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Oligodendrocyte Differentiation of Adult Oligodendrocyte
Precursor Cells by Increasing the Expression of Bone
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Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI).
Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI.
However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs or OPCs.
Identifying the signaling pathways that inhibit OL differentiation in the injured spinal cord could lead to new therapeutic strategies to
enhance remyelination and functional recovery after SCI. In the present study, we show that reactive astrocytes from the injured rat spinal
cord or their conditioned media inhibit OL differentiation of adult OPCs with concurrent promotion of astrocyte differentiation. The
expression of bone morphogenetic proteins (BMP) is dramatically increased in the reactive astrocytes and their conditioned media.
Importantly, blocking BMP activity by BMP receptor antagonist, noggin, reverse the effects of active astrocytes on OPC differentiation by
increasing the differentiation of OL from OPCs while decreasing the generation of astrocytes. These data indicate that the upregulated
bone morphogenetic proteins in the reactive astrocytes are major factors to inhibit OL differentiation of OPCs and to promote its
astrocyte differentiation. These data suggest that manipulation of BMP signaling in the endogenous or grafted NSCs or OPCs may be a
useful therapeutic strategy to increase their OL differentiation and remyelination and enhance functional recovery after SCI.

Introduction

Demyelination is one of major contributors to pathophysiology
of many neurological diseases, including multiple sclerosis (MS)
and spinal cord injury (SCI) (Franklin and ffrench-Constant,
2008). Although remyelination is observed after the acute demy-
elination lesion in the early stage of multiple sclerosis, it becomes
incomplete and eventually fails even though oligodendrocyte
precursor cells (OPCs) are present in the demyelinated areas
(Trapp and Nave, 2008). OPCs retain their capacity to differen-
tiate into mature oligodendrocytes to remyelinate demyelinated
axons, but do not do so. Similarly, OPCs also fail to mature into
myelinating oligodendrocytes after transplantation into the
chronically injured spinal cord, even though the demyelinated
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axons are available for remyelination (Keirstead et al., 2005). Un-
derstanding why remyelination fails within demyelinated lesions
could lead to therapeutic targets for many neurological diseases
involved in demyelination.

After demyelinating lesions, as well as other neurological dis-
eases, one dramatic physiopathological change is gliosis, which
may play important roles in remyelination. In chronic MS
plaques, an absence of remyelination is accompanying by robust
astrogliosis. This is in contrast to acute MS lesions in which an
absence of sclerosis is correlated with widespread remyelination
(Raine, 2008). The correlation between astrogliosis and persistent
demyelination has also been found in cuprizone-induced experi-
mental demyelination (Skripuletz et al., 2010), experimental allergic
encephalomyelitis (Anderson et al., 2008), and traumatic SCI (Kei-
rstead et al., 2005). These studies suggest that astrogliosis may con-
tribute to the failure of remyelination. In this study, we purified
astrocytes from the normal adult spinal cord, acute and chronic
injured spinal cord and directly tested their effects on oligodendro-
cyte (OL) differentiation of OPCs. Our results showed that astro-
cytes from the injured spinal cord inhibited OL maturation of OPCs
and bone morphogenetic protein (BMP) signaling is one of the ma-
jor mediators of this inhibition of OL maturation.
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Materials and Methods

Isolation of OPCs from adult spinal cord. OPCs were immunopanned with
an O4 antibody from adult spinal cord of Fischer rats expressing human
placental alkaline phosphatase (hPAP) as described previously (Kisse-
berth et al., 1999). Briefly, the dissected spinal cords were minced into 1
mm? pieces and incubated in HBSS containing 0.1% papain, 0.1% neu-
tral protease, and 0.01% DNase for 30 min at 37°C. The digestion was
stopped by addition of an equal volume of DMEM containing 20% fetal
bovine serum. Tissues were dissociated by repeated trituration with fire-
polished Pasteur pipettes and were filtered through 70 wm nylon mesh.
The cells were incubated on an anti-RAN-2 antibody-coated dish for 30
min to deplete type-1 astrocytes and meningeal cells and then transferred
to an O4-coated dish for 45 min to select OPC cells. The purified OPCs
were cultured in poly-L-lysine/laminin (P/L)-coated dishes with DMEM/
F12 medium containing 1X N2 and 1X B27 supplements, FGF2 (20
ng/ml), PDGF-aa (10 ng/ml), insulin (5 ug/ml) and BSA (0.1%). Cells
were fed with fresh growth medium every other day. In all cases, an
aliquot of cells was analyzed the next day to determine the efficiency of
the immunopanning. Only those cell preparations in which >95% of the
bound cells expressed O4 were used in the experiments.

Purification of astrocytes. Adult female Fischer 344 rats were anesthe-
tized with Nembutal (50 mg/kg, i.p.) and received a dorsal laminectomy
at the ninth thoracic vertebral level (T9) to expose the spinal cord, and
then a 150 kdyn contusive SCI using the Infinite Horizons impactor
(Precision Systems and Instrumentation). At 7 d or 1 month after injury,
atwo cm spinal cord segment spanning the injury epicenter or the whole
thoracic spinal cord from normal rats were dissected and diced into 1
mm? pieces in Hanks’ balanced salt solution (HBSS) and 10 mm HEPES
solution, followed by enzymatic digestion in HBSS/HEPES containing
0.01% papain, 0.1% trypsin and 0.01% DNase I for 30 min at 37°C with
occasional shaking. Enzymatic digestion was stopped by the addition of
an equal volume of DMEM containing 20% fetal bovine serum. Tissues
were dissociated by repeated trituration with fire-polished Pasteur pi-
pettes and were filtered through 70 um nylon mesh, centrifuged, and
resuspended in astrocyte medium (DMEM + 10% FBS + 1X N2). The
isolated cells were plated in T75 flasks and cultured in a 37°C, 5% CO,
incubator until cells reached confluence after 10—-14 d. The flasks were
then shaken at 275 rotations/min overnight at 37°C to get rid of micro-
glia, OPC, OLs and neurons. The astrocytes were cultured until reaching
confluence and then treated with cytosine arabinoside (20 mm) for 72 h
to eliminate proliferating cells. To collect conditioned medium (CM),
the confluent passage 0 or 1 astrocytes were washed once with DMEM/
F12 and then incubated in DMEM/F12 supplemented with N2, B27 for
48 h. CM was centrifuged, filtered, and concentrated 30-fold with a Cen-
triplus 30 filter (Amicon), and stored at —20°C until use. The concen-
trated CM was diluted to 1:30 in fresh serum-free OPC differentiating
medium when use.

Oligodendrocyte differentiation of adult OPCs. Adult OPCs were plated
on P/L-coated 60 mm culture dishes for Western blot analysis or 24 wells
plates for immunohistochemistry. The following day, adult OPCs were
differentiated in control differentiation medium (DMEM/F12 supple-
mented with N2, B27), or CMs of astrocytes from normal, 1 week or 1
month injured spinal cord for 3 d. The percentages of O1 © OLs or glial
fibrillary acid protein (GFAP) T astrocytes were assessed by immunohis-
tochemistry. For cocultures, purified astrocytes from normal, or 1 week
or 1 month injured spinal cord were grown in 24 wells plates and then
OPCs were put on the top. After 1 d in proliferation medium, the cocul-
tures were switched to differentiation medium for three more days. Then
the percentages of O1 © OLs or GFAP ™ astrocytes to the total number of
hPAP-OPCs were quantified using immunohistochemistry.

Immunofluorescence in vitro. To detect the surface membrane anti-
gens, cells cultured on 24-well plates were incubated primary antibodies
A2B5, 04, O1 (hybridoma supernatant, undiluted; ATCC) or hPAP
(ADD Serotec) at 4°C for 45 min. After fixation with 4% paraformalde-
hyde, cells were incubated in FITC- or Texas Red-conjugated donkey
anti-mouse IgM for 1 h at room temperature. For recognition of other
antigens, cells cultured on 24 well plates were fixed with 4% paraformal-
dehyde. Mouse monoclonal antibodies against myelin basic protein
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(MBP) 1:50 (Millipore) or rabbit polyclonal antibodies against GFAP
1:400 (Sigma), were applied overnight at 4°C. Then the appropriate
fluorophore-conjugated secondary antibodies 1:200 (Jackson Immu-
noResearch) were applied and the nuclei were counterstained with 4',6'-
diamidino-2-phenylindole dihydrochloride. Controls were performed
with species-specific IgG or sera and with inappropriate secondary anti-
bodies. Both showed negligible background. Total cellular counts for
each experimental well were obtained in 10 fields under 20X objective
from three independent culture wells. The result for each experimental
condition was verified a minimum of three times.

Western blot experiments. Cells were harvested in ice-cold lysis buffer
(containing 25 mm Tris, pH 7.6, 1 mm MgCl,, 1 mm EGTA, 1% Triton
X-100, 1% SDS, 1 mm PMSF, 50 ug/ml antipain, 2 ug/ml aprotinin, 1
ug/mlleupeptin, 1 png/ml pepstatin A). Protein concentration was deter-
mined by BCA kit (Pierce Chemical). Equivalent amounts of total pro-
tein extract from each sample were mixed with sample buffer, boiled, and
loaded onto SDS polyacrylamide gels. Electrophoretic separation of the
extracts was typically performed on 7.5-15% gels (depending on the
molecular weight of the protein of interest). The proteins were then
transferred to pure nitrocellulose membranes and probed with
monoclonal-specific antibodies GFAP (Sigma), MBP (Millipore), PLP
(Sigma), Oligl (Millipore), BMP4 (R&D Systems) with polyclonal anti-
bodies Olig2, and phosphorylated SMAD 1/5/8 (pSMAD 1/5/8) (Cell
Signaling Technology), BMP2 (AbD Serotec). Additionally, an antibody
against 3-actin (Sigma) was used as a loading control. Appropriate sec-
ondary HRP-conjugated antibodies were used for detection with chemi-
luminescence ECL reagents (GE Healthcare).

Results

We used sequential immnunopanning to obtain highly purified
OPCs from adult rat spinal cord as described previously (Talbott
etal., 2006; Cheng et al., 2007). All cells expressed hPAP as well as
OPC markers O4 (Fig. 1A,B), A2B5 (Fig. 1C), Olig2 (Fig. 1B),
and Sox10 (Fig. 1C). Less than 10% of adult OPCs were positive
for the OL-specific proteins O1 or GalC (data not shown). They
lacked the staining for astrocyte-specific intermediate filament
GFAP (data not shown). After withdrawal of FGF2 and PDGF-aa
for 3 d, OPCs differentiated into mature OLs expressing O1 (Fig.
1 D). After coculture with DRG neurons for 2 weeks, OPCs ma-
tured into MBP-expressing mature OLs to form myelin around
axons (Fig. 1E). These results demonstrated that OPCs were
functional to differentiate into mature OLs to myelinate axons.
Astrocyte differentiation from OPCs was observed only when
serum or BMP was added to the differentiation medium.

To test the effects of astrocytes on the differentiation of OPCs,
we purified astrocytes from normal spinal cord (NSC-A), 1 week
injured spinal cord (1wISC-A), or 1 month injured spinal cord
(ImISC-A). After grown in astrocyte medium for 10—14 d before
shaking procedure, majority of cells were GFAP * astrocytes with
afewO1 " OLsand OX42 * microglia (supplemental Fig. 1, available
at www.jneurosci.org as supplemental material). Few A2B5 ~ OPCs,
but not neurons, were also observed. However, after shaking proce-
dure and Cytosine arabinoside treatment, 99% of cells were GFAP *
or Vimentin-positive astrocytes (supplemental Fig. 1, available at
www.jneurosci.org as supplemental material; Fig. 1F). Therefore,
astrocytes can be successfully purified from NSC, 1wISC or ImISC.
The morphology of astrocytes from the normal or injured spinal
cord was not very different with majority being protoplasmic and
some fibrous. All purified astrocytes were expressing GFAP (Fig.
1F). Over 50% astrocytes were stained for BrdU, suggesting they
were proliferating (Fig. 1F). The percentage of BrdU ™ astrocytes
was not significantly different among astrocytes from normal or in-
jured spinal cord (data not shown).

After coculture with the purified NSC-A in differentiation
medium for 3 d, >70% of OPCs differentiated into O1 © OLs
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Figure 1. Characterization of OPCs and astrocytes. A~C, All purified OPCs express hPAP (4) and
OPC markers 04 (4, B), olig2 (B), A2B5 (€), and Sox10 (C). D, E, OPCs differentiate into 01 * OLs after
withdrawal of FGF2 and PDGF-aa for 3 d (D), and MBP ™ OLs to form myelin around the axons after
coculture with DRG neurons for 2 weeks (). F, All purified astrocytes from 1 month postinjury spinal
cord express GFAP. Some astrocytes are still proliferating as evidenced by BrdU incorporation. Scale
bar, 50 m.

(Fig. 2A, G). However, the percentage of OPCs that differentiated
into O1 " OLs significantly decreased to 35% and 37%, respec-
tively, after cocultured with 1wISC-A and ImISC-A (Fig.
2C,E,G). In contrast, the percentage of OPCs that differentiated
into GFAP-positive astrocytes significantly increased from 24%
in the coculture with NSC-A to 63% and 67% in coculture with
IwISC-A or 1mISC-A, respectively (Fig. 2B,D,F,G). These re-
sults indicate that astrocytes from the injured spinal cord inhibit
OL differentiation of OPCs with concurrent promotion of their
astrocyte differentiation.

To further determine whether inhibition of OL differentiation by
astrocytes from the injured spinal cord is mediated by soluble fac-
tors, the CMs from the purified astrocytes were obtained. After dif-
ferentiation in NSC-A CMs for 3 d, the percentage of OPCs that
differentiated into O1 © OLs was 70%, which was not significantly
different from 84% in the control differentiation medium (Fig.
3A,D). However, only 54% and 30% OPCs differentiated into O1™*
OLs in CMs of 1wISC-A or 1mISC-A, respectively (Fig. 3B-D). Both
were significantly lower compared with control differentiation me-
dia ( p < 0.05). The percentage of OPCs which differentiated into
GFAP ™ astrocytes in CMs of NSC-, 1wISC-, or ImISC-A was 20%,
36% and 62%, respectively (Fig. 3A-D). All were significantly higher
compared with 5% in control differentiation media (p < 0.05).
Western blots confirmed that CMs of astrocytes from injured spinal
cord significantly decreased and increased, respectively, the expres-
sion of MBP and GFAP in differentiated OPCs. To further test
whether astrocytes from the injured spinal cord will inhibit OL mat-
uration and myelination, OPCs were differentiated for 3 d to become
017 OLs which were then added to the purified DRG neurons to
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Figure 2.  Active astrocytes from the injured spinal cord inhibit OL differentiation of cocul-

tured OPCs. Three days after being cocultured with astrocytes from normal spinal cord, the
majority of OPCs labeled by hPAP differentiateinto 01  OLs with membrane sheets, the typical
morphology of mature OLs (A, arrows). Most hPAP * OPCs do not differentiate into GFAP *
astrocytes (B, arrowheads). However, in the coculture with astrocytes from 1 week (C, arrows)
or 1 month (E, arrows) postinjury spinal cord, most OPCs labeled by hPAP fail to differentiate
into 01+ OLs. OPCs, which differentiate into 01 * OLs, lack the complex membrane sheets (C,
E, arrowheads). Most OPCs labeled by hPAP (green) differentiate into GFAP * astrocytes (red)
(D, F, arrows). Quantitative data confirm that reactive astrocytes from the injured spinal cord
significantly decrease OL differentiation with a concurrent increase of astrocyte differentiation
of cocultured OPCs (G). Data represent the mean == SD from four repeated experiments from
separately generated cultures; *p << 0.05. Scale bar, 50 wm.

coculture for 12 more days. In control media or NSC-A CM (Fig.
3F), OPCs matured into MBP OLs which formed myelin along the
axons. In 1wISC-CM (Fig. 3G) or 1mISC-A CM (Fig. 3H), OPCs
differentiated into mature MBP * OLs. However, they failed to my-
elinate the axons they contacted. These results showed that soluble
factors in CMs of astrocytes from the injured spinal cord inhibit OL
differentiation and myelination of OPCs.

BMP signaling is well known for its roles to induce astrocyte
differentiation and inhibit OL differentiation of OPCs. We used
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Western blot analysis to examine the
expression of BMPs in astrocytes. Ex-
pression of BMP2, but not BMP4, was
detected in NSC-A. However, expression
of both BMP2 and BMP4 was significantly
increased in 1wISC-A or 1mISC-A (Fig.
4A; supplemental Fig. 2A, available at
www.jneurosci.org as supplemental ma-
terial). The expression of pSMAD 1/5/8,
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4 B). Since an ELISA kit is not available for
rat BMP4, we were unable to detect its
expression in CMs. To test whether astro-
cyte CMs activated BMP pathway in
OPCs, we examined its expression of
phosphorylated SMAD 1/5/8, the down- e
stream target of BMP receptors. As shown . 0 A
in Figure 4C, expression of pSMAD in )
OPCs was significantly increased after
treating with CMs of 1wISC- or ImISC-A.
The activation of pSMAD is concurrent
with the increasing expression of GFAP
and the decreasing expression of MBP and
PLP. To further determine whether BMP
signaling mediated the effects of astrocyte
CMs in OPC differentiation, we blocked
its activity by using BMP receptor-specific
antagonist, noggin (Fig. 4C). Addition of
noggin (200 ng/ml) to the CMs of 1wISC or 1mISC-A partially
reversed the decrease of MBP and PLP and increase of GFAP in
the differentiated OPCs, respectively (Fig. 4C). Our immunohis-
tochemistry results also showed that addition of noggin signifi-
cantly decreased the percentage of OPCs differentiating into
GFAP " astrocytes from 30% to 14% in 1wISC-A CMs and 50%
to 32% in 1mISC-A CMs (Fig. 4 D-G). Meanwhile, noggin treat-
ment significantly increased the percentage of OPCs differentiat-
ing into O1 * OLs from 54% to 68% in 1wISC-A CMs and from
30% to 54% in 1mISC-A CMs (Fig. 4D-G). Noggin treatments
did not change either the percentage of O1 " OLs or GFAP "
astrocytes in control medium or NSA-A CMs. These results
showed that increasing expression of BMPs is an important
mechanism by which astrocytes from 1 week or 1 month ISC
inhibit OL differentiation of OPCs with a concurrent promotion
of astrocyte differentiation.

Previous studies showed that Notch (Wang et al., 1998) and
LIF (Fukuda et al., 2004) signaling are also inhibitory for OL
differentiation. We examined the expression of Notch ligand,
Jaggedl, and LIF in the astrocytes by Western blot. Expression of
Jaggedl was detected, but not significantly different among
NSC-, IwISC-, or ImISC-As (data not shown). Expression of LIF
was not detected in either NSC-, 1wISC-, or ImISC-A. To test
whether expression of BMP was limited in astrocytes around the
injured area, we purified astrocytes from the cervical, the injured
thoracic, and lumbar spinal cord at 1 week postinjury. The ex-
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Figure 3.
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Conditioned media from reactive astrocytes from the injured spinal cord inhibit OL differentiation of cocultured OPCs.
Adult OPCs are differentiated for 3 d in control basal medium, NSC-A, TwISC-A, or TmISC-A. In basal medium or NSC-A CM, the
majority of OPCs differentiate into 01 * OL (4, red) with few into GFAP ™ astrocytes (A, green). However, in (M of ISC1w-A (B, D)
or ISCTm-A (€, D), the number of OPCs that differentiated into OLs dramatically decreases while the number of GFAP + astrocytes
significantly increases. Western blot experiments confirm these immunohistochemical results (E). After coculture with DRG neu-
rons for 12 d in (M from NSC-A, OPCs differentiate into MBP * mature OLs, which form myelin along axons. However, myelin
formation is not observed, although OPCs differentiate into MBP * OLsin CM of TwISC-A (G) or TmISC-A (H). Datain D represent
the mean = SD from four independent experiments; *p << 0.05. Scale bar, 50 m.

pression of BMP4 was high in the astrocytes from the injured
thoracic spinal cord. However, its expression is low in lumbar
astrocytes and not detectable in cervical astrocytes (supplemental
Fig. 2 B, available at www.jneurosci.org as supplemental mate-
rial). The low expression of BMP4 in lumbar astrocytes was prob-
ably due to the fact that they were located closely to the injury site.
The expression of BMP4 was also directly examined in the in-
jured spinal cord. Expression of BMP4 was not detected in the
astrocytes in the normal spinal cord. But its expression was dra-
matically increased in astrocytes in the injured spinal cord at 1
week or 1 month postinjury (supplemental Fig. 3A—C, available at
www.jneurosci.org as supplemental material). These results
showed that up-regulation of BMP4 in astrocytes was specific to
the contused area. To directly test whether injury to cultured
astrocytes could increase the expression of BMP4 in vitro, the
purified 1wISC-A was injured by scratching. Two days after the
scratching injury, GFAP expression was dramatically increased in
the astrocytes located in the scratching edge (supplemental Fig.
4 A, available at www.jneurosci.org as supplemental material).
The expression of BMP4 was also significantly increased (supple-
mental Fig. 4 B, available at www.jneurosci.org as supplemental
material).

Discussion

Progressive gliosis appears in demyelinated areas in MS lesions or
SCIL. In a chronically demyelinated injury, the bare axons are
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Understanding mechanisms by which
reactive astrocytes inhibit OL remyelina-
tion may lead to new therapeutic targets
to enhance remyelination and functional
recovery after many neurological diseases
including MS and SCI. Our results showed
that expression of BMPs was significantly
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the injured spinal cord compared with that
from NSC. Importantly, blocking BMP
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Figure 4.  1SCTw-A and ISCTm-A inhibit OL differentiation of OPCs by increasing expression of BMPs. A, B, Expression of BMP2 al., 2007). I vivo, the presence of inhibitory

and 4 is significantly increased in ISCIw- or ISCIm-A (A) or their CMs (B). €, C(Ms of TwlSC- or TmISC-A increase the expression of
pSMAD 1/5/8 in OPCs with decreasing expression of MBP and increasing expression of GFAP. Addition of noggin blocks the
expression pSMAD and significantly increases and decreases the expression of MBP and GFAP, respectively (€). D-G, Immunohis-
tochemistry further confirmed that blocking BMP signaling by noggin reverse the inhibition of the ISCTw or ISC1m-A (Ms to
significantly increase the number of OPCs differentiated into OLs with a concurrent decrease of astrocyte differentiation. OL or
astrocyte differentiation in control basal medium or NSC-A CMs, however, was not changed by the addition of noggin. Datain Fand

G represent the mean == SD from four repeated experiments; **p < 0.01. Scale bar, 50 um.

often surrounded by processes of reactive astrocytes. The role of
astrogliosis in demyelination/remyelination remains unknown
and is controversial (Williams et al., 2007). A previous study
showed that transplantation of astrocytes which had been cul-
tured for a long time significantly decrease OL remyelination of
co-grafted OPCs in the demyelinated spinal cord (Blakemore et
al., 2003). The reactive astrocytes in the chronic demyelinated
CNS of taiep rats may contribute to the remyelination failure by
endogenous or grafted OPCs (Foote and Blakemore, 2005).
However, the effects of astrocytes from the injured CNS on OL
differentiation have not been directly tested. In this study, we
provided direct evidence that reactive astrocytes from the injured
spinal cord or their CMs inhibited OL differentiation of OPCs
and promoted their astrocyte differentiation. These results sug-
gest that astrocytes in the injured CNS may decrease remyelina-
tion by inhibiting OL differentiation and maturation of OPCs.
Nevertheless, our results also showed that only astrocytes from
injured spinal cord, but not from normal spinal cord, inhibit OL
differentiation and myelination. In fact, astrocytes play impor-
tant roles in myelination during development. For example, as-
trocytes from postnatal brain promote myelination of cultured
OLs by releasing LIF in response to ATP liberated from cocul-
tured DRGN axons firing action potentials (Ishibashi etal., 2006).

BMP signaling in the dorsal neural tube re-
presses the development of OLs from this
area (Wada et al.,, 2000; Hall and Miller,
2004). Normal oligodendrogenesis in the
ventral spinal cord is also inhibited when
BMP signaling is induced (Mekki-Dauriac
et al., 2002; Hall and Miller, 2004). Never-
theless, our results showed noggin treat-
ment only partially rescued OL differentiation of OPCs although it
blocked almost all BMP activity as shown by expression of pPSMAD
1/5/8. These results indicate that other factors, such as jagged 1 (John
et al,, 2002) or hyaluronan (Back et al., 2005), may also play impor-
tant role in the inhibition of OL differentiation by astrocytes from
the injured spinal cord.

Although endogenous OPCs are present in the demyelinated
areas and some even closely contact the affected axons, they fail to
differentiate and mature into myelinating OLs to remyelinate the
demyelinated axons in MS lesions or SCI (Chang et al., 2002;
Wolswijk, 2002; Wilson et al., 2006). Inhibitory signals in the
demyelinated lesions may prevent OPCs from differentiation and
maturation. Upregulated BMP signaling in reactive astrocytes
may represent an important factor to inhibit OL remyelination in
the injured CNS. Expression of BMPs dramatically increases after
traumatic SCI (Setoguchi et al., 2004), local chemical demyelina-
tion (Fuller et al., 2007) or EAE (Ara et al., 2008). Moreover, the
neuronal and oligodendrocyte differentiation from grafted neu-
ral stem cells in the injured spinal cord are increased by blocking
BMP signaling with expression of noggin (Setoguchi et al., 2004).
Together, these studies suggest that manipulation of BMP signal-
ing may provide a new therapeutic strategy to enhance remyeli-
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nation from endogenous or/and grafted OPCs after multiple
sclerosis or SCIL.
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