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Abstract
BACKGROUND—Meningomyelocele (MM) results from lack of closure of the neural tube
during embryologic development. Periconceptional folic acid supplementation is a modifier of
MM risk in humans, leading to an interest in the folate transport genes as potential candidates for
association to MM.

METHODS—This study used the SNPlex Genotyping (ABI, Foster City, CA) platform to
genotype 20 single polymorphic variants across the folate receptor genes (FOLR1, FOLR2,
FOLR3) and the folate carrier gene (SLC19A1) to assess their association to MM. The study
population included 329 trio and 281 duo families. Only cases with MM were included. Genetic
association was assessed using the transmission disequilibrium test in PLINK.

RESULTS—A variant in the FOLR2 gene (rs13908), three linked variants in the FOLR3 gene
(rs7925545, rs7926875, rs7926987), and two variants in the SLC19A1 gene (rs1888530 and
rs3788200) were statistically significant for association to MM in our population.

CONCLUSION—This study involved the analyses of selected single nucleotide polymorphisms
across the folate receptor genes and the folate carrier gene in a large population sample. It
provided evidence that the rare alleles of specific single nucleotide polymorphisms within these
genes appear to be statistically significant for association to MM in the patient population that was
tested.
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INTRODUCTION
Neural tube defects (NTDs) are common malformations of the brain and spinal cord, and
they include all abnormalities resulting from lack of closure of the developing neural tube
during embryologic development. The causes of human neural tube defects are largely
unknown, but are almost certainly multifactorial, consisting of both genetic and
environmental components (Finnell et al., 2000; Cabrera et al., 2004; Detrait et al., 2005;
Beaudin and Stover 2009). No single major gene has been implicated in the etiology of these
disorders across all populations studied to date. It seems likely that NTDs involve multiple
variants across a single gene or variant effects across a number of genes. Furthermore, the
variants and genes may differ between ethnic groups. Previously, definitive results have
been hampered by the lack of reproducibility of the association studies implicating certain
genes (Hirschhorn et al., 2002; Beaudin and Stover 2009; Greene et al., 2009; Copp and
Greene 2010). Linkage studies have yielded some interesting results (Rampersaud et al.,
2005). In addition, animal models have proved to be a useful tool to gain some insight into
the molecular processes of neural tube formation and closure. In clinical severity, NTDs
range from mild forms (e.g., spina bifida occulta) that often do not require surgical
intervention to lethal forms such as anencephaly (Botto et al., 1999).

Meningomyelocele (MM) is the most severe form of spina bifida that is compatible with
survival. In an MM, both the meninges and the spinal cord protrude through a gap in the
vertebral column, and the lesion is not covered by the skin. Although these defects can occur
at any point along the developing neural tube, lumbosacral lesions are the most common
(Hunter et al., 1996). As a result of current surgical and medical interventions, most children
born with MM in the United States survive, although in the first year of life the mortality
risk of these infants is greater than in the general population. Despite these interventions,
children born with an MM almost invariably have profound, life-long disabilities (Detrait et
al., 2005).

It is known that maternal folate status is a modifier of NTD risk (Botto et al., 2005). These
findings make the folate metabolic pathway genes potential candidate genes for association
to meningomyelocele. The folate transport genes are involved in the transport and
maintenance of intracellular levels of folate. FOLR1 and FOLR2 are glycosyl
phosphatidylinositol (GPI)-anchored proteins that facilitate unidirectional transport of
folates (Verma et al., 1992; Henderson et al., 1995), whereas FOLR3 codes for a secreted
form of the receptor protein (Shen et al., 1995). SLC19A1 is a cell surface transmembrane
protein that participates in bidirectional movement of folate across the membrane (Matherly
et al., 2007; Hou and Matherly, 2009). Because of the role that these proteins play in the
maintenance of critical levels of intracellular folate, it is logical to hypothesize that
functional variants within these genes are associated with MM. In fact, it has been found that
polymorphisms in the SLC19A1 gene, such as the A80G variant, appear to confer
susceptibility to MM risk in some populations (Shang et al., 2008; Pei et al., 2009).
Furthermore, the knockout mouse models of the FOLR1 and SLC19A1 genes result in
embryonic lethality. Failure of neural tube closure is one of the abnormal morphologic
findings in the null embryos (Peidrahita et al., 1999; Gelineau-van Waes et al., 2008). This
finding provides more compelling evidence that these genes play a role in neural tube
closure and thereby potentially in MM risk.

The FOLR1 receptors are expressed on the microvillus plasma membrane of the placenta
where, in combination with the proton-coupled high affinity folate transporters (PCFT),
appear to be responsible for the internalization and cytoplasmic release of folate (Solanky et
al., 2010). In contrast, the reduced folate carrier (SLC19A1), a bidirectional transporter of
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primarily reduced folates, is expressed on both the microvillus plasma membrane and the
basolateral plasma membrane of the placenta (Solanky et al., 2010).

The present study focused on the folate transporter genes as candidates for association to
MM. The rationale for choosing these genes was based on epidemiologic studies, genetic
association studies by other groups, biologic function of candidate genes, and animal models
(MRC Vitamin Study Research Group, 1991; Czeizel and Dudas, 1992; Piedrahita et al.,
1999; Williams et al., 2002; De Marco et al., 2003; Zhu et al., 2007; Shang et al., 2008; Pei
et al., 2009).

MATERIALS AND METHODS
Study Population

The majority of the MM cohort tested in the study consists of Caucasians of European
descent and Hispanics of Mexican descent in the United States (Table 1). The MM probands
and their parents were enrolled after obtaining informed consent. The patient cohort was
recruited primarily from five different sites: Houston, Texas; the Texas-Mexico border area;
Lexington, Kentucky; Los Angeles, California; and Toronto, Ontario, Canada. Recruitment
took place during clinical visits, hospitalizations, or at parent meetings. The probands were
born between 1955 and 2008 (Au et al., 2008), and the ages at enrollment ranged from 6
months to adulthood. The criteria for inclusion were based on whether an individual had an
MM or was related to an affected individual. The exclusion criteria were the presence of
spina bifida that was not associated with an MM or a syndromic form of spina bifida. No
individual was excluded on the basis of race or sex. In the study, 329 affected child-parent
trios and 281 affected child-parent duos were tested. The level of defect was determined by
the review of medical records and also, in the case of some of the affected individuals, by
the review of radiographs. Maternal health history, pregnancy history, maternal exposures,
and sociodemographic information were obtained from the parents of the affected children.
Information about vitamin supplementation was not obtained, but a study (food frequency
questionnaire) is now underway that includes this information. Because family association
studies, specifically transmission disequilibrium test (TDT) analyses, were used as the
primary statistical tool, the family trios (consisting of the father, mother, and affected child)
were the most important component of the population for the study. The project was
approved by the Institutional Review Board of the University of Texas Health Science
Center at Houston.

A total of 92 anonymous Hispanic subjects with no personal or family history of NTDs were
enrolled in the Houston area to obtain appropriate Hispanic control sample frequencies for
the tested single nucleotide polymorphisms (SNPs). To obtain SNP frequencies for
Caucasian Americans, a Caucasian control DNA panel (HD100CAU) was purchased from
the Coriell Institute (Camden, NJ). DNA samples from 30 Caucasian families used in the
HapMap project (http://www.hapmap.org) were included in the genotyping as a quality
control measure for genotype calls.

DNA Genotyping
A blood sample was obtained from the proband and both parents when available. Genomic
DNA was extracted from the pelleted white blood cells using the Puregene DNA
Purification Kit (Gentra Systems, Minneapolis, MN). The Oragene DNA Preparation Kit
(DNA Genotek, Ontario, Canada) was used to prepare DNA from saliva samples when a
blood sample could not be obtained.

DNA samples for 610 affected members and 939 parents of the MM population, 90
HD100Cau, and 92 Hispanic controls were genotyped for the selected SNPs. DNA samples
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from 82 individuals from 15 CEU families were also included. The genotypes of many of
these individuals are available in the HapMap project, providing an internal quality control
for the genotyping assay.

The testing interrogated SNPs in the folate transport genes. As mentioned previously, these
genes are integral players in the delivery and transport of folate and are therefore considered
to be good candidate genes for affecting MM formation. In the design of the SNPset, both
tag and non-tag SNPs were included to increase coverage (Table 2). The folate receptor
genes FOLR1, FOLR2, and FOLR3 map to human chromosome 11q13.4, and the genomic
DNA sizes are 6.74 kb, 5.15 kb, and 4.16 kb, respectively. The reduced folate carrier
SLC19A1 gene is located on 21q22.3 and is 27.72 kb in size. When possible, SNPs with a
minimum heterozygosity of 5%, as reported in the HapMap CEU population, were chosen.
The databases that were used for SNPset design were: http://www.ncbi.nlm.nih.gov,
http://genome.ucsc.edu, http://www.hapmap.org, http://www.genecards.org, and
http://snp.wustl.edu.

The genotyping platform used was the SNPlex Genotyping System (Applied Biosystems,
Foster City, CA). Based on the SNP sequences submitted, Applied Biosystems designed
allele SNP-specific probes for each SNP. The SNPs were submitted as standard SNP
Identifiers (SNP IDs) from the common available databases. Based on compatibility of
probes representing each SNP, ABI assembled the most compatible SNPs into a SNPSet.
The SNPlex platform uses the ligation of these allele-specific probes for each SNP that
hybridized to the patient genomic DNA SNP loci, followed by multiplex PCR amplification.
The design strategy enables allelic discrimination of SNPs at specific positions in the human
genome (Martinez et al., 2009; Shaw et al., 2009). A 5-µl (200 ng) aliquot of genomic DNA
was used per reaction, and the standard SNPlex genotyping protocol was used. The
subsequent electrophoresis of the SNP probes was performed on the ABI 3730xl DNA
analyzer, and genotype calls were made using GeneMapper v4.0.

Data Analyses
Our SNP selection approach yielded 48 potential SNPs, but only 20 SNPs across the four
folate transport genes (FOLR1, FOLR2, FOLR3, SLC19A1) met all the criteria to be
submitted for statistical analyses (Table 2). Sixteen of the 28 excluded SNPs had clustering
errors, four had Mendelian inconsistencies, six were of Hardy Weinberg Equilibrium
(HWE), and two did not reach the acceptable (≥90%) genotype concordance call rate with
the internal CEU (U.S. residents with northern and western European ancestry collected by
the Centre d’Etude du Polymorphisme Humain) controls when the data were available on
HapMap (http://hapmap.ncbi.nlm.nih.gov/)

To minimize the effect of missing genotypes on the subsequent association study, only the
SNPs that reached an acceptable genotype call rate of ≥90% were considered for statistical
analyses. Prior to association analyses, all family units were tested for the presence of
Mendelian errors. To control for genotype call error, an SNP was re-examined if 10 families
or more (i.e., >10/610 or >1.64%) displayed Mendelian errors. If an SNP did not pass on the
first quality control test, it was re-examined to make a second genotype call for an additional
quality control test. If it again failed to meet the quality control criteria, it was removed from
the association study. HWE was determined based on 237 controls by ethnicity. Therefore,
different ethnic groups were not pooled, and it could be determined that the successful SNPs
did not deviate from HWE (p < 0.05). The final data analyses involved family-based studies
of genetic association, notably the TDT using the TDT component of the PLINK v1.07
(http://pngu.mgh.harvard.edu/purcell/plink/) whole genome association analysis toolset
(Purcell et al., 2007). Our MM patient cohort consists of a number of duo (family unit
consisting of either the mother and affected child or the father and affected child). In these
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cases, the unit is usually missing the father (Martinez et al., 2009). To increase the power in
the study, it is important to use as many of the cases as possible. The PLINK algorithm uses
the duo families and allows for the missing parents. Furthermore, this analytical method
generates counts for transmitted and nontransmitted alleles.

RESULTS
The allele frequencies of the 20 SNPs that passed all quality control criteria are listed in
Table 3. A total of 10 SNPs demonstrated significant association with MM risk in this study
(Table 4).

One SNP in the FOLR1 gene showed significant association with MM. The FOLR1 SNP
rs35179028 is a synonymous coding SNP (p.V132V) with a low minor allele frequency
(Table 3). The positive result, therefore, has to be interpreted with caution (Table 4).

Two SNPs (rs35982790) and (rs13908) in FOLR2 showed significant association with MM.
The intronic SNP rs35982790 has a low minor allele frequency (Table 3), and again the
association has to be interpreted with caution (Table 4).

The three significant SNPs—notably rs7925545, rs7926987, and rs7926875 in the FOLR3
gene—are tightly linked in the CEU population (http://www.HapMap.org) (The
International HapMap Consortium, 2007) and have TDT p values of 3.85E−04, 1.96E−02,
1.84E−02 respectively (Table 4). The rs7925545 SNP lies in the 5′ region close to the gene,
whereas the rs7926987 and rs7926875 variants lie within intron 2. The FOLR3 synonymous
coding SNPs rs508088 and rs34970007 are significant, but both SNPs have low minor allele
frequencies (Table 3).

Finally, two SNPs (rs1888530 and rs3788200) in SLC19A1 showed significant association
with MM. The rs3788200 is located in intron 2 (TDT p value, 1.95E−02). The rs1888530
variant that was significantly associated with MM in the study is located in intron 5 of the
SLC19A1 gene (TDT p value, 7.28E−05; Table 4).

DISCUSSION
In our study, a number of SNP variants in the folate receptor genes and the folate carrier
gene showed preferential transmission from parent to offspring and are associated with MM
in the population tested.

The folate receptor 2 gene (FOLR2) is located on chromosome 11 and is 5.2 kb in size; it
consists of five exons and four introns. The variant found in the gene (rs13908) is a
nonsynonymous SNP (A → G) located in exon 2 and is the most interesting SNP studied,
because of potential functional significance. The variant results in a missense mutation with
the lysine (AAG) at this position substituted for a glutamic acid (GAG). The Lys at position
35 is conserved in a multiple species alignment (http://genome.ucsc.edu/) (Kuhn et al.,
2007). The amino acid is also conserved among all three folate receptors (FOLR1, FOLR2,
FOLR3), again indicating potential functional significance (Fig. 1). The conserved Lys is at
amino acid position 35 in the FOLR2 protein and is found as part of a conserved motif
consisting of [Lys]-[His]-[His]-[Lys]. The function of this motif is currently unknown, but
FOLR2 is a GPI-anchored protein that binds, internalizes, and unloads 5-
methyltetrahydrofolate and other folate derivatives to the interior of the cell. The receptor
then has to recycle back to the cell surface for an additional round of ligand binding. The
variant is not located in the GPI site (Yan and Ratnam, 1995); however, if the motif is
involved in any other critical processes and the amino acid substitution (Lys→Glu) disrupts
the process, it could potentially lead to decreased levels of intracellular folate during critical
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periods of embryonic development. It would be useful to further validate the association by
replicating the finding in an independent MM population.

The FOLR1 and FOLR2 receptors are membrane-associated, GPI-anchored receptors
(Lacey et al., 1989; Yan and Ratnam, 1995). The FOLR3 receptor, in contrast, is a
constitutively secreted form of the folate receptor (Shen et al., 1995). Little has been
published about the FOLR3 protein, and there is limited information regarding the role of
the FOLR3 receptor in folate transport. The gene is located on chromosome 11 and is
approximately 4.2 kb in size. It consists of five exons and four introns. Three SNPs within
the FOLR3 gene (rs7925545, rs7926987, and rs7926875), showed statistically significant
TDT values. In addition, each of the SNPs had an acceptable genotype concordance call rate
with the internal CEU controls (91%, 93%, and 91%, respectively). All four SNPs are in
tight linkage disequilibrium in the CEU population (www.HapMap.org); therefore, they
would be expected to segregate together and to behave in a similar fashion (i.e., show
similar association patterns). The D’ and r2 values were calculated using the CEU data
(www.Hap-Map.org) and Haploview v 4.1
(http://www.broadinstitute.org/haploview/haploview).

None of the SNPs in FOLR3 have been evaluated previously for MM risk, and currently no
putative function can be assigned. The SNPs rs7926875 and rs7926987 are located in intron
2 of the FOLR3 gene. The rs7925545 SNP is located in the intergenic region approximately
1230 bp upstream from exon 1 of the gene and is conserved among primates
(http://genome.ucsc.edu/). Two alternative promoter regions have been suggested for the
FOLR3 gene, with both located <500 bp upstream from exon 1 of the gene
(http://www.ncbi.nlm.nih.gov/) (The National Center for Biotechnology Information). The
rs7925545 SNP may be located within the upstream promoter-enhancer region. The FOLR3
SNPs rs7926987 and rs7926875 are conserved among primates (http://genome.ucsc.edu/).

The reduced folate carrier gene SLC19A1 is located on chromosome 21, and it is is
approximately 28 kb in size. The gene consists of six exons and five introns. Six SNPs in
this gene were analyzed for association. However, only the rs3788200 located in intron 2
and the rs1888530 SNP located in intron 5 were found to be significantly associated with
MM. Although neither of these SNPs have been previously evaluated for MM risk, a
nonsynonymous variant in exon 2 (rs1051266) has shown association with NTD risk in three
other studies of two population groups (Shang et al., 2008; Franke et al., 2009; Pei et al.,
2009). It is important to note that the mouse knockout for the SLC19A1 gene is embryonic
lethal. The phenotype can be partially rescued when the pregnant dams receive folic acid
supplementation (Gelineau-van Waes et al., 2008).

A major strength of our study is the large population size (Table 1). In addition, the use of
family-based association studies, specifically the TDT, as an analytical tool is a strength in
addition to the availability of a sizable number of trio families (Table 1) facilitates the use of
this approach. The TDT statistical method uses the nontransmitted parental alleles as
controls, thereby effectively addressing issues such as population structure, which can be
problematic in case versus control analyses. Approximately 60% of the study population is
Hispanic of Mexican descent. Hispanics are of particular interest because, in the United
States, Hispanics of Mexican descent have a higher risk than any other ethnic group of
having a child affected with an NTD (Canfield et al., 1996;Canfield et al., 2009).

Our study involved a SNP screen across the three folate receptor genes (FOLR1, FOLR2,
FOLR3) and the reduced folate carrier gene (SLC19A1) in a large population sample
consisting of approximately 60% Hispanics of Mexican descent. A number of SNPs across
these genes were found to be associated with a protective effect for MM in the population
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tested. Furthermore, this study is the first to associate the FOLR3 gene with MM. It would
be useful to validate our findings in a second, independently ascertained MM population. If
the same variants are again found to be associated with MM in a second population, then
functional studies should be designed for these SNPs in an attempt to determine their
biologic roles.
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Figure 1.
Amino acid sequence alignment between the three human folate receptors. Note: The
location of p. Lys35Glu (rs13908) of FOLR2 is shaded to show conservation.
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Table 1

Study Population

Characteristic Trios Duos Total

Race

  Caucasian 142 84 226

  Mexican American 168 166 334

  African American 4 14 18

  Asian American 2 2 4

  Othera 7 5 12

  Unknownb 6 10 16

  Total 329 281 610

Sex

  Male 154 126 280

  Female 167 144 311

  Unknown 8 11 19

MM Lesion Level

  ≥L1 81 81 162

  ≤L2 203 169 372

  Mixed 5 4 9

  Unknown 40 27 67

a
Native American and other country of origin.

b
Unknown ethnicity.
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