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Abstract
Perceptual learning is a training induced improvement in performance. Mechanisms underlying the
perceptual learning of depth discrimination in dynamic random dot stereograms were examined by
assessing stereothresholds as a function of decorrelation. The inflection point of the decorrelation
function was defined as the level of decorrelation corresponding to  times the threshold when
decorrelation is 0%. In general, stereothresholds increased with increasing decorrelation. Following
training, stereothresholds and standard errors of measurement decreased systematically for all tested
decorrelation values. Post training decorrelation functions were reduced by a multiplicative constant
(approximately 5), exhibiting changes in stereothresholds without changes in the inflection points.
Disparity energy model simulations indicate that a post- training reduction in neuronal noise can
sufficiently account for the perceptual learning effects. In two subjects, learning effects were retained
over a period of six months, which may have application for training stereo deficient subjects.
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Introduction
Perceptual learning is an improvement in performance as a result of training (with feedback)
or practice (without feedback) (Chung, Legge, & Cheung, 2004; Fahle, 2005; Lu, Chu, Dosher,
Lee, 2005). Unlike sensitivity changes resulting from repetitive stimulation, such as
desensitization or habituation, perceptual learning tends to persist over months, and in some
cases, years (Fahle, 2005).

Perceptual learning has been shown to improve performance of visual tasks, including: Vernier
acuity (Saarinen & Levi, 1995; Fahle, 1997; Herzog & Fahle, 1997; Westheimer, 2001),
curvature acuity (Fahle,1997), resolution acuity (Westheimer, 2001), bisection acuity
(Westheimer, 2001), orientation discrimination (Karni & Sagi, 1993; Dosher & Lu,1999;
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Westheimer, 2001; Polat, Ma-Naim, Belkin, & Sagi, 2004), reading speed (Chung et al,
2004), letter recognition (Chung et al, 2004), motion discrimination (Liu & Weinshall, 2000),
contrast discrimination (Kuai, Zhang, Klein, Levi & Yu, 2005), motion-direction
discrimination (Kuai et al., 2005; Lu et. al., 2005), waveform discrimination (Fiorentini &
Berardi, 1980), feature detection (Ahissar & Hochstein, 1997), spatial phase discrimination
(Berardi & Fiorentini, 1987), position discrimination (Li, Levi,& Klein, 2004; Li, Young,
Hoenig, & Levi, 2005) depth perception in random dot stereograms (Ramachandran and
Braddick, 1973; Ramachandran, 1976; Fendick & Westheimer, 1983; O’Toole and Kersten,
1992; Kumar & Glaser, 1993; Sowden, Davies, Rose, & Kaye, 1996; Skrandies & Jedynak,
1999), and figure perception in random dot stereograms (O’Toole and Kersten, 1992).

Random dot stereograms (RDS), popularized as a research tool by Julesz in 1960 (Howard &
Rogers, 2002), are a type of stimulus that has been used for human and primate stereopsis
experiments (e.g. Julesz, 1960; Walraven, 1975; Harwerth & Boltz, 1979; Schor, 1991;
Ohzawa, 1998; DeAngelis, 2000), with properties that are well suited for studies of perceptual
learning (e.g. O’Tolle & Kersten, 1992; Watanabe, Nanez, & Sasaki, 2001; Schmitt et al.,
2002). The perception of depth in RDS arises by binocular combination of the monocular half
views (O’Toole & Kersten, 1992). It has been suggested that learning plays an important role
in the perception of depth in RDS because the time to perceive depth in RDS reduces with
repeated observation (Ramachandran & Braddick, 1973; Saye & Frisby, 1975; Fendick &
Westheimer, 1983; O’Toole & Kersten, 1992; Sowden et al, 1996; Skrandies & Jedynak,
1999). While many studies have addressed the perceptual learning of RDS in terms of features
that are learned and/or transferred, to our knowledge, none have addressed the mechanisms
that underlie the perceptual learning of RDS. This study was undertaken to investigate the
mechanisms underlying the perceptual learning of depth discrimination in RDS.

Perceptual learning of RDS has been shown to be specific to retinal location (O’Toole &
Kersten, 1992; Sowden et al, 1996). Since perceptual learning that is specific to retinal location
and stimulus type is suggested to stem from plasticity changes in the neurons underlying the
response (Karni & Sagi, 1993; Dosher & Lu, 1999), it is possible that learning of RDS depth
discrimination is also spatially localized and stimulus dependent.

Changes in depth discrimination performance could occur as a result of changes in various
internal noise sources including random neural firing rates, correspondence noise caused by
imprecise combination of neural signals, signal transmission noise and noise in decision
making processes. Alternatively, changes in depth discrimination performance may occur due
to changes in the strength of the internal encoded relative disparity signal. This possibility is
particularly relevant in cases where the binocular stimulus contains a disparity signal along
with external noise. Lastly, the changes as a result of perceptual learning may alter the noise
as well as the relative disparity signal in the disparity processing system. In this paper, we have
used the disparity energy model (Ohzawa, 1998; Qian and Zhu, 1997; Patel, et al., 2003,
2006) to understand the neural substrate of the perceptual learning in RDS depth discrimination.
Specifically, we sought to establish conditions within the model that are sufficient to explain
the empirical data presented in this paper.

Interocular correlation in RDS describes the degree in which the elements of each monocular
half view match each other (Cormack, Stevenson & Schor; 1991). 100% interocular correlation
indicates that every element in one half-view is paired with a matched element in a
corresponding location of the other half-view. When the half-views are generated to produce
many unmatched elements, the interocular correlation is low. The unmatched elements of the
RDS weaken the stimulus signal by reducing the number of elements in the stereoscopic depth
plane, by adding noise to the disparity response mechanism, and by masking the disparity
defined depth with ambiguous depth stimuli. Therefore, interocular correlation provides an
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ideal measure of signal strength for the sensory fusion of the two half views (Cormack et al,
1991).

This study measured the depth discrimination of RDS as a function of decorrelation strength
before and after training. In the stimulus used for this study, correlation is defined as the
proportion of elements of RDS that were forced to match in the two half views. The remaining
unforced elements were paired randomly to be either matched (e.g. whiteLE <-> whiteRE), anti-
matched (e.g. whiteLE<->blackRE) or unmatched (e.g. whiteLE<->grayRE). Similarly,
decorrelation is defined as the proportion of unforced elements of RDS which are randomly
paired. Pre- and post- training functions were compared to determine the magnitude of
perceptual learning. Quantitative analyses were performed on the pre- and post- training
functions to understand the mechanism underlying perceptual learning of RDS depth
discrimination. In addition, the disparity energy model (Ohzawa, 1998; Qian and Zhu, 1997;
Patel, et al., 2003, 2006) was simulated to determine the neural mechanisms which would be
sufficient to qualitatively explain the empirical data. On two subjects, post training tests were
run after a period of six months to determine the long term retention of perceptual learning of
RDS depth discrimination. Our results show a substantial reduction in stereothresholds as a
result of the training.. In most cases, the post training stereothresholds were a constant factor
lower than pre- training strereothesholds for all decorrelation levels. The disparity energy
model indicates that a reduction in firing rate noise in all the neurons in the model is sufficient
to account for the empirical results.

Methods
Subjects

Seven healthy subjects, ages 20 to 36 years of age, inexperienced with RDS stimuli, were
recruited. All subjects had at least 40 arcsec stereopsis as measured with a Titmus stereo test
(Titmus Optical Comapny Inc.; Petersburg, VA) in two directions (crossed and uncrossed).
The research adhered to the tenets of the Declaration of Helsinki, and the experimental protocol
was reviewed and approved by the University of Houston’s Committee for the Protection of
Human Subjects. Informed consent was obtained from the subjects and they received
remuneration for their participation.

Apparatus and Visual Stimuli
The visual stimuli, generated using a VSG 2/3 graphics board (Cambridge Research Systems;
U.K.), consisted of two vertically separated and horizontally aligned 13 × 5 arcdeg dynamic
RDS, with a 0.022 arcdeg separation. The RDS consisted of 6.7 arcmin X 6.7 arcmin elements,
and different random-dot patterns presented on successive views at 60 Hz. Each element may
be black, white or gray. In each RDS pattern, half of the elements were gray and the remaining
elements were black and white with equal probability (i.e. 50% dot density). The stimulus was
viewed through a liquid crystal optical shutter system that was synchronized with the monitor
frame rate of 120 Hz.

The upper RDS served as a zero disparity reference of 0% decorrelation, while the lower RDS
served as the test, of varying disparities. The task of the subjects was to discriminate whether
the bottom half of the RDS was closer or farther, with respect to the top reference stimulus.

For 0% decorrelation, each element in one half-view was forced to have a corresponding
matched element in the other half-view in every frame of the dynamic presentation. For 100%
decorrelation, all elements were randomly paired in the two half-views in each frame of the
dynamic stimulus. Horizontal disparities were introduced by displacing a portion of the
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elements in one half image with respect to the other (see Harwerth & Fredenberg, 2003 for
details).

Each session consisted of 200 trials. An auditory cue indicated the beginning of each trial, and
a subject-mediated button press initiated a 500 msec stimulus presentation. During the response
interval (1000 msec) that followed, subjects could either continue to press the button, to indicate
that the bottom test was “far” relative to the zero disparity top reference, or release the button
to indicate that the bottom test was “near” relative to the zero disparity top reference. A high
frequency tone provided audio feedback for correct responses. Depending on the performance
level, some subjects had five disparity magnitudes, presented as both “far” and “near” in each
block of trials, and some had three. Generally, as subjects improved, the number of disparity
magnitudes in each block of trials was reduced to three. The disparity range tested on each
block of trials was monitored and adjusted relative to the subject’s individual improvement.
The decorrelation varied on pre- or post-training trials, and was fixed at 0% during the training
sessions.

Design
Subjects completed a pre-training task consisting of five sessions of varying decorrelations,
ranging between 0% to 80%, in 20% steps. The pre- training task was followed by training
sessions of 0% decorrelation, until there was no further improvement in thresholds. In general,
each training session consisted of 5 blocks of 200 trials. However, in the last training session,
when thresholds were nearing asymptotic values, fewer blocks of 200 trials were required. The
number of training trials varied individually, and ranged between 6600 and 11200 trials, with
a mean of 9286 trials. Upon completion of the training, subjects completed a post- training
trial, identical to the pre- training trial.

Data Analysis
For each session, a psychometric function (figure 1) for depth discrimination was derived from
the percentage of near responses as a function of disparity. Uncrossed disparities were
arbitrarily assigned negative values for the purpose of constructing psychometric functions.
Therefore, ideally, the psychometric function varied from zero near responses for the largest
uncrossed disparities, to 100% near responses for the largest crossed disparities. Each set of
data was fit with a logistic function (Simpson, 1995;Berksen, 1972) to determine the
stereothreshold, taken as the semi-intraquartile range of the psychometric function (Fahle,
2005;Harwerth et al, 2003;Harwerth et al, 1997;Simpson, 1995).

Pre- and post-training stereothresholds (in arcmin) were plotted as a function of decorrelation
on a log-log axes, and fit with the following equation:

(1)

where y is the stereothreshold for a given decorrelation, x is the decorrelation, z represents the
rate of degradation of the stereovision system as a function of decorrelation, a represents the
minimum noise in the stereovision system, and b represents the resistance of the stereovision
system to decorrelation. This form of the equation was chosen to satisfy the condition that the
stereotheshold approaches infinity as decorrelation tends to 100%. An inflection point was
defined (arbitrarily) as the decorrelation level which yields a threshold that is  times higher
than the threshold for 0% decorrelation.

A repeated measures ANOVA was performed to examine the effects of training on
stereothresholds before and after the training for all decorrelations, and to test if the pattern of
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differences between thresholds for the pre- and post- training change with decorrelation (i.e.
if the curves maintain the same shape before and after training).

A paired Student’s T-Test was performed to compare the pre-training and post training
inflection points. Confidence intervals for the inflection points were calculated using a custom
MATLAB (The MathWorks, Natick, MA) program. The program randomly selected a
threshold for each decorrelation condition from the distribution of thresholds and their
respective standard errors. Equation 1 was fitted to each set of randomly selected thresholds.
Only fits with a correlation coefficient greater than 0.8 were selected. For each fitted data set,
the inflection point was calculated from the fitted parameters. This procedure was repeated
1000 times, and the 95% confidence intervals of the 1000 calculated inflection points were
determined.

Results
Figure 2 presents the learning curves of the subjects. All subjects showed a marked
improvement (decreased by a factor of two or more) in stereothresholds with increasing training
trials, and a decrease in the standard error of the stereothreshold measure. In other words,
subjects demonstrated a consistent reduction in stereothreshold with practice.

Pre- and post- training functions relating stereothreshold to decorrelation (called decorrelation
functions hereafter) for all subjects are shown in figure 3. It is clear by visual inspection of the
data, that the post- learning curves are shifted downward with respect to the pre-learning curves,
without a change in the shape of the curves. A two-way repeated measures ANOVA1 confirmed
this observation. As seen in figure 4b, log stereothresholds reduced after training and the main
effect of training was significant (F(df = 1,5) = 35.92 Huynh-Feldt corrected P= 0.002). There
was no evidence of interaction between session (pre- vs. post-) and decorrelation Huynh-Feldt
corrected P=0.87). Post- hoc (F(df=4,20)=0.24, comparisons of the logarithms of the pre- training
to post- training stereothreshold for each decorrelation, with the alpha level maintained at 0.05,
and Huynh-Feldt corrections, also demonstrated a significant decrease in the log
stereothreshold after training (0%: F(df=1)=27.32; P=0.0002, 20%: F(df=1) = 16.56; P=0.002,
40%: F(df=1) =16.96; P=0.002, 60%: F(df=1) =23.34; P=0.0005, 80%: F(df=1) =20.38;
P=0.0008).

Due to the fact that the previous repeated measures ANOVA did not include all seven subjects,
another repeated measures ANOVA was performed on all seven subjects for all but the 80%
decorrelation condition. These results were similar to the results of the ANOVA that included
six subjects for all decorrelation conditions. These results imply that the training at 0%
decorrelation transferred to all decorrelation values.

The inflection point of the curve, the point at which the stereovision system loses its resistance
to decorrelation, was determined arbitrarily by calculating the decorrelation which yielded a
factor of  increase in stereothreshold. The logarithms of the pre- and post-training inflection
points, as shown in figure 4b, were not different (Student’s paired T-Test t(df = 6) = 0.655; p =
0.537), suggesting that there was no evidence of a change in the stereovision system’s resistance
to decorrelation as a result of training.

To examine the long term retention of perceptual learning of RDS depth discrimination, two
subjects were retested using the post training paradigm six months after the completion of their
training. These six month retention data are marked with inverted triangles in figure 3, for

1The ANOVA included six (out of seven) subjects. Subject KC was excluded due to a partial pre-training data set. KC completed the
0%-60% decorrelation conditions, but not the 80% decorrelation condition, due to time constraints.
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subjects KC and MW. Both subjects retained their post training threshold over a period of six
months.

Discussion
It has been suggested that perceptual learning plays a role in the perception of depth in RDS
because the time to perceive depth in RDS reduces with repeated observation (O’Toole &
Kersten, 1992). This study was undertaken to determine the mechanisms underlying the
perceptual learning of stereoscopic depth discrimination. Our results demonstrated a large
change in the stereothreshold across decorrelation values, without a significant change in the
stereovision system’s resistance to decorrelation. In order to understand the neural mechanism
underlying the observed changes in stereothresholds, we used the disparity energy model
(Ohzawa, 1998; Qian and Zhu, 1997; Patel, et al., 2003, 2006) to generate simulated responses
to stimuli with varying levels of decorrelation.

Simulations of disparity energy model
The disparity energy model described in Patel, Bedell and Sampat (2006) was utilized here.
There were two modifications made to the model. A noise source not utilized in previous
models (Patel, et al., 2006) was added to account for the resistance of the stereovision system
to low levels of decorrelation. This noise source was added in the form of a spatial jitter when
simple cell signals are combined by the complex cells. In other words, a complex cell at a
spatial location (i, j) receives signals from simple cells at spatial locations (i±m1, j±n1) and (i
±m2, j±n2), where m1, m2, n1 and n2 are random numbers. This type of noise is similar to the
temporal jitter proposed to account for elevation of Vernier thresholds of moving stimuli
(Bedell, Chung and Patel, 2000). In addition, to reduce the simulation time, the receptive fields
of monocular cells were one-dimensional horizontal versions of those used in Patel et al.,
2006. Thus the monocular cells in the model used in this paper are isotropic as described by
Qian and Zhu (1997). The details of simulation are available in the appendix.

The simulation results are shown in figure 5. In each panel, the model’s response is plotted as
a function of decorrelation for different levels of neuronal noise represented by the noise
multiplier α. Panels a, b, c, and d represent the signal, noise, inverse of signal to noise ratio (1/
d′) and model fits to experimental data respectively. We assume that the psychophysical
threshold is inversely related to the d′ and thus in figure 5d, we compare the average thresholds
across observers computed from data in figure 3 to the scaled versions of the curves shown in
figure 5c. As can be seen in figure 5d, the model simulates the decorrelation function reasonably
well. In addition, the downward vertical shift of the decorrelation function as a result of training
can also be explained quantitatively by a reduction in neuronal noise in the model. The model’s
noise multiplier parameter α was reduced from 0.02 to 0.005 to fit the pre- and post-training
data respectively. We also found that systematic vertical shifts of the decorrelation function
could not be obtained by any reasonable manipulations of neuronal tuning in the model. One
point to be noted from these simulation results is that a change in neuronal noise not only
changes the noise in the disparity representation but it also changes the relative disparity signal.
In other words, the mean and variance of the stochastic relative disparity signal are not always
independent. Another point to be noted is that a multiplicative change in decorrelation function
can be achieved by changes in additive neuronal noise. This occurs primarily due to the non-
linear processing of complex cells in the model.

Relationship to other models of perceptual learning
In our study, the training stimuli comprised of 0% decorrelation of varying disparities. The
pre- and post- training sessions included the same disparity range as the training condition, and
only varied in the decorrelation. The fact that the improvement in stereothresholds at 0%
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decorrelation transferred to more specific and difficult conditions, comprised of higher
decorrelation, is consistent with other general models of perceptual learning (Ahissar &
Hochstein 1997, 2004; Liu & Weinshall, 2000). Based on the modeling results, it is possible
that the training caused a reduction in noise in the neurons involved in disparity processing. It
is premature to make any specific conclusions about where and what caused the perceptual
learning of RDS depth discrimination, but we can say that a reduction of noise in early disparity
processing is sufficient to account for the data presented here. There are other general learning
mechanisms (Saarinen & Levi,1995; Dosher & Lu, 2001; Dosher & Lu, 2005; Lu et. al.,
2005) that could operate beyond the early disparity processing stages and these mechanisms
may also contribute to the learning phenomenon reported here. A final possibility that cannot
be excluded based on the results of this study, is that the improvement in depth discrimination
is partly due to a general cognitive improvement in the ability to perform the task.

Karni & Sagi (1993) reported a 22 month and 32 month retention of performance in their
discrimination task. The post- learning session in this study was retested in two subjects six
months after they completed the study to examine the long term retention of learning. Both
subjects showed remarkable six month retention of the learning. This long lasting learning
phenomenon may be utilized to improve stereopsis in stereo deficient observers.

In summary, perceptual learning of depth discrimination of random dot stereograms is an
adjustment within the brain which lasts at least six months. This learning does not alter the
resistance of the stereovision system to decorrelation in the stimulus but rather improves
sensitivity uniformly across the entire range of decorrelation levels. Simulations of the disparity
energy model suggest that a reduction in the firing rate noise in the early disparity processing
neurons is sufficient to account for the empirical data.
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Appendix

Disparity energy model
The basic architecture of the model is similar to the phase disparity model that is described in
Patel et al. (2006). There were two modifications made to the previous model. In the previously
described model, the monocular neurons were orientation tuned. In the model used here, the
monocular neurons had one-dimensional horizontal receptive fields and were thus isotropic
(Qian & Zhu, 1997). This modification was done to reduce the simulation time and should not
substantially affect the generality of the results. In the previously described model, the simple
cells and complex cells were in complete spatial registration, meaning that a complex cell at
(i, j) spatial location receives signals from simple cells at (i, j) spatial location. In the model
used here, a uniform random spatial jitter was introduced when signals from simple cells were
combined by a complex cell. In other words, a complex cell at (i, j) spatial location receives
signals from simple cells at (i±m1, j±n1) and (i±m2, j±n2) spatial locations where m1, n1, m2
and n2 are uniformly distributed random numbers between −8 and 8. This noise source was
added to the model to provide resistance to low levels of decorrelation.

Stimulus used for simulations
Each binocular stimulus consisted of a pair of images (Il and Ir) of 100×100 pixels. The size
of a pixel was 2 arc-min. A pair of binary random-dot images called the seed images (Sl and
Sr) were created first to yield a desired level of decorrelation. The desired level of decorrelation
was set by randomly mismatching a percentage of dots in the two images. In other words, 100
% decorrelation was set by having 50% of the dots matched and 50% of the dots anti-matched.
In order to specify a horizontal stimulus disparity of 0.2 arc-min, which is smaller than the size
of a pixel, we used a simple weighting technique as given below:
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(a1)

where, Shift(Sl,1) horizontally and circularly shiftl by 1 pixel. For convension purposes, assume
that a shift of 1 (−1) pixel generates 2 arc-min crossed (uncrossed) disparity. We verified that
for 0% decorrelation and in the absence of internal neuronal noise, the disparity energy model
responds to this sub-pixel disparity stimulus with reasonable accuracy. In addition we also ran
simulations with a stimulus that had a 1 pixel disparity, i.e. with Il = Shift(Sl,1) and = Ir = Sr,
and found that the results were qualitatively similar to those with sub-pixel disparity stimulus.

Simulation procedure
The simulations were run for various levels of decorrelation and neuronal noise multiplier α.
All simulations were run for crossed as well as uncrossed stimulus disparity. For each value
of decorrelation and α, the disparity energy model was run 120 times. A different set of images
(Il and Ir) was used for each run. For each disparity energy model run, the smoothed disparity
map produced by the model was analyzed. The mean and standard-deviation of the disparity
values in the map were computed and saved for later analysis.

Analysis of simulation data
For each value of decorrelation and α, three summary variables were computed by analyzing
the mean and standard-deviation vectors of crossed (μ̂ c,σ ̂ c) and uncrossed (μ̂ u,σ ̂ u) disparities.
Each vector had 120 elements. The summary variables computed are as below:

(a2)

(a3)

(a4)

where, mean is the arithmetic averaging function. The division operator in equation a4
represents an element by element division. Signal, Noise and 1/d′ are plotted in figure 5a, b, c,
and d respectively.
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Figure 1.
Psychometric functions for performance on different sessions for subject MK demonstrate a
systematic improvement with training. Slopes of the psychometric functions become steeper
over a lower disparity range. The inset describes the amount of practice trials prior to obtaining
the psychometric function, the threshold and standard error of the threshold measurement in
units of arcminutes obtained from the psychometric function.
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Figure 2.
Learning curves for all subjects, stereothreshold in units of arc minutes as a function of number
of trials. Error bars represent standard errors of the threshold measurement of the first few
training sessions and the last training session. Each data point represents a threshold obtained
from 200 trials.
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Figure 3.
Stereothresholds pre- and post- training are plotted as a function of decorrelation for each
observer. The leftmost data point represents 0% decorrelation. Filled symbols represent the
pre-training data, unfilled circles the post-training data, and triangles the six month data. See
text for detailed explanation.
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Figure 4.
(a) Pre-training (filled circles) and post-training (unfilled circles) stereothresholds for the 0%
decorrelation condition are plotted for each subject. For all subjects, the post-training
stereothresholds are lower than the pre-training stereothresholds. (b) Pre-training (filled
circles) and post-training (unfilled circles) inflection points are plotted for each subject. The
inflection points were calculated based on the fits of equation 1, as the decorrelation yielding
a threshold that is  times higher than the stereothreshold for 0% decorrelation. The pre- and
post- training inflection points were compared using a Student’s paired T-Test, and were not
significantly different.
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Figure 5.
Simulation results of the disparity energy model. (a) The signal present in the model’s output
(disparity map) as a function of decorrelation in the stimulus. The dotted horizontal line
represents the disparity in the stimulus. Each curve in the panel corresponds to the internal
neuronal noise multiplier α (diamond=0.001, triangle=0.01, circle=0.02, square=0.04). A
larger value of α corresponds to higher firing rate noise in all the model neurons. (b) The noise
present in the model’s output as a function of decorrelation in the stimulus for various values
of α (same symbol notation as in the top panel). (c) The inverse of the ratio of plot a (signal)
to plot b (noise) and is termed 1/d′. Details about the calculations of signal, noise and d′ are
available in the appendix. (d) The stereothresholds averaged across all observers in the pre-
(black squares) and post-training (gray triangles) conditions. The superimposed curves are
scaled versions of the curves shown in (c). For the pre-training model curve, α is 0.02 and for
post-training model curve, α is 0.005. The raw simulation results in (c) were multiplied by 0.25
to obtain the shown curves.
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