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 Transforming growth factor-β (TGF-β) is a cytokine that plays essential roles in 

regulating embryonic development and tissue homeostasis. In normal cells, TGF-β 

exerts an anti-proliferative effect. TGF-β inhibits cell growth by controlling a cytostatic 

program that includes activation of the cyclin-dependent kinase inhibitors p15Ink4B and 

p21WAF1/Cip1 and repression of c-myc. In contrast to normal cells, many tumors are 

resistant to the anti-proliferative effect of TGF-β. In several types of tumors, particularly 

those of gastrointestinal origin, resistance to the anti-proliferative effect of TGF-β has 

been attributed to TGF-β receptor or Smad mutations. However, these mutations are 

absent from many other types of tumors that are resistant to TGF-β-mediated growth 

inhibition. The transcription factor encoded by the homeobox patterning gene DLX4 is 

overexpressed in a wide range of malignancies. In this study, I demonstrated that DLX4 

blocks the anti-proliferative effect of TGF-β by disabling key transcriptional control 

mechanisms of the TGF-β cytostatic program. Specifically, DLX4 blocked the ability of 

TGF-β to induce expression of p15Ink4B and p21WAF1/Cip1 by directly binding to Smad4 

and to Sp1. Binding of DLX4 to Smad4 prevented Smad4 from forming transcriptional 
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complexes with Smad2 and Smad3, whereas binding of DLX4 to Sp1 inhibited DNA-

binding activity of Sp1. In addition, DLX4 induced expression of c-myc, a repressor of 

p15Ink4B and p21WAF1/Cip1 transcription, independently of TGF-β signaling. The ability of 

DLX4 to counteract key transcriptional control mechanisms of the TGF-β cytostatic 

program could explain in part the resistance of tumors to the anti-proliferative effect of 

TGF-β. This study provides a molecular explanation as to why tumors are resistant to 

the anti-proliferative effect of TGF-β in the absence of mutations in the TGF-β signaling 

pathway. Furthermore, this study also provides insights into how aberrant activation of a 

developmental patterning gene promotes tumor pathogenesis.   
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CHAPTER 1: INTRODUCTION 

 

 

A. TGF-β SIGNALING AND CANCER 

 

Transforming growth factor-β (TGF-β) is a cytokine that controls diverse 

processes such as cell proliferation, differentiation and migration during normal 

embryonic development and in adult tissues (1, 2). TGF-β signaling has a complex 

role in tumors. On one hand, the anti-proliferative effect of TGF-β, which is essential 

for maintaining normal tissue homeostasis, is lost in many cancers. On the other hand, 

the ability of TGF-β to promote cell migration has an important role in tumor metastasis 

(3, 4).  

 

1. The TGF super-family 

 

The TGF super-family is comprised of more than 30 secreted proteins, including TGF-

βs, activins and bone morphogenetic proteins (BMPs). These secreted proteins serve 

as ligands for specific transmembrane type I and type II receptors (3) (Table 1). 

Binding of the ligands to their specific type II receptor activates the corresponding type 

I receptor, which in turn activates specific receptor-activated Smad proteins (R-Smads) 

(Table 1). TGF-β and activin preferably activate Smad2 and Smad3, whereas Smad1, 

Smad5 and Smad8 are selectively activated by BMPs (5). Activation of R-Smads is 

inhibited by specific inhibitory Smad proteins (I-Smads) (i.e. Smad6, Smad7) (6, 7). All 

R-Smads, irrespective of their ligands, associate with a common Smad protein, 
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Table 1. The TGF super-family: Ligands, receptors and signal transducers 

Major TGF ligands, their corresponding receptors and receptor-regulated Smads (R-

Smads) are listed. All R-Smads interact with Smad4 as a common mediator (5, 9, 10). 

 

Ligand Type II receptor Type I receptor R-Smad 

TGF-βs TβRII ALK5 (TβRI) 

Smad2 

Smad3 
Activins 

Nodals 

Lefty 

ActR-II ALK4 (ActR-IB) 

ActR-IIB ALK7 

BMPs 

BMPR-II ALK3 (BMPR-IA) 

Smad1 

Smad5 

Smad8 

ActR-II ALK6 (BMPR-IB) 

ActR-IIB 
ALK2 

MIS MISRII 

? ? ALK1 
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Smad4, to form heteromeric complexes in the nucleus that control transcription of 

distinct sets of genes (8).  

 

1.1. TGF-β signaling pathways 

 

Proteolytic cleavage of latent TGF-β releases a homodimeric complex of two 

polypeptides linked by disulphide bonds (bioactive TGF-β) from latent TGF-β binding 

proteins that tether the ligand in extracellular matrix (11). Binding of active TGF-β to 

the TGF-β type II receptor (TβRII) activates its serine/threonine kinase domain and 

recruits the TGF-β type I receptor (TβRI or ALK5). The TβRII kinase phosphorylates 

TβRI at several serine and threonine residues located within its juxtamembrane 

domain and thereby induces TβRI kinase activity (12). In turn, TβRI kinase 

phosphorylates Smad2 and Smad3 that are tethered to the receptor complex by the 

recruiting protein SARA. Phosphorylated Smad2 and Smad3 translocate into the 

nucleus, where they form heteromeric complexes with Smad4 and other DNA-binding 

factors to activate or repress transcription of distinct sets of genes (9, 12) (Figure 1). 

As discussed in more detail below, this canonical Smad-dependent pathway is crucial 

for mediating the anti-proliferative effect of TGF-β. Induction of cell migration by TGF-

β is also controlled in part by the canonical Smad pathway (Figure 1). TGF-β can also 

trigger signaling pathways that are Smad-independent. Interaction of TβRII and/or 

TβRI with specific adaptor proteins activates distinct signaling pathways such as 

mitogen-activated protein kinases (MAPK), phosphatidylinositol 3-kinase/Akt (PI3-

K/Akt) and Rho GTPases (13-16). These non-Smad signaling pathways are important 

for promoting cell migration in response to TGF-β (17) (Figure 1). 
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Figure 1. The TGF-β signaling pathways 

TGF-β induces activation of Smad and non-Smad signaling pathways. TGF-β-

mediated growth-inhibition is primarily controlled by the canonical Smad pathway. 

TGF-β-mediated cell motility is controlled by both Smad and non-Smad pathways. RII: 

TβRII, RI: TβRI. 
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1.2. Modulation of TGF-β/Smad signaling 

 

The Smad-dependent TGF-β signaling pathway is dynamically modulated at 

multiple levels, from ligand-binding to downstream nuclear events (Figure 2). Binding 

of TGF-β to TβRII is promoted by extracellular matrix proteins such as betaglycan, 

endoglyn and crypto, and is blocked by LAP protein (reviewed in (11)). Stability of the 

TβRI-TβRII complex is down-regulated by Smad7 that acts as an adaptor for the E3 

ubiquitin ligases Smurf1 and Smurf2 (18, 19). Smad7 also prevents recruitment of R-

Smads to TβRI (20). Signaling pathways triggered by various growth factors such as 

interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and epidermal growth factor 

(EGF) can indirectly inhibit TGF-β signaling by inducing expression of Smad7 

(reviewed in (21)). Nuclear localization and activation of R-Smads are induced by TβRI 

phosphorylation, and are inhibited by phosphatases (22-24). Cytoplasmic retention of 

R-Smads is also caused by extracellular signal-regulated kinase (ERK)-mediated 

phosphorylation (25). TGF-β-induced Smad-dependent transcription is negatively 

modulated by several Smad co-repressors. For example, binding of transforming 

growth interacting factor (TGIF) to Smad2 represses transcription by recruiting histone 

deacetylases (HDACs) to the Smad transcriptional complex (26). Another example is 

the binding of Ski/SnoN to Smad transcriptional complexes that leads to recruitment of 

N-CoR/mSin3/HDAC repressor complexes (27-29).   
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Figure 2. Modulation of TGF-β/Smad signaling  

TGF-β/Smad signaling is modulated at multiple levels from ligand-binding to 

downstream nuclear events. Several key "control-points" are indicated. Red lines 

represent inhibition; blue arrows represent induction.  
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2. Smad-mediated transcription 

 

2.1. Functional domains of Smad proteins 

 

Smad proteins are comprised of two functional domains, Mad homology 1 

(MH1) and Mad homology 2 (MH2), with an intervening linker region (8, 12) (Figure 3). 

MH1 domains contain nuclear localization signal (NLS) sequences and are 

responsible for interacting with Smad-binding DNA elements (SBE). MH2 domains are 

highly conserved between R-Smads. MH2 domains mediate interactions of R-Smads 

with TβRI, with one another, with Smad4, and with other transcription factors (12). 

Phosphorylation of two serine residues at the unique C-terminal Ser-Ser-X-Ser (SSXS) 

motif by TβRI kinase results in nuclear localization and activation of R-Smads (30, 31). 

Conversely, phosphorylation of linker domains by ERKs causes cytoplasmic retention 

of R-Smads. Linker domains are divergent among R-Smads and Smad4. The linker  

region of Smad4 possesses a nuclear export signal (NES) (Figure 3). This NES and 

the NLS signal, located in the MH1 domain, allow Smad4 to shuttle in and out of the 

nucleus (Figure 3).  
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Figure 3. Functional domains of Smad proteins  

MH1 domains of Smad4 and R-Smads contain a nuclear localization signal (NLS).  

Smad4 also contains a nuclear export signal (NES). The MH1 domains mediate DNA 

binding. Smad2 contains an extra 30 amino acids (yellow box) that abrogates its DNA-

binding ability. MH2 domains of R-Smads contain the SSXS motif that is 

phosphorylated by TβRII kinase. Adapted with permission from Wiley‐Liss, Inc: JCB, 

Kimberly et al., copyright 2007 (32) 
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2.2. Smad-mediated transcription regulation 

 

TGF-β induces formation of R-Smad/Smad4 complexes either as hetero-trimers 

(two R-Smads + Smad4) or as hetero-dimers (one R-Smad + Smad4) (33). The 

binding affinity of Smad MH1 domains to SBEs (5’-AGAC-3’) is very low (33). 

However, high DNA-binding affinity and specificity are achieved by interaction of Smad 

hetero-dimers or -trimers with other DNA-binding factor(s) to form large transcriptional 

complexes that either induce or repress specific sets of target genes (8, 34, 35). 

 

Smad-mediated transcription induction 

 

Both the strength and specificity of Smad-induced transcription are governed by 

interactions between activated R-Smads, Smad4, and specific transcriptional 

activators with their corresponding DNA-binding elements on target promoters. A 

classic example is the induction by TGF-β of expression of the cyclin-dependent 

kinase (CDK) inhibitor p15Ink4B. The proximal promoter region of the p15Ink4B gene 

(positions −110/−40) contains two adjacent sets of SBEs and GC boxes that are 

bound by the transcription factor Sp1 (36). TGF-β induces p15Ink4B transcription by 

stimulating cooperative interactions between Sp1 and Smad proteins that enhance 

their DNA-binding and transcriptional activities (Figure 4A). Transcriptional activation 

by TGF-β of the gene encoding the CDK inhibitor p21WAF1/Cip1 is also mediated by 

cooperative interactions between Sp1 and Smads. This is achieved via two distinct 

promoter regions, a distal region (located 1.7 kb upstream of the transcription start 

site) that contain SBEs, and a proximal region (located between positions −124 to −61)  
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Figure 4. Smad-mediated transcriptional activation  

Smads can induce transcription of target genes by [A] recruiting transcriptional 

activators (e.g. Sp1) and/or histone acetylases (e.g. CBP/p300) and by [B] displacing 

transcriptional repressors (e.g. Brk).  
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that have Sp1-binding sites (37, 38). It is thought that coupling of the distal and 

proximal promoter elements and formation of the Smad-Sp1 transcription complex 

occurs via chromatin remodeling (10, 34, 39). Increasing evidence indicates that the 

histone acetyltransferase CBP/p300 is a major co-activator for Smad-mediated 

transcriptional activation (40-43) (Figure 4A). Smads also can activate specific genes 

by displacing transcriptional repressors. For example, binding of MAD (Drosophila 

homolog of R-Smad) to the Dpp (Decapentaplegic) promoter dislodges the Brk 

(Brinker) repressor from the Dpp promoter (44) (Figure 4B).  

 

Smad-mediated transcription repression 

 

Although Smad proteins have intrinsic trans-activating activity, gene repression 

accounts for about one-quarter of TGF-β-mediated gene responses (45). Mounting 

evidence implicates a central role for Smad3, but not Smad2, in TGF-β-mediated 

transcription repression. A well-studied example is TGF-β-mediated repression of c-

myc transcription (Figure 5A).  Smad3 binds to the co-repressor p107 in a complex 

with E2F4/5 and DP1. In response to TGF-β stimulation, this complex translocates into 

the nucleus and interacts with Smad4 via Smad3. Smad4 binds to the SBE, while 

E2F4/5 binds to the E2F binding site. The E2F binding site and the SBE are both 

located within the TGF-β inhibitory element (TIE) of the c-myc promoter. Interaction of 

E2F4/5-DP1-p107-Smad3-Smad4 repressive complex with the TIE element blocks c-

myc transcription (46, 47) (Figure 5A). On the other hand, Id1 transcription is blocked 

by the Smad co-repressor ATF3. ATF3 forms inhibitory complexes with Smad3 and 

Smad4, and ATF3 expression itself is induced by Smads (48). Smad3 also represses 
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Figure 5. Smad-mediated transcriptional repression 

Smads can repress transcription of target genes by [A] recruiting transcriptional 

repressors (e.g. p107), [B] recruiting HDACs (e.g. HDAC4), and [C] sequestering 

transcriptional activators (e.g. MyoD).  
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transcription by recruiting HDACs. Smad3 blocks osteoclacin expression by binding 

Runx2 and recruiting HDAC4 to form a repressive complex that inhibits Runx2-induced 

osteoclacin transcription (49) (Figure 5B). In addition to recruiting repressors, Smad3 

blocks binding of transcriptional activators to target gene promoters. For example, 

Smad3 inhibits transcription of the muscle creatine kinase (MCK) gene by binding 

MyoD and blocking formation of MyoD-E12/47 dimers and their binding to the E-box 

motif (50) (Figure 5C). 

 

3. Cellular responses to TGF-β 

 

3.1. TGF-β-mediated growth inhibition 

 

In most types of normal cells, TGF-β has a potent anti-proliferative effect. TGF-

β primarily inhibits cell growth by inducing cell cycle arrest in G1 phase (3). TGF-β 

controls a cytostatic program of gene responses that includes activation of CDK 

inhibitors and repression of growth-promoting transcription factors (Figure 6). Gene 

responses that are central to this program are induction of p15Ink4B and p21WAF1/Cip1 

(38, 51) and repression of c-myc and inhibitors of differentiation (Ids) (3, 48, 52). Each 

of these gene responses leads to G1 arrest by distinct but integrated mechanisms. 

p15Ink4B forms an inactive complex with CDK4/6 that prevents activation of CDK4/6 by 

cyclin D (53) (Figure 6). Conversely, p21WAF1/Cip1 binds to and inhibits cyclin A/D/E-

CDK2 and cyclin D-CDK4/6 complexes  (54) (Figure 6). E2F family members are 

crucial for G1/S transition and S phase progression (55). Inhibition of CDKs keeps the 

Rb protein in an unphosphorylated and active form such that Rb is able to bind and     
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Figure 6. TGF-β induces cell cycle arrest 

TGF-β induces expression of the CDK inhibitors, p15Ink4B and p21WAF1/Cip1, and inhibits 

expression of c-myc and Id transcription factors. Induction of p15Ink4B and p21WAF1/Cip1 

and down-regulation of c-myc and Ids lead to increased repression by Rb protein of 

the E2F transcription factors that normally promote G1 to S phase progression. Red 

lines represent inhibition; blue arrows represent induction. 
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block transcriptional activity of E2F proteins (56) (Figure 6). On the other hand, c-myc 

induces expression of cdc25A which dephosphorylates and activates Cdk4/6 (57) 

(Figure 6). TGF-β also inhibits expression of Id1, Id2 and Id3 (3, 48, 58). Binding of Id  

proteins to unphosphorylated Rb dislodges Rb from E2F transcription factors, thereby 

releasing E2Fs from the inhibitory effect of Rb (59) (Figure 6). As discussed above 

(section 2), transcriptional activation of p15Ink4B and p21WAF1/Cip1, and repression of c-

myc and Ids occur in a Smad-dependent manner (Figures 4, 5). However, there is 

evidence that TGF-β can also induce G1 arrest by a Smad-independent mechanism. It 

has been reported that TGF-β induces protein phosphatase 2A (PP2A) that 

dephosphorylates and deactivates p70S6K, a kinase that plays a role in G1/S 

progression (60, 61). The TGF-β cytostatic program is tightly integrated by feedback 

loops that protect against competing mitogenic signals. c-myc represses transcription 

of p15Ink4B and p21WAF1/Cip1, but its own transcription is repressed by TGF-β (46, 62, 

63) (Figure 7). TGF-β/Smad signaling inhibits Id2 expression by repressing expression 

of c-myc, an activator of Id2 transcription, and by inducing expression of the c-myc 

antagonist MAD4 (58, 64). 

 

 The role of TGF-β in programmed cell death varies depending on the cell type 

and cellular conditions (65-69). Several genes that are induced in a Smad-dependent 

manner can promote apoptosis. For example, TIEG, an early response gene induced 

by TGF-β, induces apoptosis in pancreatic epithelial cell lines (68). On the other hand, 

activation of several Smad-independent pathways by TGF-β can inhibit apoptosis. 

TGF-β blocks serum withdrawal-induced apoptosis by suppressing JNK activity in lung  



 
16 

 
 

Figure 7. Integrated control of the TGF-β cytostatic program 

The TGF-β cytostatic program is tightly integrated by feedback loops that protect 

against competing mitogenic signals. For example, c-myc represses transcription of 

p15Ink4B and p21WAF1/Cip1. On the other hand, c-myc transcription is repressed by TGF-

β .  
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carcinoma cells and Akt activity in mammary epithelial cells and skin keratinocytes (65, 

67). However, the program of TGF-β-mediated apoptosis is not well-defined (3) 

 

3.2. TGF-β-induced cell motility 

 

During normal developmental patterning and tissue repair, cells often acquire 

migratory and invasive properties (2). In response to TGF-β, epithelial cells acquire 

fibroblastic morphology and become motile and invasive. The hallmarks of this 

conversion, termed epithelial-to-mesenchymal transition (EMT), are cytoskeletal 

reorganization (actin reorganization, stress fiber formation), junctional disassembly 

(dissolution of tight junctions, adherens junctions and desmosomes) and loss of apical-

basolateral polarity (2, 17).  

 

TGF-β promotes EMT in part by inducing expression of transcription regulators 

that belong to the Snail, ZEB and bHLH families in a Smad-dependent manner (Figure 

8). These transcription factors repress expression of major transmembrane 

components of adherens and tight junctions of epithelial cells, and conversely activate 

expression of mesenchymal genes (2). Snail1 and Snail2 (Slug) repress expression of 

E-cadherin, plakoglobin, claudins and occludin (70-72). Conversely, Snail proteins 

induce expression of vimentin, fibronectin, vitronectin and N-cadherin (73, 74), 

extracellular matrix proteins (collagen type III and V) (73) and regulators of migration 

and invasion (RhoB, plasminogen activator inhibitor-1, matrix metalloproteinase MMP-

9) (74, 75). ZEB1 and ZEB2 (SIP1) repress expression of E-cadherin (76, 77), 

desmosome protein plakophilin-2 and tight junction proteins claudin-4 and ZO-3, and  
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Figure 8. Induction of EMT and cell motility by TGF-β  

TGF-β promotes EMT and cell motility by both Smad-dependent and Smad-

independent (non-Smad) mechanisms. EMT-inducing transcription factors (Snail, ZEB 

and bHLH families) are induced by TGF-β in a Smad-dependent manner. These 

transcription factors repress expression of epithelial genes and activate expression of 

mesenchymal genes. Activation of non-Smad signaling pathways by TGF-β enhances 

cell motility by inducing cytoskeletal reorganization and junctional disassembly. 
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conversely enhance expression of vimentin, N-cadherin and MMP-2 (78). The bHLH 

transcription factor members Twist1 and Twist2 repress expression of E-cadherin, 

occludin and claudin-7, and induce vimentin and N-cadherin (79).  

 

Increasing studies indicate the importance of non-Smad signaling pathways in 

TGF-β-induced EMT (Figure 1). Inhibition of the MAPK, Rho GTPase and PI3-K/Akt 

pathways blocks TGF-β-induced EMT in epithelial cells (13, 80-83). Activation of 

MAPK members is mediated via different TGF-β receptor adaptor proteins. TRAF6 

activates TAK1 which in turn activates p38 MAPK and c-Jun N-terminal Kinase (JNK) 

(84, 85). Shc activates Ras which then activates ERK1 and ERK2 (86). ERK1/2 

indirectly regulate genes that control cell-matrix interactions, cell motility and 

endocytosis (45). Activation of MAPK signaling induces junction disassembly and cell 

motility (reviewed in Ref. (87, 88)). TGF-β induces rapid activation of Rho GTPases. 

Activated RhoA induces p160ROCK (RhoA kinase) (89) which induces stress fiber 

formation and stimulates LIM kinase. Induction of cofilin by LIM kinase causes re-

organization of the actin cytoskeleton (90, 91). Conversely, RhoA activity is controlled 

by Par6 that activates the E3 ubiquitin ligase Smurf1, which in turn controls RhoA 

activity at tight junctions by targeting it for degradation (14). TGF-β induces interaction 

of the regulatory subunit of PI3-K with TβRI receptor resulting in rapid activation of the 

PI3-K/Akt signaling pathway (16). Activation of this signaling leads to reduced cell-cell 

adhesion and the acquisition of spindle cell morphology (13, 92, 93). Akt has been 

reported to repress transcription of E-cadherin (93), induce expression of 

metalloproteinases (94) and induce delocalization of E-cadherin, ZO-1 and integrin-β1 

from cell junctions (13).   
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4. Complex role of TGF-β in tumorigenesis 

 

 Tumorigenesis is a dynamic process characterized by multiple acquired 

capabilities that include insensitivity to anti-growth signals, limitless replicative 

potential, self-sufficiency in growth signals, evasion of apoptosis, sustained 

angiogenesis and tissue invasion (95). TGF-β  plays a complex role in tumorigenesis 

by facilitating the cancer cell's acquisition of these key capabilities (21, 95) (Figure 9).  

 

4.1. Promotion of tumor progression by TGF-β 

 

TGF-β promotes tumor progression by exerting both cell-autonomous and non-

cell-autonomous effects. The cell-autonomous effect of TGF-β is the recapitulation of 

normal TGF-β-induced EMT and is crucial for tumor metastasis (2, 9). Blockade of 

TGF-β signaling inhibits tumor cell invasiveness, whereas restoring TGF-β signaling in 

non-invasive tumor cells promotes invasiveness (96). TGF-β also promotes tumor 

progression by exerting non-cell-autonomous effects on the tumor microenvironment. 

TGF-β promotes tumor angiogenesis in part by inducing expression of angiogenic 

cytokines, and also MMP-2 and MMP-9 that induce endothelial cell migration and 

invasion (97-100). Furthermore, TGF-β causes immunosuppression and enables 

tumor cells to escape from immunosurveillance (101-103). TGF-β represses the 

function of cytotoxic T cells by inhibiting expression of interleukin-2 and its receptors, 

which are crucial for T-cell proliferation (104, 105). TGF-β causes loss of tumor cell 

immunogenicity by repressing expression of major histocompatibility complex antigens  
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Figure 9: Multiple roles of TGF-β in tumorigenesis 

TGF-β signaling has a complex role in tumorigenesis. TGF-β induces migratory 

behavior of normal cells and promotes metastasis of tumor cells. TGF-β also promotes 

tumor angiogenesis and immunosuppression. TGF-β inhibits proliferation, induces 

apoptosis and maintains genomic stability in normal cells. The anti-proliferative effect 

of TGF-β is lost in many cancers.  
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(106-108). TGF-β also inhibits activity of other immune cells such as killer cells, NK 

cells (109), neutrophils (110), macrophages and B cells (102, 111).     

 

4.2. Resistance of tumors to the anti-proliferative effect of TGF-β 

 

A major hallmark of cancer is acquired insensitivity to anti-growth signals (95). 

In many normal cell types, TGF-β has a potent anti-proliferative effect. However, many 

tumors are resistant to the anti-proliferative effect of TGF-β (3, 4, 39). Mutations of 

some core components of the TGF-β signaling pathway such as TβRI, Smad2 and 

Smad3 are rarely found (<5%) in cancers (39, 112). However, resistance to the 

growth-inhibitory effect of TGF-β in some cancers has been attributed to mutations in 

other core components, in particular, TβRII and Smad4 (Table 2). Inactivation of TβRII 

due to somatic mutations has been reported to occur at high frequency (60-90%) in 

colon cancers with microsatellite instability (MSI) (112-114). Mutations or deletions of 

Smad4 have been reported in ~50% of pancreatic and non-MSI colorectal cancers 

(112, 115). TGF-β receptor mutations have been found in 12-31% of ovarian cancers 

(116, 117) but many ovarian cancers that are resistant to TGF-β were reported to 

express functional receptors (118). However, mutations in TβRII and Smad4 are rarely 

found in various other types of cancers such as lung and prostate cancers (112, 119-

121) (Table 2). Similarly, many TGF-β-resistant breast cancers rarely contain TGF-

βRII or Smad mutations (122, 123) (Table 2).  The rareness of mutations in core 

components of the TGF-β signaling pathway in many tumors therefore indicates that 

resistance to TGF-β also stems from other aberrations.  
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Table 2. Mutation frequency of TGF-β signaling components in cancers  

Mutation frequency of TβRII and Smad4 genes in some types of cancers are listed. 

+MSI: Cancer with microsatellite instability, -MSI: Cancer with no microsatellite 

instability. nd: Not detected. Mutations which are rarely detected are indicated as <5%:  

 

Cancer  TβRII Gene  Smad4 Gene  Reference 

Colon  60-90% (+MSI) 50% (-MSI) 
(113-115, 124, 

125) 

Pancreas  4% 50% (125) 

Ovary  12-31% 12% (116, 117)  

Lung  nd (+MSI) 7% (119, 121)  

Prostate  <5% <5% (120)  

Breast  <5% <5% (122, 123) 
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B. ABERRATIONS OF HOMEOBOX GENES IN HUMAN CANCERS  

 

Homeobox genes comprise a large super-family of evolutionarily conserved 

genes that encode transcription factors (126, 127).  Homeobox genes play essential 

roles in controlling developmental patterning (127-130). Many homeobox genes are 

aberrantly expressed in tumors, but the functional significance of their aberrant 

expression is poorly understood (131). 

 

1. Overview of homeobox genes 

 

Transcription factors encoded by homeobox genes are characterized by their 

highly conserved 61 amino acid DNA-binding domain termed the homeodomain. This 

domain forms three alpha helices that bind DNA elements containing a TAAT core 

motif (127) (Figure 10).  The homeobox gene super-family is categorized into several 

different families based on sequence similarities in their homeodomain and other 

functional motifs (132, 133) (Figure 11). Members of the HOX and DLX homeobox 

gene families are organized in clusters. In mammals, the 39 members of the HOX 

family are organized in four clusters located on different chromosomes. The 6 

members of the DLX family are located upstream of these HOX loci (134, 135) (Figure 

12). These HOX-DLX clusters have been postulated to derive from gene duplication 

during evolution (128, 136).  
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Figure 10. Structure of homeodomain proteins 

Transcription factors encoded by homeobox genes contain a conserved homeodomain 

that binds DNA. The homeodomain forms three α-helixes (colored boxes) that bind 

DNA sequences containing a TAAT core motif. Adapted with permission from Nat Rev 

Cancer, Abate-Shen, copyright 2002 (131). 
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Figure 11. Classification of homeobox genes 

The homeobox gene super-family comprises more than 200 genes that are 

categorized into different families. The DLX family comprises six members. 
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Figure 12. Gene clusters of DLX and HOX families 

Members of the mammalian HOX and DLX homeobox gene families are organized in 

clusters. The 39 members of the HOX family are organized in four clusters located on 

different chromosomes. The 6 members of the DLX family are located upstream of 

these HOX loci. Adapted with permission from Springer: Cell, Krumlauf, copyright 

1994 (128). 
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2. Homeobox genes in development and cancer 

 

Homeobox genes play essential roles in controlling cell differentiation, tissue 

morphogenesis and specification of the body plan during embryonic development. 

Distinct sets of homeobox genes control organogenesis, development of the central 

nervous system, limb and skeletal patterning, and craniofacial morphogenesis (137, 

138). Homeobox genes also control cell renewal and tissue regeneration processes in 

adults, including hematopoiesis, spermatogenesis and endometrial remodeling during 

the menstrual cycle (139-143). Aberrant expression of various homeobox genes has 

been reported in different types of tumors (Tables 3, 4). A general trend is that 

homeobox genes that are normally expressed in differentiated adult tissues are down-

regulated in tumors, whereas homeobox genes that are normally expressed in 

embryonic tissues are activated in tumors (131, 144) (Figure 13). This aberrant 

expression of homeobox genes in tumors is thought to reflect an inappropriate 

recapitulation of embryonic pathways (131, 144). Several homeobox genes that are 

down-regulated in tumors have tumor-suppressive functions (144) (Table 3). Loss of 

function of these homeobox genes appears to drive cells back to a less differentiated 

state and promotes cell survival and proliferation (144). Down-regulated expression of 

several homeobox genes in tumors has been attributed to epigenetic mechanisms and 

chromosomal aberrations. For example, loss of HOXA5 expression in breast tumors is 

due to promoter methylation (145). Loss of NKX3.1 and CUTL1 expression in prostate 

and uterine cancers stems from loss of heterozygosity (146, 147). On the other hand, 

aberrant activation of several homeobox genes that are normally expressed in 

embryonic tissues promotes tumor cell proliferation and survival (Table 4). Aberrant 

expression of homeobox genes in leukemias primarily arises from chromosomal    
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Table 3. Examples of homeobox genes that are down-regulated in tumors 

 

Gene  Cancer () Normal expression pattern Functional significance Reference 

CDX2  Colon ()  Expressed in adult intestinal 

epithelium 

Inhibits growth of colon carcinoma 

cells by inducing expression of 

p21WAF1/Cip1. Heterozygous deletion 

increases susceptibility to 

carcinogenesis. 

(149-152) 

NKX3.1 Prostate () Expressed in adult prostate 

epithelium  

Null mutant mice are predisposed to 

prostate cancer. Loss of expression 

correlates with tumor progression.  

(146, 153, 154) 

HOXA5 Breast () Expressed in normal breast 

epithelium. 

Regulate p53 expression .Loss of 

expression was found in 60% of 

breast cancer to be due to promoter 

methylation.   

(145, 155)  

BARX2 Ovary () Expressed in normal adult 

ovarian surface epithelium 

Has tumor suppressive and anti-

metastatic properties. Can modulate 

cisplatin sensitivity. Frequently 

deleted in ovarian cancer 

(156, 157)  
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Table 4. Examples of homeobox genes that are up-regulated in tumors 

 

Gene  Cancer () Normal expression pattern Expression and Function in tumors Reference 

PAX2  Renal () 

 

Expressed during embryonic 

urogenital development but 

not in adult kidney.  

Expressed in renal cell carcinomas. 

Promotes cancer cell survival. 

(158-161) 

HSIX1  Breast ()  Expressed in developing 

eye, brain, muscle, 

embryonic mammary gland.  

Promotes cell cycle progression by 

activating cyclin A1 expression. 

(162, 163) 

GBX2 Prostate () Expressed in developing 

nervous system. 

Induces cell growth by inducing 

expression of interleukin-6. 

(164, 165) 

HOXB7 Melanoma 

Ovarian 

Breast 

 Promotes tumor growth and 

angiogenesis by inducing expression of 

fibroblast growth factor-2. Induces EMT. 

Promotes DNA repair. 

(166-169)  

 

 



 
31 

 
 

Figure 13. Aberrant expression of homeobox genes in tumors 

Homeobox genes that are expressed during embryonic development, but are down-

regulated in normal adult tissues, are often up-regulated in tumors. Conversely, 

homeobox genes that are expressed in normal adult tissues are often down-regulated 

in tumors. Adapted with permission from Nat Rev Cancer, Abate-Shen, copyright 2002 

(131). 

 

 

 



 
32 

 
 

translocations. Several chimeric oncoproteins arise from fusion of the NUP98 gene 

and HOX genes (144, 148). However, the mechanisms that give rise to activation of 

homeobox genes in solid tumors are largely unknown. 

 

3. Significance of the homeobox gene DLX4 in cancer  

 

Most homeobox genes are expressed in a tissue-specific manner. DLX4, a member of 

the DLX homeobox gene family, is expressed in normal bone marrow cells, 

trophoblast, placenta and endometrium, but is not expressed in most other normal 

adult tissues (170-172). DLX4 has been increasingly reported to be expressed in 

diverse types of tumors (Table 5). The DLX4 gene maps to the 17q21.3-q22 region 

(173, 174). Amplification of this chromosomal hot-spot in breast and ovarian cancers 

correlates with poor prognosis (175). Aberrant expression of DLX4 in ovarian cancers 

is significantly associated with high tumor grade and advanced disease stage (173). 

Aberrant expression of DLX4 in breast cancers correlates with invasiveness (176). 

Upregulation of DLX4 has also been reported in other types of cancers, including 

leukemia, choriocarcinoma, prostate and lung cancers (172, 177-179). The 

upregulation of DLX4 in tumors arising from a wide variety of organ sites raises the 

strong possibility that DLX4 controls a pathogenic mechanism that is common to 

multiple types of tumors. 
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Table 5. Aberrant expression of DLX4 in tumors 

 

Cancer Expression pattern in tumors Functional significance Reference 

Ovarian 

 

Expressed in ovarian carcinomas 

and correlates with high tumor grade 

and disease stage. 

Induces tumor vascularization by inducing 

expression of VEGF and FGF-2.  

(173) 

Breast  Highly expressed in invasive tumors.  Represses expression of BRCA1. Induces 

expression of bcl-2 and inhibits TNF-α-

induced apoptosis in breast cancer cells. 

(176, 187-

190) 

Leukemia Highly expressed in chronic 

lymphocytic leukemia and acute 

lymphoblastic leukemia.  

Expression in leukemic cells increases 

clonogenicity. 

(172) 

Prostate Expressed in 70% of prostatic 

adenocarcinomas. 

 (177) 

Lung Expressed at higher levels in tumors 

than in adjacent normal tissues. 

Enforced expression of DLX4 in metastatic 

lung cancer cells inhibits metastasis.  

(178, 179) 

Chorio-

carcinoma 

Expressed in placenta and 

choriocarcinoma cell lines 

Promotes tumor cell survival (191, 192) 
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 C. CROSS-REGULATION OF TGF SIGNALING AND HOMEOBOX GENES  

 

Increasing evidence indicates that cross-talk between members of the TGF 

super-family and of the DLX homeobox gene family is important for controlling normal 

bone morphogenesis and skeletal patterning (1, 180, 181). On one hand, signaling by 

several TGF super-family members controls transcriptional activity and/or expression 

of DLX transcription factors. For instance, BMP-2 activates DLX3 transcription (182). 

In contrast, Smad6, an antagonist of BMP signaling, inhibits transcriptional activity of 

DLX3 by inhibiting its ability to bind target gene promoters (183).  On the other hand, 

DLX proteins can control TGF signaling by modulating Smad activities. DLX1 has 

been reported to inhibit activin signaling by binding Smad4 (184). Cross-regulation 

between members of the TGF super-family and other homeobox genes has also been 

reported. For example, Mixer and Milk, members of the homeobox Mix family, 

enhance Smad-mediated transcription of Goosecoid in xenopus by interacting and 

recruiting activated Smad complexes to Mixer/Milk binding sites on the Goosecoid 

promoter (181). Group 13 HOX proteins interact with Smad1, Smad2 and Smad5 and 

block their transcriptional activities (185). Conversely, Smad1 has been reported to 

block transcriptional activity of HOXB4, HOXB7, HOXC8 and HOXD10 (186).  
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D. HYPOTHESIS AND SPECIFIC AIMS 

 

The resistance to anti-growth signals is a major hallmark of cancer. TGF-β is a 

key cytokine that inhibits growth of most normal cells by inducing G1 arrest (Figure 6). 

The anti-proliferative effect of TGF-β is orchestrated by a cytostatic program of gene 

responses that are controlled by Smad-dependent mechanisms (Figure 1). Central to 

this cytostatic program are activation of the CDK inhibitors, p15Ink4B and p21WAF1/Cip1, 

and repression of the growth-promoting transcription factors, c-myc and Ids (Figure 6). 

Binding affinity and selectivity of Smad complexes for target gene promoters are 

governed by Smad interactions with other DNA-binding factors. Cooperative 

interactions between Smad proteins and the Sp1 transcription factor are central to 

TGF-β-mediated induction of p15Ink4B and p21WAF1/Cip1 transcription (Figure 4A). Most 

types of cancers are resistant to the anti-proliferative effect of TGF-β. This resistance 

has been attributed to TGF-β receptor and/or Smad mutations in some types of cancer 

(Table 2). However, the rareness of these mutations in many other tumors indicates 

that resistance to the anti-proliferative effect of TGF-β also stems from other molecular 

aberrations (Table 2). 

 

DLX4 is a member of the DLX homeobox gene family. Unlike most other 

homeobox genes that have been studied to date, DLX4 is expressed in a wide range 

of different malignancies. Mounting evidence indicates that cross-talk between the 

members of the TGF super-family and DLX genes is important for controlling normal 

bone morphogenesis and skeletal patterning (Section C). My central hypothesis is that 

DLX4 promotes tumor growth by modulating the TGF-β signaling pathway in tumors. 
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My overall goal is to determine whether and how DLX4 blocks the anti-proliferative 

effect of TGF-β in tumors.  

 

The specific aims of my thesis project are to determine: 

1) whether DLX4 inhibits TGF-β-induced, Smad-dependent responses 

2) whether DLX4 blocks Smad transcription activity 

3) whether DLX4 represses Smad/Sp1-mediated transcription 
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CHAPTER 2: MATERIALS AND METHODS 

 

 

1. Plasmids 

 
A BP1 cDNA that contains the full-length coding region of human DLX4 (172) 

was provided by Dr. Patricia Berg (George Washington University). FLAG-tagged 

DLX4 was cloned into the pIRES-EGFP2 and pRetroQ vectors (Clontech, Palo Alto, 

CA). DNA fragments encoding different DLX4 domains were subcloned into pET41 

GST vectors (Novagen, Gibbstown, NJ) as described in Figure 29A. DLX4 shRNAs 

and non-targeting shRNAs were purchased from OriGene Technology (Rockville, MD). 

GST-tagged Smad2 and Smad4 plasmids were provided by Dr. Fang Liu (Rutgers 

University). Smad2, Smad3 and Smad4 cDNAs were purchased from OriGene 

Technology. MH2 and linker domains of Smad2 and Smad3, described in Figure 23, 

were subcloned into the pFA-CMV plasmid containing the GAL4-DBD (Stratagene, La 

Jolla, CA). The GAL4-driven pRF-Luc reporter construct was also purchased from 

Stratagene. The pGL2 F-Luc reporter vector was purchased from Promega. The c-myc 

promoter reporter construct, pBV-MYC(Del4) and pSBE4-Luc reporter construct 

containing four tandem SBE elements (193, 194) were provided by Dr. Bert Vogelstein 

(Johns Hopkins University). The Cignal Sp1 reporter construct containing a synthetic 

promoter comprising tandem Sp1-binding sites was purchased from SABiosciences 

(Frederick, MD). Sp1 cDNA was provided by Dr. Keping Xie (MD Anderson Cancer 

Center). pGL3 reporter constructs (p15-WT and p15-SBE-mt) containing wild-type and 

mutant p15Ink4B promoter sequences (51) were provided by Drs. Xiao-Fan Wang (Duke 

University Medical Center) and Xin-Hua Feng (Baylor College of Medicine). The Id1 
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promoter construct was provided by Dr. Robert Benezra (Memorial Sloan-Kettering 

Cancer Center) (195). The BRE-Luc reporter construct (196) was provided by Dr. 

Peter ten Dijke (Netherlands Cancer Institute).  

 

2. Antibodies and other reagents 

 
Antibodies (Abs) were purchased from commercial sources as follows: DLX4 

Abs for immunoblotting Abcam (Cambridge, MA) and Abnova Corporation (Taipei, 

Taiwan), for immunoprecipitation (Santa Cruz Biotechnology, Santa cruz, CA).  

Smad2, phospho-Smad2 (Ser465/467), Smad3, Smad4, p15Ink4B, c-myc (Cell 

Signaling Technology, Danvers, MA); p21WAF1/Cip1 (Calbiochem, Gibbstown, NJ); Sp1, 

E-cadherin (Zymed Laboratories, Carlsbad, CA); N-cadherin (BD Biosciences, San 

Jose, CA); actin, FLAG-M2 (Sigma-Aldrich, St. Louis, MO); lamin A/C and Smad2/3 

(Santa Cruz Biotechnology), HRP-conjugated secondary Abs (Bio-Rad, Hercules, CA), 

Alexa Fluor 594-conjugated secondary Abs (Invitrogen, Carlsbad, CA). Recombinant 

Sp1 protein, TGF-β and BMP-4 were purchased from Promega (Madison, WI), Sigma-

Aldrich and R&D Systems (Minneapolis, MN), respectively.  

 

3. Cell lines  

 
HepG2 cells were provided by Dr. Michelle Barton (MD Anderson Cancer 

Center). Mv1Lu cells were purchased from American Type Culture Collection 

(Manassas, VA). Both cell lines were cultured in MEM medium supplemented with 

10% FBS, 2mM glutamine and penicillin-streptomycin. NMuMG and MDA-MB-468 

cells were purchased from American Type Culture Collection (Manassas, VA) and 
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cultured in GIBCO® RPMI-1640 Medium supplemented with 10% FBS, 2mM 

glutamine and penicillin-streptomycin. Ampho-293 cells (provided by Dr. Douglas 

Boyd, MD Anderson Cancer Center) and MCF-7 cells (provided by Dr. Francois-Xavier 

Claret, MD Anderson Cancer Center) were cultured in DMEM medium supplemented 

with 10% FBS, 2mM glutamine and penicillin-streptomycin. 

 

4. Protein over-expression and knock-down  

 

For generating stable lines, FLAG-tagged DLX4 cDNA was subcloned into the 

pRetroQ vector (Clontech) and the retroviral construct was used to transfect Ampho-

293 cells. Supernatants were harvested 2 days thereafter and used to infect target 

cells. Stable lines were selected by puromycin (0.5 µg/ml). For studying Smad-

dependent growth inhibition, Smad4 was transiently expressed in MDA-MB-468 cells 

that lack Smad4. For transient expression, cells were transfected with recombinant 

plasmids using FuGENE6 reagent following manufacturer's instructions (Roche 

Applied Biosciences, Indianapolis, IN). To assay the effect of DLX4 knock-down, MCF-

7 cells were transfected with shRNA constructs (empty vector, non-targeting and two 

DLX4 shRNAs) purchased from OriGene Technology using FuGENE6 reagent. 

 

5. Cell growth assays  

 

Cells were seeded in 96-well plates at 4,000 cells per well in 100 µl medium  

and cultured for 2 days in complete medium containing 0, 1, 3, 10, 30 and 100 ng/ml 

TGF-β. MTT assays were performed following manufacturer's instructions (Roche 
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Applied Biosciences). Briefly, 10 µl of MTT labeling reagent was added to each well 

(final MTT concentration 0.5 mg/ml). The plate was incubated for 4 hours in a 

humidified atmosphere (37°C, 5% CO2) then 100 μl of solubilization solution was 

added to each well. The plate was incubated overnight in a humidified atmosphere.  

The spectrophotometrical absorbance (570 nm) was measured.  Experiments were 

done in triplicate and repeated two times. 

 

6. Cell cycle analysis 

 

Cells were seeded in 10 cm dishes to reach 30% confluence the following day. 

Cells were serum-starved overnight and then cultured in complete medium with and 

without addition of TGF-β (10 ng/ml) for 18 h. Cells were harvested and washed in 

phosphate-buffered saline (PBS). Cells were then fixed in 1 ml of 4% 

paraformaldehyde in PBS (pH 7.4) for 20 minutes on ice. Cells were washed in PBS, 

resuspended in 1 ml of cold 70% ethanol and kept at -200C. Following centrifugation at 

800 x g, cells were washed with PBS then stained with 1 ml of staining solution 

containing 40 μg/ml propidium iodide (Sigma-Aldrich) and RNaseA at 370C for 30 

minutes in the dark. Distribution throughout the cell cycle was determined by flow 

cytometric analysis. 

 

7. Reporter Assays   

 
Cells were seeded at 4–5 x 104 cells/well in 12-well plates and co-transfected 

with expression plasmids (400 ng), reporter plasmid (100 ng) and pRL-CMV Renilla 

luciferase (R-Luc) reporter plasmid (0.5 ng) (Promega) for normalizing transfection 
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efficiency using FuGENE6 reagent (Roche Applied Biosciences). At 24 hours after 

transfection, cells were cultured for an additional 18 hours with and without TGF-β or 

BMP-4. Luciferase activities were assayed using the Dual-reporter assay kit 

(Promega) and measured on a Monolight 2010 luminometer (Analytical Luminescence 

Laboratory, Ann Arbor, MI). Experiments were performed in triplicate and repeated two 

times. GAL4 reporter assay were performed as above with some modifications. Briefly, 

DLX4 or empty vector was co-transfected with GAL4-driven reporter construct and 

GAL4-DBD/Smad2 and GAL4-DBD/Smad3. TGF-β treatment and luciferase assays 

were performed as described above. 

 

8. Immunofluorescence staining 

 

Cells (5x104/well) were seeded in 2-well chamber slides. Cells were serum 

starved overnight and then treated with TGF-β for 1 hour. Cells were washed with PBS 

and fixed with 1% paraformaldehyde (in PBS, pH 7.4) for 20 minutes on ice. Fixed 

cells were washed with PBS two times and permeablized with 0.1% Triton X-100 (in 

PBS) for 20 minutes on ice. Cells were then washed with PBS and blocked with 1% 

goat serum in PBS for 30 minutes at 40C and stained with Abs to Smad2, DLX4, E-

cadherin, or FLAG Ab (1:200). Cells were washed 5 times in PBS containing 1% BSA. 

Staining was detected by Alexa Fluor 594-conjugated secondary Ab (1:1000). Cells 

were also stained with 4',6-diamidino-2-phenylindole (DAPI) (1:1000) to visualize 

nuclei. 
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9. Immunoblotting 

 
To determine protein expression levels, cells were lysed in M-PER buffer 

(Pierce Biotechnology, Rockford, IL) according to the manufacturer’s instructions. 

Total cell lysates were electrophoresed on 6 - 15% SDS gels, then transferred to 

polyvinylidene difluoride (PVDF) membranes (Amersham Biosciences, Piscataway, 

NJ) and blocked with 5% nonfat milk in PBS with 0.1% Tween-20 (PBS-T). 

Immunoblotting was performed with primary Abs at recommended dilution provided by 

manufacturers in PBS-T containing 5% nonfat milk except for phospho Smad2 Ab 

which was prepared in PBS-T with 5% BSA. Membranes were hybridized with primary 

Abs overnight at 4oC then washed with PBS-T buffer. Secondary Abs were diluted at 

1:2000 in PBS-T with 5% nonfat milk and incubated with membranes for 1-2 hours at 

room temperature. Membranes were then washed with PBS-T buffer and incubated 

with ECL Western blotting detection reagent (Amersham Biosciences) and exposed to 

autoradiographic film.   

 

10. Immunoprecipitation 

 

Cell lysate preparation:  

Cells were plated to reach 70-80% confluence and were transfected with DLX4 

or empty vector. At 24 hours after transfection, cells were serum-starved overnight and 

then treated without or with 10 ng/ml TGF-β for 1 hour. To prepare whole cell lysates, 

cells were washed with PBS buffer and lysed in native buffer (20 mM Tris-HCl pH 8.0, 

100 mM NaCl, 1% NP-40, 10% glycerol, 2 mM EDTA) supplemented with protease 

and phosphatase inhibitors for 10 minutes on ice. Cells were then sonicated. To 
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reduce viscosity caused by genomic DNA, benzonase enzyme was added. Lysates 

were centrifuged at 12000 x g for 10 minutes and supernatants were collected. Whole 

cell lysates were used immediately for immunoprecipitation or stored at -80oC. To 

prepare nuclear extracts, cells were lysed in cytosol lysis buffer (10 mM HEPES pH 

7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM DTT plus protease and phosphatase inhibitors), 

followed by centrifugation at 800 x g for 10 minutes. Nuclear pellets were washed then 

lysed in native buffer (Tris pH 8.0 20mM, 100mM NaCl, NP40 1%, Glycerol 10% EDTA 

2mM) plus protease and phosphatase inhibitors. The lysates were sonicated then 

centrifuged at 12000 x g for 10 minutes. Supernatants were transferred to a fresh 

eppendorf tube. Nuclear lysates were used immediately for immunoprecipitation or 

stored at -80oC 

 

Immunoprecipitation:  

Whole cell extracts (1 mg) or nuclear extracts (500 ug) were pre-cleared with 

protein G agarose (Amersham Biosciences) by rotating at 4°C for 30 minutes. Lysates 

were then incubated with anti-FLAG-M2 affinity gel (Sigma-Aldrich) for 4-12 hours at 

4°C. Where unconjugated primary Abs were used, lysates were incubated with the 

Abs for 12 hours at 4°C then further incubated with protein G agarose for 1 hour at 

4°C. Immunoprecipitates were washed five times with native buffer and subjected to 

SDS PAGE and immunoblot analysis.   
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11. Oligonucleotide pull-down assays 

 

Preparation of biotinylated oligonucleotides:  

Sense and antisense oligomers were designed to cover the p15Ink4B promotor 

region from positions -108 to -39 (Figure 31A and Table 6). The sense oligomer was 

labeled with biotin at the 5’ end. Oligos were generated by Sigma-Aldrich. Oligomers 

were dissolved in H2O. Oligomers were annealed by incubating at 98oC for 10 minutes 

followed by slow cooling down to room temperature overnight. The annealed product 

was verified by agarose DNA electrophoresis. 

 

DNA pull-down:  

Nuclear lysates were prepared as described for immunoprecipitation except that 

lysates were dissolved in binding buffer (10 mM HEPES pH 7.9; 100 mM KCl, 5 mM 

MgCl2, 1 mM EDTA, 10% glycerol, 1 mM DTT, 0.5% NP-40) plus proteinase inhibitor 

cocktail. Nuclear lysates were pre-cleared with strepavidin agarose for 30 minutes at 

4°C. Biotin-labeled oligonucleotides were added to the lysate and incubated overnight 

at 4°C with rotating. The lysate was then added to pre-washed streptavidin-conjugated 

agarose beads and further rotated at 4°C for 1 hour. Beads were washed 4 times with 

binding buffer. DNA bound proteins were eluted from strepavidin-conjugated agarose 

beads with 1X SDS sample (Laemmli) buffer at 85°C for 5 minutes. The samples were 

then subjected to SDS-PAGE and immunoblotting. 
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Table 6. p15Ink4B oligomers for oligonucleotide pull-down assays 

 

Name  Sequence  

Sense strand  5'-BIOTIN-
GCCTGGCCTCCCGGCGATCACAGCGGACAGGGGGCGGAGCCTAAGG
GGGTGGGGAGACGCCGGCCCCTTG-3’  

Antisense strand  5'-
AAGGGGCCGGCGTCTCCCCACCCCCTTAGGCTCCGCCCCCTGTCCG 
CTGTGATCGCCGGGAGGCCAGGC-3'  
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12. In vitro binding assays 

 
Preparation of GST fusion and 35S-labeled proteins:  

GST fusion proteins containing full-length DLX4, truncated DLX4, Smad2 and 

Smad4 were produced in E.coli and purified by glutathione beads (Amersham 

Biosciences) following the manufacturer’s instructions. 35S-labeled DLX4, Smad4 and 

Sp1 were synthesized in vitro from the T7 promoter using the TNT coupled translation 

kit (Promega) following the manufacturer’s instructions. 

 

Binding assays:  

GST fusion protein (1 µg) bound to glutathione-sepharose beads was pre-

incubated with 0.5 mg/ml BSA in binding buffer (20 mM Tris [pH8.0], 100 mM NaCl, 

0.1% NP40, 2 mM EDTA, plus proteinase inhibitor cocktail) for 1 hour. 35S-labeled 

proteins were pre-cleared by incubating with glutathione-sepharose beads in binding 

buffer for 1 hour. GST fusion protein was then incubated with pre-cleared 35S-labeled 

protein for 2 hours. Beads were then extensively washed with binding buffer for 5 

times. Associated proteins were subjected to SDS-PAGE and visualized by 

autoradiography. 

 

13. Total RNA extraction and qPCR 

 

Total RNA extraction:  

Total RNA was extracted using TRIzol reagent (Invitrogen) following 

manufacturer’s instructions. Extracted RNA was treated with DNAseI and purified 

using the RNeasy kit (Qiagen, Valencia, CA).  
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qPCR:  

Purified total RNA (500 ng) was used to synthesize cDNA by random priming 

using the RT² First Strand Kit (SABiosciences). cDNA and primers were included in a 

reaction (20 ul) with the RT² SYBR® Green qPCR Master Mix (SABiosciences). 

Reactions were run on the AB7500 system (Applied Biosystems, Carlsbad, CA) with 

40 cycles of 950C for 15 seconds and 600C for 1 minute according to the standard 

manufacturer’s program. Primers were predesigned to amplify a 98 bp region located 

at positions 1278-1297 of the 3’ untranslated region of DLX4 gene (SABioscience). 

Primer specificity was confirmed by including a dissociation curve at the end of thermal 

cycles. Data analysis was performed using the delta-delta Ct method. Levels of DLX4 

expression were normalized to β-actin. 

 

14. Gel-shift assays  

 

32P-labeled probe preparation:  

Oligomers were designed to contain sense and antisense sequences -88 to -64 

of the p15Ink4B promoter with 5' overhangs for labeling (Figure 35A and Table 7). 

Double-stranded oligos were generated by incubating sense and antisense oligomers 

at 980C for 10 minutes followed by slow cooling to room temperature overnight. 32P-

labeled probe was produced by end-filling using the Klenow enzyme (Roche Applied 

Biosciences) following manufacturer’s instructions. The 32P-labeled probe was then 

purified through NICK™ Column (Amersham Biosciences) and eluted in TE buffer to a 

final concentration of 1 ng/ul. 
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Table 7. p15Ink4B oligomers for gel-shift assays 

 

Name  Sequence  

Sense strand  5'-CAGCGGACAGGGGGCGGAGCCTAAG-3’  

Antisense strand  5'-CTTAGGCTCCGCCCCCTGT-3'  
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Gel-shift reaction:  

EMSA was performed in 25 µl reactions. Recombinant Sp1 protein (100 ng) 

was incubated with increasing amounts of in vitro translated FLAG-DLX4 and FLAG-

tag synthesized from TNT coupled reticulocyte lysates (Promega) for 20 minutes in 

binding buffer (10 mM Tris-HCl [pH 7.5], 1 mM MgCl2, 50 mM NaCl, 0.5 mM EDTA, 

4% glycerol, 0.5 mM DTT, 1 µg poly(dI-dC).poly(dI-dC)) at 230C. 1ng of 32P-labeled 

probe was added to the binding reaction and incubated for an additional 20 minutes. 

The reactions were electrophoresed on a 5% nondenaturing polyacrylamide gel. The 

gel was dried and exposed to autographic film. 

 

15. Chromatin immunoprecipitation  

 

Chromatin immunoprecipitation (ChIP) was performed using the ChIP Assay Kit 

(Upstate; Temecula, CA) following manufacturer’s instructions with modifications. 

Briefly, cells were cross-linked by adding formaldehyde to 1% final concentration at 

room temperature for 10 minutes. Formaldehyde was then quenched by adding 

glycine and incubated at room temperature for 5 minutes. The cells were then washed 

with PBS and scraped off dishes. Cell suspensions were centrifuged and the 

supernatant was discarded. Cells were lysed in SDS lysis buffer containing protease 

inhibitors and sonicated to generate DNA fragments of ~200-1000 base pairs in length. 

Sheared chromatin was then pre-cleared with Protein G agarose then incubated with 4 

ug of Abs to Sp1 (Zymed Laboratories), Smad4 (Cell signal), Smad2/3, and normal 

IgG (Santa Cruz Biotechnology) overnight. Protein G agarose was then added and 

incubated for 1 hour. The protein G agarose-antibody/chromatin complex was 
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extensively washed, followed by elution of immunoprecipitated complexes and 

reversal of cross-links. Protein and RNA were removed by incubating with RNase A 

and proteinase K. Eluted DNA fragments were purified and used for PCR reactions to 

amplify a 535 bp fragment of the p15Ink4B promoter (Table 8). The amplified fragment 

was confirmed by DNA sequencing.  
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Table 8. p15Ink4B primer sequences for ChIP PCR 

 

Name  Sequence  

Sense strand  5'-TATGGTTGACTAATTCAAACAG-3’  
Antisense strand  5'-GCAAAGAATTCCGTTTTCAGCT-3'  
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CHAPTER 3: DLX4 INHIBITS TGF-β-INDUCED, SMAD-DEPENDENT RESPONSES 

 

 

A. RATIONALE 

 

TGF-β inhibits growth of most types of normal cells by inducing cell cycle arrest. 

The anti-proliferative effect of TGF-β is orchestrated by a cytostatic program of gene 

responses that principally involves activation of the CDK inhibitors p15Ink4B and 

p21WAF1/Cip1 (38, 51) and repression of the growth-promoting transcription factors c-myc 

and Ids (52, 59) (Figure 6). In many types of tumors, the anti-proliferative effect of 

TGF-β is abolished (3, 4). Resistance to the anti-proliferative effect of TGF-β has been 

attributed to TGF-β receptor and/or Smad mutations in some types of tumors, 

particularly those of gastrointestinal origin (112, 114, 115) (Table 2). However, the 

rareness of these mutations in many other types of tumors indicates that resistance to 

the anti-proliferative effect of TGF-β also stems from other aberrations (112) (Table 2). 

  

Cross-talk between members of the DLX gene family and the TGF super-family 

is important for controlling bone morphogenesis and skeletal patterning (1, 180, 181). 

The homeobox gene DLX4 is not expressed in most normal adult tissues, but is 

expressed in a wide range of tumors (Table 5). This raises the possibility that DLX4 

promotes tumorigenesis via a mechanism common to multiple types of tumors. The 

goal of my studies in this chapter is to determine whether DLX4 blocks TGF-β-induced, 

Smad-dependent responses that are central to the anti-proliferative effect of TGF-β.  
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B. RESULTS 

 

1. DLX4 blocks TGF-ββββ-mediated growth inhibition 

 

To determine whether DLX4 blocks the anti-proliferative effect of TGF-β, we first 

assayed the effect of DLX4 on cell growth in the non-tumorigenic lung epithelial cell 

line Mv1Lu. Mv1Lu is a well-established model for studying TGF-β-induced growth 

arrest (197, 198). Growth of Mv1Lu cells was inhibited by TGF-β in a dose-dependent 

manner (Figure 14A). In contrast, enforced expression of DLX4 in Mv1Lu cells 

decreased the sensitivity to TGF-β (Figure 14A). This observation indicates that DLX4 

blocks the growth-inhibitory effect of TGF-β. To confirm this finding, the effect of 

knocking-down DLX4 on cell growth was assayed. DLX4 was knocked-down by using 

shRNAs that targeted different sites of DLX4 (sh90 and sh92). Knockdown of DLX4 in 

MCF-7 breast cancer cells increased sensitivity to TGF-β in cell viability assays (Figure 

14B). The ability of these shRNAs to knock-down DLX4 in MCF-7 cells was confirmed 

by Western blot (Figure 15A) and also by qPCR and immunofluorescence staining 

(Figure 15B, 15C). 
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Figure 14. DLX4 blocks TGF-ββββ-mediated growth inhibition 

[A] Vector-control (-DLX4) and +DLX4 stable Mv1Lu lines were cultured with the 

indicated concentrations of TGF-β for 2 days. Changes in cell growth were determined 

by MTT assay, and expressed relative to growth of cells incubated without TGF-β. 

Shown are results of two independent experiments each performed in triplicate. [B] 

Transfected MCF-7 cells were cultured with the indicated concentrations of TGF-β for 

2 days. Changes in cell growth were determined by MTT assay.  
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Figure 15. Knockdown of DLX4 

MCF-7 cells were transfected with empty vector, non-targeting shRNA and DLX4 

shRNAs (sh90, sh92). [A] At 2 days after transfection, DLX4 levels were assayed by 

Western blot. [B] DLX4 transcript levels in transfected MCF-7 cells were assayed by 

qPCR using SYBR®Green qPCR Master Mix and DLX4 primers purchased from 

SABiosciences. [C] At 2 days after transfection, endogenous DLX4 in cells was 

detected by staining using DLX4 Ab (red). Nuclei were visualized by staining with 

DAPI (blue). Bar, 20 µm. 
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2. DLX4 blocks the ability of TGF-ββββ to induce G1 arrest 

 

TGF-β induces cell cycle arrest in G1 phase (198, 199). We determined whether 

DLX4 blocks the ability of TGF-β to induce G1 arrest by performing cell cycle analysis. 

Treatment of vector-control Mv1Lu cells with TGF-β led to significant accumulation of 

cells in G1 phase (Figure 16A). However, enforced expression of DLX4 in Mv1Lu cells 

inhibited the induction of G1 arrest by TGF-β (Figure 16A). Similarly, enforced 

expression of DLX4 in the non-tumorigenic mammary epithelial cell line NMuMG also 

inhibited TGF-β-induced G1 arrest (Figure 16B). Conversely, knockdown of DLX4 in 

MCF-7 cells was observed to increase the proportion of cells in G1 phase (Figure 

16C). These data indicate that DLX4 inhibits TGF-β-mediated G1 arrest. 

 

3. DLX4 blocks Smad-dependent growth inhibition 

 

TGF-β inhibits cell growth principally via Smad-dependent mechanisms that require 

Smad4 (3). Because TGF-β can also inhibit cell growth via Smad-independent 

mechanisms (60), we determined whether DLX4 blocks Smad-dependent growth 

inhibition. The effect of DLX4 on cell growth was assayed using the MDA-MB-468 

breast cancer cell line that has the homozygous deletion of Smad4 (122). Growth of 

MDA-MB-468 cells was not inhibited by TGF-β (Figure 17). In contrast, reconstitution 

of Smad4 in these cells increased responsiveness to TGF-β (Figure 17). This Smad4- 

dependent responsiveness to TGF-β was abrogated when DLX4 was expressed 

(Figure 17). These results confirm our finding that DLX4 opposes the anti-proliferative  
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Figure 16. DLX4 blocks TGF-ββββ-induced G1 arrest 

[A] Mv1Lu lines were treated without and with 10 ng/ml TGF-β for 18 hours. [B] 

Transfected MCF-7 cells were treated without and with TGF-β (10 ng/ml) for 18 hours. 

[C] Vector-control (-DLX4) and +DLX4 NMuMG cells were treated without and with 

TGF-β (5 ng/ml) for 18 hours. Indicated are the proportions of cells in G1, S and G2/M 

phases determined by flow cytometric analysis of propidium iodide-staining. 
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Figure 17. DLX4 blocks Smad-dependent growth inhibition 

Vector-control (-DLX4) and +DLX4 stable MDA-MB-468 lines were transfected with 

Smad4. At 24 hours thereafter, cells were cultured without and with TGF-β (10 ng/ml) 

for 2 days and changes in cell growth were examined by MTT assay. 

 

 

 

 



 

60 

 

 

effect of TGF-β, and indicate that DLX4 blocks TGF-β-mediated growth inhibition in a 

Smad-dependent manner. 

 

4. DLX4 inhibits gene responses of the TGF-ββββ cytostatic program  

 

TGF-β inhibits cell growth by controlling a cytostatic program of gene responses 

that includes activation of p15Ink4B and p21WAF1/Cip1 transcription and repression of c-

myc and Id transcription (38, 51, 52, 59). In subsequent experiments, we determined 

whether DLX4 inhibits gene responses of this cytostatic program. 

 

4.1. DLX4 inhibits TGF-ββββ-mediated induction of CDK inhibitors 

 

Treatment of vector-control Mv1Lu cells with TGF-β induced expression of p15Ink4B 

(Figure 18A). However, enforced expression of DLX4 in Mv1Lu cells blocked TGF-β-

induced p15Ink4B expression (Figure 18A). To determine whether this blocking effect 

was Smad-dependent, we assayed the expression of TGF-β response genes in MDA-

MB-468 cells. Treatment of MDA-MB-468 cells with TGF-β did not induce expression 

of p21WAF1/Cip1 (Figure 18B). When MDA-MB-468 cells were reconstituted with Smad4, 

p21WAF1/Cip1 expression was induced by TGF-β. However, enforced expression of DLX4 

blocked this induction (Figure 18B). These results indicate that DLX4 inhibits TGF-β-

mediated, Smad-dependent induction of CDK inhibitor expression. 
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Figure 18. DLX4 blocks Smad-dependent cytostatic gene responses 

[A] Western blot analysis of Mv1Lu lines following treatment without and with TGF-β 

(10 ng/ml) for 16 hours. [B] Western blot analysis of MDA-MB-468 lines following 

treatment without and with TGF-β for 16 hours.  
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4.2. DLX4 blocks Smad-dependent transcription of p15Ink4B  

 

TGF-β induces transcription of p15Ink4B and p21WAF1/Cip1 by similar Smad-

dependent mechanisms (38, 51). Because DLX4 is a transcription factor, it is likely 

that DLX4 blocks Smad-mediated transcription of these genes. To investigate this 

possibility, we focused on the well-characterized p15Ink4B promoter. The first 113 bp of 

the p15Ink4B promoter are essential for induction by TGF-β and contain two Smad-

binding elements (SBEs) (51). We initially determined whether DLX4 inhibits the ability 

of TGF-β to induce p15Ink4B promoter activity by reporter assays using a construct 

driven by the minimal p15Ink4B promoter (-113 to +70) (p15-WT). Activity of this minimal 

promoter was induced by TGF-β in vector-control Mv1Lu cells, and this induction was 

abolished by mutation of the SBEs (Figure 19A). Enforced expression of DLX4 in 

Mv1Lu cells abolished the induction of wild-type p15Ink4B promoter activity by TGF-β 

(Figure 19A). DLX4 also modestly inhibited activity of the SBE-mutant promoter  

(Figure 19A). This result suggests that DLX4 also can block basal p15Ink4B promoter 

activity independently of TGF-β/Smad signaling. To confirm that DLX4 blocks Smad-

mediated induction of p15Ink4B, we assayed p15Ink4B promoter activity in Smad4-

deficient MDA-MB-468 cells. Wild-type p15Ink4B promoter activity was unresponsive to 

TGF-β in MDA-MB-468 cells. TGF-β responsiveness was conferred when Smad4 was 

expressed in these cells. However, this Smad4-dependent responsiveness was 

eliminated when DLX4 was co-expressed (Figure 19B). Together, these findings 

demonstrate that DLX4 blocks Smad-mediated transcription of p15Ink4B. 
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Figure 19. DLX4 inhibits TGF-ββββ-mediated induction of p15Ink4B promoter activity 

[A] Mv1Lu cells were co-transfected with empty vector (grey bar) or DLX4 (black bar), 

together with reporter plasmids containing no promoter (pGL2 vector), p15Ink4B 

promoter sequences (-113 to +70) (p15-WT), and p15Ink4B promoter with mutated 

SBEs (p15-SBE-mt). Cells were cultured without and with TGF-β for 18 hours, and 

assayed for F-Luc activity. [B] Reporter assays using the p15-WT reporter plasmid 

were performed using transfected MDA-MB-468 lines. Shown are relative F-Luc 

activities in three independent experiments each performed in duplicate. Values were 

normalized by activity of co-transfected R-Luc.  

 

 



 

64 

 

 

4.3. DLX4 induces c-myc expression independently of TGF-ββββ/Smad signaling 

 

In subsequent experiments, we determined whether DLX4 blocks TGF-β-

mediated repression of c-myc expression. Enforced expression of DLX4 induced c-

myc expression in MDA-MB-468 cells, irrespective of the absence or presence of 

Smad4 (Figure 18B). Because DLX4 induced the level of c-myc protein independently 

of TGF-β/Smad signaling, we investigated the effect of DLX4 on c-myc induction by 

assaying c-myc promoter activity. Activity of the c-myc promoter was repressed by 

TGF-β in vector-control Mv1Lu cells (Figure 20A). However, enforced expression of 

DLX4 in Mv1Lu cells induced c-myc promoter activity both in the absence and 

presence of TGF-β stimulation (Figure 20A). In converse experiments, knock-down of 

DLX4 inhibited c-myc promoter activity in MCF-7 cells in the absence of TGF-β 

stimulation (Figure 20B). TGF-β treatment of DLX4 knock-down cells further inhibited 

c-myc promoter activity (Figure 20B).  These results suggest that DLX4 blocks the 

ability of TGF-β to repress c-myc expression and can also induce c-myc expression 

independently of TGF-β/Smad signaling.   
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Figure 20. DLX4 induces c-myc promoter activity 

[A] Mv1Lu cells were co-transfected with empty vector (grey bar) or DLX4 (black bar), 

together with empty pBV-Luc vector or with pBV-MYC(Del4) reporter plasmid that 

contains 900 bp of c-myc P1 and P2 promoter sequences. Transfected cells were 

cultured without and with TGF-β (10 ng/ml) for 18 hours, and assayed for F-Luc 

activity. [B] Reporter assays for c-myc promoter activity were likewise conducted using 

MCF-7 cells that were co-transfected with non-targeting shRNA (grey bar) and DLX4 

(sh90) shRNA (black bar). 
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5. DLX4 inhibits TGF-ββββ-induced EMT  

 

In addition to its anti-proliferative effect, TGF-β is well-known to induce EMT via 

Smad and non-Smad mechanisms (3, 4) (Figure 8). Because our results demonstrate 

that DLX4 blocks TGF-β-mediated growth inhibition in a Smad-dependent manner, it is 

possible that DLX4 also blocks the ability of TGF-β to induce EMT. To address this 

possibility, we used the NMuMG cell line, a well-established model for studying TGF-β-

induced EMT. Smad4 has been demonstrated to be essential for TGF-β-induced EMT 

in several cell types, including NMuMG cells (200). TGF-β treatment of vector-control 

NMuMG cells induced profound epithelial-to-fibroblastic morphologic transformation 

(Figure 21A). E-cadherin expression was lost, whereas N-cadherin was induced in 

vector-control NMuMG cells following TGF-β treatment (Figures 21B, 21C). In contrast, 

enforced expression of DLX4 in NMuMG cells blocked the down-regulation of E-

cadherin and induction of N-cadherin (Figures 21B, 21C). Additionally, epithelial 

morphology was considerably retained in TGF-β-treated +DLX4 NMuMG cells (Figure 

21A). These results indicate that DLX4 can inhibit TGF-β-induced EMT. 
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Figure 21. Effect of DLX4 on TGF-ββββ-induced EMT 

Vector-control (-DLX4) and +DLX4 NMuMG cells were incubated without or with TGF-

β (5 ng/ml) for 24 hours. [A] Morphology of cells was visualized by phase-contrast 

microscopy. Bar, 50 µm. [B] E-cadherin expression was detected by 

immunofluorescence staining (red). Nuclei were visualized by staining with DAPI 

(blue). Bar, 20 µm. [C] Western blot analysis of DLX4, E-cadherin and N-cadherin.  
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C. CONCLUSION 

 

The studies in this chapter demonstrate that DLX4 blocks the anti-proliferative 

effect of TGF-β by inhibiting the TGF-β-mediated cytostatic program of gene 

responses that cause G1 arrest. The studies demonstrate that DLX4 blocks the ability 

of TGF-β to induce p15Ink4B and p21WAF1/Cip1 expression, and that this blocking effect 

occurs via Smad-dependent mechanisms. In addition, the studies demonstrate that 

DLX4 blocks the ability of TGF-β to repress c-myc expression, and can also induce c-

myc expression independently of TGF-β/Smad signaling. Furthermore, our findings 

indicate that DLX4 blocks the ability of TGF-β to induce EMT in cells that normally 

undergo TGF-β-induced EMT in a Smad-dependent manner. Together, our findings 

that DLX4 blocks TGF-β-mediated, Smad-dependent growth inhibition and also EMT 

indicate that DLX4 inhibits a core component of the TGF-β/Smad signaling pathway. 

Identification and characterization of this inhibitory mechanism will be the focus of 

Chapter 4 and Chapter 5. 
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CHAPTER 4: DLX4 BLOCKS SMAD TRANSCRIPTIONAL ACTIVITY 

 

 

A. RATIONALE 

 

Binding of TGF-β to TβRII leads to recruitment and activation of TβRI which in 

turn phosphorylates R-Smads. Phosphorylated R-Smads translocate to the nucleus, 

where they form heteromeric complexes with Smad4 and other DNA-binding factors to 

regulate gene transcription (9, 12) (Figure 2). TGF-β/Smad signaling is modulated at 

multiple levels. These include binding of TGF-β to TβRII, formation of the TβRI-TβRII 

complex, phosphorylation and nuclear localization of R-Smads, and transcriptional 

activity of Smad proteins (Figure 2).  

 

Studies in Chapter 3 demonstrated that DLX4 blocks TGF-β-mediated gene 

responses through Smad-dependent mechanisms. Because DLX4 is a transcription 

factor, we hypothesize that DLX4 blocks TGF-β signaling by interfering with Smad 

transcriptional activity. The goal of the studies in this chapter is to determine whether 

and how DLX4 blocks Smad activity.  
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B. RESULTS 

 

1. DLX4 does not affect phosphorylation, expression and localization of R-

Smads  

 

As discussed in Chapter 1, Smad-dependent transcription is controlled at 

multiple levels, including phosphorylation, expression and nuclear localization of Smad 

proteins (201). Enforced expression of DLX4 in Mv1Lu cells did not alter the 

expression level of Smad2 (Figure 22A). The expression levels of Smad3 and Smad4 

were also not affected by DLX4 (see Figure 27B, discussed later). Furthermore, DLX4 

did not affect TGF-β-induced phosphorylation of Smad2 (Figure 22A). This result also 

implies that DLX4 has no effect on activation of TGF-β receptors. Treatment of vector-

control cells with TGF-β induced rapid translocation of Smad2 from the cytoplasm to 

the nucleus (Figure 22B). Enforced expression of DLX4 did not interfere with this 

translocation of Smad2 (Figure 22B). We also investigated whether TGF-β stimulation 

affected the localization of DLX4. Immunofluorescence staining studies demonstrated 

that DLX4 is predominantly localized in the nucleus and that its nuclear localization is 

not affected by TGF-β stimulation (Figures 22C, 22D). These findings indicate that 

DLX4 most likely inhibits nuclear events downstream of the TGF-β signaling pathway.  

 



 

72 

 

 

Figure 22. Phosphorylation, expression levels and localization of Smad and 

DLX4 proteins 

Vector-control (-DLX4) and +DLX4 Mv1Lu lines were serum-starved overnight and 

then treated without and with TGF-β (10 ng/ml) for 30 minutes. [A] Total and 

phosphorylated Smad2 were detected by Western blot. [B] Intracellular localization of 

Smad2 was detected by immunofluorescence staining. Bar, 20 µm. [C] MvL1Lu cells 

that stably express FLAG-DLX4 were serum-starved overnight, and then incubated in 

complete medium for 30 minutes without or with TGF-β (10 ng/ml). Following fixation 

and permeabilization, cells were stained with FLAG Ab (red). [D] Parental MCF-7 cells 

were treated as in [C]. Endogenous DLX4 in cells was detected by staining using 

DLX4 Ab (red). Nuclei were visualized by staining with DAPI (blue). Bar, 20 µm.  
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2. DLX4 blocks transcriptional activity of activated R-Smads 

 

Smad proteins contain two functional domains with an intervening linker region. 

MH1 domains are responsible for binding to SBEs, whereas MH2 domains mediate 

interactions of Smads with one another and with other transcription factors (8, 12) 

(Figure 3). MH2 domains of Smad2 and Smad3 have intrinsic transcriptional activation 

capacity (8). We, therefore, sought to determine whether DLX4 inhibits transcriptional 

activity of Smad2 and Smad3 (Figure 23). 

 

2.1. DLX4 represses transcriptional activity of Smad2  

 

A chimeric expression construct was generated by fusing the GAL4 DNA-

binding domain (DBD) to the linker region and MH2 transcriptional activation domain of 

Smad2 [amino acids 173 to 467]. To determine whether DLX4 represses 

transcriptional activity of Smad2, the GAL4-DBD/Smad2 chimera was co-expressed in 

Mv1Lu cells along with a firefly luciferase (F-Luc) reporter controlled by a synthetic 

promoter comprising five tandem GAL4 binding sites. As shown in Figure 24A, 

transcriptional activity of GAL4-Smad2 was induced by TGF-β in the absence of DLX4. 

However, this activation was abolished when DLX4 was expressed (Figure 24A). 

Similar results were obtained using the hepatoma cell line HepG2, which is responsive 

to TGF-β (Figure 24A). In converse experiments, we observed that knockdown of 

DLX4 in MCF-7 cells increased TGF-β-mediated induction of GAL4-Smad2 activity 

(Figures 24B). 
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Figure 23. Schematic design of GAL4-Smad2/3 chimeras and reporter assay 

Chimeras were constructed in which the linker and MH2 domains of Smad2 and 

Smad3 were fused to the GAL4-DBD. These chimeras were tested for their ability to 

induce a synthetic promoter containing GAL4 binding element (GAL4BE).  
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Figure 24. DLX4 blocks Smad2 transcriptional activity 

[A] Mv1Lu and HepG2 cells were co-transfected with empty vector (grey bar) or DLX4 

(black bar), together with GAL4-driven F-Luc reporter plasmid and with GAL4-Smad2. 

Transfected cells were cultured without and with TGF-β for 18 hours, and assayed for 

F-Luc activity. [B] GAL4-Smad2 activity were likewise assayed in MCF-7 cells that 

were co-transfected with non-targeting shRNA (grey bar) or DLX4 (sh90) shRNA 

(black bar).  
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2.2. DLX4 represses transcriptional activity of Smad3  

 

We also investigated the effect of DLX4 on transcriptional activity of Smad3 by 

generating a chimeric construct in which the GAL4-DBD was fused to the linker region 

and MH2 transcriptional activation domain of Smad3 [amino acids 133 to 425]. As 

observed with our assays using the GAL4-Smad2 chimera, we found that DLX4 

similarly abolished TGF-β-induced transcriptional activity of the GAL4-Smad3 chimera 

in both Mv1Lu and HepG2 cells (Figure 25A). Conversely, knockdown of DLX4 in 

MCF-7 cells enhanced TGF-β-mediated induction of GAL4-Smad3 activity (Figure 

25B).  

 

2.3. DLX4 blocks gene transcription mediated by BMP-activated R-Smads 

 

Smad2 and Smad3 serve as substrates for the TβRI kinase and are activated 

by TGF-β, whereas other R-Smads (Smads 1, 5 and 8) are utilized by the BMP and 

anti-Müllerian receptors (10, 201). We initially tested the ability of DLX4 to inhibit 

transcription induced by other members of the TGF super-family by using a synthetic 

promoter comprising four tandem SBEs (pSBE4-Luc). Activity of this promoter was 

induced by TGF-β treatment of vector-control HepG2 cells (Figure 26A). This induction 

was blocked by DLX4. Similarly, BMP-4 treatment of HepG2 cells induced activity of 

the SBE-driven promoter, whereas DLX4 blocked BMP-4-mediated induction of the 

promoter (Figure 26A). TGF-β- and BMP-specific R-Smads have been reported to 

preferentially bind distinct DNA sequences (196, 202). Indeed, we found that BMP-4 

was not as effective as TGF-β in inducing pSBE4-Luc activity (Figure 26A). We,  
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Figure 25. DLX4 blocks Smad3 transcriptional activity 

[A] Mv1Lu and HepG2 cells were co-transfected with empty vector (grey bar) or DLX4 

(black bar), together with GAL4-driven F-Luc reporter plasmid and with GAL4-Smad3. 

Transfected cells were cultured without and with TGF-β for 18 hours, and assayed for 

F-Luc activity. [B] GAL4-Smad3 activities were, likewise, assayed in MCF-7 cells that 

were co-transfected with non-targeting shRNA (grey bar) or DLX4 (sh90) shRNA 

(black bar).  
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therefore, tested the effect of DLX4 on BMP-induced transcription by using a reporter 

plasmid that contains the BMP-responsive promoter of the Id1 gene. BMP-4 induced 

Id1 promoter activity in vector-control HepG2 cells, whereas expression of DLX4 

blocked BMP-induced Id1 promoter activity (Figure 26B). To confirm this blocking 

effect of DLX4, we used a synthetic promoter comprising two tandem copies of the 

BMP response elements of the Id1 promoter (BRE-Luc). Activity of this promoter was 

induced by BMP-4 treatment of vector-control HepG2 cells. However, BMP-4-induced 

activation of the promoter was blocked when DLX4 was expressed (Figure 26C). 

Because TGF-β- and BMP-specific R-Smads utilize Smad4 as the common and 

essential partner for the formation of functional transcriptional complexes (201), our 

findings raise the possibility that DLX4 inhibits Smad4.  
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Figure 26. Effect of DLX4 on TGF-ββββ and BMP-induced transcription 

[A] HepG2 cells were co-transfected with empty vector (grey bar) or DLX4 (black bar) 

together with SBE-driven pSBE4-Luc reporter plasmid, and then cultured without and 

with TGF-β (10ng/ml) or BMP-4 (80 ng/ml) for 18 hours. [B] HepG2 cells were co-

transfected with empty vector (grey bar) or DLX4 (black bar), together with reporter 

plasmids containing no promoter (pGL2 vector) or a 1.6 kb region of the Id1 promoter. 

At 24 hours after transfection, cells were cultured without and with BMP-4 (80 ng/ml) 

for additional 18 hours. [C] HepG2 cells were co-transfected with empty vector (grey 

bar) or DLX4 (black bar) together with BRE-Luc reporter plasmid, and then cultured 

without and with BMP-4 (80 ng/ml) for 18 hours. Shown are relative F-Luc activities in 

three independent experiments each performed in duplicate and normalized by activity 

of co-transfected R-Luc.  
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3. DLX4 prevents Smad4 from binding R-Smads  

 

The formation of R-Smad/Smad4 transcriptional complexes is essential for 

Smad-mediated transcription (10, 12). In subsequent experiments, we determined 

whether DLX4 interferes with the binding of Smad4 to R-Smads. Following transfection 

with FLAG-tagged DLX4 or empty vector, HepG2 cells were treated with or without 

TGF-β. Smad2 was immunoprecipitated, and precipitates were analyzed by 

immunoblotting using Ab to Smad4. Binding of Smad4 to Smad2 was observed 

following TGF-β treatment. However, this interaction was inhibited when DLX4 was 

expressed (Figure 27A). Identical results were obtained in reciprocal 

immunoprecipitation (IP) assays in which Smad4 was immunoprecipitated and Smad2 

was detected in precipitates (Figure 27A).  

 

Because Smad2 and Smad3 are highly homologous and they both interact with 

Smad4 via their MH2 domains (8, 203), we determined whether DLX4 also interferes 

with interaction of Smad3 and Smad4. As shown in Figure 27A, treatment of vector-

control HepG2 cells with TGF-β induced binding of Smad4 to Smad3. In contrast, this 

binding was inhibited when DLX4 was expressed. DLX4 did not alter expression levels 

of Smad2, Smad3 or Smad4 (Figure 27B). Together, these results indicate that DLX4 

likely inhibits transcriptional activity of Smad2 and Smad3 by preventing Smad4 from 

interacting with these R-Smads.  
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Figure 27. DLX4 prevents Smad4 from binding R-Smads 

HepG2 cells were transfected with empty vector or with FLAG-tagged DLX4. At 24 

hours thereafter, cells were serum-starved overnight and then treated without and with 

TGF-β (10ng/ml) for 30 minutes. [A] Smad2 was immunoprecipitated from nuclear 

extracts and precipitates were analyzed by immunoblotting using Ab to Smad4. 

Conversely, Smad4 was pulled-down and precipitates analyzed by immunoblotting 

using Smad2 Ab. Because HepG2 cells express low levels of Smad3, IP assays to 

detect binding of Smad3 to Smad4 were performed using extracts of cells that had 

been transfected with Smad3. [B] Western blot of DLX4 and Smad proteins in nuclear 

extracts.  
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4. DLX4 interacts with Smad4  

 

Our findings that DLX4 prevents Smad4 from interacting with R-Smads raise 

the possibility that DLX4 binds Smad4. In subsequent experiments, we determined 

whether DLX4 interacts with Smad4 and whether this interaction involves direct 

binding. 

 

4.1. DLX4 directly binds Smad4  

 

To initially investigate whether DLX4 associates with Smad4 in cells, IP assays 

were performed using extracts of HepG2 cells that expressed FLAG-DLX4 or empty 

vector. We found that FLAG-tagged DLX4 associated with Smad4, irrespective of 

TGF-β stimulation (Figure 28A). We next determined whether endogenous DLX4 could 

interact with Smad4. Endogenous DLX4 was immunoprecipitated by DLX4 Ab from 

lysates of MCF-7 cells, and Smad4 was detected in precipitates. IP of normal IgG was 

included as a negative control (Figure 28B). To additionally confirm the interaction of 

DLX4 with Smad4, we performed IP using extracts of MCF-7 cells that had been 

transfected with DLX4 shRNA (sh90) or with non-targeting shRNA. As shown in Figure 

28B, the interaction of DLX4 with Smad4 was reduced when DLX4 was knocked- 

down.  To determine whether DLX4 interacts with Smad4 by direct binding, we tested 

the ability of in vitro-translated 35S-labeled DLX4 to bind GST-Smad4 protein. GST-

pulldown assays demonstrated that DLX4 directly binds Smad4 (Figure 28C). DLX4 

also bound Smad2, but this binding was weaker than binding to Smad4 (Figure 28C).  
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Figure 28. DLX4 binds to Smad4 

[A] HepG2 cells were transfected with empty vector or with FLAG-tagged DLX4. At 24 

hours thereafter, cells were serum-starved overnight and then treated without and with 

TGF-β (10ng/ml) for 30 min. FLAG-DLX4 was immunoprecipitated using FLAG Ab, 

and precipitates analyzed by immunoblotting using Ab to Smad4. Conversely, FLAG-

DLX4 was detected in precipitates following IP using Smad4 Ab. [B] MCF-7 cells were 

transfected with non-targeting shRNA or with DLX4 (sh90) shRNA. Endogenous DLX4 

was immunoprecipitated using DLX4 Ab, and precipitates analyzed by immunoblotting 

using Smad4 Ab. IP using mouse IgG was included as a negative control. [C] 

Expression of GST-Smad2 and GST-Smad4 proteins was confirmed by SDS-PAGE 

(left). GST-fusion proteins were assayed for direct binding to in vitro translated 35S-

labeled full-length DLX4 (right). 
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4.2. Identification of binding domains of DLX4 and Smad4 

 

We sought to identify the Smad4-binding domain of DLX4 by testing truncated 

GST-DLX4 fusion proteins for their ability to bind in vitro-translated 35S-labeled full-

length Smad4 (Figure 29A). We generated GST-DLX4 fusion proteins that contained 

full-length DLX4 (FL), only the homeodomain (HD), only the transactivation domain 

(TA), and the transactivation domain and homeodomain but lacking the C-terminal tail 

(TA+HD) (Figure 29B). Deletion of the C-terminal tail of DLX4 (TA+HD) only weakly 

affected its ability to bind Smad4 (Figure 29C). In contrast, deletion of the DNA-binding 

homeodomain of DLX4 markedly inhibited its Smad4-binding ability (TA). Binding of 

the DLX4 homeodomain to Smad4 (HD) was detected but not as strongly as observed 

with full-length DLX4 (Figure 29C).  

 

We also investigated which domain of Smad4 interacts with DLX4 by testing the 

ability of GST-DLX4 protein to bind in vitro-translated portions of Smad4 protein 

(Figure 30A). We generated in vitro-translated proteins that contained full-length 

Smad4 (FL), only the MH1 domain (MH1), only the MH2 domain (MH2), and the MH1 

and MH2 domains with the linker region (MH1+LK, LK+MH2) (Figure 30A). Direct 

binding of DLX4 was detected to the Smad4 MH1 domain alone, but not to the MH2 

domain (Figure 30C).  
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Figure 29. DLX4  binds to Smad4 in part via the homeodomain 

[A] GST-DLX4 constructs comprising the transactivation domain (TA), homeodomain 

(HD) and C-terminal tail (C). [B] Full-length (FL) DLX4 and portions thereof were 

expressed as GST-fusion proteins, and [C] assayed for binding to 35S-labeled full-

length Smad4. 
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Figure 30. DLX4 binds to the MH1 domain of Smad4 

[A] Smad4 constructs comprising MH1 and MH2 domains and linker (LK) region. [B] 

35S-labeled full-length and truncated Smad4 were translated in vitro and [C] assayed 

for binding to full-length GST-DLX4 protein. 
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5. DLX4 blocks interaction of Smad proteins with DNA 

 

Smad proteins bind to SBEs via their MH1 domains (33). Because DLX4 binds 

to the MH1 domain of Smad4, we investigated whether DLX4 blocks the interaction of 

Smad proteins to DNA. This was initially investigated by in vitro DNA pull-down 

assays. A biotinylated oligonucleotide containing sequences of the minimal p15Ink4B 

promoter region (nucleotides -108 to -39), including the SBEs (Figure 31A), was used 

to pull-down Smad proteins from nuclear extracts. Increased levels of Smad2 and 

Smad4 were detected in DNA-protein complexes when vector-control HepG2 cells 

were stimulated with TGF-β (Figure 31B). In contrast, these increased levels of Smad 

interactions with DNA were not observed when DLX4 was expressed (Figure 31B).  

 

To confirm the ability of DLX4 to block Smad-DNA interactions in a more 

physiological context, we performed ChIP assays. As shown in Figure 31C, 

association of Smad4 and R-Smads with the p15Ink4B promoter was detected by ChIP 

assays in vector-control HepG2 cells following TGF-β treatment. In contrast, 

interactions of Smad proteins with the p15Ink4B promoter were abrogated when DLX4 

was expressed (Figure 31C). 
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Figure 31. DLX4 blocks interactions of Smad proteins with the p15Ink4B promoter 

[A] Sequence of the minimal p15Ink4B promoter indicating Sp1 binding sites and SBEs 

(adapted from (51)). Underlined are sequences contained in the oligonucleotides used 

for oligonucleotide pull-down assays (solid line) and gel-shift assays (dashed line).   

[B] Biotinylated oligonucleotide containing sequences -108 to -39 of the p15Ink4B 

promoter was incubated with HepG2 nuclear extracts and pulled-down. DNA-bound 

proteins in precipitates were analyzed by immunoblotting. [C] ChIP analysis of 

interactions of Smad and Sp1 proteins with the p15Ink4B promoter. The input fraction 

corresponded to 1 % of the chromatin solution of each sample before IP.  
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C. CONCLUSION 

 

The studies in this chapter provide significant insight into the mechanism by 

which DLX4 blocks TGF-β/Smad signaling. Firstly, we demonstrate that DLX4 does 

not alter phosphorylation, expression and nuclear localization of Smad proteins but 

that DLX4 blocks TGF-β-induced transcriptional activity of Smad2 and Smad3. Our 

observation that DLX4 prevents Smad4 from binding to R-Smads suggests that DLX4 

inhibits the formation of R-Smad/Smad4 transcriptional complexes. We also 

demonstrate that DLX4 directly binds to the MH1 domain of Smad4, and that binding 

of DLX4 to Smad4 is mediated in part via its homeodomain.  Direct binding of DLX4 to 

Smad4 and the ability of DLX4 to also block BMP-induced transcription suggests that 

DLX4 could block signaling induced by different ligands of the TGF super-family that 

all utilize Smad4. In addition to the binding of Smad transcriptional complexes to 

SBEs, the interaction of Smad proteins with other transcription factors dictates the 

specificity and affinity of Smad complexes for target gene promoters. Understanding 

the interactions of Smads with other transcription factors will be the focus of Chapter 5.  
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CHAPTER 5: DLX4 REPRESSES SMAD/SP1-MEDIATED TRANSCRIPTION 

 

 

A. RATIONALE 

 

Both the strength and specificity of Smad-mediated transcription are governed 

by interactions of Smad complexes with specific transcriptional factors and their 

interactions with corresponding DNA-binding elements on target promoters (8, 10, 35) 

(Figures 4, 5). Transcriptional activation of genes encoding the CDK inhibitors p15Ink4B 

and p21WAF1/Cip1 is mediated by cooperative interactions between Sp1 and Smads that 

bind to GC boxes and SBEs respectively on the p15Ink4B and p21WAF1/Cip1 promoters 

(36, 38, 51).  

 

In Chapters 3 and 4, we determined that DLX4 blocks Smad-mediated induction 

of p15Ink4B and p21WAF1/Cip1. We found that DLX4 binds to Smad4, and blocks the 

interaction of Smad4 with R-Smads, and also the interactions of Smad complexes with 

DNA. Because cooperative interactions between Sp1 and Smads are important for 

Smad-mediated transcription of the CDK inhibitor genes, we hypothesize that DLX4 

could interfere with Smad-Sp1 interactions. The goal of the studies in this chapter is to 

determine whether and how DLX4 modulates Smad-Sp1-mediated transcription.   
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B. RESULTS 

 

1. DLX4 does not prevent interactions of Smad4 and Sp1 proteins 

 

TGF-β-induced transcription of p15Ink4B and p21WAF1/Cip1 requires cooperative 

interactions between Sp1 and Smads proteins, in particular, Smad4, (37, 38, 51). In 

initial experiments, we investigated whether DLX4 interferes with the interaction of 

Smad4 with Sp1 by IP assays. Following transfection with FLAG-tagged DLX4 or 

empty vector, HepG2 cells were treated with or without TGF-β. Sp1 was 

immunoprecipitated, and precipitates were analyzed by immunoblotting using Ab to 

Smad4. As reported in other studies (51), we similarly observed binding of Smad4 to 

Sp1 following TGF-β treatment of vector-control cells. Surprisingly, we observed 

interaction of Smad4 with Sp1 in cells that expressed DLX4, even in the absence of 

TGF-β stimulation (Figure 32A). These observations were confirmed in reciprocal IP 

assays in which Smad4 was immunoprecipitated and Sp1 was assayed in precipitates 

(Figure 32A). DLX4 did not alter the expression levels of Sp1 and Smad4 (Figure 

32B). This finding indicates that DLX4 facilitates interaction between Smad4 and Sp1 

independently of TGF-β stimulation. 
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Figure 32. DLX4 facilitates interactions of Smad4 and Sp1 

HepG2 cells were transfected with empty vector or with FLAG-tagged DLX4. At 24 

hours thereafter, cells were serum-starved overnight and then treated without and with 

TGF-β (10 ng/ml) for 30 minutes. [A] Sp1 was immunoprecipitated from nuclear 

extracts and precipitates analyzed by immunoblotting using Ab to Smad4. Conversely, 

Smad4 was pulled-down and precipitates analyzed by immunoblotting using Sp1 Ab.  

[B] Western blot of DLX4 and Smad4 and Sp1 in nuclear extracts.  
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2. DLX4 interacts with Sp1 

 

In Smad/Sp1 transcriptional complexes, Sp1 directly binds Smad4 (51). 

Because we previously found that DLX4 directly binds Smad4, it is possible that DLX4 

also interacts with Sp1. In subsequent experiments, we determined i) whether DLX4 

interacts with Sp1, ii) whether this interaction involves direct binding, and iii) what are 

the binding domains of Sp1 and DLX4. 

 

2.1. DLX4 directly binds Sp1 

 

We first determined whether DLX4 interacts with Sp1 in cells. IP assays were 

performed using extracts of HepG2 cells that expressed FLAG-DLX4 or empty vector. 

FLAG-tagged DLX4 associated with Sp1, irrespective of TGF-β stimulation (Figure 

33A). We next determined whether endogenous DLX4 interacts with Sp1. Endogenous 

DLX4 was immunoprecipitated by DLX4 Ab from lysates of MCF-7 cells, and Sp1 was 

detected in precipitates. IP of normal IgG was included as a negative control (Figure 

33B). To confirm the interaction of DLX4 with Sp1, we performed IP using lysates of 

MCF-7 cells that had been transfected with DLX4 shRNA (sh90) or with non-targeting 

shRNA. As shown in Figure 33B, the interaction of DLX4 with Sp1 was reduced when 

DLX4 was knocked-down. 

 

To determine whether DLX4 directly binds Sp1, we performed GST-pulldown 

assays. Full-length GST-DLX4 fusion protein (FL) directly bound to in vitro-translated     
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Figure 33. DLX4 associates with Sp1 

[A] Lysates were prepared from HepG2 cells as described in Figure 32A. Interaction of 

FLAG-DLX4 with Sp1 was detected by reciprocal IP using FLAG and Sp1 Abs. [B] 

MCF-7 cells were transfected with non-targeting shRNA or with DLX4 (sh90) shRNA. 

Endogenous DLX4 was immunoprecipitated using DLX4 Ab, and precipitates analyzed 

by immunoblotting using Sp1 Ab. IP using mouse IgG was included as a negative 

control. 
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35S-labeled full-length Sp1 (Figure 34A). Similarly, full-length GST-Sp1 fusion protein 

was observed to bind in vitro-translated 35S-labeled DLX4 (Figure 34C).  

 

2.2. Identification of binding domains of DLX4 and Sp1 

 

We determined the domain of DLX4 that binds to Sp1 by performing GST pull-

down assays using GST-DLX4 fusion proteins that contained different domains of 

DLX4 (Figure 29A, B). Binding of the homeodomain of DLX4 to in vitro-translated Sp1 

was strongly detected (Figure 34A). This binding was comparable to binding of full-

length DLX4 to Sp1. Deletion of the C-terminal tail or the transactivation domain of 

DLX4 did not affect its ability to bind Sp1 (Figure 34A).  

 

In converse experiments, we determined the domain of Sp1 that binds DLX4. 

Sp1 comprises a C-terminal DNA-binding domain [amino acids 557 to 778] and an N-

terminal transactivation domain [amino acids 1 to 557] (Figure 34B). We generated in 

vitro-translated 35S-labeled proteins that contained full-length Sp1 (FL), the DNA-

binding domain of Sp1 (DBD) and its transactivation domain (TA) (Figure 34C). DLX4 

did not bind the transactivation domain of Sp1, but bound to its DNA-binding domain 

(Figure 34C). Together, these findings demonstrate that the interaction between DLX4 

and Sp1 is mediated via their respective DNA-binding domains. 
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Figure 34. DLX4 binds to the DNA-binding domain of Sp1 

[A] GST-DLX4 proteins (described in Figure 29A) were assayed for binding to 35S-

labeled full-length Sp1. [B] Sp1 constructs comprising the transactivation domain (TA) 

and DNA-binding domain (DBD). [C] 35S-labeled full-length (FL) and truncated Sp1 

were translated in vitro (left) and assayed for binding to full-length GST-DLX4 protein 

(right). 
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3. DLX4 inhibits DNA-binding activity of Sp1 

 

3.1. DLX4 blocks interactions of Sp1 with the p15Ink4B promoter 

 

Because DLX4 binds the DNA-binding domain of Sp1, it is possible that DLX4 

interferes with the DNA-binding ability of Sp1. To determine whether DLX4 alters the 

binding of Sp1 to its recognition element, we performed in vitro DNA pull-down assays 

using a biotinylated oligonucleotide containing sequences of the minimal p15Ink4B 

promoter region (nucleotides -108 to -39). This contains two GC boxes plus two SBEs 

(Figure 35A). In contrast to Smad proteins, binding of Sp1 to this promoter was 

detected in lysates of vector-control HepG2 cells in the absence of TGF-β stimulation 

(Figure 35B).  TGF-β stimulation increased the level of DNA-bound Sp1 in vector-

control cells (Figure 35B). However, very little DNA-bound Sp1 was detected in lysates 

of HepG2 cells that expressed DLX4, irrespective of TGF-β stimulation (Figure 35B).  

 

To confirm this finding in a more physiological context, ChIP was performed to 

assay binding of endogenous Sp1 to the p15Ink4B promoter. As shown in Figure 35C, 

association of Sp1 with the p15Ink4B promoter was detected in vector-control HepG2 

cells following TGF-β treatment. In contrast, binding of Sp1 to the p15Ink4B promoter 

was not detected in cells that expressed DLX4, irrespective of TGF-β stimulation 

(Figure 35C). The ability of DLX4 to block binding of Sp1 to the p15Ink4B promoter is 

similar to its ability to block DNA-binding of Smad proteins as we demonstrated in 

Chapter 4. Together, these findings indicate that DLX4 blocks the interaction of 

Smad/Sp1 complexes with target gene promoters.  
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Figure 35. DLX4 blocks interactions of Sp1 protein with the p15Ink4B promoter 

[A] Sequence of the minimal p15Ink4B promoter indicating Sp1 binding sites and SBEs 

(adapted from (51)). Underlined are sequences contained in the oligonucleotides used 

for oligonucleotide pull-down assays (solid line) and gel-shift assays (dashed line). [B] 

Biotinylated oligonucleotide containing sequences -108 to -39 of the p15Ink4B promoter 

was incubated with HepG2 nuclear extracts and pulled-down. DNA-bound proteins in 

precipitates were analyzed by immunoblotting. [C] ChIP analysis of interactions of Sp1 

with the p15Ink4B promoter. The input fraction corresponded to 1 % of the chromatin 

solution of each sample before IP.    
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3.2. DLX4 blocks the DNA-binding ability of Sp1, independently of Smad proteins 

 

In subsequent experiments, we sought to determine whether DLX4 blocks the 

DNA-binding ability of Sp1, independently of Smad proteins. Gel-shift assays were 

performed to test the ability of DLX4 to prevent Sp1 from binding sequences of the 

minimal p15Ink4B promoter region (nucleotides -88 to -63). Addition of increasing 

amounts of recombinant FLAG-tagged DLX4 blocked the binding of recombinant Sp1 

to the DNA probe (Figure 36A). In contrast, addition of increasing amounts of FLAG-

tag alone did not affect the DNA-binding ability of Sp1 (Figure 36A). 

 

Because DLX4 blocks DNA-binding ability of Sp1, we also investigated whether 

DLX4 blocks Sp1-induced transcription, independently of Smads. We performed 

reporter assays using a synthetic promoter that comprised tandem Sp1-binding sites 

(Figure 36B). Enforced expression of DLX4 in Smad4-deficient MDA-MB-468 cells 

inhibited activity of the Sp1-driven promoter (Figure 36B). Conversely, knock-down of 

DLX4 in MCF-7 cells stimulated Sp1-driven promoter activity (Figure 36B).  
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Figure 36. DLX4 blocks DNA-binding ability of Sp1 

[A] Gel shift analysis using a 32P-labeled oligonucleotide containing nucleotides -88 to 

-64 of the p15Ink4B promoter (refer figure 35A). Recombinant Sp1 protein was 

incubated with increasing amounts of in vitro translated FLAG-DLX4 and FLAG-tag. 

Gel-shifted DNA-bound Sp1 is indicated. [B] MDA-MB-468 cells were co-transfected 

with empty vector (-DLX4) or DLX4, together with the Cignal Sp1 reporter construct 

driven by a synthetic promoter comprising tandem Sp1-binding sites (left). Sp1-driven 

promoter activity was, likewise, assayed in MCF-7 cells that were co-transfected with 

non-targeting shRNA or DLX4 (sh90) shRNA (right). Shown are average relative F-Luc 

activities in three independent experiments each performed in duplicate. Values were 

normalized by activity of co-transfected R-Luc. 
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C. CONCLUSION 

 

Cooperative interactions between Smad proteins and Sp1 are important for 

TGF-β-induced transcription of CDK inhibitor genes. In this chapter, we identified the 

mechanism of how DLX4 blocks Smad/Sp1-mediated transcription. We found that 

DLX4 does not prevent the interaction between Sp1 and Smad4, but blocks the 

interactions of Sp1 and Smad proteins with the p15Ink4B promoter. We also 

demonstrate that DLX4 directly binds to the DNA-binding domain of Sp1, and inhibits 

the DNA-binding ability of Sp1. Together, these results indicate that DLX4 inhibits 

Smad/Sp1-mediated transcription by inhibiting the DNA-binding ability of Sp1, in 

addition to preventing Smad4 from interacting with R-Smads as identified in Chapter 4.  
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CHAPTER 6: DISCUSSION 

 

 

A. DLX4 COUNTERACTS KEY TRANSCRIPTIONAL CONTROL MECHANISMS OF 

THE TGF-ββββ CYTOSTATIC PROGRAM 

 

The TGF-β cytostatic program is essential for maintaining normal tissue 

homeostasis. Gene responses that are central to the TGF-β cytostatic program include 

induction of the CDK inhibitors p15Ink4B and p21WAF1/Cip1 and repression of c-myc. 

These gene responses are tightly regulated by a repertoire of transcriptional regulators 

that include Smad proteins, Sp1 and c-myc (3, 4). My studies in Chapter 3 (Aim 1) 

demonstrate that DLX4, a homeodomain protein that is expressed in many types of 

cancers, blocks the anti-proliferative effect of TGF-β by preventing G1 arrest. DLX4 

inhibits TGF-β-induced expression of p15Ink4B and p21WAF1/Cip1 and blocks TGF-β-

mediated repression of c-myc expression. In addition, my studies demonstrate that 

DLX4 induces c-myc expression independently of TGF-β signaling. My studies in 

Chapter 4 (Aim 2) and Chapter 5 (Aim 3) identify and characterize several distinct 

mechanisms by which DLX4 inactivates transcriptional control of the TGF-β cytostatic 

program.  
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1. DLX4 sequesters Smad4 and prevents Smad4 from binding R-Smads  

 

The formation of transcriptional complexes of Smad4 and activated R-Smads 

upon TGF-β stimulation is essential for Smad-mediated transcription (10, 12). My 

studies indicate that DLX4 does not alter Smad phosphorylation, expression or nuclear 

translocation (Figure 22). However, my studies identify that DLX4 blocks Smad 

transcriptional activity (Figures 24 and 25) by directly binding to Smad4 and preventing 

Smad4 from binding to R-Smads (Figures 27 and 28). Smad interactions might also be 

prevented by the binding of DLX4 to R-Smads, as we observed that DLX4 directly 

binds to Smad2 (Figure 28). However, binding of DLX4 to Smad2 was much weaker 

than to Smad4. Because Smad4 and R-Smads interact with one another via their MH2 

domains (201), our finding that DLX4 binds the Smad4 MH1 domain is somewhat 

surprising. One explanation could be that binding of DLX4 to the Smad4 MH1 domain 

induces a conformational change such that the MH2 domain of Smad4 is unable to 

interact with R-Smads (Figure 37). One way to test this would be to perform X-ray 

crystallography studies of DLX4 interactions with Smad proteins. However, since 

Smad proteins bind DNA via their MH1 domains, the binding of DLX4 to the MH1 

domain is consistent with the observed ability of DLX4 to block the ability of Smads to 

bind DNA (Figure 31). Smad proteins have been reported to interact with a variety of 

other transcription factors (reviewed in (203)). However, most of these other 

transcription factors interact with the MH2 domain of Smad proteins, and very few 

interact with the MH1 domain.  
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Figure 37. Predicted model of DLX4, Smad4 and Sp1 interactions 

In the absence of TGF-β stimulation, Sp1 binds to the GC box element on target gene 

promoters to drive basal transcription [A]. Upon TGF-β stimulation, R-Smads and 

Smad4 form transcriptional complexes with Sp1 and induce gene transcription [B]. In 

cells that highly express DLX4, DLX4 forms an inactive complex in the nucleus by 

directly binding to both Sp1 and Smad4 and represses gene transcription [C]. TGF-β 

stimulation activates R-Smads and induces their translocation into the nucleus. 

However, activated R-Smads fail to bind to Smad4 due to the blocking effect of DLX4. 

As a consequence, TGF-β cannot induce transcription of target genes [D]. 
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2. Interaction of DLX4 and Sp1 

 

Binding affinity and selectivity of Smad complexes for target gene promoters are 

principally dictated by interactions of Smads with other DNA-binding factors (10, 201). 

Similarly, binding affinity and selectivity of several homeodomain proteins are 

modulated by interactions with other transcriptional regulators (204, 205). Sp1 is an 

important binding partner of Smad proteins that cooperates with Smads to induce 

transcription of p15Ink4B and p21WAF1/Cip1. Upon TGF-β stimulation, Sp1 binds to MH1 

domain of Smad4 and the MH2 domain of Smad2 to form Sp1/Smad complexes that 

bind to the promoters via their respective binding sites (37, 51).  Surprisingly, we 

observed that DLX4 does not prevent Sp1 from associating with Smad4 in TGF-β-

stimulated cells (Figure 32A). Notably, DLX4 seemed to facilitate Smad4-Sp1 

interactions even in the absence of TGF-β stimulation (Figure 32A). Furthermore, my 

studies demonstrate that DLX4 directly binds the DNA-binding domain of Sp1 and 

impairs the DNA-binding ability of Sp1 (Figures 34, 35 and 36). This study is the first to 

demonstrate that a homeodomain protein directly interacts with Sp1 and modulates 

Sp1 activity. Since my studies demonstrated that DLX4 directly binds to Smad4 and to 

Sp1, we speculate that DLX4 inhibits p15Ink4B transcription by two integrated 

mechanisms. Firstly, DLX4 might recruit Sp1 and Smad4 to form a transcriptionally 

inactive DLX4-Smad-Sp1 complex that is unable to bind TGF-β-activated R-Smads. 

Secondly, by directly binding to the DNA-binding domains of Smad4 and of Sp1, DLX4 

might dislodge Smad4 and Sp1 from the p15Ink4B promoter (Figure 37). Because 

transcription of p21WAF1/Cip1 is also induced by TGF-β via cooperative interactions 
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between Sp1 and Smad proteins (38), DLX4 might inhibit p21WAF1/Cip1 transcription by 

a similar mechanism. 

 

3. Induction of c-myc by DLX4 

 

My studies indicate that DLX4 induces expression of c-myc by two 

mechanisms. On one hand, DLX4 can block the ability of TGF-β to repress c-myc 

promoter activity (Figure 20). As previously discussed in Chapter 1, interaction of the 

repressive complex comprising Smad3, Smad4 and E2F4/5, DP1 and p107 with the 

TIE element in the c-myc promoter blocks c-myc transcription (46, 47) (Figure 5A). 

Because DLX4 blocks Smad4 from binding activated Smad3 (Figure 27A), DLX4 might 

block formation of the repressive complex and thereby derepress the c-myc promoter. 

My studies also demonstrate that DLX4 induces c-myc expression independently of 

TGF-β/Smad signaling. One possibility is that DLX4 directly activates the c-myc 

promoter. The c-myc promoter contains multiple TAAT core motifs that are recognized 

by homeodomain proteins. Indeed, it has been reported that another homeodomain 

protein, HOXB4, induces c-myc promoter activity (206).  

 

Our finding that DLX4 induces expression of c-myc independently of TGF-β 

signaling has several implications. Firstly, induction of c-myc by DLX4 provides a 

competing mitogenic signal against the TGF-β cytostatic program. c-myc induces 

expression of numerous cell cycle facilitators such as Id2, cdc25A and cyclin D1 (57, 

58, 207, 208). Secondly, DLX4-induced c-myc expression might lead to down-

regulated expression of p15Ink4B and p21WAF1/Cip1, because transcription of these genes 
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is repressed by c-myc (62, 63). The repression of p15Ink4B transcription by c-myc has 

some similarity to our observations with DLX4. We found that interaction of Sp1 with 

Smad4 was not disrupted by DLX4. Feng et al., likewise, reported that c-myc does not 

compete with Sp1 for interaction with Smads (62). These authors speculated that by 

interacting with activated Smad2/3, c-myc promotes the formation of an inactive 

transcription complex with Smad proteins and Sp1. However, there are notable 

differences in the mechanisms by which DLX4 and c-myc repress p15Ink4B promoter 

activity. In my studies, DLX4 was found to inhibit interactions between Smad4 and R-

Smads, and to inhibit R-Smad transcriptional activity. In contrast, c-myc does not 

inhibit interactions between Smad4 and R-Smads (62). Furthermore, in my studies, 

DLX4 was found to inhibit DNA-binding activity of Sp1. In contrast, c-myc does not 

affect binding of Sp1 to the p15Ink4B promoter (62). DLX4 might, therefore, repress 

p15Ink4B and possibly also p21WAF1/Cip1 transcription by three distinct, but integrated, 

mechanisms: i) by increasing c-myc expression, ii) by preventing Smad4 from binding 

R-Smads, and iii) by blocking Sp1 DNA-binding activity.  

 

B. INTERACTIONS BETWEEN DLX GENES AND THE TGF SUPER-FAMILY 

 

1. Cross-regulation of DLX genes and TGF super-family members 

 

The ability of DLX4 to block TGF-β signaling might be related to the functions of 

DLX genes in controlling bone morphogenesis and skeletal patterning (1, 129). These 

processes are tightly regulated by members of the TGF super-family. Because DLX4 

binds Smad4, DLX4 also likely blocks signaling emanating from other receptors of the 
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TGF super-family. Indeed, we found that DLX4 inhibited induction of transcriptional 

activity by BMP-4 (Figure 26). DLX1 has been reported to inhibit activin signaling 

(184). Conversely, signaling by TGF super-family members can modulate expression 

or activity of DLX proteins. For example, BMP-2 activates DLX3 transcription (182). 

Smad6, an antagonist of BMP signaling, inhibits DLX3 transcriptional activity (183). 

Interestingly, we observed that levels of DLX4 protein decreased in cells following 

TGF-β stimulation (Figure 18). DLX4 might be a component of a regulatory loop that 

blocks TGF-β signaling and is conversely regulated by TGF-β. This feedback 

mechanism might play an important role in controlling normal embryogenesis and 

homeostasis.  

 

2. Binding specificity of homeodomain proteins to Smads 

 

Transcription factors encoded by homeobox genes are characterized by their 

conserved helix-turn-helix DNA-binding homeodomain (209). Our findings that binding 

of DLX4 to the MH1 domain of Smad4 is mediated in part through the homeodomain 

of DLX4 raises the question of specificity. Transcription factors encoded by various 

homeobox genes have been reported to bind Smads, but not all of these interactions 

are solely mediated via the homeodomain. For example, proteins encoded by the 

Mixer and Milk homeobox genes bind Smad2 through a region distinct from their 

homeodomains (181). DLX1 has been reported to bind Smad4, but its binding region 

has not been identified (184). Transcription factors encoded by various other 

homeobox genes have been reported to bind Smads via their homeodomain. 

However, the specificity of homeodomain proteins for different Smads is striking. Most 
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of the interactions between homeodomain proteins and Smads reported so far are with 

either R-Smads or I-Smads. DLX3 binds Smad6 but not Smad4 (183). HOXA13 binds 

Smad1, Smad2 and Smad5 but does not bind Smad4 (185). Furthermore, different 

homeodomain proteins bind different domains of Smad proteins. For example, HOXC8 

interacts with the MH1 domain of Smad1 (210), whereas HOXA13 binds the MH2 

domains of Smad1 (185). Within the homeodomain, the residues of the third helix are 

the most highly conserved (127). Less conserved residues of the first and second 

helices might govern preferential binding to a specific Smad protein or Smad domain.  

My study is the first to demonstrate a direct interaction of a homeodomain protein to 

the MH1 domain of Smad4. Indeed, very few transcription factors are known to bind 

the MH1 domain of Smad4 (reviewed in (203)). However, it is possible that other 

homeodomain proteins could bind Smad4 and potentially block TGF-β-mediated 

growth inhibition by a mechanism similar to that of DLX4. Nonetheless, the specificity 

of this inhibition could largely depend on the context of the expression of homeobox 

genes. Most homeobox genes are expressed in a highly tissue-specific manner (137, 

209). In contrast, DLX4 is expressed across diverse malignancies (Table 5). No other 

homeobox gene has been reported to be commonly expressed in tumors of lung, 

breast, ovary, prostate and hematologic origin. Interference of TGF-β-mediated growth 

inhibition by DLX4 could, therefore, be a mechanism common to multiple organ sites. 
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C. THE ROLE OF HOMEOBOX GENE DLX4 IN TUMORIGENESIS  

 

1. Resistance of tumors to the anti-proliferative effect of TGF-β β β β     

 

Resistance to TGF-β-mediated growth-inhibition is an important feature in the 

pathogenesis of most types of tumors (3, 4, 95). This resistance has been attributed to 

TGF-β receptor or Smad mutations in several types of tumors, particularly those of 

gastrointestinal and pancreatic origin (Table 2). Resistance of tumor cells to the anti-

proliferative effect of TGF-β can also stem from down-regulation of TGF-β receptor 

expression (211), activation of Smad repressors, repression of Smad activators 

(Figure 2) and mutation of downstream targets such as p15Ink4B deletion (212). The 

ability of DLX4 to block TGF-β-mediated growth inhibition could explain why tumors 

that lack aberrations in core components of the TGF-β signaling pathway can become 

resistant to the anti-proliferative effect of TGF-β. It would be important in future studies 

to determine whether DLX4 is aberrantly activated in tumors that have TGF-β receptor 

or Smad mutations, and what is the effect of DLX4 in these tumors. It is interesting to 

note that Ski and SnoN proteins also can block the anti-proliferative effect of TGF-β 

and that these proteins are both elevated in many types of cancer. The sno gene is 

also located in a chromosomal locus that is frequently amplified in many tumors 

(reviewed in (29)). However, the mechanisms for the blocking effect of Ski/Sno are 

distinct from that of DLX4. Ski/Sno blocks TGF-β/Smad signaling in a “gene non-

specific” manner by recruiting N-CoR/mSin3/HDAC repressor complexes to Smad4/R-

Smad transcription complexes (27-29). However, in this study, we demonstrated that 

DLX4 blocks TGF-β/Smad signaling by both “gene non-specific” and “gene specific” 
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mechanisms. As discussed earlier, DLX4 blocks TGF-β/Smad signaling by a “gene 

non-specific” mechanism via binding Smad4 and preventing binding of Smad4 to TGF-

β-activated R-Smads. DLX4 also blocks TGF-β-mediated induction of p15Ink4B and 

p21WAF1/Cip1 transcription by a “gene specific” mechanism via forming a transcriptionally 

inactive complex with Smad4 and Sp1, and by inducing expression of c-myc, a 

repressor of p15Ink4B and p21WAF1/Cip1 transcription.   

 

2. Other roles of DLX4 in tumor progression 

 

A striking aspect of the TGF-β signaling pathway in tumors is its biphasic 

function. Many tumors are resistant to the anti-proliferative effect of TGF-β but retain 

other TGF-β-mediated mechanisms that promote EMT and metastasis (3, 4). It has 

been thought that core components of the TGF-β pathway remain functional in these 

tumors, whereas downstream aberrations (such as p15Ink4B deletion) disable the 

growth-inhibitory arm of the pathway (3, 4). By sequestering Smad4, DLX4 inactivates 

the core pathway and might also block the metastasis-promoting function of TGF-β. 

Indeed, DLX4 markedly, but not completely, inhibited TGF-β-induced EMT in NMuMG 

cells (Figure 21). The ability of DLX4 to inhibit TGF-β-induced EMT could explain the 

association of DLX4 with favorable prognosis in lung cancer patients and its 

metastasis-suppressive activity reported by Tomida et al. (178). However, DLX4 levels 

in ovarian and breast cancers have been reported to correlate with disease 

progression (173, 176). There are several possible explanations for this paradox. As 

described in Chapter 1, TGF-β not only induces EMT by Smad-dependent 

mechanisms, but also via Smad-independent pathways that involve MAP kinase and 
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RhoA activation (88). TGF-β-induced, non-Smad pathways that promote cell migration 

might not be inhibited by DLX4. One way to test this possibility is to assay the effect of 

DLX4 on cell migration using MDA-MB-468 breast cancer cells that have homozygous 

deletion of Smad4. DLX4 could also promote tumor progression by other mechanisms 

such as sustained induction of c-myc. For example, c-myc not only stimulates cell 

growth but also promotes tumor metastasis (213). In addition, our laboratory has found 

that DLX4 promotes tumor angiogenesis by inducing expression of vascular 

endothelial growth factor and fibroblast growth factor-2 (FGF-2) (173). The mechanism 

that gives rise to overexpression of DLX4 in tumors is unclear. The DLX4 gene maps 

to the 17q21.3-q22 region, a chromosomal “hot-spot” that is amplified in ~10% of 

breast and ovarian cancers (175, 214). However, DLX4 overexpression occurs in 

>50% of these tumors (173, 176) indicating that gene amplification is not the sole 

mechanism underlying this overexpression. 

 

3. Functional significance of homeobox genes in cell growth deregulation in 

cancers 

 

In addition to the ability of DLX4 to block the TGF-β anti-growth signal identified 

in this study, other reports implicate a function for DLX4 in enhancing cell survival. The 

anti-apoptotic effect of DLX4 has been associated with its ability to induce expression 

of GATA-1 and bcl-2 (171, 190). DLX4 has also been reported to repress expression 

of the DNA-damage repair protein BRCA1 in breast cancer, suggesting that DLX4 

might play a role in DNA-damage repair (189). Aberrant expression of other homeobox 

genes can also promote tumor cell survival and growth. HOXA1 is overexpressed in 
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breast cancers and promotes tumor cell survival by inducing bcl-2 expression (215). 

HSIX1 is also highly expressed in breast cancers and causes abrogation of the G2 

checkpoint by inducing expression of cyclin A1 (162, 163). HOXB7 is overexpressed in 

melanomas, breast and ovarian cancers and induces expression of FGF-2 (167, 216). 

On the other hand, several homeobox genes can inhibit cell growth, and their 

expression is lost in tumors. CDX2 inhibits cell growth by inducing expression of 

p21WAF1/Cip1, and CDX2 is down-regulated in colon cancers (152, 217). p53 is a direct 

transcriptional target of HOXA5 (145). Loss of HOXA5 expression has been reported 

in >60% of breast cancers (145). My study is the first report that functionally links a 

homeobox gene that is aberrantly expressed in tumors with resistance to the cytostatic 

activity of TGF-β. This study significantly supports a growing body of evidence that 

aberrant expression of homeobox genes can deregulate tumor cell growth by a wide 

variety of different mechanisms. 

 

D. CONCLUSION  

 

Resistance to the anti-proliferative effect of TGF-β is an important feature in the 

pathogenesis of most types of cancers. Resistance of many tumors to TGF-β cannot 

be solely explained by TGF-β receptor and Smad mutations or deletions. My studies 

demonstrate that DLX4 blocks the anti-proliferative effect of TGF-β by disabling key 

transcriptional control mechanisms of the TGF-β cytostatic program. My studies also 

provide a molecular explanation as to why many tumors are resistant to the growth-

inhibitory effect of TGF-β in the absence of mutations in core components of the TGF-

β signaling pathway (Figure 38). Escape from anti-proliferative signals is an important 
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and early step in tumor pathogenesis. DLX4 might therefore, serve as a useful early 

detection marker and therapeutic target for multiple types of tumors.  At a broader 

level, my studies might provide insight into how aberrant activation of a developmental 

patterning gene promotes tumor pathogenesis. Conversely, the finding of this study 

that DLX4 modulates TGF-β signaling in tumors also provides insights into how 

homeobox genes and TGF-β signaling interact to control normal developmental 

patterning. 
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Figure 38. DLX4 blocks TGF-ββββ-induced G1 arrest  

TGF-β induces G1 arrest primarily by inducing expression of CDK inhibitors, p15Ink4B 

and p21WAF1/Cip1. DLX4 prevents G1 arrest by blocking TGF-β/Smad signaling and by 

inducing expression of c-myc, a transcriptional repressor of p15Ink4B and p21WAF1/Cip1, 

independently of TGF-β signaling. 
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