
Cellular Dynamic Simulator: An Event Driven Molecular
Simulation Environment for Cellular Physiology

Michael J. Byrne, M. Neal Waxham, and Yoshihisa Kubota
Department of Neurobiology and Anatomy, University of Texas Medical School, 6431 Fannin,
Houston, TX 77030, USA

Abstract
In this paper, we present the Cellular Dynamic Simulator (CDS) for simulating diffusion and
chemical reactions within crowded molecular environments. CDS is based on a novel event driven
algorithm specifically designed for precise calculation of the timing of collisions, reactions and other
events for each individual molecule in the environment. Generic mesh based compartments allow
the creation / importation of very simple or detailed cellular structures that exist in a 3D environment.
Multiple levels of compartments and static obstacles can be used to create a dense environment to
mimic cellular boundaries and the intracellular space. The CDS algorithm takes into account volume
exclusion and molecular crowding that may impact signaling cascades in small sub-cellular
compartments such as dendritic spines. With the CDS, we can simulate simple enzyme reactions;
aggregation, channel transport, as well as highly complicated chemical reaction networks of both
freely diffusing and membrane bound multi-protein complexes. Components of the CDS are
generally defined such that the simulator can be applied to a wide range of environments in terms of
scale and level of detail. Through an initialization GUI, a simple simulation environment can be
created and populated within minutes yet is powerful enough to design complex 3D cellular
architecture. The initialization tool allows visual confirmation of the environment construction prior
to execution by the simulator. This paper describes the CDS algorithm, design implementation, and
provides an overview of the types of features available and the utility of those features are highlighted
in demonstrations.

Keywords
Event driven algorithm; Molecular dynamics; Simulator; Molecular simulation; Monte Carlo;
Stochastic simulation

Introduction
Investigating sub-cellular molecular dynamics requires a simulation tool with a high resolution
of spatial detail (Stiles et al. 1996; Andrews and Bray 2004; Boulianne et al. 2008; Ridgway
et al. 2008). Molecular diffusion, aggregation, channel transport, and complicated chemical
reaction networks of both freely diffusing and membrane bound multi-protein channel
receptors are common features of molecular neurophysiology. Unlike traditional
computational methods, such as those employing reaction-diffusion equations, particle-based

© Springer Science+Business Media, LLC 2010
Yoshihisa.Kubota@uth.tmc.edu.
Information Sharing Statement
The Cellular Dynamic Simulator package and links to required Java libraries can be found on the CDS website
(http://nba.uth.tmc.edu/cds/). The package includes a user guide and example simulations.

NIH Public Access
Author Manuscript
Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

Published in final edited form as:
Neuroinformatics. 2010 June ; 8(2): 63–82. doi:10.1007/s12021-010-9066-x.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://nba.uth.tmc.edu/cds/

single molecule level stochastic simulations offer deeper insight into spatial and temporal
dynamics that can be used to model phenomena such as translocation and trafficking (Bredt
and Nicoll 2003; Groc and Choquet 2006). These simulations are also capable of supporting
non-uniform geometry of the cellular boundary and intracellular organelles which may greatly
influence the diffusion and trafficking of signaling (Santamaria et al. 2006; Hugel et al.
2008) and may hinder molecular diffusion significantly.

The Cellular Dynamic Simulator (CDS) was designed to simulate these types of crowded
environments and molecular behaviors with the fundamental feature of handling diffusion and
reactions in volume excluded spaces. Three dimensional particle-based simulators may be
constructed in a variety of ways given the particular environments they are designed to
represent. For example, the spatial coordinates of molecules can be continuous or discretized
(on lattice). The molecules can be modeled as size-less point particles or the size of molecules
can be taken into account when collisions between molecules are computed. Also, the algorithm
that drives the simulator may be time-driven or event-driven (Sigurgeirsson et al. 2001). CDS
uses continuous space and an event-driven algorithm. The event-driven algorithm
(Sigurgeirsson et al. 2001) iterates from one event to the following event where an event is
defined as any occurrence within the simulation environment including a collision, reaction,
transport, stimulus, etc. This algorithm, when combined with an accurate collision detection
scheme, guarantees that no collision or reaction is missed. Accurate event detection is critical
in crowded environments like the inside of cells where the collision probability becomes very
high.

CDS as a software package includes three applications: an initialization interface, the simulator
itself and a post simulation visualization tool. CDS is generally designed to support a variety
of uses and does not constrain the user into a specific type of simulation. This provides
tremendous power and flexibility to the user to address complex problems. A variety of
behavior, such as mobility, degradation, and numerous possibilities for molecular interactions,
can be achieved from molecular species by assigning properties or a combination of properties.
Assigning properties to species is made easy by the initialization interface, but its main purpose
is to aid in creating the structural shape of compartments. Making a tool that simplifies this
process yet allows for the creation of complex designs is essential for a simulator of this nature
to be accessible to a wide audience.

The paper is organized as follows. First, we explain the outline of the algorithm in “Event-
Driven Molecular Collision and Chemical Reaction Model”. Then, the implementation (“CDS
Implementation”), design and features of the CDS simulator (“Features”), and initializer/
visualizer (“Supplementary Tools”) will be described in detail together with specific use
examples. In addition, we compare simulation results with Smoluchowski’s theory for the
diffusion-limited irreversible chemical reaction (A+B → C) and provide a numerical validation
of the algorithm (“Features”). The goal of this paper is to introduce the CDS to potential users
in the field of molecular neurophysiology and neurobiology, however, the open framework of
the simulator provides opportunities to all areas of cell biology.

Event-Driven Molecular Collision and Chemical Reaction Model
The CDS is a novel particle-based, event-driven molecular collision and chemical reaction
algorithmic scheme to simulate the impacts of stochasticity, volume-exclusion, and molecular
crowding on cellular signaling systems. In this section, we introduce the principle underlying
this new algorithm and explain the strategy we use to simulate molecular diffusion and chemical
reactions in a crowded cellular interior. In “Overview of Pre-Existing Algorithms”, we give a
brief overview of the commonly used stochastic simulators in the field and discuss the necessity

Byrne et al. Page 2

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

of the event-driven scheme. In “Outline of the CDS Algorithms”, we describe the outline of
the algorithm.

Overview of Pre-Existing Algorithms
The stochastic fluctuation of molecular dynamics is an important issue when we study the
function of small subcellular compartments such as dendritic spines. Conventional PDE
approach such as Virtual Cell (Moraru et al. 2008) does not address this stochastic fluctuation.
Some stochastic reaction-diffusion simulators, STEPS (Wils and De Schutter 2009) and
MesoRD (Hattne et al. 2005), incorporate stochastic fluctuation and spatial gradients of
molecules. These algorithms are efficient and useful tools to understand the overall molecular
dynamics of the cell. However, in the reaction-diffusion master equation approach, the size of
the compartment cannot be arbitrarily small. The error increases as the size of compartment
decreases as pointed out by Erban and Chapman (2009). Thus, the spatial resolution of the
reaction-diffusion stochastic simulator has limitations.

Several simulation packages use the particle-based stochastic scheme. These include GridCell
(Boulianne et al. 2008), MCell (Kerr et al. 2008), Smoldyn (Andrews and Bray 2004), and the
coarse-grained molecular simulator described by Ridgway et al. (2008). These single-molecule
level simulation methods overcome the limitation of the spatial resolution associated with the
stochastic reaction-diffusion algorithms.

In GridCell, molecules are moved according to a cubic grid structure; therefore, the motions
of molecules are not continuous. In MCell and Smoldyn, individual diffusing molecules are
treated as size-less particles and the volume exclusion principle is not fully taken into account.
To overcome this problem, Ridgway et al. (2008) takes into account the size of molecules and
moves a particle in random direction using a fixed time step (Δt). For a molecule with diffusion
coefficient D, the jump length is . The collision is detected when the distance of two
molecules becomes less than the sum of their radii at the time Δt. If, upon collision, no reaction
occurs, the move is rejected and the molecules are returned to their original positions.

This collision detection algorithm may be problematic. Two particles may collide between
time 0 and Δt and may not overlap with each other at the time Δt. This undetected collision
between time 0 and Δt may influence the trajectories of nearby molecules. The problem
produced by this chain of interdependence of molecular collisions is amplified when the
environment is crowded as in the cell’s cytoplasm. In addition, one might incorrectly alter the
motion of molecules by moving particles back to their original positions. These complications
may result in an unexpected reduction or distortion of molecular diffusion, especially in a
crowded environment. Interestingly, several simulation works including Ridgway et al.
(2008) predicted anomalous diffusion, as opposed to normal (i.e., Brownian) diffusion, in
crowded cellular environment with fixed or mobile obstacles. However, experimental
measurements often report a reduction of molecular diffusion but not necessarily anomalous
diffusion in the cytoplasm (reviewed in Dix and Verkman 2008). The collision detection
scheme with a fixed time-step may be one of the reasons for the discrepancy between
simulations and experiments.

In the molecular dynamics (MD) literature, the simulation schemes are classified into two
types: event-driven and time-driven. In the event-driven scheme, one calculates the temporal
order of all molecular collisions and executes them one-by-one so that no collision event is
ever missed. While in the time-driven scheme, one uses a fixed time step to move the molecules.
As we pointed out, no matter how small this time step is, one might miss the potential collision
between molecules in a crowded environment and one collision event might influence the
trajectories of neighboring molecules (Sigurgeirsson et al. 2001). Thus, the event-driven
scheme is the only accurate way to simulate molecular collision in a crowded environment.

Byrne et al. Page 3

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Translating this event-drive scheme to a mesoscopic Monte Carlo algorithm is, however, not
straightforward. In the case of the classical MD scheme, the particles move according to
Newtonian mechanics. The calculation of collision time between a pair of molecules is
relatively simple. The detection of collision between two moving Brownian particles requires
special care and the development of a computationally efficient algorithm of this type is still
an open area of research. Therefore, it is critical to have a flexible platform that allows users
to test various event-driven algorithms under the same conditions. We have established this
important platform called the CDS.

Outline of the CDS Algorithms
The development of event-driven algorithm was inspired by the first passage concept used in
the famous walk-on-spheres (WOS) method and related first passage time (FPT) algorithm
(Muller 1956; Hwang et al. 2001). The CDS algorithm uses the discretized Brownian
trajectories and does not directly use the exact formulation of the first passage theory. However,
its underlying principle and some of the mathematical formulations are closely related to the
first passage process. For this reason, we give a brief description of the WOS method first and
then introduce the CDS algorithm using the first passage process theory (Redner 2001).

To explain the WOS method, let us suppose there are three molecules in the simulation as
illustrated in Fig. 1a. Two of them (A1 and A2 molecules) are large immobile spherical
molecules of radius of RA while the other one (B molecule) is a smaller diffusing particle of
radius RB. To move particle B, we draw the largest circle around B of radius (RB+σ) in which
the B molecules can move within this circle without colliding into the A1 or A2 molecule. We
call this circle as first passage sphere (FPS) of B (circle, dashed line). Note the center of the B
molecule remains in a sphere of radius σ (smaller than FPS); we take into account of the size
of the B molecule (hard sphere volume exclusion). Then, the mean first passage time
(FPT=τ) of B molecule to touch (reach) this first passage sphere is given by

(1)

(Klein 1952;Redner 2001) where DB is the diffusion coefficient of the B molecule. We
randomly select a new location of the B molecules so that the B molecule touches the surface
of the first passage sphere (FPS) and advance the time clock by τ. We repeat this process (=
“first passage propagation”) until the B molecule falls within a thin-shell of the A2 molecule
when we decide that the B molecule has collided into the A2 molecule. Alternatively, Hwang
et al. (2001) draw a small circle that intersects the target molecule (A2) when the B molecule
comes sufficiently close to it (Fig. 1b). They calculate the mean hitting probability and the
mean time for the B molecule to reach A2 (the solid line and the region indicated by S1 in Fig.
1b). This way, we can calculate the hitting time of the B molecule (in this case, the target is
A2). Note the time advancement and jump length differ from one first passage propagation to
another. The WOS method does not use a fixed time step.

Opplestrup et al. (2006) proposed an extension of the WOS method to the multiple moving
particle system. However, we have come to realize that elaborate theoretical analyses and
derivations of mathematical formulae are required to establish such an algorithm for accurately
simulating chemical reaction kinetics. Furthermore, such a detailed algorithm may be
computationally expensive and slow. The CDS is designed flexible enough to implement any
event-driven algorithm but we have decided to develop a simple yet accurate algorithm that
approximates the first passage scheme.

The core principle of this simplification lies in Eq. 1. Note Eq. 1 is consistent with the
conventional notion of the Brownian diffusion in which the mean-square displacement of a

Byrne et al. Page 4

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

molecule of diffusion coefficient DB over a time period τ is equal to σ2 = 6DBτ. In other words,
the first passage propagation in the WOS method in Fig. 1a is (statistically) equivalent to the
discrete Brownian trajectory in which the jump length is defined by the distance between the
B molecule and its target. The Eq. 1 defines the time advancement during this jump and the
direction of the move is randomly selected as in the discretized Brownian motion.

We extend this scheme to the multiple particle system and introduce a new event-driven
algorithm using the discretized Brownian trajectories. In fact, the only simplification we need
to introduce in creating this new algorithm is the step where we calculate the first passage
probability. Suppose we have two nearby particles (A and B in Fig. 1c) that potentially collide
with each other. To generate discretized Brownian trajectories for these molecules, we use a
“tentative” sample time step dt and select random jump directions for each molecule (the arrows
in Fig. 1c). As usual the jump lengths for these molecules are set to and where
DA and DB represent the diffusion coefficients of A and B molecules, respectively. Knowing
the current locations of molecules and the direction of jump (indicated by the arrows in Fig.
1c) and the jump length, we can decide whether A and B molecules collide with each other or
not and, if they collide, we can calculate where the collisions happens. Here we decide that A
and B molecules collide when the center-to-center distance of these molecules becomes equal
to the sum of their radii after they have traveled distances and where 0 < τ <
dt. Note these travel distances are consistent with Eq. 1. We can calculate (and determine) the
existence of such τ by solving a simple quadratic equation. After the collision, and if A and B
do not react, we assign new directions of movement for these molecules.

For the multiple particle system, we use the collision detection scheme in Fig. 1c to calculate
all possible collision times (between time 0 and dt) for all molecular pairs and generate an
ordered list (heap) of collision events. This allows us to execute the collision events one-by-
one according to their temporal order. While executing collisions, we advance the time clock
and move all other molecules as well. Upon collision and if a binary reaction is selected, two
molecules recombine to generate a new molecule (See “Features” for more details). If no
collision happens, we move all molecules as in the WOS method. In other words, the CDS
algorithm is consistent with the WOS method or the first passage algorithm except that the
collision detection scheme in Fig. 1b is an approximation. Thus, the molecular diffusions and
chemical reactions under the CDS are accurate up to this approximation. On the other hand, it
overcomes the shortcomings of the time-driven Brownian dynamics such as MCell, Smoldyn
and the coarse-grained molecular simulation by Ridgway et al. (2008).

In what follows, we describe other details of the algorithms. For example, we need to explain
how other events such as Ca2+ flow through channels, dissociation reaction, and aggregation
can be implemented under the event-driven scheme. We first describe the overall flowchart of
the algorithm (“CDS Implementation”) and explain the individual event in “Features”.

CDS Implementation
The CDS package is programmed entirely in Java. This allows CDS to be copied between
various operating systems and executed with no need to compile code. Both the initialization
tool (“CDS Initializer”) and the visualization tool (“CDS Visualizer”) are graphical
applications while the simulator itself is non-graphical and runs through a command prompt
or terminal. The separation of these tools was designed for desktop development and analysis
and large scale remote computation. Due to the stochastic nature of the underlying algorithms,
a simulation may require many executions with the results averaged. The Initializer allows for
the simulator to be executed within the graphical environment which is practical for short test
simulations and convenience to new users. Both the Initializer and simulator are self-contained
and require no additional libraries other than a current version of the Java Runtime Environment

Byrne et al. Page 5

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

(JRE 1.6 or newer). The Visualizer requires Java3D and Java Media Framework libraries for
the 3D rendering and movie creation, respectively.

Event Driven Algorithm
As mentioned earlier, CDS is based on an event-driven algorithm (Sigurgeirsson et al. 2001).
In CDS, an event is anything that can occur within the simulation environment including
collisions, reactions, transport, user-defined stimuli, etc. The event-driven algorithm iterates
from one event to the next. For every possible event, the time until next occurrence is computed
and stored. The simulator searches for the next earliest occurring event, and then all molecules
within the simulation environment are advanced up to that time (Fig. 2a). That event is
processed, and the simulator continues the loop, searching for the next event. Accuracy and
integrity of the simulator depends on accurate collision detection between all diffusing and
static entities, regardless of the density of the simulation environment. When each collision is
treated as an event, no collisions are missed by the simulator and this allows for conservation
of populations within closed volumes and precise interactions between molecules, obstacles,
and membranes.

Meshes
Meshes are a universal method of describing arbitrary 3D shapes and have been used to describe
3D reconstructions of sub-cellular compartments such as dendritic trees (Fiala and Harris
2001). All 3D simulators that offer off-lattice diffusion and custom geometry use some type
of mesh construction for compartments. A mesh is comprised of vertices and faces where each
face is a triangle defined by three vertices. The vertices are arranged in each triangle such that
the normal vector (the vector perpendicular to the plane that the triangle resides on) points in
the outside direction (assuming that it is a closed compartment). This is needed for the
calculation of volume and as a way to determine intra versus extracellular space when
molecules interact with the membrane. Surface area is the sum of the areas of all triangles in
the mesh. The standard format that CDS uses is the Wavefront object format (.obj) which is a
very simple file format for meshes. The initialization tool also allows importation of VRML
1.0 (.wrl) meshes. The object format allows faces to be grouped together by name. This way,
the meshes describing compartments may be labeled with sub-regions so that each region has
unique properties, e.g., neck or head of dendritic spines. The proteins created by these meshes
can also be broken into multiple sub-units using this same strategy.

In addition to meshes, we have introduced primitive spheres to lower memory overhead when
simulating simple elements such as ions. Using a mesh to describe a diffusing molecule is
typically only required when simulating multiple subunit protein complexes since a sphere
cannot be broken down into sub-surfaces.

Programming Design
All physical entities that exist in CDS are managed by a World object which also serves as the
link to the event-driven algorithm. This object is abstract which means that some methods are
not defined. In the World object, the abstract methods are those that control molecular
movement or collision detection. This method of programming allows many different types of
worlds to be created to handle specific simulation environments. Environments not currently
included in CDS may be added later with no changes to the current code. Three types of worlds
are presently packaged with CDS. SimpleWorld is an infinite space (lack of a boundary) where
collision detection of a diffusing element is checked against all other compartments and
physical elements in the world. This world is very useful for simple simulations, as it does not
include the overhead of tracking molecule locations involved with optimization strategies.
GridWorld subdivides the simulation space into small cubic cells such that a diffusing element
only performs collision detection against elements in the neighboring cells. The size of the

Byrne et al. Page 6

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

cubic cell is optimized based upon the size of the world and the greatest diffusion coefficient
such that no molecule can travel further than half a cell width before its trajectory is
recalculated. This cell method is used in other Monte Carlo and Molecular Dynamics
simulations to speed up the collision detection (Sigurgeirsson et al. 2001; Donev et al. 2005).
An absorbing boundary can be also defined that if hit, the element is removed from the
simulation environment. PeriodicWorld divides the space in the same manner as GridWorld,
but the boundary is periodic. A special care is necessary for collision detection in
PeriodicWorld for those molecules near or crossing the boundary. The CDS takes into account
of this special nature of periodic boundary collision detection.

Three types of Java classes define all physical objects in CDS, an element, compartment, and
moving compartment. An element is any potentially diffusing molecule and can range from a
fast diffusing ion to a static obstacle to a membrane bound protein complex. A compartment
is a static structure that has a membrane and internal volume. Moving compartments are
functionally similar to moving elements, but contain an internal volume that may be populated
by diffusing molecules. All three share a hierarchy of parent objects (defined by Java classes)
such that they share most of the same code and have similar properties (Fig. 2b). The root
object is a shape which can either be a mesh or a primitive sphere. A Surface object extends
the shape and adds properties such as reactions, an internal state, binding sites, and many other
possibilities that will be described in the following sections. A Structure object extends the
Surface and adds properties of location, trajectory, rotation, and can also store an array of sub-
surfaces. Each sub-surface may be a subset of the overall mesh and may have its own unique
properties and reactions. MovingStructure adds functionality for diffusion, aggregation and
collisions. Compartment objects are static and have internal volumes that may be populated,
while child objects of moving structures are potentially diffusing. In maintaining the generality
of CDS and potential broad uses, these terms will be used throughout this paper, but it must
be remembered that an element can represent a variety of molecules and structures.

Parallelization
The computational cost of the event-driven algorithm is highly variable depending on the
crowding of the environment and the number of fast diffusing elements. Common optimization
strategies are utilized such as subdividing the world (Donev et al. 2005; Sigurgeirsson et al.
2001); however, parallelization with multi core processors is an additional option for reducing
the computation time of CDS. Time consuming operations of CDS are parallelized using Java
threads which take advantage of multi-core SMP machines (e.g. an Intel quad core desktop
processor). Collision detection typically consumes about 75% of the total simulation time.
When CDS is run with a single thread, collision detection is performed on each diffusing
element one at a time. Increasing to two threads divides the elements such that half are
processed by one thread and the rest by the other thread. The elements are assigned to each
thread in an alternating fashion such that both threads will perform collision detection on an
equal number of elements of a similar diffusion coefficient and molecular size (based on how
elements are added to storage arrays). Without any additional thread management, both threads
should complete collision detection in a similar amount of time. The same style of
parallelization is also applied to the method that advances the world by the event time, which
is the second most time consuming portion of CDS. Both cases allow for easy multi-threading
since shared data in memory is only read during these times and not written. CDS is single
threaded at all other times during the simulation.

Features
CDS was designed with the intention of simulating small sub-cellular compartments and
processes involved in those compartments. Initial simulations that would benefit from CDS
involve signaling cascades in a single compartment; however, future interests were kept in

Byrne et al. Page 7

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

mind during development. Systems were considered such as whole synapses where there may
be multiple adjacent terminals each with complex second messenger cascades, release of
transmitter through multiple processes, and also feedback between terminals dependent on
their respective levels of activity. A simulator must be able to reproduce certain behaviors other
than reaction diffusion systems to capture all the dynamics in these systems. For example, if
a pump or channel is placed on an impermeable membrane separating two volumes, how is the
interaction and relocation of ions implemented? If proteins can aggregate at a membrane, how
is the complex created from many independent diffusing proteins, and how does it break apart?
Described in the sections below are the currently implemented strategies in CDS and
explanations on how they may be used to generate these and other molecular behaviors.

Diffusion and Collision Detection
CDS uses discretized Brownian motion to simulate molecular diffusion. These discretized
Brownian motion trajectories are used to compute the next collision time between molecules
(“Event-Driven Molecular Collision and Chemical Reaction Model”). As explained earlier,
we use a “sample time interval” (typically 10∼100 ns) to generate the initial Brownian
trajectories and to probe the space to detect the possible molecular collisions. However, the
collisions and other events are executed one-by-one and the time clock is advanced by these
events and not by a fixed time step.

There are two principle methods for collision detection, sphere on triangle tests and sphere on
sphere tests. In all cases when a collision is detected, the value returned is the time until the
collision will take place. If the simulation environment is advanced by a particular collision
time, then the two colliding entities will be touching. Every element has a collision queue which
stores all possible collisions it could potentially be involved in. The collision data is stored by
order of collision time where the next occurring collision is stored at index zero of the array.
When the event-driven algorithm searches for the next occurring event, it only checks the first
index of the collision queue. The collision data stored in the queue include the IDs of the
elements and/or compartments involved in the collision and also the IDs of the faces that would
be touching if the collision were to occur. The collision detection only needs to be performed
when the trajectory of a molecule is changed or at the start of each Monte Carlo step when all
molecules have their trajectory re-randomized.

Diffusing molecules perform collision detection against compartments on a per face basis. The
test is called a sphere on triangle test (Fauerby 2003) which checks against the triangle plane
and against edges and vertices if the sphere lies within the plane of the triangle upon collision.
The collision detection between diffusing molecules is performed with a so-called sphere on
sphere test as in Sigurgeirsson et al. (2001). If the molecule is described as a mesh, the sphere
radius used is the minimum radius that surrounds all the vertices of the mesh.

The static element that a particle may collide into could have a very complicated and odd shape
such as actin filaments. For these odd-shaped elements, the sphere on sphere test is used as a
first pass for the purpose of optimization. If a collision is registered on the first pass then a
sphere on triangle test is used against the faces of the static element. If the first pass fails, then
a collision is not possible. This allows for accurate collision detection with odd-shaped meshes
where the binding sphere of the mesh may be distant from some faces. In cases where the
diffusing molecule is already overlapped with the static element’s maximum radius, then
collision detection goes straight to the sphere on triangle test.

Binary Reactions
General chemical reactions can be classified into three categories: binary reaction (Fig. 3, A1
and A2), dissociation reaction (Fig. 3, A3), and isomerization (Fig. 3, C2–C3). The binary

Byrne et al. Page 8

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

reactions are further classified into four different subtypes for the purposes of the CDS. First
is a simple recombination reaction (see Eq. 2 below). The second is the binding of a ligand to
a receptor molecule that has multiple ligand binding sites (Eq. 3). The third is a binary reaction
between a multi-subunit protein and its reactant (Eq. 4 and Fig. 3, B1–B4). Lastly, the reactant
molecules A and B can have multiple activation states and the binary reaction in Eq. 5 takes
place between A and B only when they are in designated activation states:

(2)

(3)

(4)

(5)

Binary reactions take place upon collision of two molecules (Fig. 3, A1). The decision as to
whether or not a reaction will take place is typically determined during the collision detection
process using a physical radius of participant molecules. Occasionally, a reaction radius,
different from physical radius, will be use to detect “reactive collision” between molecules. In
CDS, a reaction radius may be specified by users which will override the physical radius during
collision detection between reactive elements. The probability that a reaction will take place
is determined by a probability value between 0.0 and 1.0 where a value of 1.0 results in a 100%
chance of the reaction upon collision (i.e., diffusion-limited reaction). The relation between
this microscopic reaction probability and the macroscopic reaction rate is established by a look-
up table similar to Andrews and Bray (2004) and its modification made by Erban and Chapman
(2009). We needed to improve their formulation using the reaction diffusion equation with a
boundary condition that reflects the volume exclusion principle (Carslaw and Jaeger 1986;
Kim and Shin 1999; van Zon and ten Wolde 2005). However, the simple simulation
experiments help users to establish this look-up table without relying on this theory. CDS
selects a random number between 0 and 1. If the random number is less than the reaction
probability, the binary reaction will be selected. If the reaction is in the form of Eq. 2, then
reactants A and B will be physically removed from the world and a new molecule C will be
added at the midpoint between A and B’s prior location (by default). The mass of molecule C
is the sum of molecules A and B. Therefore the size of molecule C can be different and larger
than A and B. In case the newly generated molecule C overlaps with nearby molecule(s), CDS
will search for free space to place C molecule near the initially calculated point. During each
iteration, a new direction from the initial point is randomly generated. Every 10 iterations, the
distance from the initial point is increased by the radius of C. If after 50 iterations no free space
is found, then the reaction does not take place. The original A and B molecules are placed back
to the position where they collide and their new trajectory will be computed. There is no theory
that presently exists to determine the location for molecule C under the crowding situation.
CDS allows the users to define or assign the location of C molecule differently than the default.
We have extensively tested our default strategy for non-crowding situations and the simulation
results converge to the classical chemical reaction theory (see Fig. 4a below).

If the reaction is in the form of Eq. 3, then reactant B will be removed from the world and A
will retain its current location and trajectory (“Events and Actions” describes how additional

Byrne et al. Page 9

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

behavior can be added to this default implementation). In all types of association reactions
where the reactants are removed from the World, a reference to those reactants is stored in the
product. If the product eventually dissociates back to those reactants, they will have the same
unique IDs that they were assigned when the element was first created.

Special care is necessary with those association reactions in which two possible reaction
pathways are possible between the same reactants. For example, species A can bind two B
molecules, each one to a different terminus which can be designated by a different state of A
(e.g. A.1+ B→A.2 : 0.15 and A.1 + B→A.3 : 0.25). CDS selects a random number between 0
and 1. If the random number is less than the probability of the first reaction to occur, then the
first reaction is selected to occur. Otherwise, the probability of the second reaction is added to
the probability of the first reaction and if the originally generated random number is less than
this cumulative reaction probability, the second reaction will be selected. This continues until
a reaction is chosen, or there are no more valid reactions left which will result in no reaction
occurring.

The binary reaction can be greatly influenced by geometry (shape) of the boundary, the density
of non-reacting obstacles or other crowding agents. This is because the binary reactions depend
on the molecular collision between diffusing particles. The crowding agent will hinder
molecular diffusion thereby influencing the binary reaction. Figure 4 examines this crowding
impact using molecule A of 1.6 nm and molecule B of 2 nm radius and of diffusion coefficients,
32 nm2µs−1 and 20 nm2µs−1, respectively. These molecules are typical of small proteins found
in cells (Kubota et al. 2008). In the simulation, we impose a periodic boundary condition. At
time zero, the same number of A and B molecules are placed randomly (i.e., homogeneous
distribution) at a density of 30 molecules in a cubic compartment (100 nm per side). This
molecular density corresponds to a concentration of ∼50 µM. The reaction probability per
collision was set to 1 (the diffusion limited reaction). Upon collision, a new molecule C (2.3
nm radius and diffusion coefficient of 17.4 nm2µs−1) is created. The radius of C molecules
was calculated so that the volume of molecule C is equal to the sum of A and B molecules.
The diffusion coefficients these molecules obey Stokes-Einstein relation (Sutherland 1905).

First, we examine the binary reaction A+B→C without crowding agent. An average of 500
simulations fits well to the analytic solution derived from the chemical reaction theory, 1/
(A0–C(t))–/1A0=k*t, where C(t) is the concentration of C molecules at time t and A0 is the
initial concentration of A and B molecules (Fig. 4a). This provides a numerical validation of
the CDS algorithms that we discussed in “Event-Driven Molecular Collision and Chemical
Reaction Model”. The resultant reaction rate (k) is 1,173.4 µM−1 s−1. Next, we place obstacles
(2.5 nm spheres) in the space to examine the impact of molecular crowding. The reaction
probability and molecular crowding may influence the binary reaction in a highly complicated
manner. For example, hindered diffusion prevents the encounter of two molecules traveling a
long distance while it increases the collision rate of two molecules confined in a small crowded
environment. Figure 4b shows the time course of the product molecules (per 100 nm cubic
volume) with different volume occupancy of crowding agents. Here all crowding agents are
immobile. As we increase the volume occupancy of crowding agent (see 29 % volume
occupancy in blue), the binary reaction slows down. At 42 % volume occupancy of the
crowding agent (red), the reaction is stalled and most reactants will never interact. At this
volume occupancy (42 %), reactants (A and B) are trapped in subspaces. Those reactants
trapped in a small region may react quickly, but the probability of reaction quickly approaches
zero as reactants are unable to interact due to hindered diffusion from the restrictive obstacles.
Note the impact of diffusing crowding agents is difficult to study using MCell and Smoldyn
because these simulators ignore the volume exclusion principle.

Byrne et al. Page 10

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

First Order Reactions
In this section, we discuss two other types of chemical reactions (isomerization and
dissociation), which we call first order reactions. Upon initialization at runtime or whenever
there is a state change or new species formed (e.g., due to a binary reaction), CDS searches all
valid first order reactions and computes their event times. The time of next first order reaction
is calculated from the corresponding reaction rate based upon a Poisson distribution as in the
Gillespie algorithm (Gillespie 1976) using the formula:

(6)

where random is a uniformly distributed number between 0 and 1. Like binary association
reactions, the dissociation reactions may be one of the following types:

(7)

(8)

(9)

(10)

As with association reactions, CDS attempts to place newly generated molecules (A and B in
Eq. 7–Eq. 10) close to the location of C molecules. In the case of a C→A+B reaction (Eq. 7),
the larger of the products is placed at the former location of C (suppose we assume the larger
molecule is A). Then free space for B is searched for by choosing a random point about the
former location of C at a distance of A’s radius times 1.1 plus B’s radius. There is a slight offset
in the distance to prevent an immediate re-association. CDS searches new and different
locations for B molecules as it increases the distance between B and A molecules. This iteration
process is similar to the free space search for association reaction as described in “Binary
Reactions”. If no free space is found to add B, then the reaction does not take place. The
locations and states that existed before the reaction are restored and a new reaction time for
the selected reaction is calculated. This algorithm for finding free space will only occur in
highly dense environments. If locations are found for both molecules, the new discretized
Brownian trajectories are generated for these molecules (the default is that they are opposite
of each other). As pointed out in Andrews and Bray (2004), there is no chemical reaction theory
that presently exists to determine the distance between newly dissociated molecules even in a
non-crowded environment. This is an open area of chemical reaction theory and CDS allows
the users to define or assign different values than the defaults described here as demanded by
their specific applications.

Surface reactions, as described so far, are inter-molecular meaning that a surface of a molecular
species may only interact with another molecule (Fig. 3b). To accommodate interactions
between subunits within the same element CDS allows the user to group together surfaces. A
group of surfaces may have its own internal state and may have first order reactions that may
change this state. Groups allow monitoring of subunits that are assigned to them. An example
of this would be a receptor where individual subunits have their own agonist and antagonist

Byrne et al. Page 11

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

reaction schemes. In CDS, “rules” given to a group of these subunits can check their different
states and influence the overall state of the protein complex based upon various combinations
of subunit states (Fig. 3c). Whenever there is a state change, these rules are checked and if all
conditions are met, feedback actions are applied to the element. This system of feedback is
described in “Events and Actions”.

Aggregation and Lateral Diffusion
As described above, when a binary reaction occurs the reactants are physically removed from
the simulation space and an instance of the specified product is created in a nearby place. In
CDS, binding properties are added to elements and membranes such that elements become
physically attached to a target and can form aggregated structures (Fig. 5). Two types of binding
can occur, an element to a membrane and an element to another element. There is no limit to
the size of the chain of bound elements. Analogous to dissociation, unbinding can also be
defined and is treated as a distinct event. When molecule A binds to molecule B, B is checked
for any unbinding events associated with molecule A. If this unbinding event is defined in the
input file, an event time for that unbinding is calculated by using Eq. 6 (with a defined unbinding
rate).

When a freely diffusing molecule binds to a membrane, it by default maintains its orientation.
If an alignment vector is specified by the user, CDS will rotate the molecule such that the
alignment vector points in the same direction as the normal vector of the colliding face
(perpendicular to the triangle). A standard convention for meshes, and one used strictly in CDS,
is that all normal vectors point away from the center of the mesh. This is used to determine
(for a closed compartment) what direction indicates the inside volume and outside volume.
This is particularly relevant for channel transport where the direction of dissociation or
movement of ions is important. When the mesh is rotated, all vectors associated with the
molecule are rotated accordingly. The result of the rotation is that the alignment vector points
in the same direction of the triangle’s normal vector. The angle of rotation is specified by three
values, the angles of rotation about the x-axis, y-axis and z-axis.

When a freely diffusing molecule binds to a membrane, unless the movable property is switched
off, that molecule will continue to diffuse laterally along the membrane (Fig. 5b). Membrane
bound diffusing molecules have a random trajectory that lies in the plane described by the
triangle that the molecule resides on. Collision detection in this mode is performed on the center
of the molecule against the three line segments that make up each side of the triangle. When a
molecule hits the edge of a triangle it will calculate a new trajectory that lies in the neighboring
triangle and the molecule will realign itself based upon the normal vector of the new triangle.
Freely diffusing molecules may become membrane bound from the internal or external volume.
If an unbinding property is defined, another parameter may be specified to instruct the
unbinding molecule what volume to unbind to. By default the molecule unbinds into the volume
it existed in prior to becoming membrane bound, but other options include always unbinding
internally, always unbinding externally, unbinding to the volume other than its prior parent, or
unbinding randomly to either the internal or external volume. The initial placement of the
unbound molecule is based upon the direction of the normal vector (or negative normal if the
unbinding is internal) with a magnitude of 1.1 times the radius. There is a slight offset in the
distance to prevent an immediate re-association. As with dissociation reactions, free space for
the unbinding molecule is checked about this initial point but in a conical fashion about the
normal vector. The region of placement is in the shape of a cone to prevent an element from
being placed on the wrong side of a membrane from which is was intended to be placed. The
maximum angle that an element may be placed is 45 degrees from the normal vector. While
not as important in a cubic compartment, it is essential when membranes become more
convoluted.

Byrne et al. Page 12

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Transport and Permeability
The transport property is an event triggered upon collision of a diffusing molecule to a surface
and is used to instantaneously move the colliding molecule from one point in space to another.
While generally implemented, the principle application of this is to create pumps and channels
to transport ions across impermeable membranes (Fig. 6b). As with binary reactions, a
probability between 0 and 1 may be assigned to determine whether the transport event will
occur upon collision of a freely diffusing element. In the example of a Ca2+ pump, the transport
probability combined with the Ca2+ concentration in a compartment will translate to a
macroscopic rate at which Ca2+ will be pumped out of the compartment. A vector is used to
describe the placement of the transported molecule relative to the location of the channel (or
any structure assigned with the transport property). CDS will attempt to move the molecule to
that point in space or if no room exists, then it will try to find room in a conical fashion based
around the placement vector. The default angle to constrain distance about the placement vector
is 45 degrees. Depending on the non-linearity of the membrane where the channel resides, a
wider angle (approaching 90 degrees) may result in placement on the wrong side of the
membrane. While the direction of placement is constrained, within a defined number of tries,
the distance from the initial placement is incremented by the radius of the transported element.
Also as with dissociation reactions, if free space cannot be found within a specified number of
tries, then the event does not take place.

By default, all membranes are impermeable and all diffusing molecules are solid. Transparency
is a surface property that can selectively eliminate collision detection of specified elements or
compartments (Fig. 6a). Since it is a surface property, it can be applied to both diffusing
elements as well as compartment membranes. For diffusing molecules, this could be used for
certain collisions that are insignificant for the simulation and will decrease simulation time.
For example, calcium ions can include a transparency property to itself so all collision detection
between Ca2+ and Ca2+ is ignored. This property works slightly different for membranes.
Collision detection is still performed against a permeable (i.e., transparent) membrane, but this
is only for changing the molecule’s parent volume and the trajectory is not changed during this
collision event. Two connecting volumes that border each other should have a transparent
membrane such that the population change between each volume is registered. Where a semi-
permeable membrane may have a few specific targets where collision detection is ignored,
surfaces that act as a border between two volumes may be only for registering volume change
and should not obstruct diffusion of any molecules. The transparency property can have a target
that is a wildcard (designated by “*”) such that any molecule will register as a target to the
transparent border.

The two options discussed so far for any particular target molecule is that a membrane may be
impermeable or permeable to that target. It is also possible to have absorbing membranes. Any
compartment, whether designed as a boundary or cellular structure, can have reactions assigned
to it in the exact same way that reactions are defined for elements. Defining an association
reaction to the surface of a compartment will cause it to absorb the target upon collision. Again,
a special care is necessary for (partially) absorbing boundary and we follow the strategy
described in Andrews and Bray (2004) to calculate reaction probability. If no dissociation
reaction is defined, then the compartment will indefinitely hold the element. If there is a
dissociation reaction, when the reaction event is processed, the element will be placed in space
about where the association took place.

Events and Actions
Everything that occurs in the simulation environment is termed an event. This includes all
previously mentioned properties such as collision, reaction, binding, unbinding, and transport.
While events such as reactions have an implicit behavior (the creation of products), CDS allows

Byrne et al. Page 13

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

users to apply additional feedback when that event occurs. This feedback can be added onto
any event and is called an “action”. Actions can change properties, simulation variables, add
or delete elements in a volume or surface, and can terminate the simulation. An action can be
applied to only the molecules involved in the particular event or can have global effects. If a
reaction occurs of the form A+B→C, a local action would only (potentially) affect those
elements involved with the reaction. An example of this would be C. Set.DiffusionCE.1.6. The
default value for C may have a different diffusion coefficient. Using this action would change
the diffusion coefficient only for this new instance of C. A global action may change the
properties of a population of elements such as All.Channel.Set.Current-State.Open. These
actions are defined by a code made of several keywords (separated by periods) that CDS uses
to traverse through different components of the simulator.

CDS allows users to create their own events that can trigger a series of actions and provides a
variety of ways on how and when these events are performed. Triggering vesicle release,
channel influx, or bath application of a drug are examples of what can be handled with user
events. These events can be singular or recurring and can be triggered based on an explicit
time, by a rate, or conditionally. They may also be activated by an action created from a different
event. Events triggered by an explicit time use the specified value as the time until the event
occurs. That event time is decreased as the simulation environment advances. Events triggered
by a rate have their event time calculated by a Poisson distribution identical to that of first order
reactions. Conditional events are checked if their Boolean function returns true or false at the
start of every time step. If true, the actions associated with that event are performed, and nothing
occurs if false. One example of this could be a simulation that has an infinite run time and
instead terminates with a conditional statement. For singular events, once the event is
processed, no new event time is calculated. For recurring events, when the event is processed,
a new event time is calculated. Singular events once completed are still loaded in memory and
are simply dormant. They can always be referenced and activated by an action.

When reactions involving state change occur, the internal state is implicitly changed when the
reaction is processed. In the previous section, binding events were described. During binding
the only processing performed is determining the behavior of the newly aggregated complex.
If the user wants to perform binding reactions, actions can be added onto the binding event that
can cause state changes.

Moving Compartments
A third type of structure included with CDS is a moving compartment. These compartments
are nearly identical to the capabilities of elements with the exception that they have a single
populatable internal volume. With respect to static compartments, they allow a similar behavior
of containing membrane bound and freely diffusing molecules. Diffusion, binding and other
properties available to elements apply to the moving compartments in exactly the same fashion.
Diffusing molecules within a moving compartment only perform collision detection on each
other and the parent moving compartment. No outside entities are checked for collisions in
order to boost computation time; especially since moving compartments are typically
computationally expensive. As one example, any fast diffusing ions or transmitter in a small
confined volume results in very frequent collisions and therefore frequent collision detection.

Bath Application and Degradation
During a simulation, elements can be spontaneously added uniformly into any volume or onto
any surface. This is accomplished via an action so bath application can be invoked by any
event. Input arguments for the bath application are the name of the volume or surface, the type
of element to be added, and the number of instances to be created. All instances of the element
are created instantaneously when the action is processed. An alternative to a singular event

Byrne et al. Page 14

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

triggering bath application is to use a recurring event to spontaneously add elements one at a
time. While similar behavior, the difference between this method and using a first order
dissociation reaction on a channel would be that this method gives a uniform spatial distribution
of the influx.

Any element can have a degradation property added to it which will trigger an event that
removes the element from the world. This is identical to a first order degradation reaction
except that there is more flexibility with this property. The property can be initialized such that
it is active or inactive. If active, an event time will be calculated for the degradation event and
if inactive, a degradation event will never occur. Suppose there is a bath application of a buffer
that has a fast clearance rate. Rather than attempting to use other methods available in CDS to
create the desired rate of clearance, the degradation rate can be explicitly stated in this property.
Upon creation of the buffer in the world, an event time will be calculated for the degradation
event.

Variables and Integration
Most instances where CDS takes input as a parameter value can be defined as a function instead
of a constant. Functions can be comprised of almost any mathematical expression and include
basic functions provided in the Math class of the Java language (e.g. sqrt, pow, min, max, floor,
exp, rand, log, etc…). Variables may also be referenced from within functions. A CDS variable
is an object that stores a double precision value. Variables are passed to different parts of CDS
with a reference so that many components of CDS may access the value stored by the variable.
Like actions, a code is used for the referencing of variables (e.g.
Volume.Spine.Population.Ca, Time, or World.TimeStep). Common properties that may take a
function as input include the end time, time step, diffusion coefficient, reaction radius, and
reaction rates. One example of this would be to have a channel that injects Ca2+ into an
intracellular compartment when extracellular space is not being simulated. The function
describing the influx rate can be dependent upon the intracellular concentration of Ca2+.

In addition to functions as expressions, functions may also return values based upon a
conditional statement. The difference between these two is automatically parsed by the
Function object based upon the syntax used.

(11)

(12)

If the format is in the form of Eq. 11, when the function is solved, this expression is calculated.
If formatted as Eq. 12, when the function is solved, first the conditional statement is calculated.
If the returned value is true, then the solution to the true expression is returned, else the solution
to the false expression is returned. The syntax of the question mark and colon is standard
shorthand for if/then/ else statements in C and Java programming languages. The use two
different identifiers before the true and false functions allow for nested conditional functions.

CDS includes an integrator for solving a system of ordinary differential equations (ODE). ODE
variables that are being integrated can also be referenced from various components in CDS.
Likewise, parameters written in an ODE may reference CDS variables. The default integration
method is a fourth order Runge-Kutta method using a fixed time step that is by default the time
step used for creating Brownian motion. If that time step is not small enough for accurate
integration, then a smaller time step can be specified just for use by the integrator. ODEs are

Byrne et al. Page 15

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

integrated as the simulator progresses. At the end of each time step, the system is integrated
up to the current simulation time.

One possible application of using a system of ODEs would be to model membrane potential
with Hodgkin-Huxley equations (Bower and Beeman 1998) and use the potential to trigger the
opening and closing of voltage-gated channels (Fig. 7). Another example would be simplifying
fast diffusing ions to a single pool described by an ODE. Instead of binary reactions with
physically simulated Ca2+, Ca2+ binding could be simulated by a first order reaction that
references the Ca2+ variable in the reaction rate function. A Ca2+ target protein can have a
Markov type reaction scheme described by the type of reaction in Eq. 13 as opposed to the
binary form in Eq. 14. In the following equations, k1 represents the reaction rate while p1
describes the binary reaction probability.

(13)

(14)

Analysis and Output
There is a plethora of possible quantitative output that could be extracted from a simulation,
so to allow maximum flexibility and options to the user, analysis and output code is not directly
implemented. Every component in CDS allows modules to be added to it, where a module is
any object that extends an abstract Module object. Whenever an event occurs, the components
associated with that event will send its reference and an event ID to all modules stored within
that component. The module has the ability to call any method and pull all data stored within
that component and the event ID tells the module what type of event had occurred. The ID
might indicate a collision, association reaction, transport, binding and so forth. A module might
have a very specific output and would only be active for a small number of events. Users can
write custom modules that can be loaded into CDS at runtime to dictate which type of
information will be recorded.

There are several modules included in CDS that offer standard types of output. The VizOutput
module writes the visualization file that can be read by the Visualizer. It is added to any
compartments, elements, or moving compartments that the user wants to visualize. Position
data can be recorded to provide continuous animation or for longer simulations the environment
is saved at a specified interval for snapshot rendering. The PopulationOutput module can be
added to any volume or surface. Species and their states are grouped together by their parent
compartment and written as a time series. The output can be in the form of the number of
species or as concentration/density. SingleTracking records the position and distance travelled
by an individual element. If added to a group of elements, a separate file will be written for
each element instance. This module takes into account the periodic boundary when determining
location. ReactionOutput will record information when reactions occur. This can track a
particular reaction or several reactions within a single output file. When a reaction occurs, the
reaction, the species IDs and the location of the reaction in space is written to the output file.
There’s no limit to the number and types of modules loaded in a simulation and multiple
ReactionOutput modules can be created where each one looks for a specific reaction and each
module has its own output file. A single ReactionOutput can also be created which looks for
multiple reactions and saves all the data to a single file.

Another module included with CDS has the ability to generate a simulation file based upon
the state of the environment upon completion of the simulation. All changes in properties,

Byrne et al. Page 16

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

deleted elements and added elements are included in this file. This generated simulation file
can be reloaded as input into the Initializer and further modified or run from the simulator.
This module is useful for users who want to run a simulation until an equilibrium is reached
in the system and use that environment as a beginning point for further simulations. This
module is added to the world object and is only active after the simulation is complete. Since
the module is added to the world, it has the ability to reference all instances of compartments
and elements and all current property values stored within those instances.

Supplementary Tools
CDS Initializer

Constructing the simulation environment is a labor intensive task to perform manually even
for very simple simulations. The CDS Initializer is a stand-alone graphical tool for creating
and populating the simulation environment. The initialize interface has three two-dimensional
views (front, side and top) for viewing the world and a floating frame used to manage and
assign properties to compartments and elements (Fig. 8). When the Initializer first loads, an
empty world is created which is an infinite void.

When compartments are first created, a shape must be set which is defined by a mesh. Once
the shape is created, the compartment is placed at the origin of the world and is given the
properties of a unique ID and a location. Each compartment is unique and a single instance
exists in the simulation. When creating an element, only a base definition of the element is
created which initially defines a shape and no other properties. Using this base definition, many
instances of that element can then be added to the world in the form of groups. For example,
the user may select a compartment and uniformly distribute 50 instances of element X into the
volume of that compartment with a group name xgrp. The definition of element X can be
expanded which will show all groups created with element X. Each group can be expanded to
view the individual instances that were created. When each instance is created, it initially has
the properties of a unique ID, a location, and in some cases an initial rotation. The point of the
hierarchy is that properties may be defined in the base definition, and all instances will inherit
those properties. However, it also allows properties to be changed on a group by group or
instance by instance basis. Any property defined in a group will override the same property
defined in the base definition, and the same is true for properties added to a single instance. In
practice, a group of receptors may be initialized with some internal state while another group
is initialized in a different internal state, but all other properties that define that receptor are
identical.

When new compartments and elements are created, a mesh must be assigned to it (or also a
sphere for elements). The two options to the user are to create a new mesh or import a mesh.
New meshes can be created from a list of several prefabricated designs including primitive
shapes such as spheres, cuboids, cylinders, pyramids and so forth. There are some more specific
prefabrications such as those that resemble dendritic spines. All these prefabrications are
created based on user specified parameters such as a radius for a sphere or length/ width/height
for a cuboid. Most of them also take a resolution parameter which indicates how many triangles
comprise the mesh. For example, a sphere with a resolution of 1 is diamond shaped. Every
increase in resolution doubles the number of lines of latitude and longitude. Once the mesh is
created, the Initializer provides tools for manipulating the shape of the mesh. The goal of these
tools is to allow the user to create fairly complex structures without having to rely on third
party 3D modeling software which can be very complicated to use and are generally expensive.
The entire mesh may be scaled, translated and rotated. Individual or groups of vertices can be
selected and manipulated also (Fig. 9). Whenever the mesh is transformed surface area and
volume are recalculated.

Byrne et al. Page 17

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

The file saved by the Initializer is a simulation file (.cds) that can be read by the simulator.
Simulation files are based on a XML format. The hierarchal format of XML works well with
the tree data structure used in CDS to eliminate redundancy of the element definitions. XML
also facilitates easy file creation, parsing and can be loaded into a tree structure for quick
searching and reference. This also allows for some nodes to be pulled from the tree and saved
into separate files to store in a library. For example, a large protein reaction scheme may be
created in a simulation. This scheme can be saved separately into a library that can be loaded
into future simulations. This is also true for element and compartment definitions.

CDS Visualizer
The CDS Visualizer is a stand-alone tool for rendering and animating CDS output created from
the VizOutput module (Fig. 10). Compartment and elements are displayed in a tree on the left
side of the window to control color and rendering properties. A bottom panel has animation
playback controls and the main window shows the rendered view of the simulation. Playback
is controlled through VCR style buttons. Animation can be paused, advanced frame by frame,
played in real time, or in a fast forward (or slow motion) mode. The same controls also exist
for backwards playback. If the time unit in the simulation is in microseconds, then when
animating in normal “Play” mode, for every second of real time, one microsecond of simulation
time will elapse. Fast forward and fast backwards work based upon a multiplier such that a
multiplier of 1 will equate to the play mode. Slow motion can be viewed by setting this
multiplier between 0 and 1 and fast forward if greater than 1. The user can also jump
instantaneously to different time points in the simulation.

The view in the main window is what is rendered based upon the orientation of the camera.
The camera can be manipulated using a three button mouse. The left mouse button rotates the
view, the wheel zooms in and out, and the right button pans the camera. If the user desires
smooth motion of the camera for recording purposes, the camera can be automated by controls
that are driven by the animation playback. The Visualizer can take screenshots of the rendered
view and create QuickTime™ movies. A record button, once clicked, will output the rendered
view to a movie file while playback is occurring. The playback can be paused during recording
so lighting, rendering properties, and the camera may be altered and the playback may resume
under the new changes. The user can manually jump to different time points as well. This
allows movie creation as several segments using this software without resorting to third party
movie editors for stitching together movies. Screenshots can be taken in two different ways
and saved in a variety of formats. Simple screenshots can be taken at the resolution based on
the current size of the view. High resolution screenshots can also be taken with a resolution
specified by the user. The maximum size is dependent on the graphics card, but most cards can
handle upwards of 4000 by 4000 pixels; plenty for publishing quality.

The data read by the Visualizer is a series of time stamps where each time stamp is followed
by the molecules that were updated at that time. An update is registered whenever there is a
change in location, rotation, or internal state. The Visualizer interpolates the time-stamped
position data to provide continuous movement. Elements can be color coded by internal state
to visually identify when reactions take place. Rendering properties are assigned to elements
in the same manner of hierarchy as in the Initializer. Individual molecules can be colored
uniquely, or the base molecule definition may be given rendering properties that apply to all
instances of that definition. The Visualizer can also load simulation files to see the snapshot
of the simulation environment at initialization. The 2D views in the Initializer can become very
crowded in dense environments so confirming the environment creation can be done in a 3D
view.

Byrne et al. Page 18

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Summary
CDS has been constructed as a tool with a wide variety of uses, from theoretical simulations
(a zero compartment void with a periodic boundary) to physiological representations of sub-
cellular compartments. CDS will continue to undergo development as new research directions
may call for increased functionality. Potential modifications may include simulating active
transport, adding depth to membranes, and the ability to import reactions from Systems Biology
Markup Language (SBML) models. The source code will be available to researchers with an
open source mindset. Incorporating a variety of researchers in different areas of molecular
modeling will help give insight in improvements to CDS as well as an expanded development
team such that the simulator can continue to become more flexible and efficient in design. The
initialization and visualization tools may also be improved based upon the feedback from users
with different levels of experience in 3D environments. Every effort will be made to insure
that the software remains intuitive for advanced and novice users so that the CDS will find
utility for a broad base of users. It is hopeful that the generality and power of CDS will attract
numerous research projects in various fields of molecular biology and neurophysiology.

Aside from the difficulty in creating 3D simulation environments, the greatest problem with
particle simulators of this nature is the large computation time when presented with complex
environments with large molecule numbers. Typical workstations (containing CPUs of 2 to 3
Ghz clock speed and 2 to 4 cores) limit the range of simulation time of complex systems to
seconds and simple simulations to a timescale of minutes. As processors become more powerful
and the number of cores increases which will allow for greater multi-threading, this will become
less of an issue. More powerful computers in combination with more efficient optimization
techniques will gradually allow complex systems to be simulated to timescale of minutes with
a computation time measured in days. Greater computational power in the future also leaves
open the possibility of expanding the scale of these simulations into a cellular rather than sub-
cellular scale.

Acknowledgments
This work was supported by U.S. National Institutes of Health grant NS038310. We would like to thank Pete Swulius
and Dave Howard for their invaluable help on developing an early version of the visualization tool.

References
Andrews SS, Bray D. Stochastic simulation of chemical reactions with spatial resolution and single

molecule detail. Physical Biology 2004;1:137–151. [PubMed: 16204833]
Boulianne L, Al Assaad S, Dumontier M, Gross WJ. GridCell: a stochastic particle-based biological

system simulator. BMC Systems Biology 2008;2:66. [PubMed: 18651956]
Bower, JM.; Beeman, D., editors. The book of GENESIS: Exploring Realistic Neural Models with the

General Purpose Neural Simulation System. second edition. New York: Springer-Verlag; 1998.
Bredt DS, Nicoll RA. AMPA receptor trafficking at excitatory synapses. Neuron 2003;40(2):361–379.

[PubMed: 14556714]
Carslaw, HS.; Jaeger, JC. Conduction of heat in solids. 2nd ed.. New York: Oxford University Press;

1986.
Dix JA, Verkman AS. Crowding effects on diffusion in solutions and cells. Annual Review Biophysics

2008;37:247–263.
Donev A, Torquato S, Stillinger FH. Neighbor list collision-driven molecular dynamics simulation for

non-spherical hard particles. I. Algorithmic details. Journal of Computational Physics 2005;202:737–
764.

Erban R, Chapman SJ. Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular
reactions. Physical Biology 2009;6(4):46001.

Fauerby, K. Improved collision detection and response. 2003. http://www.peroxide.dk/.

Byrne et al. Page 19

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.peroxide.dk/

Fiala JC, Harris KM. Extending unbiased stereology of brain ultrastructure to three-dimensional volumes.
Journal of the American Medical Informatics Association 2001;8(1):1–16. [PubMed: 11141509]

Gillespie DT. A general method for numerically simulating the stochastic time evolution of coupled
chemical reactions. Journal of Computational Physics 1976;22:403–434.

Groc L, Choquet D. AMPA and NMDA glutamate receptor trafficking: multiple roads for reaching and
leaving the synapse. Cell and Tissue Research 2006;326(2):423–438. [PubMed: 16847641]

Hattne J, Fange D, Elf J. Stochastic reaction-diffusion simulation with MesoRD. Bioinformatics 2005;21
(12):2923–2924. [PubMed: 15817692]

Hugel S, Abegg M, Paola V, Caroni P, Gahwiler BH, McKinney RA. Dendritic spine morphology
determines membrane-associated protein exchange between dendritic shafts and spine heads.
Cerebral Cortex 2008;19(3):697–702. [PubMed: 18653666]

Hwang C-O, Given JA, Mascagni M. The simulation-tabulation method for classical diffusion Monte
Carlo. Journal of Computational Physics 2001;174(2):925–946.

Kerr RA, Bartol TM, Kaminsky B, Dittrich M, Chang J-CJ, Baden SB, et al. Fast Monte Carlo simulation
methods for biological reaction-diffusion systems in solution and on surfaces. SIAM Journal on
Scientific Computing 2008;30(6):3126–3149. [PubMed: 20151023]

Kim H, Shin KJ. Exact solution of the reversible diffusion-influenced reaction for an isolated pair in three
dimensions. Physical Review Letters 1999;82(7):1578–1581.

Klein G. Mean first-passage times of Brownian motion and related problems. Proceedings of the Royal
Society of London. Series A. Mathematical and Physical Sciences 1952;211(1106):431–443.

Kubota Y, Putkey JA, Shouval HZ, Waxham MN. IQ-motif proteins influence intracellular free Ca2+ in
hippocampal neurons through their interactions with Calmodulin. Journal of Neurophysiology
2008;99:264–276. [PubMed: 17959737]

Moraru II, Schaff JC, Slepchenko BM, Blinov ML, Morgan F, Lakshminarayana A, et al. Virtual cell
modelling and simulation software environment. IET Systems Biology 2008;2(5):352–362.
[PubMed: 19045830]

Muller ME. Some continuous Monte Carlo methods for the Dirichlet problem. Annals of Mathematical
Statistics 1956;27(3):569–589.

Opplestrup T, Bulatov VV, Gilmer GH, Kalos MH, Sadigh B. First-passage Monte Carlo algorithm:
diffusion without all the hops. Physical Review Letters 2006;97(23):230602. [PubMed: 17280187]

Redner, S. A guide to first passage processes. New York: Cambridge University Press; 2001.
Ridgway D, Broderick G, Lopez-Campistrous A, Ru’aini M, Winter P, Hamilton M, et al. Coarse-grained

molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. Biophysical
Journal 2008;94(10):3748–3759. [PubMed: 18234819]

Santamaria F, Wils S, De Schutter E, Augustine GJ. Anomalous diffusion in Purkinje cell dendrites caused
by spines. Neuron 2006;52(4):635–648. [PubMed: 17114048]

Sigurgeirsson H, Stuart A, Wan W-L. Algorithms for particle-field simulations with collisions. Journal
of Computational Physics 2001;172:766–807.

Sutherland W. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin.
Philosophical Magazine 1905;9:781–785.

Stiles JR, Van Helden D, Bartol TM Jr, Salpeter EE, Salpeter MM. Miniature endplate current rise times
less than 100 microseconds from improved dual recordings can be modeled with passive
acetylcholine diffusion from a synaptic vesicle. Proceedings of the National Academy of Sciences
of the United States of America 1996;93(12):5747–5752. [PubMed: 8650164]

Wils S, De Schutter E. STEPS: modeling and simulating complex reaction-diffusion systems with Phyton.
Frontiers in Neuroinformatics 2009;3(15):1–8. [PubMed: 19198661]

van Zon JS, ten Wolde PR. Green’s function reaction dynamics: a particle-based approach for simulating
biochemical networks in time and space. Journal of Chemical Physics 2005;123(23):234910–234916.
[PubMed: 16392952]

Byrne et al. Page 20

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 1.
Molecular collision detection schemes. a A two-dimensional schematic representation of a
Brownian trajectory of the B molecule using the WOS (walker-on-spheres) method. A1 and
A2 are static molecules. The B molecules move within a series of “protective” first spheres
(dashed circles). The thin-shell (called ε-shell in Hwang et al. 2001) of the A2 molecule is
indicated by the dotted circle. b In the first passage algorithm, we draw a sphere (dashed
circle) intersecting A2 (target molecule) and calculate the first passage probability and first
passage time. In this two-dimensional schematic representation, the circle intersects A2 at P0
and P1. S1 is the sub-region of the surface of A2 bounded by P0 and P1. S2 is a sub-region of
the sphere around B (dashed circle). We calculate the first passage probability and first passage
time of the B molecule to reach the region of S1 and S2. This way we can sample (select) the
mean hitting time to A2 (from the current location of the B molecule). c Collision detection
scheme for a pair of molecules (A and B). In this panel, the A molecular has moved from its
original location by the distance and the B molecule by the distance along their
trajectories and they collide at time τ. If we cannot find such τ(0 < τ < dt), the outcome is no
collision

Byrne et al. Page 21

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 2.
Flow chart of the basic organization of CDS. a Within the main loop of CDS, which continues
while the simulation time is less than the termination time, a sub-loop exists which iterates the
time step. Prior to the time step loop, trajectories of diffusing molecules are randomized. A
residual value is set to the size of the time step. Within the loop, CDS searches for the next
possible event with an event time less than the residual value. If an event is found, then the
simulation environment is advanced to the time that the event will occur and the residual is
subtracted by that time. If no event is found, the simulator is advanced by the residual time and
executes the next time step. Whenever the simulation environment is advanced, all currently
stored event times are decreased by the amount of time that was advanced. b The hierarchy of

Byrne et al. Page 22

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

objects that make up all physical entities within CDS. Of the three final objects managed by
the world (compartments, elements, and moving compartments), much of the code is shared
in the form of parent objects

Byrne et al. Page 23

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 3.
Binary and surface reactions. A1. Two colliding molecules A and B have detected a collision
with an association reaction. A2. Upon collision, the product molecule C is created at the
midpoint of the colliding locations of A and B. All possible reactions for C are calculated and
their event times stored. A3. After some time, a dissociation reaction is found to be the next
occurring reaction and the event is processed. The same instances of X and Y that were involved
in the association are placed adjacently with opposing trajectories. B. A protein was created
with 12 subunits each with a default initial state (indicated by gray). Each subunit has an
association reaction for molecules A and B (Eq. 4). As A and B react, the colliding subunits
change state as indicated by the color change. C. A membrane bound receptor (R) is created

Byrne et al. Page 24

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

with three unique subunits that each has an irreversible association reaction with an agonist.
C1. After a period of time, subunit R1 is in a bound state and the other two are unbound. A
freely diffusing agonist, X (pink), has a collision detected with subunit R2 of the receptor and
has a valid association reaction. C2. The reaction has been processed and subunits R1 and R2
are now in a bound state. C3. After time has elapsed, the R3 subunit has also reached a bound
state. Upon all subunits reaching a bound state, there is a change in the activation state of the
entire receptor (indicated as orange)

Byrne et al. Page 25

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 4.
Chemical reaction and molecular crowding. The time evolution of chemical reaction between
two molecular species, A and B, is shown with or without crowding agents. A and B react upon
collision to form a complex, C with a probability of 1 (i.e., the diffusion-limited reaction).
Thirty molecules of A and B are placed in a small cubic volume (100 nm per side) with or
without immobile crowding agent. The simulation was performed under a periodic boundary
condition. The radii of A, B, and C molecules are 1.6, 2, 2.3 nm, respectively. The diffusion
coefficients of A, B, and C molecules are 32, 20, and 17.4 nm2/µs respectively. a An average
of 500 simulation runs is compared to the analytic solution derived from the chemical reaction
theory. Here we plot 1/(A0–C(t))–1/A0 (empty circles) where C(t) is the (averaged)

Byrne et al. Page 26

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

concentration of C molecule at time (t) from simulation, A0 is the initial concentration of A
and B molecules. Thirty molecules of molecules in a cube of 100 nm per side correspond to a
concentration of ∼50 µM. The solid straight line represents an analytic solution. The inclination
of this line is a chemical reaction rate of 1,173.4 µM−1 s−1 as predicted for a diffusion-limited
reaction. The simulation and theory are in a good agreement. The total time duration of the
plot is 100 µs because the chemical reaction theory and the analytic solution are only valid for
the initial phase of the reaction process. b The time evolution of the number of C molecules
(per 100 nm cube) is shown. The immobile crowding agents are spheres of radius 2.5 nm. The
volume occupancy of crowding agents are 0 % (black lines), 29 % (blue lines), and 42 % (red
lines). The solid lines are average of 500 simulation runs and the dotted lines represent single
simulation runs for each case. c A rendering of the crowded environment used in Fig. 4b. The
volume occupancy of crowding agent (2.5 nm spheres, transparent gray) is 42%. A (red) and
B (blue) are also shown

Byrne et al. Page 27

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 5.
Aggregation and trafficking simulation. a Scaffolding protein S1 (light blue) is static and
membrane bound. b Upon a freely diffusing agonist (cyan) reacting with S1, S1 switches state
(blue) such that it may anchor the laterally diffusing receptor R1 (yellow). c Receptor R1 has
bound to S1 and upon binding, R1 switches state. R1 in its new state now has the ability to
anchor a freely diffusing agonist (red). d The final aggregated complex anchored about the
immobile scaffolding protein

Byrne et al. Page 28

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 6.
Membrane permeability and transport simulations. A1. Two volumes are separated by a semi-
permeable membrane. This membrane is permeable to X molecules (red) and impermeable to
Y molecules (blue). At initialization, all molecules are distributed in the right compartment.
A2. After time has elapsed, Xs have begun to diffuse to the left compartment while Ys remain
contained within the right compartment. After enough time, X molecules will be uniformly
distributed over both volumes and Y molecules will remain uniformly distributed in the right
volume. B1. Two volumes are separated by an impermeable membrane. A channel is located
on the membrane that transports Y molecules from the right compartment to the left
compartment upon collision. B2. After time has elapsed, Ys have been transported into the left
compartment while Xs remain contained in the right compartment

Byrne et al. Page 29

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 7.
Triggering voltage gated channels with an action potential. A. The action potential is elicited
with a 3 ms, 5 nA current. The voltage gated channels are switched to an open state when there
is a greater than 20 mV depolarization. In an open state, each channel injects Ca2+ ions at a
rate of 0.01 µs−1. The arrows indicate the time points and potential at which the renderings in
panel B were taken. In this simulation, we assume a uniform potential, i.e., the spine is treated
as a single compartment. B. Renderings of the system are shown at 2.5, 4.5 and 6 ms (in panel
B1, B2 and B3 respectively) after the start of current injection. Channels colored red indicate
an open state and colored blue indicate a closed state. It should be noted that while the rendering
at B1 was taken 2.5 ms after the start of current injection, it was 100 µs after channel opening.

Byrne et al. Page 30

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

At this time the Ca2+ concentration was 0.43 µM. At 6 ms after current injection, Ca2+

concentration is 8.8 µM

Byrne et al. Page 31

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 8.
Snapshot of the Intializer with a model synapse loaded. The right and bottom panels show a
2D drawing of the simulation space from a top view, side view and front view. The frame at
the top left displays the compartments and elements in the world and their properties. Two
compartments (pre- and post-synaptic) exist opposite each other with the empty volume
between representing the cleft. Elements distributed throughout these compartments include
static obstacles, calmodulin, Ca2+/calmodulin-dependent protein kinase II, Ca2+ pumps,
vesicles, and glutamate receptors. These elements quickly crowd the viewing area and this
illustrates the need for the Initializer to have algorithms for automatic distribution of elements.
In such a crowded environment, with some exceptions, manually placing elements is not
recommended. The presynaptic compartment is selected and its properties are shown on the
right side of the floating frame. Two output modules are added to this compartment and a sub-
region of the mesh has been designated the active zone which allows freely diffusing vesicles
to bind to

Byrne et al. Page 32

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 9.
a A new spherical mesh was created and in the mesh editor mode, half of the vertices were
selected. Red crosses on the sides and corners of the selected vertices allow for scaling and
rotating by interaction via the mouse. b Two groups of vertices from the original sphere have
been translated, scaled and rotated to form this new shape. This interaction allows for the
construction of more complicated structures from a starting point of a simple prefabricated
design

Byrne et al. Page 33

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 10.
A view of the Visualizer window showing a rendering of the simulation described in Fig. 8.
Meshes may be rendered opaque or with a variable degree of transparency and can be solid or
wireframe. Colors can be assigned by surface, by state and or surface state. Colors can be
adjusted by element, by group or by individual instances. Properties applied to an element are
automatically applied to all instances of that element. A variety of playback controls allow
precise rates of animation. The view can be panned, rotated and zoomed by using the three
mouse buttons

Byrne et al. Page 34

Neuroinformatics. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

