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Plasmacytoid dendritic cells sense skin injury and promote wound 

healing through type I interferons 

 

 

Publication No. ______ 

Josh Gregorio, B.S., J.D. 

Supervisory Professor: Michel Gilliet, M.D. 

 

        Plasmacytoid dendritic cells (pDCs) are a rare population of circulating 

cells, which selectively express intracellular Toll-like receptors (TLR)-7 and 

TLR-9 and have the capacity to produce large amounts of type I IFNs (IFN-α/β) 

in response to viruses or host derived nucleic acid containing complexes. pDCs 

are normally absent in skin but accumulate in the skin of psoriasis patients 

where their chronic activation to produce IFN-α/β drives the disease formation. 

Whether pDCs and their activation to produce IFN-α/β play a functional role in 

healthy skin is unknown. Here we show that pDCs are rapidly and transiently 

recruited into healthy human and mouse skin upon epidermal injury.  

 Infiltrating pDCs were found to sense nucleic acids in wounded skin via 

TLRs, leading to the production of IFN-α/β. The production of IFN-α/β was 

paralleled by a short lived expression of cathelicidins, which form complexes 

with extracellular nucleic acids and activated pDCs to produce IFN-α/β in vitro. 

In vivo, cathelicidins were sufficient but not necessary for the induction of IFN-

α/β in wounded skin, suggesting redundancy of this pathway. Depletion of 
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pDCs or inhibition of IFN-α/βR signaling significantly impaired the inflammatory 

response and delayed re-epithelialization of skin wounds.  

 Thus we uncover a novel role of pDCs in sensing skin injury via TLR 

mediated recognition of nucleic acids and demonstrate their involvement in the 

early inflammatory process and wound healing response through the production 

of IFN-α/β. 
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WOUND HEALING  

 

The epidermis protects the body from the outside world and enables efficient 

multicellular processes to occur through prevention of water loss across the 

body surface, protection against ultraviolet radiation emitted by the sun, and 

most importantly, the epidermis protects the body from daily assaults from the 

outside environment including bacteria, fungi, and virus. The epidermis is 

composed of two distinct layers, the stratified layer, which is composed of 

flattened, differentiated anuclear, keratinocytes, and the basal layer, which is 

composed of active differentiating keratinocytes and pluripotent stem cells (1, 

2). The stratified layer is composed of many tiered layers of keratinocytes 

whose main function is to provide a very tight barrier against the outside 

environment. The basal layer is composed of keratinocytes with many 

hemidesmisomal attachments to each other as well as to the basement 

membrane (1, 2). The basement membrane marks the boundary between the 

epidermis and the underlying dermis. The dermis on the other hand is a 

collagen rich compartment populated by many tissue resident cells including 

fibroblasts, T cells, macrophages, mast cells, and endothelial cells. In addition 

hair follicle roots reside in the dermal compartment. The epidermis and dermis 

collectively form the skin. Therefore, any damage done to skin has serious 

ramifications if not resolved efficiently and expeditiously. 
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Wound healing is a multi-component process that involves many distinct cell 

types in an ordered and efficient manner. Broadly, wound healing takes place in 

distinct overlapping steps: hemostasis, inflammation, proliferation 

(angiogenesis, matrix remodeling), and epithelialization. Aberrant wound 

healing can result in chronic injury such as ulceration or can result in fibrosis 

such as keloid scars. Therefore, understanding the key steps as well as the 

molecular cues is very important to understanding the functional aspects of 

wound healing. Although much attention has been dedicated to wound healing 

research over the past decade and a lot of information has been deciphered, 

there remain many unknown elements in the complex process of wound 

healing. 

 

Assaults to the skin can take many forms and the resulting response will 

depend on both the extent and nature of the trauma. For example, puncture 

wounds such as an incisional wound will penetrate both the epidermis and 

dermis. Typically puncture wounds can be stitched or stapled together and 

allow for healing by Primary Intention. Primary Intention involves collagen 

deposition, minimal migration of keratinocytes and typically heals efficiently and 

fast (3). However open injury such as excisional wounds requires both a new 

dermis and epidermis and involves new blood vessel formation, collagen 

deposition and migration of keratinocytes to form both a new basal layer which 

differentiates to form a new stratified layer. Additionally, trauma to the epidermis 

alone such as thermal injury and chemical injury require keratinocyte migration 
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from the wound margin and hair follicles to repair the injury. However, all dermal 

wounds repair by connective tissue matrix deposition, contraction and 

epithelialization. 

 

Regardless of the nature of skin injury, I will provide a thorough, concise 

summary of known players in wound repair, from both the perspective of cell 

types involved as well as chemical mediators including cytokines, chemokines, 

and non-immune modulators such as ATP, hypoxia, and lipids. Again although 

the general scheme of wound repair has been elucidated, chronologically, the 

exact timing and magnitude of the response will depend upon the severity and 

type of injury which will not be discussed. 

 

HEMOSTASIS 

  

Most injuries will breach nearby blood vessel integrity causing blood 

components including platelets, fibrin, fibronectin, vitronectin and 

thrombospondin to be released into the injured tissue. Additionally, injury to the 

blood vessel endothelium exposes collagen within the endothelium (3-7). 

Platelets released from the blood bind to exposed collagen in both the dermis 

and blood vessel endothelium through glycoprotein Ia/IIa receptors that kick 

starts clot formation as well as sealing off the damaged blood vessel to prevent 

hemorrhaging (8). von Willebrand factor (vWF), which also circulate in the 

blood, binds to both platelets and collagen and this binding activates platelets 
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(9, 10). Activated platelets release preformed dense and alpha granules. Dense 

granules composed of adenine nucleotides, ionized calcium, histamine, 

serotonin, and epinephrine are important in amplifying platelet aggregation and 

vasodilation. Alpha granules are composed of chemotactic and growth factors 

such as insulin-like growth factor 1 (IGF), platelet-derived growth factor (PDGF), 

Transforming Growth Factor Beta  (TGF-β), chemokine-connective tissue-

activating peptide-III (CTAP-III), as well as coagulation proteins such as the 

chemokine platelet factor 4 (CXCL4), thrombospondin, fibronectin and von 

Willebrand factor (11-15).  

 

Activated platelets also undergo morphological changes from a spherical to 

stellate appearance. Calcium release from dense granules activates protein 

kinase C and Phospholipase A2 resulting in increased affinity for fibrinogen 

(16). Tissue factor expressed on the surface of tissue resident fibroblasts binds 

to Factor VII released from the damaged blood vessel forming an activated 

complex which further activates Factor IX and X. Activated Factor IX then 

activates thrombin which then is armed to cleave soluble fibrinogen to fibrin 

monomers (16). Fibrin monomers then polymerize to form a dense network of 

insoluble fibrin fibers stabilized by Factor VIII (16).  

 

Activated platelets bind fibrin through αΙΙ2/β3 receptors. The fibrin clot provides a 

provisional matrix which not only seals the exposed epidermis from the outside 

environment but also provides a conduit for infiltrating cells to traverse. 
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Moreover, fibrinogen and fibrin contain specific binding sites for vascular 

endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2 or 

bFGF) which may play a role in facilitating homing of fibroblasts, endothelial 

cells, and smooth muscle cells to the injured tissue (17-21). Fibrinogen 

synthesis is positively regulated by both interleukin-1 beta (IL-1β) and 

interleukin-6 (IL-6), cytokines important in the first few days of wound repair 

(22). 

 

INFLAMMATORY PHASE 

 

Injured keratinocytes release preformed molecules including IL-1 and defense 

peptides (cathelicidins, psoriasin, etc) into the extracellular matrix in addition to 

secreting high levels of TGF-alpha (TGF-α), IL-6, IL-8 (human) and IL-10. IL-1 

acts as a mitogen on dermal fibroblasts and positively regulates fibroblast 

homing and proliferation (23-26). The human cathelicidin, LL-37, has been 

shown to possess both, direct, antimicrobial properties as well as being 

chemotactic for neutrophils (27, 28). Additionally, in vitro, LL-37 can interact 

with self-nucleic acids to activate both plasmacytoid and myeloid dendritic cells 

(29-30). TGF-α has a strong autocrine effect on wound edge and hair follicle 

resident keratinocytes resulting in keratinocyte hyperproliferation (25).  

 

Further secretion of TGF-α and IL-6 by wound edge keratinocytes helps 

mobilize keratinocytes to the wounded epidermis early to begin the process of 
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re-epithelialization. KGF, IL-6, GM-CSF are also rapidly induced by fibroblasts 

upon exposure to keratinocyte derived IL-1. KGF binds to FGFR2IIIβ receptors 

on keratinocytes resulting in keratinocyte proliferation (25). Additionally, IL-6 

has a pleotrophic role in wound healing and acts early by stimulating 

keratinocyte proliferation. IL-6-/- mice have a delayed wound healing response 

characterized by reduced re-epithelialization, leukocyte infiltration, angiogenesis 

and collagen accumulation (31).  

 

Dendritic Epithelial T cells (DETC) comprise a small population of γδ T cells that 

reside in the epidermis. Found in mouse, DETC’s are in direct contact with 

keratinocytes and function in wound repair as well as tumor surveillance (23). In 

human, epidermal T cells possess αβ T cell receptors but not a dendritic 

phenotype and are much less abundant than in mouse (32). The γδ TCR 

recognizes an unidentified antigen released by damaged or stressed 

keratinocytes. DETC's produce keratinocyte growth factor-1 (KGF-1) and KGF-

2, insulin-like growth factor-1 (IGF-1), interleukin-2 (IL-2), interferon-gamma 

(IFN-γ), and lymphotactin (23). TCRg-deficient mice exhibit a delayed wound 

closure upon full thickness injury due to delayed keratinocyte hyperproliferation 

resulting from the absence of DETC derived KGF-1 and KGF-2 (23). 

Additionally, activated DETC induce keratinocytes to produce hyaluronan which 

is used by macrophages to migrate to the injured skin. Injured TCRg-deficient 

mice failed to induce macrophage infiltration to the upper dermis (near the 

wound), further providing a critical role for DETC's in wound repair (23).  
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Concomitant with signals from injured keratinocytes and DETC's the thrombus, 

composed of a mesh of activated platelets and polymerized fibrin, provides a 

rich source of growth factors and chemotactic molecules. PDGF initiates the 

chemotaxis of neutrophils, macrophages, and stimulates the mitogenesis of 

smooth muscle cells and fibroblasts (3).  CTAP-III is cleaved to neutrophil-

activating peptide-2 (NAP-2; CXCL7) by neutrophils attached to the thrombus 

(33) and attracts blood circulating neutrophils through CXCR2 engagement. 

TGF-β released by activated platelets attracts macrophages and stimulates 

them to produce fibroblast growth factor (FGF), PDGF, tumor necrosis alpha 

(TNF-α) and interleukin-1 (IL-1).   Additionally, TGF-β acts on fibroblast and 

smooth muscle cells to express collagen and collagenase (34-37). 

 

Tissue resident mast cells cluster around blood capillaries and sense injury 

through the Complement proteins C3a and C5a as well as TGF-β and IL-8 

(human), and release granules containing histamine, enzymes, and other active 

amines (38, 39).  Additionally, mast cells release small lipids such as platelet 

activating factor (PAF), leukotrienes C4/D4, and prostaglandins which serve to 

increase vasodilation, blood vessel permeability, upregulation of adhesion 

molecules on endothelial cells, survival signals to tissue cells, and smooth 

muscle contraction which facilitates the egress of inflammatory cells, most 

notably, neutrophils into the damaged tissue (38, 39).  Mast cells can also 

antagonize coagulation through release of tryptase which interferes with the 

ability of thrombin induced fibrin formation. Also, mast cells are recruited to the 
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provisional matrix through monocyte chemotactic protein-1 (MCP-1) released 

by tissue resident keratinocytes and endothelial cells and upregulate 

interleukin-4 (IL-4) expression during the later stages of the inflammatory 

response to shutdown  expression of TNF-α and IL-8 (38-41). Moreover, mast 

cells play an important role in later phases of wound repair such as granulation 

and angiogenesis. 

 

Neutrophils arrive to injured skin within minutes and comprise roughly 50% of 

all cells for the first few days post injury (Figure 1). Expression of CXCR2 by 

neutrophils enables them to respond to macrophage inflammatory protein-2 

(MIP-2) and keratinocyte-derived chemokine (KC) in mouse (IL-8 and 

Melanoma growth-stimulatory activity/growth-related protein-α (MGSA/GROα), 

respectively, in humans). KC produced by dermal fibroblasts and endothelial 

cells is the main source of neutrophil chemotaxis for the first 6 hours after injury 

(42). On the other hand, MIP-2 released by infiltrating neutrophils and 

monocytes is responsible for continued neutrophil chemotaxis. Continued 

release of MIP-2 occurs if an infection is present, otherwise, neutrophils cease 

to infiltrate after the first two days of injury (37, 42).  Additionally, murine but not 

human neutrophils express CCR1 that recognizes MCP-1, macrophage 

inflammatory protein 1 alpha (MIP-1α, and regulated on activation normal T 

expressed and secreted protein (RANTES). Interestingly, CXCR2-deficient mice 

exhibit delayed wound healing upon excisional injury, which is mainly attributed 

to the lack of neutrophil infiltration (37, 43).  Although, expression of CCR1 by 



10 

 

neutrophils is thought to attract some neutrophils, CXCR2 expression is vital for 

a sufficient neutrophil response. However, normal levels of monocyte infiltration 

occur in CXCR2-deficient mice which clearly suggest that although, classically, 

neutrophils appear to the injured tissue prior to monocytes, their responses are 

independent of one another. 

 

Although the historic function of infiltrating neutrophils was to clear bacteria and 

cellular debris, it has recently been shown that neutrophils contribute much 

more dynamically to the wound healing process. Upon arrival to the injury 

neutrophils are the predominant source of TNF-α, IL-1 and IL-8 in human (44, 

46). Neutrophil activity is most prominent during the first 48 hours after injury 

and precipitously decline throughout the remainder of the wound repair process. 

Neutrophils stop infiltrating through many processes including negative 

regulation of CXCR2 expression by increasing levels of TNF-α, IL-10, 

interferon-g-inducible protein-10 (IP-10; CXCL10) and other inhibitory ligands 

expressed in high concentrations. Infiltrating macrophages phagocytose 

remaining neutrophils beginning around day 4. 
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Figure 1. Wound healing during Inflammation phase (3 days after injury).  
Growth factors thought to be necessary for cell movement into the wound 
are shown (Singer, (56), Reprinted with permission from Massachusetts 
Medical Society). 
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The presence of monocytes at day 3 marks the near end of the inflammatory 

response and the beginning of the proliferation phase (9, 15). Circulating blood 

monocytes are attracted to injured tissue by degradation products of the 

extracellular matrix such as fragments of collagen and fibronectin as well as the 

chemokines MCP-1, MIP-1α, RANTES released by endothelial cells (15). 

Upregulation of adhesion molecules on the blood vessel endothelium promote 

monocyte extravasation from circulation and monocytes differentiate into 

macrophages upon engagement of Mac-1 integrin receptor (CD11b) to 

fibronectin within the provisional matrix. Macrophages release growth factors 

such as TNF-α, IL-6, IL-1, IGF, and FGF in addition to facilitating breakdown of 

the fibrin clot by stimulating fibroblast and endothelial cell mobilization to the 

clot through release of TGF-β and PDGF which enable degradation of the fibrin 

clot and replacement with collagen. Moreover, macrophages are thought to be 

the primary source of monokine induced by interferon-g (Mig, CXCL9), IP-10, 

and macrophage-derived chemokine (MDC, CCL22) that are associated with 

lymphocyte accumulation in the wound and marks the shift from a pro-

inflammatory response (TNF-α/IL-1) to a IFN-γ one (15, 46). 

 

PROLIFERATION PHASE  

 

Concomitant with PDGF and TGF-β released in the provisional matrix, fibrin and 

fibronectin activate neighboring fibroblasts to upregulate α3β1, α5β1, αvβ1, 

αvβ3, and αvβ5 integrins, proliferate, and migrate to the injury (4). Collectively, 
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these signals cue both fibroblasts and endothelial cells to upregulate expression 

of the serine proteases tissue plasminogen activator (tPA, endothelial cells) and 

urokinase plasminogen activator (uPA, fibroblasts) to cleave plasminogen to the 

active plasmin (Figure 2). Fibrin is a cofactor for tPA while uPA recepter (uPAR) 

expression on fibroblasts serves as a cofactor for uPA. Additionally, fibroblasts 

must migrate to the injury and do so by clearing a way through breakdown of 

the provisional matrix through interstitial collagenase-1 and -3 (MMP-1 and 

MMP-13, respectively), the 72-kDa gelatinase A (MMP-2), and stromelysin 

(MMP-3) (5). Plasmin degrades the provisional matrix through fibrin proteolysis 

and enables fibroblasts to synthesize a new collagen matrix and endothelial 

cells to form new blood vessels to the injured tissue.  
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Figure 2. Wound healing during Proliferation phase (5 days after injury).  
Proteinases thought to be necessary for cell movement are shown (Singer 
(56), Reprinted with permission from Massachusetts Medical Society).  



15 

 

Fibroblasts are the predominant cell in the wound during the proliferative phase 

and play a critical role by synthesizing new collagen. TGF-β serves a vital role 

during the proliferative phase as it stimulates fibroblast proliferation, promotes 

transcription of the genes for collagen, proteoglycans and fibronectin, inhibits 

secretion of proteases responsible for the breakdown of the matrix and 

stimulates the protease inhibitor tissue inhibitor of metallo-protease (TIMP) (3). 

Fibroblasts attach to the provisional fibrin clot after migration to the wound and 

begin proteolysis of the fibrin clot and then switch functions to produce high 

amounts of Type I collagen. Collagen synthesis is then halted when sufficient 

collagen has been deposited into the extracellular matrix.  

 

During collagen synthesis, there is an important step involving hydroxylation of 

proline and lysine residues (47). Hydroxylation allows collagen to form its 

characteristic triple helical structure and hydroxyproline residues stabilize the 

helical conformation. Procollagen is then secreted into the extracellular spaces 

where it is further processed by cleavage of the N and C- terminal peptides 

(47).  Collagen undergoes further modifications to strengthen it. Lysyl oxidase, 

found in the extracellular matrix, further cross-links collagen strands to give 

more rigidity and tensile strength to the dermis. Additional intrastrand and 

interstrand cross-links form over time that further increases collagens strength 

and stability (47, 48). Collagen, on a gram per gram basis, has the same tensile 

strength as steel. Collagen remodeling also occurs during the remodeling phase 

which, classically, is the last phase of wound repair. Specific collagenases from 
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fibroblasts, neutrophils, and macrophages are capable of cleaving collagen 

through all three chains of the triple helix, which is further digested by other 

proteases (47, 48). 

 

TGF-β1 also stimulates fibroblasts to differentiate into myofibroblasts, key cells 

involved in connective tissue remodeling characterized by high expression 

levels of the contractile molecule alpha smooth muscle actin (α-SMA) (49). 

However, myofibroblast differentiation is dependent upon the fibronectin splice 

variant ED-A in addition to TGF-β1 (50). Also, TGF-β can induce α-SMA 

synthesis through SMAD-dependent and -independent processes (51, 52).  α-

SMA expression and enhanced contraction are restricted to later phases of 

wound healing despite high levels of TGF-β1 during the early stages due to 

negative regulation of α-SMA expression by the inflammatory molecules IL-1 

and IFN-γ.   

 

Although myofibroblasts serve a prominent role in wound contraction, 

myofibroblasts also synthesize significant levels of ECM components and 

matrix degrading enzymes including collagens of types I, III, IV, and V as well 

as the glycoprotein tenascin-C (53). Tenascin-C has been shown to recruit 

fibroblasts and to injured tissue and to promote their differentiation into 

myofibroblasts (54).  Not surprisingly, myofibroblast are implicated in 

hypertrophic scarring and fibrosis development and persistence activity within a 

fibrotic lesion leads to elevated scarring and functional impairment of the 
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affected organ. Tight regulation of myofibroblast activity is necessary to prevent 

overscarring of the ECM. Recently, it has been shown that in addition to 

keratinocyte derived IL-1 secretion, growth hormone suppresses TGF-β induced 

myofibroblast development and consequently reduced fibroblast contractile 

activity (49). 

 

Vascular endothelial cells in and around the injured tissue proliferate to provide 

new vasculature to the healing wound. Neovasculature also known as 

angiogenesis is a tightly regulated process and occurs concurrent with 

fibroblast and macrophage infiltration. Angiogenic factors released by 

keratinocytes and macrophages provide the necessary signal for vascular 

endothelial cells to form new capillaries from existing blood vessels. Sprouting 

capillaries express αvβ3 integrin at their tips induced by VEGF and FGF that 

allows capillaries to migrate through the fibrin/fibronectin rich clot (10). 

Fibroblast mediated proteolysis of the ECM is necessary for endothelial cell 

movement into the injured tissue and macrophages provide pro-angiogenic 

molecules. However, excess granulation and delayed macrophage infiltration 

inhibit angiogenesis (10).  

 

Glu-Leu-Arg (ELR) containing CXC chemokines are potent inducers of 

angiogenesis (15). ELR+ CXC chemokines include IL-8, GRO-α, GRO-

β (CXCL2), GRO-γ (CXCL3), CTAP-III, β-thromboglobulin, and NAP-2, which 

are released by macrophages and fibroblasts in the granular tissue (55). 
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Additional angiogenic factors include VEGF, KGF-1 KGF-2, TGF-β, angiogenin, 

angiopoieitin, and mast cell tryptase. Angiopoietins belong to the VEGF family 

and are thought to be the only growth factors specific for vascular endothelium. 

Two important members include the angiogenesis agonist, Angiopoietin-1 and 

Angiopoietin-2, a natural antagonist (10). As the provisional matrix is replaced 

by Type I and III collagen (scar tissue) αvβ3 integrin expression is lost and 

angiogenesis ceases. Moreover, many of the newly formed capillaries undergo 

apoptosis during scar tissue formation. Interestingly, the inflammation induced 

molecules; Platelet factor-4 (PF4), IP-10, MIG inhibit angiogenesis and thus 

further demonstrate the spatio-temporal aspects of wound healing (10). 

 

RE-EPITHELIALIZATION 

 

Upon injury, wound edge keratinocytes as well as neighboring hair follicular 

keratinocytes migrate across the provisional matrix to form a monolayer over 

the denuded epidermis. Mitogenic signals from DETC's, dermal fibroblasts, and 

keratinocytes induce basal keratinocytes to dissolve α6β4 integrin attachments 

to the basal layer and to induce the expression of α5β1 and αvβ6 

fibronectin/tenascin receptors, αvβ5 vitronectin receptor, and to rearrange α2β1 

collagen receptors (1). Upregulation of these integrins allows leading edge 

keratinocytes to migrate across or through the injured dermis. Once the 

migrating keratinocytes form a monolayer over the injured dermis they 
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downregulate expression of α5β1 and αvβ5 integrins, stop migrating, and 

undergo differentiation to form a new stratified epidermis (Figure 3) (1). 
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Figure 3. Re-epithelialization of injured porcine skin. Leading 
edge keratinocytes at wound margin forming epidermal monolayer 
(basal layer, black arrows), E: epidermis, clot: fibrin provisional 
matrix, granulation tissue: neo-collagen rich dermis. (Singer et al. 
(56), Reprinted with permission from Massachusetts Medical 
Society).  
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CONCLUSION 

 

Wound healing is a highly dynamic process, includes the participation of many 

diverse cell types, and dependent upon many factors. Too much inflammation 

can lead to chronic ulceration while too little can lead to excessive scarring. 

Although, wounds heal remarkably, fast healing is imperfect and the resultant 

scar tissue is both weaker and less organized than undamaged dermis. In 

summary, epidermal injury causes both epidermal constituents, namely, 

keratinocytes and DETCs, as well as dermal resident cells, principally, platelets, 

fibroblasts, endothelial cells, neutrophils, monocytes/macrophages and mast 

cells to undergo cooperative activation to repair the injury to limit trauma as well 

as to resupply nutrients and blood flow. 
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PLASMACYTOID DENDRITIC CELLS 

 

pDCs have a fascinating history beginning with their initial identification in 1958 

by Lennert and Rammele (57) who reported plasma like cells located within the 

T cell area in human lymph nodes. These cells lack B cell and plasma cell 

markers and were initially called T-associated plasma cells. Later, research 

efforts by Feller in 1983 determined that these cells expressed CD4 but lacked  

immunoglobulin and B-cell antigen (58) and were renamed plasmacytoid T cell. 

It was postulated that these cells performed T cells functions and produce T cell 

cytokines. However, in 1988 Facchetti determined that these cells do not 

express CD3, a vital component of the T cell receptor complex expressed by all 

T cells. Moreover, these cells expressed myeloid antigens CD36 and CD68 as 

well as MHC Class II molecules. Based on these observations it was thought 

that these cells were more like monocytes than T cells and again, these cells 

were renamed to plasmacytoid monocytes (59). Much chaos ensued as the 

field was divided as to whether these cells were a subset of monocytes or were 

a new cell type. This led to additional efforts which were directed at identifying 

these cells both phenotypically and functionally. In 1994, O’Doherty identified a 

CD11c-  HLA-DR+ dendritic cell population from human peripheral blood 

characterized by low MHC Class II expression and low T cell stimulatory 

capacity (60). However, upon culture with monocyte conditioned medium these 

cells upregulated MHC Class II expression and assumed a dendritic cell 

morphology (60). Concomitantly, research efforts led by Liu identified two types 
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of CD4+CD3- cells located in different areas of human tonsil tissue (61, 62). 

Intriguingly, CD4+CD3- cells located within the germinal center expressed 

CD11c and were potent at activating naïve CD4 T cells and germinal center B 

cells. Conversely, CD4+CD3- cells located near high endothelial venules within 

T cell rich areas lacked CD11c expression and were matured when stimulated 

with IL-3 or IL-3 plus CD40 ligand (63).  CD4+CD3-CD11c+ cells were 

classified within the DC lineage while CD4+CD3-CD11c- cells were classified 

as pre-DC (61-63). In 1997 Liu’s lab successfully isolated pure CD11c- pre-DC 

from tonsillar tissue (63). Isolation of pure CD11c- pre-DC allowed further 

characterization and classification of these cells. CD11c- pre-DC were 

subsequently found to be unrelated to monocytes as they lacked phagocytic 

activity in addition to not expressing monocyte antigen and were renamed 

plasmacytoid dendritic cells (pDCs). pDCs were further classified as type 2 

precursor DC (DC2) based on their ability to promote TH2 T cell differentiation, 

whereas monocytes or myeloid DCs were classified as type 1 DC (DC1) based 

on their ability to favor TH1 T cell differentiation (64). However, later studies 

showed that both DC1 and DC2 cells exhibit flexibility in inducing both TH1 and 

TH2 responses and that the particular T cell response is mediated by both the 

environmental cytokine milieu as well as DC interaction (65).  

 

While the identification and investigation of CD11c+ and CD11c- DCs were 

being studied, an additional field of immunological research was focused on the 

identification of a Type I Interferon producing cell.  In the late 1970’s it was 
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discovered that upon viral challenge there was a peripheral blood cell 

responsible for strong Type I Interferon induction (59). Although most cells are 

capable of producing Type I Interferon, this unidentified cell was able to 

produce 10-1000 times more Interferon-alpha (IFN-α) than any other cell (66) 

and was called Professional Interferon Producing Cell or IPC. These cells were 

initially thought to be NK cells as NK cells were found to be activated by IFN-α 

in response to viral infection (67, 68). With the development of specific 

monoclonal antibodies for NK cells, T cells and monocytes/macrophages it was 

found that IPC did not express classical markers for these cells (69, 70). 

Investigation over the next few years revealed little insight into the cell identity 

of IPC. However, a breakthrough study in 1996, demonstrated that HSV 

challenge prompted strong intracellular IFN-α induction in 

CD4+DR+CD45RA+CD11c-CD11b-CD14-CD13-CD33-CD16-CD80-CD86- 

surface expressing cells (71).  In 1999, Siegel (72) demonstrated that pDC are 

IPC (73, Table 1) that was confirmed by Cella (74). 
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   pDC/IPC    Monocytes      CD11c+ immature DC 

 
Phenotype 

   

CD11b – + + 
CD11c – + + 
CD13 – + + 
CD14 – + + 
CD4 ++ + + 
TLR7 ++ + ++ 
TLR9 ++ – – 
BDCA2 + – – 
IL-3R +++ + + 
    
Function    

IFN-α/β +++ + + 

IL-12 – ++ ++ 
Phagocytosis – ++ ++ 
    

Table 1. Human DC Phenotype Comparison. pDCs can be 
differentiated from monocytes and other DC based on the absence of 
CD11c expression, common myeloid marker expression as well as 
having strong expression of BDCA-2 and IL-3 Receptor. Functionally, 
pDC produce large amounts of Type I IFN, lack IL-12 production and are 
unable to phagocytose (73). 
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In mouse, pDCs were identified as having different surface marker expression 

than human pDC. Murine pDCs were classically defined as CD11c+B220+Gr-

1+CD45RbhighCD11b- cells (75-77). However, murine pDCs also express 

PDCA-1 (78) and Siglec H (79) (73, Table 2).  

 

Under steady state conditions, pDCs are present in the blood stream and 

secondary lymphoid organs, but are normally absent from most peripheral 

tissues including the skin (80, 81). pDCs can, however, infiltrate the skin 

infected by viruses including varicella zoster virus (82), human papillomavirus 

(83), and herpes simplex virus (84). These skin-infiltrating pDCs were found to 

produce IFN-α/β, which is consistent with the ability of viruses to infect pDCs 

and deliver their nucleic acid cargo into intracellular TLR 7/9 compartments of 

pDCs. 
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     pDC/IPC  CD8a+CD4–   CD8a–CD4–    CD8a–CD4+ 

     
Phenotype     

CD8 +/– + – – 

CD11b –  + + 

CD11c + + + + 

CD4 +/– – + + 

B220 + – – – 

Siglec H + – – – 

Ly6c + – – – 

PDCA-1 + – – – 

DEC-205 – + +/– – 

     

Function     

IFN-α/β +++  – – 

IL-6 +  – – 

IL-12 + +++ – – 

IFN-γ – ++ – – 

CD8 T cell 
ccrocross-

– + – – 

Table 2. Mouse DC Phenotype Comparison. pDCs can be differentiated from 
other DC based on strong expression of  B220, Siglec H, PDCA-1 and Ly6c. 
Functionally, pDC produce large amounts of Type I IFN and generate low IL-12 
production (73, 78, 79). 
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pDCs are a rare population of circulating cells comprising only 0.2 to 0.8% of 

peripheral cells (85). pDCs selectively express endosomal restricted Toll-like 

receptors (TLR)7 and TLR9 (86), which recognize single-stranded viral RNA 

and DNA transported into endosomal compartments by the virus infecting the 

cell (87-90). IFN-α/β produced by pDCs was shown to be critical in inhibiting 

viral replication but also to contribute to the induction and expansion of an 

antiviral immune response by activating memory T cells, B cells, and NK cells 

(91, 92).  

 
Surprisingly, large numbers of pDCs have also been found in the skin of 

patients with psoriasis (80, 81, 93), a chronic inflammatory disease of the skin 

mediated by autoimmune T cells. Here, pDCs are chronically activated to 

produce IFN-α/β, a process that triggers the activation and expansion of 

autoimmune T cells leading to the epidermal hyperproliferation and the 

formation of psoriasis. We have recently found that pDC activation in psoriatic 

skin is driven by the human cathelicidin antimicrobial peptide known as LL37 

(29). LL37 was found to convert otherwise inert extracellular host-derived (self) 

nucleic acids, into a potent trigger of pDC activation by forming a complex with 

the self-RNA and self-DNA and by transporting them into intracellular TLR 7 

and TLR 9 compartments (30, 29). The cathelicidin peptide is usually not 

expressed in healthy skin but is continuously overexpressed by keratinocytes of 

psoriatic skin, providing an explanation for the chronic activation of pDCs in 

psoriasis (29). Interestingly, the expression of cathelicidin peptides can be 

transiently induced in keratinocytes by common skin injury (94, 95).   
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ANTI-MICROBIAL PEPTIDES (AMPS)   

 

AMPs are evolutionarily conserved host defense peptides which possess 

potent, broad spectrum antibiotic properties (96). Cationic AMPs are relatively 

short peptides (12-50 AA) and comprise two families, the cathelicidins and the 

defensins. Only one member of the cathelicidins has been identified to date; 

LL37 in human and CRAMP in mouse (97-99). The defensins, composed of 

alpha and beta families are produced by neutrophils, keratinocytes and paneth 

cells in human and epithelial cells, respectively in mice (96). Cationic AMPs 

have a net positive charge and are amphipathic while possessing either a 

predominant alpha helical or β-sheet structure (96). Cathelicidins and defensins 

are expressed by keratinocytes and are important contributors to host defense 

(100-104). Upon epidermal injury keratinocytes release pro- peptides which are 

subsequently cleaved to reveal active peptides (105). Moreover, these peptides 

are capable of forming pore-forming complexes in microbial cell wall resulting in 

cell lysis. Additionally, host cells are protected from autolysis as the cationic 

AMPs selectively bind to microbial cell membranes (96). Cathelicidins has been 

found to contain chemotactic properties as cathelicidins can directly mediate 

neutrophil, macrophage, and T cell migration (104). 

 

AMP release is also positively regulated by a subset of T cells (104). In 

psoriasis, continued inflammation amplifies cathelicidin, defensin, and psoriasin 

peptide production by keratinocytes (104, 105). Extremely elevated levels of LL-
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37 and psoriasin have been measured in chronic psoriatic plaques compared to 

healthy or uninvolved skin (105). This dysregulated response helps maintain the 

inflammatory state and recent evidence suggests that continued LL-37 

production can provide a potent stimulator for pDC activation mediated through 

associated with nucleic acids and uptake and triggering of TLR 7 and TLR 9 

(30, 29). 
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CLINICAL RELEVANCE 

 

There are numerous skin diseases which are due to or result in dysregulated 

immune responses such as psoriasis, contact dermatitis and atopic dermatitis 

(106). Psoriasis is the most understood skin disorder and provides a good 

model to evaluate pDC involvement in the pathogenesis of this inflammatory 

disease. Psoriasis is a chronic inflammatory disease affecting 1-3% of the 

global population (107, 108). Phenotypically, psoriasis is characterized by 

raised, scaly, erythematous plaques. Immunologically, psoriasis is 

characterized by chronic activation of myeloid dendritic cells and autoreactive T 

cells (106). mDC once activated present self-antigens to T cells which then 

drives the pathogenesis of psoriasis by differentiating into TH1 and TH17 

effector cells (106, 108). The exact timing and location of this process is still 

under debate. One school of thought is that mDC and other dermal DC migrate 

to skin draining lymph nodes upon activation and present self-antigens to naïve 

T cells (107). Auto-reactive T cells then migrate into the psoriatic dermis. 

However, Th1 differentiation requires IL-12 and TH17 requires IL-23 along with 

the appropriate MHC ligands. Sources of IL-12 and IL-23 in the lymph node 

may be attributed to the activated DC presenting the antigen to the T cell. 

Alternatively, activated DC present antigen to dermal resident T cells, which 

then differentiate into TH1 or TH17 cells (107). Recent reports have 

demonstrated that activated mDC can produce IL-12 and IL-23 in the 

dermis.TH1 cells produce IFN-γ while TH17 cells produce IL-17 and IL-22. TH1 
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and TH17 cells then propagate the inflammatory cycle by stimulating 

proliferation and activation of keratinocytes to produce antimicrobial peptides 

such as LL-37, B-defensin 1, B-defensin 2, S100A7 and S100A9. Keratinocytes 

also produce IL-1β and neutrophil chemotactic molecules CXCL1, CXCL3, 

CXCL5 and CXCL8 (107, 109). 

 

Recent progress in understanding the initiation of the inflammatory reaction 

witnessed in psoriasis has elucidated pDC as an important trigger. Local 

epidermal or dermal injury triggers the Koebner phenomenon that results in new 

lesions where the injury occurred. It is thought that the initial injury disrupts 

keratinocytes at the site of injury. In response to the injury keratinocytes then 

release antimicrobial peptides such as LL-37 as well as additional cytokines. 

Local injury also causes cell damage resulting in apoptosis which releases 

apoptotic DNA into the extracellular space. Recently it was shown that pDCs 

are important mediators in the initiation of the inflammatory cascade in psoriasis 

(93). pDCs become activated in the injured skin and release IFN-α. 

Neutralization of pDCs through BDCA-2 specific antibodies as well as anti-IFN-

α antibody completely abolished development of the psoriatic plaque. More 

recently, our group demonstrated that pDCs can bind LL-37/self-DNA and LL-

37/self-RNA to become activated to produce large amount of IFN-α  (29, 30). 

Potentially, LL-37 released by damaged keratinocytes can bind endogenous 

DNA which then becomes a potent stimulus for pDC activation. Additionally, LL-

37/self-RNA can activate mDC to produce IL-12 and IL-23 (30). IFN-α then 
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drives mDC maturation which promotes more efficient antigen presentation to 

auto-reactive T cells. Interestingly, pDC are absent from chronic psoriatic 

plaques indicating that once the inflammatory cycle is initiated positive feedback 

loops between mDC, T cells and keratinocytes maintains psoriatic pathogenesis 

(107, 109). In human pDC constitute less than 1% of dermal lymphocytes 

whereas pDC are absent in murine dermis under steady-state conditions.  
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Basis for Dissertation  

 

Some of main questions yet to be answered in autoimmune skin disorders such 

as psoriasis are 1) what drives pDCs infiltration into psoriatic skin, 2) why don’t 

pDCs infiltrate into uninvolved skin in psoriasis patients, 3) why do psoriatic 

patients have unabridged pDCs activation whereas non-psoriatic patients don’t 

develop psoriasis, 4) what role do pDCs play in skin injury in non-psoriatic skin 

and 5) what mechanism counters pDCs activation to prevent uncontrolled 

inflammation?   

 

My research addresses the role of pDCs in normal skin injury. By normal I 

mean non-diseased, steady-state skin. My research has shed light onto the 

basis of pDC involvement in skin injury as well as the consequence of wound 

healing without pDC involvement. I uncovered a new role for pDC in sensing 

injury that will hopefully provide new strategies for therapeutic intervention in 

autoimmune skin disorders such as psoriasis. 
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CHAPTER 2 

MATERIALS AND METHODS 
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MICE 

Wild-type BALB/cJ, C57Bl/6, or 129SV/J mice and TLR7-/- (B6.129S1-

Tlr7tm1Flv/J) mice were purchased from The Jackson Laboratory. MyD88-/- 

mice were kindly provided by S. Akira (110), IFNAR-/- mice (111) were provided 

by W. Overwijk. Cramp-/- mice were from the lab of Richard L Gallo (112). All 

animal experiments were conducted on 6-14 week old mice. Animals were 

maintained and bred in specific pathogen free facilities. All animal experiments 

were approved by the Institutional Animal Care and Use Committee of the 

University of Texas M.D. Anderson Cancer Center. 

 

REAGENTS 

The synthetic mouse cathelicidin peptide CRAMP 

(GLLRKGGEKIGEKLKKIGQKIKNFFQKLVPQPEQ), and the corresponding 

scrambled control (LLGQNGKFKIREPPIQKVKGIQEKEFGLKQKLKG) were 

obtained from AnaSpec. For in vivo experiments 200 µg of the peptides were 

injected into the dermis of the upper dorsum of shaven and depilated mice. For 

in vitro pDC stimulation 30 µM of the peptides were used. The TLR 7/9 inhibitor 

IRS 954 (5'-TGC TCC TGG AGG GGT TGT-3', phosphorothioate 

oligodeoxynucleotide) was a kind gift of F. Barrat, Dynavax Technologies. The 

TLR 9 inhibitor IRS 869 (5'-TCC TGG AGG GGT TGT-3', phosphorothioate 

oligodeoxynucleotide) was purchased from Integrated DNA Technologies. For 

inhibition of TLR9 or TLR7 and TLR9 in vivo, intradermal administration of IRS 

869 and 954 were used 24 hours and 4 hours prior to the skin injury. 
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MECHANICAL INJURY OF MOUSE SKIN 

Mice backs were shaven and depilated (Veet, Reckitt Benckiser) immediately 

prior to injury. Mechanical injury was then applied by tape stripping, using 20 

strokes of transparent tape (Scotch, 3M) across the back. For full-thickness 

injury, mice dorsal skin was shaven, cleaned with 70% ethanol, and a 3 mm 

punch biopsy (Acuderm) was applied to remove skin (care was taken to ensure 

excision was restricted to a depth of the fascia layer). Calipers were used to 

monitor wound closure over a 14-day period. 

 

DEPLETION EXPERIMENTS 

pDC depletion was carried out using a combination of two anti-BST antibodies 

(PDCA1, Miltenyi Biotec, Clone: JF05-1C2.4.1) and mAb 927 (kindly provided 

by Marco Colonna, Washington University School of Medicine. 0.5 mg of each 

antibody was injected, intraperitoneally, 48 hours and 24 hours before injury. 

Rat IgG antibodies were injected into control mice. Depletion of pDCs was 

monitored in the speen by flow cytometry and was found to be most efficient 

when the combination of the antibodies was used. Neutrophil depletion was 

conducted using an anti-Ly6G specific antibody (Bioxcell, clone 1A8). 1 mg of 

anti-Ly6G or whole rat IgG was injected, intraperitoneally, into mice at 24 hours 

and 4 hours before injury. 
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MECHANICAL AND CHEMICAL INJURY OF HUMAN SKIN 

 Mechanical injury of human skin was induced by application of 10 strokes of 

cellophane tape across healthy skin of 7 human volunteers. Biopsies were 

taken before (uninjured) and 24 hours after tape stripping (injured). The 

specimen was snap frozen and stored at -80°C before immunohistochemical 

and gene expression analysis was performed. Chemical injury of human skin 

was induced by treatment of healthy skin of human volunteers with the chemical 

irritant Sodium Lauryl Sulphate (SLS) (Merck KGaA, Darmstadt, Germany) at 

1% in water as described previously (113). Briefly, SLS was applied in large 

Finn Chambers to the skin on the back of the patients, before biopsies were 

taken. Specimens were immediately snap frozen and stored at -80°C before 

immunohistochemical and gene expression analysis was performed. All human 

studies were performed at the Skin and Allergy Hospital, Helsinki University 

Central Hospital, Helsinki, Finland and approved by the local ethics committee 

(Helsinki-Uusimaa Hospital District Ethics Committee). 

 

GENERATION AND ANALYSIS OF DERMAL SINGLE CELL SUSPENSIONS 

Injured skin was excised, minced and digested with 1 mg/ml Dispase (Sigma) 

for one hour at 37°C and the epidermis was manually removed with forceps. 

The dermis was removed to a clean culture plate and incubated with 1 mg/ml 

Collagenase (Gibco) for two hours to generate a single-cell suspension. 

Leukocytes were counted using trypan blue exclusion. Cells were treated for 20 

min with anti-CD16/CD32 to block non-specific binding, followed by the addition 
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of the following antibodies at 10 µg/ml final concentration for 20 min: anti-

PDCA-1 FITC (Miltenyi Biotec), anti-Siglec-H-FITC (eBioscience) anti-CD11c-

PE, anti-B220-APC, anti-IA/IE-PE, anti-CD11b-FITC, anti-Gr-1-PerCp-Cy5.5 

and anti-CD3e-APC (all BD). Cells were washed twice and acquired on a 

FACSCaliber and analyzed using FlowJo software. 

 

IMMUNOHISTOCHEMISTRY AND IMMUNOFLUORESCENCE  

Mouse skin tissue was excised, embedded in OCT (Tissue-Tek) and frozen 

immediately on dry ice. 8 µM frozen sections were cut and stained with anti-

Siglec H (3H3 clone) followed by Horseradish Peroxidase labeled goat anti-rat 

IgG and a color development step with Aminoethylcarbazole. For K6 staining, 

frozen sections were stained with a purified rabbit anti-mouse keratin 6 antibody 

(Covance) and subsequently stained with Alexa 546 labeled goat anti-rabbit IgG 

(H+L) (Molecular Probes). For detection of pDCs in human skin tissue we used 

an anti-BDCA2 antibody (Miltenyi Biotec) according to the previously described 

protocol (29). 

 

REAL-TIME PCR ANALYSIS 

 All excised tissue was immediately saturated in RNAlater (Ambion) and stored 

at -20°C until RNA was isolated. Skin was homogenized using a Tissue-Miser 

device (Fisher) in 1 ml Trizol reagent (Ambion). The homogenate was 

transferred to a clean RNAse free 1.5 ml microtube and 100 µl of BCP (MRC) 

was added and the sample was vortexed. The tube was centrifuged at 4°C at 
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13k RPM (15g) for 10 min. The aqueous phase (400 µl) was removed and 

precipitated with 200 µl of 200 proof ethanol. The mixture was placed into a 

filter insert and centrifuged at 13k RPM for 20 seconds. The supernatant was 

discarded and the filter unit was washed twice with 500 µl of wash solution 

(RiboPure Kit, Ambion). The sample was eluted in 100 µl of elution buffer 

(RiboPure) and immediately mixed with 350 µl of Lysis buffer (RNAqueous Kit, 

Ambion). 250 µl of 200 proof ethanol was added and mixed. The sample was 

applied to a new filter insert and centrifuged at 13k RPM for 20 seconds. The 

sample was washed twice with 500 µl of 80% ethanol and eluted in 100 µl of 

elution solution (RNAqueous) and quantitated using UV/Vis absorbion at 260 

nm. The 260/280 ratio was consistently above 1.7, signifying very little protein 

contamination. 2 µg of RNA was used to make cDNA using the High Capacity 

cDNA kit (Applied Biosystems) on a Bio-Rad C1000 thermocycler. 40 ng of 

cDNA was used for each individual gene expression using Taqman based 

amplification on an ABI 7500 Fast system using the default Standard protocol. 

Mouse Taqman probes used were: Gapdh, Ifna2, Ifnb, Cramp, Il6, Tnfa, 

Il23p19, Il12p35, Il12p40, Il22, Il17a, Vegfa, Vegfb, Egf and Ifng (Table 3). 

Human Taqman probes used were: Gapdh, Ifna2, and Ifnb (Table 4). 
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Primer Assay I.D. 
Beta defensin 1 Mm00432803_m1 

Beta defensin 2 Mm00657074_m1 

Beta defensin 3 Mm04214158_s1 

Beta defensin 4 Mm00731768_m1 

Beta defensin 14 Mm00806979_m1 

chemerin Mm00503579_m1 

CRAMP Mm00438285_m1 

Egf Mm00438696_m1 

Gapdh Mm99999915_g1 

IFN-a Mm00833961_s1 

IFN-b Mm00439552_s1 

IFN-g Mm00801778_m1 

IL6 Mm00446191_m1 

IL12p35 Mm00434165_m1 

IL12p40 Mm01288991_m1 

IL17A Mm00439619_m1 

IL-22 Mm00444241_m1 

IL23p19 Mm00518984_m1 

TNF-a Mm00443258_m1 

Vegf-a Mm00437304_m1 

Vegf-b Mm00442102_m1 

Table 3. Mouse Taqman Primers. Taqman primers generated 
by Applied Biosystems for the indicated genes are provided as 
well as their unique sequence ID. 
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Primer Assay I.D. 
IFN-a Hs02621172_s1 

IFN-b Hs01077958_s1 

Gapdh Hs03929097_g1 

Table 4. Human Taqman Primers. Taqman primers generated 
by Applied Biosystems for the indicated genes are provided as 
well as their unique sequence ID. 
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PDC ISOLATION AND IN VITRO STIMULATION  

pDCs were isolated from spleens of 6-12 week female BALB/cJ mice using the 

pDC Isolation Kit II (Miltenyi Biotec) with a purity of > 90%. 50,000 cells were 

cultured overnight in RPMI based media (10% FCS, 50 µM beta mercapto 

ethanol, pen/strep, glutamine, sodium pyruvate, Hepes). The supernatants were 

used to determine Interferon-α protein secretion using a commercial Elisa kit 

(PBL). As a source of DNA, we used synthetic phosphodiesteric CpG-

containing oligonucleotides, hybridized to its complementary strand to mimic 

natural mammalian DNA fragments. 0.3 µM dsDNA was mixed with 30 µM 

cathelicidin peptides in a volume of 20 µl for 30 minutes at RT. 
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CHAPTER 3 

PDCS INFILTRATE SKIN INJURY 
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TAPE STRIP INJURY MODEL 

 

To establish an injury model we focused on the endogenous response rather 

than the aggregate stimuli encompassing both host driven injury mediators and 

external triggers of immunity (e.g. bacterial cell components, virus’ or other 

environmental factors). Our aim was to elucidate the immune response to a 

“sterile injury.” Most wound studies employ full thickness injuries wherein a 

dermal biopsy punch is applied across the epidermis into and through the 

dermis. This method was unsuitable for my research as it completely breaches 

the skin barrier and exposes the skin to foreign immunogens. To this end we 

primarily utilized an epidermal stripping approach in which the outer layers of 

the epidermis, composed of flattened anuclear keratinocytes, is removed 

through use of cellophane tape. Tape stripping not only removes cells of the 

epidermis but also kills keratinocytes at the epidermal/dermal border which form 

the basement membrane.  

 

Unlike the full thickness injury model, the basement membrane cells remain 

intact, although transepidermal barrier functionality is breached and a marked 

increase in transepidermal water evaporation occurs. However, the damaged 

basement layer generates a danger signal and activates the wound healing 

response. Tape stripping using 20 strokes across the dorsal flank of shaven 

and depilated Balb/c mice results in acute erythema (Figure 4) characterized by 

a large but transient increase in cellularity in the underlying dermis (Figure 5). 
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Pathologically, the bulk of cellular infiltration occurs at 24 to 48 hours 

characterized by dense granularity. By 72 hours to 5 days post injury, the 

basement membrane is replaced by a new keratinocyte layer which further 

differentiates to form flattened anuclear layers characteristic of the stratified 

epidermis (Figure 6). 
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Figure 4. Tape strip model. Murine epidermis before and 
after tape stripping with 20 strokes of cellophane tape 
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Figure 5. Tape stripping induces strong dermal 
infiltration. Dermal cell suspensions isolated from skin 
at various times after injury and viable cells were 
counted. The mean number of cells ± SEM per cm2 of 
injured skin is given and represent data from five 
independent mice over a 3-day time course. 
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0h - injury 24h - inflammatory response 

48h - crust formation 72h - re-epithelialization 

Figure 6. Sterile epidermal injury prompts a rapid and transient leukocyte 
infiltrate in the dermis which precedes epithelial repair. Frozen sections of 
injured skin were stained with H&E to identify infiltrating cells. There are few 
dermal cells in nascent injured skin. However, by 24h a strong inflammatory 
response can be seen. By 48h there is strong granulation tissue formation in the 
epidermis characterized by a thick crust like appearance. By 72h, the injured 
epidermis is repaired by migrating keratinocytes which proliferate to form a new 
stratified layer. 
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SKIN INJURY INDUCES A RAPID INFILTRATION OF PDCS 

 

Mice were shaven, depilated, tape stripped and sacrificed at various time points 

including 6, 24, 48, and 72 hours. The injured skin was excised and a single cell 

suspension was generated using a Dispase/Collagenase treatment scheme. 

Cells were stained for leukocyte populates with fluorescent-labeled antibodies 

and analyzed by flow cytometry. Interestingly, there was a large but transient 

increase in pDCs (B220+PDCA1+) after injury (Figure 7 A). Remarkably, the 

infiltration was brief as pDC levels returned to pre-injury levels by 48 hours. The 

pDC population was co-stained for MHC Class II (IA/IE), CD11c, and Siglec H 

to confirm pDC phenotype (IA/IElowCD11c+Siglec-H+, Figure 7 B). Moreover, 

the B220+PDCA1+ population lacked expression of common myeloid markers 

CD3, CD11b, and CD19 (data not shown). Additionally, immunohistological 

staining of Siglec H (3H3 clone) of injured skin at 24h confirmed leukocyte 

morphology (Figure 7 C). 

 

NEUTROPHILS INFILTRATE SKIN INJURY EARLY WHILE T CELLS 

INFILTRATE LATER 

 

Concomitant with pDC infiltration there was a large and robust neutrophil (Gr-

1+CD11b+) infiltration at 24 hours (Figure 8). Surprisingly, the bulk neutrophil 

infiltrate was gone by 48 hours, mirroring pDC kinetics. However, there was a 

delay in T cell (CD3+) infiltration (Figure 9). There was a substantial baseline T 
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cell population (17%) in the skin which increased to 55% by 48 hours and was 

back to baseline levels by 72 hours. Similarly, there was a resident population 

of conventional dendritic cells (mDC, CD11c+CD11b+PDCA1-) which did not 

show an increase but rather decreased in population after injury (Figure 10). 

The mDC baseline population was gradually restored by 48 hours. Cumulative 

experiments are shown depicting infiltration time course kinetics of pDCs, 

neutrophils, and T cells (Figure 11). 

 

SKIN INJURY INDUCES TRANSIENT INCREASE IN TYPE I IFN AND PRO-

INFLAMMATORY CYTOKINES 

 

pDCs are the main producers of IFN-α/β, so we sought to investigate whether 

Type I IFN were involved in wound repair. Tape stripped mice were euthanized 

and skin was harvested at 6, 24, 48, and 72 hours. Pre-injury skin was used as 

a baseline control. Excised skin was stored in RNAlater until RNA was 

extracted. RNA was isolated from skin using a specialized protocol (see 

Materials and Methods).  

 

Gene expression for IFN-α, IL-6, and TNF-α was performed. There was a rapid 

but transient induction of IFN-α with peak expression at 24 hours which 

paralleled maximal pDC skin infiltration. IL-6 expression peaked at 6 hours with 

significant expression at 24 hours before returning to baseline levels. 

Neutrophils are known to be early producers of IL-6 and have been reported to 
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infiltrate skin as early as 3 hours after injury. TNF-α expressed reached 

maximum levels at 48 hours before declining. It has been reported that 

neutrophils are the chief TNF-α producers during the first 48 hours after injury 

whereas monocytes/macrophages are take over TNF-α production after 48 

hours.  
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Figure 7. Rapid infiltration of pDCs into injured skin. (A) The 
percentage of pDCs (B220+PDCA-1+) in dermal single cell suspensions 
isolated from injured skin was measured by flow cytometry. Representative 
flow cytometry plot of pDC in injured skin over a 3-day time course. The 
percentage of each population is shown in the plots. (B) Flow cytometry for 
CD11c, IA/IE, Siglec H surface expression on B220+PDCA-1+ pDC 24 
hours after skin injury. (C) Representative immunohistochemical staining 
for Siglec H in injured skin collected 24 hours after tape stripping. 

Siglec Siglec H  
CD11c 

Siglec H  

IA/IE 

(PDCA-1
+
  

B220
+
) 

P
D

C
A

-1
 

B220 

<2% 14% 2% 4% 

0h 24h 72h 48h 
A 

B C 



54 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 8. Neutrophil recruitment into injured skin parallels pDC infiltration. 
The percentage of neutrophils (CD11b+Gr-1+) in dermal single cell 
suspensions isolated from injured skin was measured by flow cytometry. 
Representative flow cytometry plot of neutrophils in injured skin over a 3-day 
time course. The percentage of each population is shown in the plots.  
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Figure 9. T cell infiltrate injured skin later than pDCs and neutrophils. The 
percentage of T cells (CD3+) in dermal single cell suspensions isolated from 
injured skin was measured by flow cytometry. Representative flow cytometry 
plot of neutrophils in injured skin over a 3-day time course. The percentage of 
each population is shown in the plots.  
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Figure 10. Conventional DCs do not infiltrate injured skin. Time 
course analysis of cDCs (CD11c+CD11b+PDCA-1-) in dermal 
single cell suspensions isolated from injured skin was measured by 
flow cytometry. Data are representative of 3 mice. 
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Figure 11. Time course analysis of infiltrating lymphocytes. The 
percentage of pDCs (B220+PDCA-1+), neutrophils (Gr1+CD11b+), and T 
cells (CD3+) in dermal single cell suspensions isolated from injured skin was 
measured by flow cytometry. Data are the mean ± SEM of five independent 
mice per each timepoint.  
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Figure 12. pDCs are transiently activated to produce type I IFNs in 
injured skin. Time course analysis of IFN-α, IL-6 and TNF-α mRNA tissue 
expression in injured skin. The data are given as fold induction over time 0 
and represent the mean ± SEM of five mice per timepoint. 
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CHAPTER 4 

PDCS ARE ACTIVATED IN SKIN INJURY TO 

PRODUCE TYPE I IFNS  
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PDCS ARE ACTIVATED TO PRODUCE TYPE I IFN 

 

To determine whether pDCs were the main producers of IFN-α seen in skin 

injury, pDCs were depleted using a BST depleting antibody cocktail composed 

of a-PDCA1 (Miltenyi) and mAB 927 (kind gift from Marco Colonna, Figure 13). 

Similar effects in skin were observed. Neutrophils were depleted using a Ly6G 

specific antibody (1A8 clone, Bioxcel). 500 µg of each pDC depleting antibody 

was injected, intraperitoneally, at -48 and -24 hours prior to tape stripping. 1 mg 

of α-Ly6G antibody was applied, intraperitoneally, -24 and -4 hours prior to tape 

stripping. Depleted and control (whole rat IgG) injected mice were tape stripped 

and the skin was excised 24 hours later. Gene expression was performed using 

Taqman chemistry. Complete inhibition of IFN-α was observed in pDC depleted 

mice (Fig 14) with no significant reduction in neutrophil depleted mice. 

Additionally, IL-6 but not TNF-α gene expression was significantly reduced in 

pDC depleted mice. Conversely, TNF-α was significantly reduced in neutrophil 

but not pDC depleted mice (Figure 14). 

 

PDC ARE ACTIVATED TO PRODUCE TYPE I IFN THROUGH NUCLEIC 

ACID RECOGNITION PATHWAY 

 

Next we wanted to determine whether pDC activation was induced through TLR 

recognition of nucleic acids that are released from dead and dying cells in the 

injured tissue. First we evaluated Type I IFN signaling in tape stripped MyD88- 
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deficient mice. MyD88 is a downstream adapter molecule of both TLR 7 and 

TLR 9 receptor signaling (114). TLR 7 recognizes single strand RNA and TLR 9 

is responsible for single and double stranded DNA recognition (114). MyD88-

deficient mice were tape stripped and gene expression analysis was performed 

on injured skin at 24 hours after injury.  Remarkably, both IFN-α and IFN-β 

gene expression were suppressed in MyD88-deficient mice signifying that pDC 

activation was Toll-Like Receptor dependent. To further elucidate the roll of 

nucleic acids in providing the stimulus for pDC activation in skin injury we 

injected Balb/c mice with IRS 954, a combined a TLR-7/9 inhibitory compound 

(115, 116). IRS 954 is a phosphorothioate oligodeoxynucleotide molecule 

whose sequence, 5'-TGC TCC TGG AGG GGT TGT-3' is capable of mediating 

both TLR 7 and TLR 9 suppression (115). TLR 7 suppression occurs through 

the 5’-TGC sequence whereas TLR 9 suppression derives from the adjacent 

TCC TGG AGG GGT TGT-3' sequence. IRS 954 or saline control was injected 

24 and 6 hours prior to tape stripping. Consistent with the MyD88-deficient mice 

data, IRS 954 was capable of completely abrogating both IFN-α and IFN-β 

gene expression following skin injury. These data conclusively demonstrate that 

infiltrating skin pDC are activated through TLR engagement of nucleic acids.  

 

Skin injury is marked by dying keratinocytes which release genomic nucleic acid 

into the extracellular space. To understand whether infiltrating skin pDC 

activation is RNA, DNA or both RNA/DNA mediated we evaluated Type I IFN 

gene expression in TLR7-deficient and TLR 9 inhibitor treated mice after tape 
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strip injury. The specific TLR 9 inhibitor IRS 869, 5'-TCC TGG AGG GGT TGT-

3', was used (116). IRS 869 or saline control was injected 24 and 6 hours prior 

to tape stripping. IFN-α and IFN-β gene expression was significantly reduced in 

TLR7-deficient mice (Figure 16 A). Additionally, pretreatment of IRS 869 

reduced both IFN-α and IFN-β gene expression following injury (Figure 16 B). 

These data demonstrate that pDC activation is mainly driven through TLR 7 

engagement and that RNA is the predominant nucleic acid mediating such 

activation.  

 

Furthermore, the pro-inflammatory cytokine, IL-6 gene expression was 

significantly repressed in MyD88-deficient and IRS 954 treated mice following 

injury (Figure 17 A and B) whereas TNF-α gene expression was unaffected by 

TLR 7/9 abrogation. Similar responses were observed in TLR7-deficient and 

IRS 869 treated mice (Figure 18 A and B). These data corroborated our 

observations made in pDC depleted mice (Figure 14) which showed strong IFN-

α and IL-6 reduction. 
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Figure 13. pDC-depletion effectively eliminates pDCs from 
circulation up to 5 days. Time course analysis of pDCs (lineage-
B220-CD11c+Ly6C+) in spleens of either pDC-depleted or control 
IgG treated mice. Combined BST antibody cocktail injection 
efficiently depletes pDC from spleens. One representative 
experiment of 3 is shown. 
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Figure 14. pDCs are transiently activated to produce type I IFNs in 
injured skin. Relative IFN-α, IL-6 and TNF-α mRNA tissue expression of 
uninjured skin or injured skin collected 24 hours after tape stripping of either 
pDC-depleted, neutrophil-depleted, or control IgG treated mice. Data 
represent the mean ± SEM of five mice per group. *, P= 0.001; **, P= 0.02; 
***, P< 0.001, unpaired Student’s t test. 
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Figure 15. pDCs sense nucleic acid in injured skin. (A) Relative IFN-α 
and IFN-β mRNA tissue expression in injured skin collected 24 hours after 
tape stripping of MyD88-/- or control mice. Data represent the mean ± SEM 
of five mice per group. *, P=0.01; **, P= 0.02, unpaired Student’s t test. (B) 
Relative IFN-α and IFN-β mRNA tissue expression in injured skin (24h) of 

mice pretreated with 0, 1, 10, or 100 µg of TLR 7 and TLR 9 inhibitor IRS 
954. Data represent the mean ± SEM of three mice per group. *, P=0.002; **, 
P= 0.02; ***, P= 0.01, unpaired Student’s t test. Data in (A) and (B) are 
representative of at least two independent experiments. 
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Figure 16. pDCs sense nucleic acid through TLR 7 and TLR 9 in injured 

skin. (A) Relative IFN-α and IFN-β mRNA tissue expression of uninjured skin 
or injured skin collected 24 hours after tape stripping of TLR7-/- or control 
mice. Data represent the mean ± SEM of four mice. *, P= 0.01; **, P= 0.02, 

unpaired Student’s t test. (B) Relative IFN-α and IFN-β mRNA tissue 
expression in uninjured skin and injured skin (24h) of mice pretreated with 
saline or 100 µg of TLR 9 inhibitor IRS 869. Data represent the mean ± SEM 
of seven mice. 
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Figure 17. IL-6 and TNF-αααα cytokine mRNA expression in injured skin of 
MyD88-deficient and TLR 7/9 inhibitor treated mice.  (A) Relative IL-6 and 

TNF-α mRNA tissue expression of uninjured skin or injured skin collected 24 
hours after tape stripping of MyD88-/- or control wild-type mice. Data 
represent the mean ± SEM of five mice per group: *, P<0.001, unpaired 
Student’s t test.  (B) Relative IL-6 and TNF-α mRNA tissue expression in 

uninjured skin and injured skin (24h) of mice pretreated with saline or 1 µg of 
TLR 7/9 inhibitor (IRS 954). Data represent the mean ± SEM of three mice. *, 
P<0.004, unpaired Student’s t test Data in (A) and (B) are representative of 
at least two independent experiments. 
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Figure 18. Cytokine mRNA expression in injured skin of TLR 7-

deficient and TLR 9 inhibitor treated mice. (A) Relative IL-6, and TNF-α 
mRNA tissue expression of uninjured skin or injured skin collected 24 hours 
after tape stripping of TLR7-/- or control mice. Data represent the mean ± 
SEM of four mice. *, P=0.05, unpaired Student’s t test. (B) Relative IL-6, and 

TNF-α mRNA tissue expression in uninjured skin and injured skin (24h) of 

mice pretreated with saline or 100 µg of TLR 9 inhibitor IRS 869. Data 
represent the mean ± SEM of seven mice. 
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CHAPTER 5 

CATHELICIDINS ACTIVATE PDCS BOTH IN 

VITRO AND IN VIVO 
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CATHELICIDINS ARE EXPRESSED UPON SKIN INJURY 

 

Host derived-nucleic acids released by damaged cells are normally inert but 

can be converted into triggers of TLR7 and TLR9 in the presence of the human 

cathelicidin peptide LL-37 (30, 29). We therefore sought to determine whether 

the murine cathelicidin ortholog of LL-37, called CRAMP, is induced in our skin 

injury model. The expression of CRAMP mRNA in mouse skin was not 

detectable prior to injury, but was rapidly induced upon tape stripping, reaching 

a peak at 24 hour and declining thereafter (Figure 19 A). This time course 

closely paralleled the infiltration of pDCs into injured skin and their activation to 

produce IFN-α/β, suggesting a potential role of cathelicidins in breaking innate 

tolerance to self-nucleic acids injured skin.  

 

MURINE CATHELICIDIN BIND NUCLEIC ACIDS 

 

Next, we wanted to evaluate whether CRAMP could bind dsDNA. In our 

previous work (30, 29) we demonstrated that LL-37 efficiently binds dsDNA and 

RNA and can activate human pDC to produce robust levels of IFN-α.  We 

developed a technique to measure the efficiency of peptide binding to nucleic 

acid utilizing an ultra-sensitive fluorescent DNA binding probe. PicoGreen 

fluorescent dye, which predominantly binds to dsDNA, is excited at 480 nm and 

has primary emission spectra at 520 nm. The principle of the assay is that DNA 

bound to peptides are inaccessible to PicoGreen binding. Hence, strong 
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peptide-DNA interactions lead to lower fluorescence whereas weak peptide-

DNA interactions do not decrease the high DNA-PicoGreen fluorescence. 

CRAMP at various concentrations: 0.01 µM, 1 µM, 50 µM and 100 µM were 

mixed with 3 µg/ml dsDNA for 30 min and analyzed for complex formation. 

PicoGreen was added to each mixture and PicoGreen fluorescence emission 

was measured.  CRAMP was able to bind DNA at 1 µM with increased binding 

to 100 µM of CRAMP (Figure 19 B).  

 

CRAMP-DNA COMPLEXES ACTIVATE PDCS TO PRODUCE IFN-αααα  

 

Finally, to investigate whether CRAMP-DNA complexes could activate murine 

pDCs, we isolated fresh splenic pDCs using a negative magnetic beads 

approach (pDC Isolation Kit II, Miltenyi). 50,000 pDCs (>90% purity) were 

stimulated overnight with either DNA alone, CRAMP alone, or DNA mixed with 

CRAMP. As a control we also used a scrambled form of CRAMP alone or 

mixed with DNA. We found that only DNA mixed with CRAMP induced IFN-α 

production in pDCs (Figure 19 C).  
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Figure 19. Cathelicidin gene expression is upregulated in injury and 

Cathelicidin peptide induces pDC activation to produce IFN-αααα. (A) Time 
course analysis of cathelicidin mRNA tissue expression in injured skin. The 
data are given as fold induction over time 0 and represent the mean ± SEM 
of four mice per timepoint. (B) Cathelicidin-DNA binding studies using 3 
ug/ml dsDNA and 0.01, 1, 50 or 100 uM cathelicidin peptide using 
PicoGreen DNA exclusion. 480 nm excitation wavelength. (C) IFN-α 
produced by purified splenic pDC after overnight stimulation with either DNA 
alone, CRAMP alone, scrambled (sc) CRAMP alone, CRAMP plus DNA, or 
scCRAMP plus DNA. Data are representative of two independent 
experiments, error bars represent the SEM of triplicate wells. *, P=0.001. 
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IN VIVO INJECTED CRAMP PROMOTES PDC INFILTRATION AND 

ACTIVATION TO PRODUCE TYPE I IFNs 

 

To test whether CRAMP would also break innate tolerance to nucleic acids and 

activate pDCs in vivo, we injected CRAMP, scrambled CRAMP or saline into 

mouse skin. We found that CRAMP but not the scrambled peptide or saline 

injection induced a rapid and transient infiltration of pDCs and the expression of 

IFN-α/β (Figure 20 A and B). These findings indicate that CRAMP is sufficient to 

break innate tolerance to induce activation of pDCs to produce IFN-α/β in skin 

in vivo.  

 

CRAMP IS SUFFICIENT BUT NOT REQUIRED FOR PDC INFILTRATION IN 

SKIN INJURY 

 

To determine whether CRAMP is necessary for pDC activation to injured skin, 

we tape-stripped the skin of cathelicidin-deficient mice (112) and analyzed gene 

expression for IFN-α/β. Surprisingly, we found that IFN-α and IFN-β produced 

by pDCs were still induced in injured skin even in the absence of cathelicidins 

(Figure 21). Thus, cathelicidins are sufficient but not necessary to break innate 

tolerance to nucleic acids and induce IFN-α/β production by pDCs in injured 

skin. 
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Figure 20. Injection of Cathelicidin peptide induces pDC infiltration 
and activation in skin. (A) Flow cytometry time course analysis of pDCs 
(B220+PDCA-1+) in dermal single cell suspensions derived from skin 
injected with either saline or CRAMP. The percentage of each population 
is shown in the plots. Data are representative of three mice. (B) Relative 
IFN-α and IFN-β mRNA tissue expression in the skin injected with either 
saline, CRAMP, or scCRAMP and collected after 24 hours. Data 
represent the mean ± SEM of five mice per group. *, P= 0.02; **, P= 0.1, 
unpaired Student’s t test. 
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Figure 21. Cathelicidin peptides are not necessary to induce type I 
IFNs in injured skin. Relative IFN-α and IFN-β mRNA tissue expression 
in uninjured skin or injured skin collected after tape stripping of Cramp-/- 
or control wild-type mice. Data represent the mean ± SEM of five mice 
per group. n.s., not significant, unpaired Student’s t test. 



76 

 

ADDITIONAL MOLECULES MAY MEDIATE PDC INFILTRATION TO 

INJURED SKIN 

 

It is possible that there is a redundant signaling pathway which can mediate 

pDC infiltration and activation in the skin. Other antimicrobial peptides such as 

the beta-defensins have been shown in human psoriasis to be overexpressed in 

involved tissue (105,107). To investigate whether beta-defensins may play a 

role in skin injury we performed gene expression analysis for mouse beta-

defensins -3, -4, and -14 which correlate to human beta-defensins -2, -3, and -

4. As a control, we analyzed mouse beta-defensins -1, and -2 which have been 

shown to be expressed under homeostasis and are downregulated upon injury 

(Figure 22). Interestingly, we found that beta-defensin-3, -4, and -14 were all 

upregulated upon injury which indicate that pDC may be activated through 

nucleic acid-Beta-defensin complexes.  

 

Alternatively, chemerin has recently been shown to play a pivotal role in pDC 

recruitment to the skin especially in psoriasis (117). We analyzed chemerin 

gene expression in injury skin and found a drastic increase in chemerin gene 

expression (Figure 22). 
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Figure 22. Select mouse beta-defensin (mBD) antimicrobial peptides as 
well as Chemerin are expressed during skin injury. mBD-3 and mBD-4, 
are transiently expressed during skin injury whereas  there was sustained 
mBD-14 expression. Additionally, chemerin was highly induced early in skin 
injury with sustained expression. Data represent the mean ± SEM of at least 
two mice per group. *, P= 0.02; **, P= 0.007; ***, P=0.005 unpaired Student’s 
t test. 
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CHAPTER 6 

PDCS AND TYPE I IFNS PROMOTE 

INFLAMMATORY RESPONSES AND WOUND 
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PDCS DRIVE EXPRESSION OF DC, TH1 AND TH17 CYTOKINES  

 

Because pDCs are potent stimulators of immune responses through their 

production of IFN-αβ , we next sought to investigate the role of pDCs in the 

induction of inflammatory responses in injured skin. We found that, along with 

IL-6 and TNF-α (Figure 14), skin injury induced a rapid expression of DC-

derived cytokines IL-12 and IL-23, TH1 cytokine IFN-γ, and TH17 cytokines IL-

17 and IL-22 (Figure 23 A), but not IL-4 or IL-10 (not shown), reaching a peak 

between 24 and 48 hours after injury. pDC depletion, which reduced the 

expression of IL-6 in injured skin (Figure 14), was also found to decrease the 

expression of IL-12 and IL-23 (Figure 23 A). Intriguingly, pDC depletion was 

found to profoundly inhibit the induction of IL-17 and IL-22 without affecting the 

expression of IFN-γ (Figure 23). These findings demonstrate that skin-infiltrating 

pDCs play an important role in the induction of inflammatory immune responses 

in injured skin, in particular the induction of IL-6 and TH17 cytokines. 

 

PDCS ARE REQUIRED FOR EFFICIENT RE-EPITHELIAZATION  

 

Since the inflammatory process is directly linked to the wound healing 

response, we next sought to determine whether pDCs also play a role in the re-

epithelialization of tape stripped skin. Keratin 6 (K6), expressed by early 

differentiating and proliferating keratinocytes but not by fully differentiated  
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Figure 23. pDCs participate in the inflammatory response of skin wound 
healing. Relative IL-23p19, IL-12p35, IL-17A, IL-22, and IFN-γ mRNA tissue 
expression of uninjured skin or injured skin collected 24 hours after tape 
stripping of either pDC-depleted or control IgG treated mice. Data represent the 
mean ± SEM of five mice per group. *, P= 0.03; **, P= 0.05; ***, P= 0.04, 
unpaired Student’s t test.  
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keratinocytes, was used as a marker to quantify re-epithelialization of skin 

wounds (118). In normal mice, K6-positive keratinocytes appeared 24 hours 

after injury and repopulated the entire injured skin surface within 72 hours 

(Figure 24 A). In pDC depleted mice, K6-positive keratinocytes appeared only 

around 72 hours (Figure 24 B) and complete re-epithelialization lagged behind 

control mice by three days (not shown). These data indicate that the infiltration 

of pDCs in skin wounds plays a key role in promoting early wound re-

epithelialization. To confirm these data we adopted another skin injury model, in 

which a full-thickness skin defect is placed by a 3 mm punch biopsy and the 

wound closure is measured over time. Similarly, pDC-depleted mice showed a 

significant delay in wound closure when compared to control mice, (Figure 24 

C).  

 

TYPE I IFN PROMOTE EFFICIENT RE-EPITHELIAZATION AND INDUCE DC 

AND TH17 CYTOKINES  

 

To determine the role of pDC-derived IFN-αβ in wound healings, we used IFN-

αβ-receptor-deficient mice and repeated similar experiments performed with 

pDC-depleted mice. Like pDC-depleted mice, IFN-αβ-receptor-deficient mice 

showed a significant delay in wound re-epithelialization (Figure 25 A) and 

displayed a profound deficiency in IL-6, IL-17 and IL-22 expression levels in 

injured skin (Figure 25 B). A similar deficiency of IL-6, IL-17 and IL-22 

expression was observed in MyD88-deficient mice. These data suggest that the 
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ability of pDCs to trigger early inflammatory responses and promote wound 

repair is related to their nucleic acid mediated TLR activation and production of 

IFN-αβ.  
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Figure 24. pDCs participate in the re-epithelialization of skin wound healing. 
(A) Representative time course of Keratin 6 (K6) expression in injured skin 
measured by immunofluorescence. (B) Percentage of K6 expression in injured 
skin in pDC-depleted and control IgG treated mice. Data represent the mean ± 
SEM of five mice per group. *, P= 0.01; **, P= 0.05, unpaired Student’s t test. (C) 
Time course of wound closure after full-thickness injury of the skin pDC depleted 
or IgG treated mice (right panel). Data represent the mean ± SEM of at least three 
mice per group. *, P= 0.02; **, P< 0.001; ***, P= 0.005, unpaired Student’s t test. 
Data in (A)-(C) are representative of at least two independent experiments. 
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Figure 25. Type I IFNs participate in the re-epithelialization of skin wound healing.  
(A) Percentage of K6 expression in injured skin in IFNAR-/- or control mice. Data 
represent the mean ± SEM of three mice per group for each timepoint. *, P= 0.002; **, 
P< 0.001, unpaired Student’s t test. (B) Relative TNF-α, IL-6, IL-23p19, IL-12p35, IL-
17A, IL-22, and IFN-γ mRNA tissue expression of uninjured skin or injured skin 
collected 24 hours after tape stripping of IFNAR-/- or control mice. Data represent the 
mean ± SEM of five mice per group: *, P= 0.003; **, P=0.04, unpaired Student’s t test. 
Data in (A)-(B) are representative of at least two independent experiments. 
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PDCS DO NOT AFFECT ANGIOGENESIS 

 

To evaluate whether pDCs also participated in other processes of wound 

healing in addition to re-epithelialization we measured angiogenesis related 

markers. We evaluated endothelial cell activity using CD31 as a marker for 

neovasculature. CD31 also known as PECAM-1 is highly expressed by 

endothelial cells and is also weakly expressed by periperhal lymphoid cells. 

Importantly, CD31 is down regulated by neutrophils upon extravasation from 

circulation. pDC-depleted mice did not show reduced CD31 expression 

compared to control mice in tape stripped mice (Figure 26). Additionally, we 

performed gene expression for Vegfa, Vegfb, and Egf, key genes involved in 

angiogenesis in pDC-depleted mice to determine whether pDCs may exert an 

effect upstream from endothelial cell proliferation. However, we did not observe 

any significant differences between pDC-depleted and control mice in 

expression of these genes (Figure 27). 
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Figure 26. pDCs do not affect endothelial cell activity. 
Percentage of CD31 expression in the skin (epidermal/dermal 
border area) of injured control or pDC-depleted. Data represent 
the mean ± SEM of five mice per group. 
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Figure 27. pDCs do not promote upregulation of angiogenesis 
genes. mRNA relative tissue expression of Vegfa, Vegfb and Egf in 
injured skin of pDC-depleted and control mice. Data represent the 
mean ± SEM of three mice per group. 
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HUMAN SKIN INJURY INDUCES PDC INFILTRATION AND EXPRESSION 

OF TYPE I IFNS 

 

To determine whether pDCs also infiltrate and sense human skin wounds, we 

performed skin biopsies in healthy human volunteers prior and 24 hours after 

tape stripping. Immunohistochemistry for BDCA2, a specific marker for human 

pDCs, revealed that large numbers of pDCs infiltrate human skin 24h after 

mechanical injury (Figure 28). We also found a significant induction of IFN-α 

mRNA expression in injured skin (Figure 29 A), suggesting that pDCs are 

activated to produce IFN-α similar to our finding in the murine models. We also 

confirmed these data in another model of skin injury induced by Sodium Lauryl 

Sulfate (SLS) treatment, which induces a chemical disruption of the epidermal 

barrier by perturbing the lipid bilayer structure in the stratum corneum, leading 

to damages to the basal keratinocytes (119). Like mechanical-induced skin 

injury, this chemical induced skin injury induced rapid pDC infiltration and 

significant induction of IFN-α mRNA expression in injured skin (Figure 28, 

Figure 29 B). 
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Figure 28. Human skin injury induces rapid infiltration of pDCs. 
Representative immunohistochemical staining of human skin for the 
pDC-specific marker BDCA2 reveals absence of pDCs in normal 
skin prior to injury (upper left panel), the rapid infiltration of pDCs in 
injured skin by tape stripping (upper right and lower left panels) or 
by treatment with SLS (lower right panel), scale bar: 10 µM. The 
data are representative of at least five independent healthy 
individuals.  
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Figure 29. Human skin injury induces rapid infiltration of pDCs and their 
activation to produce IFN-α. (A) Quantification of BDCA2-positive pDC 
numbers in human skin before and 24 hours after tape stripping of five 
independent healthy individuals (left panel). Relative IFN-α mRNA tissue 
expression in healthy human skin before and 24 hours after tape stripping 
(right panel). Each symbol represents an independent donor. *, P= 0.05; **, 
P= 0.03, unpaired Student’s t test. (B) Quantification of BDCA2-positive pDC 
numbers in human skin before and 24 hours after chemical injury with SLS of 
five independent healthy individuals (left panel). Relative IFN-α mRNA tissue 
expression in human skin before and 24 hours after chemical injury with SLS 
of at least 7 independent healthy individuals (right panel). Each symbol 
represents the independent individual. *, P= 0.04; **, P<0.001, unpaired 
Student’s t test. 
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Injury is the most common assault that an organism must confront. It is vital to 

the existence of the host to limit exposure of compromised tissue in order to 

avoid infection as well as to limit inflammatory mediated tissue destruction. 

Mammalian systems have evolved a very highly ordered repair process to heal 

wounds. The process is very intricate and the efficiency is dependent upon 

many factors such as the health status of the host, nature and scope of the 

injury, and most importantly, the degree of pathogen inoculation. Many aspects 

of skin injury have been characterized over the past few decades, yet many 

processes are not yet understood. We know from the past decade of skin 

research that keratinocytes play a much more dynamic role in maintaining 

homeostasis than just by providing a barrier to the external environment.  

 

Keratinocytes play a vital immunological role in maintaining barrier protection as 

well as sensing injury and alerting the body of problems. In fact, it has recently 

been shown that keratinocytes can “sense” bacteria through TLR expression 

which can then elicit an antimicrobial response (120). Keratinocytes are armed 

with evolutionary conserved defense peptides which can kill bacteria directly 

through perturbing the cell wall resulting in lysis. Moreover, the cathelicidin 

antimicrobial peptide can act as in a chemotactic fashion and has been shown 

to recruit neutrophils, T cells, and macrophages to the skin (121-123). 

Furthermore, injured keratinocytes release growth factors and pro-inflammatory 

cytokines such as IL-1β, IL-8, IL-6, and TNF-α (105-107). Recently our group 

has uncovered a novel role for keratinocyte-derived cathelicidin in activating 
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pDCs through association of cathelicidin with self-nucleic acid (29, 30). These 

studies suggest that keratinocytes may work in concert with other cell types in 

both initiating an immune response as well as eliciting an effective barrier 

against pathogen infection. 

 

pDCs provide a unique role in immunity. On one hand they are capable of 

promoting a strong inflammatory response through generation of vast amounts 

of Interferon alpha in response to viral pathogens. On the other hand, they can 

promote tolerance through induction of ICOSL and interaction with ICOS+ 

expressing T cells (124). Typically pDCs lack efficient mechanisms to uptake 

and bear MHC Class II antigens but they can cross-present antigens via MHC 

Class I. Additionally, pDCs originate from the lymphoid lineage unlike other 

dendritic cells which are myeloid derived. Many functions of pDC have been 

well characterized such as robust viral sensors, peripheral tolerance, MHC 

cross-presentation and most notably, producers of high Type I Interferon levels. 

 

pDCs lack the ability to recognize specific molecules but instead are armed to 

recognize evolutionarily conserved patterns such as prokaryotic DNA, viral 

proteins, etc. This ability enables pDCs to be one of the early sensors of viral 

infection. However, the exact nature of pDC activity in non-infectious roles has 

scarcely been evaluated. Here, we demonstrate a novel but logical role for pDC 

in detecting skin injury.  This study was driven by the observation that in 

psoriasis, pDCs are present in the early lesion. Studies by Gilliet and others 
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have shown that pDCs are in fact early infiltrators and initiators of the psoriatic 

lesion. Remarkably, pDCs promote inflammation as well as mediating the 

recruitment and activation of mDC and T cells. However, the trigger of pDC 

infiltration into the skin as well as the stimulus for pDC activation has not been 

elucidated. Coupled with the recent observations that pDCs can become 

activated to produce large amounts of IFN-α in response to self-DNA 

associated with the self-skin peptide, LL-37, along with the findings that LL-37 is 

released by keratinocytes in psoriasis we desired to understand the 

physiological role of pDCs in normal wound healing. 

 

There is scant evidence for a physiological role for pDCs in injury response. 

Moreover, there have been conflicting reports on the effect of Type I IFN in 

promoting more efficient wound repair. To this end, we developed an murine 

injury model based on the study by Sano which utilized tape stripping the dorsal 

flank of mice with constitutive expression of Stat3 (125). In that study, the 

authors observed increased dermal inflammation in as little as 12 hours.  In our 

experiments, taped stripped mice exhibited a strong inflammatory infiltrate 

characterized by abundant and transient levels of pDCs and neutrophils. 

Interestingly, both pDCs and neutrophils were absent by 48 hours. It is well 

known that neutrophils infiltrate injury (tape stripping, full-thickness, and burn) 

early with maximal infiltration lasting up to 3 days. pDCs are absent in skin 

under homeostatic conditions in mice whereas they constitute a very minor 

population in human. 
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Evidence of pDCs playing a role in a physiological setting prompted us to 

examine their functional role in wound healing. First, we observed that Type I 

IFN gene expression was upregulated transiently after injury. Furthermore, IFN-

α gene expression studies in wild type, pDC-depleted, MyD88-deficient, and 

TLR7-deficient demonstrated that pDCs were the primary source of IFN-α. Pro-

inflammatory genes were evaluated to understand the exact contributions of 

pDC in the injured skin. Interestingly, IL-6 was significantly pDC dependent 

while TNF-α was unaffected by pDC depletion. On the other hand, neutrophils 

contributed the bulk of TNF-α while exerting modest effects on IL-6 production. 

Previous studies have shown that IL-6-deficient mice have severe defects in 

wound healing, in particular, delayed re-epithelialization, impaired 

angiogenesis, and reduced macrophage infiltration (126). 

 

TLR signaling through MyD88 was requisite for pDC activation. This finding is 

line with the known molecular recognition pathway for pDC which selectively 

express TLR 7 and TLR 9. Furthermore, in a recent skin injury study, MyD88-

deficient mice exhibited delayed wound contraction, decreased and delayed 

granulation tissue formation, and reduced new blood vessel density (127). Our 

recent studies that demonstrated pDC activation through cathelicidin/nucleic 

acid associated complexes fully supports the notion that in vivo skin infiltrating 

pDC can sense these complexes to trigger endosomal activation of TLRs to 

produce IFN-α. Intriguingly, studies performed in TLR7-deficient mice 
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demonstrated that TLR 7 may be the preferred mechanism of MyD88 signaling 

as there was very little induction of IFN-α and IFN-β after injury. However, TLR 

9 signaling may also be important in pDC activation in skin injury. Our studies 

directed at the role of TLR 9 signaling were limited to the use of TLR 9 specific 

inhibitor. Although, no significant differences in IFN-α and IFN-β gene induction 

between control and inhibitor treated mice were observed in these mice we 

cannot rule out the possibility that the inhibitor was not applied at the optimal 

time or was ineffective. Moreover, TLR9-deficient mice were recently found to 

be unable to induce Type I IFN responsive genes (in press). Additional research 

efforts should be directed at probing the dynamic contributions of TLR 7 and 

TLR 9 signaling in greater detail in order to fully understanding the molecular 

basis of pDC activation in skin injury. 

 

Mechanisms underlying pDC infiltration and activation in skin injury were 

evaluated to understand how pDCs potentially can provoke inflammation in 

psoriasis. Previously we showed that, in human, pDCs can produce robust 

levels of IFN-α upon stimulation with mammalian DNA complexed with the 

human cathelicidin peptide, LL-37. This mechanism may be responsible for 

pDC activation during a psoriatic episode in which a surface wound triggers 

keratinocytes to produce LL-37. Damaged cells may release DNA which can 

complex with LL-37 and provide a potent stimulus for pDC activation. I 

confirmed our earlier findings which demonstrated the ability of LL-37 to bind to 

nucleic acid in mice using the CRAMP, the murine ortholog of LL-37. CRAMP 
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was capable of binding murine DNA although requiring higher molar 

concentrations to fully quench PicoGreen fluorescence compared to LL-37.  

 

Additionally, when complexed with DNA, CRAMP was able to induce significant 

amounts of IFN-α protein from fresh splenic murine pDCs. Moreover, 

intradermally injected CRAMP was able to solicit a strong pDC infiltrate to the 

skin in vivo compared to controls (PBS and scrambled CRAMP). Gene 

expression studies from CRAMP-injected mice revealed strong Type I IFN 

induction.  CRAMP is clearly capable of mediating a strong pDC response in 

vivo. Although CRAMP was injected without associated DNA, DNA released 

from cells damaged by the injection may provide DNA necessary to bind to the 

injected CRAMP. CRAMP is not however the sole player responsible for pDC 

activation, as mice deficient in cathelicidin produced similar levels of both IFN-α 

and IFN-β upon tape stripping.  

 

pDC infiltration and activation in skin injury is unlikely to be driven by 

autoantibodies and the formation of immune complexes, as we did not find an 

increase in anti-nuclear antibodies after skin injury (not shown). Candidate 

factors that trigger this process are HMGB1 (128), heat shock proteins (129) 

and other cationic antimicrobial peptides as they are all expressed in damaged 

skin and they have the ability to form self-nucleic acid-containing complexes 

that activate pDCs. Investigations by others have demonstrated that additional 

AMPs belonging to the beta defensin family are involved in skin defense and 
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are upregulated upon injury. We investigated gene expression of five beta-

defensins (beta defensins 1-4, 14) shown to be important in skin defense. 

Importantly, some of these defensins in humans have been shown to bind DNA 

and activate pDC (beta defensin 3, 4, 14). In mice, beta defensin 3, 4 and 14 

were all upregulated upon injury and may potentially provide additional stimuli 

for pDC infiltration and activation in injured tissue. Further evaluations of the 

ability of beta defensins to induce pDC infiltration and activation in vivo need to 

be conducted as well as the consequence of their deficiency using knockout 

models. 

 

Recent investigations in psoriasis have uncovered Chemerin, a novel 

chemokine substantially expressed during peak pDC activity. pDC migration to 

the skin has been attributed to the effect of chemerin, an agonist for chemokine 

like receptor 1 (CMKLR1) specifically expressed by pDCs (117, 130, 131). 

Chemerin is constitutively expressed in healthy skin by endothelial cells and 

fibroblasts as an inactive propeptide that requires activation through C-terminal 

cleavage by serine proteases. It is possible that during skin injury the release of 

proteases by damaged keratinocytes allows the formation of the active 

chemerin that recruits pDCs to the injury site. In addition, skin injury induces the 

expression of CXCR3-ligands (not shown), a set of chemokines which are 

typically induced in structural cells of the skin as a result of IFN-α/β expression 

and which have been shown to promote recruitment pDCs into sites of their 
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activation (132). Evaluation of chemerin in our model showed a strong induction 

of Chemerin which persisted for at least 3 days post injury.  

 

To investigate whether pDCs were exerting its effects on wound healing 

through Type I IFN we analyzed wound healing responses in tape stripped IFN-

α/β receptor knockout mice (IFNAR-/-). Recent reports investigating the use of 

exogenous IFN-α applied topically to full-thickness injuries have resulted in 

mixed conclusions (133, 134). Pammer et al. found that 1000 IU/ml of human 

recombinant IFN-α2b (INTRON-A or ROFERON) was able to inhibit apoptosis 

of endothelial cells, in vitro, but induced senescence upon continued treatment 

(133). However, Bhartiya et al observed that 20,000 Units (murine) injected 

intramuscularly over a 5 day time course in both full-thickness and incisional 

injuries enhanced re-epithelialization and increased fibroblast migration to the 

wound bed (134). No studies have evaluated the role of IFN-α, neither using 

physiological levels of IFN-α, nor have looked at physiologically produced IFN-

α. In gene expression studies we found that Type I IFN was important for IL-6 

induction. Similarly, both pDC-depleted and IFNAR-/- mice induced significantly 

lower amounts of IL17A and IL22 mRNA transcripts. However, there was one 

main exception, IL23p19 and IL12p35 gene induction was significantly reduced 

in pDC-depleted but not IFNAR-/- mice. This striking finding suggests that pDCs 

contribution to wound healing is much more dynamic than simply producing 

Type I IFNs.  
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As mentioned in the introduction wound healing is comprised of four 

overlapping phases. Phase one involves triggers hemostasis involving both the 

release chemotactic and pro-inflammatory molecules by keratinocytes and 

platelet activation. pDCs infiltrate the injury during the second phase 

(inflammatory phase). Therefore, we examined whether pDCs played a role in 

downstream injury responses. Phase three consists of neo angiogenesis to 

supply damaged skin nutrients and oxygen vital for tissue repair. Injured skin 

was stained for CD31, a marker for endothelial cells, to see whether abrogation 

of the pDC response impaired angiogenesis. No differences in CD31 

expression were observed suggesting that pDCs do not influence endothelial 

cell division. Moreover, gene expression for angiogenic markers Vegfa, Vegfb, 

and Egf did not reveal any differences throughout a 5 day time course between 

wt and pDC-depleted mice. Phase 3 also includes matrix remodeling which 

consists of metalloprotease activity to remove the fibrin clot and collagen 

synthesis to provide a structured dermis was evaluated. No differences in 

Mmp3, Mmp8 and Mmp9 gene expression were observed. pDCs do not 

contribute to angiogenesis or matrix remodeling.  

 

Phase four of wound healing encompasses the mobilization of keratinocytes to 

re-epithelialize the injured epidermis. Re-epithelialization characterized by 

migration of keratinocytes from both the wound edge and hair follicles to form a 

new basal layer was evaluated to evaluate the overall effects of wound healing.  

We utilized K6 expression as a surrogate marker for re-epithelialization. K6 is 
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expressed by early hyperproliferating keratinocytes and is downregulated upon 

after a new basement membrane is generated. Interestingly, both pDC-depleted 

and IFNAR-/- mice demonstrated delayed wound healing compared to control 

mice. Wound healing defects persisted through day 3 post injury and eventually 

resolved by day 5 (data not shown). Additionally both pDC-depleted and  

IFNAR-/- mice exhibited reduced wound closure after full-thickness injuries. 

These data show that both pDCs and Type I IFN are important in resolving skin 

injury. However, the nature of pDC contributions to wound healing independent 

of Type I IFN is not fully understood. 

 

pDCs may potentially exert their influence in wound healing through 

keratinocyte mobilization. Keratinocytes from the wound edge are required to 

detach anchoring attachment molecules such as desmosomes from 

neighboring cells and migrate to the injured tissue to form a new basement 

membrane. This process involves both mitogenic and proliferative cues. 

Potentially pDC act on keratinocytes ability to navigate through and across the 

fibrin clot. Keratinocytes upregulate proteolytic enzymes necessary for their 

movement across the injured tissue. Once they reach the denuded epidermis 

keratinocytes must proliferate in order to re-establish both the basement 

membrane as well as the the stratum corneum. As evidenced by K6 which is 

expressed only by early hyperproliferating keratinocytes, keratinocytes rapidly 

undergo proliferation when they form a new basal layer. In my studies, the most 

pronounced effect on pDC depletion was compromised K6 expression. Future 
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studies evaluating the role of pDC and Type I IFN should be performed to 

determine whether keratinocyte mobility and proliferative ability are affected.  

 

Our investigation was directed at understanding the role of pDCs in a 

physiologically relevant process which may influence potential therapeutic 

strategies for skin disorders such as psoriasis, melanoma, and burn trauma. We 

evaluated whether pDCs, in addition to being present in murine skin injury, were 

present in human skin injury. pDCs infiltrated both mechanical (tape stripped) 

as well as chemical (Sodium Lauryl Sulfate) mediated human skin injury. 

Moreover, pDCs in both conditions were activated to produce substantial levels 

of IFN-α and IFN-β mRNA. These results demonstrate that pDCs response to 

injury is potentially an evolutionarily conserved response to both aid in injury 

recovery as well as to potentially thwart a pathogenic response. Whether pDCs 

were programmed to respond only to danger cues such as host cell degradation 

products or viral antigens it is clear that pDCs participate in non-infectious 

related processes. 

 

Another striking result of our studies was that pDC involvement in wound 

healing is important for upregulation of cytokines vital for T cell differentiation 

into TH17 cells. IL-23 is a heterodimeric cytokine composed of p19 and p40 

subunits. p19 is exclusive to IL-23 while p40 is shared with IL-12. IL-23 has 

been shown to be important in host inflammatory response to infection. In 

addition to being important in driving CD4 T cell differentiation to TH17 cells, IL-
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23 also promotes the upregulation of MMP9 (important for keratinocyte 

mobilization through granulation tissue) and angiogenesis (107). IL-23 in 

combination with IL-6 and TGF-β1 drives differentiation of CD4 T cells into 

effector TH17 cells which secrete IL-17 and IL-22. Interestingly, abrogation of 

pDC response to wound healing significantly impaired IL23p19, IL17A, and IL-

22 gene induction. No evidence suggests that pDCs produce IL23p19 directly. 

So the likely mechanism is that pDC activation induces a bystander response, 

possibly by resident mDC, to induce IL-23 gene expression. Another important 

observation that we made was that IL23p19 gene induction was not suppressed 

in IFNAR-/- mice suggesting an IFN-α/β independent mechanism. IL-23 injected 

into the skin of mice was found to induce psoriasis features such as erythema, 

acanthosis, dermal inflammatory infiltrates, dermal papillary blood vessels and 

IL-22 dependent psoriasisform changes.  

 

pDCs also affect the production of TH17 cytokines, as the induction of IL-17 

and IL-22 is abrogated in pDC-depleted mice. This is in line with recent studies 

showing that pDCs can drive the differentiation of IL-17 and IL-22-producing T 

cells (135-137), and that IL-6 is implicated in this process (135). IL-22 appears 

to be particularly important in epidermal regeneration as this cytokine directly 

promotes keratinocyte migration and proliferation (138-140). Surprisingly, mice 

deficient in IFN-α/β-receptors display a similar inhibition in IL-6 and TH17 

cytokine induction with delayed re-epithelialization of skin wounds. Because 

IFN-α/β are potent stimulators of immune responses but do not exert a direct 
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activity on keratinocytes (141), these findings suggest that IFN-α/β in skin 

wounds promote epidermal regeneration and wound repair through the 

induction of TH17-biased inflammatory responses. The exact mechanism that 

links IFN-α/β production to pDC-mediated TH17 responses is still unclear. 

However, there is additional evidence that IFN-α/β produced by pDCs drives 

TH17 responses and epidermal proliferation in a therapeutic model of skin 

treated with the TLR 7 agonist imiquimod (142). Furthermore, IFN-α/β produced 

by pDCs triggers psoriasis (93), a disease characterized by large numbers of 

pathogenic TH17 cells that trigger epidermal hyperproliferation (143). 

 

Our studies were centered on understanding what role, if any, pDCs play in a 

normal wound assault in the skin at aims of further understanding why and how 

pDCs facilitate psoriasis pathogenesis. We have uncovered a novel role for 

pDCs in wound healing and future efforts should be directed at understanding 

both chemotactic and regulatory cues involving pDC infiltration and activation in 

skin injury. A broader appreciation for the role of keratinocytes in immunological 

settings could be useful in understanding pDC function. Keratinocytes produce 

pro-inflammatory cytokines in addition to antimicrobial peptides which may be 

important for pDC activity. TH17 cells may provide a positive feedback loop 

which acts on keratinocytes to further release cationic antimicrobial peptides. 

Sustained activation of pDCs by cationic antimicrobial peptides complexed with 

extracellular nucleic acid may lead to a dysregulated response resulting in 

chronic inflammation. Psoriasis does have a genetic component which may 
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increase the susceptibility for an uncontrolled inflammatory response to injury. 

This continued cycle may be involved in the initiation of a psoriatic lesion. 

 

Many questions regarding the mechanisms of pDC infiltration and regulation as 

well as the role of pDC induced IL-23, IL-17, and IL-22 gene expression in skin 

injury remain. Future efforts at determining mediators of pDC infiltration to 

wounded skin should encompass the following molecules: chemerin, the 

CXCR3 ligands; CXCL9 (Mig), CXCL10 (IP-10), and CXCL11 (ITAC), and the 

CXCR4 ligand, CXCL12 (SDF-1). Chemerin is highly expressed in wounded 

skin as well as in psoriasis. Moreover, pDCs express CMKLR1, the cognate 

receptor for chemerin. Additionally, CXCL9, CXCL10, and CXCL11 are all 

expressed by dermal resident cells, are highly expressed in psoriasis and can 

be recognized by pDCs. Finally, CXCR3 requires cooperative CXCR4 

engagement of CXCL12 for pDC trafficking. 

 

We showed that the AMP, CRAMP, was able to mediate pDC infiltration to the 

skin and activate pDC. Yet, CRAMP-deficient mice produced equivalent levels 

of IFN-α and IFN-β mRNA upon skin injury. Potentially, CRAMP works in 

concert with additional AMP to mediate pDC infiltration and activation in skin 

injury. We have shown that additional cationic AMPs, beta-defensins -3, 4, and 

14, are all elevated in injured skin. It is important to screen these beta-defensins 

when complexed with nucleic acid for the ability to activate purified splenic 

pDCS to produce IFN-α. Beta-defensins found to be able to activate pDCs 
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should then be injected, intradermally, to determine their ability to mediate pDC 

infiltration and activation in vivo. Beta-defensins that can mediate pDC 

infiltration and activation should be evaluated in a targeted gene knockout 

setting. Ideally CRAMP-deficient mice would be crossed with beta-defensin-

deficient mice to determine whether complete type I IFN signaling is abrogated. 

Such a finding would lead to better therapeutic strategies for psoriasis in which 

cathelicidin and beta-defensins are both targeted. 

 

Another important question is how pDCs and type I IFNs contribute to re-

epithelialization. Our studies implicate delayed keratinocyte mobilization to the 

injury. However, mechanisms underlying this are poorly understood. Potentially, 

pDCs and type I IFNs influence the detachment of migrating keratinocytes from 

basement membrane or promote the proliferation of leading edge keratinocytes. 

Alternatively, pDCs and type I IFNs promote the migration of keratinocytes 

across the provisional matrix, which requires upregulation of MMPs and specific 

integrin expression. These possibilities should be explored in further detail. 

 

Regulation of pDC activity in skin injury needs to be investigated. Some 

important questions are why is pDC activity transient? What mechanisms 

balance continued inflammation versus tolerance? How is this mechanism 

subverted in psoriasis? 
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Finally, it is important to understand the role of pDC induced IL-23, IL-17, and 

IL-22 gene expression in skin injury. Skin injury experiments using IL-23, IL-17, 

and IL-22-deficient mice can shed light on the role of these cytokines in wound 

healing. Potentially, these TH17 related cytokines are upregulated in 

preparation of an infection.  

 

In conclusion, our study identifies a role of pDCs in recognizing nucleic acids 

released in injured skin and promoting early inflammatory responses and re-

epithelialization of the wounds. These findings provide a paradigm shift in 

understanding the function of pDCs from the classical view of a specialized cell 

type in the recognition of viral infections to important sensors of tissue damage 

at epithelial surfaces.  
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