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Supervisory Professor: Menashe Bar-Eli, Ph.D. 

The acquisition of the metastatic melanoma phenotype is associated with increased 

expression of the melanoma cell adhesion molecule MCAM/MUC18 (CD146). 

However, the mechanism by which MUC18 contributes to melanoma metastasis remains 

unclear. Herein, we stably silenced MUC18 expression utilizing lentivirus-incorporated 

small hairpin RNA, in two metastatic melanoma cell lines, A375SM and C8161, and 

conducted cDNA microarray analysis. We identified and validated that the 

transcriptional regulator, Inhibitor of DNA Binding-1 (Id-1), previously shown to 

function as an oncogene in several malignancies, was downregulated by 5.6-fold 

following MUC18 silencing. Additionally, we found that MUC18 regulated Id-1 

expression at the transcriptional level via ATF-3. Interestingly, ATF-3 was upregulated 

by 6.9 fold in our cDNA microarray analysis following MUC18 silencing. ChIP analysis 

showed increased binding of ATF-3 to the Id-1 promoter after MUC18 silencing, while 

mutation of the ATF-3 binding site on the Id-1 promoter increased Id-1 promoter activity 

in MUC18-silenced cells. These Data suggest that MUC18 silencing promotes inhibition 

of Id-1 expression by increasing ATF-3 expression and binding to the Id-1 promoter. 
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Rescue of MUC18 reverted the expression of Id-1 and ATF-3, thus validating that they 

are not off-target effects of MUC18. To further assess the role of Id-1 in melanoma 

invasion and metastasis, we overexpressed Id-1 in MUC18-silenced cells. 

Overexpression of Id-1 in MUC18-silenced cells resulted in increased cell invasion, as 

well as increased expression and activity of MMP-2. Our data further reveal that Id-1 

regulates MMP-2 at the transcriptional level through Sp1 and Ets-1. This is the first 

report to demonstrate that MUC18 does not act exclusively in cell adherence, but is also 

involved in cell signaling that regulates the expression of genes, such as Id-1 and ATF-3, 

thus contributing to the metastatic melanoma phenotype. 
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CHAPTER 1: Introduction and Background 

 

Clinical Aspects of Melanoma  

Malignant melanoma is an extremely aggressive disease with very few treatment 

options, thereby presenting a major medical challenge. In the past three decades, the 

incidence of melanoma has increased more than any other skin tumor [1, 2]. Currently, 

in North America, malignant melanoma is the fifth and seventh most common cancer in 

men and women, respectively [3]. It is expected that in 2010, 68,130 new cases of 

melanoma will be newly diagnosed with an estimated death of 8,700 patients [3]. To 

develop new treatment modalities for melanoma, it is of high importance to learn the 

molecular mechanisms which contribute to the metastatic melanoma phenotype.  

 

Melanoma Development  

Melanoma derives from melanocytes which originate from the multipotent cells 

of the neural crest. During embryonic development, melanocytes migrate and 

incorporate into the hair follicle and epidermis where they are distributed in the basal 

layer as single cells [4].  Melanoma development is influenced by a variety of  genetic 

and epigenetic changes as well as environmental factors [5]. Clark et al. proposed a 

model for the development of melanoma by which it progresses as a multistep process, 

with distinct clinical and histopathological characteristics (Figure 1) [6]. In this five 

stage model, the first stage commences with the formation of common acquired nevi, 

with focal proliferation of melanocytes. Next, melanocytes develop into dysplastic nevi 

cells, displaying abnormal differentiation with architectural and cytological atypia [6]. 
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The development of primary melanoma occurs at the third step of melanoma progression 

and is characterized by the radial growth phase (RGP) of cells [7].  At this step, tumors 

grow within the epidermis but do not have the capability to penetrate through the 

basement membrane [6]. It is only when the tumor progresses to the vertical growth 

phase (VGP) that cells gain the ability to grow vertically by invading through the 

basement membrane into the dermis [7]. The last stage of tumor progression is the 

formation of distant metastases [6].  The most common sites for melanoma metastasis 

are regional and distant lymph nodes, lung, brain, liver, central nervous system and 

bone. Another model for melanoma development suggests that melanoma arises de novo 

and not from dysplastic nevi [8], with activation of various cellular pathways which 

induce genetic and epigenetic changes, promoting the transformation of melanocytes to 

melanoma [9]. It is likely that both models of melanoma progression can occur in 

humans; however, the sequential progression model is most widely accepted.  

 

Melanoma Staging and Treatment 

Patient prognosis is largely dependent upon the stage of the disease. The most 

important factors for prognosis include the thickness and ulceration of the primary 

tumor, the presence of lymph node metastases, and sites of distant metastatic disease 

[10, 11]. The staging criteria for melanoma is comprised of both stage grouping and 

tumor-node-metastasis (TNM) classification of the disease. Clinical and pathological 

staging of melanoma classifies patients with stage I and II disease as those with no 

evidence of regional or distant metastasis [11, 12]. Stage III patients present with 

regional metastases to the regional lymph nodes or intralymphatic metastases. Stage IV 
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melanoma patients present with metastases at one or more distant sites [11, 12]. The 

group classification depends on the TNM status of disease. The TNM classification is 

based on the thickness of the primary tumor, the presence of ulceration and level of 

invasion (T category). Patients presenting with regional lymph node metastasis fall into 

the N category. The presence of distant metastatic melanoma and site of metastasis 

further categorize melanoma (M category) [11-13]. Both group and TNM classifications 

are important predictors of patient prognosis.     

 Early diagnosis of melanoma is crucial, since the five-year survival rate of 

patients presenting with early stage localized disease is 90%. However, patients 

presenting with wide spread metastases, or stage IV disease, have a much worst 

prognosis (10%-20%), with an overall median survival of 6 to 9 months [14, 15]. 

Treatment options are limited for patients with late stage melanoma, since metastatic 

melanoma is largely resistant to systemic treatment. Current treatment options for 

patients with metastatic disease include surgery chemotherapy and immunotherapy. 

Dacarbazine (DTIC) is currently the only FDA approved single agent chemotherapy for 

metastatic melanoma. DTIC is an alkylating agent that has been shown to have varying 

clinical effectiveness, with a patient response rate that ranges between 7.5%-20% and a 

median response duration of only 4 to 6 months [16-18]. Another alkylating agent 

currently used in clinical trials is Temozolomide (TMZ). Unfortunately, recent clinical 

trials have demonstrated that treatment with TMZ does not seem to have promising 

response rates as compared to treatment with DTIC [15]. Immunotherapy is also used as 

a treatment modality for patients with metastatic melanoma and includes the use of 

cytokines, such as high dose interleukin-2 (IL-2) and interferon-α (IFN−α). Studies with 
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either IL-2 or IFN−α alone, or in combination, have demonstrated approximately a 15% 

response rate, with median response duration of 6-9 months [19, 20]. Currently other 

treatment modalities for metastatic melanoma are being studied in clinical trials and 

demonstrate preliminary positive results [21]. These include biochemotherapy (a 

combination of chemotherapy and cytokine treatment, such as DTIC plus IFN-α), and 

targeted therapy such as RAF kinase inhibitors PLX4032, which showed promising 

results in phase I clinical trials, vide infra, and anti-Bcl-2 therapy [15]. As most of these 

treatment options offer very low response rates and do not improve patient prognosis, it 

is, therefore, important to identify the molecular mechanisms associated with melanoma 

progression. Defining these mechanisms will aid development of new therapeutic 

molecular targets.  

 

Pathogenesis of Melanoma 

Disruption of tissue homeostasis as well as the accumulation of genetic changes 

can result in development of melanoma. These alterations can be induced by both 

environmental factors and genetic susceptibility. The most studied environmental risk 

factor of melanoma development is ultraviolet (UV) exposure [5, 22-25]. Exposure to 

midrange UV radiation (UVR), ultraviolet B (UVB, 280–320 nm) and ultraviolet A 

(UVA, 320–400 nm), as well as the acquisition of multiple sunburns during childhood 

and adolescence, have been shown to increase the risk of melanoma development in 

adults, albiet the exact mechanisms of how UV induces melanoma are not clear [25]. 

Although melanocytes secrete melanin, which acts as a photoprotective filter, melanin 

cannot completely prevent UV-induced DNA damage [26]. Exposure to UV can cause 
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DNA mutations, such as pyrimidine dimers, DNA breaks, DNA-protein crosslinks and 

the formation of reactive oxygen species which promote cellular and DNA damage [26, 

27]. Furthermore, UV can stimulate signaling pathways that ultimately result in 

increased cell proliferation and survival, by either inducing the secretion of growth 

factors or by promoting ligand-independent growth factor receptor activity [28]. Finally, 

UV can also act as an immunosupressant, by either inducing activation of suppressor T 

cells or by secretion of cytokines that inhibit the immune response, contributing to 

uncontrolled tumor growth [29, 30]. 

 The transition from common acquired nevi to the vertical growth phase and the 

formation of metastasis does not arise solely due to environmental hazards, such as UV 

exposure, but also due to numerous germline and sporadic mutations, as well as 

molecular changes (Figure 1). A major risk factor for developing melanoma is familial 

history of melanoma [31]. About 10% of cutaneous melanoma arise from a familial 

setting [32]. Several germline mutations have been associated with the development of 

melanoma. In the mid 1990’s two susceptibility genes were identified, cyclin dependent 

kinase 2a (CDKN2A) and cyclin dependent kinase 4 (CDK4), which are involved in cell 

cycle regulation. CDKN2A is a tumor suppressor gene, which codes for two distinct 

proteins, p16
INK4A 

and p14
ARF

, through alternative reading frames. Both p16
INK4A 

and 

p14
ARF

 function as tumor suppressors, as they regulate cell cycle progression through the 

G1/S checkpoint [33]. Germ line mutations in these genes can promote dysregulation of 

the cell cycle, thus contributing to melanoma development [34].  A small percentage of 

patients inherit the melanocortin 1 receptor (MC1R) gene which, is also involved in 

melanomagenesis. Germline mutation of the MC1R gene causes decreased production of 
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melanin. Additionally, MC1R mutation results in a reduced capacity to repair DNA, 

promoting the accumulation of UV–induced DNA damage [22].  

 Several cell signaling pathways that are involved in proliferation, senescence, 

apoptosis, invasion and angiogenesis are dysregulated during the progression of 

melanoma. These cellular activities are often the result of the aberrant activation of 

protein tyrosine kinases, as well as the abnormal expression of transcription factors and 

adhesion molecules. One of the most common pathways reported to play an important 

role in the progression of melanoma is the mitogen activated protein kinases (MAPK), 

extracellular signal-regulated kinase (ERK) pathway [35]. BRAF and N-RAS are 

frequently mutated during melanoma progression and lead to activation of 

RAS/RAF/MEK/ERK signaling pathway promoting cell proliferation, differentiation 

and survival [7, 36, 37]. Constitutive activation of BRAF, a serine/threonine kinase, 

results from a substitution mutation of Valine to Glutamic acid at codon 600 (V600E), 

located at the protein kinase domain. The V600E substitution is the most common type 

of BRAF mutation, shown to occur in up to 66% of all melanomas [38]. A novel BRAF 

inhibitor PLX4032, targeting V600E BRAF mutations, was recently developed. 

Preclinical experiments showed that PLX4032 can block the RAF/MEK/ERK pathway 

in BRAF mutant cells and cause regression in xenografts harboring the BRAF mutation 

[39]. Phase I clinical trial with PLX4032 demonstrated positive results as PLX4032 

induced complete or partial tumor regression in 81% of patients who had melanoma with 

the V600E BRAF mutation. PLX4032, therefore, holds much promise for melanoma 

patients carrying the V600E BRAF mutation [21, 39].   
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The N-RAS mutation differs from the BRAF mutation, as constitutive activation 

of the N-RAS oncogene results from impaired hydrolysis of GTP due to a substitution 

mutation at codon 61 [40]. This mutation is particularly detrimental, as constitutively 

active N-RAS leads to aberrant activation of the RAS/RAF/MEK/ERK signaling 

pathway, promoting cell growth and survival. 

c-Kit is a tyrosine kinase receptor and a member of the platelet-derived growth 

factor (PDGF) family of kinases and is also shown to be involved in the development of 

melanoma [23]. Activation of the c-Kit receptor by its ligand, stem cell factor (SCF), 

normally induces cellular apoptosis. Interestingly, its expression is lost during local 

tumor growth and invasion of melanoma, thus enabling melanoma cells a mechanism of 

escape from apoptosis [41].  

Along with activation of receptor tyrosine kinases, other key molecular events 

have been shown to be associated with transition of melanoma from the RGP to the VGP 

including alterations in the expression of various transcription factors. For instance, loss 

of Activator Protein-2α (AP-2α) expression has been associated with the transition of 

melanoma from the RGP to the VGP. Additionally, loss of AP-2α strongly correlates 

with poor patient prognosis [42, 43].  AP-2α  has been shown to play an important role 

in the transcriptional regulation of several key genes that have been associated with 

tumor progression and metastasis such as p21
Cip1/Waf1 

[44], c-KIT[42], MCAM/MUC18 

[42, 45], c-MYC [46], protease activated receptor 1 (PAR-1) [47], E-cadherin [48, 49] 

and vascular endothelial growth factor (VEGF) [50, 51]. Loss of AP-2α triggers 

uncontrolled expression of genes involved in critical cellular processes, such as cell 
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cycle progression, proliferation, adhesion, apoptosis and angiogenesis. Thus, the loss of 

AP-2α  is a crucial event that contributes to the metastatic phenotype of melanoma.  

Additional transcription factors that play an important role in melanoma 

progression are the cAMP-Responsive Element-Binding Protein/Activating 

Transcription Factor-1 (CREB/ATF-1) [52]. Overexpression and activation of both 

CREB and ATF-1 correlate with melanoma development [53]. These factors contribute 

to the progression of melanoma by promoting cell invasion through increased expression 

of a number of genes, including Matrix Metalloproteinase-2 (MMP-2) and 

MCAM/MUC18 [54].  CREB and ATF-1 can also contribute to melanoma progression 

by promoting survival in human melanoma cells [55].   

Genomic amplification of the oncogenic transcription factor microphthalmia-

associated transcription factor (MITF) has also been shown to promote melanoma 

development. MITF is involved in the regulation of melanocyte development and 

differentiation, as well as in maintaining melanocyte progenitor cell populations. During 

melanoma progression, genomic amplification of MITF promotes cell cycle progression 

and survival of melanoma cells [56]. 

Deregulation of two transcriptional repressors, SNAIL and SLUG, have been 

also implicated in melanoma progression. Both transcription factors have been shown to 

act as regulators of E-Cadherin expression, promoting the development of melanoma 

[57]. In melanoma cell lines, overexpression of SNAIL has been shown to negatively 

regulate E-Cadherin expression [58]. Furthermore, it has been recently demonstrated that 

using siRNA targeting SLUG resulted in enhanced melanoma cell susceptibility to drug 

exposure [59]. 
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Another molecule that has been associated with the transition of melanoma cells 

from the RGP to the VGP is the thrombin receptor, PAR-1. PAR-1 is a G-protein 

coupled receptor belonging to the protease-activated receptor family that is activated by 

thrombin as well as other serine proteases [47]. PAR-1 has been shown to play an 

essential role in tumorigenesis and metastasis in several cancers, including breast cancer 

and melanoma [60, 61]. The role of PAR-1 in melanoma progression was further 

established by tissue microarray analysis which revealed that increased PAR-1 

expression significantly correlates with melanoma progression [62]. Downstream 

signaling induced by PAR-1 suggests its importance in the progression of metastasis. 

PAR-1 activation results in upregulation of molecules involved in angiogenesis 

(Interleukin 8 (IL-8) and VEGF), invasion (MMP-2) and adhesion (αVβ5, αVβ3 and 

Connexin 43) [47, 61, 63]. Recently, Villares et al. demonstrated that systemic delivery 

of liposome (DOPC) incorporated PAR-1 siRNA decreased tumor growth and metastasis 

in vivo [61]. Moreover, the downstream targets of PAR-1, Connexin 43 and Maspin, 

have also been shown to be involved in the progression of melanoma [63].    

The expression and secretion of angiogenic factors, growth factors, and cytokines 

also increases with melanoma progression, as they are secreted by both melanoma cells 

and cells in the microenvironment, acting in both an autocrine and paracrine manner. 

The recruitment of new vasculature, as well as the usage of existing vasculature, is 

essential for tumor growth beyond 1-mm in diameter and for tumor cells to metastasize 

[64, 65]. One of the molecules that plays an important role in melanoma progression is 

VEGF, also known as the vascular permeability factor. VEGF is a vascular endothelial 

cell growth factor, which regulates angiogenesis under both developmental and 
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physiological conditions in most organs [66-68]. During the progression of melanoma, 

the secretion of VEGF by melanoma cells increases [69, 70]. VEGF, in turn, stimulates 

endothelial cell proliferation, migration, tube formation, and survival, thus promoting 

angiogenesis, tumor growth, and metastasis, as seen in several animal models [71, 72], 

[73]. VEGF functions through two high affinity tyrosine kinase receptors on endothelial 

cells, Flt-1 and KDR/Flk-1, which results in the induction of p38, ERK and PI3K-AKT 

signaling pathways [74-76] [77-79]. Furthermore, following activation of these receptors 

by VEGF, the expression of matrix metalloproteinases (MMPs) and serine proteases is 

upregulated, which, in turn, promotes tumor growth and recruitment of tumor 

vasculature [80-83].  

Basic fibroblast growth factor (bFGF) is another potent angiogenic factor known 

to regulate endothelial cell proliferation and act as a melanoma survival factor.  bFGF 

can be produced by cells of the tumor microenvironment, such as keratinocytes and 

fibroblasts, and by transformed melanocytes themselves [84]. It has been demonstrated 

that release of matrix bound bFGF increases due to extracellular matrix degradation, 

leading to endothelial cell proliferation and vasculature formation in melanoma [71].  

The angiogenic factor IL-8 is also upregulated during melanoma progression. It 

is secreted by melanoma cells as well as other cells in the microenvironment such as 

lymphocytes, monocytes, endothelial cells, fibroblasts and keratinocytes [85]. IL-8 is a 

CXC chemokine that activates two cell-surface G protein-coupled receptors (CXCR1 

and CXCR2), inducing several downstream intracellular signaling [86]. It is a potent 

survival factor for melanoma cells, keratinocytes and vascular endothelial cells [87]. IL-

8 plays an important role in angiogenesis and migration in melanoma [88, 89]. 
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Specifically, our lab has previously demonstrated that the use of a neutralizing antibody 

targeting IL-8, ABX-IL8, inhibits angiogenesis, tumor growth and metastasis of human 

melanoma in mice [90]. Additionally, in melanoma patients, serum levels of IL-8 were
 

significantly increased, compared to healthy
 
controls, and these levels correlated with 

tumor progression and decreased survival [91].  

Recruitment of vasculature to the tumor is dependent on secretion of MMPs. 

Secretion of MMPs is an important process facilitating tumor cell invasion, a crucial step 

in the progression of tumor metastasis. To detach from the primary tumor and to form 

metastases, cells degrade the basement membrane and remodel the extracellular matrix 

(ECM), by secreting high levels MMPs. Melanoma cells express several MMPs such as 

MMP-1, -2, -9, -13, and the membrane-type 1 matrix metalloproteinase (MT1-MMP) 

[92]. MMPs are a multigene family of zinc-dependent endopeptidases which are 

produced as prozymogens and are activated and released through cleavage of the N-

terminal domain by proteins such as plasmin and MT1-MMP [93, 94].  The most widely 

studied MMPs in melanoma are MMP-2 (gelatinase A) and MMP-9 (Gelatinase B) 

which degrade type IV collagen found in the ECM.  Increased expression and activation 

of both enzymes has been associated with increased melanoma cell invasiveness and 

metastasis [71]. Furthermore, only invasive melanoma cell lines express active MMP-2, 

while its expression was not observed in poorly invasive cell lines [95, 96]. It has also 

been demonstrated that adhesion and spreading of melanoma cells is modified by the 

active form of MMP-2, thus promoting melanoma cell migration and invasion [97].  
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Figure 1. Molecular Events Contributing to the Development of Human Melanoma 

Several key steps in the development of human melanoma are associated with the 

acquisition of mutations and molecular changes, including BRAF and N-RAS mutations, 

loss of PTEN and downregulation of p16, promoting the transition from normal 

melanocytes to dysplastic nevi cells. As melanoma progresses from RGP to VGP several 

other molecular events are acquired including changes in the expression of AP-2α, E-

cadherin, c-Kit, integrin αvβ3, MCAM/MUC18 and PAR-1. The acquisition of 

metastatic capacity of melanoma cells at the final stage is associated with upregulation 

of various angiogenic and invasive factors including VEGF, IL-8, bFGF and MMP-2. 

(Adapted from [9, 70, 98, 99]).  
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Adhesion Molecules and Cancer 

Cell adhesion molecules are cell-surface proteins that mediate either cell-to-cell 

or cell-to-ECM interactions. These molecules play a major role in a variety of 

physiological processes such as embryogenesis, organogenesis, inflammation, 

immunological function, wound healing, cell communication and cell growth. 

Furthermore, these molecules have a significant role in cancer progression as they are 

involved in tumor cell invasion, motility and aggregation [100]. The family of cell 

adhesion molecules include cadherins, immunoglobulins, integrins, and selectins (Figure 

2) [101]. These proteins can mediate both homotypic and heterotypic adhesion, as well 

as homophilic and heterophilic interactions, and are known to be involved in different 

steps of the metastatic cascade [102]. These interactions can promote tumor cell survival 

in the vasculature as they allow cell clumping by mediating homotypic adhesion 

between tumor cells and heterotypic adhesion between tumor cells and platelets. 

Moreover, cell adhesion molecules are involved in extravasation and intravasation by 

mediating heterotypic adhesion between tumor cells and endothelial cells [103].   

Cell adhesion molecules not only function in cell adherence, but they can also 

function as signaling molecules by mediating either inside-out signaling through their 

extracellular domain, or outside-in signaling through their cytoplasmic domain [104]. 

Changes in the expression of adhesion molecules on tumor cells modifies the 

interactions between tumor cells and their surrounding microenvironment , thus affecting 

their function and downstream signaling [104]. The importance of these changes and 

their contribution to cancer progression has been acknowledged in the early 20th century 

by Theodor Boveri [105]. 
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Figure 2. The Structure of Cell Adhesion Molecules (CAMs) 

Each cell adhesion molecule contains several domains (cytoplasmic, transmembrane and 

extracellular domains) that can vary in number among members of each family and 

within each family. Integrins can mediate both homophilic and heterophilic interactions 

and bind several ligands including soluble adhesion molecules, such as fibrinogen; ECM 

components, such as fibronectin; and Ig Superfamily (IgSF) adhesion molecules such as 

N-CAM. Selectins bind highly glycosylated mucin-like proteins, such as P-selectin 

glycoprotein ligand-1 (PSGL-1). Cadherins mostly form homophilic interactions, thus 

binding identical cadherin subtypes. IgSF-CAMs can mediate homophilic as well as 

heterophilic interactions including interactions with other IgSF members and integrins. 

(Adapted from [106]) 
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Adhesion Molecules and Melanoma  

During the progression of melanoma, several changes in the expression of 

various adhesion molecules, including cadherins, integrins, and members of 

immunoglobulin superfamily, can occur.  

 Modulation of cadherin expression patterns have been associated with the 

progression of melanoma. The expression and function of E-cadherin, a member of the 

cadherin family of adhesion molecules, is lost during the progression of several 

malignant epithelial tumors, including melanoma [107]. E-cadherin is expressed mainly 

at the adherent junctions between melanocytes and keratinocytes and functions in two 

main capacities. It adheres these cells to one other and second, it plays a role in 

transducing downstream signaling by modulating β-catenin cellular localization, thus 

inhibiting the WNT signaling pathway [108]. Moreover, E-cadherin can inhibit ligand-

dependent activation of EGFR by forming a complex with EGFR and consequently 

decreasing EGF binding affinity [109, 110].  

The adhesion between keratinocytes and melanocytes has been shown to regulate 

normal melanocyte differentiation and proliferation [111]. Downregulation of E-

cadherin expression is associated with metastatic progression of melanoma cell lines and 

with loss of regulation of proliferation by keratinocytes [112, 113]. Moreover, loss of E-

cadherin expression is associated with upregulation of N-cadherin expression [114]. This 

switch is associated with changes in the interactions between melanoma cells and their 

microenvironment. Melanoma cells expressing N-cadherin can mediate homophilic 

adhesion with fibroblasts and vascular endothelial cells, which may be associated with 

increased migration and invasion of the melanoma cells [115]. Furthermore, 
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deregulation of E-cadherin signaling can occur not only due to its decreased expression 

but also due to mutations in β-catenin resulting in its inability to bind to the cytoplasmic 

domain of E-cadherin [116].   

    As melanoma progresses, the expression, function, and signaling of integrins is 

also distorted, further promoting tumor growth and metastasis. Integrins are composed 

of two transmembrane glycoprotein subunits, α and β, which form heterodimers and are 

involved in cell-matrix and cell-cell adhesion through the binding of different ligands 

which are dependent on the pairing of the α and β subunits [117]. In normal cells, 

integrins regulate embryonic development, cellular differentiation and anchorage-

dependent proliferation. During neoplastic transformation, integrins promote invasion, 

anchorage independent growth and escape from apoptosis [118]. The acquired 

expression of β3 integrin in primary and metastatic melanoma is associated with the 

transition of melanoma from the RGP to the VGP. The expression of αVβ3 integrin 

during the VGP has been extensively studied and is mostly associated with angiogenesis 

and metastasis [119]. Seftor et al. demonstrated that in A375SM metastatic melanoma 

cells, association of αVβ3 integrin with its ligands, fibronectin and vitronectin, promotes 

activation of MMP-2 and increased cell invasiveness [120]. Furthermore, αVβ3 integrin 

promotes melanoma cell survival, due to its interaction with osteopontin, which is 

expressed in response to fibroblast growth factor receptor activation [121]. 

The expression of cell adhesion molecules from the immunoglobulin superfamily 

also increases in melanoma cells, as compared to melanocytes. These molecules include 

MCAM/MUC18, intracellular cell adhesion molecule 1 (I-CAM-1), vascular cell 

adhesion molecule 1 (VCAM-1), and L1 cell adhesion molecule (L1-CAM) [122]. The 
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adhesion molecules from the immunoglobulin superfamily can form homotypic and 

heterotypic adhesions, and they can also function as receptors or signaling molecules, 

similar to integrins [104]. For instance, the expression of I-CAM correlates with the 

vertical growth phase of melanoma and is associated with poor prognosis [123]. In fact, 

patients presenting with stage I disease and I-CAM positive tumors have decreased 

survival rates compared to patients with I-CAM negative tumors [124]. Furthermore, I-

CAM expression is upregulated in response to TNF-α stimulation in melanoma cells and 

inhibition of I-CAM expression utilizing anti-sense oligonucliotides in C8161 metastatic 

melanoma cells, decreases their metastatic potential [125]. The mechanism of how I-

CAM contributes to the melanoma progression has yet to be elucidated. However, it has 

been proposed that it may contribute to melanoma cell survival in the vasculature by 

promoting aggregation with leukocytes [126].  
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Melanoma Cell Adhesion Molecule MCAM/MUC18  

MCAM/MUC18 was first identified as a human melanoma antigen in a study by 

Lehmann et al,. MUC18, also known as MCAM, CD146, Mel-CAM, A32 and S-Endo, 

is a 113-kDa type I transmembrane glycoprotein adhesion molecule and a member of the 

immunoglobulin superfamily [127]. It is  rarely expressed on either normal epidermal 

melanocytes or moderate nevus cells in situ, but it is more abundantly expressed on 

primary and metastatic melanomas [128]. Moreover, increased expression of MUC18 

has been shown to correlate with increased vertical thickness of primary tumors [127-

129]. It was further established by tissue array analysis that the expression of MUC18 

correlates with progression of cutaneous melanoma and decreased patient survival [127]. 

MUC18 is not present in biopsies from lesions smaller than 0.75 mm, although it is 

detected in more than 70% of biopsies from metastatic melanoma lesions [129].   

 

Structure of MUC18 

The extracellular domain of MUC18 contains five immunoglobulin–like domains 

which are connected through disulphide cross-links and have been shown to be highly 

glycosylated, suggesting that MUC18 may functionally interact with the ECM. MUC18 

has a single transmembrane domain and a short cytoplasmic domain that consists of 

several potential protein kinase recognition motifs, suggesting its potential role in cell 

signaling (Figure 3) [45]. MUC18 is located on chromosome 11, spanning 

approximately 14 kb and consisting of 16 exons. It has sequence homology to other 

glycoprotein adhesion molecules, such as neural cell adhesion molecule (N-CAM)  

[127], deleted in colorectal cancer (DCC) [130], vascular cell adhesion molecule (V-
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CAM) [131], the inter-cellular adhesion molecule (I-CAM) [132] and bursal epithelium 

and neurons [133] adhesion molecule [134].    

The expression of MUC18 has been shown to correlate with the metastatic 

potential of melanoma cell lines in vivo.  Luca et al., examined the expression of 

MUC18 in nine melanoma cell lines established from primary cutaneous tumors as well 

as lymph node and brain metastases. MUC18 mRNA and protein levels were low in cells 

with low metastatic potential such as SB2, DX3 and TXM40, whereas cells with high 

metastatic potential, A375SM, TXM-13 and A375, expressed high levels of MUC18 

[135]. Another study examined the role of MUC18 in melanoma tumor growth and 

metastasis formation and demonstrated that ectopic expression of MUC18 in a non-

metastatic primary cutaneous melanoma cell line, SB2, increased the tumorigenic and 

metastatic potential of cells in vivo. In vitro, expression of MUC18 increased MMP-2 

collagenase activity, cell invasiveness, homotypic adhesion, attachment to human 

endothelial cells, and decreased cell adhesion to laminin, suggesting a functional role of 

MUC18 in promoting melanoma tumor progression [136].  
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Figure 3. The Structure of MUC18 

MUC18 is a 113-kDa transmembrane adhesion molecule that belongs to the Ig like 

family of adhesion molecules. The extracellular domain of MUC18 is comprised of a 

highly glycosylated (N-linked glycosylation) distinctive V-V-C2-C2-C2 

immunoglobulin-like structure, (V-variable region, C-constant region), a single 

transmembrane domain and a short cytoplasmic domain. The cytoplasmic domain of 

MUC18 contains several potential protein kinase recognition motifs, including one 

similar to the cAMP dependent kinase recognition motif, a potential casein kinase II 

motif, and three potential protein kinase C recognition motifs that suggest the 

involvement of MUC18 in cell signaling [45]. Figure was adapted from Shih, I-M [137]. 
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Regulation of MUC18 Expression    

MUC18 expression in melanoma cells was shown to be modulated by adhesion 

to keratinocytes at early stages of disease progression. Adhesion between keratinocytes 

and melanocytes, nevus cells or melanoma cells from the RGP resulted in 

downregulation of MUC18 expression. Nevertheless, MUC18 expression was not altered 

upon adhesion between keratinocytes and cells from primary and metastatic melanoma, 

suggesting that late stage melanoma cells escape keratinocye regulation [138].  

 The transcriptional regulation of MUC18 expression was studied by Sers et al. 

Sequencing of the MUC18 promoter revealed that the promoter is GC rich, but does not 

contain the classical TATA or CAAT boxes. However, the binding sites for several 

transcription factors including c-MYB, Sp1, AP-1, AP-2, and CREB, were identified on 

the promoter [45]. Additional analysis of the MUC18 promoter demonstrated that 

several transcription factors, including AP-2α and CREB, can regulate MUC18 

transcription. In fact, AP-2α overexpression in A375SM cells decreased MUC18 mRNA 

levels and promoter activity [139]. CREB has been found to positively regulate the 

expression of MUC18. Transfection of melanoma cells with a dominant negative CREB 

(kCREB) decreased MUC18 mRNA levels [140].  Importantly, a recent study from our 

laboratory demonstrated the regulation of MUC18 expression by a novel signaling 

pathway. Melnikova el al. established a connection between PAR-1, the platelet-

activating factor receptor (PAFR), CREB and MUC18 [141].  Silencing the expression 

of PAR-1 decreased MUC18 expression at both the transcriptional and protein levels. 

This was shown to be mediated through decreased activation of CREB as well as 

decreased binding of both CREB and Sp1 to the promoter of MUC18. Furthermore, 
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downregulation of MUC18 expression was also observed after silencing PAFR, and 

overexpression of PAFR in PAR-1-silenced cells rescued the expression of MUC18. 

Taken together these data suggested that PAR-1 regulates the expression of MUC18 

through PAFR, as well as the transcription factors CREB and Sp1. These data revealed, 

that MUC18 is modulated by two pro-inflammatory G-protein coupled receptors (PAR- 

1 and PAFR) that are overexpressed during melanoma progression. [141].  

 

Role of MUC18 in Melanoma Progression 

The function of MUC18 in cell adhesion was initially described by Shih et al. 

They demonstrated that melanoma cells express MUC18 at cell-cell adhesion sites and 

are able to adhere to a MUC18 antigen, A32, whereas non-melanoma cells failed to 

adhere to A32. Pre-incubation of melanoma cells with soluble MUC18 antigen 

abrogated this adhesion [142]. A different study demonstrated that SB-2 cells, non-

metastatic melanoma cells that do not express MUC18, are able to adhere to 

nitrocellulose-immobilized MUC18 and form aggregates with human endothelial cells 

[143].  These studies suggest that MUC18 may be involved homotypic and heterotymic 

adhesions as well as heterophilic adhesion with an unidentified ligand. Due to the fact 

that MUC18 is expressed on endothelial cells, these interactions could potentially 

facilitate tumor cell invasion and metastasis.  

Further studies of the function of MUC18 in adhesion and melanoma progression 

were performed by Satyamoorthy et al. Genetic suppressor elements (GSE) (antisense) 

targeting MUC18 expression in metastatic melanoma cell lines resulted in 
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downregulation of MUC18 expression in these cells. This led to decreased aggregation 

of melanoma cells and decreased tumorigenicity in immunodeficient mice [144].  

 The role of MUC18 in melanoma tumor growth, angiogenesis, invasion and 

metastasis was further studied utilizing a fully human anti-MCAM/MUC18 monoclonal 

Ab
 
(ABX-MA1; produced by Abgenix Fremont, CA, USA). Treatment of nude mice 

with ABX-MA1 decreased tumor growth and metastasis formation in two metastatic 

melanoma cell lines, A375SM and WM2664, as compared to treatment with IgG control. 

In vitro inhibition of MUC18 by ABX-MA1 in A375SM and WM2664 disrupted the 

adhesive function of MUC18, decreasing both spheroid formation and attachment to 

human umbilical vein endothelial cells (HUVECs), further suggesting a role for MUC18 

in tumor intravasation and extravasion. Because MUC18 is also expressed on HUVECs, 

treatment with ABX-MA1 hindered tube-like formation phenotype in an in vitro vessel 

formation assay. Additionally, the in vivo mean vessel density and the in vitro invasive 

capacity of both cell lines decreased significantly after treatment with ABX-MA1 [145]. 

Since MUC18 is expressed on both tumor cells and cells of the microenvironment, these 

results demonstrated a therapeutic potential of ABX-MA1 in human melanoma.   

Given that the MUC18 expression correlates with melanoma development, 

targeting this protein may be beneficial for both prevention and treatment of patients. 

Our laboratory has developed a DNA-based vaccine targeting murine MUC18 and 

studied the effects on melanoma tumor growth and metastasis in nude mice [146].  Mice 

were injected with murine melanoma cells that express high levels of MUC18. 

Vaccination with the MUC18 vaccine induced both humoral and CD8
+
 T-cell responses 

that significantly reduced both tumor growth and experimental lung metastasis formation 
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[146]. Though this study further confirms the importance of MUC18 in melanoma 

development, it raises the possibility that utilizing a DNA-based vaccine targeting 

MUC18 in patients, might cause an autoimmune response as well as destruction of other 

cells known to express MUC18. Thus, it is important to fully understand the signaling 

function of MUC18 potentially leading to the identification of new targets for melanoma 

treatment. 

 

Expression of MUC18 in other Cell Lines and Neoplasms 

MUC18 expression is detected as early as 7 weeks of human embryonic 

development. In normal adult tissues, MUC18 is expressed on a variety of cells 

including, smooth muscle cells, endothelial cells, Schwann cells, ganglion cells and 

myofibroblasts [147]. Expression of MUC18 on a spectrum of mesenchymal neoplasms 

was evaluated by Shih et al. Analysis of smooth muscle cell origin tumors demonstrated 

that 100% of leiomyoma and 91% of leimyosarcomas stained positive for MUC18. 

Additionally, MUC18 expression was detected in all examined neoplasms of vascular 

origin, including Kaposi’s sarcoma, hemangioma, angiosarcoma, shwannoma, as well as 

neurofibromas, which, like melanoma, is derived from a neural precursor. This 

suggested that MUC18 might serve as a potential diagnostic marker for mesenchymal 

tumors of the smooth muscle cell, vascular or neural origin [148].  

MUC18 expression is implicated in the metastatic behavior of various types of 

cancers. Wu et al. examined the expression of MUC18 in normal and prostate cancer cell 

lines and tissues. Analysis of clinical specimens demonstrated low expression of 

MUC18 in normal or benign hyperplastic epithelium (BPH), while high expression of 
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MUC18 was detected in high grade prostatic intraepithelial neoplasia [149], prostatic 

carcinoma tissue samples, and cells from lymph node metastasis [150]. It was also 

demonstrated that three of four prostate cancer cell lines (TSU-PR1, DU145, and PC-3) 

expressed high levels of MUC18 mRNA and protein. Interestingly, TSU-PR1, DU145, 

and PC-3, are metastatic cell lines, while the non-metastatic prostate cancer cell line, 

LNCaP, did not express MUC18 [150]. Ectopic expression of MUC18 in LNCaP cells 

increased metastatic potential of the cells in vivo. In vitro, MUC18 expression in LNCaP 

cells resulted in increased cell motility and invasiveness. This phenotype was 

significantly abrogated using anti-MUC18 antibodies [151].  

A recent study examined the expression of MUC18 in malignant human breast 

cell carcinoma tissues and cell lines [152]. Tissue microarray analysis correlated 

MUC18 expression with high tumor grade, and triple-negative receptor status (Estrogen 

receptor/progesterone receptor/ERBB2) and associated MUC18 expression with poor 

overall survival [152]. Furthermore, flow cytometry and DNA microarray experiments 

suggest that MUC18 is highly expressed on human mammary cancer cell lines which 

have more mesenchymal characteristics, such as MDA-MB-231, MDA-MB-436 and 

BT-549 cells. Interestingly, cells that display more epithelial characteristics, or non-

metastatic characteristics, express low levels of MUC18 [152].  

MUC18 expression has also been detected on human bone sarcoma cells. A study 

by our laboratory has shown that osteosarcoma and Ewing’s sarcoma cells, KRIB and 

TC-71, respectively, express high levels of MUC18.  Inhibition of MUC18 in vivo, 

utilizing ABX-MA1, significantly decreased spontaneous metastasis formation of 
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osteosarcoma cells in nude mice [153], further demonstrating the role of MUC18 in 

metastasis formation. 

 

Role of MUC18 in Mediating Downstram Signaling Events 

The role of MUC18 in intracellular signaling has yet to be fully elucidated. The 

potential function of MUC18 in downstream signaling was proposed since the 

cytoplasmic domain of MUC18 contains several protein kinase recognition motifs [45]. 

Figure 4 illustrates previously described MUC18 downstream signaling pathways.   

Outside-in signaling of MUC18 was studied in human endothelial cells and 

suggests a role for MUC18 in actin cytoskeleton reorganization [154, 155]. Cross linking 

of MUC18 with a stimulating antibody results in association of p59
fyn

 with the 

cytoplasmic domain of MUC18. p59
fyn

 is then phoshophorylated and, in-turn, 

phosphorylates p125
FAK

. p125
FAK

 consequently phosphorylates and associates with 

paxillin. [154]. A subsequent study demonstrated that activation of MUC18 via antibody 

engagement caused induction of Ca
2+

 through tyrosine phosphorylation of phospholipase 

C-γ by p59
Fyn

, which then leads to phosphorylation and association with Pyk2 and 

p130
Cas 

 [155]. These results demonstrated the role of MUC18 as a signaling molecule in 

endothelial cells.  

An additional signaling pathway downstream of MUC18 was identified by 

Meenhard Herlyn’s laboratory, which established a connection between MUC18 and 

AKT [156]. Melanoma cells lines, as well as tumor samples, were shown to express 

higher levels of phosphorylated AKT, as compared to normal melanocytes. 

Overexpression of MUC18 in the non-metastatic melanoma cell line, SB2, increased 
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AKT activation and cell survival after drug treatment. These results indicate that 

MUC18 can regulate AKT activity, thereby promoting cell survival. [156].      

MMP-2, which is known to contribute to the metastatic melanoma phenotype, 

has also been shown to be regulated by MUC18 [145]. Mills et al. have shown that both 

MMP-2 expression and activity can be modulated by MUC18. Blocking MUC18 with 

ABX-MA1 caused a decrease in MMP-2 expression in vivo. In vitro, ABX-MA1 

decreased MMP-2 promoter and collagenase activity, ultimately resulting in decreased 

melanoma cell invasiveness through Matrigel [145]. Taken together, these studies 

suggest that MUC18 contributes to melanoma progression not solely as an adhesion 

molecule but also as plays a role in signal transduction.     

 Although these studies describe several signaling pathways downstream of 

MUC18, the role of MUC18 in regulation of gene expression has yet to be elucidatede. 

Furthermore, a gap in knowledge remains in the mechanism by which MUC18 promotes 

melanoma invasion and metastasis. 
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Figure 4. The Downstream Signaling Events Induced by MUC18 Following 

Homotypic and Heterotypic Interactions 

(1) Activation of MUC18 in endothelial cells results in association of p59
fyn

 with the 

cytoplasmic domain of MUC18. p59
fyn

 is then phoshophorylated and, in-turn, 

phosphorylates p125
FAK

. p125
FAK

 consequently phosphorylates and associates with 

paxillin. Activation of MUC18 also promotes increase of cytosolic Ca
2+

 [154, 155]. (2) 

In melanoma cells, MUC18 transcriptionally regulates MMP-2 expression and promotes 

its collagenase activity, indicating a role for MUC18 in melanoma cell invasion [136, 
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145]. (3) MUC18 promotes AKT activation, leading to the phosphorylation and 

inactivation of Bad. MUC18 also inhibits Caspase-3 activation, demonstrating that 

MUC18 can promote melanoma cell survival [156].    
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Specific Aims 

The acquisition of the metastatic melanoma phenotype of melanoma is associated with 

increased expression of the melanoma cell adhesion molecule MCAM/MUC18. Herein, 

we aim to establish the molecular mechanism by which MUC18 regulates melanoma cell 

invasion to promote melanoma progression. Our study will further elucidate the function 

by which MUC18 acts not only to adhere cells together but also as a signaling molecule, 

identify novel downstream potential targets, characterize their regulation by MUC18 and 

their contribution to melanoma progression. 

Therefore, we hypothesize that MUC18 expression promotes differential expression 

of genes which contribute to the acquisition of the metastatic melanoma phenotype.  

To test this hypothesis we developed the following three specific aims 

1. To determine the effect of MUC18 on the tumorigenic and metastatic 

potential of melanoma cell lines by silencing MUC18 expression utilizing 

lentiviral-based small hairpin RNA (shRNA) 

2. To identify potential downstream target genes regulated by MUC18 and 

determine the mechanisms of their regulation  

3. To determine the contribution of the genes regulated by MUC18 to the 

malignant phenotype of melanoma 
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CHAPTER 2: Material and Methods 

 

Cell Lines 

The human metastatic melanoma cell line A375SM was established from pooled 

lung metastases produced by A375-P cells injected i.v. into nude mice [157] . The SB-2 

cell line was isolated from a primary cutaneous lesion and was a gift of Dr. B. 

Giovanella (St. Joseph’s Hospital Cancer Center, Research Laboratory, Houston, TX). 

The A375SM and SB-2 cell lines were maintained in cell culture as monolayers in 

Eagle’s minimal essential medium (MEM) supplemented with 10% fetal bovine serum, 

sodium pyruvate, nonessential amino acids, HEPES buffer, and penicillin-streptomycin. 

The amelanotic human metastatic melanoma cell line C8161 [158] was maintained in 

Dulbecco’s modified Eagle’s medium-F12 (DMEM-F12) supplemented with 5% fetal 

bovine serum, sodium pyruvate, nonessential amino acids, and penicillin-streptomycin. 

The 293FT cells (Invitrogen) used to produce the lentiviral shRNA were maintained as 

previously described [159]. All cell lines were incubated at 37°C with 5% CO2. 

 

Protein Extraction  

Total protein extracts were obtained from 80% confluent cells plated on a 100-

mm culture dishes or 6 well plates. Cells were washed once with PBS and were 

incubated for 30 minutes on ice with either 300 µl (for 100-mm culture dish) or 100 µl 

(for 6 well plate) of Triton X Lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 

mM EDTA and 1% Triton X-100) supplemented with 1% Protease Inhibitor Cocktail 

containing six protease inhibitors for the inhibition of aspartic, cysteine, serine, and 
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aminopeptidases (Merck KGaA, Darmstadt, Germany). Proteins were then collected and 

cenrifugated at 4°C at 14, 000 G for 10 minutes. Supernatant was transferred to a new 

tube and protein concentration was determined using the Bradford assay (Bio-Rad 

Laboratories, Hercules, CA).  

Nuclear extract were extracted from cells cultured in 6 well plate at 80% 

confluence. A commercial nuclear extraction kit (Panomics, Inc., Fremont, CA) was 

used to extract nuclear proteins. Briefly, cells were exposed to a hypotonic buffer 

allowing cells to swell. Next, the cells were scraped and the cytoplasmic fraction was 

removed. The nuclear proteins were then released from the nuclei by incubation in a 

high-salt buffer. Samples were centrifuged at 4°C at 14,000 x g for 5 minutes and 

supernatants were collected.  Protein concentration was determined using Bradford assay 

(Bio-Rad Laboratories, Hercules, CA).  

  

Western Blot Analysis 

Melanoma cell lines were seeded at 1×10
6
 in 100-mm culture dishs in 10 ml of 

media. Protein concentrations were determined by using the Bradford protein assay 

(Bio-Rad). 20 µg of protein was resolved using a 10% SDS-PAGE gel in a BioRad Mini 

Protean III gel aparatus (BioRad, Hercules, CA) and transferred to a 0.45-µm 

nitrocellulose membrane (Millipore, Bedford, MA). The membrane was then blocked 

with 5% milk in Tween 20 Tris-HCL buffered saline for 1 h. Subsequently, blots were 

incubated overnight at at 4 °C with primary antibodies at the following dillution of 

1:1000  for anti-ATF-3 or anti-Id-1, (Santa Cruz Biotechnology, Santa Cruz, CA), and 

anti-MMP-2 (Cell Signaling Technology) and 1:10000 for anti-Ets-1 (Santa Cruz 
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Biotechnology, Santa Cruz, CA). Proteins were detected by enhanced 

chemiluminescence utilizing ECL detection system according to the manufacturer’s 

instructions (GE Healthcare). For detecting ATF-3 and Ets-1, nuclear extracts were 

prepared and 20 µg of protein was analyzed as described above. Densitometry was 

carried out to determine
 
the intensities of bands of interest in the Western blots, using

 

ImageJ software (NIH). 

 

Chromatin Immunoprecipitation Assay (ChIP) 

 ChIP Assay was performed utilizing ChIP-IT Express Kit (Active Motif 

Carlsbad, CA)   according to the manufacturer’s protocol. 1.5×10
7
 cells were plated in 

15 cm culture dishes. The following day ells were fixed with 37% Formaldehyde 

containing medium. The plates were then scraped, cell suspensions centrifuged for 10 

minutes at 2500 rpm at 4 °C, and supernatants were discarded. Pelleted cells were then 

lysed and incubated on ice for 30 minuets. Next, enzymatic shearing was performed and 

sheared chromatin containing DNA fragments between 200-bp and 1000-bp was 

isolated. Protein-DNA complexes were immunoprecipitated with magnetic beads usng 

the following antibodies: anti-ATF-3 antibody (sc-188, Santa Cruz, Santa Cruz, CA), 

Anti-Sp1 antibody (sc-14027X, Santa Cruz, Santa Cruz, CA), anti-Ets-1 antibody (sc-

55581X, Santa Cruz, Santa Cruz, CA), or anti-AP-2α Antibody (sc-184X, Santa Cruz, 

Santa Cruz, CA). The
 
complexes were then separated from the magnetic beads, and

 

protein-DNA complexes were reverse-crosslinked at 65°C for 2.5 hours. Next, the 

proteins were digested for one hour at 37°C with of Proteinase K and DNA was analyzed 

by PCR. PCR was carried out using either a Taq PCR Master Mix Kit (Qiagen, 
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Valencia, CA) in a 30µl reaction mixture or with REDAccuTaq LA DNA Polymerase 

(Sigma, St Louis, MO) in a 25µl reaction mixture. 

The following primer sequences were used to amplify the binding sites of the analyzed 

transcription factors: 

Sp1/AP-2 binding site: forward 5’-GGTCGTGCACTGAGGGTGGACGTAG-3’ and 

reverse 5’-GTTTAAAGCCCCAGATGCGCAGCCTC-3’, spanning a region of 273 bp 

from -218 to +55. 

AP-1/Ets-1- forward 5’-CATTGTCAATGTTCCCTAAAACATTC-3’ and reverse 

5’-CTCCCTCTCTCAGGAAAGACAGTTG-3’ spanning a region of 185 bp from -1355 

to -1145.  

ATF-3- forward 5’-GCGCCAGCCTGACAGTCCGTCCGGG-3’ and reverse 

5’-CTTCTCAAAGACCTCAGAGCAGGG-3’ spanning a region of 181-bp from -1052 

to -871  

 

Matrigel Invasion Assay 

Invasion assay was carried out using BioCoat Matrigel invasion chambers (BD 

Biosciences Pharmingen, San Diego, CA). Briefly, 2.5x10
4
 cell diluted in 500 µl of 

serum-free DMEM-F12 or MEM were placed in triplicates in the upper chamber of the 

Matrigel plate. The lower chamber contained medium supplemented with 20% FBS. 

Matrigel plates were incubated for 24 h at 37 °C. Hema3 stain set (Fisher Scientific) was 

utilized to stain cells that migrated to the lower surface of the Matrigel filter. Stained 

cells were then counted under the microscope. 
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Lentivirus shRNA Targeting MUC18 

A MUC18 targeting shRNA sequence 5’-TGATATCGCTGCTGAGTGA-3’ and 

a nontargeting (NT) shRNA sequence 5’-TTCTCCGAACGTGTCACGT-3’ (with no 

homology to any known human genes) were designed with a hairpin and sticky ends 

(Cla1 and Mlu1). Using the Cla1 and Mlu1 restriction enzymes the oligos were digested  

and cloned into a lentiviral gene transfer vector, pLVTHM. The annealed vector was 

then transformed into competent E.coli bacteria (XL-10-Gold Ultracompetent Cells, 

Stratagene, Cedar Creek, TX) and plated on Luria broth [160]-Agar plates over night. 

Several bacterial colonies were then isolated and grown in LB overnight. DNA was 

isolated from the bacterial culture using a Maxi Plasmid DNA purification kit (Qiagen, 

Santa Clarite, CA), and then sequenced to test for proper insertion and length of the 

inserts. The pLVTHM vector containing the MUC18 shRNA sequence, a plasmid coding 

for the virion packaging system (MD2G), along with a plasmid coding for an envelope 

(PAX2), were transfected into 293T (human embryonic kidney cell) to generate 

lentivirus particles. 72 hours later the supernatant containing the lentiviral particles was 

collected and filtered to remove debris. The lentivirus system was developed as 

described previously [61, 161] and kindly provided by Didier Trono (Ecole 

Polytechnique Fe´de´rale de Lausanne). To silence MUC18, A375SM and C8161 cell 

lines were plated at 70% confluence in 6-well plates and were transduced with the virus 

overnight 37 °C. Subsequently, the virus containing medium was removed and replaced 

with normal growth medium, cells were sorted for expression of green fluorescent 

protein using Coulter Epics XL-MCL Flow Cytometer (Beckman Coulter, Fullerton, 

CA). 
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In vitro Proliferation Assay 

 Ninety-six well plates containing 1500 cells/well from MUC18 shRNA-

transduced A375SM or C8161 cell lines or NT shRNA-transduced A375SM or C8161 

cell lines were cultured for 4 days in normal growth medium. Cell growth was analyzed 

by MTT assay, which determines relative cell numbers based on the conversion of MTT 

to formazan in viable cells. 40 µg/ml MTT (Sigma St. Louis, MO) was added to each 

well. After a 2 hour incubation period at 37°C, growth medium and MTT were removed 

and cells were reconstituted in 100µl of dimethyl sulfoxide (DMSO) (Sigma, St. Louis, 

MO). Viable cells were then quantified by measuring the absorbance at 570nm using a 

BIO-TEK uQuant plate reader (BIO-TEK, Winooski, VT). This procedure was repeated 

after a 4 day incubation to determine the proliferation rate between NT and MUC18 

shRNA-transduced cell. 

 

Non-Targetable MUC18 Expression Vector 

Five silent point mutations were introduced in to a MUC18 pCDNA 3.1 plasmid 

vector, targeting shRNA sequence. A non-targetable MUC18 expression vector 

containing the mutations was obtained by QuikChange II XL site-directed mutagenesis 

kit (Staratagene) according to manufacturer’s procedures. The following primers were 

used to create silent mutations: 

Forward- 5’ 

CAGGGCCTGGACTTGGACACCATGATTTCCCTCCTCAGCGAACCACAGGAA

CTACTGGTG-3’,  
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Reverse-

5’CACCAGTAGTTCCTGTGGTTCGCTGAGGAGGGAAATCATGGTGTCCAAGTC

CAGGCCCTG -3’.  

PCR was performed using PfuUltra high-fidelity (HF) DNA polymerase, generating a 

mutated plasmid containing staggered nicks. Following PCR Dpn I endonuclease was 

used to digest the parental DNA template. The amplified sequence was then transformed 

into XL-10-Gold ultracompetent cells (Stratagene, Cedar Creek, TX). Bacteria cells 

were plated on LB-Agar plates over night. Several bacterial colonies were then isolated 

and grown in LB overnight. The DNA was isolated from the bacterial culture using a 

Maxi Plasmid DNA purification kit (Qiagen, Santa Clarite, CA), and was sequenced to 

test for proper insertion and length of the MUC18 mutations. MUC18 cDNA containing 

the mutations was then ligated into the pLVX-DsRed-Monomer-C1 vector (Clontech, 

Mountain View, CA) replacing the red protein coding sequence of DsRed. The pLVX-

DsRed-Monomer-C1 vector containing the mutated MUC18 sequence, a plasmid coding 

for the virion packaging system (MD2G), along with a plasmid coding for an envelope 

(PAX2), were transfected into 293T (human embryonic kidney cell) to generate 

lentivirus particles. 72 hours later the supernatant containing the lentiviral particles was 

collected and filtered to remove debris and a final rescue lentiviral vector was obtained 

as described above. To stably rescue MUC18 expression in MUC18-silenced cells, 

A375SM and C8161 MUC18-shRNA or NT-shRNA were plated in 6-well plates and 

transduced with the virus containing either the non-targetable mutated MUC18 

expression vector or empty vector control. After 48 h, the cells were replated and 
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selected with growth medium containing 500 µg/ml puromycin. MUC18 expression was 

confirmed by Western blot. 

 

Luciferase Assay  

2.5×10
4
 cells/well of A375SM, C8161 and SB-2 were plated in a 24-well plate. 

0.8 µg of luciferase reporter plasmids containing either the Id-1 promoter, Id-1 mutant 

promoter, MMP-2 promoter or a promoterless luciferase PGL3-basic vector (which was 

used as negative control) were diluted in serum free medium. Diluted reporter plasmid 

DNA were combined with 2 µl of Lipofectamine 2000 diluted in serum free medium to 

form DNA-Lipofectamine complexes. For each transfection, 2.5 ng of cytomegalovirus-

driven Renilla luciferase reporter construct (pRL-CMV, Promega, Madison, WI) was 

included as internal control for detection of transfection efficiency. DNA-Lipofectamine 

complexes were incubated for 20 minutes at room temperature. Cells were washed with 

serum free medium and the DNA-Lipofectamine complexes were added to the cells and 

incubated at 37°C. At 4 hours following transfection, medium was changed to complete 

growth medium containing serum. Cells were harvested 48 h after transfection. 

Luciferase activity was assayed utilizing a Dual-Luciferase reporter assay system 

((Promega, Madison, WI) according to the manufacturer’s instructions. The luciferase 

luminescence (relative light intensity) was measured with a LUMIstar microplate reader 

(BMG Labtech Durham, NC). The ratio of firefly luciferase activity to cytomegalovirus-

driven Renilla luciferase activity was used to normalize any differences in transfection 

efficiency among samples.  
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Zymography 

A375SM and C8161 cells were plated in a 6-well plate at a concentration of 

5×10
5
 cells/well. After 24 h, the medium in each well was replaced with 500 µl of 

serum-free medium and incubated overnight at 37 °C. Following incubation, the medium 

was collected and the volume was adjusted according to cell number. Fifty µl of samples 

including positive control (10% FBS containing media) and negative control (serum-free 

medium) were loaded on a substrateimpregnated gel (10% polyacrylamide [wt/vol], 

0.1% SDS, 0.1% gelatin) to determine MMP-2 activity. The gel was then washed twice 

for 30 min in 2.5% Triton X-100. Subsequently, the gel was placed in incubating buffer 

(50 mM Tris-Cl, pH 7.5, 200 mM NaCl, 5mM CaCl2) at 37°C for 16 h to optimize 

metalloproteinase activity. The gel was then stained for 1 h in 40% methanol/10% acetic 

acid/0.5% (wt/vol) Coomassie brilliant blue G-250. At the end of the incubation the gel 

was destained utilizing destaining buffer (45% methanol/10% acetic/45%H2O). 

Proteinase activity was indicated by the presence of clear bands.  

 

Immunohistochemistry 

Formalin-fixed, paraffin-embedded sections were deparaffinized by sequential 

washing with xylene, graded ethanol, and PBS. Pepsin was utilized for antigen retrieval 

for 10 min at room temperature. Subsequently, sections were washed with PBS and 

blocked with endogenous peroxide containing 3% hydrogen peroxidase inhibitor in PBS 

for 12 min. Nonspecific proteins were blocked in 5% horse serum and 1% goat serum 

for 20 min. Slides were incubated with anti-MMP-2 (1:400; Chemicon, Temecula, CA) 

or anti-Id-1(polyclonal, 1:50; Santa Cruz, Santa Cruz, CA) overnight at 4 °C and then 
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with a peroxidase-labeled anti-rabbit antibody (1:500; Jackson ImmunoResearch, West 

Grove, PA) for 1 h at room temperature. Signal was detected by staining with 3,3′- 

diaminobenzidine (DAB; Phoenix Biotechnologies, San Antonio, TX) substrate for 6 

min and then counterstaining with Gill’s hematoxylin No. 3 (Sigma, St. Louis, MO) for 

20 s. For MUC18 staining, 1× Divi deckloaker (BioCare Medical) was utilized for 

antigen retrival. Sections were then washed with PBS and blocked with endogenous 

peroxide containing 3% hydrogen peroxidase inhibitor in PBS for 12 min. Fragment 

blocking was used overnight at 4 °C with Affini fregment blocking anti mouse antibody 

(1:10; Jackson ImmunoResearch, West Grove, PA) to block nonspecific binding on 

tissue sections. Slides were then blocked in 5% horse serum and 1% goat serum for 5 

min and were incubated overnight at 4 °C with anti-MUC18 (1:50; BD Biosciences 

Pharmingen San Diego, CA). A peroxidase-labeled anti-mouse IgG1 antibody (1:400; 

BD Biosciences Pharmingen San Diego, CA) was used for 1 h at room temperature. 

Signal was detected as mentioned above. Slides were imaged using a Nikon Microphot-

FXA microscope at 10X magnification. Pictures were taken using a Leica DFC 320 R2. 

For CD31 staining, frozen sections were fixed for 5 minutes in each of the following 

solutions acetone, acetone:chloroform (1:1) and acetone. Slides were then washed with 

PBS three times and blocked with protein block 4% Fish gelatin in PBS for 20 minutes 

at room temperature. Slides were incubated at 4 °C over night with primary antibody (rat 

anti-mouse CD31, PharMingen Inc. Cat. #01951A). Alexa 494 [37] was incubated for 1 

hour at room temperature. Slides were then washed 3 times for 3 minutes in PBS.   

TUNEL staining was performed utilizing a TUNEL assay kit (Promega, Promega, 

Madison, WI). Slides were fixed in 4% Paraformaldehyde for 10 minutes at room 
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temperature followed by two 5 minute washes with PBS. Slides were then incubate in 

0.2% Triton X-100 in PBS for 15 minutes and washed twice with PBS. Subsequently, 

slides were incubate with DNase 10 minutes at 37ºC and washed four times with PBS. 

Equalibrium buffer was then used on slides for 10 minutes room temperature. Incubation 

buffer containing 5ul Nucleotide Mix and 1 ul of TDT enzyme, was then applied on 

slides. Slides were then incubated at 4 °C over night. The following day, slides were 

washed with SSC buffer twice for 15 minutes followed by washes with PBS to remove 

unincorporated Fl-dUTP. Hoechst (Molecular Probes, Carlsbad CA) diluted 1:10,000, 

was used to counterstain slides and is in PBS.  

 

Plasmid Construction 

The promoter of Id-1 gene (2.2kb) cloned into pGL3 was kindly donated by Dr. 

Rhoda M Alani [162]. A promoter region of 1.4 kb (-1370+40) was amplified by PCR 

utilizing the following primer sequences: forward 5’-

GGGTACCCGAAATTAATAATGGTC-3’ and reverse 5’-

GAAGATCTGAATGGGCAAAGCGAAAAAAATGAGG-3’. The amplified fragment 

was digested with KpnI and BglII and ligated into a promoterless luciferase pGL3-basic 

vector (Promega, Madison, WI). Site-directed mutagenesis of the ATF-3 site, replacing 

TGACGTCA to TGTGCAGCA, was performed using the QuikChange II XL site-

directed mutagenesis kit (Stratagene, Cedar Creek, TX) according to manufacturer’s 

instructions. The promoter of region of MMP-2 from -1766 to +55 was amplified from 

A375SM genomic DNA utilizing PCR primers:  

forward 5’- GGGGTACCTTTAAAACTGACTCTGG-3’ and  
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reverse 5’- GAAGATCTAAAGCCCCAGATGCGC-3’. The amplified fragment was 

digested with KpnI and BglII and was cloned into a promoterless luciferase pGL3-basic 

vector (Promega, Madison, WI). 

To generate an Id-1 expression vector, the Id-1 sequence was amplified from an Id-1-

pLXSN expression vector kindly provided by Dr. Pierre-Yves Desprez [163] using the 

following primer sequences:  

Forward- 5’-CCGCTCGAGCGGATGAAAGTCGCCAGTGGCAGCACCG-3’ and  

reverse- 5’-CGGGATCCCGCTAGTGGTCGGATCTGGATCTCACCTC-3’.  The 

amplified fragment was digested with Xho1 and BamH1 and ligated into the pLVX-

DsRed-Monomer-C1 vector (Clontech) replacing the red protein coding sequence of 

DsRed. 

To generate the ATF-3 expression vector, a pCDNA 3.1 expression vector containing 

ATF-3 with an N-terminal flag tag sequence was kindly provided by Dr. Douglas Boyd 

[164]. The coding sequence of ATF-3 with an N-terminal flag tag was digested with 

Hind IV and HpH1 enzymes and filled in with large (Klenow) fragment. The product 

was then ligated into the pLVX-DsRed-Monomer-C1 vector (Clontech, Mountain View,
 

CA) replacing the red protein coding sequence of DsRed .The final lentiviral particles, 

for all plasmids, were obtained as described above. 

 

Animals, Tumor Growth and Metastasis 

Female athymic BALB/c nude mice were purchased from the National Cancer 

Institute-Frederick Cancer Research and Development Center (Frederick, MD) and 

housed in specific pathogen-free conditions. All studies were approved and supervised 



 43 

by The University of Texas M.D. Anderson Cancer Center Institutional Animal Care and 

Use Committee (IACUC). Subcutaneous tumors were produced as described previously 

[159]. Briefly, 5×10
5
 A375SM cells or 2.5×10

5
 C8161 cells suspended in 0.1 ml of 

Hanks’ buffered salt solution were injected into the right flank of each mouse 

(n=8/group). Tumor growth was measured three times weekly in two dimensions with a 

caliper and calculated as axb
2
/2 cm

3
 (a, long diameter; b, short diameter). Mice were 

sacrificed in a CO2 chamber, either 35 days after injection or when the tumor reached 1.5 

cm
3
 in volume (according to guidelines of the IACUC, which specifies that when the 

largest dimension of a subcutaneously injected tumor reached 1.5 cm
3
, mice should be 

considered moribund and then sacrificed). Tumors were harvested and processed for 

hematoxylin and eosin staining and for immunohistochemical staining. To determine 

metastatic potential 5×10
5
 A375SM cells and 3.75×10

5
 C8161 cells suspended in 0.1 ml 

of Hanks’ buffered salt solution were injected into the tail vein of nude mice 

(n=7/group). Mice were sacrificed 35 days after injections, lungs harvested and fixed in 

Bouin's solution, and the number of macroscopic surface tumors nodules was counted. 

 

cDNA Microarray 

  Total RNA was isolated from NT A375SM cells and MUC18-silenced A375SM 

cells utilizing the Clontech Advantage RT-for-PCR kit according to the manufacturer’s 

instructions. A human genome U133 Plus 2.0 array (Affymetrix) was used for the 

microarray analysis. The microarrays were produced in the microarray core facility of 

Codon Bioscience (Houston, TX). Affymetrix software was utilized to analyze the 

results as described previously [165]. 
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Statistical Analyses 

Student's t test was used to evaluate the statistical significance of differences the 

in vitro data. Statistical analysis of the results of the animal studies was performed using 

the Mann-Whitney U test. Values for tumor growth are given as a mean volume ± 

S.E.M., and p values < 0.05 were considered statistically significant.  
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CHAPTER 3: Specific Aim 1 

 

Determine the Effect of MUC18 on Tumor Growth and the 

Metastatic Potential of Melanoma Cell Lines by Silencing MUC18 

Expression Utilizing Lentiviral-Based shRNA. 

 

Introduction 

The melanoma cell adhesion molecule, MUC18, was first identified as a 

melanoma antigen whose expression has been shown to correlate with poor prognosis 

and progression of cutaneous melanoma [127].  Our lab has previously demonstrated 

that MUC18 expression in melanoma cell lines is associated with their ability to form 

subcutaneous (s.c.) tumors and metastases in vivo [135]. Direct evidence of the role of 

MUC18 in the progression and metastasis of melanoma was established by 

overexpressing MUC18 in the non-metastatic melanoma cell line, SB-2, which resulted 

in increased tumor growth and metastatic potential in nude mice [136]. Furthermore, 

inhibition of MUC18 activity utilizing a fully human antibody, ABX-MA1, decreased 

tumor growth and reduced the formation of experimental lung metastasis in nude mice 

after challenging them with the metastatic melanoma cell lines, A375SM and WM2664. 

In vitro, blocking MUC18 in melanoma cell lines with ABX-MA1 decreased both 

MMP-2 promoter activity, as well as collagenase activity, and subsequently resulted in 

decreased cell invasion through Matrigel [145]. To further establish the role of MUC18 

in melanoma progression and metastasis, we silenced MUC18 expression in two 

metastatic melanoma cell lines, A375SM and C8161. Utilizing these metastatic 
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melanoma cells that lack MUC18 expression will provide a unique tool in which we can 

identify novel downstream gene targets that are regulated by MUC18. Identification of 

new MUC18-regulated genes will shed light on the molecular signaling pathways which 

contribute to the metastatic melanoma phenotype.     
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Results 

MUC18 silencing in the Metastatic Melanoma Cell Lines A375SM and C8161 

To further establish the role of MUC18 in promoting tumor growth and 

metastasis of human melanoma cells, we stably silenced MUC18 expression in two 

human melanoma cell lines, A375SM and C8161. We utilized a lentiviral based shRNA 

vector containing a green fluorescence protein (GFP) sequence to clone either a MUC18 

shRNA sequence or a control non-targeting (NT) shRNA sequence. Importantly, the NT 

shRNA sequence used had no homology to any known human gene. Lentivirus 

containing the shRNA sequences were produced utilizing the method developed by 

Didier Trono [161]. Transduced cell populations were sorted by Fluorescent Activated 

Cell Sorting (FACS) on the basis of GFP expression. Reduction of MUC18 expression 

was then verified by western blot analysis. Indeed, MUC18 protein levels decreased by 

90% and 80% in MUC18-silenced A375SM and C8161 cells, respectively, as compared 

to the non-targeting (NT) shRNA transduced cells (Figure 5).  
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Figure 5. MUC18 Expression is Downregulated in Metastatic Melanoma Cell Lines 

Transduced with Lentivirus Containing MUC18 shRNA  

Western blot analysis of MUC18 expression in A375SM and C8161, after stable 

transduction with lentivirus containing either MUC18 shRNA or a Non-Targeting (NT) 

control vector, shows decreased expression of MUC18 by 90% and 80% after MUC18 

silencing in A375SM and C8161, respectively. 
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Effect of MUC18 Silencing on Melanoma Tumor Growth and Experimental Lung 

Metastasis Formation  

To determine the effect of MUC18 silencing on melanoma tumor growth, we 

injected the two MUC18-silenced melanoma cell lines, A375SM and C8161 s.c. 

(0.5x10
6
 A375SM cells and 0.25x10

6
 C8161 cells) into the flanks of nude mice 

(n=8/group). Tumor growth was measured twice a week for 35 days. MUC18 silencing 

resulted in a significant decrease in tumor growth in both cell lines, as compared to mice 

injected with the NT shRNA-transduced cells; mean tumor volume at day 35 was 621.4 

mm
3
 in mice injected with NT A375SM cells, whereas in mice injected with MUC18-

silenced A375SM cells it was 233.6 mm
3
. (*p<0.05) (Figure 6A). Similar results were 

observed with NT shRNA and MUC18-silenced C8161 cells; mean tumor volume was 

662.3 mm
3
 versus 221.9 mm

3
 (*p<0.001) (Figure 6B). 

 To assess whether the differences observed in tumor growth between MUC18 

silenced cells and NT-transduced cells were due to changes in cell proliferation rates, we 

evaluated in vitro cell proliferation (Figure 7). Although the MTT assay detected no 

significant changes in in vitro cell proliferation, we examined the in vivo expression of 

the proliferation marker, Ki67, in tumor samples derived from MUC18-silenced and the 

NT-transduced A375SM cells (Figure 8A). Interestingly, we observed a decrease in 

Ki67 immunohistochemical staining in the tumor samples from the MUC18-silenced 

A375SM cells, compared to the samples from NT-transduced cells. These data suggested 

that the changes in tumor growth between the MUC18 silenced cells and NT-transduced 

cells were, at least in part, due to differences in their in vivo cell proliferation rates. To 

next determine whether apoptosis contributed to the differences observed in tumor 
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growth, we evaluated the effect of MUC18 silencing on apoptosis and performed 

TUNEL staining on tumors from both MUC18 silenced and NT-transduced cells (Figure 

8B). Increased apoptosis of tumor cells was observed in samples obtained from MUC18-

silenced cells. Taken together, these data indicate that in vivo MUC18-silenced cells 

proliferate slower and have increased apoptosis resulting in significantly smaller tumors 

produced by MUC18-silenced cells, compared to NT-transduced cells.  

 Because of their smaller tumor size, decreased proliferation and elevated level of 

apoptosis, we hypothesized that tumors formed from MUC18-silenced cells lacked 

sufficient supply of nutrients and oxygen. We, therefore, evaluated the effect of MUC18 

silencing on the formation of tumor vasculature by staining of endothelial cells (Figure 

8C). Immunohistochemical analysis demonstrated a significant decrease in vessel size, 

as well as number, in tumor samples obtained from MUC18-silenced cells. Collectively, 

these results suggest that the reduction of tumor growth was due to a number of factors 

including decreased tumor cell proliferation, increased apoptosis, and decreased vessel 

size and number as a result of MUC18 silencing in metastatic melanoma cells. 

 To confirm the validity of the immunohistochemical staining patterns, we 

evaluated MUC18 expression in vivo. Immunohistochemical staining of the s.c. tumors 

verified that MUC18 expression decreased in tumors derived from MUC18-silenced 

A375SM (Figure1D) as compared to tumors from NT-transduced cells and that the 

decreased expression of MUC18 was sustained until the end of the experiment at day 35 

(Figure 1D). 

 Next, to determine the effect of MUC18 silencing on melanoma metastasis, 

MUC18-silenced A375SM and C8161 cell lines were injected i.v. into nude mice (n=7 
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mice/group).  Six weeks after injections, experimental lung metastasis formation was 

assessed. Lung metastases were significantly decreased in mice injected with MUC18-

silenced A375SM and C8161 cells as compared to NT-transduced cells (median= 78 vs 

279 for A375SM, median= 133 vs 290 for C8161) (*p<0.05) (Figure 9).  

Taken together, these data corroborate previous results demonstrating the role of 

MUC18 in promoting melanoma tumor growth and lung metastasis formation in vivo 

[135, 136, 145] 
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Figure 6. The Effect of MUC18 Silencing on Subcutaneous Tumor Growth 

 

Silencing of MUC18 in two melanoma cell lines, A375SM and C8161, significantly 

decreased subcutaneous tumor growth in nude mice. Tumors were measured twice 

weekly for 35 days. (A) A375SM cells expressing either MUC18 shRNA or NT shRNA 

(0.5x10
6
/ animal) were injected subcutaneously  into the flank of nude mice (n=8/group). 

Mean tumor volumes at day 35 were 621.4 mm
3
 in mice injected with NT A375SM 

cells, whereas it was 233.6 mm
3
 in mice injected with MUC18-silenced A375SM cells 

(*p<0.05). (B) 0.25x10
6
 C8161 cells expressing MUC18 shRNA or NT shRNA were 

injected subcutaneously into the flank of nude mice (n=8/group). At day 35 mean tumor 

volumes were 662.3 mm
3
 in tumors expressing NT shRNA and 221.9 mm

3
 in tumors 

expressing MUC18 shRNA (**p<0.001). 
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Figure 7.  The Effect of MUC18 Silencing on Melanoma Cell Growth In vitro 

MTT assay demonstrates that silencing of MUC18 in two melanoma cell lines, (A) 

A375SM and (B) C8161, does not affect cell doubling time in vitro. Cells were grown 

for 4 days in a 96 well plate, and cell growth was determined daily. 
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Figure 8. Immunohistochemical Analysis of the Effects of MUC18 Silencing on 

Tumor Growth  

Representative images of immunohistochemical staining of subcutaneous tumors 35 

days post-injections with either MUC18-shRNA or NT-shRNA-transduced A375SM. 

(A) Evaluation of tumor cell proliferation by Ki67 staining demonstrates decreased cell 

proliferation in tumors obtained from MUC18-silenced cells. (B) TUNEL staining 

illustrates increased apoptosis in MUC18-silenced tumors, as compared to tumors 

obtained from NT-transduced cells. (C) CD31 staining demonstrates decreased vessel 

size and number in tumors from MUC18-silenced cells. (D) Staining for MUC18 

expression shows that MUC18 expression was downregulated in tumors obtained from 

MUC18-silenced cells. All images are shown at 10X magnification and are 

representative sections from the respective experimental groups.  
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Figure 9. Effect of MUC18 Silencing on Experimental Lung Metastasis Formation 

MUC18-silenced and NT-transduced A375SM (A) and C8161 (B) cells were injected 

into the tail vein of nude mice (n = 7 animals/cell line/group).  After 6 weeks, mice were 

sacrificed, lungs were removed and number of lung colonies was counted in each lung. 

MUC18 silencing results in a significant decrease in experimental lung metastasis 

formation in (A) A375SM (median: NT-shRNA, 279; MUC18-shRNA, 78) and (B) 

C8161 (median: NT-shRNA, 290; MUC18-shRNA, 133) melanoma cell lines. *p<0.05 

for both cell lines. 
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MUC18 Silencing Decreases MMP-2 Expression In vivo Along with MMP-2 

Activity and Cell Invasion In vitro 

We have previously demonstrated that MUC18 contributes to the metastatic 

phenotype of melanoma by increasing the melanoma cell invasion through regulation of 

MMP-2 expression and activity [136, 145]. MUC18 blockade using ABX-MA1 

decreased MMP-2 expression in vivo [145]. To confirm that MUC18 silencing also 

results in decreased expression of MMP-2 in vivo, immunohistochemical analysis was 

performed. We found that the expression of MMP-2 was decreased in tumor samples 

obtained from MUC18-silenced cells (Figure 10). These data support our previous work 

demonstrating that MUC18 inhibition in vivo results in diminished levels of MMP-2. 

To confirm that MUC18 silencing in A375SM and C8161 cell lines also results 

in decreased in vitro MMP-2 activity, we performed a zymography assay. Serum 

containing medium was used as a positive control, while serum free medium was used as 

a negative control for MMP-2 activity. As shown in Figure 11, decreased gelatin 

degradation of the gelatin impregnated gel, indicating less MMP-2 activity, was obtained 

in both MUC18-silenced A375SM and C8161 cells as compared to NT-transduced cells.  

To assess whether decreased MMP-2 activity following MUC18 silencing 

contributes to decreased in vitro invasiveness of melanoma cells, a Matrigel invasion 

assay was used. 2.5x10
4
 MUC18-silenced A375SM and C8161 cells were placed in the 

upper chamber of a Matrigel coated Boyden chamber, incubated for 24 h, and the 

number of invaded cells were then evaluated. Our results demonstrate a greater than 2-

fold significant decrease in the in vitro invasive capability of MUC18-silenced A375SM 

and C8161 cells, as compared to NT-transduced cells (*p<0.05) (Figure 12). 
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Figure 10. Decreased MMP-2 Expression In vivo Following MUC18 Silencing 

Immunohistochemical staining of subcutaneous tumors demonstrates decreased MMP-2 

expression in tumors obtained from MUC18-silenced cells, 35 days after cell injections.  
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Figure 11. In vitro Effect of MUC18 Silencing on MMP-2 Activity  

Zymography assay demonsrates the proteolytic activity of MMP-2, following MUC18 

silencing. Samples were loaded on a gelatin impregnated SDS gel. Denscytometry 

demonstrates decrease of 60% and 40% in MMP-2 activity in both MUC18-silenced 

A37SM and C8161, as compared to NT-transduced cells.  
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Figure 12. Effect of MUC18 Silencing on the Invasive Capacity of Metastatic 

Melanoma Cell Lines 

A Matrigel invasion assay demonstrates a significant decrease in invasion following 

MUC18 silencing in both A375SM and C8161. Each group was plated in Matrigel 

invasion chambers, in triplicates, and in serum free medium. Data represents number of 

invaded cells and is expressed as mean ± SEM. *p<0.05. 
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Discussion 

The correlation between MUC18 and melanoma progression was previously 

described by both Lehamann et al. and Holzmann et al.  Their work demonstrated that 

MUC18 is highly expressed in advanced and metastatic melanoma and that this 

expression is associated with tumor thickness, while weaker expression is detected in 

benign nevi and thin tumor lessions [127-129]. Our laboratory further demonstrated that 

the expression of MUC18 directly correlates with the potential of melanoma cells to 

form metastases in vivo [135]. Although the expression of MUC18 correlated with 

melanoma progression, the role of MUC18 in the metastatic process was not established.  

In an effort to elucidate the contribution of MUC18 to melanoma progression, 

MUC18 was overexpressed in a MUC18 negative, non-metastatic melanoma cell line, 

SB2. Overexpression of MUC18 in these cells resulted in increased tumor growth and 

experimental lung metastasis formation in nude mice. Furthermore, in vitro, ectopic 

expression of MUC18 resulted in increased homotypic and heterotypic adhesion 

between melanoma cells and endothelial cells, decreased attachment to laminin and 

increased MMP-2 activity, resulting in increased cell invasion [136].  This study 

revealed a critical role for MUC18 in melanoma progression, suggesting that by 

promoting melanoma cell intravasation, extravasation and intravascular survival, 

MUC18 is involved in metastasis formation.  

Because MUC18 is overexpressed on metastatic melanoma lesions as compared 

to benign nevi, it is possible that MUC18 can serve as a target for melanoma therapy. 

Our lab previously developed a fully human antibody against MUC18 (ABX-MA1, in 

collaboration with Abgenix Fremont, CA, USA) and demonstrated that treatment of 
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nude mice with the antibodies after i.v. or s.c. inoculation of melanoma cells, 

significantly decreased tumor growth and metastasis formation in nude mice, compared 

to treatment with control IgG. These data further describe the important role of MUC18 

in promoting the metastatic process in melanoma cell adhesion, invasion and 

angiogenesis. Moreover, these results suggest that ABX-MA1 can be used to target 

melanoma metastasis, as immunotherapy either alone or in combination with 

chemotherapy.  

In this aim, we further established the central role of MUC18 in the progression 

of melanoma. We demonstrate that stable silencing of MUC18 in two metastatic 

melanoma cell lines significantly decreases both tumor growth and experimental lung 

metastasis formation in nude mice, corroborating our previous results. 

Immunohistochemical analysis revealed that the diminished tumor size in MUC18-

silenced cells is a consequence of decreased cell proliferation and increased apoptosis, 

due, at least in part, to insufficient tumor vasculature. We believe that the discrepancy 

between the effect of MUC18 silencing on cell proliferation in vitro and in vivo is likely 

due to interactions between tumor cells and the microenvironment. In vivo, melanoma 

cell proliferation and angiogenesis can be mediated by secretion of various cytokines 

and growth factors from fibroblasts, immune cells, and other cells in the tumor 

microenvironment.  

Although it has been demonstrated that MUC18 contributes to melanoma 

progression by increasing homotypic interactions between melanoma cells and 

heterotypic interactions between melanoma cells and the extracellular matrix and 

vascular endothelial cells, it was proposed that MUC18 can also promote melanoma 
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progression by mediating downstream signaling events. Indeed, corroborating previous 

data, we validated that MUC18 silencing results in downregulation of MMP-2 

expression in vivo, and MMP-2 activity in vitro.  During tumor progression, increased 

expression of MMP-2 often stimulates cell signaling pathways which promote 

angiogenesis and contribute to tumor invasion and metastasis [166, 167]. Thus, we 

speculate that the reduction in tumor size and angiogenesis following MUC18 silencing 

is partially due to decreased MMP-2 expression and activity. 

These data suggest that MUC18 may promote melanoma progression by 

functioning both in regulation of downstream signaling events and interacting with cells 

in the microenvironment. The data obtained from this set of experiments enabled us to 

continue and study the role of MUC18 as a signaling molecule in melanoma progression.  
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CHAPTER 4: Specific Aim 2 

 

Identify Potential Downstream Target Genes Regulated by MUC18 and 

Determine the Mechanisms of their Regulation 

 

Introduction 

The role of MUC18 in melanoma intracellular signaling has not been fully 

elucidated. Very few studies have examined the involvement of MUC18 in cell signaling 

pathways; however, since the cytoplasmic domain of MUC18 contains several protein 

kinase recognition motifs, its potential involvement in intracellular signaling was 

proposed [45]. Specifically, outside-in signaling of MUC18 was studied in human 

endothelial cells and revealed that MUC18 functions in actin cytoskeleton 

reorganization, intercellular interaction, maintenance of cell shape, and control of cell 

migration [154]. Its role in cytoskeleton rearrangement was further described. Activation 

of MUC18 resulted in its association with the protein tyrosine kinase p59
Fyn

 leading to 

phosphorylation of the cytoskeleton associated proteins p125
FAK

 and Paxillin [154]. 

Additionally, MUC18 has been implicated in cell survival signaling pathways. A 

reciprocal regulation loop between MUC18 and AKT was described, but these signaling 

functions of MUC18 were not further characterized [156]. To further elucidate the 

mechanism by which MUC18 acts as a signaling molecule in melanoma, we conducted a 

cDNA microarray analysis utilizing a MUC18-silenced and control melanoma cell line 

to potentially identify novel target genes regulated by MUC18 (see Table-1). We 

identified a number of genes as downstream targets of MUC18, but focused our studies 
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on the protein, Id-1, because of its involvement in melanoma progression [162, 168-

170].  

Id-1 is part of the Id protein family, which is comprised of 4 members (Id-1-4).  

The Id proteins are known as “Inhibitors of differentiation” or “Inhibitors of DNA 

binding” and belong to the helix-loop-helix (HLH) family of transcription factors (but do 

not act as transcription factors). These proteins lack the basic DNA binding domain and 

thus function as dominant-negative regulators of basic HLH (bHLH) transcription 

factors by physically binding and hetero-dimerizing with the HLH domain to prevent 

their binding to the DNA [171-173].  Specifically, transcriptional inhibition by Id 

proteins is mediated either by their binding to bHLH proteins that are ubiquitously 

expressed or by their binding to tissue restricted bHLH transcription factors such as the 

myogenic marker, MyoD [174, 175]. 

 Id proteins, including Id-1, have been shown to be involved in regulation of 

several developmental and cellular processes [176].  As “inhibitors of differentiation”, Id 

proteins have been shown to be down-regulated during cell differentiation. For example, 

Id-1 overexpression in embryonic and postnatal cerebral cortex inhibited both early and 

late stages of neuronal differentiation [177]. The critical role of Id-1 in regulation of 

embryogenesis was also shown, as knock out mice for Id-1 and Id-3 (Id-1
−/−

 Id-3
−/−

) 

were embryonically lethal. In fact, early embryos display a variety of phenotypic 

anomalies, including abnormal neurogenesis, vascular malformations and lack of blood 

vessel sprouting and branching into neuroectoderm [178]. In addition to cell 

differentiation, Id-1 plays an important role in regulation of cell growth. For instance, Id-

1 was shown to down-regulate the expression of the CDK inhibitors p21
Cip1/Waf1 

and 
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p16
INK4a

, promoting cell cycle progression [168, 179, 180]. Moreover, premature 

senescence due to upregulation of p16
 INK4a

 expression was demonstrated in Id-1 

deficient mouse embryo fibroblasts [168-170].      

Because Id-1 plays an important role in regulating cellular processes such as 

differentiation and cell cycle progression, it is not surprising that aberrant expression of 

Id-1 results in cellular transformation. It was suggested that Id proteins, particularly Id-1, 

function as oncogenes in several malignancies [162]. Upregulation of Id-1 expression 

was demonstrated in various primary human cancers such as breast [181], prostate 

cancers [182], endometrial [183], ovarian [184] gastric [185, 186], and melanoma [170].   

 In melanoma, increased Id-1 expression was shown to correlate with melanoma 

progression. A tissue microarray study of 119 melanoma cases demonstrated that Id-1 

expression significantly associates with increased tumor thickness and decreased patient 

survival. In addition, it was shown that in patients harboring the BRAF mutation, Id-1 

expression was significantly increased, suggesting that Id-1 is a downstream target of the 

RAS signaling pathway [187]. Moreover, analysis of tissue samples from various stages 

of melanoma demonstrated  that increased Id-1 expression at the RGP is associated with 

decreased expression of the CDK inhibitor p16
 INK4a 

[170].  Increased Id-1 expression in 

melanoma was also demonstrated by Byungwoo et al. Analysis of Id-1 expression in 

human melanoma cell lines from various stages of melanoma progression revealed that 

Id-1 expression is increased at the transcriptional level during the RGP and the 

metastatic phase of melanoma. Interestingly, no gene amplification or epigenetic 

changes were detected in these cells [162]. Despite the evidence establishing elevated 

levels of Id-1 in melanoma, the mechanism of its regulation in melanoma has yet to be 
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elucidated. Herein, we propose that MUC18 promotes melanoma progression by 

modulating the expression of downstream genes. 
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Results 

Id-1 is a Downstream Target of MUC18 in Melanoma 

 To determine the mechanism by which MUC18 contributes to melanoma tumor 

growth and metastasis, we performed a cDNA microarray analysis, comparing
 
the gene 

expression pattern of NT-transduced cells and MUC18-silenced cells. Our analysis 

revealed a large number of genes differentially expressed following MUC18 silencing 

(partial list in Table-1). We decided to focus our studies on the differential expression of 

transcriptional regulators and found that Id-1 was down-regulated by 5.6-fold after 

MUC18 silencing. Western blot validated the cDNA microarray results, showing that Id-

1 was downregulated by 80% in MUC18-silenced A375SM cells and by 70% in 

MUC18-silenced C8161 cells, compared to NT-transduced cells (Figure 13A). 

Moreover, immunohistochemical analysis of s.c tumor samples after 35 days confirmed 

that Id-1 expression was diminished in tumors formed from MUC18-silenced cells 

(Figure 13B). Taken together, these data demonstrate that in the absence of MUC18, Id-

1 expression is attenuated, establishing the link between MUC18 and Id-1 in our 

experimental system. 
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Table-1. Partial list of differentially expressed genes following cDNA microarray 

analysis, comparing MUC18-silenced and NT-transduced A375SM cells 

The expression of two transcriptional regulators, Inhibitor of DNA binding 1 (Id-1) and 

Activating transcription Factor 3 (ATF-3), was modulated following MUC18 silencing 

in A375SM cells; The expression of Id-1 was decreased by 5.6 fold while the expression 

of its transcriptional inhibitor, ATF-3, was increased by 6.9 fold. 
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Figure 13 
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Figure 13. Expression of Id-1 Following MUC18 Silencing in the Metastatic 

Melanoma Cell lines, A375SM and C8161 

(A) Id-1 was identified in a cDNA microarray as a downstream target of MUC18. 

Western blot analysis of Id-1, expression after MUC18 silencing in A375SM and C8161, 

shows decreased Id-1 expression by 80% and 70% respectively, as compared to NT-

transduced cells. (B) Immunohistochemical staining for Id-1 illustrates downregulation 

of Id-1 expression in MUC18-silenced tumors 35 days after injection with MUC18-

silenced or NT-shRNA-transduced A375SM or C8161 cells. Images are shown at 10X 

magnification. 
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MUC18 Regulates Id-1 Expression at the Transcriptional Level 

To further analyze the mechanism of Id-1 regulation by MUC18, we cloned the 

Id-1 promoter (a promoter region of 1.4 kb from -1370 kb to +40 kb from transcription 

initiation site) in front of a luciferase reporter gene. We then evaluated Id-1 promoter 

activity in both A375SM and C8161 MUC18-silenced cells and found that Id-1 promoter 

activity decreased by more than 2.5-fold in MUC18-silenced A375SM cells (*p<0.01) 

and by more than 2-fold in MUC18-silenced C8161 (**p<0.001), as compared to NT-

transduced cells (Figure 14). These experiments revealed, for the first time, that MUC18 

regulates Id-1 expression at the transcriptional level. 
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Figure 14. Transcriptional Regulation of Id-1 Expression by MUC18 

The promoter of the Id-1 gene (1.4 kb, from -1370 to +40 from transcription start site) 

was cloned in front of a lucifearase expression vector (pGL3-basic vector) and was 

transiently transfected into both A375SM and C8161 expressing either MUC18 shRNA 

or NT shRNA. Relative Id-1 promoter-driven luciferase activity was compared to the 

luciferase activity of cells transfected with a promoterless luciferase pGL3-basic vector.   

Dual-Luciferase reporter assay demonstrates that MUC18 silencing significantly 

decreases Id-1 promoter-driven luciferase activity in both A375SM and C8161cells. 

*p<0.01, **p<0.001. 
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ATF-3 Represses Id-1 Promoter Activity in MUC18-Silenced Cells 

Having established that MUC18 transcriptionally regulates Id-1 expression, we 

then aimed to determine the mechanism of regulation of Id-1 by MUC18. The Id-1 

promoter was analyzed for potential transcription factor binding sites. We found putative 

binding sites of several transcription factors including Early Growth Factor-1 (EGR-1), 

Sp1, Nuclear Factor-1 (NF-1), CCAAT enhancer-binding protein (C/EBP) and 

Activating Transcription Factor/CREB (ATF/CREB), all of which were described 

previously [173, 188-190]. Interestingly, ATF-3, which is part of the ATF/CREB 

transcription factor family, was upregulated by 6.9-fold after MUC18 silencing in our 

cDNA microarray analysis (Table-1). The role of ATF-3 in regulation of Id-1 expression 

was also previously described in epithelial cells. ATF-3 has been shown to act as a 

repressor of Id-1 expression through increased binding to the Id-1 promoter [188, 191]. 

To confirm that MUC18 negatively regulates ATF-3 expression, Western blot analysis 

was performed. These data corroborated the cDNA microarray results and demonstrated 

that, as compared to NT-transduced cells, ATF-3 protein expression was up regulated by 

more than 9-fold in both MUC18-silenced A375SM and C8161 respectively (Figure 15), 

linking MUC18 and ATF-3 .  

To determine whether MUC18 transcriptionally regulates Id-1 expression via 

differential binding of ATF-3 to the Id-1 promoter, Chromatin immunoprecipitation 

(ChIP) was performed. These experiments revealed increased binding of ATF-3 to the 

Id-1 promoter in both MUC18-silenced A375SM and C8161 cells (Figure 16). Taken 

together, these data suggest that in the absence of MUC18, the expression and binding of 

ATF-3, is enhanced, leading to decreased expression of Id-1.  
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To further delineate whether ATF-3 acts as a repressor of Id-1 expression in 

melanoma, we exogenously expressed ATF-3 along with the Id-1 promoter in MUC18-

silenced and NT-transduced A375SM cells and measured the Id-1 promoter-driven 

luciferase activity (Figure 17A). Overexpression of ATF-3 resulted in a significant 

decrease of Id-1 promoter activity in both MUC18-silenced and NT-transduced A375SM 

cells (*p<0.05) (Figure 17B). To confirm that ATF-3 acts as a transcriptional inhibitor 

of Id-1, we mutated the Id-1 promoter using site-directed mutagenesis at the ATF-3 

binding site located at -1016 Kb replacing TGACGTCA to TGTGCAGCA, as described 

previously (Figure 17A) [188]. Mutation of the Id-1 promoter at the ATF-3 binding site 

significantly increased Id-1 promoter activity (*p<0.05), further validating that ATF-3 

acts as a transcriptional inhibitor of Id-1 (Figure 17B).  

To determine that ATF-3-mediated transcriptional inhibition of Id-1 results in a 

functional reduction in Id-1 protein expression, we cloned the ATF-3 cDNA into a 

lentiviral expression vector, and transduced parental A375SM and C8161 cells, which do 

not endogenously express ATF-3. Overexpression of ATF-3 in both melanoma cell lines 

resulted in decreased expression of endogenous Id-1 protein by 90% and 70%, 

respectively (Figure 18). Collectively, MUC18 silencing resulted in upregulation of 

ATF-3 expression and increased binding of ATF-3 to the Id-1 promoter, resulting in 

diminished expression of Id-1 protein. Accordingly, we conclude that ATF-3 acts to 

repress Id-1 transcription and protein expression in melanoma cells in the absence of 

MUC18. 
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Figure 15. Expression of ATF-3 Following MUC18 Silencing in the Metastatic 

Melanoma Cell Lines, A375SM and C8161 

ATF-3 was identified in a cDNA microarray as a downstream target of MUC18. 

Western blot analysis of ATF-3 expression in MUC18-silenced A375SM and C8161 

cells confirms increased expression of ATF-3 by 9.8-fold and 9.7-fold in A375SM and 

C8161, respectively, as compared to NT-transduced cells. 
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Figure 16. Chromatin Inmmunoprecipitation Assay to Identify Differential Binding 

of ATF3 to the Id-1 Promoter in MUC18-Silenced A375SM and C8161 Cells 

The region of the ATF-3 binding site on the Id-1 promoter was amplified by PCR 

following chromatin immunoprecipitation of ATF-3 bound DNA. Increased binding of 

ATF-3 to the Id-1 promoter is demonstrated in both MUC18-silenced cell lines as 

compared to NT-trasduced cell lines (A375SM and C8161). IgG antibodies were used as 

negative controls and input DNA was used to ensure an equal amount of chromatin used 

in each assay.  
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Figure 17. MUC18 Regulates Id-1 Promoter Activity Through ATF-3 

(A) Schematic illustration of the Id-1 promoter shows an ATF-3 binding site located  

-1016 bp from the transcription start site. Mutation of the ATF-3 binding site is 

represented in red. (B) A375SM cells stably expressing either MUC18 or NT shRNA 

were transiently transfected with the Id-1 promoter-driven luciferase construct and with 
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either the ATF-3 expression plasmid or an empty vector control (pcDNA3.1). 

Transduced cells were also transfected with a mutated Id-1 promoter-driven luciferase 

construct  Luciferase-driven Id-1 promoter activity in NT-transduced cells significantly 

decreased after transient transfection of cells with an ATF-3 expression vector. Point 

mutation at the ATF-3 binding site on the Id-1 promoter (-1016) significantly increased 

luciferase-driven Id-1 promoter activity in MUC18-silenced cells, as compared to 

promoter activity in MUC18-silenced cells following transient transfection with an ATF-

3 expression vector. *p<0.05. 



 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. ATF-3 Overexpression Inhibits Endogenous Expression of Id-1 in the 

Metastatic Melanoma Cell Lines, A375SM and C8161 

Western blot analysis depicting decreased expression of endogenous Id-1 protein by 

90% and 70% in A75SM and C8161, respectively, after stable overexpression of ATF-3 

in the low ATF-3-expressing metastatic melanoma cell lines, A375SM and C8161, as 

compared to control cells expressing an empty vector. 
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Rescue of MUC18 in MUC18-Silenced Cells Reverts the Expression of Id-1 and 

ATF-3 

 To ascertain that the differential expression of Id-1 and ATF-3 were not off target 

effects of MUC18, rescue of MUC18 expression in MUC18-silenced cells was 

performed. A non-targetable MUC18 expression vector was generated by creating five 

silent point mutations in the MUC18 cDNA at the sequence which is targeted for 

silencing of MUC18 by the MUC18 shRNA.  MUC18-silenced A375SM and C8161 

cells were stably transduced with lentiviruses containing the puromycin resistant, non-

targetable-MUC18 expression vector or the puromycin resistant control vector. Western 

blot analysis demonstrated that MUC18 expression was successfully rescued in both 

MUC18-silenced A375SM and C8161 cells as compared to control vector-transduced 

cells (Figure 19A). Since MUC18 silencing resulted in decreased Id-1 expression and 

increased ATF-3 expression, we hypothesized that these expression patterns would be 

reverted following re-expression of MUC18 in MUC18-silenced cells. Indeed, rescue of 

MUC18 resulted in increased Id-1 expression and decreased ATF-3 expression (Figure 

19B), thereby demonstrating that both Id-1 and ATF-3 were specifically regulated by 

MUC18. 
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 Figure 19 
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Figure 19. Rescue of MUC18 Expression in MUC18-Silenced Cells Reverts the 

expression of Id-1 and ATF-3  

(A) MUC18-silenced A375SM and C8161 cells were stably transduced with either a 

non-targetable MUC18 expression vector or an empty vector control. Western blot 

analysis demonstrates that MUC18 expression is restored in MUC18-silenced A375SM 

and C8161 cells transduced with the rescue vector, compared to MUC18 silenced cells 

transduced with an empty vector. (B) Rescue of MUC18 expression in MUC18-silenced 

cells results in increased Id-1 expression by 2-fold in A375SM and by 1.8-fold in 

C18161 cells. The expression of ATF-3 decreased by 10-fold in A375SM and by 2-fold 

in C8161, compared to cells transduced with an empty vector control. 
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Discussion 

 It has been well established that increased expression of the adhesion molecule, 

MUC18, correlates with disease progression and metastasis in melanoma [127, 135, 136, 

145]. Outside-in signaling mediated by other types of cell adhesion molecules such as 

integrins, cadherins as well as adhesion molecules from the immunoglobulin-like family, 

have been shown to contribute to metastatic progression by promoting cell survival, 

migration, invasion and angiogenesis [105, 148]. For instance, clustering of I-CAM in 

endothelial cells induces an intracellular signaling cascade which leads to activation of 

the small GTPase, RhoA, and increased free, cytosolic Ca
2+

. RhoA-mediated release of 

cytosolic Ca
2+ 

leads to cytoskeleton reorganization and can influence cell migration
 

[192-194]. Moreover, it has been demonstrated that N-CAM regulates the adhesion 

between tumor cells and the extra cellular matrix by promoting the activation of the 

fibroblast growth factor receptor (FGFR) resulting in β1 integrin-mediated cell adhesion, 

and ultimately preventing tumor cell dissemination [195].   

 Thus, it is possible that upregulation of MUC18 in melanoma can contribute to 

acquisition of the metastatic melanoma phenotype not only by modulating cell adhesion 

but also by mediating cell signaling [45]. Several potential protein kinase recognition 

domains, including protein kinase A (PKA), protein kinase C (PKC) and Casein Kinase 

2(CK2), reside in the cytoplasmic domain of MUC18, suggesting its putative role in 

initiating downstream cell signaling events [45, 196].  Much effort has been made to 

identify downstream signaling events initiated by MUC18, although the MUC18 ligand 

has yet to be identified.  Anfosso et al. were the first to demonstrate that antibody cross 

linking of MUC18 in endothelial cells resulted in focal adhesion assembly, cytoskeleton 
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reorganization and cell migration. Activation of MUC18 induced recruitment of the 

protein tyrosine kinase, p59
Fyn

, to its cytoplasmic domain and resulted in tyrosine 

phosphorylation of both p125
FAK 

and Paxillin [154]. A subsequent study further 

established that upon antibody activation of MUC18, Ca
2+ 

influx was increased, in a 

p59
Fyn

 dependent manner, resulting in phosphorylation of phospholipase C-γ (PLC-γ),  

proline-rich tyrosine kinase 2 (Pyk2) and p130
cas 

and the formation of a complex 

between PyK2 and p130
cas

. This study demonstrated the role of MUC18 in regulating 

cytoskeleton reorganization through outside-in signaling mediated by non-receptor 

tyrosine kinases [155].  Another study has revealed that MUC18 is involved in cell 

survival signaling and identified a reciprocal regulation between MUC18 and AKT. That 

is, overexpression of MUC18 resulted in activation of AKT. Likewise, constitutive 

activation of AKT resulted in elevated levels of MUC18 protein expression. This 

regulatory loop ultimately resulted in increased cell survival in stress conditions via 

inhibition of the pro-apoptotic protein BAD [156].  

Despite the fact that the cytoplasmic tail of MUC18 contains several protein 

kinase recognition motifs as well as a tyrosine residue (Tyr
641

), no phosphorylation has 

been described [45, 127]. This might suggest that in melanoma MUC18 might act either 

in a similar fashion to N-CAM, and interact in cis with adjacent molecules, such as 

integrins, to induce downstream signaling or by regulating secondary messengers, such 

as Ca
2+

.      

To further describe the role of MUC18 as a signaling molecule and mediator of 

outside in signaling regulating gene expression, we conducted a cDNA microarry 

analysis comparing gene expression patterns between MUC18-silenced cells and NT-
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transduced cells. Since MUC18 has been shown to contribute to melanoma cell invasion 

and MMP-2 expression we decided to focus our studies on the differential expression of 

two transcriptional regulators found in our microarray analysis, Id-1 and ATF-3, which 

were previously shown to regulate cell invasion and MMP-2 expression. Id-1 is a 

regulator of differentiation and DNA binding, that functions by regulating gene 

transcription as a result of its binding and inhibition of bHLH proteins [171]. In recent 

years, the role of Id-1 in tumorigenesis has been extensively studied in several different 

malignances and has been shown to correlate with poor prognosis and decreased survival 

in a variety of different cancers including breast, ovarian, endometrial and melanoma 

[183, 187, 197, 198]. Furthermore, Id-1 has been shown to play a role in promoting 

angiogenesis, invasion and inhibition of cellular senescence [178, 199-202]. While 

increased Id-1 expression correlates with melanoma progression and Id-1 was shown to 

be transcriptionally regulated during the melanoma progression, the precise mechanism 

of its transcriptional regulation in melanoma has yet to be elucidated.  Hence, we 

decided to study whether Id-1 expression in melanoma is regulated by MUC18. Our 

cDNA microarry analysis revealed a 5.6-fold decrease in Id-1 expression MUC18 

following MUC18 silencing. We confirmed that Id-1 expression is indeed decreased in 

MUC18-silenced cells, as well as in tumor samples obtained from mice injected with 

MUC18-silenced cells, thereby establishing a clear link between MUC18 and Id-1 in 

melanoma. Since cDNA analysis is based on the differential expression of mRNA in the 

cell, we decided to study whether MUC18 regulates Id-1 at the trancriptional level. 

Utilizing a lucifearase-driven Id-1 promoter, we demonstrated regulation of Id-1 by 

MUC18 at the transcriptional level. Several transcription factors binding sites including 
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Sp1, EGR1, NF-1 and ATF/CREB are located on the Id-1 promoter and have been 

previously shown to be involved in the transcriptional regulation of Id-1 [173, 188, 190]. 

Loss of the repressor complex formed between NF-1, the retinoblastoma protein [203], 

and histone deacetylase 1 (HDAC1) has been shown to increase Id-1 transcription in 

breast cancer cells [173]. Additionally, previous studies have linked ATF-3 to 

transcriptional inhibition of Id-1 [188, 191]. Because we identified ATF-3 as a MUC18 

downstream target in our cDNA microarray, we pursued its potential involvement in Id-

1 regulation.  

ATF-3 is a stress-inducible protein which is part of the ATF/CREB family of 

transcription factors induced by the p38 signaling pathway [204]. It has been shown to 

act in a promoter-dependent manner, either as a repressor or an activator of transcription 

[205]. Therefore, the role of ATF-3 in cancer development has been suggested to be 

dichotomous [206]. While the oncogenic role of ATF-3 has been implicated in cancers 

such as prostate [207] and breast [206], it has also been shown to function as a tumor 

suppressor in colorectal cancer [208] and ovarian cancer cells [209]. A recent study has 

described ATF-3 as having a tumor suppressive role in melanoma by negatively 

regulating IL-6 expression [210]. Furthermore, Kang et al. have demonstrated that, in 

epithelial cells, ATF-3 binds to the Id-1 promoter and represses its transcription due to a 

stress response of the cells [188]. Activation of ATF3 was further shown to inhibit Id-1 

expression in a malignant mesothelioma orthotopic mouse model [211]. Our finding that 

MUC18 silencing increased the expression of ATF-3 further supports the tumor-

suppressive role of ATF-3 in melanoma.  
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These results raised the possibility that MUC18 negatively regulates ATF-3 

expression, and promotes expression of Id-1. In this regard, promoter and ChIP analyses 

illustrated that, indeed, in MUC18-silenced cells upregulation of ATF-3 results in 

increased binding of ATF-3 to the Id-1 promoter and subsequent repression of Id-1 

transcription. Additionally, stable overexpression of ATF-3 in two metastatic melanoma 

cell lines, A375SM and C8161, decreased endogenous Id-1 expression, further 

characterizing the role of ATF-3 in repression of Id-1 expression. Although this work 

only describes ATF-3-mediated Id-1 transciptional regulation, it is likely that many 

transcription factors work in concert to regulate Id-1. It is well understood that the 

transcriptional regulation of Id-1 is not mediated by ATF-3 alone, but rather by well 

orchestrated differential binding of several transcriptional regulators and co-factors. 

These interactions are currently being explored. 

Since ATF-3 is a stress inducible transcription factor which is upregulated by the 

p38 MAPK signaling pathway [205], it is possible that MUC18 inhibits the p38 MAPK 

signaling pathway and subsequently ATF-3, thus promoting Id-1 expression. Similarly, 

Harper et al. have shown that suspension or wounding of leading keratinocytes, 

decreases their adhesion to laminin 5. This resulted in increased activation of p38, which 

leads to increased phosphorylation of ATF-2, a trans-activator of ATF-3, and 

consequently increased ATF-3 expression [212]. Furthermore, Kang et al. have 

demonstrated that Id-1 expression decreases following upregulation of ATF-3 at the 

transcriptional level [188]. These data further suggest that upon MUC18 silencing, 

melanoma cell adhesion also decreases, resulting in phosphorylation of both p38 and 

ATF-2 leading to inhibition of Id-1 by ATF-3. An additional mechanism for the 
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regulation of Id-1 expression might also exist. CREB shares the same binding site of 

ATF-3 on the Id-1 promoter, indicating that they may bind in a competitive manner. It 

can be further speculated that the increase in MUC18 expression which promotes Ca
2+

 

influx and CREB activation, can also increase CREB binding to the Id-1 promoter, 

preventing ATF-3 from binding, and ultimately promoting Id-1 expression. Further 

studies are needed to determine the balance of transcription factor binding to the Id-1 

promoter.     

Finally, we confirm the link between MUC18, Id-1 and ATF-3, by rescuing 

MUC18 expression in MUC18-silenced cells.  The expression patterns of both Id-1 and 

ATF-3 reverted after rescue of MUC18 expression in both A375SM and C8161, 

confirming that the modulation of Id-1 and ATF-3 was not an off-target effect of 

MUC18 silencing.  

In conclusion, we demonstrate that MUC18 regulates Id-1 expression through 

inhibition of ATF-3. Our current studies support the notion that MUC18 does not simply 

function to promote cell adhesion, but rather is involved in cell signaling events which 

affect the expression of various genes, including Id-1 and ATF-3. We thus propose a 

novel signaling function of MUC18 by which it acts to promote melanoma progression 

through regulation of gene expression.   
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CHAPTER 5: Specific Aim 3 

 

Determine the Contribution of the Genes Regulated by MUC18 to the 

Malignant Phenotype of Melanoma  

 

Introduction 

The results from this dissertation, thus far, demonstrate that MUC18 plays a key 

role in regulating the expression of genes, such as Id-1 and ATF-3, which contribute to 

the progression and metastasis of melanoma. A critical step in the metastatic process is 

the ability of cells to invade through the basement membrane, intravasate and 

extravasate through the vasculature to form distant metastases. MMPs, such as MMP-2 

and MMP-9, have been shown to play pivotal role in tumor invasion, migration, and 

angiogenesis, as they degrade the basement membrane
 
and ECM [213, 214]. Increased 

expression of MMP-2 has been shown to be important for melanoma progression [96]. 

We have previously established the role of MUC18 in melanoma cell invasion and 

demonstrated that MUC18 regulates MMP-2 expression and activity. Overexpression of 

MUC18 in a non-metastatic melanoma cell line, SB-2, resulted in elevated levels of 

MMP-2 activity and increased invasiveness through Matrigel-coated filters [136]. 

Moreover, inhibition of MUC18 by ABX-MA1 in melanoma cell lines inhibited MMP-2 

transcription, activity, and cell invasion [145]. However the mechanism of how MUC18 

regulates MMP-2 expression and activity has yet to be described.  

Interestingly, the MUC18 downstream target, Id-1, has also been implicated in 

promoting tumor cell invasion and MMP-2 expression. In breast and endometrial 
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carcinomas, among other cancers, Id-1 was shown to promote cell invasion [183, 215]. 

Interestingly, it was demonstrated that Id-1 promotes tumor cell invasion by increasing 

MMP-2 expression and activity. In fact, it was observed that B6RV2 lymphoma cells 

tumors from Id-1
+/−

 Id-3
−/−

 knockout mice displayed lower levels of MMP-2 expression 

[178]. In Id-1
−/−

 knockout mouse embryo fibroblasts, MMP-2 activity was significantly 

diminshed [199]. On the other hand, Id-1 overexpression in a prostate cancer cell line 

resulted in enhanced cell invasion as well as MMP-2 activity [216]. Based on these data, 

we hypothesized that MUC18 promotes melanoma cell invasion through Id-1-mediated 

regulation of MMP-2 expression and activity.   
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Results 

Increased Invasive Capacity of MUC18-Silenced Cells Following Id-1 

Overexpression 

Because Id-1 is a downstream target of MUC18, we rescued its expression in 

MUC18 silenced-cells to examine its role in melanoma progression. Id-1 cDNA was 

cloned into a lentiviral expression vector and lentivirus containing the Id-1 cDNA and an 

empty vector control were produced. MUC18-silenced A375SM and C8161 cells were 

transduced and then selected for puromycin resistance. Western blot analyses confirmed 

the Id-1 overexpression in MUC18-silenced A375SM and C8161 cells resulted in 2.5- 

and 3.3-fold increases, respectively, in Id-1 protein levels, compared to control cells 

(Figure 20). 

Recent studies in several tumor models, including breast [163, 215] and bladder 

[217] cancers have demonstrated that Id-1 participates in tumor cell invasiveness. 

Having established that MUC18 expression promotes melanoma cell invasion and 

upregulation of MMP-2 expression and activity (Figures 10, 11) [135, 145], we assessed 

whether MUC18 contributes to the invasive phenotype of melanoma cells through 

regulation of Id-1 expression. A Matrigel invasion assay was used to evaluate the 

invasive capacity of MUC18-silenced cells overexpressing Id-1, compared to that of 

MUC18-silenced cells expressing an empty vector control. As seen in Figure 20A and B, 

cell invasiveness was promoted following Id-1 overexpression in MUC18-silenced 

A375SM cells by 5-fold (Figure 21A) and by nearly 2-fold in MUC18-silenced C8161 

cells (Figure 21B) (**p<0.001, *p<0.01, respectively). Because Id-1 rescued the 
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invasive activity of MUC18-silenced cells, these data suggest that MUC18 mediates 

melanoma cell invasion through Id-1.  

To further examine the mechanism by which Id-1 contributes to increased 

invasiveness of MUC18-silenced cells, we analyzed the effect of Id-1 overexpression on 

MMP-2 expression and activity. Id-1 overexpression in MUC18-silenced A375SM and 

C8161 resulted in increased MMP-2 expression by 3.4-fold and by 1.5-fold, 

respectively, compared to MUC18-silenced cells expressing empty vector control 

(Figure 22A). Furthermore, zymography assay demonstrated that Id-1 overexpression in 

MUC18-silenced cells increased the MMP-2 collagenase activity in MUC18-silenced 

cells, as compared to control cells (Figure 22B). These data describe a novel mechanism 

by which  Id-1 acts as a signaling intermediate between MUC18 and MMP-2 .  
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Figure 20. Rescue of Id-1 Expression in MUC18-Silenced Cells 

Id-1 expression is restored by stable transduction of an Id-1 expression vector in 

MUC18-silenced A375SM and C8161 cells. Id-1 expression increased in MUC18-

silenced A375SM and C8161 transduced with Id-1 expression vector by 2.5-fold and by 

3.3-fold, respectively, as compared to control cells transduced with empty vector. 
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Figure 21. Rescue of Id-1 Expression in MUC18-Silenced A375SM and C8161 Cells 

Increases the Invasive Phenotype of the Cells  

Matrigel invasion assay demonstrating (A) overexpression of Id-1 in MUC18-silenced 

A375SM significantly increases cell invasiveness. **p<0.001. (B) Overexpression of Id-

1 in MUC18-silenced C8161cell significantly increases their invasive capacity. *p<0.01. 

Data are expressed as mean ± SEM. 
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Figure 22. Rescue of Id-1 Expression in MUC18-Silenced A375SM and C8161 Cells 

Increases MMP-2 Expression and Activity 

(A) Western blot analysis demonstrates increased expression of MMP-2 after rescuing 

Id-1 expression in MUC18-silenced A375SM and C8161 cells. MMP-2 expression 

increases by 3.4-fold in MUC18-silenced A375SM cells overexpressing Id-1 and by 1.5-

fold in  MUC18-silenced C8161 cells overexpressing Id-1, as compared to empty vector 

control expressing cells  (B) Zymography assay demonstrates the proteolytic activity of 

MMP-2. Samples were loaded on a gelatin impregnated SDS gel. As seen by increased 

band intensity, MMP-2 activity increases following overexpression of Id-1 in both 

MUC18 silenced A375SM and C8161 cells, compared to control cells.  
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Id-1 Contributes to the Invasive Capacity of SB-2 Cells and Promotes Expression of 

MMP-2 

Since melanoma cell invasiveness, and MMP-2 expression and activity were 

rescued in MUC18-silenced cells overexpressing Id-1, we sought to further delineate the 

role of Id-1 in regulating MMP-2 expression and melanoma cell invasion by utilizing 

non-metastatic melanoma cells, SB-2, which do not express MUC18 and express low 

levels of  Id-1.  Id-1 was stably expressed in SB-2 cells via lentiviral-mediated Id-1 

overexpression. Following puromycin selection, expression of Id-1 was analyzed. 

Western blots confirmed that Id-1 was overexpressed in SB-2 cells with a 7-fold increase 

in expression, compared to control cells (Figure 23A). 

To further assess the function of Id-1 in melanoma cell invasion, we examined 

the invasive capacity of SB-2 cells overexpressing Id-1 using a Matrigel invasion assay. 

Id-1 overexpression in SB-2 cells resulted in a greater than 3-fold increase in cell 

invasion, as compared to control SB-2 cells (Figure 23B). This increase in invasiveness 

correlated with elevated expression of MMP-2. Western blot analysis showed that Id-1 

overexpression in SB-2 cells resulted in 2-fold increase in MMP-2 protein expression, as 

compared to control cells (Figure 24).  These data further establishes the regulation of 

MMP-2 by Id-1. 
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Figure 23. Overexpression of Id-1 in the Non-Metastatic Melanoma Cell Line, SB-2 

Increases their Invasive Capacity 

(A) Western blot analysis demonstrates increased Id-1 expression by 7-fold, following 

stable transduction of Id-1 expression vector into SB-2 cells, compared to cells 

transduced with empty vector (E.V). (B) A Matrigel invasion assay demonstrates a 

significant increase in SB-2 cell invasion capacity after overexpression of Id-1, as 

compared to SB-2 cells expressing empty vector (E.V). *p<0.01. Each group was plated 

in Matrigel invasion chambers, in triplicates, and in serum free medium. Data represents 

the average number of invaded cells and is expressed as mean ± SEM. 
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Figure 24. Id-1 Expression in the Non-Metastatic Melanoma Cell Line, SB-2, 

Increases MMP-2 Expression 

Western blot analysis shows that overexpression of Id-1 in SB-2 cells results in 

increased MMP-2 expression by 2-fold as compared to control cells (E.V.).  
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Id-1 Transcriptionally Regulates MMP-2 Expression by Inducing Differential 

Expression and Binding of Sp1 and Ets-1 to the MMP-2 Promoter   

It has been previously demonstrated by others that in prostate cancer cells, 

lymphoma cells and mouse embryo fibroblasts as well as by our studies in melanoma 

cell lines (Figure 22 and 24) that Id-1 expression correlates with increased MMP-2 

expression [178]. However, how Id-1 participates in the regulation of MMP-2 expression 

has not been fully elucidated. To ascertain the mechanism by which Id-1 regulates 

MMP-2, the MMP-2 promoter (1.8 kb) was cloned in front of a luciferase reporter gene 

and MMP-2 promoter activity was evaluated in SB-2 cells overexpressing Id-1. MMP-2 

promoter-driven luciferase activity was increased by more than 2.5-fold in SB-2 cells 

overexpressing Id-1, as compared to control SB-2 cells (*p<0.01) (Figure 25). Because 

the SB2 cells utilized in these experiments lack endogenous MUC18 expression, these 

results clearly establish a link between Id-1, melanoma cell invasiveness and MMP-2 

expression. 

MMP-2 transcription has been previously shown to depend on the recruitment 

and coordination of several transcription factors. Figure 26A illustrates a schematic of 

the MMP-2 promoter, depicting potential transcription factor binding sites [218]. To 

determine whether Id-1 regulates MMP-2 transcription through differential binding of 

transcription factors, we performed a ChIP assay. Specific primers were designed to 

amplify the potential transcription binding site of p53, Ets-1, CREB, Sp1 and AP-2α. 

ChIP assays demonstrated that Id-1 overexpression in SB-2 cells resulted in increased 

recruitment and binding of both Sp1 and Ets-1 (located between positions -70 and -91 

and 1255 and -1248 respectevly) to the MMP-2 promoter, as compared to control cells 
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expressing an empty vector (Figure 26B). The role of Ets-1 and Sp1 in promoting MMP-

2 expression was previously studied; in pancreatic cancer cells, it was established that 

MMP-2 expression is dependent on Ets-1 binding to the MMP-2 promoter [219]. 

Additionally, Sp1 was shown to play an important role in promoting MMP-2 

transcription in astroglioma cells [218]. Although we examined the binding of other 

transcription factors, including AP-2α, CREB and p53, to the MMP-2 promoter, their 

recruitment was unaffected by Id-1 overexpression (Figure 26B and data not shown).  

To determine whether the enhanced binding of Ets-1 and Sp1 to the MMP-2 

promoter is due to their elevated expression following Id-1 overexpression, western blots 

were performed. Id-1 overexpression in SB-2 cells resulted in increased expression of 

both Ets-1 and Sp1 by 1.7-fold as compared to control cells (Figure 27A, B). These 

results indicate that Id-1 positively regulates MMP-2 transcription by modulating both 

the expression and binding of Ets-1 and Sp1 transcription factors to the Id-1 promoter.  
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Figure 25. Transcriptional Regulation of MMP-2 by Id-1 

SB-2 cells stably expressing Id-1 were transiently transfected with either a MMP-2 

promoter-driven luciferase vector (MMP-2-pGL3) or a promoterless luciferase vector 

(pGL3). MMP-2 promoter-driven luciferase activity increased by more than 2.5-fold in 

SB-2 cells stably overexpressing Id-1 as compared to control cells (E.V.). *p<0.01. 

Lysates were analyzed in triplicate for luciferase activity and expressed as mean ± SEM.   
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Figure 26. Regulation of MMP-2 Transcription by Id-1 Through Differential 

Binding of Regulatory Factors 

(A) Schematic representation of transcription factor binding sites on the MMP-2 

promoter. (B) Chromatin Immunoprecipitation analyses were performed utilizing the 

Sp1, AP-2 and Ets-1 antibodies, followed by PCR amplification of their binding sites on 

the MMP-2 promoter. Stable expression of Id-1 in SB-2 cells increases Sp1 and Ets-1 

binding to the MMP-2 promoter as compared to SB-2 control cells (E.V.). No 

differences were observed in AP-2 binding of to the MMP-2 promoter following Id-1 

expression. IgG antibodies were used as negative controls and input DNA was used to 

ensure an equal amount of chromatin used in each assay. 
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Figure 27. Id-1 Regulates the Expression of Ets-1 and Sp-1 

Western blot analysis depicting increased protein expression of (A) Ets-1 and (B) Sp1 by 

1.7-fold, following overexpression of Id-1 in SB-2 cells, as compared to cells expressing 

empty vector (E.V.). 

A B 
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Discussion  

In this aim, we elucidated the role of Id-1 in melanoma progression as a 

downstream target of MUC18. Id-1 was shown to promote tumorigenesis in several 

cancers by acting as a regulator of various cellular processes, including growth and 

survival [220, 221], cellular senescence [168, 169, 200, 222], angiogenesis [178, 199, 

223, 224] and invasion [183, 201, 215, 225]. Because we have discovered that MUC18 

regulates Id-1 and showed that MUC18 promotes melanoma cell invasion (Figure 11 and 

[136, 145]), we were particularly interested in studying the function of Id-1 in melanoma 

cell invasion.  First, to establish whether Id-1 participates in melanoma cell invasion, we 

overexpressed Id-1 in MUC18 silenced cells. The invasive capacity of MUC18-silenced 

cells (A375SM and C8161) was significantly increased in cells that overexpress Id-1, 

implicating that Id-1 is a signaling mediator involved in MUC18 induced melanoma cell 

invasion.   

This study, as well as previous work from our laboratory, established that 

MUC18 regulates both MMP-2 expression and activity (Figure 10, 11) [136, 145]. 

Numerous connections between Id-1 expression and the expression of MMPs have been 

previously suggested. Lyden et al. have shown that in Id1
+/-

 Id3
-/-

 mice, MMP-2 

expression was decreased as compared to wild-type mice. Id-1 was also shown to play a 

role in regulating MMP expression in various breast cancer models. In fact, constitutive 

expression of Id-1 in mammary epithelial cells increased the expression of a novel 120 

kDa MMP-like protein [201, 225]. Moreover, siRNA-mediated inhibition of Id-1 

expression in metastatic breast cancer cells resulted in a significant decrease of MT1-

MMP protein expression [215]. In the non-aggressive prostate cancer cells, LNCaP, 
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ectopic overexpression of Id-1 resulted in increased MMP-2 activity and cell invasion 

[216].  Experiments utilizing mouse embryo fibroblasts that lacked Id-1 expression 

revealed that MMP-2 gelatinase activity was decreased as compared to wild type cells 

[199]. Additionally, cDNA microarray analysis of Id1
−/−

 endothelial cells identified a 

reduction in MMP-2 expression, compared to their wild type counterparts [226]. In light 

of these findings, we raised the question of whether Id-1 mediates the diminished MMP-

2 expression in MUC18-silenced cells. To that end, we examined MMP-2 expression 

and activity in MUC18-silenced cells overexpressing Id-1. We found that overexpression 

of Id-1 in MUC18-silenced A375SM and C8161 increased MMP-2 expression and 

activity, as compared to MUC18-silenced cells expressing empty vector control. Our 

studies, therefore, implicate Id-1 as a positive regulator of MMP-2, downstream of 

MUC18. The increased levels of MMP-2 expression and activity may account for the 

increased cell invasiveness through Matrigel in MUC18-silenced cells overexpressing 

Id-1.  

It should be noted that Id-1 was shown to upregulate the expression of other 

MMPs, that can, in turn, promote cell invasion. For instance, in breast cancer sells, Fong 

et al. have demonstrated that siRNA mediated Id-1 inhibition resulted in decreased MT1-

MMP expression [215]. MT1-MMP itself promotes ECM degradation, but can also act 

as an activator of MMP-2 by proteolysis of the pro-MMP-2 enzyme. Furthermore, 

MMP-2 activity can also be regulated by the tissue inhibitor of metalloproteinase 2 

(TIMP-2) [227]. It is possible that Id-1 acts as an inhibitor of TIMP-2 expression. Id-1-

mediated MMP-2 expression could therefore be influenced by the potential interaction of 

Id-1 with TIMP-2. Id-1 may inhibit TIMP-2, thereby promoting increased MMP-2 
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proteolysis by MT1-MMP. Id-1 likely modulates several related pathways which 

ultimately lead to enhanced melanoma cell invasion.  

We initially observed that MMP-2 expression is decreased both in vitro and in 

vivo following MUC18 silencing in metastatic melanoma cell lines. This reduction could 

possibly result from a synergistic effect of the attenuation of Id-1 expression and 

increased ATF-3 expression. Yan et al. demonstrated that ATF-3 acts to repress MMP-2 

expression and activity via p53 [228]. Thus, silencing of ATF-3 in MUC18-silenced 

cells overexpressing Id-1 could potentially elevate MMP-2 expression even further in 

these cells. 

Because Id-1 functions to regulate gene expression, we hypothesized that Id-1 

regulates MMP-2 expression at the transcriptional level. To that end we stably 

overexpressed Id-1 in a non-metastatic melanoma cell line, SB-2, which lacks or 

expresses MUC18 and Id-1 at very low levels. Like Id-1 overexpressing MUC18-

silenced cells, SB-2 cells that overexpress Id-1 exhibited enhanced cell invasion. 

Moreover, MMP-2 expression also increased following Id-1 expression in SB-2 cells. 

This set of experiments demonstrated that overexpression of Id-1 results in a functional 

protein, modulating both the invasive behavior of melanoma cells and MMP-2 

expression. These data confirm that, in melanoma cells, Id-1 alone can promote the 

switch from non-invasive to invasive behavior.         

Although previous studies determined that Id-1 expression correlates with MMP-

2 expression, the mechanism by which Id-1 regulates MMP-2 expression had yet to be 

elucidated. To establish that Id-1 functions as a regulator of MMP-2 gene expression, we 

cloned the MMP-2 promoter in front of a lucifearase reporter gene. Our results 
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demonstrate that MMP-2 promoter activity significantly increased following 

overexpression of Id-1 in SB-2 cells. Thus, these results demonstrate that Id-1 regulates 

MMP-2 at the transcriptional level.  

Id-1 can regulate gene expression by binding and sequestering ubiquitously 

expressed bHLH E-proteins. This binding inhibits E-proteins from binding either to the 

DNA alone or to tissue specific bHLH transcription factors, thereby inhibiting their 

transcriptional activity [229]. As such, we propose that Id-1 can promote MMP-2 

transcription via two pathways, either directly by sequestering a bHLH E-protein that 

functions as an inhibitor of MMP-2 expression or indirectly by promoting the expression 

of a downstream gene which then functions to promote MMP-2 expression. We thus 

hypothesized that Id-1 regulates MMP-2 expression via differential binding of 

transcription factors to the MMP-2 promoter. To that end, we examined the differential 

binding of transcription factors to the MMP-2 promoter following Id-1 overexpression in 

SB-2 cells. Several transcription factor binding sites, including those of Ets-1 and Sp1, 

are located on the MMP-2 promoter, and we discovered that the DNA binding and the 

expression of both Ets-1 and Sp1 to the MMP-2 promoter increased following Id-1 

overexpression. These results are in accord with previous evidence demonstrating the 

role of these transcription factors in promoting MMP-2 expression. The PI3K-AKT 

signaling pathway has been shown to increase expression of MMP-2 via increased Sp1 

expression and binding to the MMP-2 promoter [218, 230]. Additionally, the role of Sp1 

in regulation of MMP-2 transcription and expression was described in two additional 

studies. The first demonstrated that genetic variation of the MMP-2 gene at the Sp1 

binding site resulted in decreased Sp1 binding and subsequent MMP-2 promoter activity 
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[231]. A second study utilized deletion mutations of the Sp1 binding site to demonstrate 

decreased MMP-2 promoter activity [218]. These studies further substantiate the role of 

Sp1 in regulation of MMP-2 transcription. A number of studies also support the role of 

Ets-1 in transcriptional activation of ECM-degrading enzymes, including serine 

proteases (uPA) and matrix metalloproteinases [232]. Indeed, overexpression of Ets-1 in 

squamous cell carcinoma induced the promoter activation and subsequent expression of 

MMP-2 [233], while silencing of Ets-1 in pancreatic cancer cells abrogated cell 

invasiveness as well as MMP-2 expression [219]. Transcriptional activation of genes is 

dependent on binding of several transcription factors which function in a cooperative 

manner. Increased affinity of Ets proteins for their DNA binding domain has been shown 

to occur following their interactions with various transcription factors, including Sp1 

[234, 235]. It would be interesting to determine whether Ets-1 and Sp1 work alone or in 

conjunction to promote MMP-2 expression in a similar fashion.  

MMP-2 can be transactivated by transcription factors other than Sp1 and Ets-1 

including CREB [236], Sp3, AP-2α [218] and p53 [237]. In our study we did not 

observe differential binding or expression of these transcription factors following Id-1 

overexpression in SB-2 cells, which suggests that they do not play a role in MMP-2 

expression in our system. Although we demonstrated that Id-1 positively regulated the 

expression and binding of Ets-1 to the MMP-2 promoter, it should be noted that in other 

non-melanoma systems, Id-1 has been shown to inhibit Ets-1 transcriptional activity 

[168]. It is possible that, in our system, increased expression of Ets-1 promotes its 

interaction with other transcription factors or co-activators (i.e. c-Jun, c-fos and 
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CBP/p300). Rather than being inhibited by Id-1, it competes with Id-1 for promoter 

binding and leads to transactivation of MMP-2.   

Positive regulation of transcription of various other genes by Id-1 has also been 

shown. It was recently demonstrated that Id-1 expression increased c-Myc expression 

and its subsequent binding to the E-box region on the promoter of Bmi-1, resulting in 

increased Bmi-1 expression [238]. This study is in agreement with our findings, 

suggesting that Id-1 can act to promote gene expression by increasing the expression and 

binding of upstream transcription factors. 

In this aim we conclude that Id-1 promotes melanoma cell invasion by affecting 

differential expression and binding of transcription factors to the MMP-2 promoter, 

resulting in increased MMP-2 expression.  
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Summary 

Herein, our study further establishes the cardinal role of MUC18 in promoting 

the metastatic melanoma phenotype.  Our investigation revealed novel findings which 

can be summarized as follows: 

1. Stable silencing of MUC18, by means of lentiviral based shRNA delivery, in two 

metastatic melanoma cell lines, A375SM and C8161, significantly decreased 

both melanoma tumor growth and experimental lung metastases in vivo. 

2. MUC18 inversely regulated the expression of two transcriptional regulators: Id-1 

and ATF-3. 

3. In vivo, MUC18 silencing decreased the expression of both Id-1 and MMP-2.  

4. MUC18 upregulates Id-1 expression at transcriptional level via inhibition of 

ATF-3 expression.    

5. Rescue of MUC18 in MUC18-silenced cells restored the protein expression of 

Id-1 and ATF-3, confirming that this expression pattern is not an off-target effect 

of MUC18 silencing. 

6. MUC18 regulated MMP-2 expression and activity as well as melanoma cell 

invasion through Id-1. 

7. Id-1 transcriptionally regulated MMP-2 expression through increased expression 

and differential binding of Ets-1 and Sp1. 

 

Taken together, our study describes a previously unrecognized, signaling role for 

MUC18 and identifies its ability to modulate the expression of genes which are involved 

in melanoma metastasis. We discovered a novel pathway by which MUC18 regulates the 

expression of both Id-1 and ATF-3. MUC18–regulated Id-1, in turn, promotes MMP-2 
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expression and activity, contributing to cell invasion and ultimately to the metastatic 

phenotype of melanoma. Figure 28 depicts the model we described in this work.  

MUC18 was initially identified as a melanoma cell adhesion molecule, and 

although it was shown to correlate with the acquisition of the metastatic phenotype and 

poor patient prognosis, its involvement in promoting melanoma progression mainly 

focused on its adhesive functions. Indeed, several lines of evidence support the role of 

MUC18 in facilitating melanoma progression through increasing cell adhesion. MUC18 

has been shown to promote melanoma cell adhesion to endothelial cells and to the 

basement membrane by forming both homotypic and heterotypic adhesions. Thus, it was 

suggested that MUC18 participates in the metastatic cascade by promoting melanoma 

cell intravasation and extravasation, mediated by melanoma–endothelial cell 

interactions, as well as intravascular survival, mediated by melanoma-melanoma cell 

interactions. Due to its cytoplasmic protein kinase recognition motifs, early studies of 

MUC18 suggested that it might be involved in intracellular signaling; however, the role 

of MUC18 in outside-in signaling had not been fully elucidated. While our investigation 

demonstrated that MUC18 was involved in the regulation downstream gene expression 

in melanoma, it would be interesting to characterize the involvement of the cytoplasmic 

domain in downstream signaling and determine the precise intracellular signaling 

pathways induced by MUC18. Another missing link needed to establish the mechanism 

by which MUC18 promotes melanoma is the indentification of the unknown ligand of 

MUC18. Identifying this ligand is critical to the understanding of outside-in signaling of 

MUC18. More significantly, the ligand of MUC18 can be a potential target for 

melanoma therapy.     
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As MUC18 is expressed in melanoma and other malignancies, including 

Kaposi’s sarcomas, angiosarcomas and leiomyosarcomas, our findings, together with 

future studies, will broaden understanding of the molecular changes associated with 

these diseases and further emphasize the need to target MUC18 as a modality for 

melanoma treatment.    
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Figure 28. Proposed mechanism by which MUC18 contributes to melanoma 

invasion 

Increase of MUC18 expression in metastatic melanoma cell promotes downstream 

signaling (possibly through inhibition of the p38 signaling pathway) which resultes in 

decreased ATF-3 expression and binding to the Id-1 promoter. This consequently 

releases the inhibition of Id-1 transcription by ATF-3 calumniating an increase of Id-1 

transcription and expression. Upregulation of Id-1 increases the expression and binding 

of Sp1 and Ets-1 to the MMP-2 promoter, causing upregulation of MMP-2 transcription 

and expression, and, thus resulting in increased MMP-2 activity and melanoma cell 

invasion.  
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