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Youngsin Jung, B.S. 

Supervisory Professor: Joseph McCarty, Ph.D. 

 

Band 4.1B is a cytoskeletal adaptor protein that regulates various cellular behavior; 

however, the mechanisms by which Band 4.1B contributes to intracellular signaling 

are unclear. This project addresses in vivo and in vitro functions for Band 4.1B in 

integrin-mediated cell adhesion and signaling. Band 4.1B has been shown to bind to 

β8 integrin, although cooperative functions of these two proteins have not been 

determined. Here, functional links between β8 integrin and Band 4.1B were 

investigated using gene knockout strategies. Ablation of β8 integrin and Band 4.1B 

genes resulted in impaired cardiac morphogenesis, leading to embryonic lethality by 

E11.5. These embryos displayed malformation of the outflow tract that was likely 

linked to abnormal regulation of cardiac neural crest migration.  These data indicate 

the importance of cooperative signaling between β8 integrin and Band 4.1B in 

cardiac development. The involvement of Band 4.1B in integrin-mediated cell 

adhesion and signaling was further demonstrated by studying its functional roles in 

vitro. Band 4.1B is highly expressed in the brain, but its signaling in astrocytes is not 

understood. Here, Band 4.1B was shown to promote cell spreading likely by 

interacting with β1 integrin via its band 4.1, ezrin, radixin, and moesin (FERM) 
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domain in cell adhesions. In astrocytes, both Band 4.1B and β1 integrin were 

expressed in cell-ECM contact sites during early cell spreading. Exogenous 

expression of Band 4.1B, especially its FERM domain, enhanced cell spreading on 

fibronectin, an ECM ligand for β1 integrin. However, the increased cell spreading 

was prohibited by blocking β1 integrin. These findings suggest that Band 4.1B is 

crucial for early adhesion assembly and/or signaling that are mediated by β1 

integrin. Collectively, this study was the first to establish Band 4.1B as a modulator 

of integrin-mediated adhesion and signaling.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

Table of Contents 

Approval Signatures……………………………………………………………………..i 

Title Page……………………………………………………………..……………………ii 

Dedication……………………………………………………..…………………………..iii 

Acknowledgments……………………………………………………………………….iv 

Abstract………………………………………………………….…………………………v 

Table of Contents……………………………………………………………………….vii 

List of Figures…………………………………………………………………………….x 

List of Tables…………………………………………………………………………….xiii 

Chapter 1: Introduction………………………………………………………………….1 

1.1. Cell migration…...…………………………………………………………..1 

1.2. Protein 4.1 superfamily…………….………………………………………6 

1.3. Band 4.1B………………………………………………………………….13 

1.4. Integrin family………………..…………………………………………….17 

1.5. Integrin activation and signaling……….………………………………..23 

1.6. Integrin signaling and Band 4.1B……….……………………………….27 

1.7. Integrins, Band 4.1B, and organogenesis….…………………………..29 

1.8. Specific aims………………………………………………………………31 

Chapter 2: Materials and Methods……………………………………………………33 

2.1.  Experimental mice...……………………………………………………...33 

2.2.  Astrocyte isolation………………………………………………………...34 

2.3. Immunoblotting……………………………………………………………35 

2.4. Biotinylation and immunoprecipitation………………………………….35 



viii 

 

2.5. Immunohistochemistry……………………………………………………36 

2.6. Immunofluorescence……………………….…………………………….37 

2.7. Whole-mount immunostaining….………………………………………..38 

2.8. Adhesion assays……...….……………………………………………….39 

2.9. Statistical analysis….……………………………………………………..40 

Chapter 3: Specific Aim I………………………………………………………….……41 

3.1. Introduction………………………………………...………………………41 

3.2. Results……………………………………………………………………..42 

3.2.1. Genetic knockouts of β8 integrin and Band 4.1B demonstrate 

lethal phenotypes by E11.5……………………………….……..42  

3.2.2. Cardiovascular abnormalities contribute to the lethal phenotype 

of β8-/-;4.1B-/- embryos………………………………………….56 

3.2.3. β8-/-;4.1B-/- embryos display abnormal morphogenesis of the 

outflow tract and myocardium of the heart……………………..68  

3.2.4. Neural crest cell migration is impaired in β8-/-;4.1B-/- 

embryos……………………………………………………………76 

3.3. Discussion…………………………………………………………………81 

Chapter 4. Specific Aim II……………………………………………………………...87 

4.1. Introduction………………………………………………………………...87 

4.2. Results…………………………………………………………………..…88 

4.2.1. Lack of Band 4.1B expression does not affect integrin 

expression in astrocytes………………………………………….88 



ix 

 

4.2.2. Band 4.1B shows time-dependent changes in its subcellular 

localization…………………………………………………………94 

4.2.3. Band 4.1B and β1 integrin co-localize to cell-ECM contact 

sites………………………………………....…………………….100 

4.2.4. Band 4.1B is not necessary for cell adhesion to the 

ECM……………………………………………………………….109  

4.2.5. The FERM domain of Band 4.1B enhances cell spreading on 

fibronectin………………………………………………………...112 

4.3. Discussion………………………………………………………………..118 

Chapter 5. Summary and Future Directions………………………………………123 

References…………………………………..………………………………………….132 

Vita….……………………………………………………………………………...……..147 

 

 

 

 

 

 

 

 

 

 

 



x 

 

List of Figures 

Chapter 1. Introduction 

Figure 1. Cell migration……………………………………………………………….3 

Figure 2.  Protein 4.1 superfamily………….…………………………………………7 

Figure 3.  Each conserved domain of Band 4.1B interacts with unique binding 

partners……………………………………………………….……………16 

Figure 4. Integrin family……………………………………………………………...19 

Figure 5. Integrins are involved in various intracellular signaling pathways…...22 

Figure 6.  Talin regulates integrin inside-out activation by interacting with the β 

subunit cytoplasmic domain……………………………………………..24 

Chapter 3. Specific Aim I 

Figure 7.  The genotypes of embryos are determined by PCR-based gene 

amplication methods……………………………………………………..44 

Figure 8. β8-/- and β8-/-;4.1B-/- mice develop intracerebral hemorrhage after 

E11.5……………………………………………………………………….48 

Figure 9. Kaplan-Meier survival analysis…………………………………………..50 

Figure 10.  Adult β8-/- and β8-/-;4.1B-/- mice develop hydrocephalus…………...52 

Figure 11.  Double knockout embryos develop lethal cardiovascular 

phenotypes………………………………………………………………...55 

Figure 12.  CNS vascular pathologies are seen in β8-/- and β8-/-;4.1B-/- 

embryos…………………………………………...……………………….57 

Figure 13.  β8-/-;4.1B-/- mice lack an elaborate vascular network…..……………59 

Figure 14.  Yolk sac vascular pathologies in β8-/-;4.1B-/- embryos………………61 



xi 

 

Figure 15.  The expression of Band 4.1B and αvβ8 integrin in yolk 

sacs…………………………………………………………………………63 

Figure 16.  The expression of Band 4.1B and αvβ8 integrin in the embryonic 

heart………………………………………………………………………..66 

Figure 17. Defective heart morphogenesis in β8-/-;4.1B-/- embryos…………….69 

Figure 18.  Reduced expression of desmin in β8-/-;4.1B-/- embryos……………..72 

Figure 19.  αV integrin and Band 4.1B proteins are co-expressed in the embryonic 

heart………………………………………………………………………..74 

Figure 20.  Abnormal patterns of neurofilament expression in β8-/-;4.1B-/- 

embryos……………………………………………………………………77 

Figure 21. Neurofilament expression patterns are abnormal in β8-/-;4.1B-/- 

trunks……………………………………………………………………….79 

Chapter 4. Specific Aim II 

Figure 22.  Protein 4.1 expression in astrocytes……………………………………89 

Figure 23.  Integrin expression in astrocytes………………………………………..92 

Figure 24. Protein 4.1B and 4.1G, but not 4.1N, localize to cell-ECM contact 

sites…………………………………………………………………………95 

Figure 25.  Protein 4.1 sub-cellular localization changes as cell-cell contacts are 

formed……………………………………………………………………...98 

Figure 26.  Band 4.1B and β1 integrin localize to adhesions during early stages of 

cell adhesion and spreading….………………………..………………101 

Figure 27.  Band 4.1B and β1 integrin co-localize during early cell 

spreading…………………………………………………………………104 



xii 

 

Figure 28.  Band 4.1B and β1 integrin co-localize in the neuroepithelium….….107 

Figure 29. Band 4.1B is not necessary for cell adhesion to the ECM………….110 

Figure 30. The FERM domain of Band 4.1B enhances cell spreading on 

fibronectin...………………………………………………………………113 

Figure 31.  The Band 4.1B FERM domain promotes cell spreading mediated by 

β1 integrin………………………………………………………………...116 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

 

List of Tables 

Chapter 1. Introduction 

Table 1. Protein 4.1 family………………………………………………………….10 

Chapter 3. Specific Aim I 

Table 2. Genotype distribution of mice……………………………………………46



1 

 

Chapter 1. Introduction 

1.1. Cell migration 

Cell migration and invasion are crucial for numerous physiological and 

pathological events, such as embryogenesis, tissue repair, immune response, 

vascular diseases, and cancer (Costa and Parsons 2010; Nowotschin and 

Hadjantonakis, 2010; Peri F, 2010; Caswell et al., 2008). Characterizing regulatory 

signaling pathways of cell motility, therefore, is pivotal to understanding human 

physiology and pathology. The regulation of cell motility requires the complex 

coordination of cell-extracellular matrix (ECM) interactions and cytoskeleton 

organization (Teckchandani et al., 2009).  

Adherent cells first begin to migrate by forming protrusions termed 

lamellipodia and filopodia (Le Clainche and Carlier, 2008). These protrusions are 

stabilized by adhesions that connect the ECM to the cytoskeleton (Hood and 

Cheresh, 2002). Integrin cell adhesion receptors are essential for orchestrating 

adhesion formation, cytoskeleton organization, and cell polarity during migration 

and invasion (Ridely et al., 2003). After binding to ECM ligands, integrins recruit 

and/or interact with multiple adaptors and signaling molecules, such as α-actinin, 

focal adhesion kinase (FAK), tensin, and talin, which in turn  bind to actin-binding 

vinculin and paxillin (Zamir and Geiger, 2001; Calderwood et al., 2000). At the 

adhesion sites, integrins provide traction for the cell body to move forward by linking 

the ECM to the cytoskeleton, and also function as mechanosensors that can alter 

cytoskeletal dynamics (Webb et al., 2002). During migration, adhesions are 

disassembled at both leading and trailing edges, and integrins are actively recycled. 
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Proteases degrade various ECM components, including fibronectin, laminin, and 

collagen (Friedl and Wolf, 2003). Some proteases, such as seprase, MMP1, MMP2, 

MT1-MMP directly bind to integrins (Dumin et al., 2001; Ellerbroek et al., 2001; 

Galvez et al., 2002). These processes allow for dynamic regulation of cell’s forward 

motion and new protrusion formation (Ridely et al., 2003) (Figure 1). Invasion also 

involves adhesion formation, proteolysis of ECM components, and cell movement, 

although it requires penetration of tissue barriers by cells (Friedl and Wolf, 2003).    
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Figure 1. Cell migration. 
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Figure 1. Cell migration.  

Cell migration begins with the formation of lamellipodia. Focal adhesions that 

connect the ECM to the cytoskeleton stabilize these protrusions. At the site of 

adhesion formation, integrins provide traction for the forward movement of cell body 

and alter cytoskeletal dynamics by acting as mechanosensors. Adhesion 

disassembly at both leading and trailing edges allow tail retraction and new 

protrusion formation, leading to cell’s forward motion (Adopted from Ridely et al., 

2003 with permission from AAAS).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

In addition to integrins, multiple signaling molecules are involved in cell 

migration. For example, talin acts as a link between integrins and the actin 

cytoskeleton and regulates integrin-actin associations (Zhang et al., 2008; Cram et 

al., 2003). Mice genetically null for talin are embryonic lethal due to defective 

cytoskeletal organization and cell migration (Monkley et al., 2000). Vinculin is an 

actin binding protein that localizes to focal adhesions. Fibroblasts that lack vinculin 

expression showed increased cell migration whereas vinculin overexpressing cells 

displayed decreased cell migration (Xu et al., 1998; Rodriguez Fernandez et al., 

1992). Vinculin is thought to be required to strengthen the linkage between talin and 

the actin cytoskeleton (Legate et al., 2009). Actin dynamics are regulated by Rho 

GTPases. RhoA, Rac, and cdc42 modulate cell contractility, lamellipodium 

formation, and cell polarity, respectively (Fukata et al., 2003; Legate et al., 2009; 

van Hengel et al., 2008). In addition, FAK is a signaling molecule that is activated 

early in cell migration and is crucial for focal adhesion turnover that promotes 

directional cell motility (Mitra et al., 2005) 

Band 4.1B is a cytoskeletal adaptor protein that has been postulated to be 

important for a wide range of cellular processes, including cell motility. In sarcoma 

cell lines, the decreased expression of Band 4.1B enhanced cell motility and 

promoted metastatic phenotypes, whereas the re-expression of Band 4.1B in these 

cells reduced cell migration (Cavanna et al., 2007). However, the mechanisms by 

which Band 4.1B regulates cell migration are unknown. Determining how Band 4.1B 

affects these cellular events will lead to novel understanding of cell migration 

signaling cascades.   
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1.2. Protein 4.1 superfamily 

Band 4.1B belongs to the protein 4.1 superfamily (Parra et al., 2000). All 

members of this superfamily contain an N-terminal band 4.1, ezrin, radixin, and 

moesin (FERM) domain (Sun et al., 2002). The protein 4.1 superfamily can be 

subdivided into five groups based on the protein sequence similarity: protein 4.1 

family, ERM proteins, talin-related molecules, protein tyrosine phosphatases 

(PTPH), and novel band 4.1-like 4 (NBL4) proteins (Figure 2). 
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Figure 2. Protein 4.1 superfamily. 
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Figure 2. Protein 4.1 superfamily. 

The members of the protein 4.1 superfamily are characterized by the presence of 

an N-terminal FERM domain. About 50 members have been identified to date. The 

members are divided into five subfamilies based on sequence homology: protein 

4.1 family, ERM proteins, talin-related molecules, protein tyrosine phosphatases 

(PTPH), and novel band 4.1-like 4 (NBL4) proteins. FERM, Protein 4.1-ezrin-

radixin-moesin domain; ABD actin-binding domain; CCR, coiled-coil region; CTD, 

carboxyl terminal domain; PTP, protein tyrosine phosphatase; SABD, spectrin-actin 

binding domain; U1, U2, U3, unique regions (Adopted from Sun et al., 2002 with 

permission from J Cell Sci).  
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These proteins not only provide links between the cell membrane and the actin 

cytoskeleton, but also play roles in cell adhesion, proliferation, motility, cell cycle 

regulation, and various other intracellular signaling (Diakowski et al., 2006).   

The protein 4.1 family consists of Band 4.1R (erythrocyte), Band 4.1G 

(general), Band 4.1B (brain), Band 4.1N (neuronal), and Band 4.1O (ovary). The 

name 4.1 was given based on the band position of Band 4.1R, the first member 

identified, on 2D SDS polyacrylamide gel electrophoresis (Holzwarth et al., 1976). 

Erythrocyte membrane proteins were separated by SDS-PAGE and named 

according to their motility on gel electrophoresis. The band with slowest mobility 

was named band 1, and the fastest migrating band was named band 7. As 

resolution improved, additional bands were named using decimals. Bands 1-3 and 

5-7 were identified as spectrin, ankyrin, anion transport exchanger, actin, G3PD, 

and stomatin, respectively. However, the name of 4th band remained Band 4.1 

(Yawata, 2003).      

In addition to the N-terminal FERM domain, the members of the protein 4.1 

family contain an internal spectrin actin binding domain (SABD), a C-terminal 

domain (CTD), and three unique domains (Sun et al., 2002) (Figure 2). The FERM 

domain, SABD, and CTD are highly conserved among the various members. The 

30kDa FERM domain is made of three lobes that form a clover leaf-like structure 

(Han et al., 2000). The FERM domains of Band 4.1G, Band 4.1B, and Band 4.1N 

share 74%, 73%, and 71% structural similarities with Band 4.1R, respectively (Sun 

et al., 2002). This domain interacts with multiple integral membrane proteins, such 

as glycophorin C, p55, and calmodulin (Gascard and Cohen, 1994; Marfatia et al., 
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1994; Nunomura et al., 2000). The 10kDa SABD binds spectrin and actin, as the 

name suggests (Correas et al., 1986), although Band 4.1N’s SABD does not 

interact with spectrin and actin (Gimm et al., 2002). By forming the spectrin-actin 

complex, this domain influences membrane stability (Diakowski et al., 2006).  The 

22/24kDa CTD is crucial for interacting with cell surface proteins, including occludin, 

zonula occludens-1, and zonula occludens-2 (Mattagajasingh et al., 2000), as well 

as a translational complex subunit, eIF3-p44 (Hou et al., 2000).  

Each member of the protein 4.1 family is encoded by genes located on 

different chromosomes and has somewhat overlapping tissue expression patterns 

(Table 1).  

 

Table 1. Protein 4.1 family (Adopted from Sun et al., 2002 with permission from J 

Cell Sci) 

Protein Chromosome Tissue Distribution 

4.1R 1p36.2-p34 Erythrocytes, brain 

4.1G 6q23 Heart, brain, placenta, 

lung, skeletal muscle, 

kidney, pancreas, gonads 

4.1N 20q11.2-q12 Brain, peripheral nerve 

4.1B 18p11.3 Brain, heart, lung, kidney, 

intestine, testis, adrenal 

gland 

4.1O 9q21-22 Ovary 
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Four of the members are expressed in the brain, although they are found in different 

cell populations. For example, Band 4.1N is expressed in virtually all neurons 

(Walensky et al., 1999) whereas Band 4.1R is localized in granule cells of the 

cerebellum and dentate gyrus (Walensky et al., 1998). Band 4.1B is found in 

purkinje cells of the cerebellum, pyramidal cells of the hippocampus, neurons of 

thalamic nuclei and olfactory bulbs (Parra et al., 2000).       

 The ERM family is composed of ezrin, radixin, moesin, and merlin. These 

proteins share approximately 75% sequence homology (Diakowski et al., 2006).  

The members of the ERM family is characterized by the presence of an N-terminal 

ERM association domain (N-ERMAD) and a C-terminal actin-binding domain (C-

ERMAD) that are separated by an α-helical coiled coil region (CCR) (Sun et al., 

2002) (Figure 2). The FERM domains of ERM proteins and merlin share about 30% 

structural similarities with Band 4.1R (Sun et al., 2002). These proteins have been 

implicated in connecting the actin cytoskeleton to CD43, CD44, ICAM1-3, Na+/H+  

exchanger-3, and cystic fibrosis transmembrane regulator (Bretscher et al., 2002). 

Merlin, also known as neurofibromatosis 2 (NF2) or schwannomin, is a 

schwannoma suppressor that regulates cell proliferation and motility (Shermen and 

Gutmann, 2001). ERM protein activation is regulated by conformational changes 

(Fehon et al., 2010). ERM proteins exist in inactive state where they maintain 

closed conformation by binding of C-ERMAD to the FERM domain (Gary and 

Bretscher 1995). Release of C-ERMAD from the FERM domain activates ERM 

proteins and exposes binding sites in these two domains, including the F-actin 

binding site in C-ERMAD (Fehon et al., 2010). Each ERM protein has a 
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phosphorylation site that is important for its activation. Moesin, ezrin, and radixin are 

phosphorylated on Thr558, Thr576, and Thr564, respectively (Nakamura et al., 

1995; Fievet et al., 2004). Multiple kinases have been shown to phosphorylate 

these Thr residues, including Rho kinase, protein kinase Cα (PKCα), PKCθ, NF-kβ-

inducing kinase, and lymphocyte-oriented kinase (Matsui et al., 1998; Ng et al., 

2001; Belkina et al., 2009; Simons et al., 1998). In addition, other phosphorylation 

sites have been demonstrated to be involved in ERM activation. Thr235 can be 

phosphorylated by cyclin-dependant kinase 5 (CDK5) (Yang and Hinds 2003). 

Furthermore, Tyr145 and Tyr553 on ezrin are phosphorylated by epidermal growth 

factor receptor (EGFR) (Krieg and Hunter, 1992).   

 Talin forms an anti-parallel rod-shaped homodimer that contains an N-

terminal FERM domain, sharing 20% sequence similarity with Band 4.1R (Anthis 

and Campbell, 2011) (Figure 2). The FERM domain consists of F1, F2, and F3 

subdomains (Moser et al., 2009). The F3 domain is similar to phosphotyrosine 

binding (PTB) domain, and binds to the integrin cytoplasmic tails, 

phosphatidylinositol 4-phosphate 5-kinase γ (PIPKI γ), and layilin (Anthis and 

Campbell, 2011). The rod domain contains binding sites for vinculin and a second 

integrin binding site (Critchley and Gingras, 2008). The N-terminal FERM domain is 

50 kDa and the C-terminal rod is 220kDa (Calderood, 2004). Talin localizes to focal 

adhesions and the membrane ruffles of migrating cells (Critchley, 2000). Talin plays 

crucial roles in integrin signaling, focal adhesion formation and organization, and 

cell migration (Shattil et al., 2010; Critchley, 2009; Zhang et al., 2008; Calderwood 

and Ginsberg, 2003).     
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 The PTPH family consists of PTPH1 and PTPMEG that contain an N-

terminal FERM domain and a C-terminal phosphatase domain (Gu et al., 1991) 

(Figure 2). The FERM domain of the PTPH proteins has 37% sequence homology 

with Band 4.1R (Sun et al., 2002).They are involved in regulating cytoskeletal 

dynamics, cell cycle progression, and cell proliferation (Diakowski et al., 2006). 

NBL4 also has an N-terminal FERM domain that shares 40% sequence identity with 

Band 4.1R (Sun et al., 2002) (Figure 2). NBL4 functions as a regulator of cell 

polarity, proliferation, and migration by being a part of the β catenin/Tcf signaling 

cascade (Ishiguro et al., 2000). 

 

1.3. Band 4.1B 

Band 4.1B, a member of the protein 4.1 family, was originally discovered in 

non-small cell lung carcinomas. Differentially expressed in adenocarcinoma of lung 

(DAL-1), a truncated Band 4.1B gene that lacks complete U1 and CTD, and partial 

U2 and SABD, was found to be absent in these tumors by differential display 

reverse transcriptase polymerase chain reaction (RT-PCR) (Tran et al., 1999). The 

full length protein has a molecular mass of 125-145kDa depending on alternative 

splicing (Tran et al., 1999). Alternatively spliced forms of Band 4.1B are expressed 

in a tissue specific manner. Band 4.1B is the most abundant member of the protein 

4.1 family in the brain. In situ hybridization has shown that 4.1B mRNA is highly 

concentrated in the cerebellum, hippocampus, thalamic nuclei, and olfactory bulb 

(Parra et al., 2000). In addition, Band 4.1B is found in the heart, lungs, kidneys, 

intestine, testes, adrenal glands, and skeletal muscle (Parra et al., 2000). 
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Subcellularly, this protein is localized to the plasma membrane where cells make 

contact with one another, suggesting its functions in cell-cell/cell-matrix interactions 

(Parra et al., 2000).     

Most of the studies on Band 4.1B have focused on its potential roles in tumor 

suppression and progression. Since its original discovery (Tran et al., 1999), Band 

4.1B gene expression has been shown to be down-regulated in various tumors, 

including meningiomas and carcinomas of breast, kidney, colon/rectum, and 

prostate.  Expressing DAL-1 in the non-small cell lung carcinomas that lacked DAL-

1 expression resulted in suppression of tumor growth, suggesting its role as a 

negative growth regulator (Tran et al., 1999). Loss of heterozygosity in the 

chromosome 18p11.3 where Band 4.1B is located has been reported in 38% of 

non-small cell lung carcinomas (Tran et al., 1999) and 76% of sporadic 

meningiomas (Gutmann et al., 2001), further providing evidence for Band 4.1B as a 

tumor suppressor. Recently, a Band 4.1B knockout mouse model was developed to 

characterize the functions of Band 4.1B in tumorigenesis. Interestingly, these mice 

were not prone to develop tumors (Yi et al., 2005). No differences in cell 

proliferation and apoptosis were found between the Band 4.1B wild type and 

knockout mice (Yi et al., 2005). However, unlike the 4.1B knockout mice, Band 4.1B 

deficient transgenic adenocarcinoma of the mouse prostate (TRAMP) mice 

developed tumors that displayed more aggressive and highly metastatic phenotypes 

(Wong et al., 2007). These suggest that Band 4.1B is critical for tumor progression 

and metastasis, rather than tumor formation. Alternatively, Band 4.1B mutations in 



15 

 

combination with other mutations in oncogenes or tumor suppressors may promote 

tumor formation.   

Another member of the protein 4.1 superfamily, merlin, is a well established 

tumor suppressor protein. Merlin has been demonstrated to negatively regulate 

several cellular properties that are important for cell-cell and cell-substrate 

interactions.  Merlin impairs cell motility, attachment, and spreading (Gutmann et al., 

1999). It has been also suggested that merlin inhibits cell proliferation by modulating 

cell adhesion (Gutmann et al, 1999). Given the homology between merlin and Band 

4.1B, Band 4.1B may function similarly to merlin, regulating various intracellular 

signaling pathways. Abnormal regulation of these processes in the absence of Band 

4.1B may lead to tumor progression and metastasis in tumors lacking Band 4.1B. 

Indeed, Band 4.1B has been shown to suppress cell proliferation in meningiomas 

(Gutmann et al., 2001). In addition, metastatic sarcoma cell lines with loss of Band 

4.1B expression have displayed increased motility and chemotactic responses 

(Cavanna et al., 2007). 

Despite the proposed roles of Band 4.1B, the mechanisms by which Band 

4.1B contributes to various intracellular signaling cascades are not clear. One 

approach to studying Band 4.1B’s functions is to examine the binding partners of 

Band 4.1B.  Each domain of Band 4.1B interacts with a different set of proteins 

(Bernkopf and Williams, 2008) (Figure 3).  
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Figure 3. Each conserved domain of Band 4.1B interacts with unique binding 

partners.   

Multiple proteins have been identified to interact with Band 4.1B. Each domain of 

Band 4.1B binds to a set of molecules without overlaps with other conserved 

regions. The FERM domain interacts with various transmembrane proteins. The 

SABD is involved in spectrin-actin complex formation, as the name suggests. The 

CTD domain appears to be important for interacting with cell surface proteins. 

Recently, β8 integrin was shown to interact with the CTD of Band 4.1B via its 

cytoplasmic tail (Adopted from Bernkopf and Williams, 2008 with permission from 

Ashley Publications Ltd).  
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McCarty and colleagues identified β8 integrin as an interacting molecule of Band 

4.1B (2005a). The cytoplasmic tail of β8 integrin interacts with the CTD of Band 

4.1B as demonstrated by the yeast two-hybrid study and co-immunoprecipitation 

(McCarty et al., 2005a). β8 integrin is critical for cell-matrix interactions and 

intracellular signaling, especially in the central nervous system (CNS). Given the 

importance of integrins in multiple cellular events, studying the functional links 

between Band 4.1B and integrins will enhance our understanding of Band 4.1B’s 

functional roles.      

 

1.4. Integrin family 

The integrin family of major cell adhesion receptors is comprised of 18α and 

8β subunits that form 24 αβ heterodimeric receptors. Evolutionary studies indicate 

that both α and β integrin genes are from a common ancestral gene by gene 

duplications and that these genes are highly conserved in vertebrates (Huhtala et 

al., 2005). Integrin α and β subunits are consisted of an extracellular domain, a 

transmembrane helix, and a cytoplasmic tail. The extracellular domain is 700-1000 

residues in length (Hynes, 2002). This portion contains a ligand binding site that is 

comprised of the β propeller and the plexin-semaphorin-integrin domains of α 

subunit, and the βI (or βA) and the hybrid domains of β subunit (Takada et al., 

2007). The α and β cytoplasmic tails are 25-50 residues in size except for the β4 

tail, which is made of 1000 amino acids (Hynes, 2002). The α cytoplasmic domain 

has a conserved GFFKR motif that is critical for αβ cytoplasmic tail interactions 
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(Harbuger and Calderwood, 2008). The β subunits contain an NPxY motif in their 

cytoplasmic domains, which is important for integrin activation (Takada et al., 2007).  

Integrins can be divided into multiple subgroups based on their ECM ligands: 

1) laminin-binding integrins, including α1β1, α2β1, α3β1, α6β1, α7β1, and α6β4; 2) 

collagen-binding integrins, such as α1β1, α2β1, α3β1, α10β1, and α11β1; 3) 

leukocyte integrins, including αLβ2, αMβ2, αXβ2, and αDβ2; and 4) RGD binding 

integrins, like α5β1, αVβ1, αVβ3, αVβ5, αVβ6, αVβ8, and αIIbβ3 (Hynes, 2002) 

(Figure 4).  
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Figure 4. Integrin family. 
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Figure 4. Integrin family. 

The integrin family is comprised of 18α and 8β subunits that form 24 αβ 

heterodimeric receptors. Integrins can be divided into multiple subgroups based on 

their ECM ligands: 1) laminin-binding integrins (green); 2) collagen-binding integrins 

(purple); 3) leukocyte-specific integrins (grey); and 4) RGD binding integrins 

(yellow). Various integrins have been implicated in development, angiogenesis, 

lymphangiogenesis, skin integrity, immune response, bone remodeling, and 

hemostasis (Adopted from Hynes, 2002 with permission from Elsevier). 
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In addition, integrins can be divided into I, insertion/interaction, domain containing 

(α1, α2, α10, α11, αL, αM, αX, αD, and αE) and non-containing integrins (α3, α4, 

α5, α6, α7, α8, α9, αV, αIIb) (Takada et al., 2007). Each integrin has specific and 

non-redundant roles as shown by the studies of integrin knockout mice. The 

phenotypes of these knockout mice indicate the importance of various integrins in 

development (e.g. β1), angiogenesis (e.g. α1, αV, β3), lymphangiogenesis (e.g. 

α9β1), skin integrity (e.g. α6β4), immune response (e.g. αL, αM, β2, β7), bone 

remodeling (e.g. β3), and hemostasis (e.g. αIIb, β3, α2) (Barczyk et al., 2010; 

Harburger and Calderwood, 2008; Hynes, 2002).   

Upon activation, integrins mediate cell-ECM interactions. In addition to their 

role in cell adhesion, they are critical for activation of various intracellular signaling 

pathways. Many intracellular proteins, such as talin, vinculin, paxillin, actin binding 

proteins, and other signaling molecules, interact with the cytoplasmic domains of 

integrins. Through these interactions, integrins modulate diverse cellular events, 

including cell proliferation, survival, polarity, and motility (Figure 5).   
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Figure 5. Integrins are involved in various intracellular signaling pathways. 

Upon activation, integrins mediate cell-ECM interactions, connecting the ECM to the 

actin cytoskeleton in the cytoplasm. In addition to functioning as a major adhesion 

receptor, integrins play critical roles in activation of various intracellular signaling 

pathways. Many intracellular proteins interact with the cytoplasmic tails of integrins. 

Through these interactions, integrins modulate diverse cellular events, including cell 

proliferation, survival, polarity, and motility. 
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1.5. Integrin activation and signaling 

Integrins on cell surfaces are often present in their inactive state, and need to 

be activated for further signaling.  One unique feature of integrin activation is that 

intracellular signals activate integrins by inducing conformation changes and 

increasing their affinity to ECM molecules.  Thus, this type of activation is termed 

inside-out activation (Harburger and Calderwood, 2008). The β subunit cytoplasmic 

tail is important for mediating inside-out activation. The cytoplasmic tails of most αV 

integrin-binding β subunits, including β1, β3, β5, and β6, contain the NPxY motif 

that is crucial for interactions with an intracellular integrin activator (Calderwood, 

2004) (Figure 6).   
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Figure 6. Talin regulates integrin inside-out activation by interacting with the β 

subunit cytoplasmic domain. 
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Figure 6. Talin regulates integrin inside-out activation by interacting with the 

β subunit cytoplasmic domain. 

Integrins need to be activated for further signaling.  Intracellular signals activate 

integrins by inducing conformation changes and increasing their affinity to the ECM.  

Inside-out activation of integrins is mediated by talin, a FERM domain-containing 

member of the protein 4.1 superfamily. Talin binds to the NPxY motif in the β 

integrin cytoplasmic tails via its FERM domain to activate integrins. Unlike other β 

subunits, β8 integrin lacks the NPxY motif in its cytoplasmic tail. Therefore, β8 

integrin cannot be activated by talin. The activator of β8 integrin has not been 

identified (Adopted from Calderwood and Ginsberg, 2003 with permission from 

Macmillan Publishers Ltd: Nat Cell Biol, copyright 2003 and McCarty et al., 2005a, 

copyright National Academy of Sciences, U.S.A.). 
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A common integrin activator, talin, has a FERM domain that can bind to the NPxY 

motif in its globular head. The FERM domain of talin is divided into F1, F2, and F3 

subdomains. The F3 domain contains a PTB that binds the integrin β tails with high 

affinity (Wegener et al., 2007). Binding of talin appears to be a sufficient final step 

for activating integrins. In its inactive state, the rod region of talin masks the β 

subunit binding site in the FERM domain (Calderwood, 2004). The β tail binding site 

can be exposed when calpain cleaves the FERM domain of talin or PtdIns(4,5)P2 

binds to talin, causing a conformational change (Anthis and Campbell, 2011). 

Integrin activation by talin can be inhibited by phosphorylation of the NPxY motif of 

β tails, binding of other proteins to β subunits, or binding of PIPKIγ-90 to talin 

(Calderwood, 2004).  

The interactions between the membrane proximal regions of the α and β 

cytoplasmic tails maintain integrins in their inactive state. Binding of talin to integrins 

results in the disruption of the β tail membrane-proximal region and the dissociation 

of the α and β tails (Calderwood, 2004). This leads to subsequent conformation 

changes in the extracellular regions that increase the extracellular binding activity of 

the integrins. Two models have been proposed for the conformation changes in 

integrin activation. In the ‘deadbolt’ model, inactive integrins are in a bent 

conformation. Upon the binding of talin, the transmembrane regions engage in 

piston-like movements, causing the α and β extracellular stalks to slide. The 

interactions between the headpiece and the β stalk, in turn, are disrupted (Arnaout 

et al., 2005). In the ‘switch blade’ model, inactive integrins are in a bent form, as 

well. However, this model suggests that the separation of the cytoplasmic and 
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transmembrane domains of α and β subunits results in the dislocation of an 

epidermal growth factor like repeat in the β stalk, causing outward swing of the 

headpiece like a switchblade (Luo et al., 2007).         

 

1.6. Integrin signaling and Band 4.1B 

Among the αV-binding β integrins, β8 integrin does not share sequence 

homology with other β subunits (McCarty et al., 2005a) (Figure 6).  Because the β8 

cytoplasmic tail lacks the NPxY motif, αvβ8 integrin does not interact with talin.  The 

regulator of αvβ8 integrin activation has not been identified.  A recent study has 

shown the interactions between the cytoplasmic tail of β8 integrin and the CTD of 

Band 4.1B (McCarty et al., 2005a).  Talin and Band 4.1B share protein sequence 

homology.  Therefore, the binding of Band 4.1B to αvβ8 integrin suggests that Band 

4.1B, like talin, may play a role in αvβ8 integrin activation, modulating integrin 

adhesion and downstream cellular events. Alternatively, Band 4.1B may participate 

in the αvβ8 integrin-regulated signaling as a downstream signaling molecule.   

  Cell adhesion, spreading, and motility are some of the cellular events that 

are regulated by integrins.  A crucial component that integrates signaling required 

for these processes is a focal adhesion complex.  Focal adhesion complexes are 

made up of integrins, signaling molecules, and adaptor proteins (Campbell, 2008).  

They serve as mechanical links between the ECM and the actin cytoskeleton and 

provide places for intracellular molecule recruitment and sequestration (Critchley, 

2000).   Recently, talin was shown to be involved in proper organization of focal 

adhesions and cell spreading that are mediated by β1 integrin (Zhang et al., 2008).   
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Both Band 4.1B and β8 integrin have been shown to localize to focal adhesions 

(McCarty et al., 2005a).   Band 4.1B may play a role in focal adhesion formation and 

cell spreading by interacting with β8 or perhaps other β integrins. The interactions of 

the Band 4.1B FERM domain with β integrins have not been studied. Piao and his 

colleges have recently suggested that Band 4.1B may act as a linker between 

GluR1 and β1 integrin (2009). In this study, glioma cell lines overexpressing GluR1 

subunit of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate 

receptor (AMPAR) had increased baseline activation of FAK. In addition, 

overexpression of GluR1 was correlated with increased expression of surface β1 

integrin, which is a known FAK activator. Although GluR1 did not directly interact 

with β1 integrin, GluR1 was found to bind to Band 4.1B. Therefore, the authors 

concluded that FAK activation seen in the GluR1 overexpressing glioma cell lines 

may be due to the effects of integrins and/or Band 4.1B on FAK activity and that 

GluR1 is likely to interact with β1 integrin via Band 4.1B (Piao  et al., 2009). FAK is 

a non-receptor protein tyrosin kinase that contains several protein interaction 

domains, including the binding sites for Src, FERM proteins, integrins, and paxillin 

(Hauck et al., 2002).  The FAK pathway is one of the early signaling cascades that 

are activated in focal adhesions (Brown et al., 2005). Multiple protein interactions 

allow FAK to modulate various signal transduction pathways, such as small GTPase 

and MAPK signaling that may be critical for cell movement (Hauck et al., 2002). The 

FAK activity in β1 integrin-modulated cell adhesion has been shown to be regulated 

by talin (Zhang et al., 2008). Band 4.1B and its interactions with integrins have not 

been associated with FAK signaling. However, it would be interesting to examine 
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Band 4.1B’s roles in FAK regulation, given the similarities between Band 4.1B and 

talin.  

 Furthermore, Band 4.1B may play a role in integrin recycling, which is an 

important step in cell motility (Bel et al., 2009; Caswell and Norman 2008). A recent 

study has demonstrated that the Band 4.1B-binding domain is necessary for the 

endocytosis of the neural cell adhesion molecule contactin-associated protein 2 

(Caspr2) (Bel et al., 2009).  In addition, L1-CAM, another cell adhesion molecule, 

has been shown to contain a FERM-binding motif at a site that overlaps an 

endocytosis motif (Bel et al., 2009).  Moreover, Numb, an endocytic adaptor that 

binds directly to β integrins via its FERM domain, has been shown to co-localize 

with β1 integrin in clathrin-coated structures at the leading edge of migrating cells 

(Caswell and Norman, 2008). Given the prior reports, investigating Band 4.1B’s 

roles in integrin trafficking would be worthwhile.   

 

1.7. Integrins, Band 4.1B, and organogenesis 

Because integrins and Band 4.1B can regulate various signaling cascades 

and cellular behavior, they are likely to contribute to proper organ development and 

homeostasis regulation during embryogenesis. In fact, integrin-mediated adhesion 

and signaling are essential for normal heart development (Thiery, 2003). Deletion of 

αV and α5 integrins causes impaired cardiac development (van der Flier et al., 

2010). In addition, deletion of EIIIA and EIIIB splice variants of fibronectin, an ECM 

ligand for integrins, leads to cardiovascular abnormalities and embryonic lethality 
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(Astrof et al., 2007). In humans, integrins are involved in the pathogenesis of heart 

disease (Wegener et al., 2007).  

Normal development of the cardiovascular system is essential for survival 

and growth of embryos.  The embryonic heart develops as a linear tube and 

subsequently undergoes looping, trabeculation, and compartmentalization (Jones et 

al., 2008).  In late gastrulation, mesoderm-derived cardiac progenitor cells migrate 

from the primitive streak and form the early heart tube (Buckingham et al., 2005).  

During rightward looping of the primitive heart, cardiac chambers are defined and 

endocardial cushions, the precursors of the mitral and tricuspid valves in 

atrioventricular (AV) canal as well as the precursors of the aorticopulmonary septum 

in the outflow tract (OFT), are formed (Harvey, 2002).   

The formation of the OFT is contributed by multipotent migratory neural crest 

cells.  Neural crest cells originating from the dorsal neural folds undergo epithelial-

to-mesenchymal transition (Jain et al., 2010).  They migrate to and invade the OFT, 

contributing significant mass to the endocardial cushions (Stoller and Epstein, 

2005).  The migration of neural crest cells requires interactions with various ECM, 

such as fibronectin, collagen, vitronectin, and laminin, which serve as migratory 

scaffolds (Delannet et al., 1994).  In vitro and in vivo studies have suggested that 

integrins are important for neural crest cell-ECM interactions that ensure proper 

migration of the cell population (Desban and Duband, 1997; Kil et al., 1996; Perris 

et al., 1989; Bronner-Fraser, 1986). Furthermore, multiple members of the protein 

4.1 superfamily have been implicated in neural crest cell delamination and migration 

(Acloque et al., 2009). The functions of Band 4.1B in cardiac morphogenesis have 
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not been examined. Given the interactions between Band 4.1B and integrins, known 

regulators of neural crest, Band 4.1B may also play a role in normal heart 

development.   

   

1.8. Specific aims 

Cell migration is a critical component of normal development, wound healing, 

and many diseases, including cancer.  Therefore, characterizing molecular 

pathways that are involved in cell migration is crucial for understanding various 

physiological and pathological processes.  Band 4.1B, a cytoskeletal adaptor 

protein, has been implicated in regulation of cell motility, but the molecular 

mechanisms by which Band 4.1B contributes to cell migration have not been 

studied.  Band 4.1B, via its CTD, interacts with the integrin αvβ8.  This novel finding 

has led to the examination of the functional roles for Band 4.1B in integrin-mediated 

adhesion and signaling that are essential for proper cell migration.   

The objective of this study was to determine how Band 4.1B is involved in 

integrin-modulated adhesion and signaling pathways, and ultimately in cell 

migration. The central hypothesis of this project was that Band 4.1B regulates 

integrin-mediated adhesion formation and subsequent signaling cascades that are 

critical for cell migration. To test the central hypothesis and accomplish the objective 

of this study, the following two specific aims were pursued:                        

1. Specific Aim I: Elucidate the roles of Band 4.1B-β8 integrin interaction in 

mouse embryonic development.  
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The working hypothesis for the first aim was that the absence of Band 4.1B-β8 

integrin interaction impairs cell-ECM adhesion and signaling, resulting in disrupted 

cardiac neural crest cell migration. 

2. Specific Aim II: Determine the functional roles for Band 4.1B in β1 integrin-

mediated cell adhesion and signaling in vitro.  

The working hypothesis for the second aim was that Band 4.1B regulates adhesion 

formation and signaling through the interactions between its FERM domain and β1 

integrin during initial cell spreading.   
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Chapter 2. Materials and Methods 

2.1. Experimental mice 

Band 4.1B and β8 integrin knockout mice have been previously generated 

and characterized (Yi et al., 2005; Zhu et al., 2002). To produce various single and 

double gene knockout mice for the in vivo study, 4.1B-/- mice with C57BL6/129S4 

background and β8+/- mice with C57BL6/129S4/CD-1 background were crossed. 

β8+/-;4.1B+/- mice generated from the cross were then interbred to generate β8+/-

;4.1B+/+ and β8+/-;4.1B-/- mice. Wild type, β8-/-, 4.1B-/-, and β8-/-;4.1B-/- mice 

were obtained by crossing β8+/-;4.1B+/+ or β8+/-;4.1B-/- mice. Embryos were 

staged based on timed matings. Noon on the plug date was defined as E0.5.  To 

generate wild type and 4.1B-/- mice with the same genetic background, 4.1B-/- mice 

with C57BL6/129S4 background were backcrossed with wild type C57BL6 mice. 

4.1B+/- mice obtained from the cross were then interbred to generate wild type and 

4.1B-/- littermates.  

The genotypes of progeny were determined using PCR based methods 

described previously (Yi et al., 2005; Zhu et al., 2002). Briefly, tail DNA was isolated 

from digesting the tissue in STE containing proteinase-K (100µg/ml, USB Scientific, 

Cleveland, OH) for 16 hours at 55°C and precipitating DNA in 100% ethanol. The 

extracted DNA was dissolved in TE (pH 8) at 37°C by using Thermomixer R 

(Eppendorf, Westbury, NY). The samples for the PCR were prepared using 

MangoMix (Bioline, Tauton, MA) according to the manufacturer’s protocol. The 

primer sequences used for the β8 gene amplification are as follows: 5'-

ATTATCTGGTTGATGTGTCAGC-3', 5'-GGAGGCATACAGTCTAAATTGT-3', 5'-
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AGAGGCCACTTGTGTAGCGCCAAG-3', and 5'-AGAGAGGAACAAATATCCTTC 

CC-3'. The PCR conditions for the β8 gene amplification are as follows: 95°C for 5 

minutes x1 cycle, 95°C for 45 seconds, 58°C for 30 seconds, 72°C for 1 minute x30 

cycles, 72°C for 10 minutes x1 cycle, and 4°C hold. The primer sequences used for 

the 4.1B gene amplification are as follows: 5'-CGCACCTGGTGCATGACC-3', 5'-

CGCCACCGTCTGAGCAGC-3', and 5'-GCACGTTTGGTAGCAGTTCCC-3'. The 

PCR conditions for the 4.1B gene amplification are as follows: 94°C for 5 minutes x1 

cycle, 94°C for 1 minute, 61°C for 1 minute, 72°C for 1 minute x30 cycles, 72°C for 

10 minutes x1 cycle, and 4°C hold. 

 

2.2. Astrocyte isolation 

Wild type and 4.1B-/- primary astrocytes that express β1 integrin were 

isolated from wild type and 4.1B-/- mice between postnatal days 0-3. The brains 

were removed from the neonates, and the cortices were dissected out by removing 

the olfactory bulbs, hippocampi, other internal structures, and meninges.  The 

cortices were diced into 1mm2 cubes and digested in low glucose Dulbecco’s 

modified Eagle’s medium (DMEM) (1000mg/L glucose, Sigma, St. Louis, MO) 

containing collagenase type I (Worthington, Lakewood, NJ) and deoxyribonuclease 

I (Sigma, St. Louis, MO) for 30 minutes at 37°C. The digested tissues were 

homogenized, filtered, and plated on laminin (Sigma, St. Louis, MO) coated T-75 

flasks. The growth medium was consisted of low glucose DMEM, 10% bovine calf 

serum (Thermo Scientific, Rockford, IL), and 1% penicillin-streptomycin (Sigma, St. 
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Louis, MO).   After one week of growth, astrocytes were prepared for immediate use 

by shaking the plates at 200rpm for 16 hours at 37°C.  

 

2.3. Immunoblotting 

Yolk sacs, hearts, and primary astrocytes were lysed in 50 mM Tris, pH7.4, 

150 mM NaCl, 1% NP40, 2.5 mM EDTA, and a complete mini protease inhibitor 

cocktail tablet (Roche, Mannheim, Germany).  The concentrations of the lysates 

were determined using a BCA protein assay kit (Thermo Scientific, Rockford, IL). 

Detergent-soluble lysates were resolved by SDS-PAGE and blotted with appropriate 

antibodies. The anti-4.1B, anti-β8 integrin, and anti-αv integrin antibodies have been 

described previously (McCarty et al., 2005a; McCarty et al., 2005b; Mobley et al., 

2009; Tchaicha et al., 2010). Rabbit anti-4.1G and rabbit anti-4.1N antibodies were 

purchased from Protein Express (Chiba, Japan). Rabbit anti-actin antibody was 

obtained from Sigma (St. Louis, MO). Peroxidase-conjugated goat anti-rabbit IgG 

was purchased from Jackson ImmunoResearch (West Grove, PA). 

 

2.4. Biotinylation and immunoprecipitation 

Primary astrocytes growing on laminin were labeled with 0.1µg/ml of sulfo-

NHS-biotin (Thermo Scientific, Rockford, IL) for 30 minutes at 37°C. After washing 

the cells with PBS and TBS twice each, the cells were lysed in 50 mM Tris, pH7.4, 

150 mM NaCl, 1% NP40, 2.5 mM EDTA, and a complete mini protease inhibitor 

cocktail tablet. The concentrations of the lysates were determined using the Thermo 

BCA protein assay kit. The lysates were pre-cleared with goat anti-rabbit-agarose 
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(Sigma, St. Louis, MO), rabbit anti-goat IgG-agarose (RDI, Flanders, NJ), or goat 

anti-rat IgG-agarose (Sigma, St. Louis, MO) for 1 hour at 4°C. Then various 

integrins were immunoprecipitated for 16 hours at 4°C with one of the following 

antibodies: rabbit anti-α1 (Millipore, Billerica, MA), rat anti-α2 (Emfret Analytics, 

Eibelstadt, Germany), rabbit anti-α3 (Millipore, Billerica, MA), rat anti-α4 (Millipore, 

Billerica, MA), rat anti-α5 (Emfret Analytics, Eibelstadt, Germany), rat anti-α6 

(Millipore, Billerica, MA), goat anti-α8 (Millipore, Billerica, MA), rabbit anti-αv, rat 

anti-β1 (Millipore, Billerica, MA). The secondary antibodies conjugated with agarose 

beads were added to the lysates for 1 hour at 4°C. The beads were washed with 50 

mM Tris, pH7.4, 150 mM NaCl, 1% NP40, 2.5 mM EDTA, and a complete mini 

protease inhibitor cocktail tablet, and then boiled in Laemmli buffer for 5 minutes. 

The samples were resolved by SDS-PAGE and subsequently transferred to 

Immobilon-P membrane (Millipore, Billerica, MA). The membrane was blocked with 

3% BSA and incubated with the Vectastain ABC mix (Vector Laboratories, 

Burlingame, CA) in 3% BSA. The membrane was developed using ECL reagents 

(Amersham, Piscataway, NJ).      

 

2.5. Immunohistochemistry  

E10.5 embryos and yolk sacs were fixed in 4% PFA-PBS for 16 hours at 4°C 

and embedded in paraffin. The sections were blocked with 10% swine or horse 

serum in PBS for 1 hour at room temperature followed by incubation with 

appropriate primary antibodies for 16 hours at 4°C. Then, they were washed with 

PBS containing 0.1% Tween-20 and PBS. Endogenous peroxidase activity was 
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blocked with 0.3% hydrogen peroxide in PBS for 10 minutes at room temperature. 

The sections were incubated with appropriate secondary antibodies for 30 minutes 

at room temperature. After washing with PBS containing 0.1% Tween-20 and PBS, 

the sections were developed using Vectastain ABC and DAB kits (Vector 

Laboratories, Burlingame, CA). Hematoxylin counterstaining was used according to 

the manufacturer’s protocol (Vector Laboratories, Burlingame, CA). The following 

antibodies were utilized: rabbit anti-laminin (1:100, Sigma, St. Louis, MO), mouse 

anti-α smooth muscle actin (1:500, Sigma, St. Louis, MO), rabbit anti-desmin 

(1:200, Abcam, Cambridge, CA), biotinylated swine anti-rabbit IgG (1:250, DAKO, 

Carpinteria, CA), and biotinylated horse anti-mouse IgG (1:250, Vector 

Laboratories, Burlingame, CA). The sections were analyzed and imaged using a 

Zeiss Axio Imager Z1 microscope. 

 

2.6. Immunofluorescence 

E10.5 embryos and yolk sacs were fresh-frozen in Tissue-Tek OCT 

compound (Sakura Finetek, Torrance, CA). Cells were fixed with 4% PFA and 

permeabilized with PBS containing 0.5% NP40. The samples were blocked with 

10% goat serum for 1 hour at room temperature. Appropriate primary antibodies 

were then added to the samples for 16 hours at 4°C. Then the samples were 

incubated with secondary antibodies for 1 hour at room temperature. The samples 

were analyzed and imaged using a Zeiss Axio Imager Z1 microscope. The following 

antibodies were used for immunofluorescence analyses: rabbit anti-4.1B (5μg/ml), 

rabbit anti-4.1G (5μg/ml), rabbit anti-4.1N (5μg/ml), rabbit anti-αv (1:250), mouse 
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anti-paxillin (1:50, BD Biosciences, Sparks, MD), rat anti-β1 (1:100), mouse anti-

myc (1:100, Invitrogen, Carlsbad, CA), phalloidin-Texas Red (1:50, Sigma, St. 

Louis, MO), Alexa Flour 488 goat anti-rabbit IgG, Alexa Flour 488 goat anti-mouse 

IgG, Alexa Flour 594 goat anti-mouse IgG, Alexa Flour 488 goat anti-rat IgG, and 

Alexa Flour 594 goat anti-rat IgG (Molecular Probes, Carlsbad, CA). 

 

2.7. Whole-mount immunostaining 

Embryos were fixed in methanol:DMSO (4:1) for 2 hours at 4°C.  Yolk sacs 

and hearts were fixed in 4% PFA-PBS for 2 hours at 4°C.  They were dehydrated in 

15% methanol, 50% methanol, and 100% methanol, and stored in 100% methanol 

at -20°C until use.  The tissues were rehydrated, incubated in 1% H2O2 in PBS for 

1hour, and blocked in PBSMT (2% skim milk powder, 0.1% Triton X-100 in PBS) for 

2 hours at room temperature.  They were then incubated with rat anti-CD31 (1:100, 

BD Biosciences, San Jose, CA), mouse anti-neurofilament 2H3 (3μg/ml, University 

of Iowa Hybridoma Bank), rabbit anti-4.1B (5μg/ml), rabbit anti-β8 integrin (1:250), 

or rabbit anti-αv integrin (1:250) for 16 hours at 4°C.  The samples were washed 

five times in PBSMT at room temperature for 1 hour each and incubated with 

peroxidase-conjugated AffiniPure goat anti-rat IgG, goat anti-mouse IgG, or goat 

anti-rabbit IgG (1:500, Jackson ImmunoResearch, West Grove, PA).  They were 

washed five times in PBSMT at room temperature for 1 hour each and in PBT (0.2% 

BSA, 0.1% Triton X-100 in PBS) for 16 hours at 4°C.  The samples were developed 

using DAB kit (Vector Laboratories, Burlingame, CA) and cleared in 100% glycerol.     
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2.8. Adhesion assays 

 Glass coverslips were coated with fibronectin (Sigma, St. Louis, MO) for 16 

hours at 4°C. Primary astrocytes were plated onto the coverslips and allowed to 

adhere and spread for 30 minutes, 1 hour, 2 hours or 24 hours. The cells were then 

fixed with 4% PFA and permeabilized with PBS containing 0.5% NP40 for further 

immunohistochemical analysis.  

 Wild type and 4.1B-/- astrocytes were also plated onto a laminin-coated 96 

well plate for 30 minutes. The cells were washed with PBS for three times to 

remove any non-adherent cells. The adherent cells were then stained with crystal 

violet, and absorbance at 560nm was read using EL800 ELISA reader (BioTek 

Instruments, Vienna, VA). 

 COS7 and 293T cells were transiently transfected with myc-tagged 4.1B 

FERM, full length 4.1B, and LacZ constructs (McCarty et al., 2005a) using Effectene 

transfection reagents (Qiagen, Valencia, CA). 48 hours after the transfection, the 

cells were plated onto fibronectin-coated coverslips and allowed to adhere and 

spread for 30 minutes, 1 hour, 2 hours, or 24 hours. In parallel, the transfected cells 

were treated with P5D2 mouse anti-β1 antibody (R&D system, Minneapolis, MN) 

prior to being plated onto the fibronectin-coated coverslips to block β1 integrin. After 

30 minutes of the antibody treatment, these cells were plated and allowed to adhere 

and spread for 30 minutes, 1 hour, 2 hours, or 24 hours. The cells were then fixed 

with 4% PFA and permeabilized with PBS containing 0.5% NP40 for further 

immunohistochemical analysis. After staining the adherent cells with mouse anti-

myc antibody, myc-positive cells were imaged using a Zeiss Axio Imager Z1 
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microscope. The area of cell spreading was analyzed and quantified using ImageJ 

(NIH).  

 

2.9. Statistical analysis 

All data were analyzed using student’s t-test to determine statistically significant 

differences. P value less than 0.05 was considered statistically significant.   
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Chapter 3. Specific Aim I 

3.1 Introduction 

Proper development of the cardiovascular system is key for the development 

and physiology of all organs and tissues. Cardiac neural crest cells play important 

roles in normal morphogenesis of the heart. During embryogenesis, neural crest 

cells migrate into developing heart and get incorporated into various compartments 

of the cardiovascular system. Multiple ECM, including fibronectin, collagen, 

vitronectin, and laminin, function as migratory scaffolds for neural crest cells 

(Delannet et al., 1994).  Therefore, integrin-mediated adhesion and signaling are 

crucial for normal development of the heart. Integrins are cell adhesion receptors 

that mediate cell-ECM interactions. By participating in neural crest cell-ECM 

interactions, integrins modulate proper migration of the neural crest cells (Desban 

and Duband, 1997; Kil et al., 1996; Perris et al., 1989; Bronner-Fraser, 1986). 

Interestingly, members of the protein 4.1 superfamily have been also implicated in 

neural crest cell delamination and migration (Acloque et al., 2009). Considering the 

involvement of integrins and Band 4.1B in a wide range of signaling cascades and 

cellular behavior (Wang et al., 2010; Dafou et al., 2010; Horresh et al., 2010; Ohno 

et al., 2009; Kang et al., 2009; Cavanna et al., 2007; Wong et al., 2007), these 

molecules are likely to be important for organogenesis, especially for cardiovascular 

development.    

In particular, β8 integrin has been found to interact with the CTD of Band 

4.1B via its cytoplasmic domain (McCarty et al., 2005a).  β8 integrin plays a crucial 

role in vascular development. As evident in β8 knockout mice, β8 integrin’s main 
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function is to regulate vascular development in the CNS (Zhu et al., 2002). 

However, a small percentage of β8 integrin knockout mice were shown to have 

other cardiovascular phenotypes, such as poorly vascularized yolk sacs and 

enlarged pericardial cavity (Zhu et al., 2002). Unlike β8 integrin knockout mice, 

Band 4.1B knockout mice do not exhibit obvious cardiovascular phenotypes (Yi et 

al., 2005). Studies on the roles of other protein 4.1 family members in cardiac 

function have just started to emerge. Recently, 4.1R has been implicated in the 

regulation of cardiac ion channels (Baines et al., 2009).  

The functional roles for β8 integrin-Band 4.1B interactions in vivo have not 

been explored. In this chapter, cooperative functions for β8 integrin and Band 4.1B 

in embryonic development were elucidated by using molecular genetic approaches. 

The working hypothesis was that the absence of β8 integrin-Band 4.1B interactions 

impairs cell-ECM adhesion and signaling, which leads to disrupted cardiac 

morphogenesis. 

 

3.2. Results 

3.2.1. Genetic knockouts of β8 integrin and Band 4.1B demonstrate lethal 

phenotypes by E11.5. 

To study functional roles of β8 integrin and Band 4.1B in embryogenesis, 

various β8 integrin, Band 4.1B single and double knockout mutants were generated. 

Mice lacking the Band 4.1B gene (4.1B-/-) were initially crossed with mice with a β8 

integrin heterozygous null allele (β8+/-). β8+/-;4.1B+/- mice, the F1 progeny, were 

born in the expected Mendelian ratios. They were viable and fertile with no obvious 



43 

 

phenotypes. β8+/-;4.1B+/- mice were then interbred to generate β8+/-;4.1B-/- and 

β8+/-;4.1B+/+ mice.  4.1B-/- and β8-/-;4.1B-/- mice were obtained by interbreeding 

β8+/-;4.1B-/- pairs. Wild type and β8-/- mice were produced by intercrossing β8+/-

;4.1B+/+ pairs. Genotypes of all mice were determined by PCR-based gene 

amplification methods. Band 4.1B wild type and knockout bands were 310 and 670 

bp, respectively. The sizes of β8 wild type and knockout bands were 330 and 450 

bp, respectively (Figure 7).   
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Figure 7. The genotypes of embryos are determined by PCR-based gene 

amplication methods. 
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Figure 7. The genotypes of embryos are determined by PCR-based gene 

amplication methods. 

Genotypes of all mice were determined by PCR-based gene amplification methods 

using tail DNA. The β8 primer sequences are as follows: 5'-

ATTATCTGGTTGATGTGTCAGC-3', 5'-GGAGGCATACAGTCTAAATTGT-3', 5'-

AGAGGCCACTTGTGTAGCGCCAAG-3', 5'-AGAGAGGAACAAATATCCTTCCC-3'. 

The 4.1B primer sequences are as follows: 5'-CGCACCTGGTGCATGACC-3', 5'-

CGCCACCGTCTGAGCAGC-3', 5'-GCACGTTTGGTAGCAGTTCCC-3'. Gene 

amplication products for each mouse stain are shown here. Band 4.1B wild type 

and knockout bands were 310 and 670 bp, respectively. The sizes of β8 wild type 

and knockout bands were 330 and 450 bp, respectively. 

 

 

 

 

 

 

 

 

 

 

 



46 

 

Examining neonatal mice at postnatal day 0 (P0) demonstrated that wild type 

mice and 4.1B-/- were born in higher than expected Mendelian ratios (43/139 or 

31% and 60/224 or 27%, respectively vs. the expected 25%) (Table 2). However, 

slightly lower than expected β8-/- mice were present at P0 (28/139 or 20% vs. the 

expected 25%) (Table 2). The percentage of β8-/-;4.1B-/- being born (23/244 or 

10%) was strikingly lower than the expected 25% (Table 2). The smaller numbers of 

β8-/- and β8-/-;4.1B-/- neonates found at P0 suggested embryonic or early postnatal 

lethality in these mice. The analysis of mice at birth is summarized in Table 2. 

 

Table 2. Genotype distribution of mice 
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At P0, wild type and 4.1B-/- mice did not display any abnormal phenotypes, 

including no CNS pathologies (Figure 8E, G). However, both β8-/- and β8-/-;4.1B-/- 

mice demonstrated intracerebral hemorrhage at birth (Figure 8F, H). These findings 

were similar to the previous reports of cerebral hemorrhage in β8-/- mice (Zhu et al., 

2002; Mobley et al., 2009). No differences in the severity of hemorrhage were 

observed between β8-/- and β8-/-;4.1B-/- mice.  
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Figure 8. β8-/- and β8-/-;4.1B-/- mice develop intracerebral hemorrhage after 

E11.5. 

Intracerebral hemorrhage is observed in both embryonic and adult brains of β8-/- 

and β8-/-;4.1B-/- mice. A-D: Images of E12.5 wild type (A), β8-/- (B), 4.1B-/- (C), 

and β8-/-;4.1B-/- (D) embryos showing intracerebral hemorrhage in β8-/- (B) and 

β8-/-;4.1B-/- (D), but not in wild type (A) and 4.1B-/- (C) embryos. E-H. Images of 

wild type (E), β8-/- (F), 4.1B-/- (G), and β8-/-;4.1B-/- (H) brains from P0 pups. 

Intracerebral hemorrhage in β8-/- (F) and β8-/-;4.1B-/- (H) is indicated in white 

arrow heads. 
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All mice that survived beyond P0 were followed for survival analysis. Both wild type 

(n=20) and 4.1B-/- (n=20) mice lived without any obvious abnormalities during the 

period that the survival analysis was performed. However, β8-/- (n=16) and β8-/-

;4.1B-/- mice (n=18) started to die in the third and fourth week of the postnatal 

period (Figure 9).  
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Figure 9. Kaplan-Meier survival analysis. 

Postnatal survival of wild type, β8-/-, 4.1B-/-, and β8-/-;4.1B-/- mice was examined 

using Kaplan-Meier survival analysis. Black diamond, wild type and 4.1B-/- (n=20 

each); white square, β8-/- (n=16); grey triangle, β8-/-;4.1B-/- (n=18). Most β8-/- and 

β8-/-;4.1B-/- mice died in the third and fourth week of their lives. None of these mice 

survived beyond P40.  
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Unlike wild type and 4.1B-/- mice, β8-/- and β8-/-;4.1B-/- mice demonstrated 

hunched posturing, abnormal gait, and seizure activity by the third week of their 

lives (Figure 10A, B). None of these mice survived beyond P40. The lethality shown 

in β8-/- and β8-/-;4.1B-/- adult mice were likely due to hydrocephalus secondary to 

the intracerebral hemorrhage. Postmortem dissection of their brains revealed 

thinning of the cortices and enlargement of the ventricles that resulted from severe 

hydrocephalus (Figure 10D, F). Although the phenotypes of β8-/- and β8-/-;4.1B-/- 

were severe enough to cause early lethality in these mice, these two stains did not 

exhibit obvious phenotypic differences in the postnatal period.  
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Figure 10. Adult β8-/- and β8-/-;4.1B-/- mice develop hydrocephalus. 
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Figure 10. Adult β8-/- and β8-/-;4.1B-/- mice develop hydrocephalus. 

Both β8-/- and β8-/-;4.1B-/- mice develop hydrocephalus postnatally. A-B. Images of 

wild type / 4.1B-/- (A) and β8-/- / β8-/-;4.1B-/- (B) mice at 3 weeks of age. β8-/- and 

β8-/-;4.1B-/- mice demonstrated hunched posturing, abnormal gait, and seizure 

activity by the third week of their lives (B). C-D. Images of dissected brains of wild 

type / 4.1B-/- (C) and β8-/- / β8-/-;4.1B-/- (D) mice. In β8-/- and β8-/-;4.1B-/-, grossly 

thin cortices and enlarged ventricles are seen postmortem (D). E-F. Images of brain 

H&E sections from wild type / 4.1B-/- (E) and β8-/- / β8-/-;4.1B-/- (F) mice. Note 

enlarged ventricles secondary to hydrocephalus in β8-/- and β8-/-;4.1B-/- mouse 

brains (F). V, ventricle. 
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It was noted that the differences of embryonic lethality between β8-/- and β8-

/-;4.1B-/- were significant. Only 23 of 224 pups born from β8+/-;4.1B-/- intercrosses 

were β8-/-;4.1B-/- (Table 2). This indicated 60% embryonic lethality in β8-/-;4.1B-/- 

mice. On the other hand, 28 of 139 pups obtained from β8+/-;4.1B+/+ breeding 

were β8-/-. This represented less than 20% embryonic lethality in β8-/- (Table 2).  

To determine the time window of embryonic lethality in β8-/-;4.1B-/- mice, 

embryos from β8+/-;4.1B+/+ and β8+/-;4.1B-/- intercrosses were analyzed at 

different developmental stages. At E10.5, wild type, β8-/-, 4.1B-/-, and β8-/-;4.1B-/- 

embryos were present in expected Mendelian ratios (34/163 or 21%, 35/163  or 

22%, 43/182 or 24%, 42/182 or 23%, respectively) (Table 2). Wild type, β8-/-, and 

4.1B-/- embryos at E10.5 appeared healthy without obvious abnormalities (Figure 

11A-C, E-G). However, of 42 β8-/-;4.1B-/- embryos, 11 showed severe growth 

retardation and hypovascularity (Figure 11D, H). Of these 11 embryos, 6 had 

enlarged pericardial cavity (Figure 11H). In addition, two embryos were dead with 

no detectable heartbeat and widespread necrosis.    
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Figure 11. Double knockout embryos develop lethal cardiovascular 

phenotypes. 

Double knockout embryos develop lethal cardiovascular phenotypes. A–H: Images 

of E10.5 wild type, β8−/−, 4.1B−/−, and β8−/−; 4.1B−/− embryos within yolk sacs 

(A–D) or removed from yolk sacs (E–H). Note the normal blood vessel patterning in 

the wild type (A, E) and single knockout embryos and yolk sacs (B, C, F, G). In 

contrast, most double knockouts are hypovascular (arrows in D) with embryos 

displaying pericardial edema (arrows in H). 
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By E11.5, the viability of β8-/-;4.1B-/- embryos was significantly decreased. 

Only 6 of the 78 analyzed embryos were β8-/-;4.1B-/- (8% vs. the expected 25%) 

(Table 2). This represents 68% fewer than expected β8-/-;4.1B-/- embryos. The 8% 

viability at E11.5 is nearly identical to the 10% viability of β8-/-;4.1B-/- neonates at 

P0. This suggests that nearly all death of β8-/-;4.1B-/- occurs between E10.5 and 

E11.5. The remaining 32% of β8-/-;4.1B-/- were viable. However, they exhibited 

intracerebral hemorrhage that was similar to that of β8-/- mice (Figure 8B, D).  

 

3.2.2. Cardiovascular abnormalities contribute to the lethal phenotype of β8-/-

;4.1B-/- embryos 

The most noticeable feature of β8-/-;4.1B-/- embryos at E10.5 was their 

hypovascularity (Figure 11D). Therefore, sagittal sections of E10.5 embryos were 

stained with H&E or an anti-laminin antibody to further examine the vasculature. 

Normal vascular morphologies were observed in the neural tubes of wild type 

(Figure 12A, E) and 4.1B-/- embryos (Figure 12C, G). However, β8-/- embryos 

displayed distended blood vessels in the neural tube (Figure 12B, F). Prior studies 

also showed that the absence of β8 integrin impairs vascular development in the 

CNS (McCarty et al., 2005b, Proctor et al., 2005). β8-/-;4.1B-/- embryos also 

demonstrated defective blood vessel formation in the neural tube (Figure 12D, H).  
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Figure 12. CNS vascular pathologies are seen in β8-/- and β8-/-;4.1B-/- 

embryos. 

CNS vascular pathologies in β8 integrin single knockout and double knockout 

embryos. A–D: Sagittal sections from E10.5 wild type (A), β8−/− (B), 4.1B−/− (C), 

and β8−/−;4.1B−/− mutants (D) were stained with H&E. Shown are 200× images 

taken from neural tubes. Note the abnormal vascular patterning in the β8−/− (B) and 

β8−/−;4.1B−/− neural tubes (D). E–H: Sagittal sections through wild type (E), β8−/− 

(F), 4.1B−/− (G), and β8−/−;4.1B−/− mutants (H) were immunolabeled with an anti-

laminin antibody to identify blood vessels (white arrows). Note the abnormal neural 

tube blood vessel patterning in the β8−/− and β8−/−;4.1B−/− embryos (arrows in F, 

H). 
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Upon further examination of β8-/-;4.1B-/- vasculature using whole-mount 

immunostaining with an anti-CD31 antibody, β8-/-;4.1B-/- embryos were shown to 

have a less elaborate vascular network with minimal sprouting and branching 

(Figure 13D). These findings are consistent with the grossly hypovascular 

appearance of β8-/-;4.1B-/- embryos (Figure 11H). In comparison, wild type, β8-/-, 

and 4.1B-/- embryos demonstrated an intricate network of blood vessels 

accompanied with normal vascular sprouting and branching (Figure 13A-C).  
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Figure 13. β8-/-;4.1B-/- mice lack an elaborate vascular network.  

β8-/-;4.1B-/- embryos exhibited abnormal vascular patterning in the CNS.  A-D. 

Images of anti-CD31 whole-mount stained embryo head. Note a less elaborate 

vascular network with minimal branching in β8-/-;4.1B-/- (D), compared to wild type 

(A), β8−/− (B), and 4.1B−/− (C).   
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Hypovascular yolk sacs observed in β8-/-;4.1B-/- embryos (Figure 11D) led 

to the study of the yolk sac vasculature. In order for a better examination of yolk sac 

blood vessels, E10.5 wild type, β8-/-, 4.1B-/-, and β8-/-;4.1B-/- yolk sacs were 

stained with H&E and an anti-CD31 antibody. Elaborate vascular networks with 

adequate vessel branching were seen in wild type (Figure 14A top), β8-/- (Figure 

14B top), and 4.1B-/- (Figure 14C top) yolk sacs. Furthermore, H&E-stained yolk 

sacs from wild type, β8-/-, and 4.1B-/- embryos showed closely juxtaposed 

endodermal and mesodermal layers of blood vessels containing nucleated red 

blood cells (Figure 14A-C, bottom). On the other hand, yolk sacs from β8-/-;4.1B-/- 

embryos displayed abnormal vascular morphologies with reduced vessel sprouting 

(Figure 14D top). H&E stained β8-/-;4.1B-/- yolk sacs revealed compressed 

endodermal and mesodermal layers with smaller vessel lumens and fewer 

erythrocytes (Figure 14D, bottom). These findings are consistent with the grossly 

hypovascular appearance of β8-/-;4.1B-/- yolk sacs.  
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Figure 14. Yolk sac vascular pathologies in β8-/-;4.1B-/- embryos. 

Yolk sac vascular pathologies in double knockout embryos. A–D: Yolk sacs from 

E10.5 wild type (A), β8−/− (B), 4.1B−/− (C), and β8−/−; 4.1B−/− compound mutants 

(D) were immunostained with an anti-CD31 antibody to reveal blood vessels. Note 

the abnormal vascular patterning in the yolk sacs of double knockouts (D). 

Representative H&E-stained microscopic images (400×) of yolk sacs from E10.5 

wild type, β8−/−, 4.1B−/−, and β8−/−;4.1B−/− E10.5 embryos are shown in the 

bottom panels (A–D). e, endoderm; m, mesoderm; bv, blood vessel. 
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The abnormal findings in yolk sac vasculature suggested possible functional 

importance of β8 integrin and Band 4.1B in yolk sacs. To examine the protein 

expression of β8 integrin and Band 4.1B in yolk sacs, detergent-soluble E10.5 wild 

type yolk sac lysates were used for immunoblotting. Interestingly, no detectable β8 

integrin expression was present in yolk sacs (Figure 15D). However, αV integrin, 

the sole α subunit partner of β8 integrin, was expressed in yolk sacs. In addition, 

high Band 4.1B expression was detected in yolk sacs (Figure 15D). The 

immunohistochemical examination revealed that Band 4.1B localized to cell-cell 

contact in the endodermal layer (Figure 15C) whereas αV integrin was found in the 

cell membrane of both endodermal and mesodermal layers (Figure 15B).  
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Figure 15. The expression of Band 4.1B and αvβ8 integrin in yolk sacs. 
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Figure 15. The expression of Band 4.1B and αvβ8 integrin in yolk sacs. 

A-C: Yolk sacs from E10.5 wild type embryos were immunostained with control IgG 

(A), an anti-αv (B), or an anti-4.1B (C) antibody. Note αV integrin is expressed in 

both the endodermal and mesodermal layers (B) whereas Band 4.1B localizes to 

the endodermal layer only.  D: Detergent-soluble lysates prepared from E10.5 yolk 

sacs were immunoblotted with an anti-αv, an anti-β8, or anti-4.1B rabbit polyclonal 

antibody, revealing lack of detectable β8 integrin protein expression in yolk sacs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 

 

Lack of β8 integrin in yolk sacs ruled out cooperative functions of β8 integrin and 

Band 4.1B in yolk sacs. The yolk sac phenotypes observed in β8-/-;4.1B-/- were 

likely to be secondary to systemic cardiovascular abnormalities. Thus, the 

expression of β8 integrin and Band 4.1B was analyzed in the heart using 

immunoblot analysis of detergent-soluble E10.5 wild type heart lysates. Unlike yolk 

sacs, β8 protein expression was detected in the heart (Figure 16I). αV integrin and 

Band 4.1B were also present in the heart (Figure 16I). To determine protein 

localization in different cardiac compartments, whole-mount immunohistochemical 

analysis of the heart was performed. The hearts dissected from E10.5 wild type 

embryos were immunostained with anti-αV integrin and anti-4.1B antibodies. 

Various cardiac chambers expressed both αV integrin and Band 4.1B, supporting 

the findings of immunoblot analysis. Band 4.1B and αV integrin were mostly 

expressed in the ventricles and OFT, although less intense expression of these 

proteins was present in the atria (Figure I6B-H). These findings indicate that the 

extraembryonic vascular pathologies found in β8-/-;4.1B-/- are most likely due to 

other cardiovascular defects.    
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Figure 16. The expression of Band 4.1B and αvβ8 integrin in the embryonic heart. 
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Figure 16. The expression of Band 4.1B and αvβ8 integrin in the embryonic 

heart. 

A, E: Schematic diagrams of anterior (A) and posterior (E) views of the E10.5 

embryonic mouse heart. B-D, F-H: E10.5 mouse hearts were whole-mount 

immunostained with control IgG (B, F), an anti-αv (C, G), or an anti-4.1B (D, H) 

antibody. Anterior (B-D) and posterior (F-H) views of the immunostained hearts 

revealed co-expression of αV integrin and Band 4.1B proteins. I: Detergent-soluble 

protein lysates prepared from microdissected E10.5 hearts were immunoblotted 

with anti-αv, anti-β8, and anti-4.1B antibodies revealing expression of all three 

proteins. RA, right atrium; RV, right ventricle; LA, left atrium; LV, left ventricle; OFT, 

outflow tract; IFT, inflow tract; AVC, atrioventricular canal. 
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3.2.3. β8-/-;4.1B-/- embryos display abnormal morphogenesis of the outflow 

tract and myocardium of the heart.  

The morphologies of the E10.5 wild type, β8-/-, 4.1B-/-, and β8-/-;4.1B-/- 

hearts were carefully examined by immunostaining histological sections with H&E. 

The heart of β8-/-;4.1B-/- was significantly smaller than the wild type, β8-/-, and 

4.1B-/- hearts. This was expected given the growth retardation observed in E10.5 

β8-/-;4.1B-/- embryos. Structurally, severe hypotrophy of endocardial cushions in 

the AV junction and the OFT was seen in the β8-/-;4.1B-/- heart (Figure 17D), 

compared to the normal appearing wild type, β8-/-, and 4.1B-/- hearts (Figure 17A-

C). Furthermore, thinning of the myocardium and the OFT vessel wall was observed 

in the β8-/-;4.1B-/- heart (Figure 17D). 
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Figure 17. Defective heart morphogenesis in β8-/-;4.1B-/- embryos. 
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Figure 17. Defective heart morphogenesis in β8-/-;4.1B-/- embryos. 

A–D: Sagittal sections cut at the level of the aorticopulmonary septum from wild 

type (A), β8−/− (B), 4.1B−/− (C), and β8−/−;4.1B−/− (D) embryos (E10.5) stained 

with H&E (100× magnification). Note the size-reduced heart and conotruncal 

cushion hypotrophy in the β8−/−;4.1B−/− mutant embryo (D). E–H: Sagittal sections 

from wild type (E), β8−/− (F), 4.1B−/− (G), and β8−/−;4.1B−/− (H) embryos (E10.5) 

were immunostained with an anti-αSMA antibody. Note the decreased expression 

of αSMA at the level of the OFT in the double knockout embryo, shown at 100× 

magnification. I–L: Higher magnification images of boxed areas in E–H (200×) 

showing the OFT from wild type (I), β8−/− (J), 4.1B−/− (K), and β8−/−;4.1B−/− (L) 

embryos (E10.5), highlighting reduced expression of αSMA in double knockout 

embryos. A, atrium; V, ventricle; ec, endocardial cushion; M, myocardium; Tr, 

trabeculae; OFT, outflow tract. 
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Neural crest cells that express smooth muscle markers, in part, contribute to 

the formation of endocardial cushions of the AV junction and OFT. Therefore, the 

wild type, β8-/-, 4.1B-/-, and β8-/-;4.1B-/- hearts were stained with an anti-α smooth 

muscle actin (SMA) for further analysis. In comparison to the wild type (Figure 17E, 

I), β8-/- (Figure 17F, J) and 4.1B-/- (Figure 17G, K) embryonic hearts, the β8-/-

;4.1B-/- heart showed decreased αSMA expression in the OFT mesenchyme and 

myocardium (Figure 17H, L). In addition, the expression of desmin, another smooth 

muscle marker, was reduced in the OFT and myocardium of β8-/-;4.1B-/- embryos 

(Figure 18D), compared to normal desmin expression in wild type (Figure 18A), β8-

/- (Figure 18B), and 4.1B-/- (Figure 18C) embryos. 
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Figure 18. Reduced expression of desmin in β8-/-;4.1B-/- embryos. 

A–D: Sagittal sections cut at the level of the aorticopulmonary septum from wild 

type (A), β8−/− (B), 4.1B−/− (C), and β8−/−;4.1B−/− (D) embryos (E10.5) 

immunostained with an anti-Desmin antibody. Shown at 200×. Note the reduced 

expression of desmin protein in double knockout embryos (D). 
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Given the abnormal morphologies of the β8-/-;4.1B-/- OFT and myocardium, 

the protein expression patterns of αV integrin and Band 4.1B in these structures 

were examined. Fresh-frozen E10.5 wild type embryo was immunofluorescently 

labeled with an anti-αV integrin or an anti-4.1B antibody. Both αV integrin and Band 

4.1B were detected in endocardial cushions of the AV junction and OFT as well as 

in the myocardium (Figure 19). Subcellularly, these proteins were present in cell-cell 

contact (Figure 19). 
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Figure 19. αV integrin and Band 4.1B proteins are co-expressed in the embryonic 

heart. 
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Figure 19. αV integrin and Band 4.1B proteins are co-expressed in the 

embryonic heart. 

A, D, G: H&E stained E10.5 wild type heart shown at 100x. Boxed areas correspond 

with immunofluorescently labeled areas of the heart shown adjacent to the H&E 

sections. B-C, E-F, H-I: Frozen sagittal sections from E10.5 wild type embryos were 

immunofluorescently labeled with an anti-4.1B (B, E, H) or an anti-αv (C, F, I) 

antibody. Shown at 200x. Note that αv integrin and 4.1B protein are co-expressed in 

the myocardium and mesenchyme of the AV canal and OFT. A, aorta; V, ventricle; 

OFT, outflow tract; M, myocardium; Tr, trabeculae; ec, endocardial cushion. 
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β8 integrin exclusively pairs with αV integrin (Moyle et al., 1991). Since β8 integrin 

expression in the heart was confirmed by immunoblotting, it is safe to conclude that 

αV integrin localization patterns seen in the immunofluorescently labeled heart 

reflect β8 integrin expression patterns.       

 

3.2.4. Neural crest cell migration is impaired in β8-/-;4.1B-/- embryos. 

The migration of cardiac neural crest cells is critical for the morphogenesis of 

the heart (Snarr et al., 2008). Given the contribution of neural crest cells in OFT 

formation and the defective OFT morphologies observed in the β8-/-;4.1B-/-, neural 

crest patterning in embryos was examined. E10.5 wild type (n=6), β8-/- (n=4), 4.1B-

/- (n=7), and β8-/-;4.1B-/- (n=5) embryos were stained with an anti-neurofilament 

antibody 2H3 using whole-mount immunostaining methods. Wild type, β8-/-, and 

4.1B-/- embryos displayed an elaborate network of neurofilament positive 

projections (Figure 20A-C).  However, 3 out of 5 β8-/-;4.1B-/- embryos that were 

examined exhibited a defective neurofilament network throughout the body (Figure 

20D).  
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Figure 20. Abnormal patterns of neurofilament expression in β8-/-;4.1B-/- 

embryos. 

A–D: Wild type (A), β8−/− (B), 4.1B−/− (C), or β8−/−; 4.1B−/− (D) embryos (E10.5) 

were whole-mount immunostained with an anti-neurofilament monoclonal antibody, 

2H3. The axonal projections from the trigeminal ganglion are prominent in wild type 

and single knockouts (white arrows in A–C). In contrast, the lack of distal 

projections from the trigeminal nerves (upper black arrowheads in D) and the 

shortened distal projections into the pharyngeal arches (bottom arrowhead, D) were 

noted in double knockout mice. 
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In β8-/-;4.1B-/- embryos, the size of the trigeminal ganglion of cranial nerve V was 

reduced (Figure 20D). In addition, the ophthalmic, maxillary, and mandibular 

branches of cranial nerve V showed shortened projections. Furthermore, 

neurofilament-positive projections of cranial nerves into the pharyngeal arches were 

lacking in β8-/-;4.1B-/- embryos (Figure 20D). Abnormal neurofilament patterning 

was also observed in the trunks of β8-/-;4.1B-/- embryos (Figure 21 D).   
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Figure 21.  Neurofilament expression patterns are abnormal in β8-/-;4.1B-/- trunks. 
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Figure 21.  Neurofilament expression patterns are abnormal in β8-/-;4.1B-/- 

trunks. 

A–D: Images of trunk regions from E10.5 wild type (A), β8−/− (B), 4.1B−/− (C), and 

β8−/−;4.1B−/− (D) embryos. Note the normal neural crest patterning in wild type 

and single knockouts (white arrows in A–C). In contrast, note the abnormal 

patterning of neurofilament-expressing cells in the double knockout embryo (white 

arrows in D). 
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3.3. Discussion 

 Various in vitro studies have shown the direct binding of β8 integrin and 

Band 4.1B (McCarty et al., 2005a). However, cooperative functions for these two 

proteins have not been determined. This study was the first to demonstrate in vivo 

functional links between β8 integrin and Band 4.1B using gene knockout strategies. 

The data presented here show that ablation of β8 integrin and Band 4.1B results in 

embryonic lethality by E11.5 and that this is likely secondary to abnormal cardiac 

morphogenesis. β8 integrin’s roles in CNS vascular development have been well 

documented in multiple previous reports (Zhu et al., 2002; Mobley et al., 2009; 

Tchaicha et al., 2010). However, this study established that β8 integrin regulates 

non-CNS vascular development by cooperatively signaling with Band 4.1B.  

Interestingly, the lethal cardiovascular phenotypes of β8-/-;4.1B-/- embryos 

were partially penetrant. The lethality seen in these mice may be affected by their 

background strain variation. In fact, strain-dependent phenotypes of β8-/- mice have 

been documented. In the study done by Zhu and colleagues, over 50% of β8-/- 

mice with C57BL6/129S4 background died at mid-gestation, owing to placenta 

defects (2002). However, another study reported that β8-/- mice with 

C57BL6/129S4/CD1 background were born alive without displaying embryonic 

lethality (Mobley et al., 2009). These differences indicate that genetic modifiers of 

the lethal phenotypes might be present in a strain-specific manner. β8-/- and β8-/-

;4.1B-/- mice used in this study were generated by crossing parental strains with 

C57BL6/129S4 and C57BL6/129S4/CD1 backgrounds.  Indeed, these mice did not 

exhibit placental abnormalities.    
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Grossly, the most striking feature of β8-/-;4.1B-/- at E10.5 was 

hypovascularity of the yolk sac and embryo proper. The yolk sac is the first site of 

erythrocyte generation (McGrath et al., 2003). The connection of the yolk sac and 

systemic vasculature establishes functional circulation in embryos (McGrath et al., 

2003). Therefore, functional abnormalities in the yolk sac can be lethal to embryos. 

Indeed, abnormal vascular morphologies with reduced vessel sprouting were 

observed in β8-/-;4.1B-/- yolk sacs. These yolk sacs also exhibited compressed 

endodermal and mesodermal layers with smaller vessel lumens and fewer 

erythrocytes. These findings were consistent with the grossly hypovascular 

appearance of β8-/-;4.1B-/- yolk sacs. However, no detectable expression of β8 

integrin was measured in β8-/-;4.1B-/- yolk sacs, indicating that cooperative 

signaling of β8 integrin and Band 4.1B does not occur in yolk sacs. Therefore, the 

abnormalities displayed in β8-/-;4.1B-/- yolk sacs are not likely the primary cause of 

embryonic death. They are rather likely to be the secondary effects of impairments 

elsewhere.    

Defective systemic circulation can lead to vascular abnormalities in 

extraembryonic tissues and multiple organ systems. In addition to the abnormal 

findings in β8-/-;4.1B-/- yolk sacs, blood vessels in the neural tube of β8-/-;4.1B-/- 

embryos were found to be impaired. The neural tube contained distended blood 

vessels and showed a less elaborate vascular network with minimal branching. 

These vascular phenotypes were consistent with the grossly hypovascular 

appearance of β8-/-;4.1B-/- embryos. Multiple defects in the vasculatures of 

extraembryonic and embryonic tissues indicated impaired cardiac structures and/or 
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functions. Cardiovascular defects causing early embryonic lethality include 

abnormal heart specification and/or poor cardiac function (Conway et al., 2003). In 

fact, pericardial edema was notable in multiple β8-/-;4.1B-/- embryos upon careful 

examination. Pericardial edema is a sign of poorly functioning heart (Conway et al., 

2003). Multiple knockout mice with pericardial edema, such as PDGFα receptor 

knockouts, have been shown to have OFT and AV septal defects (Soriano, 1997). 

Similarly, β8-/-;4.1B-/- embryos displayed hypotrophic endocardial cushions of the 

AV junction and OFT with diminished expression of neural crest cell makers.   

The generation and incorporation of mesenchymal cells, including neural 

crest cells, are crucial for proper heart development (Snarr et al., 2008). AV and 

OFT cushions are two main cardiac mesenchymal structures. AV cushions 

contribute to the formation of AV valves and septa whereas OFT cushions generate 

aorticopulmonary septum (Snarr et al., 2008). Cardiac neural crest cells are 

especially important for the development of the OFT. Neural crest cells are located 

between the otic placode and the third/fourth somite (Stoller and Epstein, 2005). 

These cells migrate through the third, fourth, and sixth pharyngeal arches to the 

heart (Snarr et al., 2008). Ablating neural crest cells resulted in impairments of the 

OFT and aortic arch (Kirby et al., 1983). Given that similar OFT abnormalities in 

other mouse models are caused by cardiac neural crest migration defects (Conway 

et al., 2003), the abnormal cardiac morphogenesis seen in β8-/-;4.1B-/- embryos 

might also be due to impaired neural crest migration. Most E10.5 β8-/-;4.1B-/- 

embryos, indeed, demonstrated a defective network of neurofilament throughout the 

body with shortened projections of the ophthalmic, maxillary, and mandibular 



84 

 

branches of cranial nerve V and absent projections of cranial nerves to the 

pharyngeal arches. Therefore, β8 integrin and Band 4.1B are likely to cooperatively 

function to support neural crest cell migration to the OFT and possibly other regions 

of the developing heart. In fact, multiple αV-binding β integrins have been implicated 

in neural crest cell adhesion and migration in vitro (Delannet et al., 1994).  

Bone morphogenetic proteins (BMP) and transforming growth factor beta 

(TGFβ) have been demonstrated to be important for cardiac morphogenesis 

(Monzen et al., 2002; Sanford et al., 1997). The disruption of BMP and TGFβ 

signaling has been shown to induce impairments of cardiac neural crest-mediated 

OFT formation. β8 integrin is involved in signaling of the TGFβ family members. 

Therefore, it is possible that β8 integrin and Band 4.1B may cooperatively regulate 

TGFβ signaling in neural crest cells. In addition to cardiac morphogenesis, neural 

crest cells participate in palate development (Smith and Tallquist, 2010). 

Interestingly, mice genetically null for αV, β8, or TGFβ3 all have impaired palate 

formation (Bader et al., 1998; Zhu et al., 2002; Proetzel et al., 1995). Furthermore, 

cleft palate and structurally abnormal OFT are seen with selective ablation of TGFβ 

receptors or Smads in neural crest cells (Wurdak et al., 2005; Nie et al., 2008). 

Collectively, it is highly possible that β8 integrin and Band 4.1B exert their effects on 

neural crest cells by modulating TGFβ signaling pathways.  

Alternatively, β8 integrin and Band 4.1B may work together to promote 

cardiac neural crest cell growth and survival after cardiac neural crest cells get 

incorporated into the OFT. Thinning of the OFT and cardiac chamber walls were 

observed in β8-/-;4.1B-/- embryos. However, increased apoptosis or decreased cell 
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proliferation were not seen in the β8-/-;4.1B-/- heart. Normal OFT development also 

involves mesoderm-derived endocardial cells (Acloque et al., 2009). Thus, β8 

integrin and Band 4.1B may play roles in regulating other cell types as well. Neural 

crest cells undergo endothelial-to-mesenchymal transformation (EMT) before 

beginning their migration to the heart (Stoller and Epstein, 2005). Therefore, the 

involvement of β8 integrin and Band 4.1B in EMT is also possible. 

The cardiovascular phenotypes seen in β8-/-;4.1B-/- embryos occur in the 

absence of both β8 integrin and Band 4.1B. This suggests cooperative functions of 

these two proteins. Another possibility, however, is that β8 integrin and Band 4.1B 

may act in parallel and/or redundant signaling pathways. In case Band 4.1B 

regulates downstream signaling pathways of β8 integrin and other cell surface 

receptors, Band 4.1B’s functions would be unaltered in the absence of β8 integrin. 

Lethal cardiovascular phenotypes have been demonstrated in mice that are 

genetically null for αV and α5 integrins (van der Flier et al., 2010). This opens up the 

possibility that Band 4.1B may function as an intracellular signaling link between 

multiple integrins. The FERM domain of Band 4.1B may interact with β subunits and 

other cell surface receptors while the CTD binds to β8 integrin (McCarty et al., 

2005a), enabling Band 4.1B to incorporate multiple signaling pathways.  

Defective OFT is a common feature of congenital heart disease, the most 

frequently occurring birth defect in humans. One example of congenital heart 

disease is DiGeorge syndrome. Individuals with DiGeorge syndrome have 

abnormalities in many structures derived from neural crest cells, including the OFT 

and aortic arch (Stoller and Epstein, 2005). β8 integrin and Band 4.1B have not 
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been studied in human heart diseases. Given the cardiac defects seen in β8-/-

;4.1B-/- embryos, it would be interesting to see if β8 integrin and Band 4.1B play 

roles in human congenital heart disease.   
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Chapter 4. Specific Aim II 

4.1. Introduction 

 The members of the protein 4.1 superfamily function as links between the 

cell membrane and the actin cytoskeleton, but also play important roles in cell 

adhesion, proliferation, and motility, and other intracellular signaling pathways 

(Diakowski et al., 2006). Band 4.1B, a cytoskeletal adaptor protein, has been 

implicated in regulation of various cellular events, but the molecular mechanisms by 

which Band 4.1B contributes to these signaling cascades have not been 

determined.  Efforts have been made to identify binding partners of Band 4.1B to 

better understand the functional roles for Band 4.1B. The discovery of the 

interaction between β8 integrin and Band 4.1B (McCarty et al., 2005a) has led to 

the examination of Band 4.1B’s roles in integrin-mediated adhesion and signaling 

that are essential for a variety of cellular events.  

Cell adhesion, spreading, and motility are some events regulated by 

integrins. Integrins are also important for coordinating cell-ECM interactions, 

adhesion formation, and cytoskeleton organization during cell movement (Barczyk 

et al., 2010; Legate et al., 2009; Harburger and Calerwood, 2009). A focal adhesion 

complex is a crucial component that integrates signaling required for cell motility. 

Several molecules that belong to the protein 4.1 superfamily have been shown to 

modulate focal adhesion formation and cell migration that are mediated by integrins. 

In particular, talin, a protein that shares sequence homology with Band 4.1B, has 

been demonstrated to regulate β1 integrin-mediated focal adhesion assembly and 

cell spreading (Zhang et al., 2008). Given the structural similarity between talin and 
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Band 4.1B, Band 4.1B may also play a role in focal adhesion formation and cell 

spreading by interacting with β8 or perhaps other β integrins. Previously, the 

association between Band 4.1B and β1 integrin has been postulated (Piao et al., 

2009), but the interaction between these two proteins has never been examined. 

Given the importance of the FERM domain in integrin binding and activation, Band 

4.1B may help proper localization of β1 integrin to newly forming adhesions through 

physical interactions and/or influence intracellular signaling of β1 integrin at the 

adhesion sites.     

In this chapter, the in vitro functional roles for Band 4.1B in integrin-mediated 

cell adhesion and signaling were investigated. The working hypothesis was that 

Band 4.1B regulates β1 integrin-mediated cell-ECM interaction and signaling via its 

FERM domain during initial cell spreading.   

 

4.2. Results 

4.2.1. Lack of Band 4.1B expression does not affect integrin expression in 

astrocytes. 

To characterize the expression of Band 4.1B and other members of the 

protein 4.1 family in astrocytes, detergent-soluble wild type and 4.1B-/- astrocyte 

lysates were immunoblotted with anti-4.1B, anti-4.1G, and anti-4.1N antibodies. As 

expected, Band 4.1B is highly expressed in wild type, but not in 4.1B-/- astrocytes 

(Figure 22). The size of Band 4.1B was 145 kDa, which was similar to previously 

reported molecular weight (Sun et al., 2002). Bands 4.1G and 4.1N were strongly 

expressed in both wild type and 4.1B-/- astrocytes (Figure 22).  
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Figure 22. Protein 4.1 expression in astrocytes. 
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Figure 22. Protein 4.1 expression in astrocytes.  

Detergent-soluble wild type and 4.1B-/- astrocytes were immunoblotted with anti-

4.1B, anti-4.1G, and anti-4.1N antibodies. As expected, 145 kDa Band 4.1B was 

highly expressed in wild type, but not in 4.1B-/- astrocytes. Bands 4.1G and 4.1N 

were expressed in both wild type and 4.1B-/- astrocytes. The sizes of 4.1G and 

4.1N were 150 kDa and 100 kDa, respectively. The levels of 4.1G and 4.1N 

expression were not different between wild type and 4.1B-/- astrocytes.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



91 

 

The sizes of Bands 4.1G and 4.1N were 150 kDa and 100 kDa, respectively. No 

significant differences in the expression of these proteins were observed between 

wild type and 4.1B-/- astrocytes.       

 Next, integrin expression in wild type and 4.1B-/- astrocytes was examined. 

Astrocytes were labeled with sulfo-NHS-biotin and immunoprecipitated with various 

integrin antibodies, including anti-α1, anti-α2, anti-α3, anti-α4, anti-α5, anti-α6, αnti-

α8, anti-αV, and anti-β1 antibodies, to detect integrins that are expressed on the cell 

surface. Both wild type and 4.1B-/- astrocytes showed similar integrin expression 

profiles (Figure 23). Because sulfo-NHS-biotin labeled αβ heterodimeric pairs and 

these associations are maintained through the experimental manipulations,  

immunoprecipitation of α subunits also revealed their β binding partners, and vice 

versa. In other words, immunoprecipitation of α2, α3, α5, α6 and αV demonstrated 

pairing with the predicted β subunits (Figure 23). Since β1 integrin pairs with 

multiple α subunits (Figure 4), immunoprecipitation of β1 also pulled-down α1, α2, 

α3, α5, α6, and αV integrins (Figure 23). The presence of Band 4.1B in astrocytes 

did not affect cell surface integrin expression, i.e., the profiles of integrin expression 

did not differ between wild type and 4.1B-/- astrocytes.      
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Figure 23. Integrin expression in astrocytes. 
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Figure 23. Integrin expression in primary mouse astrocytes. 

The astrocytes were cell surface-labeled with sulfo-NHS-biotin and 

immunoprecipitated with various integrin antibodies. Both wild type and 4.1B-/- 

astrocytes showed similar integrin expression profiles. Because sulfo-NHS-biotin 

labeled αβ heterodimeric pairs, immunoprecipitation of α subunits also revealed 

their β binding partners, and vice versa. Pull-down of α2, α3, α5, α6 and αV showed 

α2β1, α3β1, α5β1, α6β1, αVβ1, and αVβ8 integrin heterodimers, respectively. Since 

β1 integrin pairs with multiple α subunits, immunoprecipitation of β1 also pulled-

down α1, α2, α3, α5, α6, and αV integrins. The absence of Band 4.1B in astrocytes 

did not affect cell surface integrin expression.  

 

 

 

 

 

 

 

 

 

 

 

 



94 

 

4.2.2. Band 4.1B shows time-dependent changes in its subcellular 

localization.  

 In many cell types, Band 4.1B has been shown to localize to the plasma 

membrane where cell-cell contacts are formed (Parra et al., 2000). However, Band 

4.1B’s expression patterns in astrocytes had not been determined. Therefore, 

subcellular localization of Band 4.1B and other protein 4.1 was explored in 

astrocytes. Wild type and 4.1B-/- astrocytes were allowed to adhere to fibronectin, 

an ECM molecule, for 30 minutes. These adherent cells were then immunostained 

with anti-4.1B, anti-4.1G, and anti-4.1N antibodies. Immunofluorescent analysis of 

protein 4.1’s revealed that Bands 4.1B and 4.1G localized to adhesions during early 

spreading. Bands 4.1B and 4.1G’s localization to adhesions were confirmed by co-

localization of these proteins with paxillin, a focal adhesion marker (Figure 24A-D). 

Unlike Bands 4.1B and 4.1G, Band 4.1N did not localize to adhesions, as apparent 

in co-labeling analysis with paxillin (Figure 24E, F). However, Band 4.1N was 

concentrated in the nucleus as it co-localized with DAPI which binds to DNA. In the 

absence of Band 4.1B, astrocytes were still able to form adhesions, as 

demonstrated with paxillin-positive contacts in 4.1B-/- astrocytes (Figure 24B).  No 

differences in localization patterns of Bands 4.1G and 4.1N were demonstrated 

between wild type (Figure 24C, E) and 4.1B-/- (Figure 24D, F) astrocytes.   
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Figure 24. Protein 4.1B and 4.1G, but not 4.1N, localize to cell-ECM contact sites. 
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Figure 24. Protein 4.1B and 4.1G, but not 4.1N, localize to cell-ECM contact 

sites. 

A-F: Wild type and 4.1B-/- astrocytes were allowed to adhere to fibronectin for 30 

minutes and immunostained with anti-4.1B (A, B), anti-4.1G (C, D), and anti-4.1N 

(E, F) antibodies. 4.1B (arrows in A) and 4.1G (arrows in C, D) co-localized with 

paxillin in adhesions. Band 4.1N did not co-localize with paxillin, rather it co-

localized with DAPI, a nucleus label (E, F). 4.1B-/- astrocytes were still able to form 

adhesions, as demonstrated with paxillin-positive contacts (arrows in B).  No 

differences in localization patterns of 4.1G and 4.1N were seen between wild type 

(C, E) and 4.1B-/- (D, F) astrocytes.  Images are shown at 400x. 
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 Interestingly, Bands 4.1B, 4.1G, and 4.1N became more diffusely expressed 

24 hours after fibronectin adhesion (Figure 25A-C). Further analysis of the protein 

expression revealed that Band 4.1B and Band 4.1G became concentrated at cell-

cell junctions when cells contacted with one another (Figure 25D, E). However, 

Band 4.1N remained diffusely expressed even when cell-cell contacts were formed 

(Figure 25F). No differences in the localization patterns of Band 4.1G (Figure 25B, 

E) and Band 4.1N (Figure 25 C, F) were seen between wild type and 4.1B-/- 

astrocytes.                  
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Figure 25. Protein 4.1 sub-cellular localization changes as cell-cell contacts are 

formed. 
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Figure 25. Protein 4.1 sub-cellular localization changes as cell-cell contacts 

are formed. 

A-F: The expression of 4.1 proteins was examined 24 hours after astrocyte 

adhesion to fibronectin. 4.1B (A), 4.1G (B), and 4.1N (C) became diffusely 

expressed at 24 hours. Interestingly, 4.1B (D) and 4.1G (E) became concentrated at 

cell-cell junctions when cells contacted with one another, although 4.1N remained 

diffusely expressed (F). No differences in the localization patterns of 4.1G (B, E) 

and 4.1N (C, F) were seen between wild type and 4.1B-/- astrocytes. Images are 

shown at 400x.  
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4.2.3. Band 4.1B and β1 integrin co-localize to cell-ECM contact sites. 

β1 integrin is a major fibronectin receptor. Given the importance of integrins in cell-

ECM adhesion, the localization patterns of Band 4.1B and β1 integrin were 

compared in astrocytes adhering to fibronectin. Wild type astrocytes were allowed 

to interact with fibronectin for 1 hour or 24 hours. The adherent cells were then 

immunolabeled with anti-4.1B, anti-β1, and anti-paxillin antibodies. In early hours, 

both Band 4.1B (Figure 26A) and β1 integrin (Figure 26B) co-localized with paxillin, 

indicating their localizations at the adhesion sites. However, after 24 hours, Band 

4.1B became diffusely expressed (Figure 26C) whereas β1 integrin remained co-

localized with paxillin (Figure 26D). As evident by the presence of paxillin-labeled 

focal contacts, the appearance of focal adhesions did not change when Band 4.1B 

was absent from the adhesion sites (Figure 26C). 
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Figure 26. Band 4.1B and β1 integrin localize to adhesions during early stages of 

cell adhesion and spreading. 
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Figure 26. Band 4.1B and β1 integrin localize to adhesions during early stages 

of cell adhesion and spreading. 

A-D: Wild type and 4.1B-/- astrocytes adhering to fibronectin were labeled with anti-

4.1B (A, C), anti-β1 (B, D), and anti-paxillin (A-D) antibodies. At one hour, Band 

4.1B (arrows in A) and β1 integrin (arrows in B) co-localized with paxillin, indicating 

their localization to the adhesion sites. At 24 hours, however, Band 4.1B became 

diffusely expressed (C) whereas β1 integrin remained co-localized with paxillin (D 

arrows). Paxillin-labeled adhesion sites were still present when Band 4.1B was no 

longer expressed in the adhesion sites (arrows in C). Images shown at 400x. 
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Based on the co-localization of both Band 4.1B and β1 integrin with paxillin, 

we postulated that these two proteins might co-localize, as well. Therefore, 

fibronectin-adherent wild type and 4.1B-/- astrocytes were immunostained with anti-

4.1B and anti-β1 antibodies. As expected, Band 4.1B and β1 integrin co-localized 

during early spreading (Figure 27A), but did not stay co-localized at 2 hours (Figure 

27C). The localization of β1 integrin to adhesions was not altered by the changes in 

Band 4.1B expression (Figure 27 A, C). Furthermore, the lack of Band 4.1B 

expression in 4.1B-/- astrocytes did not affect β1 integrin’s localization to focal 

adhesions (Figure 27B, D). 
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Figure 27. Band 4.1B and β1 integrin co-localize during early cell spreading. 
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Figure 27. Band 4.1B and β1 integrin co-localize during early cell spreading. 

A-D: Fibronectin-adherent wild type (A, C) and 4.1B-/- (B, D) astrocytes were 

immunostained with anti-4.1B and anti-β1 antibodies. Band 4.1B and β1 integrin co-

localized one hour after fibronectin adhesion (arrows in A), but did not stay co-

localized at 2 hours (C). β1 localization to focal adhesions was unaffected by loss of 

Band 4.1B expression in adhesions (arrows in C). The absence of Band 4.1B 

expression in 4.1B-/- astrocytes did not influence β1 integrin’s localization to focal 

adhesions (arrows in B, D). Images are shown at 400x. 
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In vivo expression of Band 4.1B and β1 integrin was also determined using 

E11.5 wild type embryos. Fresh-frozen embryo sections were immunofluorescently 

labeled with anti-4.1B and anti-β1 antibodies. Band 4.1B and β1 integrin co-

localized to the plasma membrane at regions of cell-cell contact, especially in the 

neural tube (Figure 28). In addition, β1 integrin was strongly expressed in blood 

vessels (arrows in Figure 28).  
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Figure 28. Band 4.1B and β1 integrin co-localize in the neuroepithelium.  
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Figure 28. Band 4.1B and β1 integrin co-localize in the neuroepithelium.  

In vivo expression of Band 4.1B and β1 integrin was determined in E11.5 wild type 

embryos. Fresh-frozen embryo sections were immunofluorescently labeled with 

anti-4.1B and anti-β1 integrin antibodies and IgG controls. Band 4.1B and β1 

integrin co-localized to the plasma membrane at regions of cell-cell contact. β1 

integrin, but not Band 4.1B, was also strongly expressed in blood vessels (arrows). 

Images are shown at 400x. 
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4.2.4. Band 4.1B is not necessary for cell adhesion to the ECM.  

The localization of Band 4.1B to cell-ECM contacts led to the examination of 

Band 4.1B’s role in cell adhesion. Wild type and 4.1B-/- astrocytes were plated on a 

96-well plate coated with laminin, an ECM molecule for 30 minutes. The cells 

adhering to laminin were stained with crystal violet. The crystal violet-positive cells 

were quantified using an ELISA reader. The numbers of wild type and 4.1B-/- 

adherent cells were not significantly different (Figure 29A), indicating Band 4.1B 

does not influence initial adhesion of cells to the ECM.  

Morphologies of wild type and 4.1B-/- astrocytes were also examined after 

adhesion to laminin. Again, these astrocytes were plated onto laminin-coated 

coverslips for 30 minutes and labeled with phalloidin, a cytoskeleton marker. Careful 

examination of the attached cells revealed that the morphologies of wild type and 

4.1B-/- astrocytes after initial adhesion were not significantly different from one 

another (Figure 29B).     
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Figure 29. Band 4.1B is not necessary for cell adhesion to the ECM.  
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Figure 29. Band 4.1B is not necessary for cell adhesion to the ECM.  

A: Wild type and 4.1B-/- astrocytes were plated on a 96-well plate coated with 

laminin for 30 minutes. After staining the adherent cells with crystal violet, the 

differences in cell adhesion in these cells were quantified. The numbers of wild type 

and 4.1B-/- adherent cells were not significantly different (p>0.05). B: Wild type and 

4.1B-/- astrocytes were also examined for their morphologies after a brief interaction 

with laminin. The cells were stained with phalloidin, a cytoskeleton marker. The 

morphologies of wild type and 4.1B-/- astrocytes were not significantly different from 

one another. Images are shown at 400x.    
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4.2.5. The FERM domain of Band 4.1B enhances cell spreading on fibronectin. 

 The FERM domain is thought to be crucial for mediating cell spreading. To 

determine the effects of the 4.1B FERM domain on cell spreading, COS7 cells were 

transiently transfected with myc-tagged 4.1B FERM, full length 4.1B, and LacZ 

constructs (McCarty et al., 2005a) for 48 hours. These cells were allowed to adhere 

to fibronectin and stained with an anti-myc antibody. The areas of cell spreading 

were quantified by a software analysis of captured images of myc-labeled cells. 

Strikingly, COS7 cells that were transfected with 4.1B FERM and full length 4.1B 

constructs displayed enhanced spreading on fibronectin (Figure 30B, C), compared 

to the cells transfected with LacZ control (Figure 30A). These spreading differences 

were statistically significant (p<0.01) (Figure 30D). A similar analysis using 

vitronectin adherent cells did not show spreading differences in cells transfected 

with these constructs (data not shown).     
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Figure 30. The FERM domain of Band 4.1B enhances cell spreading on fibronectin. 
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Figure 30. The FERM domain of Band 4.1B enhances cell spreading on 

fibronectin. 

A-C: COS7 cells were transiently transfected with myc-tagged LacZ (A), 4.1B FERM 

(B), and full length 4.1B (C) constructs for 48 hours and stained with an anti-myc 

antibody. Images are shown at 400x. 4.1B FERM (B) and full length 4.1B (C) 

transfected cells displayed enhanced spreading on fibronectin, compared to the 

LacZ control (A). D: The areas of cell spreading were quantified by a software 

analysis of captured images of the myc-labeled cells. 4.1B FERM and full length 

4.1B transfected cells showed statistically significant (*p<0.01) enhancement of 

spreading, compared to the LacZ control.  

 

 

 

 

 

 

 

 

 

 

 

 

 



115 

 

 Since the increased spreading in 4.1B transfected cells was only observed in 

cells interacting with fibronectin, it was speculated that Band 4.1B, especially the 

Band 4.1B FERM domain, promotes cell spreading mediated by β1 integrin. 

Therefore, cells that were transfected with the 4.1B FERM, full length 4.1B, and 

LacZ constructs were treated with a β1 integrin blocking antibody prior to being 

plated on fibronectin. Again, cells transfected with 4.1B FERM (Figure 31B) and full 

length 4.1B (Figure 31C) constructs showed enhanced spreading on fibronectin 

without blocking, in comparison to the LacZ control (Figure 31A). However, the 

enhanced cell spreading in these cells was abolished after blocking β1 (Figure 31D-

F).    
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Figure 31. Band 4.1B FERM domain promotes cell spreading mediated by β1 

integrin. 
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Figure 31. Band 4.1B FERM domain promotes cell spreading mediated by β1 

integrin. 

A-F: 293T cells that were transfected with 4.1B FERM, full length 4.1B, and LacZ 

constructs were treated with a β1 integrin blocking antibody P5D2 prior to being 

plated on fibronectin. Again, cells transfected with 4.1B FERM (B) and full length 

4.1B (C) constructs showed enhanced spreading on fibronectin, in comparison to 

the LacZ control (A). P5D2 blocked the increased spreading in these cells (D-F).    
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4.3. Discussion 

The functional roles for Band 4.1B in the brain, and especially in astrocytes, 

have not been identified. This study was the first to show time-dependant 

localization changes of Band 4.1B expression in astrocytes and to implicate the 

involvement of Band 4.1B in cell adhesion and spreading. Here, the FERM domain 

of Band 4.1B was shown to promote β1 integrin-mediated early cell spreading by 

localizing to β1 integrin-rich cell-ECM adhesion sites.  

Band 4.1B has been previously shown to localize to the plasma membrane at 

regions of direct cell-cell contact (Parra et al., 2000). Given the subcellular 

expression, Band 4.1B has been speculated to be involved in cell-cell, cell-ECM 

interactions. Similar to the previous report, Band 4.1B in astrocytes also localizes to 

the plasma membrane when cell-cell contacts are formed. However, it is important 

to note that the localization patterns of Band 4.1B change throughout the stages of 

cell adhesion and spreading. Interestingly, Band 4.1B localizes to paxillin-labeled 

adhesions only during early cell spreading, but becomes diffusely expressed in later 

stages of cell spreading.  Although the expression of Band 4.1B is diffuse in sparse 

cultures of astrocytes, Band 4.1B becomes concentrated at cell-cell junctions when 

cells form contacts with one another. No differences in the protein expression of 

Band 4.1B were observed between sparse and confluent cultures of astrocytes, as 

demonstrated by immunoblot analysis (data not shown). Therefore, the changes in 

localization of Band 4.1B are not accompanied by the changes in protein 

expression. These novel findings suggest that Band 4.1B may be important for early 

adhesion assembly and signaling, but dispensable for the maintenance of focal 
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adhesions. In addition, Band 4.1B is likely to mediate cell-cell interactions once 

focal adhesions are well established and cells begin to form contacts with each 

other. Collectively, the data from this study demonstrate stage-dependant changes 

in Band 4.1B localization in astrocytes and suggest multiple intracellular roles for 

Band 4.1B in cell adhesion and signaling. 

Interestingly, these unique changes in Band 4.1B localization are seen in 

astrocytes adherent to fibronectin, an ECM protein ligand for β1 integrins. β1 

integrin binds multiple α subunits (Baczyk et al., 2010; Takada et al., 2007; Hynes, 

2002). β1 integrin has been shown to participate in various cellular events, including 

cell-ECM adhesion and cell spreading (Harburger and Calderwood, 2009). As 

shown in this study, astrocytes express multiple β1 containing integrins, such as 

α2β1, α3β1, α5β1, α6β1, and αVβ1. Therefore, it was speculated that β1 integrin is 

an important regulator of astrocyte adhesion and signaling. Similar to Band 4.1B, β1 

integrin localizes to paxillin-containing adhesions during initial cell spreading. 

However, unlike Band 4.1B, β1 integrin remains in focal adhesions even after cells 

make initial contact with the ECM. These findings suggest that β1 integrin is 

important not only for early adhesion formation, but also for maintenance of focal 

adhesions.  

Co-localization of Band 4.1B and β1 integrin occur only during early stages 

of cell spreading on fibronectin. This suggests that their interactions are likely to be 

important for early adhesion formation and/or stabilization. Cell-ECM adhesion is 

the critical first step for various cellular events. Talin, a member of the protein 4.1 

superfamily, has been reported to regulate cell adhesion and spreading through its 
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interaction with β1 integrin (Zhang et al., 2008). Talin mediates focal adhesion 

formation and organization by activating β1 integrin, bridging the integrin with the 

actin cytoskeleton, and modulating intracellular signaling (Zhang et al., 2008). Given 

the similarities between talin and Band 4.1B, Band 4.1B may perform redundant 

functions in astrocytes. Alternatively, Band 4.1B may be important for establishing 

cell adhesion and spreading events before talin takes over regulating these 

processes. In fact, talin is not involved in initial cell spreading, including primary 

adhesion formation and early cell-edge extension (Zhang et al., 2008). Therefore, 

the interactions between β1 integrin and Band 4.1B in the early stage of cell 

spreading may be an initiating event for adhesion formation and membrane 

extension.   

The exact functions of Band 4.1B in β1-rich adhesions have yet to be 

determined. One possibility is that Band 4.1B may be necessary for proper 

localization of β1 integrin to newly forming adhesions through their physical 

interactions. Alternatively, Band 4.1B may influence intracellular signaling regulated 

by β1 integrin. In the absence of Band 4.1B, β1 integrin were still detectable in 

adhesions. Furthermore, Band 4.1B did not affect initial cell-ECM contact modulated 

by β1 integrin. Therefore, Band 4.1B is unlikely to recruit β1 integrin to newly 

forming adhesions. Instead, β1 integrin may recruit Band 4.1B to early adhesion 

sites for regulating intracellular signaling or the cytoskeleton.  

Several FERM containing proteins have been shown to regulate cell 

spreading that is a downstream event of integrin-initiated cell adhesion (Gutmann et 

al., 1999; Zhang et al., 2008). Based on the data from the present study, Band 4.1B 
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also promotes cell spreading. Interestingly, the expression of Band 4.1B FERM 

alone is sufficient to increase cell spreading. This indicates that the FERM domain 

is responsible for modulating signaling pathways altering cell behavior.  

Although Band 4.1B CTD’s interaction with β8 integrin have been studied 

(McCarty et al., 2005a), other domains of Band 4.1B have not been explored for 

their integrin binding capabilities. Piao and colleagues have suggested interactions 

between Band 4.1B and β1 integrin in their prior report (2009). Given that enhanced 

spreading was seen in 4.1B FERM-expressing cells on fibronectin, an ECM ligand 

for β1 integrin, the FERM domain may be an essential region of Band 4.1B for β1 

interaction. Through this interaction, Band 4.1B may participate in β1 integrin-

mediated intracellular signaling cascades. Abolishment of enhanced cell spreading 

with a β1 blocking antibody indirectly shows that Band 4.1B FERM-β1 interaction 

induces better cell spreading.    

Despite the proposed roles of Band 4.1B in β1-mediated cell adhesion and 

signaling, 4.1B-/- astrocytes do not behave differently from wild type astrocytes. 

Even in the absence of Band 4.1B, these cells form normal paxillin-positive 

adhesions, have β1-containing focal contacts, and display normal cell morphology 

and spreading. The lack of differences between wild type and 4.1B-/- cells may be 

contributed by other 4.1 proteins playing redundant functions in the absence of 

Band 4.1B. Bands 4.1G and 4.1N are highly expressed in 4.1B-/- astrocytes. In 

particular, Band 4.1G shares similar expression patterns with Band 4.1B: Band 

4.1G localizes to primary adhesions during early spreading and to cell-cell junctions 

upon completion of cell spreading. Band 4.1G may take over the functions of Band 
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4.1B when Band 4.1B is not present. Clear phenotype differences demonstrated 

between Band 4.1B-expressing COS7 cells and untransfected cells that lack 

endogenous protein 4.1 expression strongly support this possibility. In this case, it is 

still possible that Band 4.1B may play a role in recruitment of β1 integrin to early 

adhesions, but this might not be apparent in this study due to the presence of other 

4.1 proteins in knockout cells.  

In summary, Band 4.1B may be involved in the formation of primary adhesion 

and/or intracellular signaling through the interaction between its FERM domain and 

β1 integrin during initial cell spreading.  However, it is difficult to clearly demonstrate 

their functions in these cellular processes due to the presence of other 4.1 proteins 

that might play redundant roles. The examination of Band 4.1B in the absence of 

other 4.1 proteins using siRNA-mediated approaches would be useful for better 

characterization of Band 4.1B’s functional roles. 
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Chapter 5. Summary and Future Directions 

This study was the first to demonstrate the in vivo and in vitro functions of 

Band 4.1B in integrin-mediated cell adhesion and signaling. The key findings of the 

present study are as follows: 

Specific Aim I: 

1. β8 and Band 4.1B are expressed in the embryonic heart (Figures 16, 19). 

The expressions of β8 integrin and Band 4.1B were detected in endocardial 

cushions of the AV junction and OFT as well as the myocardium. 

2. Most mice that are genetically null for β8 integrin and Band 4.1B die by E11.5 

(Table 2). 

The number of β8-/-;4.1B-/- mice that were born was 60% less than 

expected. Although these mice were present in the expected Mendelian ratio 

at E10.5, they showed 8% viability at E11.5. 

3. β8-/-;4.1B-/- mice that survive until adulthood die of hydrocephalus caused by 

intracerebral hemorrhage (Figures 9, 10). 

β8-/-;4.1B-/- mice displayed hunched posturing, abnormal gait, and seizure 

activity by the third week of their lives and died before P40. The cause of 

death was severe hydrocephalus secondary to intracerebral hemorrhage. 

Although striking, these phenotypes were similarly observed in β8-/- mice, 

suggesting these features were mainly the effects of absent β8 integrin.  

4. The defective cardiovascular system contributes to the lethal phenotype of β8-/-

;4.1B-/- embryos (Figures 11-14). 
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Hypovascularity in the yolk sac and embryo proper was the most grossly 

noticeable feature of the double mutants. Defective blood vessel formation in 

the yolk sac and neural tube was also seen in these embryos.  

5. Abnormal morphogenesis of the outflow tract is seen the β8-/-;4.1B-/- heart 

(Figures 17, 18). 

Hypotrophy of the OFT endocardial cushion with the diminished expression 

of multiple neural crest markers and thinning of myocardium were 

demonstrated in the double mutants. 

6. Neural crest cell migration is impaired in β8-/-;4.1B-/- embryos (Figures 20, 21). 

A defective neurofilament network in β8-/-;4.1B-/- embryos was evident by 

aberrant projections of the cranial nerve V branches into the pharyngeal 

arches and abnormal neurofilament patterning in the trunks.  

 

Functional links between β8 integrin and Band 4.1B in vivo have never been 

shown prior to the present study. This study shows cooperative functions for β8 

integrin and Band 4.1B in embryonic heart development. Given the importance of 

cardiac neural crest cells in OFT formation and similar OFT abnormalities seen in 

other mouse models with cardiac neural crest migration defects, β8 integrin and 

Band 4.1B are suspected to work together to support neural crest cell migration to 

the OFT and possibly other regions of the developing heart. In particular, β8 integrin 

and Band 4.1B may contribute to proper migration of neural crest cells by regulating 

TGFβ signaling pathways since mice lacking various TGFβ family members share 

similar features with the double mutants.  
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The exact mechanisms by which β8 integrin and Band 4.1B affect cardiac 

morphogenesis are yet to be determined. Selective ablation of these genes in 

neural crest cells, especially cardiac neural crest cells, would provide better 

understanding of β8-4.1B signaling in cardiac morphogenesis. In addition, the 

involvement of Band 4.1B in integrin-mediated TGFβ activation and signaling and 

the roles of these signaling cascades in the development of neural crest-derived 

structures may be addressed using in vitro approaches. Given the abnormal 

neurofilament projections shown in the double knockout embryos, impaired 

migration of neural crest cells is strongly suspected. To demonstrate defective 

neural crest migration, cells isolated from the double mutants can be utilized for in 

vitro migration assays. These cells can also be subject to time-lapse monitoring of 

cell movement to understand dynamic regulation of cell migration by β8 integrin and 

Band 4.1B. In vitro approaches will also allow rescue experiments to monitor the 

reversibility of the abnormal migration phenotype by re-expressing β8 integrin and 

Band 4.1B in cells. Furthermore, β8 integrin and Band 4.1B’s regulation of TGFβ 

pathways can be studied by examining downstream molecules of TGFβ signaling 

cascades, such as SMAD2/3 and 4. By utilizing antibodies against these proteins, 

changes in the levels of expression and activation of TGFβ signaling molecules can 

be detected in double knockout neural crest cells.                                                                                                                                              

Although β8-/-;4.1B-/- embryos exhibit striking lethal phenotypes, these 

phenotypes are partially penetrant. The partial penetrance of lethality in these mice 

was attributed to their background strain variation. In many mutant mice, including 

knockout mice of β8 integrin and TGFβ’s show strain-dependent phenotypes (Zhu 
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et al., 2002; Mobley et al., 2009; Bonyadi et al., 1997). These differences may be 

explained by the presence of genetic modifiers in specific strains. Therefore, it 

would be worthwhile to investigate potential contributions of genetic modifiers to 

cardiac development by backcrossing the double knockout mutants to 129S4 and 

C57BL6 backgrounds.    

Since impaired OFT is commonly seen in congenital heart disease, β8 

integrin and Band 4.1B may be important players in human cardiac morphogenesis.   

In DiGeorge syndrome, neural crest cell derived structures, including the OFT and 

aortic arch are severely defected (Stoller and Epstein, 2005). β8 integrin and Band 

4.1B have not been implicated in human heart diseases. Given the cardiac defects 

seen in β8-/-;4.1B-/- embryos, studying the roles of β8 integrin and Band 4.1B in 

DiGeorge syndrome and other congenital heart diseases using animal models and 

human samples can lead to the discovery of a new therapeutic target. 

   

Specific Aim II: 

1. Astrocytes express multiple 4.1 proteins and β1-containing integrins (Figure 22, 

23). 

Bands 4.1B, 4.1G, and 4.1N as well as α1β1, α2β1, α3β1, α5β1, α6β1, and 

αVβ1 integrins were detected in astrocytes. 

2. Band 4.1B shows time-dependent changes in its subcellular localization (Figure 

24, 25). 
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Band 4.1B localized to primary adhesions during early cell spreading. 

However, the expression of Band 4.1B was seen in the plasma membrane at 

cell-cell junction when cells formed contacts with one another. 

3. Band 4.1B and β1 integrin co-localize to the adhesion sites (Figure 26, 27). 

Band 4.1B and β1 integrin co-localized to paxillin-labeled adhesions during 

early spreading. However, Band 4.1B became diffusely expressed whereas 

β1 integrin remained co-localized with paxillin in late stages of cell spreading. 

4. Band 4.1B is not necessary for cell adhesion to the ECM (Figure 29). 

Astrocytes that lack Band 4.1B adhere to laminin without any differences 

from wild type cells. In addition, the morphologies of wild type and 4.1B-/- 

astrocytes after initial adhesion were not significantly different from one 

another. 

5. The FERM domain of Band 4.1B enhances β1 integrin-mediated cell spreading 

(Figure 30, 31). 

Increased cell spreading was demonstrated in cells expressing 4.1B FERM 

and full-length 4.1B constructs. However, the enhanced spreading in these 

cells was abolished by treating the cells with a β1 blocking antibody.   

This study was the first to demonstrate the localization changes of Band 4.1B 

during cell spreading and to implicate the involvement of Band 4.1B in β1-mediated 

cell adhesion and spreading. These novel findings indicate that Band 4.1B may be 

important for early adhesion assembly and signaling, but dispensable for the 

maintenance of focal adhesions. It is possible that physical interactions between 

Band 4.1B and β1 integrin may be necessary for proper localization of β1 integrin to 
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newly forming adhesions. Alternatively, Band 4.1B may function as a downstream 

signaling molecule of β1 integrin.  

In spite of the proposed roles of Band 4.1B in β1-mediated cell adhesion and 

signaling, the lack of differences between wild type and 4.1B-/- cells made it difficult 

to demonstrate the exact roles of Band 4.1B in vitro. The presence of redundant 

functions among 4.1 proteins could not be ruled out in this study. Therefore, it would 

be critical to examine Band 4.1B’s functions in the absence of other 4.1 proteins 

using siRNA-mediated approaches. As demonstrated here, Bands 4.1G and 4.1N 

are highly expressed in astrocytes, although their functions in these cells have not 

been established. Given their subcellular localizations and conserved FERM 

domain that share sequence homology with Band 4.1B, other 4.1 proteins may play 

similar roles in cell adhesion and signaling mediated by integrins. Especially, Band 

4.1G demonstrated similar sub-cellular localization as Band 4.1B. Therefore, limiting 

Band 4.1G’s expression in early adhesions by silencing Band 4.1G via RNAi-

mediated approaches may produce significant disruption in cell adhesion and 

spreading in cells lacking Band 4.1B. Although Band 4.1N did not localize to cell 

adhesions in astrocytes, it may become an important regulator of cell adhesion and 

signaling when Bands 4.1B and 4.1G are both absent. It would be interesting to 

study if Band 4.1N’s localization patterns change in the absence of other 4.1 

proteins and if silencing Band 4.1N negatively affects cell adhesion and signaling 

when Bands 4.1B and 4.1G are not present.    
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In addition, subtle changes in adhesion formation during early cell spreading 

would be difficult to be shown by observing cell spreading at fixed time intervals. 

Since Band 4.1B’s expression in adhesions is time-dependant, its regulation of cell 

adhesion and spreading may also be time sensitive and limited to certain stages of 

cell spreading. Continuous monitoring of cell adhesion and spreading, therefore, 

would provide better understanding of time-dependent changes in adhesion 

formation and organization and cell spreading. Time-lapse monitoring of adhesion 

assembly/disassembly and cell spreading can be accomplished by transfecting cells 

with fluorescently labeled proteins and monitoring the movements of these proteins 

in the cells. Given the co-localizations of Band 4.1B, β1 integrin, and paxillin at the 

adhesion sites, monitoring dynamic cellular changes using cells transfected with 

fluorescently-labeled Band 4.1B, β1 integrin, and paxillin would be a useful first step 

for understanding their roles in cell adhesion and spreading.  

One possible mechanism by which Band 4.1B is involved in cell adhesion 

and signaling is functioning as a downstream adaptor of β1 and other integrins in 

early adhesions. Adhesions are the sites for sequestering proteins that are 

important for intracellular signaling (Brown et al., 2005). Many adaptor and signaling 

proteins play important roles in connecting integrins and the actin cytoskeleton 

(Legate et al., 2009; Zhang et al., 2008; Cram et al., 2003). Band 4.1B is also a 

known cytoskeletal adaptor protein that is thought to bind to the actin cytoskeleton 

via its SABD (Sun et al., 2002). Therefore, Band 4.1B may function as a link 

between integrins and the actin cytoskeleton.  It may also act as a binding partner of 

other molecules in an adhesion complex, sequestering these proteins for further 
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intracellular signaling. Thus, the absence of Band 4.1B in cells may influence the 

actin cytoskeleton dynamics and/or localization of other adhesion proteins. 

Examining the actin organization and other known integrin/actin binding proteins in 

adhesions in wild type and 4.1B-/- cells using immunohistochemical approaches 

would provide insights into the involvement of Band 4.1B in adhesion complex 

regulation.   

Given that enhanced cell spreading mediated by Band 4.1B was observed 

only on fibronectin, a major ECM ligand for β1 integrin, and this effect was 

abolished by the use of a β1 integrin blocking antibody, Band 4.1B was thought to 

modulate cell spreading mediated by β1 integrin. Although co-localization of Band 

4.1B and β1 integrin in vitro and in vivo suggests that Band 4.1B and β1 integrin are 

likely to interact with one another, demonstrating direct interactions between Band 

4.1B, and β1 integrin by co-immunoprecipitation would further emphasize the 

importance of Band 4.1B in β1 integrin signaling. Examining endogenous 

interactions between these two proteins would be the best way to demonstrate their 

binding. Since these proteins were shown to co-localize in early adhesions, lysates 

made from cells attached to fibronectin for a brief period of time can be used for 

displaying the endogenous interaction. However, the transient interactions between 

Band 4.1B and β1 integrin may make the co-immunoprecipitation difficult to be 

performed, given the time-dependent changes in Band 4.1B localization. Another 

way would be to utilize Band 4.1B and β1 integrin constructs and monitor for 

exogenous interactions of these proteins. Given the importance of the talin FERM 

domain and the β cytoplasmic tails in talin-integrin interactions, the Band 4.1B 
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FERM domain that is overexpressed in cells can be allowed to bind to β1 

cytoplasmic tail that is attached to a resin.      

This study demonstrated several crucial in vivo and in vitro functions for 

Band 4.1B in integrin-mediated cell adhesion and signaling. However, the 

mechanisms by which Band 4.1B is involved in these cellular events still need to be 

determined. The knowledge obtained from the present study would provide a solid 

foundation for further analysis of Band 4.1B’s roles. The proposed future studies 

would strengthen our understanding of the functions for Band 4.1B in integrin-

mediated adhesion and signaling.   

 

 

 

 

 

 

 

 

 



132 

 

References 

Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. 2009. Epithelial- 

mesenchymal transitions: the importance of changing cell state in 

development and disease. J Clin Invest 119:1438-49. 

Anthis NJ, Campbell ID. 2011. The tail of integrin activation. Trends Biochem Sci 

Epub. 

Astrof S, Crowley D, Hynes RO. 2007. Multiple cardiovascular defects caused by 

the absence of alternatively spliced segments of fibronectin. Dev Biol 311:11-

24. 

Arnaout MA, Mahalingam B, Xiong JP. 2005. Integrin structure, allostery, and 

bidirectional signaling. Annu Rev Cell Dev Biol 21:381-410. 

Bader BL, Rayburn H, Crowley D, Hynes RO. 1998. Extensive vasculaogenesis, 

angiogenesis, and organogenesis precede lethality in mice lacking all alpha v 

integrins. Cell 95:507-19. 

Baines AJ, Bennett PM, Carter EW, Terracciano C. 2009. Protein 4.1 and the 

control of ion channels. Blood Cells Mol Dis 42:211-5.  

Barczyk M, Carracedo S, Gullberg D. 2010. Integrins. Cell Tissue Res 339:269-80.   

Bel C, Oguievetskaia K, Pitaval C, Goutebroze L, Faivre-Sarrailh C. Axonal 

targeting of Caspr2 in hippocampal neurons via selective somatodendritic 

endocytosis. J  Cell Sci, 2009 122:3403-13. 

Belkina NV, Liu Y, Hao JJ, Karasuyama H, Shaw S. LOK is a major ERM kinase in 

resting lymphocytes and regulates cytoskeletal rearrangement through ERM 

phosphorylation. 2009. Proc Natl Acad Sci 106:4707-12. 



133 

 

Bernkopf DB, Williams ED. 2008. Potential role of EPB41L3 (protein 4.1B/Dal-1) as 

a target for treatment of advanced prostate cancer. Expert Opin Ther Targets 

7:845-53. 

Bonyadi M, Rusholme SA, Cousins FM, SU HC, Bironn CA, Farrall M, Akhurst RJ. 

1997. Mapping of a major genetic modifier of embryonic lethality in TGF beta 

1 knockout mice. Nat Genet 15:207-11. 

Bretscher A, Edwards K, Fehon RG. 2002. ERM proteins and merlin: integrators at 

the cell cortex. Nat Rev Mol Cell Biol 3:586-599. 

Bronner-Fraser M. 1986. An antibody to a receptor for fibronectin and laminin 

perturbs cranial neural crest development in vivo. Dev Biol 117: 528–36. 

Brown MC, Cary LA, Jamieson JS, Cooper, JA, Turner CE. 2005. Src and FAK 

kinases cooperate to phosphorylate paxillin kinase linker, stimulate its focal 

adhesion localization, and regulate cell spreading and protrusiveness. Mol 

Cell Biol 16:4316-28. 

Buckingham M, Meilhac S, Zaffran S. 2005. Building the mammalian heart from two 

sources of myocardial cells. Nat Rev Genet 6:826-35. 

Calderwood DA. 2004. Integrin activation. J Cell Sci 117:657-66. 

Calderwood DA, Ginsberg MH. 2003. Talin forges the links between integrins and 

actin. Nat Cell Biol 5:694-7. 

Calderwood DA, Shattil SJ, Ginsberg MH. 2000. Integrins and actin filaments: 

reciprocal regulation of cell adhesion and signaling. J Biol Chem 275:22607-

10. 



134 

 

Campbell I.D., Studies of focal adhesion assembly. Biochem Soc Trans, 2008. 

36:263-66. 

Caswell PT, Chan M, Lindsay AJ, Mccaffrey MW, Boettiger D, Norman JC. 2008. 

Rab-coupling protein coordinates recycling of α5β1 integrin and EGFR1 to 

promote cell migration in 3D microenvironments. J Cell Biol 183:143-55.  

Caswell, PT, Norman JC. 2008. Endocytic transport of integrins during cell 

migration and invasion. Trends Cell Biol 18:257-63. 

Cavanna T, Pokorna E, Vesely P, Gray C, Zicha D. 2007. Evidence for protein 4.1B 

acting as a metastasis suppressor. J Cell Sci 120:606-16. 

Conway SJ, Kruzynska-Frejtag A, Kneer PL, Machnicki M, Koushik SV. 2003. What 

cardiovascular defect does my prenatal mouse mutant have, and why? 

Genesis 35:1-21. 

Costa P, Parsons M. 2010. New insights into dynamics of cell adhesions. Int Cell 

Rev Mol Biol 283:57-91. 

Correas I, Speicher DW, Marchesi VT. 1986 Structure of the spectrin-actin binding 

site of erythrocyte protein 4.1. J Biol Chem 261: 13362-13366. 

Cram EJ, Clark SG, Schwarzbauer JE. 2003. Talin loss of function uncovers roles in 

cell contractility and migration in C. elegans. J Cell Sci 116:3871-8. 

Critchley DR. 2009. Biochemical and structural properties of integrin-associated 

cytoskeletal protein talin. Annu Rev Biophys 38:235-54. 

Critchley DR. 2000. Focal adhesions - the cytoskeletal connection. Curr Opin Cell 

Biol 12: 133-139. 

Critchley DR, Gingras AR. 2008. Talin at glance. J Cell Sci 121:1345-7. 



135 

 

Dafou D, Grun B, Sinclair J, Lawrenson K, Benjamin EC, Hogdall D, Kruger-Kjaer S, 

Christensen L, Sowter HM, Al-Attar A, Edmondson R, Darby S, Berchuck A, 

Laird PW, Pierce CL, Ramus SJ, Jacobs IJ, Gayther SA. 2010. Microcell-

mediated chromosome transfer identifies EPB41L3 as a functional 

suppressor of epithelial ovarian cancer. Neoplasia 12:579-89.  

Delannet M, Martin F, Bossy B, Cheresh DA, Reichardt LF, Duband JL. 1994. 

Specific roles of the αvβ1, αvβ3 and αvβ5 integrins in avian neural crest cell 

adhesion and migration on vitronectin. Development 120:1687-702. 

Desban N, Duband JL. 1997. Avian neural crest cell migration on laminin: 

interaction of the α1β1 integrin with distinct laminin-1 domains mediates 

different adhesive responses. J Cell Sci 110: 2729-44. 

Diakowski W, Grzybek M, Sikorski AF. 2006. Protein 4.1, a component of the 

erythrocyte membrane skeleton and its related homologue proteins forming 

the protein 4.1/FERM superfamily. Folia Histochem Cytobiol 44:231-48. 

Dumin JA, Dickeson SK, Stricker TP, Bhattacharyya-Pakrasi M, Roby JD, Santoro 

SA, Parks WC. 2001. Pro-collagenase-1 (matrix metalloproteinase-1) binds 

the alpha(2)beta(1) integirn upon release from keratinocytes migrating on 

type I collagen. J Biol Chem 276: 29368-74.  

Ellerbroek SM, Wu I, Overall CM, Stack MS. 2001. Functional interplay between 

type I collagen and cell surface matrix metalloproteinase activity. J Biol Chem 

276: 24833-42. 

Fehon RG, McClatchey AI, Bretscher A. 2010. Organizing the cell cortex: the role of 

ERM proteins. Nat Rev Mol Cell Biol 11:276-87. 



136 

 

Fievet BT, Gautreau A, Roy C, Del Maestro L, Mangeat P, Louvard D, Arpin M. 

2004. Phosphoinositide binding and phosphorylation act sequentially in the 

activation mechanism of ezrin. J Cell Biol 164:653-9. 

Friedl P, Wolf K. 2003. Tumour cell invasion and migration: diversity and escape 

mechanisms. Nat Rev Cancer 3:362-74.  

Fukata M, Nakagawa M, Kaibuchi, K. 2003. Roles of Rho family GTPases in cell 

polarization and directional migration. Curr Opin Cell Biol 15:590-7. 

Galvez BG, Matias-Roman S, Yanez-Mo M, Sanchez-Madrid F, Arroyo AG. 2002. 

EEGM regulates MT1-MMP localization with beta1 or alphavbeta3 integrins 

at distinc cell compartments modulating its internalization and activation on 

human endothelial cells. J Cell Biol. 159:509-21. 

Gary R, bretscher A. 1995. Ezrin self-association involves binding of an N-terminal 

domain to a normally masked C-terminal domain that includes the F-actin 

binding site. Mol Biol Cell 6:1061-75. 

Gascard P, Cohen CM. 1994. Absence of high-affinity band 4.1 binding sites from 

membranes of glycophorin C- and D-deficient (Leach phenotype) 

erythrocytes. Blood 83: 1102-1108. 

Gimm JA, An X, Nunomura W, Mohandas N. 2002. Functional characterization of 

spectrin-actin-binding domains in 4.1 family of proteins. Biochemistry 41: 

7275-7282. 

Gu MX, York JD, Warshawsky I, Majerus PW. 1991. Identification, cloning, and 

expression of a cytosolic megakaryocyte protein tyrosine phosphatase with 



137 

 

sequence homology to cytoskeletal protein 4.1. Proc Natl Acad Sci USA 

88:5867-71. 

Gutmann DH, Hirbe AC, Huang ZY, Haipek CA. 2001. The protein 4.1 tumor 

suppressor, DAL-1, impairs cell motility, but regulates proliferation in a cell-

type-specific fashion. Neurobiol Dis 8:266-78.       

Gutmann DH, Sherman L, Seftor L, Haipek C, Hoang Lu K, Hendrix M. 1999. 

Increased expression of the NF2 tumor suppressor gene product, merlin, 

impairs cell motility, adhesion and spreading. Hum Mol Gen 8:267-75. 

Han BG, Nunomura W, Takakuwa Y, Mohandas N, Jap BK. 2000. Protein 4.1R core 

domain structure and insights into regulation of cytoskeletal organization. 

Nature Struct Biol 7: 871-875 

Hauck CR, Hsia DA, Schlaepfer DD. 2002. The focal adhesion kinase-a regulator of 

cell migration and invasion.  IUBMB Life 53:115-9. 

Harburger DS, Calderwood DA. 2008. Integrin signaling at a glance. J Cell Sci 

122:159-63. 

Harvey RP. 2002. Patterning the vertebrate heart. Nat Rev Genet 3:544-56. 

Holzwarth G, Yu J, Steck TL. 1976. Heterogeneity in the conformation of different 

protein fractions from the human erythrocyte membrane. J Supramol Struct 

4:161-8. 

Hood JD, Cheresh DA. 2002. Role of integrins in cell invasion and migration. Nat 

Rev Cancer 2:91-100. 



138 

 

Horresh I, Bar V, Kissil JL, Peles E. 2010. Organization of myelinated axons Caspr 

and Caspr2 requires the cytoskeletal adaptor protein 4.1B. J Neurosci 

30:2480-9. 

Hou C-L, Tang C-JC, Roffler SR, Tang TK. 2000. Protein 4.1R binding to eIF3-p44 

suggest an interaction between the cytoskeletal network and the translational 

apparatus. Blood 96:747-753. 

Huhtala M, Heino J, Casciari D, de Luise A, Johnson MS. 2005. Integrin evolution: 

insights from ascidian and teleost fish genomes. Matrix Biol. 24:83-95. 

Hynes, RO. 2002. Integrins: bidirectional, allosteric signaling machines. Cell 

110:673-87.  

Ishiguro H, Furukawa Y, Daigo Y, Miyoshi Y, Nagasawa Y, Nishiwaki T, Kawasoe T, 

Fujita M, Satoh S, Miwa N, Furii Y, Nakamura Y. 2000. Isolation and 

characterization of human NBL4, a gene involved in the beta-catenin/tcf 

signaling pathway. Jpn J Cancer Res 91: 597-603. 

Jain R, Rentschler S, Epstein JA. 2010. Notch and cardiac outflow tract 

development. Ann NY Acad Sci 1188:184-90. 

Jones EAV, Yuan L, Breant C, Watts RJ, Eichmann A. 2008. Separating genetic 

and hemodynamic defects in neuropilin 1 knockout embryos. Development 

135:2479-88.  

Kang Q, Wang T, Zhang H, Mohandas N, An X. 2009. A golgi-associated protein 

4.1B variant is required for assimilation of proteins in the membrane. J Cell 

Sci 122:1091-9. 



139 

 

Kil SH, Lallier T, Bronner-Fraser M. 1996. Inhibition of cranial neural crest adhesion 

in vitro and migration in vivo using integrin antisense oligonucleotides. Dev 

Biol 179: 91–101. 

Kirby ML, Gale TF, Stewart DE. 1983. Neural crest cells contribute to normal 

aorticopulmonary septation. Science 220:1059-61. 

Krieg J, Hunter T. 1992. Identification of the two major epidermal growth factor-

induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J 

Biol Chem 267:19258-65. 

Le Clainche C, Carlier MF. 2008. Regulation of actin assembly associated with 

protrusion and adhesion in cell migration. Physiol Rev 88:489-513.  

Legate KR. Wickstrom SA, Fassler R. 2009. Genetic and cell biological analysis of 

integrin outside-in signaling. Genes Dev. 23:397-418. 

Luo BH, Carman CV, Springer TA. 2007. Structural basis of integrin regulation and 

signaling. Annu Rev Immunol 25:619-647. 

Marfatia SM, Leu RA, Branton D, Chishti AH. 1994. In vitrostudies suggest a 

membrane-associated complex between erythroid p55, protein 4.1 and 

glycophorin C. J Biol Chem 269:8631-8634. 

Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, Tsukita S, Tsukita 

S. 1998. Rho-kinase phosphorylates COOH-terminal threonines of 

ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail 

association. J Cell Biol 140:647-57. 



140 

 

Mattagajasingh SN, Huang SC, Harteistein JS, Benz EJ Jr. 2000. Characterization 

of the interaction between protein 4.1R and ZO-2. A possible link between 

the tight junction and the actin cytoskeleton. J Biol Chem 275: 30573-30585. 

McCarty, JH, Cook AA, Hynes RO. 2005a. An interaction between αvβ8 integrin 

and band 4.1B via a highly conserved region of the band 4.1 c-terminal 

domain. Proc Natl Acad Sci U S A 102:13479-83. 

McCarty JH, Lacy-Hulbert A, Charest A, Bronson RT, Crowley D, Housman D,  

Savill J, Roes J, Hynes RO. 2005b. Selective ablation of alphav integrins in 

the central nervous system leads to cerebral hemorrhage, seizures, axonal 

degeneration and premature death. Development 132:165-72. 

McGrath KE, Koniski AD, Malik J, Palis J. 2003. Circulation is established in a 

stepwise pattern in the mammalian embryo. Blood 101:1669-76. 

Mitra SK, Hanson DA, Schlaepfer DD. 2005. Focal adhesion kinase: in command 

and control of cell motility. Nat Rev Mol Cell Biol 6:56-68.  

Mobley AK, Tchaicha JH, Shin J, Hossain MG, McCarty JH. 2009. beta8 integrin 

regulates neurogenesis and neurovascular homeostasis in the adult brain. J 

Cell Sci 122:1842-51. 

Monkley SJ, Zhou XH, Kinston SJ, Giblett SM, Hemmings L, Priddle H, Brown JE, 

Pritchard CA, Critchley DR, Fassler R. 2000. Disruption of the talin gene 

arrests mouse development at the gasrulation stage. Dev Dyn 219:560-74. 

Monzen K, Nagai R, Komuro I. 2002. A role for bone morphogenetic protein 

signaling in cardiomyocyte differentiation. Trends Cardiovasc Med 12:263-9. 



141 

 

Moser M, Legate KR, Zent R, Fassler R. 2009. The tail of integrins, talin, and 

kindlins. Science 324:895-9. 

Moyle M, Napier MA, McLean JW.1991. Cloning and expression of a divergent 

integrin subunit beta 8. J Biol Chem 266:19650-8. 

Nakamura F, Amieva MR, Furthmayr H. Phosphorylation of threonine 558 in the 

carboxyl terminal actin binding domain of moesin by thrombin activation of 

human platelets. J Biol Chem 270:31377-85. 

Ng T, Parsons M, Hughes WE, Monypenny J, Zicha D, Gautreau A, Arpin M, 

Gschmeissener S, Verveer PJ, Bastiaens PI, Parker PJ. 2001. Ezrin is a 

downstream effector of trafficking PKC-integrin complexes involved in the 

control of cell motility. EMBO J 20:2723-41. 

Nie X, Deng CX, Wang Q, Jiao K. 2008. Disruption of Smad4 in neural crest cells 

leads to mid-gestation death with pharyngeal arch, craniofacial and cardiac 

defects. Dev Biol 316:417-30. 

Nowotschin S, Hadjantonakis AK. 2010. Cellular dynamics in the early mouse 

embryo: from axis formation to gastrulation. Curr Opin Genet Dev 20:420-7. 

Nunomura W, Takakuwa Y, Parra M, Conboy JG, Mohandas N. 2000. Ca(2+)-

dependent and Ca(2+)-independent calmodulin binding sites in erythrocyte 

protein 4.1. Implications for regulation of protein 4.1 interactions with 

transmembrane proteins. J Biol Chem 275: 6360-6367. 

Ohno N, Tereda N, Komada M, Saitoh S, Costantini F, Pace V, Germann PG, 

Weber K, Yamakawa H, Ohara O, Ohno S. 2009. Dispensable role of protein 

DAL1/4.1B in rodent adrenal medulla regarding generation of 



142 

 

pheochromocytoma and plasmalemmal localization TSLC1. Biochem 

Biophys Acta 1793:506-15. 

Parra M, Gascard P, Walensky LD, Gimm JA, Blackshaw S, Chan N, Takakuwa Y, 

Berger T, Lee G, Chasis JA, Snyder SH, Mohandas N, Conboy JG. 2000. 

Molecular and functional characterization of protein 4.1B, a novel member of 

the protein 4.1 family with high level, focal expression in brain. J Biol Chem 

275:3347-55.  

Peri F. 2010. Breaking ranks: how leukocytes react to developmental cues and 

tissue injury. Curr Opin Genet Dev 20:416-9. 

Perris R, Paulsson M, Bronner-Fraser M. 1989. Molecular mechanisms of avian 

neural crest cell migration on fibronectin and laminin. Dev Biol 136: 222–39. 

Piao Y, Lu L, de Groot J. 2009. AMPA receptors promote perivascular glioma 

invasion via β1 integrin-dependent adhesion to the extracellular matrix. 

Neuro Oncol 11:260-73. 

Proctor JM, Zang K, Wang D, Wang R, Reichardt LF. 2005. Vascular development 

of the brain requires beta8 integrin expression in the neuroepithelium. J 

Neurosci 25:9940-9948. 

Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, Ding J, 

Ferguson MW, Doetschman T. 1995. Transforming growth factor-beta 3 is 

required for secondary palate fusion. Nat Genet 11:409-14. 

Ridely AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT,  

Horwitz RA. 2003. Cell migration: integrating signals from front to back. 

Science 302: 1704-9.  



143 

 

Rodriguez Fernandez JL, Geiger B, Salomon D, Ben-Zeev A. Overexpression of 

vinculin suppresses cell motility in BALB/c3T3 cells. Cell Motil Cytoskeleton 

22:127-34. 

Sanford P, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, 

Lou Cardell E, Doetschman T. 1997. TGFb2 knockout mice have multiple 

developmental defects that are nonoverlapping with other TGFb knockout 

phenotypes. Development 124, 2659-70. 

Shattil SJ, Kim C, Ginsberg MH. 2010. The final steps of integrin activation: the end 

game. Nat Rev Mol Cell Biol 11:288-300. 

Sherman LS, Gutmann DH. 2001. Merlin: hanging tumor suppression on the Rac. 

Trends Cell Biol 11:442–444. 

Simons PC, Pietromonaco SF, ReczekD, Bretscher A, Elias L. 1998. C-terminal 

threonine phosphorylation activates ERM proteins to link the cell’s cortical 

lipid bilayer to the cytoskeleton. Biochem Biophys Res Commun 253:561-5. 

Smith CL, Tallquist MD. 2010. PDGF function in diverse neural crest cell 

populations. Cell Adh Migr 4:561-66.  

Snarr BS, Kern CB, Wessels A. 2008. Origin and fate of cardiac mesenchyme Dev 

Dyn 237:2804-2819. 

Soriano P. 1997. The PDGF alpha receptor is required for neural crest cell 

development and for normal patterning of the somites. Development 124: 

2691–700. 

Stoller JZ, Epstein JA. 2005. Cardiac neural crest. Semin Cell Dev Biol 16:704-15.   



144 

 

Sun CX, Robb VA, Gutmann DH. 2002. Protein 4.1 tumor suppressors: getting a 

FERM grip on growth regulation. J Cell Sci 115:3991-4000. 

Takada Y, Ye X, Simon S. 2007. The integrins. Genome Biol 8:215. 

Tchaicha JH, Mobley AK, Hossain MG, Aldape KD, McCarty JH. 2010. A mosaic 

mouse model of astrocytoma identifies alphavbeta8 integrin as a negative 

regulator of tumor angiogenesis. Oncogene 29:4460-72. 

Teckchandani A, Toida N, Goodchild J, Henderson C, Watts J, Wollscheid B, 

Cooper JA. 2009. Quantitative proteomics identifies a Dab2/integrin module 

regulating cell migration. J Cell Biol 186:99-111. 

Thiery JP. 2003. Cell adhesion in development: a complex signaling network. Curr 

Opin Genet Dev 13:365-71. 

Tran YK, Bogler O, Gorse KM, Wieland I, Green MR, Newsham IF. 1999. A novel 

member of the NF2/ERM/4.1 superfamily with growth suppressing properties 

in lung cancer. Cancer Res 59:35-43.       

van der Flier A, Badu-Nkansah K, Whittaker CA, Crowley D, Bronson RT, Lacy-

Hulbert A, Hynes RO. 2010. Endothelial alpha5 and alphav integrins 

cooperate in remodeling of the vasculature during development. 

Development 137:2439-49. 

van Hangel J, D’Hooge P, Hooghe B, Wu X, Libbrecht L, De Vos R, Quondamatteo 

F, Klempt M, Brakebusch C, van Roy F. 2008. Continuous cell injury 

promotes hepatic tumorigenesis in cdc42-deficient mouse liver. 

Gastroenterology 134:781-92. 



145 

 

Walensky LD, Blackshaw S, Liao D, Watkins CC, Weier HUG, Parra M, Huganir RL, 

Conboy JG, Mohandas N, Snyder SH. 1999. A novel neuron-enriched 

homolog of the erythrocyte membrane cytoskeletal protein 4.1. J Neurosci 

19:6457-67. 

Walensky LD, Shi ZT, Blackshaw S, DeVries AC, Demas GE, gascard P, Nelson 

RJ, Conboy JG, Rubin EM, Snyder SH, Mohandas N. 1998. Neurobehavioral 

deficits in mice lacking the erythrocyte membrane cytoskeletal protein 4.1. 

Curr Biol 8:1269-72. 

Wang H, Liu C, Debnath G, Baines AJ, Conboy JG, Mohandas N, An X. 2010. 

Comprehensive characterization of expression patterns of protein 4.1 family 

members in mouse adrenal gland: implications for functions. Histochem Cell 

Biol 134:411-20. 

Webb DJ, Parsons T, Horwitz AF. 2002. Adhesion assembly, disassembly and 

turnover in migrating cells-over and over again. Nat Cell Biol 4:E97-100. 

Wegener KL, Partrdige AW, Han J, Pickford AR, Liddington RC, Ginsberg MH, 

Campbell ID. 2007. Structural basis of integrin activation by talin. Cell 

128:171-82.  

Wong SY, Haack H, Kissil JL, Barry M, Bronson RT, Shen SS, Whittaker CA, 

Crowley D, Hynes RO. 2007. Protein 4.1B suppresses prostate cancer 

progression and metastasis. Proc Natl Acad Sci U S A 104:12784-9. 

Wurdak H, Ittner LM, Lang KS, Leveen P, Suter U, Fischer JA, Karlsson S, Born W, 

Sommer L. 2005. Inactivation of TGFbeta signaling in neural crest stem cells 



146 

 

leads to multiple defects reminiscent of diGeorge syndrome. Genes Dev 

19:530-5. 

Xu W, Coll JL, Adamson ED. 1998. Rescue of the mutant phenotype by 

reexpression of full-length vinculin in null F9 cells: effects on cell locomotion 

by domain deleted vinculin. J Cell Sci 111:1535-44. 

Yang HS, Hinds PW. 2003. Increased Ezrin expression and activation by CDK5 

coincident with acquisition of the senescent phenotype. Mol Cell 11:1163-76. 

Yawata, Y. 2003. Cell membrane: red blood cell as a model. Weinheim, Germany: 

Wiley-VCH.. 

Yi C, McCarty JH, Troutman SA, Eckman MS, Bronson RT, Kissil JL. 2005. Loss of 

the putative tumor suppressor band 4.1B/Dal1 gene is dispensable for 

normal development and does not predispose to cancer. Mol Cell Biol 

25:10052-9. 

Zamir, E, Geiger B. 2001. Molecular complexity and dynamics of cell-matrix 

adhesion. J Cell Sci 114:3583-90. 

Zhang X, Jiang G, Cai Y, Monkley SJ, Critchley DR, Sheetz MP. 2008. Talin 

depletion reveals independence of initial cell spreading from integrin 

activation and traction. Nat Cell Biol 9:1062-8. 

Zhu J, Motejlek K, Wang D, Zang K, Schmidt A, Reichardt LF. 2002. β8 integrins 

are required for vascular morphogenesis in mouse embryos. Development 

129:2891-903. 

 

 



147 

 

Vita 

Youngsin Jung, the daughter of Hyung Keun Jung and Hea Ran Chang, was born in 

Seoul, South Korea on November 29, 1981. Upon graduating from Chang Moon 

High School in Seoul, Youngsin enrolled at University of Portland in Portland, 

Oregon. She graduated with Maxima Cum Laude, receiving B.S. in Biology. 

Youngsin then enrolled in the M.D./Ph.D. program at the University of Texas Health 

Science Center at Houston in August, 2004. She joined the lab of Dr. Joseph 

McCarty at the University of Texas MD Anderson Cancer Center in July, 2007, 

where she studied the roles of Band 4.1B in integrin-mediated adhesion and 

signaling.   


	Texas Medical Center Library
	DigitalCommons@The Texas Medical Center
	5-2011

	Analysis of Band 4.1B in Integrin-Mediated Cell Adhesion and Signaling
	Youngsin Jung
	Recommended Citation


	Introduction

