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Abstract
Tensor based morphometry (TBM) was applied to determine the atrophy of deep gray matter (DGM)
structures in 88 relapsing multiple sclerosis (MS) patients. For group analysis of atrophy, an unbiased
atlas was constructed from 20 normal brains. The MS brain images were co-registered with the
unbiased atlas using a symmetric inverse consistent nonlinear registration. These studies demonstrate
significant atrophy of thalamus, caudate nucleus, and putamen even at a modest clinical disability,
as assessed by the expanded disability status score (EDSS). A significant correlation between atrophy
and EDSS was observed for different DGM structures: (thalamus: r = −0.51, p = 3.85×10−7; caudate
nucleus: r = −0.43, p = 2.35×10−5; putamen: r = −0.36, p = 6.12×10−6). Atrophy of these structures
also correlated with 1) T2 hyperintense lesion volumes (thalamus: r = −0.56, p = 9.96×10−9; caudate
nucleus: r = −0.31, p = 3.10×10−3; putamen: r = −0.50, p = 6.06×10−7), 2) T1 hypointense lesion
volumes (thalamus: r = −0.61, p = 2.29×10−10; caudate nucleus: r = −0.35, p = 9.51×10−4; putamen:
r = −0.43, p = 3.51×10−5), and 3) normalized CSF volume (thalamus: r = −0.66, p = 3.55×10−12;
caudate nucleus: r = −0.52, p = 2.31×10−7, and putamen: r = −0.66, p = 2.13×10−12). More severe
atrophy was observed mainly in thalamus at higher EDSS. These studies appear to suggest a link
between the white matter damage and DGM atrophy in MS.
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1. Introduction
Multiple sclerosis (MS) is the most common central nervous system demyelinating disease in
humans. Approximately 85−90% of the MS population falls into the relapsing remitting (RR)
phenotype [1]. Although traditionally MS is considered to be a white matter (WM) disease,
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pathology studies dating back to the 19th century identified gray matter (GM) involvement in
MS [2,3] and further elaborated by detailed histopathology in 1916 [4]. Recent studies with
sensitive immunohistochemical techniques confirm a high prevalence of cortical lesions and
suggest that cortical involvement may be diffuse or highly localized, with relatively minimal
inflammation [5-7]. Cortical GM involvement in MS has also been demonstrated by MRS
[8-12], MTR [13-15], and DTI [16-20]. Based on various MR measures, the deep gray matter
(DGM) is also affected in MS [21-28]. Significant neurodegeneration and volume loss in
thalamus have been reported in MS [26,29]. Both thalamus and putamen atrophy have been
reported in clinically isolated syndrome [30]. Caudate atrophy has been demonstrated on MRI
and was shown to correlate with cognitive deficit [31] and used as a marker for GM loss in
aging and various neurological disorders [32]. Caudate atrophy is also consistent with
hypometabolism on positron emission tomography (PET) and appears to correlate with fatigue
in MS [33].

DGM atrophy has also been shown to occur early on in the disease course in MS and appears
to correlate better with clinical disability, including cognitive deficits, than with T2 lesion load
[30,34-40]. DGM atrophy appears to be disproportionately high compared to the whole brain
atrophy [21,29]. It has been suggested that regional atrophy associated with various DGM
structures may be a valid biomarker in clinical trials [41].

There is a general agreement about the presence of DGM atrophy. However, there does not
appear to be a consensus about the correlation between DGM atrophy and other MRI-derived
measures and expanded disability status scale (EDSS). Bakshi et al. [42] reported that the
regional brain atrophy and T2 lesion load are associated with EDSS. However, others found
correlation between DGM atrophy with T2 lesion load, but not with EDSS [43,44]. Most of
the studies reported that thalamus is predominantly atrophied in MS and is correlated with
EDSS, T2 hyperintense (here used to designate the MRI-defined lesion volume that excludes
the black hole or T1 hypointense component), T1 hypointense lesions, and brain atrophy [29,
30,35,45]. Bermel et al., 2003 [21] have reported caudate nucleus atrophy in MS but did not
find any correlation with T1 or T2 lesion burden. In contrast, Prinster et al. [43] observed a
correlation between caudate nucleus atrophy and lesion burden. Henry et al. [30] reported a
correlation between putamen atrophy and clinical disability, as assessed by MS functional
composite (MSFC) [46,47].

Much of the earlier work on regional atrophy was based on manual or semiautomatic
segmentation [21,29]. However, more recently, voxel based morphometry (VBM) [48,49] is
used for robust estimation of atrophy in MS [30,35,43-45,50]. In VBM, all individual
anatomical images are spatially normalized to a common stereotactic space, which are then
segmented into different tissue classes followed by smoothing of each tissue map [48]. The
volume changes in tissue maps of individual brains are corrected by multiplying tissue voxel
values by their respective Jacobian determinants (JDs) obtained from the spatial normalization
step [49]. This technique allows group analysis in an automated way without the need to define
a priori the structures of interest.

Tensor-based morphometry (TBM) is a more recent technique for estimating disease-related
changes in brain structures and has been shown to provide methodological improvements over
VBM. Jacobian determinant is one of the major TBM metrics that can directly measure tissue
growth and atrophy [51]. The main advantage of TBM over VBM is that the former can be
applied directly on the JDs of deformation fields without the need for tissue segmentation
[41,52]. Whitford et al. [53] have used TBM to assess volumes of WM in first-episode
schizophrenia. Brambati et al. [54-55] have applied TBM to monitor the progress of atrophy
in semantic dementia. TBM is also currently used in the analysis of brain structures in traumatic
brain injury [52], Alzheimer's disease [41,56-57], and HIV/AIDS [58]. Both VBM and TBM
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require the use of a template or atlas for volume changes relative to a comparison group. The
use of unbiased atlas as the template against which the volume changes are measured is thought
to be more robust against registration errors and improves statistical power [52,59-60].

In this study, we applied TBM [57,61-62] for determining the atrophy of GM, with a particular
emphasis on DGM structures. A symmetric nonlinear registration algorithm [63] was used to
generate the geometric mean population or unbiased template. The statistical analysis for
investigating various group differences was performed with SPM2 software package [48]. The
regional volume changes in the GM structures were calculated as the average logarithm of JD
maps of the deformation fields. The correlations between atrophy of GM structures and EDSS,
T2 hyperintense and T1 hypointense lesion loads, and normalized CSF (nCSF) (a measure of
whole brain atrophy) were investigated. In addition, the progression of atrophy with EDSS was
examined.

2. Methods
2.1 Patients and MR Image Acquisition

A total of 88 relapsing MS patients, 68 females and 20 males, were recruited for this study.
Their median age was 41.2 yrs (range: 20−64 yrs) with a median EDSS of 1.5 (range: 0−6.5).
The diagnosis was confirmed by retrospective chart review (JSW), using the criteria of
McDonald as revised in 2005 [64]. The EDSS was assessed by neurologists prior to or shortly
after the time of performance of the MRI scans. None of the subjects had received
corticosteroids within 30 days of imaging. At the time of imaging 22% of subjects were on no
disease modifying therapy, the others were taking either glatiramer acetate (60%) or an
interferon beta preparation (18%). The frequency distribution of EDSS in this patient
population is shown in Table 1. This study was approved by our institution's Committee for
the Protection of Human Subjects and is fully HIPAA compliant. Written informed consent
was obtained from each patient.

All patients were scanned on a 3T Philips Intera scanner (Philips Medical Systems, Best,
Netherlands) with a gradient system capable of producing a maximum gradient amplitude of
80 mT/m with a slew rate of 200 T/m/s. The MRI protocol included the following sequences:
1) dual fast spin echo (FSE) with TE1/TE2/TR: 9.5 ms/90 ms/6800 ms; 2) fluid attenuation
inversion recovery (FLAIR) with TE/TR/TI: 80 ms/10000 ms/2600 ms; 3) pre- and post-
contrast T1-weighted spin echo with TE/TR = 9.2/600 ms; and 4) 3D T1-weighted images
either using fast field echo sequence (TE/TR = 4.6 ms/9.9 ms; 77 patients) or with
magnetization prepared rapid gradient echo (MPRAGE) sequence (TE/TR = 3.7 ms/8.1 ms;
11 patients). Here TE, TR, and TI represent the echo, repetition, and inversion times,
respectively. All images were acquired with a field-of-view 240 mm × 240 mm, image matrix
of 256 × 256. Contiguous dual echo FSE, FLAIR images, pre- and post-contrast T1-weighted
spin echo covering the whole brain, were acquired with slice thickness 3 mm and 3D T1-
weighted images were acquired with a slice thickness of 1mm.

For the unbiased template construction, high resolution T1-weighted brain images from normal
volunteers (45.2 ± 9.0 yrs) were obtained from the OASIS database [65]. The individual T1
image volume (MNI template, Colin 27) and associated anatomical labels were obtained from
the UCLA website: http://www.loni.ucla.edu/Atlases.

2.2 Image Preprocessing
Dual echo FSE and FLAIR images were co-registered using the 3D rigid body registration.
The extrameningeal tissues were removed (brain stripping) in the FSE, FLAIR and the 3D T1
images using the in-house developed semi-automated software. Bias field correction was
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applied to minimize intensity nonuniformities using the module in the statistical parametric
mapping (SPM2) software package [66].

2.3 Creation of Unbiased Template
The randomly selected 20 high-resolution T1 images of normal brains from the OASIS
database [64] were used to construct an unbiased template [41,59] using a nonlinear registration
algorithm [63]. We have used high resolution T1 images (MNI template) and associated
anatomical labels to automatically identify and localize various anatomical structures in each
of the MS brains. The symmetric cost function for the nonlinear registration algorithm was
constructed to guarantee inverse consistency for morphometric measurements. An alternative
minimization approach [67] was used to minimize different terms to avoid difficulties in
balancing divergent terms, such as similarity measure, regularization of the transformation,
and inverse consistent error. Mutual information (MI) was employed as the similarity measure
and the dense MI flow was used as the external force for driving the registration process to
deal with the intensity variations in different image volumes. Diffeomorphic mapping was
achieved by updating the displacement fields through the composition scheme [63].

The major steps in the creation of unbiased template are shown in Figure 1. The 20 normal
brains from OASIS datasets (two of the 20 images are shown in Figs. 1A and 1B) were
registered to the MNI template (Fig. 1C). The intensity of all the deformed images were
averaged to obtained the intensity averaged image in the MNI space (Fig. 1D). The geometric
average of the transformation fields of the 20 co-registered images was obtained by averaging
the transformations defined on the grid points of the MNI template. Since the JD of the
geometric average transformation was found to be positive for all voxels (Fig. 1E), the unbiased
template [41] was obtained by mapping the averaged image in the MNI space through inversion
of the geometric average transformation (defined on the grid points of geometric average space)
[68] (Fig.1F).

2.4 TBM analysis
Initially the 3D T1 images obtained on the 88 MS subjects were registered to the unbiased
template with 12 parameter affine registration. Following the affine registration, a symmetric
inverse consistent nonlinear registration algorithm based on mutual information as similarity
measure [63] was used to co-register these images to the unbiased template described above.

For each MS brain, the JDs defined in the unbiased template space were obtained. Thus, in
present study, the unbiased template served as the standard space for analyzing the relative
volume differences between the groups. To compensate for the brain size differences among
different subjects, the JD of each stripped brain was normalized by adjusting its mean to 1.0.
The logarithmic of JD was used for the TBM analysis since it is more symmetric and is
appropriate for classical statistical analysis [57].

2.5 Determination of gray matter atrophy and other MRI derived measures
As indicated above, anatomical structures in the MS brains were identified by mapping the
parcellation associated with the MNI template to the unbiased template space. The left and
right compartments of each of the GM structures are treated as a single structure in the MNI
template. We followed this convention in the present study. The atrophy of GM structures was
determined by calculating the mean value of the logarithmic of JD obtained in each individual
image pair (MS and template) registration. The T2 hyperintense lesions were identified and
segmented using the unified segmentation approach described elsewhere [69] on dual FSE and
FLAIR images. The T1 hypointense lesions were segmented on the pre- and post-contrast T1-
weighted images as described by [70]. Normalized CSF fraction was calculated as the ratio of
CSF volume to the whole brain volume. The T2 and T1 lesion and normalized CSF fraction
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masks were aligned with the 3D T1 images using 3D rigid body registration. The T2, T1 lesion
and CSF masks were normalized with respect to the unbiased template following their
alignment with 3D T1 images, to investigate their relation to regional atrophy in the GM
structures.

In addition to determining the atrophy of GM structures, we also sought to determine the
association between the regional atrophies with EDSS and various MRI-derived measures. We
also wanted to determine the progression of atrophy with EDSS. Therefore, we divided the MS
patients into two subgroups based on their EDSS: 0−3.5 and 4.0−6.5. The selection of the two
cohorts was based on the apparent importance of EDSS 4.0; data from a variety of natural
history and cross-sectional databases suggest that EDSS of 4 is associated with high rates of
clinical disability, loss of independence and productivity, the onset of the progressive phase of
the disease, and increased medical costs and societal burdens [71-73].

2.6 Analysis of atrophy of GM structures with EDSS
Statistical analysis of covariance (ANCOVA) was used to compare the volumes of GM
structures among various groups (normal and MS subjects with EDSS 0; and two subgroups
of MS subjects) with age and sex as nuisance covariates. Following ANCOVA analysis, two-
sampled t-test for unpaired data was performed to compare the group differences. False-
discovery rate (FDR = 0.05) was used to correct for multiple comparisons across the whole
brain at each voxel. We have tested the effect of different cluster sizes (10, 20, 30, and 40) on
the t-statistic maps and did not find any visual difference. Therefore, in all these studies, a
cluster size of 10 was used.

Pearson correlation coefficients between the mean value of the logarithmic of JD of various
GM structures and EDSS, T2 and T1 lesion loads, and normalized CSF were computed using
MATLAB version 6.5.

3. Results
Figure 2 shows an example of nonlinear registration of an image at two different cross-sections
with the unbiased template. The JDs, obtained from the deformation fields clearly demonstrate
ventricular expansion and DGM atrophy. Figure 3 shows t-statistic color maps, obtained with
TBM, showing the differences between MS patients (23 females, 3 males with a mean age of
40.2 ± 9.96 yrs) with EDSS of 0 (entirely normal neurologic examination) and normal subjects
(10 females, 10 males; age range 41.2 ± 7.02 yrs). This analysis was based on ANCOVA with
age and gender as nuisance covariates. The results demonstrate statistically significant atrophy
in most of the GM structures in MS even in the absence of clinical disability.

To investigate the effect of clinical disability on atrophy, the 88 subjects were divided into two
groups: group A comprises of 75 subjects with low EDSS (range 0−3.5) and the remaining 13
subjects with relatively high EDSS (≥4.0) were included in group B. The t-statistic color maps
comparing these two groups, based on ANCOVA to account for the effect of age and gender,
are shown in Fig. 4. As can be observed from this figure, while the atrophy increases in different
structures at the higher EDSS strata, the effect of EDSS on thalamus appears to be particularly
prominent. We have also performed two sample t-test without including gender and age as
covariates and did not find any noticeable effect of gender and age on the t-statistic maps.
Therefore, all the correlations we calculated without including age and gender as covariates.

The atrophy of three DGM structures that are found to be negatively correlated with EDSS are
thalamus (r = −0.51, p = 3.85×10−7), caudate nucleus (r = −0.43, p = 2.35×10−5), and putamen
(r = −0.36, p = 6.12×10−6). The scatter plots of regional atrophy of these structures against
EDSS are shown in Fig. 5.
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The regional atrophy of thalamus (r = −0.56, p = 9.96×10−9), caudate nucleus (r = −0.31, p =
3.10×10−3), and putamen (r = −0.50, p = 6.06×10−7) also correlated with the T2 hyperintense
lesion load. Similarly, significant correlations between T1 hypointense lesion load and regional
atrophy (thalamus: r = −0.61, p = 2.29×10−10; caudate nucleus: r = −0.35, p = 9.51×10−4; and
putamen: r = −0.43, p = 3.51×10−5) were observed. nCSF, a measure of total brain atrophy,
was also observed to correlate with DGM atrophy: thalamus (r = −0.66, p = 3.55×10−12),
caudate nucleus (r = −0.52, p = 2.31×10−7), and putamen (r = −0.66, p = 2.13×10−12). The
scatter plots of atrophy of these deep gray matter structures against the T2 and T1 lesion loads,
and nCSF are shown in Figs. 6, 7 and 8. Table 2 summarizes significant correlations between
atrophy of various GM structures with EDSS and MRI based measures.

4. Discussion
Earlier studies have investigated the atrophy of various GM structures and correlated with
clinical disability, including cognitive deficits, and MRI-derived measures [29,31,43-45].
However, as described below, there are a number of methodological differences between the
current and published studies. The use of unbiased template, as stated earlier, offers a robust
estimation of atrophy measurements. As demonstrated in the previous studies [63] and briefly
described below, the inverse consistent registration that we used for constructing the unbiased
atlas is diffeomorphic. The deformation based parcellation of IBSR dataset [74] using this
registration was shown to result in significantly higher Dice similarity indices compared to
other methods such as ITK demons [67] and B-spline based deformation model [75]. The
reported Dice similarity indices were 0.85, 0.83 and 0.78 for thalamus, putamen, and caudate
nucleus [63] respectively. In addition, the validation studies based on the registration algorithm
applied to MR brain images yielded an average inverse consistency error of 0.004 voxels with
a maximum value less than 0.1 voxels.

To the best of our knowledge, this is the first study to use TBM for analyzing regional atrophy
of GM structures in MS. The TBM based statistical analysis does not require segmentation of
GM tissues and/or smoothing tissue maps that is required for VBM analysis. We believe that
TBM analysis combined with the unbiased template based on accurate inverse consistent and
diffeomorphic nonlinear registration has resulted in robust estimation of atrophy.

Similar to the other published study [30], we have demonstrated that many GM structures show
atrophy in patients with modest or no measurable clinical disability, as assessed by EDSS.
However, as the clinical disability worsens, only a few structures, particularly thalamus, show
more severe atrophy. The results are similar to that reported by Audoin et al. [50], where the
thalamus atrophy was observed to increase with disease progression over a period of time.
These authors also reported that the rate of atrophy in thalamus correlated with changes in
EDSS but they did not find correlation between thalamus atrophy and EDSS during the follow-
up study.

Our findings of significant correlation of thalamus atrophy with EDSS is in agreement with
the results reported by Houtchens et al. [29], but not with Ceccarelli et al. [44] and Prinster et
al. [43] who did not observe any such correlation. However, our observed correlation of
thalamus atrophy with T2 lesion load (r = −0.57, p = 9.96×10−9) is similar to that reported by
[44]. Ceccarelli et al. [44] have reported correlation between atrophy and T2 lesion load in left
thalamus (r = −0.70, p < 0.001) and right thalamus (r = −0.81, p < 0.001) on 26
relapsingremitting MS subjects. The higher correlation observed by Ceccarelli et al. [44] may
be due to a number of factors. Our automatic T2 lesion classification on FSE and FLAIR is
based on unified approach proposed by Sajja et al. [69] and atrophy measurements are based
on TBM. Ceccarelli et al. [44] have classified lesions manually and used VBM for atrophy
measurements. Also, the number of MS subjects (88) recruited for this study is relatively high
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in comparison to the number of MS subjects of relapsing phenotype (26) included in the study
performed by Ceccarelli et al. [44].

The DGM structures, such as caudate nucleus, thalamus, and putamen play important roles in
motor, sensory and cognitive behaviors [29,31,45,76]. The regional atrophy of these structures
in MS patients could result in visual, motor, sensory, and gait impairments [77]. Therefore,
our observed correlation between atrophy of these structures and EDSS is not surprising. It is
unclear whether the observed atrophy of GM structures is the result of direct neuronal injury
or the result of WM damage. For example, based on direct histopathologic evidence, neuronal
loss has been documented in thalamus [26,27]. Our observed correlation of atrophy of various
DGM structures with T1 hypointense and T2 hyperintense lesions appears to suggest a link
between WM damage and atrophy of these structures. Finally our observed correlation between
atrophy of these DGM structures with whole brain atrophy (nCSF) is consistent with the results
reported by Houtchens et al. [29].

In addition to thalamus, caudate nucleus, and putamen atrophy, we have observed atrophy of
other GM structures that include septal nuclei, red nucleus, and middle occipital gyrus. The
correlation between atrophy of these structures with clinical disability and MRI-derived
measures is variable.

The present study employs sophisticated and robust image analysis techniques for calculating
regional atrophy in various GM structures, and demonstrates correlation with various MR
measures and EDSS. However, there are certain limitations to these studies. Many of the GM
structures play an important role in cognition. In these studies, we have not performed
neuropsychological tests. It would have been interesting to investigate the association between
atrophy and cognitive deficits seen in MS. In this study, we divided patients into two groups,
based on their EDSS scores at what may be a critical level where future accumulated disability
becomes more linear (i.e. the typical stage of onset of the secondary progressive phase of the
disease) [73]. The majority of our patients had relatively modest EDSS scores that perhaps
limits from defining the complete trajectory of GM atrophy with EDSS. More patients with
higher EDSS need to be included to define GM atrophy with disease progression. This requires
much larger number of patients than what we have included in these studies.

The nonlinear registration used in the TBM analysis ignored WM lesions. Since the registration
was performed on T1-weighted images where most lesions appear isointense (except for black
holes), we believe that ignoring the WM lesions would not significantly affect our results. We
are currently developing techniques that would include WM lesions in the TBM analysis.

The present study is based on the data acquired at a single research center with rigorous quality
assurance procedures for acquisition and analysis. This level of attention may not be feasible
in a larger clinical setting. Generalization of our results requires analysis of data acquired at
different centers. Finally, these are cross sectional studies and future studies should include
longitudinal design. In spite of theses limitations, we believe that our studies provide important
information about the role of DGM atrophy in MS even at a relatively modest clinical disability.
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Fig. 1.
Creation of unbiased Template: Normal brain images obtained from OASIS datasets (A and
B); (C) MNI template, Collin27; (D) average of 20 normal images in the MNI template space
after inverse consistent nonlinear registration; (E) Jacobian determinant of the average of 20
transformations defined on MNI template; and (F) Intensity averaged unbiased template by
mapping D through the inverse of the average geometrical deformations of the 20 nonlinear
transformations.
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Fig. 2.
MRI brain images of an MS subject registered to the unbiased template: First column (A)
Selected cross-sections of the source MS subject with EDSS 4.5; second column (B) MS images
registered to the unbiased template; third column (C) Unbiased intensity averaged template;
and fourth column (D) Jacobian maps in the unbiased template space.
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Fig. 3.
TBM results based on two sample t-test using ANCOVA between normal controls (10 males,
10 females; age 41.2 ± 7.02 yrs) and relapsing MS subjects (23 females, 3 males; age 40.2 ±
9.96 yrs) with EDSS = 0. The overlaid color area represents the regions with significant atrophy
(FDR = 0.05) in the MS group with EDSS = 0 compared to the normal controls. The cluster
size is 10.
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Fig. 4.
TBM results based on two sample t-test using ANCOVA between the two subgroups with
EDSS ≤ 3.5 and EDSS ≥ 4.0 in the relapsing MS patients. The overlaid color map represents
the regions with significant atrophy (FDR = 0.05) between these two subgroups. The cluster
size is 10.
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Fig. 5.
Correlation of mean logarithmic of Jacobian determinant with EDSS in 88 relapsing MS
patients for (A) thalamus, (B) caudate nucleus, and (C) putamen.
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Fig. 6.
Correlation of mean logarithmic of Jacobian determinant with T2 lesion load in 88 relapsing
MS patients for (A) thalamus, (B) caudate nucleus, and (C) putamen.
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Fig. 7.
Correlation of mean logarithmic of Jacobian determinant with T1 hypointense lesion load in
88 relapsing MS patients for (A) thalamus, (B) caudate nucleus, and (C) putamen.
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Fig. 8.
Correlation of mean logarithmic of Jacobian determinant with nCSF in 88 relapsing MS
patients for (A) thalamus, (B) caudate nucleus, and (C) putamen.
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Table 1
Frequency distribution of EDSS for all the 88 subjects.

EDSS Number of Subjects

0 26

1.0−1.5 25

2−2.5 19

3−3.5 5

4−4.5 9

5−5.5 1

6−6.5 3
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Table 2
The correlation (r, p) between atrophy of few gray matter (GM) structures with EDSS, T1 lesion loads, T2 lesions loads
and nCSF.

GM Structures EDSS T2 Lesion Loads T1 Lesion Load NCSF

Thalamus −0.51, 3.85×10−7 −0.56, 9.96×10−9 −0.61, 2.29×10−10 −0.66, 3.55×10−12

Caudate Nucleus −0.43, 2.35×10−5 −0.31, 3.10×10−3 −0.35, 9.51×10−4 −0.52, 2.31×10−7

Putamen −0.36, 6.12×10−4 −0.50, 6.06×10−7 −0.43, 3.51×10−5 −0.66, 2.13×10−12

Pons −0.29, 7.06×10−3 – −0.21, 4.52×10−2 −0.30, 4.37×10−3

Septal Nuclei −0.39, 1.75×10−4 – – −0.42, 4.15×10−5

Red Nucleus −0.30, 4.55×10−3 – – −0.40, 1.18×10−4

Middle Occipital Gyrus −0.28, 9.31×10−3 – – −0.20, 7.07×10−2

Amygdala – −0.45, 9.49×10−6 −0.28, 8.67×10−3 −0.38, 2.19×10−4

Cingulate Gyrus – −0.47, 4.37×10−6 −0.43, 3.04×10−5 −0.23, 3.32×10−2

Middle Temporal Gyrus – −0.33, 1.61×10−3 −0.34, 1.15×10−3 –

Inferior Parietal Lobule – −0.23, 2.97×10−2 −0.30, 3.92×10−3 –

Entorhinal Area – −0.34, 1.36×10−3 −0.23, 3.36×10−2 –

Insular Cortex – −0.25, 2.01×10−2 – −0.30, 4.63×10−3

Globus Pallidus Par Externa – – – −0.37, 3.61×10−4

Globus Pallidus Pars
Interna

– – – −0.36, 6.71×10−4

Middle Fronto-orbital – – – −0.36, 6.85×10−4
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