as part of the spindle 

assembly checkpoint to ensure correct bipolar attachment of the kinetochore microtubules 
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to the kinetochores and accurate chromosome segregation (Cheeseman et al., 2002).  

Phosphorylation of Dam1 disrupts protein-protein interactions within both the Dam1 

complex and between the Dam1 complex and the Ndc80 complex (Shang et al., 2003).  

Deletion of SET1 not only suppresses the ipl1-2 temperature sensitive phenotype but also 

the chromosome segregation defects observed in ipl1-2 mutants (Zhang et al., 2005).  

This suggests that Dam1K233 methylation negatively regulates Ipl1 function in the 

spindle assembly checkpoint.  However, it is currently unknown when during the cell 

cycle Dam1 is methylated.  If Dam1 is methylated prior to metaphase, then methylation 

may inhibit errant Ipl1-mediated phosphorylation too early in the cell cycle.  In contrast, 

if methylation occurs upon onset of anaphase, it may signal an end to the spindle 

assembly checkpoint and prohibit any more phosphorylation of Dam1 by Ipl1.  

Determining when in the cell cycle methylation of Dam1 occurs will lend valuable 

insight into the role of Dam1 methylation. 

 

Methylated lysines within histones are binding sites for various methyl-binding effector 

proteins (Taverna et al., 2007).  Unlike acetylation, which changes the charge of the 

lysine, methylation of lysines does not affect the positive charge of lysines.  The addition 

of methyl groups to a residue does little to change the size of the residue and likely does 

not affect the function of the protein.  Insight into the exact function of Dam1K233 

methylation may come through the discovery of an effector molecule that binds to this 

methylated lysine.  Since methylation of H3K4 and Dam1K233 is regulated by a 

conserved pathway, a protein that binds to methylated H3K4 might serve as a candidate.  

Chd1 has been reported to bind to methylated H3K4 (Pray-Grant et al., 2005).  In 
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addition, Chd1 is a member of the SAGA complex like Ubp8.  Since Ubp8 already 

regulates Dam1 methylation though modulation of H2BK123 ubiquitin levels, Chd1 

seems a strong candidate to bind to methylated Dam1.  If Chd1 were an effector molecule 

for Dam1K233me2, I would expect it to suppress ipl1-2.  However, deletion of CHD1 

did not suppress ipl1-2 indicating that it likely does not bind to dimethylated Dam1K233.  

 

In addition to Chd1, several other proteins bind to methylated H3K4 in both yeast and 

higher eukaryotes (Taverna et al., 2007).  For example, in yeast Yng1 contains a PHD 

(plant homeodomain) domain that binds to trimethylated H3K4 (Martin et al., 2006).  A 

member of the NuA3 histone acetyltransferase complex, binding of Yng1 promotes 

acetylation of H3K14 (Taverna et al., 2006).  Additionally, Set3 recruitment to 

promoters, together with the histone deacetylases Hos2 and Hst1, is dependent on 

dimethylation of H3K4 (Kim and Buratowski, 2009).  To identify proteins that bind 

methylated H3K4, an in vitro screen was performed to determine which PHD domain-

containing proteins bind to histone H3 peptides containing methylated K4 (Shi et al., 

2007).  This screen revealed several possible targets including Yng1, Pho23, Cti6, Jhd1, 

Spp1, and Set3 (Shi et al., 2007).  A similar in vitro screen with methylated Dam1K233 

peptides instead of methylated H3K4 peptides would be a strong strategy to identify 

Dam1K233me2 effector proteins. 

 

In 2004, the first lysine demethylase LSD1 was discovered (Shi et al., 2004).  Since then 

a number of demethylase have been discovered that remove methylation from a number 

of different lysines including H3K4 (Klose and Zhang, 2007).  It seems likely that 
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Dam1K233 is also demethylated; otherwise phosphorylation would be perpetually 

antagonized unless Dam1 was degraded.  With the exception of LSD1, all of the 

demethylases characterized to date contain the JmJC demethylase domain (Anand and 

Marmorstein, 2007).  In yeast, there are five proteins that contain the JmJC demethylase 

domain (Klose et al., 2006).  Both Jhd1 and Rph1 demethylate H3K36me while Jhd2 

demethylates H3K4 (Klose et al., 2007; Liang et al., 2007; Tsukada et al., 2006; Tu et al., 

2007).  All five of the JmJC containing proteins are available in the yeast deletion library.  

In whole cell extracts, I am unable to detect Dam1K233me2 due to the low abundance of 

Dam1.  I reasoned that if one of these five JmJC containing proteins demethylated 

Dam1K233, then I may be able to detect Dam1K233me2 in whole cell extracts due to the 

increased levels of methylation.  However, I was unable to detect Dam1K233me2 in any 

of the five deletion strains (data not shown).  It would be interesting to delete each of 

these demethylases in the HA-Dam1 strain background, and then immunoprecipitate HA-

Dam1 and immunoblot for Dam1K233 dimethylation to determine if methylation levels 

are elevated in any of deletion strains compared to wild-type. 

 

Factors required both for H3K4me and Dam1K233me are implicated in cancer 

A majority of the regulatory pathway for H3K4 and Dam1K233 methylation is 

disregulated in cancers.  Set1 itself is an ortholog of the MLL proteins whose 

translocations are hallmarks of certain leukemias (Tenney and Shilatifard, 2005).  In 

addition, another human ortholog of Set1, hSET1, is overexpressed in a variety of 

different cancer cell lines (Yadav et al., 2009).  Rad6 overexpression leads to 

chemoresistance and induces tumorigenesis (Lyakhovich and Shekhar, 2004; Shekhar et 
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al., 2002).  Bre1 has been implicated as both a tumor suppressor and an oncogene.  The 

Bre1 ortholog RNF20 is suggested to be a tumor suppressor mediated in part by its role in 

H2BK120 ubiquitination and transcription as depletion of human Bre1 increases cells 

oncogenic potential (Shema et al., 2008).  However, human Bre1 also polyubiquitinates 

the Ebp1 tumor suppressor leading to its degradation suggesting that an overall function 

for Bre1 in cancer is not yet clear (Liu et al., 2009).  Multiple members of the human 

Paf1 complex are overexpressed in many cancers and implicated in tumorigenesis 

(Chaudhary et al., 2007).  In addition, the human Paf1 complex promotes certain 

leukemias by interacting with MLL fusion proteins at HOX genes (Muntean et al., 2010).  

Finally, the human ortholog of Ubp8, USP22, is part of an eleven gene signature in 

malignant cancers that marks poor prognosis (Glinsky, 2006).  That many orthologs of 

the genes involved in the regulation of Set1 functions are also involved in tumorigenesis 

emphasizes the importance of understanding their functions both in transcription and 

other essential cellular processes such as chromosome segregation through regulation of 

Dam1 methylation. 

.  
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