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Abstract 

RMI1 (BLM-Associated Protein 75 or Blap75) is highly conserved from yeast to 

human. Previous studies have shown that hRMI1 is required for BLM/TopoIIIα/RMI1 

complex stability and function. However, in vivo functions of RMI1 remain elusive. To 

address this question, I generated RMI1 knockout mice by homologous replacement 

targeting. While RMI1+/- mice showed no obvious phenotype, deletion of both RMI1 

alleles leads to early embryonic lethality before implantation. I then generated 

RMI1/p53 double knockout mice. After ionizing radiation treatment at 4Gy, RMI1/p53 

double-heterzygous mice showed shortened tumor latency and aggressive tumor 

types when comparing with wild type, RMI1+/- and p53+/- control cohorts. My study 

suggests a dual-functional role of RMI1 in early embryonic development and tumor 

suppression. 
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Chapter I  

 

Introduction & Significance 

 

 

 

1.0 Introduction of BLM  

 

 

1.1 BLM mutants cause Bloom syndrome (BS) 

 

Bloom syndrome (BS) is a rare autosomal recessive disorder. Since first described 

in 1954, more than 170 cases of BS patients have been reported. One of the major 

clinical features of Bloom syndrome is the high frequency of cancers at early ages. 

Moreover, in contrast to other cancer-prone disorders such as Fanconi anemia (FA) 

or Ataxia telangiectasia (AT) (1, 2), BS patients are exposed to a much broader 

spectrum of malignancies, which includes almost all types of cancers affecting the 
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general population. Additional features of this syndrome include dwarfism, sun light 

sensitivity, male infertility, and immunodeficiency (3).  

 

BS is caused by defects in the BLM (Bloom Syndrome Mutated) gene. Until recently, 

at least 64 different BLM mutations derived from BS patients have been identified (4, 

5).  Most mutations are nonsense or frame-shift ones that cause premature protein-

translation termination. Missense contributes up to 16% of total BS-associated 

mutations (4). Among all known mutations, BLMAsh, first identified from Ashkenazi 

Jews population which bears the highest risk of BS, corresponds to a 6-bp deletion 

and a 7-bp insertion at position 2207 (6). Interestingly, unlike most other recessive 

disorders, the BLMAsh allele is reported to be haploinsufficient. Carriers of one copy 

BLMAsh allele are exposed to an increased risk of colorectal cancer (7, 8). 

 

 

1.2 BLM belongs to RecQ DNA helicase family 

 

BLM belongs to RecQ DNA helicase family (Figure 1.), a member of SF2 helicase 

superfamily (9).   RecQ helicases are highly conserved from bacteria to humans. 

Helicases from this family contain a conserved helicase domain consisted of seven 

characteristic sequence motifs (10). In addition, most RecQ helicases present other 

conserved domains, including the RQC (RecQ C-terminal) and HRDC (helicase and 

RNase D C-terminal) domains (11, 12).  
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The number of RecQ helicases in different species varies. It seems that this number 

is associated with organism complexity. Whereas Escherichia coli and 

Saccharomyces cerevisiae only contain a single RecQ helicase (RecQ and Sgs1, 

respectively), human cell expresses at least five of the RecQ family members: 

RECQL1, RECQL4, RECQL5, WRN, and BLM (9).  

 

Besides BLM, mutations of some of the other human RecQ helicases also lead to 

genetic disorders. For example, mutations in the RECQL4 and WRN gene cause 

Rothmund-Thomson syndrome and Werner syndrome, respectively (13, 14). Both 

syndromes are manifested by predisposition of cancers. However, unlike BS 

patients who have increased susceptibility to a wide spectrum of cancers, patients of 

Rothmund-Thomson or Werner syndrome are prone to certain types of cancers, 

such as osteosarcoma and thyroid cancers, respectively.  

 

Previous studies have shown that all RecQ helicases possess several common 

enzymatic activities, such as: 1) DNA- and Mg2+-dependent ATPase activity; 2), 3’ to 

5’ DNA helicase activity (with the exception of RECQL4 (15)); 3) complementary 

single strand DNA annealing;, 4) Branch migration of Holiday Junctions; 5) 

replication fork regression. However, although human RecQ helicases, especially 

BLM and WRN, have similar biochemical activities, and their defective cells both 

display chromosomal integrity related phenotypes, their functions are mostly non-

redundant (9).   
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1.3 Structure feature and biochemical activity of BLM protein 

 

The hBLM protein comprises 1417 amino acids. As previously described in this 

chapter, BLM contains several conserved domains common in RecQ helicase 

family, including a central SF2 helicase domain of repeat motifs, a RQC (RecQ C-

terminal) and a HRDC helicase and RNase D C-terminal) domain (Figure 2.). 

Among them, the helicase domain possesses both DNA helicase and ATPase 

activity. The RQC domain, on the other hand, forms a zinc-binding scaffold, which is 

required for this protein’s structural stability. Moreover, the winged-helix (WH) sub 

domain of RQC domain is response for DNA binding (16).  The third conserved 

domain of BLM, the HRDC domain is indispensable for the efficient binding and 

unwinding activities of double Holliday junctions (17). Taking together, all of three 

domains are important in terms of proper BLM activity, as disease-causing mutations 

in all three domains have been found in BS patients. 

 

Consistent with activities of its RecQ helicase homologs, BLM is able to recognize 

and unwind a wide variety of DNA substrates. These substrates include, but not limit 

to DNA structures depicting replication forks (forked duplex), replication obstacles 

(G-quadruplex), and recombination intermediates (Holliday junctions, D-loops) (18-

20). The capability of unwinding such DNA substrates suggests that BLM is likely 

involved in cellular events of DNA metabolism, such as DNA replication, repair and 

telomere  
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maintenance.  Interestingly, blunt-ended dsDNA, which represents normal DNA 

structure, is not a substrate of BLM (18).  Moreover, BLM is proposed to have a 

‘reversed’ helicase activity by catalyzing complementary ssDNA annealing (10). 

 

The hallmark feature of cells derived from BS patients is the elevated Sister 

Chromatin Exchange (SCE) level, which still serves as the only objective criterion for 

BS diagnosis (5). The elevated SCE level could also been observed from mouse 

BLM-/- cells, and BLM-/- DT40 cells(21-23). SCE is the process that two sister 

chromatids physically exchange duplex strands by breaking and rejoining DNA 

chains (24). Although this process does not involve alternation of genetic 

information, and is generally considered to be conservative and error-free, elevated 

SCE level may be associated with increased risk of cancers (25). Because 

reciprocal interchange of SCE is carried by homologous recombination (HR) 

pathway, the SCE therefore represents, at least indirectly, the cellular HR activity. 

The fact that the SCE level of BS cells is approximately 10-fold higher than wild type 

cells indicates BLM function in preventing chromatid exchanges (21). Along with 

elevated SCE level, BLM-defective cells displayed increased frequency of gene 

targeting efficiency, loss of heterozygosity (LOH) rate, accumulated chromosome 

aberrations and IR-sensitivities (26-29). Conclusively, BLM is believed to play an 

important role in maintaining genomic stability and chromosomal integrity.  
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1.4 Biological function of BLM 

 

For the last two decades or so, functions of BLM have been extensively investigated. 

Although the exact mechanisms remain obscure, it is widely accepted that BLM 

involves multiple cellular processes related to DNA metabolism. These processes 

include DNA replication in S phase, chromatin separation in M phase, DNA-damage 

response checkpoint regulation and DNA repair.  

 

 

1.4.1 BLM function in DNA replication 

 

 

1.4.1.1 Importance of DNA replication 

DNA replication is the fundamental process for biological inheritance. The efficiency 

and fidelity of replication is critical for all eukaryotes. During replication, the 

replicated chromosome is unwounded by DNA helicases, which leaves two single 

stranded DNA branching open and complemented by newly synthesized DNA. This 

particular Y-shaped DNA structure is termed replication fork. In normal situations, 

DNA replication starts with origins when two DNA strands are separated in order to 

form two replication forks proceeding in opposite directions, and ends when all forks 

meet and terminate (30). However, replication forks could be stalled by various 

reasons, such as encountering DNA breaks and defects (31-33). If not rescued, 
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failed replication forks would lead to interrupted replication process, stalled cell cycle 

or even cell death. 

 

 

1.4.1.2 BLM helps to restart stalled replication forks during S phase.  

 

The cellular expression of BLM protein is tightly regulated in cell type- and tissue-

specific manners. In general, BLM expresses in all actively dividing cells with active 

cell proliferation. Therefore, testis, ovary, thymus and spleen are the organs that 

have the highest levels of BLM expression (23). Surprisingly, despite its function in 

maintaining genomic stability, most tumor cells express BLM at higher levels, 

presumably in keeping with the faster cell proliferation (34).  

 

BLM expression is also temporally regulated as a function of the cell cycle (35-37). 

The BLM protein is abundant in both S and G2, but absent in the G1 phases. It is 

believed that proteolytic degradation after M phase leads to the undetectable BLM 

protein level in G1 phase (37), although direct evidence remains to be uncovered.  

 

Several evidences suggest an association between BLM and DNA replication 

process. First, cell cycle-specific expression pattern of BLM is consistent with 

cellular process of DNA replication, as the peak of BLM protein level occurs since S 

11 
 



phase. Second, during S phase, the nuclear location of BLM foci overlaps with 

PCNA in damage-induced sites, an indication of BLM’s involvement in maintaining 

proper DNA replication (27). However, BLM has not been found to be a constitutive 

component of the replisome and does not directly involve in DNA replication 

process. Studies of BLM orthologue in yeast suggest that unstrained activity of Sgs1 

is toxic for cells (38-40). In conclusion, BLM is not required for normal replication 

process. 

 

Moreover, under normal conditions, BLM is localized in PML nuclear bodies (PML-

NBs) (41). PML-NB is named after PML gene, which is originally identified as the 

site of translocations in acute promyelocytic leukaemia (42). Although direct 

interaction between BLM and PML is yet to be confirmed, the region targeting BLM 

to PML-NB localization had been mapped, as BLMΔ133-137 mutation failed to co-

localize with PML-NBs (43). BLM localizes in PML-NBs together with some of its 

protein partners and other proteins involved in DNA metabolism. However, the 

function of this co-localization is still debatable. The co-localization of BLM and PML-

NB is never complete (44, 45). Nevertheless, the localization of BLM to PML-NBs is 

not vital to BLM function. Although in PML-deficient cells, BLM is unable to 

concentrate into foci but spread uniformly in nucleoplasm (44), expression of mutant 

BLM with disturbed PML-NB colocalization capability corrects high SCE level in BS 

cells (45). It is very likely that PML-NBs serve as temporary storage sites for BLM 

proteins, where BLM can be shuttled to and from PML-NBs in a timely manner. This 

view is well supported by independent studies. For example, in response to DNA 
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hydroxyurea  induced replication stress, BLM leaves PML-NBs and re-localizes to 

stalled replication forks (46).  

 

Although the translocation of BLM from storage sites to stalled replication forks has 

been an acceptable dogma and BLM is also known to unwind G-quadruplexes as 

well as other DNA secondary structures that may present as roadblocks during 

replication, the mechanism of BLM in ensuring DNA replication remains elusive. 

Several hypothesizes have been raised. Although different in details, they all 

propose BLM’s function in restarting stalled replication forks.  

 

One of the possible consequences of failing to restore collapsed replication forks is 

DSBs at damage sites, which may lead to inappropriate strand exchanges by the HR 

repair machinery (47, 48). It is believed that BLM is required for stabilization and 

subsequent restart of replication forks blocked by DNA lesions (49). Heller et al. 

proposed that BLM may help to obtain a configuration of nascent strands, a rate-

limiting step in replication restart (50, 51). Another possible mechanism suggests 

that BLM promotes fork regression to ‘chicken feet’ formation at damage site, thus 

allows the replication machinery to use the nascent lagging strand as a template to 

bypass DNA lesion (52).  

 

In summary, the presence of BLM in S phase helps to restart stalled replication 

forks, which prevent possible chromosome rearrangements promoted by collapsed 

replication forks, as one of its function in maintaining chromosomal integrity.   
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1.4.2 BLM in S phase checkpoint 

 

 

1.4.2.1 Checkpoint pathway ensures proper cellular progresses. 

 

Cells are most vulnerable during S phase in terms of generating replication-

associated mutants. Any error in the replicative process, if not properly treated, may 

lead to more dangerous forms of lesions that could affect genomic integrity, or even 

cell viability (53). In response to replication stresses, the S phase checkpoint 

pathway acts to suppress the firing of replication origins before DNA lesions are 

removed. Thus, the S phase checkpoint mechanism is important for both replication 

fidelity and cell survival (54). 

 

 

1.4.2.2 BLM in S phase checkpoint  

 

Recent studies suggest that during S phase and in addition to its role in restarting 

stalled replication forks, BLM may also be involved in S phase checkpoint pathway 

(55). BLM is known to interact with multiple proteins participating in S phase 

checkpoint pathways. BLM interacts with BRCA1 and was also identified as a 

component of BASC complex, a multi enzyme complex containing BRCA1 and 

several other proteins such as MLH1, MSH2, MSH6, RFC, and ATM. This 

interaction seems to be DNA damage-associated, because the co-localization of 
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BLM and BRCA1 foci increases following HU treatment (56). The functional 

significance of this complex, however, remains to be demonstrated. 

 

BLM has functional and physical interactions with other checkpoint/DNA damage 

signaling proteins such as the MRN complex, p53, γ-H2AX, ATR and ATM (46, 57, 

58). During S phase, followed DNA damage agent introduction, BLM is rapidly 

recruited onto damaged sites and co-localizes with γ-H2AX (59) This translocation 

may allow BLM interacting with ATR, Chk1 and 53BP1, and facilitating accumulation 

of them and other checkpoint proteins onto the damaged sites (60). In the absence 

of BLM, this recruitment of multiple proteins to damage sites is either absent or 

delayed, indicating a BLM-associated S phase checkpoint pathway (57). 

Interestingly and surprisingly, BLM’s role in this process may be non-catalytic, since 

the helicase-defective mutant of BLM is able to support the recruitment of the above 

checkpoint factors to the damage-induced foci (57),  

 

 

1.4.3 BLM in telomere maintaining  

 

In normal condition, telomeres are regulated by a special reverse transcriptase 

termed telomerase (61). Some human cell lines and primary tumor cells, however, 

maintain their telemeres using an alternative mechanism named alternative 

lengthening of telomeres (ALT) (62). TRF2, which is one of the key components of 

the telomere complex, is involved in this recombination-dependent telomere 
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maintenance (63). It forms heterdimer with TRF1, and both proteins are thought to 

be involved in regulating telomeric length (64, 65).  

 

The physical interaction between BLM and TRF2 has been identified both in vitro 

and in vivo (66). Interestingly, the co-localization of BLM and TRF2 was only 

observed in ALT cells but not telomerase-proficient cells (66). Overexpressing BLM 

results in ALT cell-specific increases in telomeric DNA (67), which suggests that 

BLM promotes recombination-dependent amplification of telomeres in ALT cells. 

 

 

1.4.4 BLM in M phase 

 

BLM seems to be indispensable for faithful sister chromatids separation during M 

phase (68). Defective separation processes were observed from yeast ΔSgs1 and 

Drosophila BLM-/- cells (69). The same phenotype was also shown from BS cells. 

Comparing with cells ectopically expressing BLM protein, BLM-defective cells have 

higher frequency of anaphase bridges and lagging chromatins. Nevertheless, BLM 

localizes to anaphase bridges with its protein partners (70). It is suggested that BLM 

ensures chromatid separation by facilitating complete sister chromatid decatenation 

in anaphase. 
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1.4.5 BLM in HR 

 

 

1.4.5.1 General introduction of HR 

 

DNA double strand break (DSB) is one of the most severe DNA damages to cells 

(71). Improper repair of DSB could result in accumulated chromosomal aberraions, 

abnormal rearrangement of the genome, arrested cell cycle or even cell death (72). 

In mammalian cells, two distinct pathways, NHEJ and HR, are the two major repair 

mechanisms in response to DSBs (73).  The NHEJ directly ligates, with minimum 

processing, two exposed chromosome ends together without the need of 

homologous DNA template (74). The HR, on the other hand, utilizes a homologous 

sequence as template to replicate the damaged part (75). Thus, it is understandable 

that cells exhibit dominating HR activity in S and G2 but not G1 phases. Since in S 

and G2 phases, sister chromatids are readily available as homologous templates for 

HR.  

 

Following DSB formation, the exposed DNA ends are first resected by DNA 

exonuclease to release 3’ single-strand overhangs. Next, these overhangs  

form a "presynaptic filament" with Rad51 and its paralogs, which leads to the 

invasion of a homologous region. During the invasion process, a ‘D-loop’ 

intermediate DNA structure is formed. After the strand invasion, DNA synthesis 

occurs on the invading strand to restore the broken chromosome. Another DNA 
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intermediate, Holliday junctions (HJs), are created during DNA synthesis. The HJs 

are proposed to be solved by DNA helicases, in either crossover or non-crossover 

manners (76, 77). 

 

 

1.4.5.2 BLM function in HR  

 

One of BS cell’s characterized features is elevated SCE level, which indicates 

increased chromatid exchange activity in the absence of BLM protein. As discussed 

previously, the increased SCE level represents elevated HR activity in BS cells. 

Previous studies suggest that BLM prevents this activity in two ways. 

Simultaneously, it inhibits entry of cross over-causing HR and, during HR, it resolves 

DNA intermediates in a non-crossover manner (78, 79) (Figure 4.). 

 

BLM displays anti-HR activity. It is widely recognized that the initial step of HR is the 

invasion of Rad51-coated ssDNA to homologous region (80). BLM can actively 

disrupt Rad51-ssDNA filaments. This disruption inhibits the invasion of homologous 

region and formation of ‘D-loop’ DNA intermediate (81). Since the Rad51 recruitment 

and strand invasion are the initial steps of HR, BLM could alter the repair 

mechanism from HR to non-cross over causing ones such as single strand 

annealing (SSA) or synthesis-dependent strand annealing (SDSA) (81).  
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On the other hand, BLM also plays a critical role in resolving DHJ intermediate. 

BLM, in coordination with its partner proteins Topo3α and Rmi1, forms BTB complex 

(82). During the last steps of HR, this BLM-containing complex is capable of 

promoting HJ migration and dissociation in a non-crossover manner (20, 83). The 

components, structure and activity of BTB complex will be discussed in coming 

sections. 
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2.0 The BTB complex 

 

 

2.1 Components of BTB complex 

 

Three BLM-associated complexes, termed BLM complex I, II and III, have been 

isolated by Meeti et al. using biochemical purifications (84). Proteins from these 

complexes were identified by mass spectrometry. Most proteins identified have 

known physical interactions with BLM, including 5 Fanconi anemia (FA) proteins. 

Similar to BLM, defective FA proteins lead to genomic instability and show clinical 

features of cancer disposition (85). The fact that FA proteins and BLM co-exist as 

complexes may indicate a connection between the two pathways in maintaining 

genomic integrity (78). 

 

Interestingly, only two proteins are consistently presented in all three BLM-

associated complexes. They are the DNA topoisomerase Topo3α and a newly 

identified novel protein Rmi1 (RecQ-mediated genomic instability 1, also named 

Blap75) (82). These two proteins, together with BLM, form a core complex termed 

BTB complex, referring to BLM, Topo3α, and Rmi1 (Blap75). The formation of  the 

BTB complex is conserved from yeast to human (86, 87). Recently, the forth 

member of this complex, Rmi2 has been independently identified by two groups (88, 

89). However, unlike all three other components of BTB complex, it only expresses 

in plants and vertebrates. 
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2.2 Introduction of Topo3α 

 

 

2.2.1 Topo3α belong to type IA DNA topoisomerase subfamily  

 

DNA topoisomerases are essential for almost all DNA metabolic processes, 

including compaction, replication, transcription, strand separation and 

recombination. All of these processes require exposing of accessible DNA helix (90, 

91). DNA topological structures, which are generated during DNA metabolism, may 

be roadblocks in these processes. There are three main types of topology: 

supercoiling, knotting and catenation. DNA topoisomerases are able to break and 

reseal DNA backbones to facilitate topological changes and wind/unwind DNA. 

These enzymes could be structurally and mechanistically different. Based on the 

number of strands cut in one round of action, the majority of DNA topoisomerases 

can be separated into two families: type I and type II (90). Whereas the type I 

topoisomerase resolve topological structures by breaking and rejoining one strand of 

DNA helix, the type II topoisomerases act on both strands. The third DNA 

topoisomerase family, TopoV, is consisted of only one member (92).  

 

Based on the polarity of strand cleavage, Type I topoisomerase family can be further 

divided into two subfamilies:  IA and IB (93). The topoisomerases from type IA 
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subfamily are monomeric and able to unwind DNA substrates by breaking and 

sealing one DNA strand (94). The DNA helicase in the BTB complex, Topo3α, 

belongs to type IA topoisomerase subfamily, which is conserved in all organisms. 

 

2.2.2 Cellular function of Topo3α 

 

Function of Topo3α remains poorly understood. Yeast top3 mutant strain shows 

phenotypes of hyper-recombination, slow growth, defective S phase checkpoint and 

abnormal sporulation (95-97). Interestingly, the phenotypes of top3 loss-of-function 

mutation can be suppressed by mutations in HR genes, or additional deletion of 

Sgs1, the only RecQ helicase in yeast (98-100), indicating a genetic interaction 

between Topo3α and Sgs1.  

 

Although Topo3α is able to bind and unwind DNA substrates, its relaxation activity is 

weak. Thus it is believed that Topo3α is not involved in the maintenance of DNA 

supercoiling homeostasis (101). However, it is required for proliferation and telomere 

stability in ALT (Alternative Lengthening of Telomeres) cells where Topo3α 

physically interacts with TRF2 (102). Knockdown Topo3α by siRNA induces TRF2 

depletion, inhibited growth, anaphase bridge formation, and telomere dysfunction in 

such cells. Thus it is proposed that Topo3α/BLM/TRF2 complex may be in response 

of maintaining telomere stability in ALT cells.  
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Topo3α function is also associated with BLM and BTB complex. The activity of this 

complex as well as Topo3α’s role will be discussed in section 2.5 of this chapter. 

 

 

 

2.3 Introduction of Rmi1 

 

 

2.3.1 Protein structures of RMI1 

 

The hRmi1 harbors 625 amino acid residues and has a molecular weight of 75kDa 

(82). Examination of Rmi1 protein reveals three conserved domains: a DUF1767 

(Domain of Unknown Function 1767, named by Genebank) and two OB-fold 

(Oligonucleotide/oligosaccharide-binding ) domains (OB1 and OB2, respectively) 

(89). The exact function of DUF1767 domain remains unknown. Meanwhile, the two 

OB-fold domains share sequential similarities to OB-fold domains found in RecG and 

RPA1-C, respectively. Although OB-fold domain is generally considered as a DNA 

binding domain, the two domains in RMI1 lack several conserved residues that are 

important for DNA binding. Therefore it is predicted that Rmi1 has weak or no DNA 

binding activity. However, in vitro assays conducted by several groups lead to 

opposite results and the DNA binding activity of Rmi1 remains controversial (89, 

103). It is still possible, however, that Rmi1 may bind DNA substrates only in the 

context of BTB complex. On the other hand, Rmi1 OB-fold domains may participate 
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in specific protein-protein interactions. A recent study has shown that OB1 and OB2 

domains of Rmi1 are response for interactions with Topo3α and Rmi2, respectively 

(89). A point mutation in OB1 domain disrupts Rmi1-Topo3α interaction, and 

abolishes biochemical activity of BTB complex.  

 

 

2.3.2 Function of RMI1  

 

Previous studies from our lab and others have shown that Rmi1 is required for BTB 

complex stability and activity (82, 89). Rmi1 is required for normal cell proliferation. 

Rmi1 knockdown cells exhibit reduced cell density and drastic decrease in colony 

survival assay.  Surprisingly, these cells do not display any sign of specific cell cycle 

arrest or apoptosis. One plausible explanation is that Rmi1 depletion leads to 

reduced proliferation. Rmi1 is also required for genomic stability. The Rmi1 

knockdown cells display elevated SCE level, a characteristic feature of BS cells. The 

SCE level of Rmi1 knockdown cells is comparable to that of BLM knockdown cells 

as observed in our laboratory.  

 

Further investigations have revealed that Rmi1 activity is associated with its partners 

in the BTB complex. First, Rmi1 has directly physical interactions with all three other 

components of BTB complex. These interactions are essential for this complex’s 

stability. Nevertheless, Rmi1 is also required for normal BLM function. BLM is known 

to be hyperphosphorylated on Thy-99 and Thy122 in response to mitosis blockage 
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induced by chemicals or IR, which is ATM-dependent (28, 37). Mutations on either 

site fail to correct radiosensitivity in BS cell. BLM is also able to translocate to DNA 

damaged sites or stalled replication forks upon induced genotoxic stress. This 

translocation is known to be essential for checkpoint activation and damage repair 

processes. Both activities of BLM are severely impaired in RMI1 depleting cells (82), 

indicating RMI1 is indispensable for BLM function. 

 

 

2.4 Introduction of RMI2 

 

Recently, the forth member of BTB complex, Rmi2, has been identified (88, 89). 

However, its presence in the BTB complex is not evolutionary conserved. In fact, 

Rmi2 is only expressed in certain vertebrates and plants. Rmi2 directly binds to 

Rmi1 with its OB-fold Domain but does not have physical interaction with either 

Topo3α or BLM. It is required for BTB complex stability. Depletion of Rmi2 protein by 

siRNA knockdown leads to elevated SCE level, reduced protein level of Topo3α, 

Rmi1 and BLM. However, its capacity of maintaining BTB complex stability is 

depending on Rmi1. Nevertheless, in vitro experiments showed that the Rmi1/Rmi2 

complex, but not Rmi2 alone could facilitate Topo3α/BLM resolution activity.  
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2.5 Activity of BTB complex  

 

 

2.5.1 RMI1 and Topo3α are required for BTB complex stability 

 

The structure and function of the BTB complex appear to be evolutionarily 

conserved among eukaryotes. Physical interactions between Rmi1 and Topo3α/BLM 

are required for BTB complex stability (89). Raynard et al. have shown that the N-

terminal region of Rmi1 is required for both Topo3α and BLM interactions (104). 

Interestingly, Rmi1 and Topo3α’s stabilities are highly depended on each other(89). 

Knockdown of either of them could lead to drastic decreased protein level of the 

other one. In comparison, BLM protein level is less affected by depletion of either 

protein, and knockdown of BLM does not diminish Rmi1 and Topo3α protein levels, 

as protein levels of both Rmi1 and Topo3α remain unaffected in BLM knockdown 

cells.  

 

 

2.5.2 Biochemical activity of BTB complex 

 

Current model suggests that BTB complex has ‘dissolution’ activity in processing 

DSB repair intermediates during the last steps of HR (105). Followed by replication 

and DNA end rejoining in HR, the invading strand is trapped in between two 

homologous strands from sister chromatin, and partially annealed to one of them. 
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This DNA intermediate structure is termed double Holliday junction (DHJ). If not 

resolved, DHJ could lead to chromosome break during mitosis (106). Several DNA 

helicases and their complexes are proposed to having activities in resolving this 

intermediate. All of them are able to physically break and rejoin DNA strand(s). 

During this process, DNA ends may rejoin to their original strands (non-crossover) or 

be exchanged to their sister chromatins (crossover). A typical resolving helicase 

randomly opens nicks on strand(s), which give rise to equal possibilities of both 

crossover and non-crossover products (107).  However, as other candidates may 

lead to strand exchange between sister chromatins, the BTB complex is specialized 

in unwinding DHJ using an alternative process termed dissolution, which completely 

prevents strand exchange between chromatins (79, 103, 108, 109).  

 

Both BLM’s DNA helicase and Topo3α’s DNA Topoisomerase activities are needed 

during this process. Moreover, these two proteins are non-redundant in DHJ 

dissolution, as other helicases/Topoisomerases are unable to substitute their 

functions (103). Although the molecular basis behind this dissolution activity is still 

poorly understood, a working-model of BTB complex activity has been proposed 

(107) (Figure 4.). Under this model, first, BLM is capable of promoting migration of 

two HJs together to form another intermediate structure referred as hemicatenine. 

Next, Topo3α acts on the hemicatenated DNA substrates to unwind homologous 

chromatins and complete HR in a non-crossover manner.  
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Although Rmi1 does not have any known enzyme activity, proper BTB complex 

activity requires the presence of the Rmi1 protein. The presence of Rmi1 could 

facilitate HJ unwinding activity of BLM/Topo3α in vitro as the HJ unwinding activity of 

BLM/Topo3α combination could be enhanced by as much as 25-fold in the presence 

of Rmi1 (103). Moreover, under salt conditions mimicking physiological environment, 

the DHJ dissolution activity of BLM/Topo3α is completely dependent on Rmi1 

presence (110). Interestingly, the Rmi1/Topo3α interaction is also required for BTB 

complex activity. The N-terminal fragment of Rmi1 is able to efficiently promote 

BLM/Topo3α dissolution activity. Moreover, Rmi1 K166A, a point mutation which 

ablates its binding with Topo3α, is unable to promote that activity under the same 

condition (110). It is very likely that Rmi1 has a regulative role in BTB complex 

function, where it secures Topo3α onto DNA substrates.  

 

Nevertheless, the activity of this complex is depended on ATP hydrolysis. The only 

protein in BTB complex with known ATPase activity is BLM.  This suggests that 

other than its helicase activity, BLM’s ATPase activity is also required for this 

complex’s ‘dissolution’ function (109). In concordance with this, BLM variants with 

defective ATPase motifs are devoid of HJ unwinding activity. 
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3.0 Mouse models of BTB complex proteins 

 

 

3.1 Mouse models of BLM  

 

At least three groups have independently generated BLM mouse models. The first 

two models generated by Chester et al. and Goss et al. both followed similar 

knockout strategies, from which a part of BLM gene was replaced with a selective 

marker cassette (23, 111). Both strategies led to lethality of BLM-/- embryo. The 

BLM-/- model from Chester et al. displayed reduced cell number, increased apoptosis 

rate and delayed development during early embryonic stages. These embryos 

eventually die at 13.5 days post coitum (23). The lethality of the other BLM model 

has not been reported in detail. BLM+/- mice from this group, on the other hand, 

showed increased cancer susceptibility when injected with murine leukemia virus or 

crossed with APC mice (111). However, BLM heterozygosity alone does not seem to 

promote tumor development. 

 

The third BLM mouse model from Alan Bradley’s lab was generated by a different 

strategy, from which the coding sequence of BLM cDNA is disrupted by exon 

replication (26). Surprisingly, homozygosity of this mutation did not cause embryonic 

lethality. A possible explanation is that although from its BLM-/- strain, no protein 

product was detected by anti-BLM antibodies, it is widely believed that unlike the 
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other two BLM strains with complete absence of BLM gene product, this mutation 

may retain some of BLM’s function. This mouse model partially resembled clinic 

features of BS syndrome, such as cancer-prone phenotype and elevated SCE level.  

 

 

3.2 Mouse model of Topo3α 

 

Topo3α-/- leads to pre-implantation embryonic lethality. Culturing of Topo3α-/- 

blastocysts first showed proliferation defects after hatching, and the growth was 

completely stopped thereafter (112). Despite the severe phenotype of Topo3α-/- 

mice, Topo3α+/- mice appeared normally.  

 

 

3.3 Potential application of RMI1 mouse model 

 

We decided to generate a mouse genetic model of RMI1 for the following reasons: 

First, an animal model of RMI1 could help us better explain the molecular functions 

of RMI1. Previous advances of RMI1 were mainly accumulated through in vitro 

biochemical assays or experiments conducted in Rmi1 knockdown cell lines. These 

studies, however, could be influenced by selection of artificial environments or 

residual effects of remaining Rmi1 protein, respectively. Thus, a complete deletion of 

RMI1 from the genome at the animal level could provide a bias-free system to study 

the in vivo impact of Rmi1.  
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Second, RMI1 mouse model may help us to reveal its physiological function. While 

BLM is known to be associated with BS, Topo3α and Rmi1 have not been linked to 

any specific human disorder yet. Thus, the animal models could be one way to study 

their physiological function. Because of Rmi1’s close relationship with BLM, if 

existing, disorders caused by defective RMI1 in either human or mice could exhibit 

cancer-prone phenotypes as well. Thus, our RMI1 mouse model could serve as a 

potential animal model in cancer biology. 
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Chapter II 

 

RMI1 Is Required for Early Embryonic Development 

 

1.0 Materials and Methods 

 

 

1.1 Identification and cloning of mRMI1 gene and full-length cDNA 

 

The mRMI1 gene was identified by searching homologous sequence in NCBI 

database against full-length hRmi1 cDNA. A full-length mRmi1 cDNA clone 

(BC037694) was obtained from MGC (Mammalian Gene Collection) and used as a 

probe to screen the RPCI-22 library, a mouse genomic DNA BAC library. To 

construct this library, DNA extracted from female 129S6/SvEvTac (Taconic) mouse 

spleen was isolated and partially digested with a combination of EcoRI and EcoRI 

Methylase before cloning into the pBACe3.6 vector between the EcoRI sites. This 
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library gridded onto 22x22cm nylon high-density filters for screening was purchased 

from commercial sources. Three clones hybridized with p32-labled mRmi1 cDNA 

probes, 444B20, 269A5 and 444P22, were identified from my screening. Later, all 

three BAC clones were shown to contain whole mRmi1 gene sequence. In our 

study, we used clone 444B20 as the DNA template for vector construction. 

 

 

1.2 Generation of mouse RMI1 knockout construct 

 

A knockout strategy was designed to replace the only coding exon of mRMI1 (exon 

3) with a neomycin selective cassette. A two-step approach was used in generating 

the knockout construct. First, two DNA fragments located upstream and downstream 

of RMI1 coding sequence were chosen as recombination targeting arms, 

respectively. The 4.5kb fragment was referred to as ‘long arm’, whereas the 1.7kb 

one was named as the ‘short arm’, respectively. The two arms were cloned into its 

own specific vector separately. Second, the two arms with selective markers were 

rejoined together to form the final knockout construct. 
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1.2.1 Generating long arm and short arm plasmids 

 

 

1.2.1.1 Shotgun cloning and identification of long-arm plasmid 

 

Long arm sequence was obtained by direct digestion of the 444B20 BAC DNA with 

BamHI. Digested BAC DNA fragments were then randomly ligated with pBS-PGK-

neo-bpA-LoxB vector. To select colonies carrying the desired fragment, an in situ 

Southern blotting was performed. First, E. coli transformed with random ligated 

plasmid were allowed to grow over night on LB plates and establish colonies. These 

colonies were transferred onto filter membranes and lysed directly on them by lysis 

buffer (0.5M NaOH, 1.5M NaCl). Filter membranes were then neutralized by 

neutralization buffer (1.5M NaCl, 1M Tris, PH=8.0) and washed by 2X SSC before 

crosslinked to the filter by UV. Next,  Southern probe (long arm probe) was amplified 

by PCR (primers: long arm probe upper: 5’CTTGGCTGTCCTGGAACTCTGT; long 

arm probe lower: 5’AATGGTTACCCAGGAGCCACTA), labeled with α-p32-dCTP, 

and hybridized with filter membranes at 650C overnight. Positive colonies carrying 

the long arm insert picked. These colonies went on further restrict endonuclease 

analysis to select the ones with the desirable orientation of cloning.  
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1.2.1.2 Direct cloning of short arm plasmid 

 

Short arm DNA with embedded PvuII site at its 5’ was PCR amplified using BAC 

DNA as template. The primers are: short arm upper, 

5’GTAAAGGGGTGGTGCTGGAATTG; short arm lower, 

5’GCATGGCACTAACAACCACAGGA. PCR product was digested by BglII and 

cloned into pMCI-TK-pA vector. 

 

 

1.2.2 Construction of final knockout construct   

 

The long arm and adjacent neomycin cassette sequence was released from long 

arm plasmid by EcoRI/NotI digestion. This fragment was then cloned into the short 

arm plasmid linearized by SpeI/NotI digestion.  The final knockout construct contains 

two recombination targeting arms, a Cre-floxed neomycin cassette in between two 

arms and a TK selective marker at 3’ of short arm. After recombination, the neo 

cassette is able to replace entire coding sequence of RMI1, while the TK marker 

does not integrate into genome.  

 

 

1.3 Identification of Rmi1 mouse ES cell clones 
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The construct was transfected into mouse TC1 and G4 ES cells by the Genetically 

Engineered Mouse Facility (GEMF) at MDACC. Tc1 and G4 ES cells are derived 

from 100% 129S6/SvEvTac and 50% 129S6/SvEvTac/50% C57BL/6Ner genetic 

background, respectively. Single ES cells were individually picked into 96-well plates 

and allowed to form colonies. Then, genomic DNA from each colony were extracted, 

prepared and hybridized with southern probe for genotyping. Two Southern blot test 

strategies, which respectively target 5’ and 3’ DNA sequence of the knockout allele, 

were utilized in genotyping. The procedures of Southern blot genotypings will be 

described later in this chapter. In first round of ES cell colony screening, only the 5’ 

strategy was applied. Initially, about 10 colonies from each plate were tested as 

Rmi1+/- ES cells. These Rmi1+/- colonies were transferred into larger plates, and 

were subjected to Southern blot tests from both ends again before blastocyst 

injections.  

 

 

1.4 Germline transmission  

 

The chimeras were generated by Engineered Mouse Facility (EMF) at MDACC. 

They were then backcrossed with the C57BL/6 inbred mouse strain for at least 5 

generations. Theoretically, genetic material from the original stem cells was reduced 

to less than 5% thus these experimental mice should be considered as cogenic 

ones. 
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1.5 Southern blot tests form ES cell genotyping 

 

Two probes, Probe1 and Probe3, were used in Southern blot genotypings of G-418 

resistant ES cell colonies from either 5’ or 3’ end, respectively. Both probes were 

amplified by PCR (primers: Probe1A, 5’CCGCCTTTGGTCGTGACTGACAAC; 

Probe1B, 5’GCTCGGCGGACCTGTTAACACCAG; Probe3A, 

5’CTGTGGCTAGAAAGATGGTTCAGC; Probe3B, 

5’GAGGGCATGGCCCAGACTTG). For 5’ end Southern blot genotyping, genomic 

DNA of ES cell colonies were directly propagated and digested with NheI overnight 

in 96-well plates before transferred onto membrane and hybridized with p32 labeled 

Probe1 overnight at 63oC. For 3’ end genotyping, while other conditions remain the 

same, Probe3 was incubated with PvuII digested genomic DNA and the overnight 

annealing temperature was 65oC.  

 

 

1.6 PCR for mice and embryo genotyping 

 

 

1.6.1 Preparing of Genomic DNA from mice samples 

 

Mice genomic DNA was extracted and purified from mice tissues, usually toes or tail 

tips. Tissues were first lysed by incubating overnight at 55oC with the mixture of 250 
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uL lysis buffer (10nM TrisHCl ph8.0, 100mM NaCl, 2.5mM EDTA, 0.5%SDS) and 

10uL Proteinase K (20ug/mL). Then, proteins and cell membrane debris were 

precipitated by 100uL tail salt buffer (4.21M NaCl, 0.63M KCl, 10mMTrisHCl PH8.0) 

and spinned down at 10,000 rpm for 10 minutes at 4 oC. Genomic DNA then was 

concentrated by 400uL EtOH and centrifuged at 14,000 rpm for 15 minutes at 4 oC 

followed by washed with 70% EtOH and dissolved in 200uL ddH2O. 

 

 

1.6.2 PCR genotyping strategy of RMI1 mice 

 

For PCR genotyping of RMI1 mice, two pairs of primers were used: LWT3A, 5’ 

CTTTAAGTATCGCCCTCCGTTTTG; 

LWT3B, 5’CTTAACATGCCATGTTGCCAAAAG; NS3A, 5’ 

AGCAAGGGGGAGGATTGGGAAGACA; NS3B, 

5’GCGGAGCTGCCCCAGCTTTAAGCT. Annealing temperature was set at 61 oC, 

while the annealing time was 30 seconds for each round. 

 

 

1.6.3 PCR genotyping strategy of p53 mice 

 

For PCR genotyping of p53 mice, three primers adapted from Genetically 

Engineered Mouse Facility at MDACC were applied: X6, 

5’AGCGTGGTGGTACCTTATGAGC; 7, 5’GGATGGTGGTATACTCAGAGCC; 
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neo19, 5’GCTATCAGGACATAGCGTTGGC. Annealing temperature was set at 55 

oC, while the annealing time was 45 seconds for each round. 

 

 

1.6.4 Genotyping strategy of RMI1 blastocysts 

 

E3.5 embryos were harvested by flushing uterus with 1X PBS. A nested PCR 

strategy was applied for genotyping. Two pairs of primers were used in first round of 

PCR: LWT1A, 5’CTCATCCCAGAGTAAGGTGGCCGACTAT; LWT1B, 

5’CACAAGCTTCCAGCCACATTGGAGGTAC; NS2A, 

5’TTCGCAGCGCATCGCCTTCTATCG; NS2B, 

5’AGCAGGGTCTCGCCTTTTGCCTCGAGAG. The primer pairs, LWT3 and NS3 

were used in the following second round PCR. 

 

 

1.7 Cell culture and Clonogenic survival assay 

 

Cell strains were maintained in 10% heat-inactivated fetal bovine serum and grown 

in a humidified 5% carbon dioxide (CO2)-containing atmosphere at 37°C. 

Procedures of Rmi1 siRNA knockdown and Clonogenic assay were applied as 

described previously (82). Briefly, HCT116 cells were transient transfected with 

either Rmi1 or control (luciferase) shRNA before counted and seeded onto 100mm 

plates. Colonies were allowed to grow for 2 weeks before counting. 
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2.0 Results   

 

 

2.1 Generation of RMI1 knockout mouse model 

 

We generated a RMI1 knockout mouse strain by replacing its exon 3, which contains 

the entire RMI1 coding sequence of 1.8 kb, with a Cre-floxed neomycin selective 

cassette. This replacement created a null-allele of RMI1 (Figure 5A.). 

 

ES cells carrying one copy of the targeted allele were selected through several 

rounds of Southern blot genotypings, using probes locating on either 5’ or 3’ of the 

long and short arms, respectively (Figure 5B.). Screening of a total of 192 ES cell 

clones showed that my general targeting frequency is 12%. RMI1+/- clones identified 

by both 5’ and 3’ probes were used to generate chimeras through standard 

blastocyst injection. After successful germline transmission, RMI1+/- founders were 

genotyped by PCR and backcrossed to C57BL/6 background for at least 5 

generations (Figure 5C.). 
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2.2 Embryonic lethality of RMI1-/- mice 

 

A small group of RMI1+/- mice was put on long-term observation for up to 3 years. 

These mice do not display any noticeable defects in fertility, life span and 

spontaneous tumor onset. However, intercross of Rmi1+/- mice did not produce any 

mice with RMI1-/- genotype, indicating an Rmi1-dependent embryonic lethality.  

 

To determine the time of embryonic lethality, I dissected pregnant females after 

RMi1+/- mice intercrossing. First, attempts to recover RMI1-/- MEF cells from 13.5 dpc 

embryos failed, as only wild type and RMI1+/-, but not RMI1-/- MEF cells were 

collected from all MEF cells established. Subsequently, more females were 

dissected at different stages of pregnancy. However, no RMI1-/- embryos were 

identified as early as 7.5 dpc. To further investigate this question, I performed 

blastocyst analysis. At day 3.5 dpc, neither abnormal nor RMI1-/- blastocysts were 

identified from RMI1+/- crossing (Table 1.).  

 

At the same time, the wild type and RMI1+/- embryos recovered from both embryo 

dissection and blastocyst flushing displayed a nearly perfect 1:2 ratio, which strictly  
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Date +/+ +/- -/- 

E3.5 7 11 0 

E8.5 11 18 0 

E9.5 6 12 0 

E10.5 2 6 0 

Summary 19 36 0 
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followed the Mendelian segregation. From these results, I concluded that RMI1 is 

required for early embryonic development, and deleting both alleles of RMI1 leads to 

embryonic lethality before implantation. 

 

 

2.3 p53-dependent cell proliferation in Rmi1-depleted cells  

 

We next investigated the mechanism of Rmi1-dependent embryonic lethality. 

Knockdown Rmi1 in tissue culture cells destabilized the BTB complex and enhanced 

the SCE level. Nevertheless, cells transfected with shRNA vectors were unable to 

form colonies. We suspect that the increased genomic instability from lack of Rmi1 

might be the primary cause of cell lethality.  

 

To address this hypothesis, I performed the clonogenic survival assay. I transfected 

Rmi1 shRNA as well as control RNA (luciferase) into both HCT116 and its isogenic 

p53-null strains. Clonogenic survival assays were conducted after transient 

transfection and G418 selection. In accordance to our previous data (81), 

knockdown Rmi1 resulted in drastic decrease in colony survival rate. p53-null 

background per se had little effect on colony formation when transfected with the 

control luciferase shRNA construct. Interestingly, absence of p53 in Rmi1 depleted 

cells significantly rescued its colony formation ability, as colony survival increased by 

10-fold when comparing with that from Rmi1-depleting cells alone (Figure 6A, B.). 

This data strongly argues for a potential functional relationship of RMI1 and p53 in 
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regulating cell viability. Most likely, lack of p53 allows cells to continue to proliferate 

when genomic lesion are accumulated as a result of Rmi1 loss.  

 

 

2.4 p53-/- did not alleviate early embryonic lethality of RMI1-/- mice 

 

Since p53-/- background effectively mitigated the cellular lethality of Rmi1 knockdown 

cells, it is likely that deletion of p53 alleles may extend RMI1-/-embryos’ life span to 

beyond the implantation stage. This observation would suggest that loss of RMI1 

leads to genomic stresses that are dealt with by the p53-dependent pathways. To 

address this possibility, I performed embryonic analysis on D3.5 blastocysts 

collected from p53+/-RMI1+/- intercrossing. Of all 47 blastocysts collected, 17 were 

RMI1+/+ and 28 were RMI1+/-. None of them, however, was RMI1-/-. This result 

indicates that deleting either one or both alleles of p53 is unlikely to extend viability 

of RMI1-/- embryos passing the implantation stage. (P<0.05), suggesting a high 

degree of severity resulting from RMI1 deletion. 
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3.0 Discussion 

 

 

3.1 RMI1 is essential for early embryonic development 

 

The RMI1 knockout mouse model allowed us to investigate its function in embryonic 

development. Our data demonstrated that RMI1 is required for embryo viability. 

Complete deletion of this gene led to early lethality before implantation stage. 

Our finding, together with previous studies, shows that all three conserved 

components of BTB complex, including BLM, Topo3α and RMI1, are required for 

embryonic development. However, their phenotypes of lethality are distinct. BLM-/- 

embryos die at 13.5 dpc whereas Topo3α-/- embryos die before implantation stage. 

In our study, we’ve demonstrated that similar to Topp3-/- ones, RMI1-/- embryos die at 

the same, if not earlier, embryonic stage.  

 

The mechanism that leads to RMI1-dependent lethality remains unknown. To our 

best knowledge, until recently, no catalytic activity had been identified for Rmi1. It is 

very likely that Rmi1 performs a non-catalytic, regulative function in the BTB 

complex. Thus, the lethality of RMI1-/- embryos could be contributed to relationship 

between RMI1 and BLM/Topo3α. Physical presence of Rmi1 is required for BLM-

Topo3α complex stability and activity, which has been evidenced by Rmi1 

knockdown experiments. Based on that, it is reasonable to believe that complete 

absence of Rmi1 could further diminish stability of BLM and Topo3α proteins, 
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possibly under threshold of maintaining their proper cellular functions. The lethality 

of RMI1-/- embryos, under this scenario, is the compounded consequences of both 

functional and physical deficits of BLM and Topo3α. 

 

 It is notable that in comparing with BLM, Topo3α might play a major role in RMI1-

dependent embryonic lethality. This view is supported by previous experiments. 

First, Topo3α protein levels could be more significantly affected by RMI1 knockout. 

Previous studies from our and Dr. Weidong Wang’s lab suggest that depleting Rmi1 

results in moderate and drastic decrease of protein level of BLM and Topo3α, 

respectively, which indicates that the Topo3α protein is more likely be reduced to 

insufficient levels than BLM. Secondly, defective BLM function alone does not 

explain early lethality of RMI1-/- embryos. BLM-/- embryos show retarded growth and 

die at 13.5 dpc. Thus, the absence of BLM protein alone may not be the cause of 

this pre-implantation lethality. On the other hand, the lethal phenotype of Topo3α-/- 

embryos is reminiscent of that of RMI1 mice. This similarity of phenotypes could 

indicate a functional relationship of RMI1 and Topo3α. 

 

RMI1-/- embryos could die from mitotic dysfunction. Rmi1 is found in two independent 

complexes. One is the BTB complex. The other one contains only Rmi1/2 and 

Topo3α without BLM. This indicates that Rmi1 and Topo3α together may have 

cellular function other than ‘resolution’ in HR. Nevertheless, yeast top3 mutations 

exhibited sporulation and chromosome separation defects during mitosis. Moreover, 

knockdown Topo3α in mammalian cells led to abnormal anaphase bridge 
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formations. It is plausible that RMI1 deletion leads to defective mitotic function due to 

insufficient protein level of Topo3α, and eventually, cell death. 

 

However, it is still unclear whether RMI1 itself has any direct role in maintaining 

embryo viability. Although Topo3α-/- embryos also die before implantation, normal 

deciduae (Topo3α+/- and wildtype) as well as smaller ones contained no organized 

embryos were dissected from Topo3α+/- intercrossing. On the other hand, we have 

not found any of such deciduae from RMI1+/- intercrossing, suggesting a possible 

earlier lethality of RMI1-/- embryos in comparison with Topo3α-/- ones. The earlier 

lethality of RMI1-/- embryos could be caused by compounded outcome of defective 

activities from both BLM and Topo3α. It is also possible that besides its regulative 

role with BLM and Topo3α, RMI1 yields unknown function in maintaining cellular 

viability.  

 

 

3.2 Functional relationship of Rmi1 and p53 

 

p53 is one of the most active regulators in DNA damage-induced cell cycle arrest 

and apoptosis pathways. The protein-protein interaction between p53 and BLM has 

been revealed, whereas an N-terminal region of BLM is mapped as respective 

interaction segment for p53 binding. P53 may regulate BLM function during 

homologous recombination (HR) pathway, where it could interact with DNA 

recombination intermediates and prohibit helicase activity of BLM. Interestingly, p53 

56 
 



is dependent for DNA damage-induced apoptosis in BS cells. Additional deleting of 

p53 rescues cell death of BS cells followed UV or MMC treatments. Because of the 

close relationship between BLM and Rmi1, p53 may also play a significant role in 

RMI1-associated cellular viability. 

 

In our experiment, we have demonstrated that p53-null alleviates cellular lethality of 

Rmi1 depleting cells. However, deleting p53 alleles in RMI1-/-embryos did not extend 

their viability beyond the implantation stage. A plausible explanation is that the 

genomic integrity is more strictly required during embryonic development. These 

results strongly argue for our hypothesis that Rmi1 depleting cells die from 

compromised genomic integrity.  

57 
 



 

 

 

Chapter III 

 

RMI1 Heterozygosity Accelerates Induced-tumor 

Formation of p53+/- Mice 

 

 

1.0 Materials and Methods 

 

 

1.1 Ionizing radiation treatment and tumor analysis of animal model 

 

Littermates from Rmi1+/-p53+/- intercrossing were subjected for IR irradiation at 

4GY (NASAtron) around 6 weeks of age. A daily observation was applied to all 

irradiated mice for at least 1 year or until death. Those with visible tumor   

phenotypes were sacrificed and sent for necropsy. Tissue samples were preserved 
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in 10% formalin. For histopathological analysis, samples were embedded in paraffin 

cassettes prior to slide cutting and staining by hematoxylin&eosin (H&E). Kaplan-

Meier methods was applied to estimate survival rate. Survival curves and P value 

calculation were carried by software GraphPad Prism. 

 

 

1.2 Extraction of  genomic DNA from fixed specimens 

 

Pieces of mouse tissue samples fixed by 10% formalin were first washed by running 

water overnight, then, chopped into fine pieces by scissors in 1.5ML tubes. Next, as 

previously described, standard genomic DNA extraction protocol was applied. 

Genomic DNA was dissolved in 50uL ddH2O.  

 

1.3       Preparation MEF cells 

 

Females were euthanized at day 13.5. The ovaries were transferred into 10cm 

tissue culture dishes and washed with 1X PBS containing 2X pen/strep under 

sterilized environment. Each embryo was transferred into a new dish, removed from 

all mother tissue, and minced well with a surge knife. The embryo was then 

incubated with 1 ml 0.25% Trypsin/EDTA at 37 ºC for 10 minutes, added with 10 ml 

DMEM with 10% FBS, mixed by gently pipetting the medium 10 times and placed at 

37 ºC with 5% CO2 for 24 hours. The MEF cells were spited or frozen when 

confluent.  

59 
 



 

 

 

1.4       Immuno-staining of radiation-induced foci 

MEF cells were allowed to grow on cover slips and irradiated at 1.5Gy at desired 

time points. The cover slips were washed once with 1X PBS, fixed by 1ml 3% 

Paraformaldehyde for 10 minutes at RT. The slips then were washed once with 

1XPBS, treated with 1ml 0.5%Triton buffer for 5 minutes at RT, and washed twice 

with 1X PBS. The primary antibodies, diluted in 1:1000 ratio with 5% Goat Serum, 

were applied directly at the center of slips and the slips were incubated overnight at 

4 ºC. The secondary antibody, diluted in 1:2000 ratio with 5% Goat Serum, were 

applied and incubated for 20 minutes at 37 ºC. All the antibodies are kindly gifts from 

Dr. Junjue Chen of MDACC. A drop of Mounting medium was applied to each slip 

before it was fix to a slide by sealing all edges with nail varnish.  

 

 

 

60 
 



2.0 Results 

 

2.1 Shortened half-life of radiation-induced foci in p53+/-RMI1+/- MEFs 

 

The BTB complex is known to maintain genomic integrity through the HR pathway 

during DSB repair. The impact of RMI1 deficiency on genomic integrity may further 

be facilitated under a p53+/- background. Therefore, I tested the radiation-induced 

foci status in p53+/-RMI1+/- MEFs. The control MEFs, consisted of wild type, p53+/-, 

and RMI1+/- genotypes, were derived from littermates of p53+/-RMI1+/- intercrossing. 

To do so, I obtained intercross between p53+/-RMI1+/- males and females and 

harvested embryos at D13.5. Four MEF cell lines were generated from littermates 

with the following genotypes, p53+/+RMI1+/+, p53+/-RMI1+/-, p53+/+RMI1+/-, and 

p53+/+RMI1+/-.  

All the MEFs were subject to 1.5Gy of ionizing radiation. The nuclear focus formation 

was stained by either γ-H2AX or 53BP1 antibody and scored at various time points 

up to 48 hours after radiation. Initially, the numbers of foci observed per cell were 

similar among p53+/-RMI1+/- and control MEFs. (Figure 7.) However, after 24 or 48 

hours, the average number of foci per p53+/-RMI1+/- MEF nucleus is moderately 

lower than any of the control MEFs. 

It is more noticeable that at 24 or 48 hours post IR, a substantial proportion of cells 

had already lost detectable foci and became foci-negative. This phenomenon was 

observed from MEFs of all genotypes. However, when comparing with control MEFs, 
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p53+/-RMI1+/- MEFs had a significantly higher percentage of foci-negative population. 

(Table 2.) While the foci-negative p53+/-RMI1+/- MEFs constituted more than 60% of 

the total population, the percentages of foci-negative control MEFs were between 

25~45%. This result suggests an accelerated resolvation of radiation-induced foci in 

p53+/-RMI1+/- MEFs, presumably due to the partial loss of RMI1, which allows 

Holliday junctions to be resolved without the deterrence of the BTB complex function 

and in conjunction with the deficient p53 status. 

 

2.2 Ionizing radiation fails to induce enhanced tumor formation in RMI1+/- mice  

 

The BTB complex proteins are known for their function in maintaining genomic 

integrity partly by preventing chromatid exchanges during HR. Because of its role in 

this complex, it is very likely that loss of one RMI1allele could affect the overall level 

of the BTB complex activity. This disruption might impact the efficiency or/and 

outcome of DSB repair, because elevated recombination events may cause LOH in 

tumor suppressor gene alleles, and consequently, lead to increased tumorigenesis. 

Moreover, as indicated by my results at the cellular level, p53 deletion effectively 

mitigated the cell lethality caused by Rmi1 depletion. Thus, it is possible that 

compromised p53 function may facilitate or enhance any potential haploinsufficiency 

of the Rmi1 gene. Following this idea, I constructed RMI1 and p53 double 

heterozygous mouse model. I exposed RMI1+/- as well as wild type, RMI1+/-p53+/- 

and p53+/- mice to sub lethal dosage of IR. Four groups of mice were treated with 

4Gy of gamma radiation at an age of 6 weeks. These mice were then kept for  
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 Hours after 
IR  Rmi1+/-   Rmi1+/- 

p53+/-   p53+/-  Wild type  

24h  27.8±3.2%  66.4±12.5%  41.6±7.5%  48.8±4.3%  

53BP1  

48h  28.4±5.0%  80.6±7.0%  56.7±4.3%  45.8±10.6%  

24h  24.6±5.4%  61.7±9.1%  35.6±11.3%  15.3±23.2%  

H2AX  

48h  28.3±2.4%  60.4±6.4%  38.5±8.7%  29.5±6.1%  
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observation of tumor formation for at least a year. All the mice were euthanized at 

the end of the tumor monitoring. As shown in Table 3, although more mice 

developed tumor before 35 weeks of age, the overall tumorigenesis rate of RMI1+/- 

mice (23%, 5/22) is indistinguishable from that of wild type controls (31%, 8/26). 

Thus, RMI1 heterozygosity alone seems unable to cause increased tumorigenesis, 

both spontaneous and induced.  

 

2.3 Rmi1 heterozygosity accelerates IR-induced tumor formation of p53+/- mice 

 

Expectedly, the majority of p53+/- mice developed tumors (75%, 15/20). Interestingly, 

although overall tumorigenesis rate of RMI1+/-p53+/- (83%, 19/23) mice is close to 

that of the p53+/- mice, more mice from this group developed tumors at earlier ages 

than p53+/- ones. The tumor incidence is 52% (12/23) by 35 weeks of age, and 74% 

(17/23) by 55 weeks of age, respectively. In comparison, percentages from p53+/- 

group are 10% (2/20) and 50% (10/20) by the same time points, respectively. 

Moreover, the average tumor free rate is 27 weeks from RMI1+/-p53+/- mice, 

comparing with 45 weeks from p53+/- ones. The difference of average tumor free rate 

from two groups is statistically significant (P<0.02) (Figure 8.). Clearly, our result 

indicates a relationship between p53 and RMI1 in accelerated tumorigenesis. 

 

Previous studies have shown that irradiated p53+/- mice develop lymphoma as 

primary tumor. Depending on the background of the inbred strains, 48% to 90% 

induced tumors from p53+/- mice are lymphoma. In our experiment, a similar trend 
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was observed. Lymphoma consisted the primary source of identified tumors derived 

from p53+/- mice. 

 
No. of 

mice 

No. of 

mice 

died 

No. of 

mice 

died 

within 

35 wks 

lymphoma sarcoma sarcoma unknown

Rmi1+/- 

p53+/- 
23 29 12 12 5 4 1 

Rmi1+/+ 

p53+/- 
20 25 2 7 3 3 5 

Rmi1+/- 

p53+/+ 
22 7 3 3 2 0 2 

Rmi1+/+ 

p53+/+ 
26 9 1 8 2 0 1 

68 
 



 

 

 

 

 

 

 

 

 

 

 

             

69 
 



 

 

 

 

70 
 



 

 

 

 

 

 

 

 

 

 

 

            

71 
 



(47%, 7/15), more than carcinoma and sarcoma combined. On the other hand, 

RMI1+/-p53+/- mice developed higher percentage of lymphoma (57%, 12/23) (Table 

3.). However, it requires further study to determine whether the difference of 

lymphoma occurances  from the two groups is statistically significant. Together, the 

additional deletion of RMI1 does not seem to alter the overall tumor spectrum of the 

p53+/- mice. 

 

Interestingly, in comparison with p53+/-, RMI1+/-p53+/- mice exhibited higher risk to 

aggressive tumor types, which include high grade lymphoma, invasive carcinoma, 

and invasive osteosarcoma as illustrated in Figure 9A-F. In summary, deleting one 

copy of RMI1 gene under p53+/- background leads to accelerated tumor onset and 

potentially more aggressive tumor types, both of which indicate a tumor suppressor 

role of RMI1. 

 

 

2.4 LOH assays on RMI1 and p53 loci 

 

Loss of heterozygosity (LOH) of p53 locus occurs frequently in p53+/- tumors. It is 

very likely that LOH on RMI1 locus may cause accelerated tumor formation in 

RMI1+/-p53+/- mice. In this project, I tested this hypothesis by studying LOH on both 

loci. Genomic DNA from tumor tissue and tail tips of RMI1+/-p53+/- mice are collected 

and PCR genotyping was performed. Interestingly, whereas tumor cells lost wild 

type p53 alleles, the heterozygosity of RMI1 locus sustained (Figure 10A.). Thus, 
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LOH of RMI1 locus seems not the cause of tumor-formation phenotype observed in 

RMI1+/-p53+/- mice. However, because genomic DNA extracted from fixed tumor 

specimens were unable to produce clear PCR results (Figure 10B.), probably due to 

fragmentized genomic DNA, more data is needed in order to firmly establish this 

hypothesis.    
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3.0 Discussion 

 

 

3.1 Functional relationship between p53 and RMI1 

 

I have shown that radiation-induced foci were more rapidly resolved in RMI1+/- p53+/- 

MEFs, when compared to MEFs derived from wild type, RMI1+/- p53+/+,, and RMI1+/+ 

p53+/- embryos. This accelerated resolving rate is unlikely caused by cell death, 

since no significant difference was found among MEF cells with the fours different 

genotypes when assayed for radiation-induced apoptosis with the same dose of 

radiation. 

 

While p53-deletion mitigated cell death of RMI1-depleted cells, p53-/- background 

fails to  extend the viability of RMI1-/- embryos to blastocyst stage . In the foci 

experiment, however, p53 and RMI1 double heterozygous MEFs displayed a 

measurable phenotype compared to control MEF cells, indicating a functional 

interaction between p53 and RMI1.  These results refect the abilities of different 

experimental systems when genetic interactions are investigated. It also suggests 

that the requirement for RMI1 and p53 functions is not identical among transformed 

cell, MEF cells, and mouse embryos. However, the commonality in the observed 

phenotypes is consistent with the notion that the BTB complex acts to facilitate non-

crossover HR repair and prevent excessive or nonreciprocal exchanges. Thus, RMI1 

deficiency in general will lead to genomic instability of varying extent. A p53 deficient 
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background likely substantiates the defects by suppressing checkpoint mechanisms. 

However, the exact role of p53 in association with RMI1 remains unknown. 

 

 

3.2 Recessive haploinsufficiency of RMI1+/- mice 

 

RMI1+/- mice are viable and productive. At the same time, deleting one copy of RMI1 

allele does not lead to either spontaneous or radiation induced-tumor formations. 

Challenged by IR of 4 Gy at 6 weeks of age, 3 RMI1+/- mice died within 35 weeks. By 

the end of the experiment, 7 deaths were observed out of 22 individuals. In 

comparison, these numbers are 1 and 9 out of 26 in wild type control cohort, 

respectively. The tumor-free survival curves from two cohorts are not significant 

different within either 35 or 55 weeks of period. RMI1 heterozygosity does not alter 

the tumor spectrum, too. Both mice mainly developed lymphoma and sarcoma. 

Although the percentage of lymphoma incidences from RMI1+/- mice was much lower 

than that from wild type ones, it could be simply due to insufficient sample size. 

 

These results are consistent with phenotypes observed from both BLM and Topo3α 

heterozygous mice. However, haploinsufficiency has been observed in BLM mice. 

BLM+/- mice die earlier when injected with murine leukemia virus (MLV). 

Furthermore, the BLM/APC double-heterozygous mice exhibited enhanced 

gastrointestinal tumor formation. Thus it is very likely that RMI1 mice could display 

similar haploinsufficient cancer-prone phenotypes under certain condition.  
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We approached RMI1 function in tumorigenesis by crossing RMI1+/- mice with p53+/- 

ones. Interestingly, the RMI1/p53 double heterozygous mice, unlike RMI1+/- and 

p53+/- ones, exhibited accelerated radiation induced-tumor formation. At the age of 

35 weeks, 12 out of 23 RMI1+/- p53+/- mice had died, whereas only 3 out of 22 and 2 

out of 20 mice died from RMI1+/- and p53+/- groups, respectively.  This early tumor 

onset indicates a recessive haploinsufficiency of RMI1 function in tumor 

susceptibility.  

 

Despite accelerated tumor onset, RMI1+/-p53+/- mice did not display altered tumor 

spectrum from p53+/- mice. p53+/- mice received sub-lethal dosage of IR are known 

to be prone to a wide spectrum of tumors. Although the profiles of tumor spectrum 

might vary depending on strains and radiation dosage, lymphoma is the primary 

source of tumor types. In our study, about half of IR induced-tumors from p53+/- and 

RMI1+/-p53+/- mice consisted of lymphoma. Moreover, both mice developed sarcoma 

and carcinoma. 

 

It is notable that RMI1+/-p53+/- mice had increased risk to aggressive tumor types. In 

our limited study, we have observed high-grade lymphoma, invasive carcinoma and 

invasive osteocarcoma. In contrast, few mice from p53+/- as well as other two groups 

developed such high-grade tumors. It is thus very likely that in addition to 

accelerating tumor onset, RMI1 heterozygosity, in combination with p53+/-, might 
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facilitate the progression of malignancies, too. However, in order to firmly establish 

this point, further study involved larger sample pool may be required.  

 

The mechanism between RMI1 heterozygosity and earlier tumor onset of p53+/- mice 

remains elusive. LOH of p53 locus is a common phenotype of p53+/- tumors. Our 

preliminary study of LOH in RMI1+/-p53+/- tumor samples suggested that while the 

wild type p53 allele was lost, the wild type RMI1 allele, on the other hand, was not. 

BS cells are known for its elevated gene targeting/recombination efficiency, 

indicating BLM, as well as BTB complex function in maintaining genomic stability 

and integrity. It is very likely that RMI1 heterozygosity reduces BTB complex activity, 

and leads to promoted genomic recombination events. Thus in RMI1+/- cells, 

although the cellular viability and DNA damage checkpoint/repair pathways may 

remain intact, LOH on p53 locus could be facilitated by this RMI1-associated 

enhanced recombination efficiency. This results in accelerated tumor onset.  

 

In summary, we argue for a potential tumor suppressor role of RMI1. Although 

deleting one copy of RMI1 gene did not lead to increased risk of both spontaneous 

and induced tumor formation in animal model, it facilitated tumor onset when 

coupled with p53 heterozygosity. 

 

 

 

 

81 
 



3.2 Potential clinic application of RMI1 mouse model 

  

Until recently, RMI1 gene has not been linked to any specific genetic disorders. Our 

experiment, however, demonstrated that RMI1+/- in combination with p53+/-, 

contributes to significant accelerated radiation-induced tumorigenesis. This result 

suggests RMI1 heterozygosity, when coupled with defective tumor suppressor 

genes, could lead to higher risk, earlier onset and poorer outcome of tumors. Thus, 

because its haploinsurfficient impact on tumor susceptibility, RMI1 should be 

considered as an tumor suppressor gene. 

 

Recently, the clinical outcome of single nucleotide polymorphisms (SNPs) has been 

studied extensively. By definition, polymorphism is the least common allele occurring 

in 1% or greater of the population (113). SNPs are present throughout human 

genome. The average frequency of SNPs is approximate 1 per 1,000 base pairs (bp) 

(114). It is well established that certain SNPs are associated with cancer 

susceptibility. Depending on the context of the SNP, it could be either protective or 

provocative in cancer risk (115, 116).  

 

Several SNPs from RMI1 gene have been linked with increase risk of cancers in 

clinical studies. In predominating Swedish population, SNP (rs1982151) carriers 

have about 2-fold and 1.5-fold higher risk of AML/MDS and MN than controls, 

respectively. This association between risk of cancers and RMI1 SNP is observed 

both in heterozygotes and homozygotes. Moreover, the effect of age was found 
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during this study, especially in MN patients (117). Later, SNP (rs296887) of RMI1 

was also identified to be associated with increased cancer risks for AML/MDS and 

MN, but not bladder cancer (118). The result from SNP studies of RMI1 is consistent 

with that from our mouse model, that RMI1 has potential function as a tumor 

suppressor gene. Taking together, RMI1, as a tumor suppressor gene, may have its 

potential applications in further cancer prevention and treatment.  
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Chapter IV 

 

Conclusion and Future Directions 

 

1.0 Conclusion 

In this project, I have successfully established a knockout mouse model of RMI1 

gene. I have shown that RMI1 is essential for early embryonic development. 

Deleting both alleles of RMI1 leads to embryonic lethality before implantation. I have 

also demonstrated that whereas RMI1+/- mice are viable and exhibit no obvious 

phenotypes, RMI1 heterozygosity, facilitates IR-induced tumor formations in p53+/- 

background. The earlier onset and more progressive outcome of tumors from 

RMI1+/-p53+/- double-heterozygous mice suggest a potential role of RMI1 in tumor 

suppressing.  

 

I have also investigated mechanisms of RMI1-associated cell death. Additional 

depleting of p53 restored colony formation ability of Rmi1 knockdown cells, 

indicating p53 and RMI1 are functionally related in regulating cellular viability. The 

exact mechanism of RMI1, however, needs further investigations. 
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2.0 Future Directions 

 

 

2.1 Study molecular modification of RMI1 

 

Post-transcriptional modification plays an important role in regulating protein 

activities. Among the three key components of the BTB complex, molecular 

modification on BLM has been studied extensively. BLM is phosphorylated at The99 

and Thr122 during mitosis and in response to genotoxic stress (20, 35, 37, 119). This 

phosphorylation is ATM/ATR dependent. Expression BLMT99G and BLMT122A in BS 

cells were able to restore normal frequency of SCE, but failed to correct 

radiosensitivity. BLM is also a substrate for SUMO modification (28). BLM mutations 

with abolished SUMO modification sites (K317 and K331) failed to localize to PML 

NBs, yet partially complemented the genomic instability phenotypes (120). It is 

possible that modifications may also be required for tight regulation of RMI1 activity.  

 

Chang from our lab has identified Ser284 and Ser292 as two phosphorylation sites 

on Rmi1. Rmi1 is phosphorylated after UV, HU or IR treatment. This 

phosphorylation, unlike BLM’s, is independent of ATM/ATR. Although the functional 

significance of RMI1 phosphorylation remains to be elucidated, it is of particular 
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interests to explore its role in coordinating RMI1 as well as BTB complex activity in 

response to DSBs. By utilizing the same strategy of RMI1 knockout, we could 

manage to establish a knock-in model of RMI1 with mutated phosphorylation site. 

This model, if available, would serve as the best tool to study function of RMI1 

phosphorylation. 

 

 

2.2 Study functional domains of RMI1 

 

Structurally, several functional domains and evolutionary conserved regions have 

been identified in RMI1 protein. Whereas activity of certain domain remains 

controversial, the N-terminus of RMI1 is required for BLM and Topo3α interactions. 

RMI1 mutations abolishing Topo3α binding activity was unable to alleviate 

clonogenic survival of RMI1 depleted cells, suggesting a functional importance of 

this region. Despite recent progress, understanding of functions of other 

domains/regions is still limited. For example, RMI1 is proposed to recruiting BLM 

and Topo3α onto DNA substrate and to facilitate their activity. However, the exact 

mechanism of Rmi1 in this process has yet identified. Further study on dissected 

functions of RMI1 by truncations or point mutations could illustrate RMI1 activity, and 

help us better reveal its function. 
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2.3 Study potential protein partners of RMI1 

 

Physical and functional interactions between RMI1 and BLM/Topo3α have been 

unfolded. Recently, the third protein binding to RMI1, RMI2, has been identified. Still, 

it is possible that potential RMI1-interacting proteins are yet to be found. Moreover, 

the kinase and phosphotase in response to Rmi1 phosphorylation remain unknown. 

Thus, searching for potential protein partners of Rmi1 would help in understanding 

RMI1 function and its exact role in BTB complex regulation.  

 

 

2.4 Study RMI1 mutations/SNP in human cancers  

 

Defective BLM causes Bloom syndrome. Since RMI1 is required for normal BLM 

function (82), its mutations may also lead to tumor-prone genetic disorders. 

However, several attempts have failed to detect such mutations. Recently, Broberg 

and co-workers have established RMI1 SNPs that associate with increased risk of 

cancers (117, 118). The two SNPs, locating at transcriptional and promoter regions 

of RMI1 respectively, are linked to a 2-fold increase of certain types of cancers. This 

finding, for the first time, established relationship between RMI1 and human cancer 

susceptibility. Together with our findings from irradiated RMI1+/-p53+/- mice, it is 

possible that polymorphisms or mutations of RMI1 could alter tumor risk and grade.  
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A high volume screening of RMI2 SNPs and mutations in tumor samples could 

further help us to reveal more information of cancer-associated RMI1 alleles. By 

studying these alleles, we may be able to learn dissected protein function/activity of 

Rmi1. Moreover, at least one SNP with increased cancer risk locates to the RMI1 

promoter region. This SNP, as well as other potential ones, would help us to better 

understand the regulation of Rmi1 expression. Furthermore, these alleles could 

provide useful information in cancer prevention, diagnosis and treatment. 
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Protein Interaction Network among 

INO80 Complex Subunits 

 

 

Introduction & Significance 

 

 

1.0 Classification of chromatin remodeling complexes 

 

The genomic DNA of eukaryotic cells is packaged into highly compacted and stable 

chromatin structure, which helps to envelop it in the nucleus. The primary unit of the 

chromatin structure is the nucleosome. It includes 146 base pairs of DNA, which 

wraps about 1.7 left-handed turns around the histone octamer composed of two 

H2A-H2B heterodimers and one H3-H4 tetramer. During genomic DNA packaging 

process, it could be packaged into higher order structures termed chromatin fibers. 
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Although nucleosomal structure alleviates the spatial constrain of the nucleus,  this 

compacted structure presents a barrier for proper DNA metabolic processes, as 

these processes are impeded due to limited accessibility of DNA substrates. In order 

to create dynamic chromatin environment and expose desired DNA substrates, 

chromatin structure are reconfigured by two distinct yet highly intertwined 

mechanisms, post-translational modification of histones and ATP-dependent 

chromatin remodeling (121, 122) (Table 1, 2.). 

 

The ATP-dependent chromatin remodeling complexes are named after their ATPase 

subunits, all of which belong to the SWI/SNF family, a part of SNF2 superfamily. 

These subunits could be further divided into subfamilies, including the SWI/SNF, 

ISWI, CHD and INO80 (Table 2.). Among them, the INO80 subfamily is the most 

recent identified family, which is conserved from yeast to mammals (123). 
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2.0 Cellular functions of INO80 complex 

Previous studies have indicated that INO80 complex is involved in almost all DNA 

metabolic processes, which include transcription, replication, and damage repair. 

Interestingly, INO80 complex may also have function in checkpoint regulation (124). 

In the following sections, INO80 complex function in different DNA metabolic 

processes will be discussed briefly.  

 
 

2.1 The INO80 complex in transcriptional regulation 

 

The Ino80 ATPase was first identified as a transcriptional regulator. Initial 

characterization suggested that it was required for inositol-responsive gene 

expression (125). Later, evidences indicate that this protein, as well as its complex, 

in response to a variety of signaling pathways, is able to regulate a limited set of 

gene transcriptions in yeast, plants and mammals (126-128).  

 

The function of INO80 complex in transcription regulation associates with 

transcription factor YY1, which is an interaction protein of the human INO80 complex 

(Figure 3.). Cai, Y et al. demonstrated that the INO80 complex is required for YY1 

binding to two well-characterized YY1-activated genes, and deleting two subunits of 

INO80 complex abolishes expressions of these two genes (128). 
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2.2 The INO80 complex in DNA replication 

 

Several recent studies have suggested that INO80 complex contributes to ensuring 

replication fork progress during both normal and challenged situations. Yeast INO80 

complex is recruited onto not only normal non-stressed, but also stalled replication 

forks and unfired replication origins, both of which are induced by HU (126, 129, 

130). Moreover, yeast strains with mutations of INO80 subunits exhibit a slower 

growth phenotype (130), suggesting a defective DNA replication in the absence of 

INO80 complex. Further studies show these strains are unable to efficiently restart 

replication after stress and accumulate DSB, mainly due to dissociation of replication 

machinery from stalled replication forks (126, 129). Based on these correlative 

evidence, INO80 complex is proposed to promote remodeling or remove 

nucleosomes in the path of replication forks, and possibly, reassembling them after 

strand synthesis. However, this proposed mechanism of INO80 complex in DNA 

replication remains to be proved. 

 

 

2.3 The INO80 complex in DNA repair 
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Deletions or mutations of INO80 complex subunits are hypersensitive to a variety of 

reagents causing DNA damage, including methylmethane sulfate (MMS), ionizing 

radiation (IR), ultraviolet (UV) and topoisomerase inhibitors (131, 132). These 

observations indicate that the INO80 complex has a function in DNA repair. 

 

Recently, progress has been made in understanding the INO80 complex’s role in 

DSB repair. Yeast INO80 complex is known to be recruited to the vicinity of HO-

induced DSB within 2 hours. This recruitment is partially dependent on phospho-

H2A, since deletion of H2A is able to reduce this recruitment (133, 134). Further 

investigations indicate that Arp4 and Nhp10, two subunits of INO80 complex, 

contribute to phospho-H2A recognition. Deletion of either gene in yeast results in 

reduced recruitment of INO80 complex subunits to DSBs (135). However, it is still 

debatable whether Arp4 is dispensable in this recruitment, as it is reported that 

INO80 complex stably binds to γ-H2AX in the absence of Arp4 (135).  

Moreover, in mammalian cells, INO80 complex is associated with HR-mediated DSB 

repairs. Depletion of either Ino80 or YY1 leads to substantial reduced HR activity 

(132). The mechanism under this observation, however, needs further investigation. 

 

In addition, INO80 complex may have its function in checkpoint response. Deleting 

IES4, a subunit of yeast INO80 complex, leads to depressed p53 activation. In 

contrast, phosphor-mimic mutant of this gene exhibits enhanced p53 activation and 

slower S phase progression with MMS, whereas the repair machinery appears 

normally (136, 137).  
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3.0 Protein Components of INO80 Complex 

 

The human INO80 complex was first isolated by the J Conaway laboratory (128, 

137). Among the 15 subunits identified from this complex, 8 are orthologs of yeast 

INO80 complex components. Because of their functional importance and evolutional 

conservation, hereafter, these 8 proteins are referred as core subunits of INO80 

complex. Moreover, 3 subunits, INO80, Arp5 and Arp8, are presented exclusively in 

this complex, and are not found in other chromatin remodeling complexes.  (Table 

3.).  Although the role of INO80 complex in DNA metabolism is implicated, functions 

of individual INO80 subunits, other than the ATPase-helicase components Ino80, 

remain largely elusive.  

 

The Ino80 protein is generally considered as the key factor in this complex (Figure 

1.). First, although it is not the only ATPase within this complex, its ATP hydrolysis 

activity is required for this complex’s chromatin remodeling function (125, 131). 

Second, Ino80 has physical interactions with several core INO80 complex subunits, 

including actin, actin-related proteins (Arps) and Rvbs (124). Thus it may serve as a 

docking station of INO80 complex (Figure 1.).  
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The AAA+ ATPases Rvb1 and Rvb2 are evolutionarily conserved from yeast to 

human, which shares sequence similarity to bacterial RuvB ATPase (138). 

Structurally, the Rvb1/Rvb2 forms two stacked hexameric rings with 6 of each 

protein (139, 140). Nevertheless, it is unclear whether these two proteins integrate 

into INO80 complex with similar structure, although IP assays suggest they keep six-

fold stoichiometry in INO80 complexes from both yeast and human (128, 131). 

Although the exact function remains unknown, Rvb proteins may be required for 

stable assembly of INO80 complex, as Rvb2 is required for recruitment of Arp5 to 

the site of DNA double strand breaks (141).  

 

Ino80 interacts with multiple Actin and Actin-related proteins, including Arp4, Arp5 

and Arp8 (137). The docking sites of these proteins on Ino80 have been mapped. As 

previously described, Arp5 and Arp8 are specifically presented in INO80 complex. 

Based on observations of Arp-histone bindings, it is proposed that these Actin-

related proteins may contribute to nucleasome binding of INO80 complex (142, 143). 

Protein interactions and their functions between other components of the INO80 

complex remains unknown. Identification of these interactions will provide additional 

understanding toward the INO80 complex structure and function.  
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4.0 Bimolecular fluorescence complementation assay  

 

The Bimolecular fluorescence complementation (BiFC) assay, first reported by Hu 

CD et al. in 2002, is designed to detect protein-protein association in living cells 

(144). In this assay, two putative interacting proteins were fused with non-functional 

fluorescent protein fragments, respectively (Figure 2.). If taken into close distance, 

the two fragments are able to resemble themselves and reconstitute functional 

fluorophore. The fluorescent signal then could be visualized under microscopy, 

which indicates the physical interaction of proteins. Comparing with traditional in 

vitro interaction assays, BiFC is able to provide visualized images of interaction with 

native proteins.  

 

 

5.0 Goals of experiment 

 

Despite that the core components of the INO80 complex have been identified and 

some of the structure features of this complex have been revealed, the detailed 

information of in vivo protein-protein interaction within this complex remains 

unknown. Furthermore, functional study of its core subunits, especially, the 
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biological function of nuclear ARPs in maintaining complex stability, needs further 

investigation.  

 

In this study, I investigate protein-protein interactions among the 7 conserved core 

subunits of human INO80 complex using the BiFC assay. This experiment will 

provide a comprehensive view of physical protein contact within the INO80 complex. 

In addition, our lab has successfully developed Ino80 and Arp5 somatic conditional 

knockout cell strains. In combination with these mutant strains, we may be able to 

reveal Ino80 and Arp5’s function in maintaining stability of INO80 complex.  
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Materials and Methods 

 

 

1.0 Cell Culture and cDNA Cloning/Transfection 

 

HEK293 and HEK293T cell lines were culture in DMEM medium, supplemented with 

10% FBS. Cells were incubated in 37oC incubator with 5.5% CO2 concentration.  

cDNA of Arp4, Tip49a, Tip49b and Ies6 were obtained from Human ORFeome V3.1 

program, from which all cDNA was cloned into Gateway pDOR223 vector. The plate 

numbers of 4 hORFeome cDNA clones are listed below: Arp4, D01-11037; Rvb1, 

H06-11011; Rvb2, D01-11037; Ies6, D01-31001. cDNA of Ies2, Arp5 and Arp8 were 

amplified by PCR and cloned into pDOR201 vector, respectively. The PCR primers 

used in cDNA amplications were listed below: Arp5 upper, 

ggggacaactttgtacaaaaaagttggcatggcggcgaacgtgttt; Arp5 lower, 

ggggacaactttgtacaagaaagttgggtatgcctgctcaccagcac; Arp8 upper, 

ggggacaactttgtacaaaaaagttggcatgacccaggctgagaag; Arp8 lower, 

ggggacaactttgtacaagaaagttgggcaccacacaaacgcagcc;Ies2 upper, 

ggggacaactttgtacaaaaaagttggcatggaggcccctgagccg; Ies2 lower, 

ggggacaactttgtacaagaaagttgggtacgtagccaaaagggg.  

 

cDNAs carried by pENTRY vector were transferred into 4 pBABE-based destination 

vectors (pB-CMV-DEST-VN-neo, pB-CMV-VN-DEST-neo, pB-CMV-DEST-YFPC-
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puro and pB-CMV-YFPC-DEST-puro, respectively) in LR reaction. Expression 

plasmids were transfected into HEK 293 or HEK293T cells with Fugen6.  

 

 

2.0 Immunobloting and Green Fluorescent Signal Detection 

 

Proteins were separated by 8% SDS/PAGE gel. C- and N-terminal GFP fragment 

tagged INO80 subunits were detected by incubating with polyclonal anti-GFP 

antibody (SC-9996) overnight at 4oC. For green fluorescent signal detection, cells 

transiently transfected with expression plasmids were cultured on cover slips until 

reaching confluence. Slips were then carefully washed with PBS, incubated with 4% 

paraformaldehyde for 10 minutes and fixed with 0.5% triton solution for 15 minutes 

in R.T. before mounted on glass slides and visualized under fluorescence 

microscope (Leica DM4000B). 
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Results  

 

1.0 Constructions and expressions of YFP-tagged INO80 subunits 

 

In order to explore molecular structure of INO80 complex, I performed BiFC assay to 

study protein-protein interactions within this complex. 7 core subunits of this complex 

were selected for this assay, including Arp4, Arp5, Arp8, Rvb1, Rvb2, Ies2 and Ies6. 

All of them are orthologs of yeast INO80 complex core components. Specially, Arp5 

and Arp8 are exclusively presented in INO80 complex.  

 

cDNA of 7 INO80 subunits were each seperately cloned into 4 distinct destination 

vectors, which fuse C- or N-terminal venus YFP fragment at either end of targeted 

protein, respectively. These expression constructs were next transfected into 

HEK293 cells. Twenty hours after tranfection, cells were collected for western blots 

against a polyclonal anti-GFP antibody, which is capable of detecting YFP. As 

shown in Figure 3, expressions of 4 versions of fusion proteins from 7 subunits were 

detected.  
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2.0 Fluorescence microscopy  

 

To detect all potential protein-protein interactions among the 7 targeted subunits, I 

cross-tested all possible combinations of protein pairs. Expression plasmid with 

fused N-terminal YFP fragment was co-transfected with each of all expression 

plasmids that fused with C-terminal YFP fragment, respectively. TPP1 and TIN2 

fusion proteins were used as positive controls. Fluorescent signals were visualized 

under UV microscopy. In summary, several protein-protein interactions were 

detected, although the fluorescent signal strength varies (Figure 4. & Table 4.). 
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 Rvb1 Rvb2 Ies2 Ies6 Arp4 Arp5 Arp8 

Rvb1  +++ - - - - - 

Rvb2   - + - - + 

Ies2    - - - - 

Ies6     - + - 

Arp4      - - 

Arp5       - 

Arp8        
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Discussion 

 

The architectures of both yeast and human INO80 complex remain poorly 

understood. Data from tandem affinity purification assays (Molecular Interactions 

Database, http://mint.bio.uniroma2.it/mint/Welcome.do) suggests that yeast Arp4, 

Arp5, Arp8, Rvb1, Rvb2, Ies2 and Ies6 have direct interactions with each other. 

However, affinity purifications may not represent real situations in cellular 

environment. Furthermore, although highly conserved, human INO80 complex may 

not share the same structural features with that of the lower eukaryotes.  

 

From several duplicated experiments, I was able to detect interactions between 

Rvb1-Rvb2, Ies6-Rvb2, Arp8-Rvb2 and Arp5-Ies6. As expected, among all 

detectable interactions, the Rvb1-Rvb2 pair exhibits the highest signal strength. This 

phenomenon may simply due to the relatively higher concentration of Rvb1-Rvb2 

subunit, which has a 6-fold stoichiometry against Ino80 in IP assay and also 

presents in other complex (137). Surprisingly, all interactions between INO80 

components were detected both in cytoplasm and nucleus. It indicates that the 

INO80 complex may also present in cytoplasm. However, the immunostaining of 

Ino80 protein from Dr. Shen Xuetong and our labs suggested nuclear localization of 

this protein (131, Data not shown). Moreover, although the cytoplasmic localization 

of Rvb1/Rvb2 has been reported previously (145, 146), the function of cytoplasmic 

Rvbs remains unknown.  
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At the same time, I was unable to detect fluorescent signals among 3 Actin-related 

proteins, namely, Arp4, Arp5 and Arp8. It is possible that the impacted INO80 

complex structure prevents reassembling of YPF fragments. It is also possible, 

however, that Arp proteins may not interact with each other directly. Previous studies 

have revealed that Ino80 contains docking sites for Actin, Arps, Rvbs and Ies 

subunits. Thus, Arp4, Arp5 and Arp8 proteins may interact directly with Ino80 and 

Actin. To further dissect structure of INO80 complex and reveal its localization in 

vivo, it is necessary to develop BiFC constructs of Ino80 and Actin. 

 

Another potential factor affecting the BiFC assay is its sensivity of detection. The 

interactions listed in Table 4 are detected by eye under microscope, which is limited 

by the sensitivity of human vision. It is possible that there are weak interactions or 

interactions that do not allow an perfect structural reconstitution of the YFG protein. 

In such a case, certain protein protein interactions may be undetectable by visual 

analysis. It may require flow cytomentry to carry out further and more quantitative 

analysis. 
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