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Abstract
Purpose—To develop and implement a method for improved cerebellar tissue classification on
the magnetic resonance images of brain by automatically isolating the cerebellum prior to
segmentation.

Materials and Methods—Dual fast spin echo (FSE) and fluid attenuation inversion recovery
(FLAIR) images were acquired on eighteen normal volunteers on a 3 T Philips scanner. The
cerebellum was isolated from rest of the brain by using a symmetric inverse consistent nonlinear
registration of individual brain with the parcellated template. The cerebellum was then separated
by masking the anatomical image with individual FLAIR images. Tissues in both the cerebellum
and rest of the brain were separately classified using hidden Markov random field (HMRF), a
parametric method, and then combined to obtain tissue classification of the whole brain. The
proposed method for tissue classification on real magnetic resonance (MR) brain images was
evaluated subjectively by two experts. The segmentation results on Brainweb images with varying
noise and intensity nonuniformity levels were quantitatively compared with the ground truth by
computing the Dice similarity indices.

Results—The proposed method has significantly improved the cerebellar tissue classification on
all normal volunteers included in this study without compromising the classification in remaining
part of the brain. The average similarity indices for gray matter (GM) and white matter (WM) in
the cerebellum are 89.81 (± 2.34) and 93.04 (± 2.41), demonstrating excellent performance of the
proposed methodology.

Conclusion—The proposed method significantly improved tissue classification in the
cerebellum. The GM was overestimated when segmentation was performed on the whole brain as
a single object.
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Introduction
The cerebellum plays a strategic role in the central nervous system. It weighs approximately
10% of the brain, but contains more neurons and circuitry than rest of the brain (1). The
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cerebellum has been studied extensively in recent years for its involvement in various
pathologies and aging. MacKenzie-Graham et al (2) have found direct correlation between
cerebellar cortical atrophy and disease duration in experimental autoimmune
encephalomyelitis, an experimental model of multiple sclerosis (MS). Change in the
cerebellar volume has also been associated with various neurological disorders such as
autism, Alzheimer, Parkinson, Huntington, schizophrenia, and MS (3–7). In elderly brains
normal aging results in more white matter (WM) loss compared to gray matter (GM) in
cerebellum and cerebrum (7). Similarly, extensive demyelination of cerebellar GM is shown
to occur in MS. Therefore, accurate classification of cerebellar tissues is important in
understanding the relationship between tissue atrophy and clinical status.

Magnetic resonance imaging (MRI) allows acquisition of images with different contrasts by
altering the pulse sequences and/or acquisition parameters. The multi-modal nature of MRI
has been widely exploited for tissue classification and tissue volumetry (9–16). The majority
of tissue classification schemes depends on image intensity and assumes that a given tissue
has the same intensity, independent of its location. However, this is not always true.
Suckling et al (14) have reported inferior GM-WM distinction in the cerebellum compared
to other parts in the brain, when the segmentation is performed with the whole brain
considered as a single object. They attributed the tissue misclassification in cerebellum to
image contrast nonuniformity arising from the edge of the transmit/receive coil. Recent
studies also point out intensity differences between the cerebellum and rest of the brain (17).
The spatial dependent intensity pattern leads to misclassification of tissues when the whole
brain is segmented. The intensity nonuniformity correction alone is not adequate to address
this problem. For minimizing the tissue misclassification, Suckling et al (14) have divided
the whole brain into overlapping rectangular windows followed by separate classification in
each window. The sizes of these windows are determined by an interactive procedure that
allows operator to select certain number of slices to be included in each window. Also,
adjacent window would have common slices so that the classification information can be
used for spatial dependency within each tissue. The choice of the rectangular window size is
not trivial as the shape and size of cerebellum exhibit considerable inter-subject variability.
Lewis and Fox (18) have reported differences in relative intensities in the cerebellar tissues
between two scans on the same subject. Such an intensity change affects longitudinal
assessment of tissue volume changes and other quantitative measures. These authors have
applied differential nonuniformity correction to minimize the intensity difference in the
cerebellum in serial scans. While this method may be useful for following changes in
atrophy at two different time points in serial studies, it may not be applicable for tissue
segmentation.

Most of the segmentation procedures are based on T1-weighted images which exhibit
excellent GM-WM contrast and delineation of different structures. But, lesions such as those
seen in multiple sclerosis (MS) and other pathologies are not clearly visualized on T1
weighted images. However, these lesions are clearly seen on dual FSE and FLAIR images.
Therefore, these sequences are commonly used for clinical management of these patients
and segmentation of lesions for assessing disease progression (13). Thus, classification of
GM and WM along with lesions is important in the analysis of disease progression and
atrophy. For these reasons, in the present study we have developed and implemented a
method for improved cerebellar tissue classification on dual FSE and FLAIR images.

In order to overcome intensity variation within dual FSE images, the cerebellum was
isolated from the brain. The automatic isolation of cerebellum was performed by registering
the images to a template using a symmetric inverse consistent nonlinear registration
algorithm described elsewhere (19). This was followed by separate segmentation of these
regions into GM and WM tissues. In this study, segmentation was performed on 18 normal
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brains with the proposed methodology and the results were subjectively assessed by two
experts. The method was applied to Brainweb images
(http://www.bic.mni.mcgill.ca/brainweb/selection_normal.html; 20) to ensure that our
approach did not introduce any tissue misclassification in rest of the brain.

Materials and Methods
Image acquisition

These studies are HIPAA (Health Insurance Portability and Accountability Act) compliant
and approved by our institution’s Committee for the Protection of Human Subjects. Written
informed consent was obtained from each subject prior to imaging.

Eighteen healthy normal volunteers (10 females and 8 males; median age of 29.5 yrs; range:
21–57 yrs) were included in this study. All volunteers underwent MRI on a 3T Philips Intera
scanner (Philips Medical System, Best, Netherland) using a six channel receive only head
coil with a sensitivity encoding (SENSE) factor of 2. Dual FSE and FLAIR images were
acquired with the following parameters: TE1/TE2/TR = 8.2 ms/90 ms/6800 ms, and TE/TI/
TR = 80 ms/2600 ms/10002 ms respectively, where TI and TR represent the inversion and
repetition times, respectively. TE1, TE2 are the two echo times for the dual FSE images and
TE represents the echo time for the FLAIR images. The other parameters were: field-of-
view = 240 mm × 240 mm, slice thickness = 3 mm with no gap, and image matrix = 256 ×
256. A total of 44 slices were acquired covering the whole brain from foramen magnum to
vertex.

Segmentation of Brain
The initial post-processing included rigid body registration of FLAIR with FSE images
using the module available in SPM2 (Statistical Parametric Mapping; 21) followed by
removal of the extrameningeal tissues with a semi-automated procedure (13,22). Anisotropic
diffusion filtration was applied for reducing noise without blurring the edges (23) and
intensity nonuniformity was corrected using the module in SPM2 (24). The rigid body
registration and intensity nonuniformity correction modules were rewritten in IDL
(Interactive Data Language; RSI, Boulder, CO) to integrate with the rest of our software.

The brains were initially classified into parenchyma and cerebrospinal fluid (CSF) based on
the T2-weighted (long echo FSE) and FLAIR images using the Parzen window classifier
(25), described elsewhere in detail (13). HMRF, a parametric procedure (16), was used on
the short echo (proton density- or proton density (PD)-weighted) and T2-weighted FSE
images to divide the parenchyma into GM and WM tissue classes.

The cerebellum was automatically separated from rest of the brain using the anatomical
image obtained from International Consortium of Brain Mapping (ICBM), known as ICBM
single subject MRI anatomical template. This template was produced by averaging 27, T1-
weighted MRI acquisitions from a single subject (Montreal Neurological Institute database)
and comprises of 56 labels with cerebellum as one of the largest structure (26). This ICBM
template and associated anatomical structures were co-registered with the FLAIR images
acquired on our subjects using the symmetric inverse consistent registration described
elsewhere (19). Briefly, the symmetric inverse consistent registration is based on a
symmetric cost function that includes mutual information (MI) as the similarity measure,
regularization of transformation, and inverse consistency error (ICE) terms. This method
avoids difficulties in balancing the divergent terms in the cost function, similarity measure,
regularization of transformation, and inverse consistency error terms were alternatively
minimized. As suggested by demons algorithm (27), in this inverse consistency method, an
alternate minimization strategy has been implemented to minimize the cost function. Instead
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of the squared sum of intensity differences, mutual information is used to drive the
registration process to deal with the intensity variations in different image volumes. The
composition scheme is adapted for updating the displacement fields to achieve
diffeomorphism. The inverse consistency is achieved by forcing the ICE term towards zero
(19).

Following registration, the cerebellum of the co-aligned anatomical structure labeled image
was masked with the FLAIR image to separate the cerebellum in our dataset. Since the
FLAIR and FSE images were co-registered prior to the removal of extrameningeal tissues,
the cerebellum mask from FLAIR image was used to isolate the cerebellum on the FSE
images.

The parenchymal regions of cerebellum and rest of the brain on the FSE images were
segmented separately into GM and WM using the expectation-maximization with HMRF
algorithm as described elsewhere in detail (13). The GM-WM tissue classes of the
cerebellum and remaining brain were merged with CSF to obtain the final segmentation of
the whole brain. The major steps involved in the proposed methodology are summarized in
Fig. 1.

Evaluation
The segmentation results of the proposed method were evaluated by two experts, a
Neurologist and a Medical Physicist, both with more than 25 years experience in
neuroimaging. In the absence of ground truth about the distribution and volumes of these
tissues in the brain, the performance of our algorithm was subjectively evaluated on real MR
images based on visual inspection. The surrounding CSF in the cerebellar region was
excluded through isolation, and therefore, only GM and WM were included in this
comparison. The GM and WM tissue volumes were calculated with and without isolating
cerebellum to confirm the subjective evaluation. The dual FSE and FLAIR images were
segmented using the FAST tool available in the FSL (FMRIB). The segmentation results
obtained with proposed methodology were also compared subjectively with the results
obtained with FAST tool.

In order to validate the cerebellum isolation approach for segmentation, the proposed
method was applied to segment simulated normal MR images obtained from Brainweb (28).
Brainweb images were simulated with the same intensity distribution for individual tissues
in the whole brain (20). Therefore, the segmentation results are expected to be similar with
and without cerebellum isolation. The two-dimensional normal PD- and T2-weighted
images with matrix size 181 × 217 comprising of 60 slices with 3 mm slice thickness were
used in this study. Noise levels of 1%, 3% and 5%, and intensity nonuniformity of 20% and
40% were added to these images. The segmentation results on these images were
quantitatively evaluated based on the Dice similarity index (DSI) (29) defined as:

where, ‘Seg’ represents segmented image obtained with our procedure and ‘Ref’ is the
reference image representing the crisp anatomical image from the Brainweb database. To
further test the accuracy of segmentation with the proposed method, the individual tissue
volumes were compared with those obtained with FAST tool available in the FSL (16) on
the Brainweb images.
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Results
Segmentation

As an example, Fig. 2 shows histograms of the cerebellum and remaining brain, excluding
CSF, derived from the PD- and T2-weighted images. The difference in the histogram peak
positions of cerebellum and rest of the brain can easily be seen in this figure.

Figure 3 shows the template (a) and anatomical structure labeled (b) images along with the
PD-, T2-weighted (c, d) and FLAIR (e) images of a normal brain. As indicated above, the
template image volume was registered to the FLAIR image volume by applying an inverse
consistent registration algorithm (19). The cerebellum on FSE and FLAIR images was then
extracted by masking the cerebellum structure from the registered labeled image. The
isolated cerebellum structures on the FSE and FLAIR images are shown in Figs. 3f–3h.

Figures 4a and 4b show the PD- and T2-weighted and segmented images of two normal
volunteers (subjects 9 and 11) obtained with and without isolating the cerebellum. For
comparison, the segmented results of FSL are included in column six of Figs. 4a and 4b.
Isolation of cerebellum has substantially improved the classification of cerebellar WM. In
contrast, WM was underestimated when the tissue classification was performed on the
whole brain. In addition, the proposed method provided better delineation of substantia
niagra, a GM structure in the midbrain, as can be observed visually from the fourth column
of the Fig. 4b. Similar results were observed on all the 18 normal brains included in this
study. Figure 5 represents the GM-WM tissue volumes that were calculated on 18 normal
brains with and without isolating the cerebellum. It can be observed from this figure that the
GM volume was overestimated in cerebellum without its isolation.

Evaluation
The average GM and WM volumes following segmentation with and without the cerebellum
isolation on normal brains are summarized in Table 1. The p-values were calculated
separately for the cerebellar and rest of the brain regions using Student’s two-tailed paired t-
test. The paired t-test was used as the segmentation with and without cerebellum isolation
was performed on the same set of subjects. The average GM (WM) volume decreased
(increased) by 13 cc in the cerebellum following its isolation. Similarly, segmentation with
the cerebellum isolation resulted in an average decrease (increase) in the GM (WM) volume
by 5 cc in the rest of the brain. The GM and WM volumes with and without the cerebellum
isolation were significantly different (p-value < 0.0001) in normal subjects (Table 1), but the
total sum remained the same as expected.

The simulated Brainweb PD- and T2-weighted and segmented images, with and without the
cerebellum isolation, are shown in Fig. 6. The ground truth and the segmentation results
obtained with FSL are also included in this figure. Table 2 summarizes the Dice similarity
indices for GM and WM volumes obtained on the Brainweb images with varying noise and
intensity nonuniformity levels, with and without the cerebellum isolation from the brain.
These measures indicate that the tissue classifications on Brainweb images are not affected
by the cerebellum isolation. To compare the accuracy of our method, the similarity indices
of the results obtained with FSL are also included in this table. Unlike real MR images, the
Brainweb images assume the same tissue intensities in the cerebellum and rest of the brain.
These results also demonstrate that the proposed methodology does not introduce any
artifacts in GM and WM classifications.
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Discussion
We have proposed and implemented a method for improved segmentation of GM and WM
in the whole brain by isolating the cerebellum. The proposed methodology was evaluated by
comparing the segmentation results with and without isolation. Our method is completely
automatic except for the removal of extrameningeal tissues (a semi-automated procedure)
which requires some manual intervention procedure. The other fully automated steps include
1) image pre-processing, 2) nonlinear inverse consistent registration of template anatomical
labeled image with FLAIR image, 3) isolation of cerebellum from brain, 4) segmentation,
and 5) integration of all tissue classes from cerebellum structure and remaining brain.

Our results on 18 normal subjects showed remarkable improvement in GM-WM
classification following the cerebellum isolation from rest of the brain. The WM tissue in
cerebellum was observed to be underestimated when the whole brain was segmented into
different tissues as a single object. The isolation prior to segmentation has resulted in WM
volume increase of 13 cc (~30%) in the cerebellum (table 1), and has increased only 2% of
WM volume in rest of the brain. In addition, Fig. 5 clearly confirms the subjective
assessment of consistent underestimation of WM in the cerebellum of all the normal brains
without cerebellum isolation. A significant improvement in the cerebellar tissue
classification on real MR images was observed without any influence on the classification in
rest of the brain (Fig. 4) as judged by the two experts. Thus, cerebellum isolation provides
better tissue classification without compromising the classification in rest of the brain.

The Brainweb MR images are generated by simulation (20) and do not take into account the
intensity differences between the cerebellum and remaining brain. Therefore, as expected,
GM-WM volumes in the cerebellum are not affected by cerebellar isolation (Fig. 6; Table
2). Also, these results demonstrate that our segmentation procedure, like FSL, is relatively
insensitive to small noise and intensity nonuniformity. As expected, these results show that
the performance of segmentation degrades with increased noise and intensity nonuniformity
levels.

Accurate classification of tissues is important since in diseases such as MS, atrophy of
individual tissues, rather than the whole brain volume, is thought to correlate better with the
clinical status (2,30–34). The segmentation of lesions and WM and GM in neurological
diseases such as MS plays an important role towards identification of biomarker of the
disease. Often, the tissue classification is found to be significantly inferior in the cerebellum
in the presence of pathology when the segmentation is performed on the whole brain
assuming it as a single object. Our main aim is to implement the proposed method on images
acquired in multi-center clinical trials. We have implemented the proposed methodology on
dual FSE and FLAIR images as these images are routinely acquired in many neurological
diseases as part of clinical management of patients. We intend to extend the application of
the proposed methodology to include lesion class along with other tissue classes for
segmentation of diseased brains.

The proposed method automatically takes into account shape and size of the cerebellum by
separating it from the brain without any human intervention, thus facilitating independent
segmentations of the two brain regions. It has been shown that the inverse consistent
nonlinear registration algorithm used in co-registering the normal brain with the template is
diffeomorphic (19). The registration procedure applied to IBSR dataset (Internet Brain
Segmentation Repository) (19,35) showed high similarity index of 0.95 for cerebellum
structure when isolated from the whole brain as compared to the ITK demons (27) and B-
spline based deformation model (36). This suggests that there is a maximum of 5% error in
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isolating the cerebellum structure from the brain caused by nonlinear registration used in this
study which would have relatively low impact on the cerebellar segmentation.

As observed from Fig. 3, the automated isolation of cerebellum was obtained by excluding
the brain stem. The Dice similarity index of cerebellum was found to be 95% with the use of
nonlinear registration algorithm. Although the cerebellar volume was somewhat
underestimated, the automated procedure was adapted to isolate the cerebellum to minimize
the operator bias involved in manual procedure. Also, the manual procedure is not feasible
when large number of image volumes need to be analyzed as in multi-center clinical trials.

In conclusion, we have proposed a scheme for segmenting the whole brain by isolating the
cerebellum prior to GM and WM tissue classification. The overall improvement in the tissue
classification was judged by experts subjectively. The efficacy of this method was
demonstrated quantitatively on Brainweb MR images with varying noise and intensity
nonuniformity.
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Figure 1.
Flow chart showing major steps of the proposed method.
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Figure 2.
Histograms of cerebellum (red) and cerebrum (black) excluding CSF: (a) PD- and (b) T2-
weighted images on a normal volunteer. Note that the histogram peaks have different
locations for the cerebellum and cerebrum.
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Figure 3.
(a) Template image, (b) anatomical structures of the template image, (c) PD-weighted, (d)
T2-weighted image, and (e) FLAIR image of a normal subject; f–h: PD-, T2-weighted and
FLAIR images obtained by masking the registered anatomical labeled image following
nonlinear registration of the template image to the FLAIR image.
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Figure 4.
Segmentation results on two volunteers (subjects 9 and 11) are shown in (a) and (b)
respectively. PD-weighted (column 1), T2-weighted (column 2), and FLAIR images
(column 3) at different levels. The corresponding segmented images with and without
isolating the cerebellum are shown in columns 4 and 5, respectively. Segmentation results of
FSL are shown in column 6. The overall improvement in the segmentation of WM and deep
GM structures (particularly putamen) with the cerebellum isolation can easily be
appreciated. Color scheme: GM – gray, WM – white, CSF – blue.
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Figure 5.
GM (a) and WM (b) tissue volumes in cerebellum with and without isolation. The
corresponding volumes in rest of the brain are shown in (c) and (d). (WI: segmentation with
cerebellum isolation (blue); WOI: segmentation without cerebellum isolation (red)).
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Figure 6.
PD-weighted (first column) and T2-weighted (column 2) images from Brainweb at different
levels. The corresponding segmented images with and without cerebellum isolation are
shown in columns 3 and 4, respectively. The ground truth is shown in column 5. Segmented
images using the FSL on the whole brain are shown in column 6. Since, the Brainweb
images do not assume any spatial dependence of intensity for a given tissue, as expected, the
segmentation results with and without cerebellum isolation are very similar. Also note that
the similarity indices of segmentations obtained with proposed methodology appear to be
similar to that obtained with FSL, attesting to the accuracy of our segmentation method. The
color scheme is same as in Fig. 4.
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