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NEW TOOLS FOR MONITORING GAMMA CAMERA UNIFORMITY 

 

Bradley Kyle Lofton, BS 

Supervisory Professor: Richard E. Wendt III, Ph.D. 

 

Detector uniformity is a fundamental performance characteristic of all modern gamma camera 

systems, and ensuring a stable, uniform detector response is critical for maintaining clinical images 

that are free of artifact.  For these reasons, the assessment of detector uniformity is one of the most 

common activities associated with a successful clinical quality assurance program in gamma camera 

imaging.  The evaluation of this parameter, however, is often unclear because it is highly dependent 

upon acquisition conditions, reviewer expertise, and the application of somewhat arbitrary limits that 

do not characterize the spatial location of the non-uniformities.   Furthermore, as the goal of any 

robust quality control program is the determination of significant deviations from  standard or 

baseline conditions, clinicians and vendors often neglect the temporal nature of detector degradation 

(1).  

This thesis describes the development and testing of new methods for monitoring detector 

uniformity.  These techniques provide more quantitative, sensitive, and specific feedback to the 

reviewer so that he or she may be better equipped to identify performance degradation prior to its 

manifestation in clinical images.  The methods exploit the temporal nature of detector degradation 

and spatially segment distinct regions-of-non-uniformity using multi-resolution decomposition.  

These techniques were tested on synthetic phantom data using different degradation functions, as well 

as on experimentally acquired time series floods with induced, progressively worsening defects 

present within the field-of-view.  The sensitivity of conventional, global figures-of-merit for detecting 

changes in uniformity was evaluated and compared to these new image-space techniques.   

The image-space algorithms provide a reproducible means of detecting regions-of-non-uniformity 

prior to any single flood image’s having a NEMA uniformity value in excess of 5%.  The sensitivity 

of these image-space algorithms was found to depend on the size and magnitude of the non-

uniformities, as well as on the nature of the cause of the non-uniform region.  A trend analysis of the 

conventional figures-of-merit demonstrated their sensitivity to shifts in detector uniformity.  The 

image-space algorithms are computationally efficient.  Therefore, the image-space algorithms should 

be used concomitantly with the trending of the global figures-of-merit in order to provide the 

reviewer with a richer assessment of gamma camera detector uniformity characteristics.      
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1. PROJECT HYPOTHESIS AND SPECIFIC AIMS 

 

Daily collimated uniformity floods are a mainstay of routine clinical quality control (QC) for 

gamma cameras and can be used to determine the operational performance of systems prior to patient 

imaging.  Although there is no unanimously agreed upon quantitative threshold for evaluating daily 

flood uniformity, Hines, et al have suggested that the most important aspect of routine quality control 

is the monitoring of change from a baseline condition and that the criteria to judge such change must 

not burden the clinic without justification (2).  Historically, uniformity calculations defined by the 

National Electrical Manufacturers Association (NEMA) have been used concomitantly with expert, 

but subjective visual interpretation in order to evaluate performance status.  There is room for 

improvement in this process.  NEMA calculations do not indicate positional information about the 

magnitude and location of the non-uniformities present. NEMA calculations also do not inherently 

measure the significance of a change in uniformity over time.  Furthermore, visual interpretation is 

subject to inter-observer variation and does not provide reproducible criteria for monitoring changes 

in flood uniformity.  An automated analysis capable of objectively detecting significant temporal 

changes that correspond to spatially isolated uniformity defects would be useful in routine QC.  The 

ability to detect subtle, progressive degradations over time, prior to the camera’s uniformity value 

exceeding a predetermined limit, would provide the clinic with the ability to proactively, rather than 

reactively, remediate performance deterioration and potentially minimize scanner downtime. 

This project’s hypothesis is that an automated time series analysis of daily flood images will 

detect a spatial non-uniformity at least 5 days prior to a single daily flood exceeding a NEMA 

uniformity of 5%, given a degradation rate of less than 0.1% per day. 

To test this hypothesis, the following specific aims were investigated: 

1. Assemble test data by computer simulation of non-uniformities, scanning of phantoms that mimic 

non-uniformities, and identification of actual camera data leading up to service events for non-

uniformities. 

Methodology – Using retrospective clinical uniformity defects as a guide, methods of mimicking 

non-uniformities that resemble those commonly observed were developed using both 

mathematically modeled flood images and physically measured daily uniformity floods.  For each 

type of non-uniformity, the size and magnitude of the degradation present was varied along with 

the rate at which the uniformity degrades.  A pool of spatially registered, clinically acceptable 

floods was acquired to serve as the baseline set of a time series of floods.  For each image 

acquired, the uniformity was evaluated using the current clinical criteria. 
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2. Investigate and develop quantitative pixelwise time series analysis techniques that exploit the 

temporal nature of these effects to detect and locate progressive degradation of the detector 

uniformity and to display that information in two-dimensional parametric maps. 

Methodology – Published state-of-the-art approaches of automatically quantifying flood 

uniformity in a time series of uniformity floods were investigated and implemented 

computationally.  Novel analytical techniques using spatial decomposition and time series 

averaging were developed.  These algorithms were then applied to the phantom and retrospective 

time series flood data described in Specific Aim 1. 

3. Apply statistical process control techniques to current conventional methods of uniformity 

monitoring in order to characterize how these metrics change over time in response to the 

mimicked degradation processes.       

Methodology – Control chart techniques for statistically monitoring process performance were 

investigated and developed.  The image-space techniques’ performance on each phantom were 

qualitatively compared against global parameter control charts by identifying the images that first 

depicted the regions-of-non-uniformity and comparing them to the time points at which the 

control limits were violated.   
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2. BACKGROUND 

2.1 Gamma Camera Basics 

2.1.1 Function and Modes of Operation 

Gamma cameras are nuclear counting devices that are used clinically to create images of in-vivo 

radiopharmaceutical distributions (3).  Nuclear medicine is a functional imaging modality in that the 

clinical images produced by gamma cameras are intrinsically linked to the underlying physiological 

or biochemical activity within the patients.  Patients are administered a radiopharmaceutical, which is 

a biochemical compound labeled with a photon (gamma and/or x-ray) or positron-emitting 

radionuclide (3).  The compound has an affinity to the constituents of a specific physiological 

process, and, after an uptake time has passed during which the radiopharmaceutical may concentrate 

in various regions of the body under the influence of the biological function being examined, images 

are acquired through the detection of photons emitted from the resultant (radio)activity source regions 

(e.g. organ, tumors).  The images may help to identify and locate a disease process or tissue injury, or 

they may help the physician evaluate physiological performance, as in the case of assessing the left 

blood flow within the muscle tissue from a multi-gated cardiac blood pool study.  Nuclear medicine 

imaging is unique among imaging modalities in that the instrumentation is used with a wide variety of 

radiopharmaceuticals to image anatomical function as opposed to morphology, each of which may 

help indicate multiple pathological disorders (e.g., myocardial perfusion and tumor detection with the 

radiopharmaceutical sestamibi), making gamma camera imaging an extremely versatile modality (4). 

Most modern gamma cameras are used in either a planar (projection) or a tomographic mode of 

operation.  In planar imaging, the system’s detectors remain static with respect to the patient couch, 

producing two-dimensional (2D) images of the internal radiopharmaceutical distribution while the 

patient either remains in a single position, or translates between the fixed detector heads.  Single 

photon emission computed tomography (SPECT) is a tomographic imaging technique in which the 

detector heads rotate around the fixed patient couch and acquire individual projection images.  These 

are then reconstructed into a volume data set or a stack of transaxial slices using either filtered 

backprojection (FBP) or iterative techniques.  Tomographic imaging offers the ability to view 

anatomy transaxially, which eliminates the superimposition of organs and other structures that is an 

inherent characteristic of planar imaging.  Both acquisition types are common in modern usage.   

Gamma camera imaging is quantitative in many applications.  Physicians are able to obtain 

functional, diagnostic information directly from the image pixel values derived in the acquisition.  For 

example, the rate of clearance of a radiotracer in a target organ may be determined by creating a time-
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activity curve (TAC) based upon the injected activity and the counts recorded within a region of 

interest (ROI) at different dynamic intervals (3).  Myocardial perfusion imaging uses the amount of 

injected activity detected within time intervals over the cardiac cycle to quantify ejection fraction.  

Such quantification in imaging studies make paramount the requirement of optimal image quality, as 

diagnostic integrity depends on it. Properly functioning instrumentation is the foundation upon which 

a correct interpretation of the patient’s condition is built.  This requirement justifies a nuclear 

medicine clinic’s having a robust quality control program in which QC image quality is used to assess 

the functionality of system components. 

2.1.2 System Components 

Beginning at the source region of the patient in which the radiopharmaceutical has accumulated, 

photons of various energies from approximately 80-500 keV, depending upon the radionuclide used, 

are emitted.  As those photons reach the detector, the collimator effectively localizes the signal by 

rejecting divergent photons.  The accepted photons then pass through the aluminum faceplate and 

deposit energy within the NaI (Tl) crystal, where scintillation occurs and an amount of light that is 

proportional to the energy deposited by the incident photon is released.  The light that reaches the 

photocathode of one of an array of photomultiplier tubes (PMTs) leads to a signal that is amplified to 

produce a signal pulse.  The individual PMT signal pulses are summed in order to form the global “Z-

signal” which is proportional to the energy deposited by the incident photon and hence may be used 

for energy discrimination.  Spatial positioning is determined from the output pulses of the individual 

PMTs using so-called Anger logic, and image corrections are applied once the signal has been 

converted into a digital format (3).   
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specifically-shaped lead foils (3).  Parallel-holes are formed within the cast or layered foils, usually 

hexagonal in cross-section and typically 1-3 mm in diameter.  The thickness of the lead septa 

separating these holes is dictated by the energy or energies of the desired photons to be detected (and 

the linear attenuation coefficient, µ, of lead at that energy), the diameter of the holes being used, d, 

and the length of the septa, l.  The septal thickness, t, can be derived by the following relationship (3): 

 

� �  6�/�
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Equation 1 – Derivation of Septal Thickness for Parallel-hole Collimator 

 

Generally speaking, the design of collimators (3) is an art of compromises among these physical 

parameters to achieve a desirable balance between sensitivity and spatial resolution for a particular 

energy of incident photons.  

2.1.2.2 NaI (Tl) Scintillation Crystal and its Container 

The function of the thin aluminum container that surrounds the NaI (Tl) crystal on all sides except 

that facing the PMTs is to protect the fragile, hygroscopic crystal from mechanical or chemical 

damage and moisture.  The space between the aluminum and the crystal is normally filled with a 

highly reflective material such as TiO2 in order to help increase the amount of scintillation light that 

can be collected from the NaI (Tl) crystal (3).  The rear face of the crystal container is a glass plate 

with an index of refraction similar to that of NaI to allow transmission of the scintillation light, and 

the aluminum container and the glass face are hermetically sealed to isolate the crystal from moisture. 

Photons that enter directly perpendicular to the detector, given a parallel-hole collimation scheme, 

and pass unattenuated through the aluminum “can”, have a high likelihood of interacting with the NaI 

(Tl) crystal and depositing energy there.  NaI is an inorganic scintillator and when doped with trace 

amounts of thallium, activation centers may be formed in the crystalline lattice of the NaI (Tl).  When 

energy is imparted to these activation centers, subsequent de-activation occurs, and energy 

proportional to that deposited by the incident photon is released in the form of ultraviolet light (3).  

Photons of the energy range useful to nuclear medicine imaging may interact with the crystal in two 

ways, namely photoelectric absorption and Compton scattering.  In photoelectric absorption, the 

incoming photon transfers all of its energy to an orbital electron, thereby eliminating the photon, and 

ejecting the electron from its shell with energy equal to the difference between that of the incoming 

photon and the orbital binding energy of the electron.  This type of interaction is proportional to the 

cube of the atomic number of the absorbing material and inversely proportional to the cube of the 
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incident energy of the photon, i.e., proportional to �
��.  In Compton scattering, the photon is not 

eliminated, but rather transfers only a portion of its energy to a loosely bound outer orbital electron 

(the recoil electron). The photon scatters at an angle θ with a reduced energy that may be calculated 

from the following relationship (3, 5): 

 

�������� �  ��
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Equation 2 – Compton Scatter Photon Energy 

 

The energy of the recoil electron equals the difference in energy between the incident photon and 

the scattered photon.  Compton scattering within the crystal degrades image quality when a 

scintillation event from the scattered photon of reduced energy occurs at a point somewhat removed 

from the site in the crystal of the original interaction.  Compton scattering within the patient also 

degrades image quality.  A divergent photon may be scattered within the patient and the resulting 

scattered photon of reduced energy may be perpendicular to the collimator/detector, resulting in an 

interaction in the detector at a distance away from the origin of the original photon emission.  This 

phenomenon is addressed to some degree using energy discrimination, as will be discussed later.  

NaI(Tl) is a popular scintillator in nuclear medicine applications because it has a relatively high 

density (3.67 g cm
-3

), and thus a high probability for a photoelectric event, and it can be manufactured 

relatively inexpensively into large slabs of a single continuous crystal.  NaI(Tl) has an approximately 

90% (for a 3/8’’ crystal thickness) intrinsic detection efficiency for 140 keV photons (3) and is 

transparent to the wavelength of light produced (i.e., there is no self-absorption of its own scintillation 

light).  Light emitted from the de-excitation process passes through the crystal and thence through a 

transparent thin glass layer coupled to the back of the crystal.  On the other side of the glass are light 

guides or optical coupling to the PMTs. 

The thickness of the crystal used for the acquisition of experimental data for this project was 3/8’’ 

thick. This is the most common thickness for modern clinical gamma cameras.  Thicker crystals may 

be used, and may improve the detection efficiency of the system, but spatial resolution is slightly 

degraded because the spherically radiating light is spread among more PMTs, causing each to gather 

a slightly smaller portion of the total. 

Experimental data was acquired on a Siemens e.cam gamma camera (Siemens Medical Solutions, 

Malvern, PA).  The UFOV of the Siemens e.cam detector is 532×386 mm
2
.  The linear dimensions of 

a digitized image pixel vary according to the acquisition matrix size.  The useful field-of-view 
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(UFOV) is the portion of the detector that is free from edge effects.   

The central field-of-view (CFOV) is defined as the central 75% of each respective (x, y) dimension of 

the UFOV.  Common acquisition matrix sizes are listed for this system: 

 

Image Matrix Linear Dimension of a Single Pixel 

(zoom factor = 1) 

1024x1024 0.6 mm 

512x512 1.2 mm 

256x256 2.4 mm 

128x128 4.8 mm 

64x64 9.6 mm 

Table 1 – Pixel Dimensions for Common Acquisition Matrices 

 

Pixel size calibration is performed by the vendor at the time of installation and should be tested 

semiannually (2).  The pixel size (mm/pixel) is calibrated by acquiring an image of an array of point 

sources that are separated from each other by known distances and calculating the distance in pixels 

between the centroids of each pair of point sources (3).   

The point-spread-function (PSF) of a gamma camera describes its spatial resolution and is 

measured as the full-width at half maximum (FWHM) of the image of a point source.  A typical 

intrinsic FWHM for modern gamma cameras is ~4 mm.  Pixels that are closer together than the 

FWHM of the PSF are correlated by virtue of the intrinsic blurring that occurs. 

2.1.2.3 Photomultiplier Tubes (PMTs) 

The scintillation crystal is a frequency shifter. It converts photons to visible light, which is then 

converted to electrical charge by photomultiplier tubes.  Light from the scintillation crystal enters the 

PMTs, striking the photocathode, which is coated with a photoemissive substance such as Sb-Cs that 

ejects electrons as a result of the photoelectric effect.   The number of electrons emitted in response to 

an incident photon is proportional to its wavelength (i.e., its energy).  The PMT contains a chain (or 

stages) of electrodes called dynodes, and each dynode is at a potential difference of 100-150 V with 

respect to its neighboring prior stage dynode.  The photoelectrons are drawn by electrostatic force 

towards the first dynode, which is at a positive potential of 200-400 V with respect to the 

photocathode.  When incoming electrons strike a dynode, more electrons than were incident are 

ejected from the surface of the dynode in a process called secondary emission, thereby creating an 

amplification of charge.  The electrons emitted from the dynode are then drawn electrostatically 

toward the next stage of the dynode structure, which is held at a potential 100-150 V higher than the 
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first stage.  This continues for 9-12 stages.  Each subsequent stage is maintained at a progressively 

higher potential and thus the number of electrons that were emitted from the photocathode is greatly 

multiplied, significantly amplifying the incoming optical signal.  The amount of current collected at 

the terminal anode resulting in a voltage pulse across a reference load is proportional to the intensity 

of light (i.e. the number of photons) incident upon the photocathode and is proportional to the energy 

deposited by the photon that interacted with the crystal and produced the scintillation light.  The PMT 

array requires a stable, high voltage power supply (3).  A minor deviation in potential at any one of 

the stages in the dynode complex can result in a distortion of the amplitude of the resultant voltage 

pulse, which leads to an incorrect estimate of the deposited energy.  Individual PMTs are mounted 

within thin cylinders of magnetic shielding material to reduce the influence of external magnetic 

fields (including that of the earth) upon the gain of the PMT, and hence upon the measured energy 

calibration. 

2.1.2.4 Light Guides and Optical Coupling 

The PMTs may have gaps between them.  Plastic light guides (pipes) positioned between the 

PMTs and the glass face of the NaI(Tl) crystal assembly, and optically couple to both using optical 

coupling gel or adhesive,  help to direct light emitted from the back of the crystal away from the gaps 

and towards the more sensitive regions of the PMTs (3).  In the absence of light guides, the PMTs are 

coupled directly to the back glass surface of the crystal.  This gel minimizes the reflection of light at 

the optical interface.  Light guides can also help to minimize the non-linear effects that source 

positioning has on PMT response. 

2.1.2.5 Shielded Housing 

The entire detector assembly is contained in a shielded housing made of lead, which protects the 

back and sides of the detector assembly from external sources of ionizing radiation so that, ideally, 

the only detected events would be from photons that pass through the collimator. 

2.1.2.6 Summing and Positioning Circuits 

The signals from all of the PMTs are summed together to form the “Z-signal”, which is 

proportional in amplitude to the total light output detected from the scintillation event.  An energy 

discrimination window may be applied directly to the Z-signal, which allows events that have the 

wrong energy (such as those arising from photons that underwent Compton scattering within the 

patient) to be rejected.  An ideal situation would require a window with a width equal to 10% of the 

emitted photon energy (since the energy resolution of NaI(Tl) is about 10% at 140 keV, which is the 

photopeak of 
99m

Tc).  In practice a wider window is required to account for variations in light output 
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across the large NaI(Tl) crystal in the gamma camera.  An undesirable consequence of the wider 

window is that more scattered events will also be accepted, which degrades image resolution and 

contrast (3).  Alternatively, photopeak offsets of the regional spectra across the FOV of the detector 

from the Z-signal may be stored as a lookup table (LUT), and thus energy discrimination windows 

may vary spatially across the detector, allowing them to be set to a narrower width. 

The spatial positioning of a scintillation event within the detector FOV involves what is 

essentially a weighted average of the response to the events from each of the PMTs.  The amount of 

light detected by a PMT is greater when the interaction event in the crystal is near the center of the 

PMT, although this effect is non-linear as a function of distance from the center. In the original 

gamma camera design, X and Y position signals were generated by calculating the weighted response 

of individual voltage readings from each PMT in the detector using analog circuitry, in which the 

weighting terms were embodied in the values of resistors or capacitors.  On modern digital detectors, 

a similar processing occurs digitally, once the analog signals from each PMT are digitized using 

analog-to-digital converters (ADCs).  This positioning determination is commonly called Anger logic, 

named after the inventor of the gamma camera, Hal Anger (3). 

2.2 Uniformity as a Measure of Performance 

Uniformity is a fundamental performance characteristic of all gamma cameras, and uniformity 

tests are perhaps the most sensitive method of monitoring change in the detector (6).  Uniformity 

performance has significant implications for both SPECT and planar image quality (7-10) and has the 

ability to detect the consequences of degradation in multiple detector components, including those 

that arise from the source, collimators, scintillation crystal, PMTs, and electronics (11), making it an 

extremely comprehensive measure of performance.  Uniformity acquisitions essentially test the 

detector’s ability to create a uniform, homogeneous image signal given a spatially uniform fluence of 

radiation incident upon the detector FOV (7).  In addition to testing uniformity performance, high-

count, non-uniformity-corrected calibration floods are acquired in order to generate uniformity 

correction maps for the detector.  The spatial response of the detector may be corrected for the spatial 

non-uniformities measured in the high-count flood image, and thus uniformity acquisitions serve both 

to test the performance of the detector and to correct its response.  Uniformity tests and calibrations 

produce a flood field image, which may be used to visually inspect for the presence of non-

uniformities.  As is later discussed in this thesis, floods may be quantified in order to provide a figure-

of-merit for uniformity performance. 
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2.2.1 Uniformity Calibrations 

Uniformity calibrations are used to correct for spatial count differences in the image due to 

detector efficiency variation across the FOV, and are critical in clinical imaging because the 

uniformity requirements in SPECT, more so than in planar imaging, are very demanding (9, 10).  As 

discussed in section 2.1.1, transaxial images are reconstructed from tomographically acquired planar 

projections, which are then backprojected across the image matrix.  Each pixel maintains equal 

weighting in the backprojection. Therefore, if a pixel or group of pixel values has an artificially 

different number of counts due to some non-uniformity of system performance, it will be the same in 

every projection and will manifest itself as a ring in the reconstructed transaxial image (9).  To correct 

for defects in the uniformity of the planar projections, uniformity corrections are multiplicatively 

applied to each pixel.  Because ring artifacts are only visible when their magnitude is above the noise 

level in the image, their visibility is a function of the count density of each planar projection and thus 

of the type of study being performed.  Because there are a wide variety of studies performed in 

nuclear medicine, it has been recommended that calibration floods used to derive uniformity 

correction images be acquired with a root mean squared (RMS) error of less than 1% in each pixel (7, 

9, 10).  This means that if a uniformity calibration flood was acquired in an image matrix consisting 

of 64
2
 square pixels, a total of 30-million counts would need to be acquired in order to yield a count 

density of 10,000 counts per pixel (cpp).  This is, of course, dependent upon the UFOV of the 

detector, or the usable image region, and the size of the image matrix at which corrections are 

applied.  For example, a 128
2
 calibration image matrix would thus require that 120-million counts be 

acquired in order to satisfy the 1% RMS error requirement.   

The calibration factors, or coefficients, are derived by acquiring the high-count calibration flood, 

computing the mean pixel value within a central region of UFOV of the flood and dividing that value 

by each pixel value at each x, y location in the high count flood.  Mathematically this operation is 

represented in Equation 3: 

 

"#$%,' � $())))*�+$(%,'  

Equation 3 – Uniformity Correction Coefficient Calculation 

 

The result is a 2D matrix of uniformity correction coefficients whose values are all approximately 

equal to one. This calibration map is stored in a matrix size specified by the vendor and rebinned to 

the size of the image that is to be corrected by multiplication (either static planar or SPECT 

projections).  Almost all clinical studies utilize uniformity corrections, as do the daily floods used for 
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quality control (QC) testing purposes.  While uniformity corrections improve image quality by 

optimizing image uniformity, they can act to mask or obscure the symptoms of detector non-

uniformity.  This may make an argument for acquiring uniformity test floods without corrections 

being applied in order to sample the true response of the detector.  It should be noted that the above 

calibration is performed for the intrinsic response of the detector as well as for the collimated 

response, and thus two separate calibration maps are applied to the raw image.  For each collimator 

set used clinically, a separate collimator correction map must be generated.   

2.2.2 Mechanisms of Non-Uniformity 

Detector non-uniformities are the result of two causes: 1) non-uniform detection efficiency, and 

2) spatial non-linearity (3).  Non-uniform detection efficiency is perhaps the most common cause of 

flood non-uniformity and is often the consequence of subtle differences in the pulse height signal of 

individual PMTs in the detector.  

2.2.2.1 PMT Drift and Position Dependence 

Recall that the amplitude of the Z-signal pulse is proportional to the light emitted by the 

scintillation event at that corresponding spatial location in the detector and is therefore proportional to 

the energy deposited by the incident photon.  If a PMT is malfunctioning and producing a pulse 

height that is not proportional to the energy of the incident photon, or if the pulse height is 

proportional the energy but miscalibrated, events may appear to have energy outside of the selected 

energy window and this will cause the event to be rejected.  A malfunctioning PMT will also cause a 

distortion in the energy detected in the surrounding area, thus affecting regions outside of the 

immediate vicinity of the defective PMT (6).  Changes in response may be the result of drift in the 

detector main high voltage supply and/or the voltage gain of the individual PMTs. The preamplifier is 

the PMT component most likely to vary in response.  Signal amplitude may also drift as the PMTs 

age (3). A recent study of PMTs used in positron emission tomography (PET) demonstrated an 

average gain drop of 11% after 100 days of operation (12).  PMT response is also very temperature 

dependent and one author noted a two-fold increase in integral uniformity (discussed in the next 

chapter) over a 9
o
 (C) increase in room temperature (6).  It is thus standard practice to allow a 

detector to equilibrate at its operational temperature before detector calibrations or clinical scanning is 

performed.  A common remedial action taken to correct PMT drift is detector tuning.  In many 

modern gamma cameras, tuning is a semi-automated process that involves exposing the detector to a 

uniform fluence of radiation and running an iterative algorithm that inspects the count ratio of two 

narrow energy windows set on the high side of the photopeak (to minimize the effects of scatter) for 
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each individual PMT in the array.  If the count ratio has changed significantly from a stored reference 

value, the preamplifier gain for the individual PMT is automatically adjusted in order to restore the 

count ratio to its proper value (3).  Stable PMT gains help to ensure a uniform response to incident 

radiation.  Some examples of how PMT drift appears in a flood are shown in Figure 2 and Figure 3. 

 

Figure 2 – Flood Image of Defective PMT 

PMT in top right corner of FOV has failed.  Image courtesy of WD Erwin, MS 

 

Figure 3 – Flood Image of Unstable PMT 

Drifting PMT in left portion of detector is causing artifact.  Image courtesy of WD Erwin, MS 

 

It should be noted that while PMT response may drift slowly over time, eventually to the point of 

severe degradation, PMTs can also fail catastrophically due to mechanical trauma or overheating.  In 

these cases, drift may not necessarily be an indicator of PMT degradation, but rather failure can occur 

abruptly and unpredictably. 

Non-uniform detection efficiency is also caused by spatially-dependent sensitivity differences 

that occur across the FOV of the detector, most notably differences in detection sensitivity between 

regions centered over the PMTs and regions in-between individual PMTs in the array (3).  As noted 

above, this is remedied in part by the application of energy corrections, in which the FOV is 

segmented into square sub-regions and a variable scale factor that is applied to the overall Z-signal at 

each individual photopeak location within each sub-region of the detector.  This helps to correct for 
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naturally occurring differences in the local pulse height spectra within the FOV (3) by accounting for 

the individual offsets in the locations of the photopeaks as a function of position within the FOV.   

 

2.2.2.2 Optical Causes of Uniformity Degradation 

The uniformity of detection efficiency may also be degraded by changes in the optical properties 

of the NaI (Tl) crystal. NaI (Tl) is hygroscopic and therefore must be hermetically sealed from the 

ambient environment.  Crystal hydration occurs when moisture infiltrates this sealed container and 

reacts with the NaI (Tl), causing the crystal to discolor.  This leads to a loss of detected scintillation 

light as it is absorbed or scattered within the hydrated portion of the crystal.  The loss of light will 

cause an artificial reduction in the height of the signal pulse from the corresponding PMTs and hence 

cause an apparently lower energy ascribed to the incident photon energy deposition (13).  Hydration 

spots often appear as small circular regions within the UFOV, and are normally observed by 

acquiring a flood using a energy window shifted to the lower side of the photopeak.  This will cause 

the hydration regions to appear as bright spots within a less intense background.   

 

 

Figure 4 – Crystal Hydration Artifact 

Image courtesy of WD Erwin, MS 

 

Another optical artifact that rarely occurs on newer systems is optical decoupling, in which the 

PMTs become decoupled from the optical coupling material used to buffer the interface between the 

photocathodes and either the light guide or the transparent glass backing affixed to the NaI(Tl) 

crystal; or the glass backing decouples from the crystal.  This decoupling causes a loss of scintillation 

light, resulting in event rejection. The cause may be a mechanical shift that results in a mismatch with 

the coupling substrate, or it may be the result of desiccation of the coupling material over time.  The 

artifact may appear localized or dispersed across the UFOV.  It is also possible for the optical 

coupling gel to discolor over time, which reduces the amount of light that reaches the PMT. 
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Figure 5 – Optical Decoupling Artifact 

Image shows decoupling of the crystal from the glass window. 

Image courtesy of WD Erwin, MS 

 

2.2.2.3 Non-linearity as a Cause of Non-uniformity 

The other primary cause of image non-uniformity, aside from non-uniform detection efficiency 

that may be caused by any one of the mechanisms described above, is spatial non-linearity in the 

detector response.  Spatial positioning distortion results from the non-linear signal output of the PMT 

as a function of the location of the input scintillation event relative to the PMT.  If the location of the 

event moves some distance x from the outer edge region of the corresponding PMT, a large change in 

signal results.  If the source shifts the same distance within the central region of the PMT, a much 

smaller change in signal is observed.  The net effect is that events that occur under the central region 

of the PMT are pulled in toward the central region because the events positions cannot be readily 

distinguished based on signal differences, causing a ‘hot spot’ to appear in the image in areas where 

the PMTs are located.  This process may be illustrated as follows: 



 

 

Figure 6 – Dependency of PMT response 
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Dependency of PMT response on Event Position 
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on a daily basis, prior to any patient imaging (6-8, 11, 14, 15).  Healthcare accrediting bodies such as 

The Joint Commission and the American College of Radiology (ACR) require that uniformity floods 

be acquired daily for sites to meet accreditation criteria.  The specific protocol parameters are less 

well-defined, but the general consensus is that the count density in uniformity floods should be higher 

than those used for patient imaging, so that any defects in the UFOV may be detected in the flood 

before they have become so prominent that they are visible in patient images.  However, as higher 

count densities mean longer acquisition times, there is a compromise that must be made between 

sensitivity and clinical practicality, and it is important that routine QC acquisitions not introduce an 

unwarranted burden on the clinic (2).   In a recent study, Zanzonico recommended that a total of 10-

15 million-counts be acquired in the daily flood and that the flood may be acquired either intrinsically 

or extrinsically (14).  The benefit of extrinsic acquisitions is that extra time need not be spent 

removing and then remounting the collimators each day.  Also, a sealed 
57

Co sheet source, which 

does not require preparation, may be used to acquire the extrinsic flood image.  Acquiring collimated 

floods has the additional benefit of enabling the reviewer to check for defects that may be present in 

the collimators themselves, which are most often a result of some physical damage.  
57

Co is often 

used for QC floods because it has a relatively long half-life and a photopeak similar in energy to that 

for 
99m

Tc (122 keV vs. 140 keV), which is the most common radionuclide used for clinical imaging. 

More modern gamma camera platforms utilize automated QC acquisitions in which a retractable 

source of either 
57

Co or 
153

Gd (100 keV) protrudes from the patient couch and sweeps across the 

UFOV of the detector under the control of the operating software of the camera. 

The daily flood protocol at The University of Texas MD Anderson Cancer Center (MDACC), the 

institution at which this research was conducted, includes acquiring extrinsic floods on four days of 

the work week and an intrinsic flood on the fifth day.  For the e.cam gamma cameras, a 
57

Co sheet 

source is positioned in between the two detectors of the dual-headed system, and a total of 10-million 

counts are acquired for each head.  The Siemens Symbia systems, acquire a total of 10-million counts 

as well, but using an automated retractable 
153

Gd rod source that is used to generate planar images 

from a circular-orbit tomographic acquisition.  The most common collimator used in the clinic is 

parallel-hole, low-energy high-resolution (LEHR), and thus most extrinsic daily floods utilize these 

collimators.  The protocols on the two gamma camera systems are summarized in Table 2: 
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Parameter              Symbia               e.cam 

Total Counts 10 M 10 M 

Radionuclide 
153

Gd 
57

Co 

Source Delivery 

Automated  

(retractable rod) sheet source 

Image Matrix 256x256 1024x1024 

Corrections 

Uniformity, Energy, 

Linearity 

Uniformity, Energy, 

Linearity 

Table 2 – MDACC Protocol for Daily Extrinsic Floods 

In summary, the reason that daily extrinsic floods are the focus of this thesis is that they offer a 

great deal of sensitivity for detecting non-uniformities, and they supply the largest sample size for 

time series analysis, as they are the most often performed routine clinical gamma camera QC 

performance test.   

2.3 Introduction to Counting Statistics and Distribution Models 

Fundamentally, daily QC floods are simply statistically independent counting experiments; each 

conducted using essentially the same experimental conditions (assuming that the gamma camera’s 

operating characteristics are not changing).  In a temporal sense, each flood represents a separate 

measurement of the same process.  This assumption can be made in the spatial sense, also, in that 

each pixel value in a single flood is a separate measurement of the same nuclear decay process, 

assuming source uniformity and correct positioning of the source.  In this sense, floods lend 

themselves readily to simple statistical analyses that have been used to test for the presence of error in 

radiation detection instrumentation.  Because these simple analytical methods and predictive 

assumptions make up the core of the solutions that are presented in this thesis, the necessary statistical 

background is qualitatively covered in this section.  All formulas specific to the analytical solutions 

presented later are provided in the Methods and Materials of each section.   

2.3.1 Characterizing Data 

Stochastic data can be characterized by a histogram, or frequency or probability distribution 

function (PDF), of the data set.  This function is defined as the number of occurrences of each value 

in the collective data divided by the total number of measurements.  This characterization is most 

useful when plotted with the ordinate being the PDF and the abscissa being the total range of values 

present in the data set.  Two descriptive parameters that result from any data set are the location, or 

mean value, and the sample variance of the data.  The location is typically the point of peak amplitude 

in the histogram and the variance is the measure of internal fluctuation or spread present within the 
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data (16).  Because an infinite number of samples is not possible to acquire, the sample mean (µ) and 

sample variance (s
2
) of the data are estimates or predictions of the true values, and are referred to as 

the experimental mean and sample variance.  Returning to the single flood example, these parameters 

are mathematically defined below, where pvi refers to the pixel value at the ith location in the flood 

image and N is the number of pixels. 

 

� �  1, - $(.
/

.01
                      23 �  1, 	 1 -
$(. 	  ��3/

.01
 

Equation 4 – Sample Mean and Variance 

 

 

Figure 7 – Histogram of a Flood (CFOV) 
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2.3.2 Predictive Models 

The histograms of the sample data might converge to a known distribution function, if there were 

a sufficient number of measurements to provide a better estimate of the mean and variance.  These 

known distributions are models of expected behavior common in processes such as nuclear decay.  

The PDFs take on a well-characterized shape and the relationship between the sample parameters are 

well understood.  They demonstrate the probability of occurrence based on the sample values present.  

The PDFs of most consequence in nuclear medicine are the Poisson and Gaussian distributions.  The 

reader may refer to (17) for a more comprehensive discussion as well as the equations for the PDFs of 

these models.  The parameters from multiple, separate sample distributions can be tested against one 

another to see if those distributions are significantly different or from the same statistical process.  

The  process of nuclear decay is governed by a probability of ‘success’ (one disintegration) in a time 

interval t being equal to 1-λt, and it turns out that this is nicely modeled as a Poisson process, in 

which characteristically the variance is equal to the mean (17).  When the mean value of the sample 

data approaches 20, the Poisson and Gaussian models are virtually indistinguishable, and the variance 

of the Gaussian process may be approximated by the mean.  This relationship is described by the 

Central Limit Theorem (16).  Graphically, the pixel distribution in a sample flood can be plotted as a 

histogram, and the histogram of randomly generated Poisson deviates based upon the same mean 

value are overlaid in the same plot:   

-  

Figure 8 – Superimposed Histograms of Flood and Random Poisson Deviates 

 

It is evident from the Figure 8 that the two distributions are virtually identical because the 

superimposed distributions are aligned.  The histogram does seem to indicate that the assumption of a 
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Poisson process is, in fact, a valid one because the histogram of the randomly generated Poisson 

deviates is almost perfectly aligned with the flood histogram, thus the PDF shapes are identical.   

Considering each pixel to be a single measurement of N counts at a particular x, y location in the 

FOV, the uncertainty in the measurement is described by the sample standard deviation, which is the 

square root of the variance.  The uncertainty of the measurement, N, which is the best approximation 

to the mean value, may be expressed using the signal-to-noise ratio (SNR), which is simply the ratio 

of the counts to the standard deviation (18).  For example, if a pixel in a 10-million count flood has a 

value of 17 counts; the SNR would be given as 
14√14 � 4.12.  If 200-million counts were acquired in 

the flood, the SNR would be 
14839√14839 �  :;9√:;9 � 18.44.  A four-fold increase is seen in the SNR of the 

flood pixel.  By increasing the cpp, the statistical noise in the pixel value has been reduced.  This has 

major implications in imaging, for by reducing the uncertainty in the pixel values, the measurement 

becomes more sensitive to true, non-random changes in the sample pixel populations.  

2.3.3 Hypothesis Testing 

Assumptions about frequency distributions can be evaluated by calculating test statistics from the 

sample parameters of single or multiple sample distributions.   PDFs may be generated from random 

test statistics and will exhibit their own unique shape and characteristics.  Examples of these 

distributions include the Chi-squared and Student t-distributions.  Once a test statistic is calculated 

from a sample distribution, one may then test the likelihood or probability that the sample statistic is 

described by the PDF of the test distribution.  This is often done by evaluating the PDF using the test 

statistic as a limit of integration.  Integration of the PDF over the sample limits of integration will 

yield a probability value (p-value), or solution to the PDF.  This p-value may be described as the 

probability that a random test statistic will take on a value as least as extreme as the sample test 

statistic calculated from the sample data.  This p-value has several implications. It provides a 

meaningful indicator that the parameters calculated from the sample match those predicted by the 

assumed distribution model, as is the case for the Chi-squared test.  In other cases, the p-values 

indicate whether or not the sample parameters calculated from two or more separate sample 

distributions are statistically different from one another.  This is a special case known as hypothesis 

testing, where the user forms the null hypothesis that two different parameters, say the experimental 

means, are no different from one another, and the alternative hypothesis that they are different.  

Several different test statistics may be generated for such hypotheses, depending on which parameters 

are already known and which parameters must be approximated. For example, a Student t-test will be 

used later in this study to test the hypothesis that the means from two samples are equal, given that 
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the variances for each sample are assumed to be different and are unknown (and therefore must be 

approximated by calculating the sample variance of each).  Had the variances been known to be true 

values and equivalent to one another, the more appropriate test would have been the two-sample Z-

test (16).   

The p-values calculated have several generally accepted ‘critical’ values, most notably values of 

0.05 and 0.01.  P-values below 0.05 are often referred to as statistically significant, and indicate that a 

random test statistic has less than a 5% chance of being less than or equal to the sample statistic 

calculated.  Stated more generically, the chance that the calculated sample parameter was different by 

random chance is less than 5%.  In this sense, p-values provide the reviewer with very meaningful 

indicators of the validity of the assumptions made about a data set.   
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3. REVIEW OF THE CURRENT STATE OF THE ART IN UNIFORMITY 

MONITORING 

3.1 Conventional Quantitative Uniformity Analysis 

Historically, several figures-of-merit have been identified to characterize uniformity performance 

for a detector.  These figures-of-merit can be considered global metrics, in that they provide a single 

value that characterizes uniformity over the entire FOV (either the UFOV or the CFOV).  It was 

mentioned in section 2.2 that routine QC floods are often inspected visually for any uniformity 

defects, but a quantitative value that describes performance helps to reduce the subjectivity associated 

with observer review.  For this reason, many clinics use the uniformity indices described below to 

evaluate performance.  In practice, these values provide a quick means of objectively characterizing 

and assessing uniformity performance prior to patient imaging.  Currently there is not an endorsed 

method of trending these values over time, although doing so has been previously advocated (8). 

3.1.1 The NEMA Uniformity Index 

The National Electrical Manufacturers Association (NEMA) has defined a measure of uniformity 

for a single flood image that has gained widespread clinical acceptance in part because it is relatively 

straightforward and explicit in its implementation. While the original protocol specifies certain 

acquisition parameters and count densities that may not be practical for routine QC acquisitions, the 

general pre-processing steps and calculation provide a NEMA-derived means of using this figures-of-

merit for daily floods (19).  NEMA-derived implies that while the precise acquisition conditions may 

deviate from the published NEMA protocol (e.g. extrinsic as opposed to intrinsic, no lead mask used, 

etc.), the fundamental setup as well as the final uniformity calculations are similar. 

At MDACC, flood images are acquired using 10-million counts total (14), in an acquisition 

matrix that depends on the gamma camera system (Table 2 – MDACC Protocol for Daily Extrinsic 

Floods).  The flood images are then rebinned down (i.e., resized by summing together adjacent pixel 

groups to form larger square pixels and thus an image matrix that covers the same physical area with 

fewer, larger pixels) to yield a pixel size that has a linear dimension of about 6.4 mm (20).  The 

NEMA protocol allows ± 30% latitude for this dimension, and in this implementation, a linear 

dimension of 7.8 mm is used.  The reason that pixels are rebinned is to improve the counting statistics 

for each pixel used in the subsequent calculation.  Sub-groups of pixels are effectively summed 

together in order to preserve the total counts within the UFOV.  The percent uncertainty, or expected 

error, in the value of each pixel in the UFOV is reduced by increasing the number of counts per pixel 
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(cpp).  For example, doubling the cpp from 17 to 34 reduces the percent uncertainty by a factor of the 

square root of two. 

 

√1414  
100%� � 24.25%      
√:;:;  
100%� � 17.15% 

 

The rebinned image is then convolved with a 2D 3-pt × 3-pt binomial smoothing kernel defined 

in Figure 9. Smoothing the image further reduces the amount of uncertainty or noise in the pixel array 

prior to performing the NEMA uniformity calculation. 

 

116 ?1 2 12 4 21 2 1@ 

Figure 9 – 3××××3 Binomial Smoothing Kernel 

 

    The NEMA equation is then calculated over the pixels in the flood.   

 

A�%BA.CA�%DA.C 
100%) 

Equation 5 – NEMA Uniformity Calculation 

 

Two types of uniformity are measured: integral and differential. Both use Equation 5. Integral 

uniformity is calculated by determining the maximum and minimum pixel values within the entire 

FOV, for both the UFOV and the CFOV.  Differential uniformity, on the other hand, applies equation 

5 locally to every possible row and column of five pixels within the UFOV or CFOV. The differential 

uniformity is the largest value of equation 5 among all of the length-5 rows and height-5 columns in 

the UFOV or CFOV (20).  These four uniformity indices are calculated to quantitatively characterize 

the flood acquired in routine QC.  Uniformity values in the CFOV can never be higher than values in 

the UFOV, as the CFOV is by definition a subset of the UFOV.  Also, integral uniformity values are 

always equal to or larger than differential values, as integral uniformity takes all pixels within each 

FOV into consideration.   

In 2008, Zanzonico recommended that NEMA values should not exceed 5% for floods acquired 

using between 10 and 15-million counts (14), and this is the standard threshold to which other 

approaches will be compared in this thesis.   
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3.1.2 Corrected Relative Standard Deviation 

Another quantitative measure of flood uniformity is the Corrected Relative Standard Deviation 

(CRSD) (21).  The flood image is analyzed as acquired using this technique.  The literature does not 

indicate a preferred matrix size that should be used.  Mathematically, the CRSD is defined as follows: 

 

EFGH �  IJKB LM))))LM))))  , where N� �  ∑ 
LMPBLM))))�QRPST /  

Equation 6 – CRSD Calculation 

 

In the above equation, N is the total number of pixels present, $()))) is the average pixel value 

across the FOV, and $(. is the pixel value at the ith location in the image matrix. In effect, 

this calculation attempts to isolate pixel fluctuations due to non-uniformity (NU) from the expected 

noise or uncertainty in pixel values due to the Poisson process (15).  This method has been advocated 

over NEMA uniformity analysis by some authors because it is less sensitive to random fluctuation 

over time and thus is more sensitive to true shifts in detector response due to non-uniformity (15, 22, 

23).   

3.2 Temporal Pixelwise Methods of Monitoring Uniformity in Image-space 

Kalemis, et al, were the first to propose using pixelwise image analysis to locate uniformity 

defects (1) and to use the resulting two-dimensional (2D) parametric map in place of conventional 

global figures-of-merit.  Their methods include using either a single high-count baseline control 

image or a spatially registered time series of images as the basis for comparison.  While this method 

has not gained wide acceptance for clinical use, it represents a novel approach to quantitatively 

deciphering spatio-temporal trends in flood non-uniformity, and has provided the basis for the 

methods developed and described here.   

3.2.1 Kalemis’ Pixelwise Trend Analysis 

This method involves compiling and ordering a time series of individual flood images acquired 

over time. The floods must have been acquired with the same acquisition parameters (i.e. same total 

counts acquired, same sources used to acquire image, same collimator set) in order to minimize 

potential sources of uncertainty other than Poisson counting statistics in the analysis.  The images are 

sorted with respect to time, and a linear model is fit to the pixel values over time at each (x, y) pixel 

location in the image volume (where the axes of the volume are x- and y- pixel locations and time) 
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(1).  This method was implemented using least squares regression (LSR), where $(%,'
�� is the 

observed pixel value at time point t:  

$(%,'
�� �  U9 �  U1� �  V  
V � $(%,' 	  U9 	 U1� 

G� �  - V3C
.01

�  -W$(%,' 	  U9 	  U1�.X3C
.01

 

Minimizing the sum of squares (24): 

Y�ZY[T � 	2 ∑ $(%,' 	 U9 	  U1�. = 0 

Y�ZY[\ � 	2 ∑
$(%,' 	  U9 	  U1�.��. = 0 

U1 �  ] ∑ $(%,'�. 	  ∑ �. ∑ $(%,'] ∑ �.3 	  
∑ �.�3  

U9 �  $(%,'))))))) 	 U1�^  
Equation 7 – Derivation of LSR 

 

U9 represents the value at time 0, and U1 represents the first order rate-of-change of the pixel 

intensity. Epsilon describes the random variation associated with the model, assumed to be 

independent and identically distributed around zero (1).  Each pixel location is assumed to consist of a 

normally distributed set of values over time, and in a non-degraded case it is assumed that pixel 

values will vary only by what is predicted by the Poisson model and that the mean value will not 

change (U1 � 0�.  Under these assumptions, the intercept of the fit will be the mean of the sample 

distribution, and thus, U9 �  �.  The orientation of the time series floods in this analysis is illustrated 

in Figure 10. 

 



 

 

Figure 10

 

The value at each pixel location is expected to be the fit parameter 

Kalemis then proposed three cases in which 

3. , where 

To test the null hypothesis, Kalemis suggested gener

results of these three cases.  The 

the calculated maps.  The slope of the linear model at each pixel location,

map, denoted the s-map.  To test the goodness

pixels at each location, Kalemis propose

calculate the probability that the observed variance is consistent with the variance predicted by the 

assumed distribution model (see 

the sample variance to the sample mean

be equal, the ratio’s departure from unity is a direct indica

observed and expected distributions

pixel values in the time series as

Equation 
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10 – Time Series of Spatially Registered Floods 

The value at each pixel location is expected to be the fit parameter of the linear model 

 

Kalemis then proposed three cases in which  could be rejected (1): 

1.  

2. Pixels do not follow a linear trend 

where  is the observed variance with-respect-to time

To test the null hypothesis, Kalemis suggested generating three parametric maps conveying the 

he reviewer could then visually assess the stability of the detector from 

calculated maps.  The slope of the linear model at each pixel location, , is depicted in the first 

map.  To test the goodness-of-fit of the linear model (case 2) to the 

pixels at each location, Kalemis proposed using a Chi-squared test statistic, historically used to 

calculate the probability that the observed variance is consistent with the variance predicted by the 

(see Predictive Models).  The Chi-squared statistic is essentially a ratio of 

ple variance to the sample mean; and because in a Poisson distribution the two are assumed to 

, the ratio’s departure from unity is a direct indication of the statistical difference between the 

observed and expected distributions (17).  The Chi-square statistic may be calculated for 

as (17):  

 

Equation 8 – Chi-square Test Statistic 

 

 

of the linear model (1): 

time 

parametric maps conveying the 

tability of the detector from 

, is depicted in the first 

fit of the linear model (case 2) to the time series 

test statistic, historically used to 

calculate the probability that the observed variance is consistent with the variance predicted by the 

statistic is essentially a ratio of 

distribution the two are assumed to 

tion of the statistical difference between the 

square statistic may be calculated for n different 



 

28 

 

where $(. is the pixel value at point i in the time series of pixel values at location x, y and �� is the 

expected pixel value calculated from the linear model.  The probability that the value calculated from 

the linear model will generate a value of _3 or greater may be calculated directly using the 

incomplete gamma function (25): 

`
#, a� b  c dBef�B1�fg9c dBef�B1�fh9
 

Equation 9 – Incomplete Gamma Function 

where # � CB33  and a � lQ
3   (1).  This probability map, or p-map, will give the probability that a 

random Chi-square value using the same degrees of freedom (DOF), n-1, will be greater than or equal 

to the one calculated.  In effect, it indicates the departure of the sample variance from the sample 

mean, indicating how accurately a linear model is describing the time series data.  In the 

implementation of this method represented in this work, the p-maps were noisy and difficult to 

visually interpret, and thus the Chi-squared parametric maps were interpreted directly, rather than by 

calculating a p-value. 

Finally, the sample variance of the pixel values as a function of time are calculated, again using 

the expected value calculated from the model: 

  23 �  1CB1 ∑ 
$(. 	  ���3 C.01  

For this thesis, the coefficient of variation, √23/��, is used, rather than a direct sample variance 

in order to normalize the sample variance to the mean.  This modification was suggested, but not 

implemented, by Kalemis, et al (1).  

 

3.2.2 Kalemis’ Pixelwise Statistical Test 

In another method proposed by Kalemis, et al, the time series approach was replaced by a 

pixelwise comparison between a high count and thus high signal-to-noise ratio (SNR) baseline flood 

and the sample, a routine daily flood (1).  This method of analysis was not evaluated as part of this 

project due to some perceived limitations discussed in the following section, and the reader may find 

more information regarding this technique in (1, 26).  The technique is summarized in the steps 

below. 

1. Rebin both image matrices to a size that yields a linear pixel dimension approximately 

equal to the point-spread-function (PSF) of the detector. 

2. Scale the sample flood to the same count density as that of the baseline flood image using 

its background ratio (26). 
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3. The corresponding pixels at each x, y location in the two images, denoted ���m� and 

�n�m�+.C�below,  may be statistically compared by calculating a simple z-score test 

statistic, assuming a Poisson process (i.e., one in which the sample variance equals the 

sample mean). The values for f in the equation below are the scaling factors used for the 

pixel values: 

 

o �  ���m� 	  �n�m�+.C�
p
q��m�3 �
���m�� � 
qn�m�+.C�3 �
�n�m�+.C�� 

Equation 10 – Kalemis Z-score Calculation 

 

4. Calculate the probability that a random variable is less than or equal to the test statistic by      

integrating the Gaussian PDF. 

 

$
o� �  1√2r s dBgQ/3 �ah
t  

Equation 11 – Gaussian PDF 

 

The p-value represents the statistical difference between the two pixels, given the null     

hypothesis that the scaled values do not differ.   

5. Thresholding the resulting 2D parametric map containing all of the p-values for each x, y 

pixel location will isolate only those pixels that fall below the predetermined level of 

significance.  As described in 2.3.3, common thresholds are p < 0.05 and p < 0.01.   

6. Kalemis recommends reducing the rate of false positives (FPs), or pixels that fail the 

statistical test although they are outside of a true uniformity defect in the UFOV, by 

setting two different threshold values.  If two separate pixels are identified below the 

lower threshold, then the pixels connecting the two distinct regions are tested to see if 

they are below the upper threshold.  If they are not, only one pixel is kept in the map.  If 

they are spatially connected via the second threshold, then both pixels are kept, and the 

sub-regions are joined together using image dilation (27).  This method of FP control is 

referred to as reef correction. 
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4. CURRENT LIMITATIONS OF THE STATE OF THE ART 

4.1 Limitations in Conventional Routine Uniformity Evaluation 

As described in 2.2.3 and 3.1, conventional uniformity evaluation typically involves acquiring a 

daily flood at a high enough count density to detect significant changes in performance, even though 

such count densities may exceed those that would be acquired using patient protocols (23).  This 

detection is accomplished by visually inspecting the flood for apparent uniformity (or other) defects 

by reviewing the quantitative figures-of-merit to assess uniformity performance based on a predefined 

upper threshold (14).  The quality of this visual inspection, however, is dependent upon the expertise 

of the reviewer, and it is therefore a subjective analysis, especially in a setting where multiple 

reviewers inspect images.   

The sensitivity of uniformity defect visual identification is affected by the count density in the 

image.  Consider the images below depicting the crystal hydration artifact described in 2.2.2.2.  The 

image on the left is of a 10-million count extrinsic daily flood and the image on the right is from the 

same detector using the same setup, but with 200-million counts used to acquire the image.  The 

hydrated regions can be clearly identified in the high count, high SNR flood on the right, but not in 

the image on the left that uses the common, routine count density.   

 

 

Figure 11 – Crystal Hydration Artifact in Flood Images of Different Count 

Densities 

 

While there is less relative uncertainty in pixels that have more counts, acquiring those counts 

imposes a clinical burden, in that meaningfully higher count floods take substantially longer to 

acquire.  This should be avoided so as not to impose an undue burden on the clinic (2).   

Count density affects not only visual uniformity defect identification, but also the NEMA 

uniformity figures-of-merit.  Floods with higher count density have lower relative uncertainty due to 

improved statistics, and therefore have lower NEMA values. As with visual detectability, NEMA 

uniformity is more sensitive at higher count densities.  Several studies have been published reporting 
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on the effect that higher count densities have on NEMA uniformity (15, 22, 28).  The consensus is 

that lower count densities result in more predicted uncertainty in the NEMA values due to a larger 

random noise component, and the uncertainty decreases with more total counts (15).  Tenhunen, et al, 

have modeled the noise-free NEMA integral uniformity for one of their gamma cameras, and their 

plot of observed uniformity values as a function of count density demonstrates an obvious 

dependence of integral uniformity on total counts acquired, especially below 20-million counts (28).  

The implications that higher count densities have on NEMA uniformity values are clear, but the 

optimum count density to use in order to maximize visual and quantitative sensitivity to uniformity 

defects, while minimizing clinical burden by using the shortest necessary acquisition times is not well 

understood.  While a 5% uniformity threshold is a reasonable limit to apply for floods acquired with 

between 10 and 15-million counts (14), the clinical significance of this value is not clear, and it seems 

that because higher count densities are expected to lower the NEMA values, there should be a lower 

threshold for floods with more total counts.  Moreover, Young, et al, have suggested that figures-of-

merit that take into account the entire distribution of pixels, rather than simply the extreme values, are 

more reproducible as a function of count density and less subject to random noise fluctuations (15). 

These metrics seem to perform similarly across the range of count densities encountered in clinical 

and QC acquisitions (15).   For this reason, they advocate the use of the CRSD (see 1.4.2).  However, 

it seems that by calculating a figure-of-merit over the entire distribution of pixels, rather than looking 

at the extrema, there is a potential loss of sensitivity to subtle uniformity defects because the extreme 

pixels are effectively averaged out when the sample set includes a large number of background pixels.  

In practice, this figure-of-merit is not used regularly in a clinical setting, and most gamma camera 

vendors do not provide this as an automated calculation in their QC tools, whereas NEMA calculation 

methods are provided on most modern gamma cameras. 

This presents another limitation: quantitative evaluation of uniformity is currently threshold-

driven, rather than trend-driven.  Currently, routine QC is monitored in a pass or fail manner by 

visually inspecting for noticeable artifacts and checking to see if the NEMA values are below 5%, but 

most clinics do not currently track how these numbers change temporally, perhaps because few 

equipment vendors have included trending capabilities in their clinical QC software.  Moreover, there 

is not a good understanding of how these metrics should be expected to change, or the expected 

uncertainty present in the uniformity calculation.  Halama and Madsen argue that uniformity values 

should be trended, and that the gamma camera should be operating at the exact same level of 

performance as when it was first installed (11), but they do not define the appropriate method for 

doing this.  Predictive trends may be harvested from a time series inspection of these metrics, and this 

may help us to determine a shift or change in performance.  However, there is not a generally 
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accepted method for doing this using these global figures-of-merit in clinical QC.  The assumption 

that uniformity degradation is a temporal process is valid (2, 12, 13), and therefore it is logical to 

monitor flood uniformity over time, i.e., in the temporal dimension of the volumes of data that are 

being discussed here. 

Perhaps the most significant limitation in current uniformity monitoring methods is that global 

figures-of-merit such as NEMA and CRSD are non-specific measures of performance.  Inherently, 

they do not provide information regarding the locations, extents, or numbers of regional non-

uniformities present in the flood.  This is useful information when trying to diagnose the causes and 

severity of uniformity defects present in the FOV.  A method of automatically identifying the spatial 

locations of uniformity defects would be clinically beneficial. 

To summarize, conventional methods of monitoring uniformity are count-density dependent, 

prone to inter-observer variation, non-specific in identifying uniformity defects, and lack temporal 

information regarding uniformity performance over time.  Kalemis attempted to address some of 

these limitations in his methods (see 3.2), but there is substantial room for improvement.   

4.2 Limitations in Kalemis’ Pixelwise Techniques 

Kalemis' results suffer from some practical limitations. First, the maps created from his pixelwise 

linear models are still somewhat subjective in their interpretation, in that the uniformity defects are 

not segmented from the background pixel values.  This makes smaller uniformity defects difficult to 

distinguish from the background noise.  Kalemis stated that some of the maps may be difficult to 

interpret and that a large number of floods are needed in the time series of images in order to help 

distinguish true uniformity defects from the background (1).   

Kalemis’ second technique seemed to result in improved segmentation of uniformity defects, but 

he recognized that performing a pixelwise statistical test and thresholding the resulting map based on 

a level of significance would result in apparent defects being misidentified outside of the true 

uniformity defect.  This phenomenon is referred to as multiple comparison error (MCE).  Considering 

N total pixels in the parametric map, this represents N different statistical tests that were performed.  

If the threshold level of significance is set to p = 0.01, a false positive rate (FPR) given by FPR = N x 

p, is expected.  Because there are so many pixels in the parametric map, an appreciable number of 

them will be statistically different purely by chance.  This is undesirable clinically, because it may 

lead a reviewer to believe that there is a performance issue when in reality the detector is operating as 

expected.  To reduce the FPR, Kalemis recommended using a reef correction technique.  Improved 

results were obtained with this method, but it requires a prior knowledge of the size of the uniformity 

defect that is expected to be detected in order to group together adjacent pixels  that are below the 
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dual thresholds (1).  A method in which no a priori knowledge of uniformity defect size is needed 

and would result in a more sensitive clinical performance. Furthermore, while Kalemis’ method does 

use a baseline image as a basis for comparison, it is not innately temporal, in that it does not look at 

larger time series distributions of pixels from day to day, but instead scales single flood images up to 

a higher count density and compares only two images.  Inspecting a continuous time series of pixel 

values would improve the sensitivity to detecting subtle changes. 
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5. DESCRIPTION OF SOLUTIONS 

 

Developing image-space segmentation algorithms for spatially registered time series floods will 

exploit the temporal nature of detector degradation in order to detect statistically significant changes 

in detector uniformity from a baseline condition.  These algorithms will characterize the spatial extent 

of the uniformity defects by decomposing the time series image volume into multiple resolution 

levels.  The benefits of such algorithms are an automated, objective, and reproducible means of 

monitoring uniformity over time.  In addition, these methods will provide a predictive component to 

uniformity monitoring, in that observed pixel values are tested against an expected statistical behavior 

and the results of these tests will be the identification of performance degradation prior to such 

degradation’s being manifested in any one single QC flood.  In addition to these image-space 

algorithms, the global figures-of-merit may be monitored using methods of time series statistical 

process control in order to improve their sensitivity in detecting sustained shifts in uniformity 

performance. 

The clinical impact of these methods will be to reduce the impact that unforeseen (and thus 

unscheduled) scanner downtime, due to significant changes in uniformity performance, has on patient 

scheduling and imaging service revenue.  By improving the sensitivity and spatial specificity of 

uniformity measurements, both physicists and clinicians are kept better informed of potential changes 

in scanner performance. 

This is a proof-of-principle investigation into improving the sensitivity in monitoring clinical 

gamma camera uniformity.  The goal of the project was to develop novel approaches to using time 

series QC flood images to detect non-uniformities that may be indicative of gamma camera 

performance defects and test these methods in a manner that reflects clinical feasibility.  The methods 

were developed as an alternative to the current state-of-the-art. 

In order to evaluate the proposed solutions, the following hypothesis was defined: 

Automated time series analysis of daily flood images will detect a spatial non-uniformity at 

least 5 days prior to a single daily flood exceeding a NEMA uniformity of 5%, given a 

degradation rate of less than 0.1% per day. 

5.1 Specific Aim 1 – Time Series Phantoms 

Develop time series phantoms that mimic progressive gamma camera image non-uniformities 

commonly observed in daily quality control floods, including drifting photomultiplier tubes (PMTs).  

Also, identify retrospective time series flood images to use as input to proposed analytical algorithms. 
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5.1.1 Materials and Methods 

Three different classes of time series phantoms were developed to mimic progressive 

degradation: synthetic (computed simulations), acquired (physically produced simulations), and 

retrospective (actual camera QC data).  The synthetic data sets were designed to mimic daily extrinsic 

floods.  They were created mathematically using a random number generator.  A degradation function 

was multiplied by the uniform flood to produce the degraded images.  For the acquired phantom time 

series, uniformity defects of increasing magnitude were introduced into the UFOV.  For the 

retrospective time series, gamma cameras were selected that had recently exhibited non-uniform 

behavior and data from a series of acquisitions prior to the determination that a problem existed were 

retrieved from the MDACC picture archive and communications system (PACS).  All physical data 

were acquired using the protocol employed for daily QC imaging at MDACC. 

Common to all three types of phantoms was a twenty-flood baseline replicate set of floods.  The 

term baseline, in this case, means that these floods were acquired (or created) at a time point in which 

the system was functioning properly, without any known defects.  Halama and Madsen argued that 

the gamma camera should operate continuously as it did at installation (11), and in this phantom data 

set, these initial time points would provide the statistical basis of comparison.  Twenty was chosen as 

the baseline size because the summation of twenty images acquired at the daily flood count density 

(10-million counts) equals the count density of a single, extrinsic calibration flood (200-million 

counts).  In clinical practice, this set of twenty statistically independent baseline floods would be 

acquired one right after the other in a minimum time span, mitigating any degradation due to time.  

They could then be summed and used for the derivation of extrinsic uniformity calibration factors 

without having to acquire both the baseline replicates and a separate high-count correction flood.    

5.1.1.1 Synthetic Uniformity Floods 

The Poisson process within the flood field was expected to remain stationary over time (11), 

therefore, each time series of synthetic floods  was modeled as being independent observations of the 

same source decay process, and each pixel could be considered as an independent counting 

experiment, thus the uncertainty was independent of surrounding pixels (29).  All synthetic datasets 

were composed of 120 total images, that is, 100 sample observations in addition to the 20 baseline 

replicates.  The synthetic images were generated as a 1024
2
 array of a uniform distribution of values 

on the interval [0, 1) and transformed into a Gaussian PDF by the Box-Muller relationship (30).  As a 

simplified example, consider two uniform random deviates, U1 and U2.  One may transform these into 

independent Gaussian random variables with a mean of 0, and a standard deviation of 1 using the 

following relationship (30): 
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u9 � I	2�]v1 cos
2rv3� 

u1 � I	2�]v1 sin
2rv3� 

Equation 12 – Box-Muller Transform 

 

A program was written to distribute Gaussian random deviates into a 1024
2
 array using the Box-

Muller transform.  Each synthetic flood was then multiplied by a predefined mask of the UFOV of the 

e.cam detector (see 2.1.2.2) in order to define the characteristic rectangular UFOV.  Ten-million total 

counts were in the rectangular UFOV.  This process was performed repeatedly using different seeds 

in the random number generator in order to produce multiple statistically independent floods.   

The first synthetic time series created was a control set of uniform flood images.  The purpose in 

doing this was to provide a standard for the analysis programs, in order to observe the identification 

of false positives within the floods.  This set included a 20-flood baseline set and 100 additional flood 

images that served as the time series. 

For the next synthetic time series phantoms, a multiplicative linear degradation function was 

applied to each flood image after the baseline replicate set was created.  The degradation function 

increased the magnitude of the uniformity defects as a function of time.  The degradation function 

essentially consisted of a 2D binary mask depicting the locations of the PMTs within a Siemens e.cam 

detector.  The diameters of the PMTs within the mask were equivalent to the center-to-center distance 

between the PMTs in a Siemens e.cam detector (~8 cm). In addition to this time series phantom, the 

diameter was reduced to approximately 7 mm to create another time series phantom with a very small 

region of non-uniformity.  The number of regions ‘activated’ within the mask could be changed as 

well.  Some of the phantom data contained only one 8 cm uniformity defect at a particular PMT 

location, while other phantom sets used a different uniformity defect of a different diameter located 

elsewhere in the UFOV.  The magnitudes of the uniformity defects were established as a percent 

reduction in counts over the specified areas with respect to time.  A few different rates of degradation 

were simulated.  The maximum and minimum range of NEMA integral uniformity values is provided 

in Table 4 – Summary of Time Series Phantom.  Prior to multiplying by the flood, the uniformity 

defect masks were blurred using a smoothing kernel in order to minimize the sharp edge transition 

between the background pixels and pixels within the uniformity defect in order to make it appear 

more subtle.   

 



 

 

Figure 12 – Example 

The degraded flood on the right hand side of the equation provides an example of the maximum 
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Example Application of the Degradation Function 

on the right hand side of the equation provides an example of the maximum 

degradation applied, i.e., the last flood in the time series 

Acquired Uniformity Floods – Altering Sensitivity via Regional Attenuation

uniformities in the detector of a clinical system, a means of introducing 

with respect to background pixels in sub-regions of a time series

.  Such changes were constrained to localized regions of the detector, as

are not periodic across the UFOV (6).  The artificial 

introduced into the UFOV needed to be small enough in magnitude to go virtually undetected in the 

results of the common NEMA analysis conducted on routine QC floods, and to have minimal visual 

Uniformity defects were simulated by placing attenuating material between the sheet 

The magnitude of the degraded region was controlled 

in the stack.  The size of the non-uniform region was 

the image by adjusting the diameter of the attenuation layers.  To be able to create finely graded steps 

, a thin attenuating material was needed that could be manipulated into various shapes 

needed to be dense enough so that the number of stacked attenuators needed to 

uniformity levels would not introduce a significant scatter component into the 

uniformities were created by attenuating the incident radiation from a floo

source using stacked disks of sheet aluminum. Commercial aluminum flashing is

and has a physical density of 2.7 g cm
-3

 (31) and a thickness of 0.027 cm.  A single layer produces an 

attenuation that is undetectable in routine NEMA uniformity measures, while a thin stack

achieves NEMA uniformity values that exceed 3%.  Aluminum provided a wider dynamic range

other attenuators, such as steel flashing or lead, and could be added incrementally in order to 

manipulate the flood uniformity by smaller amounts of attenuation. 
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Altering Sensitivity via Regional Attenuation 
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The half value layer (HVL) is the thickness of attenuator needed to reduce the intensity of 

radiation beam intensity by 50%.  It is related to the linear transmission coefficient, µ, by the 

following derivation: 

 

x
�� �  x
0�dBy� 

13 � dBy� 

ln {12| �  	�� 

}N~ � 0.693/� 

Equation 13 – Derivation of HVL 

 

The HVL of aluminum for broad beam geometries is 1.8 cm (31), which, according to the above 

relationship results in a linear attenuation coefficient of 0.39 cm
-1

.  Plugging this value into dBy�, the 

percent transmission expected for each additional layer of the 0.027 cm thick Al flashing was 

calculated.  Steel (0.4 cm HVL (31)) was also used as an investigational material and is added to the 

table for comparative purposes. 

  

Steel Flashing Al Flashing 

Thck (cm) % Transmission % Loss Thck (cm) % Transmission % Loss 

0.00 100.00 0.00 0 100.00 0.00 

0.027 95.46 4.54 0.027 98.95 1.05 

0.054 91.13 8.87 0.055 97.91 2.09 

0.080 87.00 13.00 0.082 96.88 3.12 

0.107 83.05 16.95 0.110 95.87 4.13 

0.134 79.28 20.72 0.137 94.86 5.14 

0.161 75.69 24.31 0.164 93.87 6.13 

0.188 72.25 27.75 0.192 92.88 7.12 

0.214 68.97 31.03 0.219 91.91 8.09 

0.241 65.84 34.16 0.247 90.94 9.06 

0.268 62.86 37.14 0.274 89.99 10.01 

 

Table 3 – Calculated Attenuation for Flashing Materials 

 

One layer of Al flashing produces approximately a 1% transmission loss, and thus each additional 

layer of flashing further reduces the beam intensity by approximately 1%.   For seven layers of 
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0.2 cm at 0 cm SCD to more than 1.2 cm at 17 cm SCD 
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differential uniformity calculation.  

After acquiring the set of baseline, uniform images, an additional ten uniform images were 

acquired, and the seven sets of ten replicate images

added in the UFOV.  This was repeated with 

distinct upward trend was observed in the NEMA uniformity values.  There were 

time series including the twenty baseline replicates

the source on the gamma camera and the locations of the 

experiment. 

 

                 

Figure 13 – Experimental Setup of 
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57

Co sheet source positioned.  Center 

Right – High count flood depicted locations of 2, 
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beam intensity from the sheet source was expected to be reduced to ~9

of the detector overlain by the attenuation layer. 

ttenuation disk phantoms (ADPs) of variable diameters were fashioned 

ally chosen were 8, 4, and 2 cm, and 10 disks of each s

The disks were positioned at different locations on top of the 
57

Co sheet source (SN: B

, calibration date: 04-Feb-2009) that was used for all flood acquisitions in 
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projected aluminum disks, thereby minimizing the sensitivity of the NEMA 

differential uniformity calculation.   
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acquired, and the seven sets of ten replicate images were acquired, each with an additional ADP 
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Experimental Setup of Attenuation Disk Phantoms

sheet source positioned.  Center – 8 cm attenuation disk placed on sheet source.   

High count flood depicted locations of 2, 4, and 8 cm attenuation disk

 

 

 

to be reduced to ~93% over the area 

were fashioned from aluminum 

and 10 disks of each size were prepared.  

Co sheet source (SN: BM01-15, 

) that was used for all flood acquisitions in 

collimator distance (SCD) of 6-¾ inches.  The 

reason for placing a gap between the source and detector was to blur the edges of the aluminum disks 

collimators, the collimator resolution (in FWHM) degrades from 

.  Thus, the resolution of the edges would 

minimizing the sensitivity of the NEMA 
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aluminum disks used for this 
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placed on sheet source.    
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5.1.1.3 Acquired Uniformity Floods – Altering Sensitivity via Energy Window Shifts 

Another commonly observed clinical flood artifact is a "tubey" pattern of reduced counts centered 

over several of the photomultiplier tubes in the flood image.  Such a pattern is often the result of 

shifts in the gains of individual PMTs, which distorts the local energy spectra and thus alters the 

sensitivity of the detector in the vicinity of the PMTs (see PMT Drift and Position Dependence).  One 

option for inducing this uniformity defect was to adjust the voltage gain of a single PMT in order to 

degrade the uniformity; however, this was not feasible due to the reluctance of the camera 

manufacturer (who was also the vendor of the service contract) to misadjust a properly functioning 

system.  Another option was to acquire the flood images with variable shifts in the energy window 

used in order to induce non-uniform detection efficiency across the field-of-view. 

Off-peak images were acquired by shifting the energy window incrementally and acquiring 10 

replicate floods per window shift.  The time series comprised off-peak replicate sets spliced together 

with sets of 10 uniform images acquired from a control set of forty floods used to generate the 

parameters for the synthetic floods.  All images were acquired in a 1024 × 1024 matrix with flood 

corrections turned on.  The off-peak shifts used were -6%, -4%, -3%, 3%, and 4% from the photopeak 

of the 
57

Co spectra (122 keV).  The order of the time series included 20 uniform baseline replicates, 

10 × -4% shift, 10 × 3% shift, 10 × -6% shift, 10 more uniform control floods, 10 × 4% shift, and 

finally 10 × -3% shift, for a total of 80 floods in the time series.   

5.1.1.4 Retrospective Uniformity Floods – PMT Failure 

The purpose of the retrospective flood data was to apply the algorithms (discussed later) in a 

more clinically relevant scenario in order to assess the feasibility of time series flood analysis.  It was 

necessary to observe potential trends detected by the algorithms in order to verify whether or not their 

performance could be seen for both simulated and historical data sets.  This would help to strengthen 

the case for using these methods clinically. 

In January of 2010, a distinct artifact was observed in the daily QC flood acquired on a clinical 

gamma camera: 
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Figure 14 – Retrospective Time Series: PMT Failure 

 

As can be seen in the image above, there was a significantly non-uniform region in the upper left 

quadrant of the UFOV.  The camera was therefore deemed unusable for clinical imaging, and service 

personnel were dispatched in order to replace a defective photomultiplier tube.  The camera was 

down for 3 business days while this repair was made.  This clinical event presented an opportunity to 

use the detection algorithms developed in this thesis retrospectively on clinical data in order to 

determine if this type of commonly encountered performance degradation could have been identified 

earlier by analyzing a time series of registered floods of the same acquisition parameters acquired 

over time on the system than by waiting for a complete failure.   As it was not clear when exactly to 

begin the retrospective analysis, it was decided that analyzing daily QC flood images over the course 

of the entire year prior to the date of this failure would be sufficient because a years’ worth of flood 

images marks the number of routine QC images that accumulate between annual performance 

evaluations, when detector operation is tested for any subtle performance changes.  This would in 

theory provide a normal baseline from which to establish the expected pixel response and from that to 

determine significant deviations, if there were any, leading up to the failure of the PMT.  It is 

noteworthy that the acquisition conditions surrounding these retrospective images are different from 

the ones used to acquire the phantom data described above.  While the stop condition of 10 million 

total counts was the same as for the datasets above, this gamma camera utilizes an automated QC 

routine in which a 
153

Gd rod source protrudes from the patient couch and is tomographically imaged 

and the tomographic images summed to produce a single 256 × 256 static image matrix for each 

detector (see Table 2 – MDACC Protocol for Daily Extrinsic Floods).  Thus, the equivalent of a static 

flood is generated from a tomographic study, and this image is assumed to depict the uniformity 

properties of the collimated detector rather than creating the flood by imaging a sheet source. Only 

images acquired with LEHR collimators were incorporated into the time series.   
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5.1.1.5 Retrospective Uniformity Floods – NaI (Tl) Hydration 

The second retrospective time series was of a gamma camera detector on which NaI (Tl) crystal 

hydration was observed in a 200-million count, high signal-to-noise ratio annual extrinsic calibration 

flood.  The spots of hydration measured between 3 and 6 mm in diameter and were visually observed 

only because of their favorable contrast-to-noise ratio in the high count flood image (average 

contrast-to-noise ratio (CNR) = 1.84 over three regions-of-interest).  The NEMA uniformity values 

for the flood in which the hydration spots were observed yielded results well below the clinical 

guideline values (CFOV – integral: 4.17%; differential: 2.02%), even without uniformity corrections 

applied (which is the standard practice when acquiring calibration floods). 

 

 

Figure 15 – Retrospective Time Series: NaI (Tl) Hydration 

Note: This image is a 200-million count calibration flood. This artifact was not observed in the 

daily QC floods.  Of note are the bright, white dots that appear throughout the UFOV 

 

Because this artifact went unobserved in daily collimated floods, it was decided that a 

retrospective analysis beginning after the last extrinsic calibration flood was acquired up to the time 

point around the high SNR flood demonstrating hydration would be sufficient.   

5.1.2 Results 

Each of the time series phantoms has been given a short, descriptive name in order to provide a 

direct reference to them throughout this thesis.  Also, because the baseline images are used as the 

static basis of comparison, to be acquired prior to clinical use, they were not counted in the time 

series descriptions.  Descriptions of the time series phantoms are tabulated below. 
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Time Series Phantom Alias Description 

ts_vol_control 57
Co; 40×1024

2
 matrix; This volume was used to 

derive parameters for synthetic floods.  Used as 

baseline replicates for ts_vol_offpeak; NEMA IU 

Range: 2.34 – 3.29% 

ts_vol_3disk 57
Co; 80×512

2
 matrix; corrections applied; linear 

count loss using 8,4,2 cm attenuation disks beginning 

in flood 11 up to 7 total disks; NEMA IU Range:  2.33 

– 4.27% 

ts_vol_offpeak 57
Co; 60×1024

2
 matrix; ts_control replicates 

spliced with off-peak replicates (order: 10×-4%, 

10×3%, 10×-6%, 10×0%, 10×4%, and 10×-4%); 

NEMA IU Range: 2.34 – 4.96% 

ts_vol_T6 153
Gd; 157×256

2
 matrix; PMT failure observed at 

time point 157; NEMA IU Range: 2.96 – 19.56% 

ts_vol_S5 153
Gd; 99×256

2
 matrix; crystal hydration  

observed in high SNR calibration flood; NEMA IU 

Range: 2.83 - 4.02% 

synthetic control 100×1024
2
 matrix; no degradation present;    

NEMA IU Range: 2.01 – 2.94% 

synthetic_13 100×1024
2
 matrix; single 8cm uniformity defect; 

Degradation Rate: 0.1%; NEMU IU Range: 2.12 – 

6.61% 

synthetic_15 100×1024
2
 matrix; single 8cm uniformity defect; 

Degradation Rate: 0.2%; NEMU IU Range: 2.65 – 

12.51% 

synthetic_17 100×1024
2
 matrix; single 7mm uniformity defect; 

Degradation Rate: 0.1%; NEMU IU Range: 2.04 – 

3.01% 

synthetic_19 100×1024
2
 matrix; single 7mm uniformity defect; 

Degradation Rate: 0.2%; NEMU IU Range: 2.04 – 

3.16% 

Table 4 – Summary of Time Series Phantoms 
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5.1.3 Discussion 

These phantoms are used to demonstrate the algorithms.   Different sizes of uniformity defects 

were sampled, along with different rates of degradation, and the data sets included both synthetic and 

actually acquired images to test the feasibility of the algorithms developed below. 

Of note in Table 4, are the ranges of calculated NEMA uniformity values shown for the synthetic 

phantoms with smaller uniformity defects and for the retrospective hydration time series.  The size of 

the uniformity defect has a direct bearing on the calculated global values, with a disparate range noted 

for the 8 cm uniformity defects.  This is explained as a by-product of the rebinning that occurs prior 

to making the NEMA calculation (see The NEMA Uniformity Index).  Rebinning will effectively 

average out smaller uniformity defects in the detector, making the calculation less sensitive to 

monitoring changes in a small defect in uniformity.   

5.2 Specific Aim 2 –Time Series Image Analysis Methods 

Develop and evaluate quantitative pixelwise time series analysis techniques that take advantage 

of the temporal nature of these uniformity defects and exploit them for the purposes of spatially 

detecting progressive degradation, and representing them in two-dimensional parametric maps. 

5.2.1 Materials and Methods 

The second and third specific aims demonstrate methods of exploiting the temporal nature of 

detector degradation in order to detect or isolate regions within the gamma camera UFOV where a 

statistically significant change from a baseline condition has occurred prior to the degradation being 

manifest in any single daily flood.  One of them utilizes time series image-space, and the other uses 

time series of conventional global figures-of-merit.  Image-space refers to the three dimensional 

domain of pixel values over time.  The advantage of the image-space techniques over those of global 

figures-of-merit is that they provide a means of spatially isolating the uniformity defect and 

characterizing both its location and spatial extent. 

Since the size, rate, or numbers of uniformity defects present in the UFOV are unknown a priori, 

methods were developed that took all of these factors into account.  Beginning with an ordered time 

series volume of floods, analytical methods were developed to characterize temporal and spatial 

degradation simultaneously. All computational solutions were developed using the Interactive Data 

Language (IDL, ITT Visual Systems, Boulder, CO).   
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5.2.1.1 Temporal Analysis 

Consider a three-dimensional (3D) representation of a generic time series of floods: 

 

 

Figure 16 – Volumetric Rendering of a Registered Time Series of Floods 

 

Figure 16 depicts multiple 512
2
 floods sequentially ordered in time to form a volumetric flood 

space.  Because the images were synthetically generated or had been acquired using the same detector 

without any spatial offsets applied, the UFOVs in the floods were already aligned and inherently 

registered spatially.  The time dimension was analyzed both over the entire range of images present in 

the time series and over an advancing fixed window subset of images.  Using the entire time range 

available, including the individual floods present in the baseline set, improves the characterization of 

the model parameters as more images are acquired in time (1) and it provides a trend over all time 

points available.  However, while using larger sample sizes improves the confidence in the trend by 

improving the SNR, this approach introduces the possibility of averaging out subtle discontinuities or 

shifts in the underlying pixel process, thus limiting the algorithms’ sensitivity to detecting shifts early 

on in the degradation process (32).  For example, if pixels are trending consistently over time, and 

then a marked shift occurs in the most recent values, it may not necessarily impact the rate of change 

over the entire time series. 

To minimize this potential effect, a method was developed to window the time series using a 

fixed size, w, which is the same length as the number of floods in the baseline replicate set.  

Windowing, in this case, implies extracting a subset of images from the time series, such as the most 

recent twenty images.  The algorithms that utilize time-windowing identify the sub-volume consisting 

of w images, bin a window of w more images that advances one day forward with each new flood in 

the time series, and perform some statistical tests between those sub-volumes (in a fashion described 
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in detail later in this chapter).  In other words, the 

number, and then analyze the w most recent images as new data are added to the data set.
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Figure 17 – 

Representation of Baseline sub

(Rose) advances as more 

The algorithms presented in this 

window binning while others use the entire 

characterize any trends that may be present over the entire 

more sensitivity to sudden changes in flood pixel values.

dimension into the automatic detection of 

by making a larger number of counts

time.  Rather than having a single 

were multiple samples from the same Poisson process.  An 

observed in a single pixel of a 200

count flood (see 2.3.2).   

5.2.1.2 Multi-resolution Spatial Decomposition

In addition to factoring in the temporal dimension, 

within the UFOV in an automated manner

effectively, for it is the process of 

pixel values spatially connected by common statistical

smoothed, to a single value, leaving 
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.  In other words, the algorithms identify the baseline images, w in 

the w most recent images as new data are added to the data set.

 Graphical Representation of Time Series Floods 

Representation of Baseline sub-volume (Green) is stationary while the Time Window 

(Rose) advances as more floods are acquired. 

 

The algorithms presented in this chapter use both temporal approaches: some use temporal fixed

window binning while others use the entire time series range.  This dual approach was taken to 

characterize any trends that may be present over the entire time series of floods as well as 

changes in flood pixel values.  In either approach, incorporating

dimension into the automatic detection of uniformity defects improved the sensitivity 

a larger number of counts available with which to characterize the process as a function of 

time.  Rather than having a single 10-million count flood from which to evaluate uniformity, 

the same Poisson process.  An example is the improvement in SNR 

rved in a single pixel of a 200-million count flood over the SNR in the same pixel in a 

Spatial Decomposition 

In addition to factoring in the temporal dimension, a method to spatially locate 

in an automated manner was needed.  Image segmentation 

process of dividing an image into regions with similar properties

connected by common statistical characteristics are grouped together, or 

smoothed, to a single value, leaving pixels that do not conform as distinct, or segmented,

algorithms identify the baseline images, w in 

the w most recent images as new data are added to the data set. 
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within the background.   In many 2D image applications, an initial spatial window size is selected, 

and image pixels within this window are inspected using a statistical operator at various locations 

within the FOV.  The limitation of this approach, however, is that it is not known a priori what 

window size to use.  Choosing too large a window may result in smaller distinct regions being 

averaged out and passed over by the operator (32).  Choosing too small a window and repeating a 

statistical analysis over many spatial regions in the FOV may lead to multiple comparison error 

(MCE) (see 4.2), which the random identification of statistically different pixels is resulting from the 

sheer number of times that the operator was repeated (1).   

As an example of MCE, consider a parametric image derived using the phantom ts_vol_3disk 

(Figure 18).  The image was analyzed at a single resolution by apportioning the UFOV into groups of 

every 4 adjacent pixels and performing some statistical operation (unspecified at this point) in order 

to identify pixels that are different from the background.  Pixels that were identified as statistically 

different were left unaltered, and all other pixels were set to a value of zero.  The non-uniform regions 

were identified by the accumulation of non-zero pixels in certain locations.  However, some pixels 

that were outside of the known uniformity defects were also identified as being statistically distinct.  

Because the same statistical test was applied at thousands of pixel locations in the image, there was a 

chance that some pixels would randomly be identified as significantly different, even though they 

were outside of a true region of non-uniformity.   

MCE could have adverse results clinically in that regions identified by the algorithm as 

statistically distinct may be mistakenly interpreted as defective areas of the detector.  This effect is 

minimized by analyzing the data at different levels of resolution, in which subsequently larger and 

larger, or smaller and smaller, spatial regions of the image are inspected.  Finding regions to be 

statistically distinct at multiple resolution levels adds confidence that the identification is the result of 

a systematic rather than random error. Coarser resolutions provide better SNR characteristics by 

including a larger number of pixels in the parameter estimation, while finer resolutions increase the 

sensitivity of this method to detecting spatially smaller uniformity defects (32). 
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has been a 2D image processing 
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– Statistical Segmentation Demonstrating MCE 

Left: Segmented pixels in a single resolution parametric map.  Right: Figure 

uniformity defect locations 

resolution spatial decomposition is quadtree analysis (33)

image processing technique that recursively decomposes or partitions the image into 

.  At each decomposition level, a statistical operator 

quadrant may itself be subdivided into quadrants.  This process 

higher resolution regions may be statistically distinguished from the background.  

decomposition has two flavors: 1) an all-inclusive hierarchical analysis, in which the analysis is 

performed at all resolution levels, and, 2) an adaptive decomposition, in which the decomposition 

to higher resolution based on the evaluation of the operator

discovered that if a small, subtle non-uniform region were contained within

at a coarser pixel size, the region may become averaged into the background 

go undetected.  The all-inclusive decomposition approach was chosen 

in order to maintain sensitivity in detecting smaller uniformity defects. 

The work reported here extends the quadtree concept to three-dimensional volumes of data that 

might not be square in the cross-section, as is the case of gamma cameras whose UFOVs are 

predefined time window, w, (see 5.2.1.1) is used as the constant

dimensional image in which each pixel contains the average (or total) over w t

of the corresponding pixels in the time series, and multi-resolution decomposition 

At each volumetric decomposition level, the hypothesis that the regions at time point t are 

ent from the spatially corresponding voxels in the baseline set 

used to evaluate the hypothesis (described later in this chapter

 

parametric map.  Right: Figure identifying 

(33).  Historically, this 

or partitions the image into 

.  At each decomposition level, a statistical operator is applied, and, 

This process is repeated 

distinguished from the background.  Spatial 

inclusive hierarchical analysis, in which the analysis is 

decomposition, in which the decomposition 

on the evaluation of the operator (32).  It was 

contained within the FOV and 

at a coarser pixel size, the region may become averaged into the background 

composition approach was chosen 

dimensional volumes of data that 

, as is the case of gamma cameras whose UFOVs are 

constant time resolution to 

dimensional image in which each pixel contains the average (or total) over w time points 

decomposition is then performed 

At each volumetric decomposition level, the hypothesis that the regions at time point t are 

baseline set was tested.  

chapter).   
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Based on the result of each individual test, a p-value (see 2.3.3) is derived and then mapped to the 

corresponding 2D pixels of a parametric image.  A predetermined threshold is then applied directly to 

the parametric map in order to segment regions that had changed to a statistically significant degree.  

These are inferred to be uniformity defects.  As new floods are added to the time series, the fixed 

window of temporal extent w advances and the decomposition is repeated.   

The multi-resolution, three-dimensional analysis is parameterized into a two-dimensional map 

because the detector performance for a given day is evaluated in two spatial dimensions.  In one 

technique, a two-dimensional map is constructed by incrementing the value of a pixel by unity for 

each level of decomposition at which that pixel fell within a region for which the hypothesis was 

rejected.  In other words, the pixel is incremented when it does not belong to a uniform region.  For 

display purposes, the pixel values are then cubed in order to improve the contrast of these regions for 

purposes of visual interpretation.  For techniques in which the associated p-values are calculated, all 

p-values from each resolution level are summed in a single parametric map of the same x, y 

dimensions as the original time series volume. The p-value map is then averaged over the number of 

resolution levels used, resulting in a parametric map containing the average p-value per pixel.  The 

number of resolution levels may be calculated according to the equation below (33). 

 

Hd��"$�2����] ~d(d�2 �  ln 
��"2.��
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Equation 14 – Spatial Decomposition Levels 

 

In Equation 14, ��"2.��
%,'� are the x, y dimensions of the original image. The result is that x, y pixel 

locations that are in the parametric map identified at multiple resolution levels will converge to lower 

p-values.  A threshold based upon a predetermined level of significance is applied to the final p-value 

map to produce the final parametric map that depicts the segmented uniformity defects. 

To produce the parametric map, the time series flood volume is divided into four large quadrants, 

or sub-volumes, using the (x, y, z) indices of the pixel values in the three-dimensional array.  The 

independent pixel samples within each isolated quadrant are tested.  Depending upon the statistical 

test used, either the entire time range (all z values at each x, y pixel location) or a select window size 

retrospective to the current flood is analyzed.  Next, the algorithm recursively repeats this analysis for 

successively smaller sub-volumes.  The results of each analytical step are mapped to a 2D parametric 

image.  A new parametric map is produced each time a daily flood is added to the original time series 

volume.  The statistical tests may utilize the stationary, windowed baseline volume of floods or the 

entire time range of floods present in the volume, including the baseline replicate sets. The advantage 



 

 

of performing multi-resolution decomposition is that it characterize

regions by examining successively larger and larger, or smaller and smaller regions of the UFOV.

Figure 19 – Graphical Representation of Spatial Decomposition

The green portion of the volume represents the baseline set of images, while the rose porti

represents the time series

 

Four distinct algorithms were developed based upon 

different parameter, including total counts, mean counts, and count correla

two algorithms use the fixed time window method, and the other two 

floods in a spatially multi-resolution

function of time, either comparatively with the baseline replicates or over the entire 

resulting 2D parametric map of the results indicate

time to the current time point.  On the following day, the time window advance

decomposition is repeated.   

5.2.1.3 Multi-resolution Minimum Detectable Activity

The first statistical test used was t

signal difference between two count distributions

background or baseline.   
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decomposition is that it characterizes the spatial extent

successively larger and larger, or smaller and smaller regions of the UFOV.

 

Graphical Representation of Spatial Decomposition

The green portion of the volume represents the baseline set of images, while the rose porti

time series sample that includes the most recent daily flood image

Four distinct algorithms were developed based upon different statistical tests, each testing a 

different parameter, including total counts, mean counts, and count correlation with time. 

ime window method, and the other two analyze the entire 

resolution manner.  The tests are evaluated at each resolution level as a 

function of time, either comparatively with the baseline replicates or over the entire 

resulting 2D parametric map of the results indicates spatial changes in pixel values from a baseline 

e point.  On the following day, the time window advance

Minimum Detectable Activity 

The first statistical test used was the minimum detectable activity (MDA), which

count distributions (17), the counts from the sample and those from the 

 

spatial extent of non-uniform 

successively larger and larger, or smaller and smaller regions of the UFOV. 

Graphical Representation of Spatial Decomposition 

The green portion of the volume represents the baseline set of images, while the rose portion 

includes the most recent daily flood image 

different statistical tests, each testing a 

tion with time.   The first 

the entire time series of 

each resolution level as a 

function of time, either comparatively with the baseline replicates or over the entire time series. The 

spatial changes in pixel values from a baseline 

e point.  On the following day, the time window advances and the spatial 

, which is based on the 

, the counts from the sample and those from the 



 

51 

 

NSample represents the total counts in each segmented region of the current sample sub-volume, 

and NBaseline is the total counts in the spatially corresponding sub-volume of the baseline replicate set 

of floods.  The variances of independent random processes add in quadrature,  therefore (17): 

 
��.�C�+ 3 �  ����L+� 3 � ���m�+.C� 3  

 

When a gamma camera detector is functioning properly, there should be no significant difference 

in counts between the sample sub-volume and the baseline sub-volume at each resolution level (11), 

and therefore the error terms should be equal (17). 
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The critical limit for detecting a change in the detector performance is set to the 3σ level (17): 

 

 ~* �  3√2���m�+.C� 

Equation 15 – MDA Calculations 

 

If the difference between the two sample counts is greater than this limit, the corresponding 2D 

location in the parametric map is increased by one.  This process is repeated for all resolution levels 

and the pixel values of the final map are cubed in order to make the uniformity defects appear more 

prominently above the background.  Pixels that are randomly identified by the algorithm at a 

resolution level due to multiple comparison error are suppressed within the background when pixels 

identified at more than one resolution level are cubed in the final map.  

5.2.1.4 Multi-resolution Two Sample Z and t-tests 

The following statistical techniques test for the difference in means between the baseline and 

sample image sub-volumes over all resolution levels. Using the same spatial decomposition scheme 

employed in the MDA algorithm, the means and variances in each decomposed sub-volume are 

calculated. A test statistic is calculated between the sub-volumes and a p-value is derived.  This 

method allows the final parametric map to be segmented based on statistical significance or the 

probability that the difference in samples occurred by random chance.  Setting an adjustable 

predetermined p-value limit allows greater sensitivity in detecting regions-of-non-uniformity while 

rejecting false positives, because the pixel values in the map reflect an actual probability of the 
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presence of systematic error.  The actual statistical test is of the hypothesis that there is no difference 

in the means between each segmented, current sub-volume of pixels and its baseline counterpart, and 

thus: 

 

}9: �m��L+� 	 �n�m�+.C� � 0 

Equation 16 – Z-test Null Hypothesis 

 

A test statistic is then generated at each resolution level (15): 
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Equation 17 – Z-test Statistic 

 

that has a standard normal distribution (N(0,1)), (16).  This general inference test typically assumes 

that the variances are known, but in this case, the unknown variance of each sample is estimated by 

the sample variance.  The analysis also assumes a fixed significance level, α, and rejects the test 

statistic on the basis of the critical statistic drawn from the standard normal distribution at that 

significance level (16): 

u9 �  	 u�/3 �F u9 �   u�/3 

This is a two-sample, two-sided Z-test.  Although this technique works effectively, it was 

supplemented with the Student t-test statistic, which does not assume that the variances in each sub-

volume are known exactly, but are instead approximated by calculating the sample variance.  Because 

the variances are not assumed to be known exactly, this is a more statistically appropriate test. 

A two-sided Student t-test is used to test whether or not the mean pixel values of the sample sub-

volume and the baseline sub-volume are equal.   The ‘two-sided’ test examines only whether or not 

the means are different, rather than which is the larger of the two.  The number of degrees of freedom 

(DOF) is the number of pixels in each sub-volume minus one.  The calculated test statistic (see 2.3.3) 

follows a Student-t distribution with   ]m��L+� �  ]n�m�+.C� 	  2 degrees of freedom, and is calculated 

by (16): 
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Equation 18 – 2 Sample t-test Statistic 

 

The Student-t distribution, from which the p-values are calculated, is based upon the incomplete 

gamma function.  The p-value is calculated using the following equation: 
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Equation 19 – Student-t Probability Density Function 

 

The p-values are summed over all resolution levels into a single parametric map and then an average 

is calculated over all of the resolution levels used in the time series decomposition. Non-uniformities 

are segmented in the final 2D map at time t by applying a threshold to the p-values. 

Several commonly used levels of significance were investigated as thresholds, including p-values 

of 0.05 and 0.01.   The algorithms were repeated for several different time series phantoms using 

different threshold levels.  By applying larger p-values as thresholds, more pixels outside of the true 

uniformity defects were identified as being statistically distinct, and thus higher numbers of false 

positives were observed.  For example, the parametric map at day 85 for a generic time series 

phantom with an 8 cm region of non-uniformity in the center of the CFOV was segmented using a 

threshold of 0.05 and 0.01 respectively.  The difference in the number of false positive pixels is 

demonstrated in the following images: 



 

 

Figure 20 – Parametric Results Using 2 Different Thresholds
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Parametric Results Using 2 Different Thresholds
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Top:  Segmentation at day 85 using p<0.05.  Region of non-uniformity outlined in red.  False 

positive regions noted.  Bottom:  Segmentation at day 85 using p<0.01.  No false-positive regions 

observed.  Fewer pixels within true region segmented. 

 

Fewer pixels within the true region of non-uniformity were segmented in the map using the lower 

threshold value.  This demonstrates the tradeoff that exists between the sensitivity of the algorithms to 

detecting uniformity defects and their ability to suppress false positive regions.  By using a threshold 

of p < 0.01, it was discovered that the true uniformity defects were segmented in the parametric 

image without resulting in a large number of false positives at each resolution level. The choice of 

critical values helped to suppress false positive pixel values from being identified by the spatial 

decomposition analysis.  It was important to minimize false positives present in the parametric images 

in order to ensure that the gamma camera does not receive service (2) which may result in 

unnecessary scanner downtime.  Results of the algorithms using a threshold of p<0.01 are 

demonstrated in sections 5.2.2.2 and 5.2.2.3.    Although the sensitivity to detecting uniformity 

defects is increased using a higher threshold, false positive suppression was determined to be 

important for reducing the potential for a burden to the clinic, and therefore a threshold of p<0.01 was 

used for the Z- and t-test techniques. 

5.2.1.5 Multi-resolution Strength-of-correlation 

In order to test for trends over the entire time series volume, the multi-resolution technique was 

combined with a method to fit a pixelwise linear model at each x, y pixel location to evaluate the 

strength-of-correlation between pixel values over time.  Unlike the multi-resolution MDA and t-test 

algorithms, which use the pixel indices at the original resolution to recursively isolate sub-volumes of 

the time series array and examine these volumes as independent samples, the multi-resolution 

strength-of-correlation approach recursively combines the x- and y- dimensions into coarser pixel 

sizes by summing together a subset of adjacent pixels to form a single larger pixel while preserving 

the original count density.  As with the previous spatial decomposition techniques, the larger pixels 

improve the statistics at the cost of lower spatial resolution.  All resolution levels are evaluated and 

combined into a single 2D parametric map.  The entire time dimension, including the baseline 

replicate set of floods, is analyzed.  Beginning with the coarsest resolution, a linear model is fit at 

each x, y pixel location over all time in the volume, similar to the method suggested by Kalemis (1).  

From Equation 7 – Derivation of LSR,  
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To test the correlation of pixels at a given resolution with time, the error of $(%,'))))))) given �^ is 

calculated. 
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The variable n is the number of observations within each fit.  Next, the estimates of the 

uncertainties in the two model parameters are made (3). 
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The error in the slope parameter is used to calculate a test statistic and evaluate the hypothesis 

that the slope is equal to zero.  This test statistic is then compared to critical values of the t-

distribution (3).   
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Equation 20 – Strength of Correlation Test Statistic 

 

As in 5.2.1.4, a probability value is derived by using the Student-t probability distribution 

function.  As with the Z- and t-test multi-resolution techniques, these p-values are summed into a 

final parametric map, which is then averaged over the number of resolution levels.  A final threshold 

of p<0.01 is used.  Pixels with values above this threshold are smoothed to the same value.  If a non-

uniformity is present and is a function of time, the map indicates the trend in pixel values at each 

resolution by evaluating whether or not the slope of the fit is statistically different from zero. 

5.2.1.6 Sliding Window t-test (SWTT) 

In the final method of time series analysis that was investigated, a smoothing function is applied 

to the time series volume at each x, y location with respect to time, and the flood image that is 

calculated from the temporal moving average is convolved with a spatial smoothing kernel, yielding 
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images of the local mean and variance.  A t-statistic image is then calculated from the local mean and 

variance images and a pixelwise t-test is performed between the sample and a similar image derived 

directly from the baseline set.  This method worked effectively for floods acquired with resolutions of 

512
2
 and higher, but convolving coarser matrices blurred out smaller uniformity defects, reducing its 

sensitivity when the floods were less than 512
2
 resolution.  Thus, only image matrices greater than 

256
2
 were analyzed using this technique. 

As with the other techniques, the 2D floods are sequentially ordered into a time series volume.  A 

moving average filter is applied in time at each x, y pixel location.  The size of the window w is the 

same as the numbers of floods in the baseline replicate set.  
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Equation 21 – Moving Average Filter Process 

 

 The MA window shifts forward in time with every new flood observation.  After the time series 

volume is smoothed, the most recent image in the sequential set of floods is convolved with a 2D 

spatial smoothing kernel (linear dimension 3-5 pixels for a 512
2
 flood) that calculates the local mean 

for every pixel in the image on which the kernel is centered.  The result of the convolution is a 

smoothed image of the local mean values across the field-of-view.  Similarly, a local variance image 

is calculated.  This procedure is repeated using a time-averaged image of the baseline replicate set and 

the resulting images of the local means, and variances for both the sample and baseline are used to 

calculate a t-statistic image.  
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Equation 22 – t-test Statistic for SWTT 

 

The t-statistic image is then used to calculate a p-value at every x, y spatial pixel location, and the 

resulting probability map is used to segment any non-uniformity by applying a threshold.  Because of 

the zero-padded region of pixels in the flood image outside of the actual UFOV, the convolution 

operation causes blurring along the edges of the UFOV.  A binary mask of the CFOV is multiplied by 

the resulting image in order to mask these edges.  Therefore, the parametric map produced for this 

algorithm only depicts the CFOV. 



 

 

5.2.2 Results and Discussion

The time series phantoms presented in 

Each data set was analyzed over its entire volume, resulting in parametric maps for each day that the 

time window incremented.  The results 

Appendix in order to demonstrate the detectability of the non

the phantom characteristics are in 

daily in order to calculate the parametric maps 

the current day’s QC flood.  The reviewer would 

calculated maps, which provide a temporal component to flood monitoring.  

Kalemis’ pixelwise trend analysis 

of each algorithm for all of the phantoms at 

Appendix in order to demonstrate the performance of the methods as the non

over time.   

For synthetic phantoms 13, 15, 17, and 19, a spatial reference for t

regions has been noted in the images below

 

Figure 21 – Locations of 

Left: synthetic_13 and synthetic_15

5.2.2.1 Multi-resolution Minimum Detectable Activity

The multi-resolution MDA algorithm segment

for phantoms containing larger defects

any single flood image’s exceeding 

defect within the CFOV, exhibited integral and differential 

threshold at time point 40 (4.24% and 2.66%, respectively)
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and Discussion 

presented in 5.1 were processed using the algorithms described above.  

Each data set was analyzed over its entire volume, resulting in parametric maps for each day that the 

The results for each phantom at sequential time points are provided in the 

in order to demonstrate the detectability of the non-uniformities over time

the phantom characteristics are in Table 4.  Clinically, these algorithms are intended to

calculate the parametric maps from the entire time series volume up to and including 

The reviewer would then evaluate uniformity performance using the 

provide a temporal component to flood monitoring.   

Kalemis’ pixelwise trend analysis was also applied to these data sets for comparison.  The results 

m for all of the phantoms at incremental time points have been provided in the 

ppendix in order to demonstrate the performance of the methods as the non-uniformities degrade 

For synthetic phantoms 13, 15, 17, and 19, a spatial reference for the locations of the non

noted in the images below. 

Locations of Uniformity Defects in Synthetic Time Series

: synthetic_13 and synthetic_15 (8cm uniformity defect); Right: synthetic_17 and 

synthetic_19 (7mm uniformity defect) 

Minimum Detectable Activity (MDA) 

MDA algorithm segmented the uniformity defects early in the 

for phantoms containing larger defects.  This identification of the uniformity defects occurred

any single flood image’s exceeding the NEMA 5% threshold.  Synthetic_13, which contain

defect within the CFOV, exhibited integral and differential NEMA uniformity values below the 5% 

shold at time point 40 (4.24% and 2.66%, respectively), and the MDA algorithm segmented 

were processed using the algorithms described above.  

Each data set was analyzed over its entire volume, resulting in parametric maps for each day that the 

are provided in the 

uniformities over time.  Descriptions of 

are intended to be run once 

volume up to and including 

uniformity performance using the 

applied to these data sets for comparison.  The results 

time points have been provided in the 

uniformities degrade 

he locations of the non-uniform 

 

Time Series 

synthetic_17 and 

early in the time series 

identification of the uniformity defects occurred prior to 

.  Synthetic_13, which contained an 8 cm 

NEMA uniformity values below the 5% 

, and the MDA algorithm segmented the 
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region well in advance of this time (beginning at day 13 in the time series).  The NEMA threshold 

was crossed repeatedly beginning at approximately day 45 for phantom synthetic_13.  Line profiles 

were drawn through the non-uniform region in order to demonstrate the contrast gains from the 

original raw flood image.  The region of non-uniformity in the MDA parametric map exhibits marked 

differentiation from the surrounding background pixels in the UFOV.  The profile plot for the original 

flood at time point 40 showed a noisy distribution of pixel values and the region of non-uniformity 

were not clearly distinguished from adjacent, uniform pixels. 

 

          

           

Figure 22 – Uniformity Defect Contrast Enhancement of Image-space MDA 

Parametric Map 
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Top Left: Profile through MDA parametric map at observation 40.  Top Right: Profile through 

the original flood image at the location of the 

The MDA algorithm also segmented out each region of non

data set, ts_vol_3disk (see Figure 

degradation was slower than that of

the degradation rate was approxi

first region segmented in image

2 cm disk size, were segmented 

risen only to 3.23 and 2.27%, respectively.  

size of the segmented regions 

fewer counts in the regions corresponding to the 

attenuation of photons.  As more attenuation occurred, the diameter of the 

parametric images converged to the actual size of the non

uniformities became easier to discern visually

algorithm more easily segments non

size of the region (i.e., how many pixels are affected by the region 

degradation (how different the counts are over a region from one day to the next
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Top Left: Profile through MDA parametric map at observation 40.  Top Right: Profile through 

the original flood image at the location of the uniformity defect at observation 40.  Bottom

superimposed line profiles.   

also segmented out each region of non-uniformity in the acquired phantom 

Figure 18 for location of uniformity defects), in which the

that of synthetic_13.  Given 7% attenuation over the 80

approximately 0.1% per flood.  The larger of the 3 attenuation disks was the 

first region segmented in image-space (at approximately day 24), and all three regions, including the 

2 cm disk size, were segmented by day 50, when the integral and differential uniform

3.23 and 2.27%, respectively.  As time advanced and the regions degraded

 grew in the MDA parametric maps because more pixels contained 

fewer counts in the regions corresponding to the locations of the disks, due to the increased 

attenuation of photons.  As more attenuation occurred, the diameter of the uniformity defects

parametric images converged to the actual size of the non-uniformity in the UFOV, and the non

ame easier to discern visually.  This is important because it demonstrate

algorithm more easily segments non-uniformities of greater magnitude, which is a function of the x, y 

how many pixels are affected by the region in the image

how different the counts are over a region from one day to the next). 

Top Left: Profile through MDA parametric map at observation 40.  Top Right: Profile through 

observation 40.  Bottom: Plot of 

uniformity in the acquired phantom 

in which the rate of 

80-day time series, 

The larger of the 3 attenuation disks was the 

all three regions, including the 

day 50, when the integral and differential uniformity values had 

regions degraded further, the 

because more pixels contained 

locations of the disks, due to the increased 

uniformity defects in the 

uniformity in the UFOV, and the non-

.  This is important because it demonstrates that the 

is a function of the x, y 

in the image), and the rate of 

 



 

 

Figure 23 – Regions of Non

Top Left: Original flood image, d

Bottom Left: Original flood image, day 70; Bottom Right: MDA parametric map, day70

 

The multi-resolution MDA algorithm performed well when processing the degradation

synthetic control data in that no false positive regions were segmented.  

the known non-uniformities in phantom ts_vol_3disk were not identified by the algorith

strong false positive performance over the 100

However, the algorithm did indicate some false positive regions when processing the synthetic_17 

and 19 phantoms, which contained a region of no

positive pixels identified outside of the intentionally degraded portions of the UFOV were not 

sustained in the parametric maps, but decayed rather quickly over the 

algorithm segmented a region found to be statistically different from the baseline, and because this 

region was outside of a true region of non

faded away as the time window advanced.  This demonstrate

parametric maps over time as more maps accumulate, a reviewer 

evolving non-uniformity from a random false positive based on whether or not the segmented region 

persists in the maps.  The algorithm 

of non-uniformity was not detected in phantom synthetic_17

series phantom synthetic_19, in which the rate of degradation was twice that of sy

The off-peak phantom data 

within the UFOV of the detector, and yet the algorithm still detected diffuse regions across the UFOV 
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Regions of Non-uniformity Segmented via Multi-resolution

Top Left: Original flood image, day 50; Top Right: MDA parametric map, day 50

Bottom Left: Original flood image, day 70; Bottom Right: MDA parametric map, day70

Phantom: ts_vol_3disk 

MDA algorithm performed well when processing the degradation

synthetic control data in that no false positive regions were segmented.  Moreover, regions outside of 

uniformities in phantom ts_vol_3disk were not identified by the algorith

sitive performance over the 100-flood time series (including baseline replicates). 

algorithm did indicate some false positive regions when processing the synthetic_17 

and 19 phantoms, which contained a region of non-uniformity less than 1 cm in diameter. 

positive pixels identified outside of the intentionally degraded portions of the UFOV were not 

sustained in the parametric maps, but decayed rather quickly over the time series.  In other words, the 

segmented a region found to be statistically different from the baseline, and because this 

region was outside of a true region of non-uniformity, the segmentation did not persist in time, but 

faded away as the time window advanced.  This demonstrates that by monitoring the results in the 

parametric maps over time as more maps accumulate, a reviewer would be able to distinguish a true 

uniformity from a random false positive based on whether or not the segmented region 

algorithm also demonstrates some size-dependent sensitivit

etected in phantom synthetic_17 and was only later detected in the 

synthetic_19, in which the rate of degradation was twice that of synthetic_17.  

peak phantom data did not contain degradation that was isolated to a specific location 

within the UFOV of the detector, and yet the algorithm still detected diffuse regions across the UFOV 

 

resolution MDA  

ay 50; Top Right: MDA parametric map, day 50 

Bottom Left: Original flood image, day 70; Bottom Right: MDA parametric map, day70 

MDA algorithm performed well when processing the degradation-free 

Moreover, regions outside of 

uniformities in phantom ts_vol_3disk were not identified by the algorithm, indicating 

(including baseline replicates). 

algorithm did indicate some false positive regions when processing the synthetic_17 

uniformity less than 1 cm in diameter.  False 

positive pixels identified outside of the intentionally degraded portions of the UFOV were not 

In other words, the 

segmented a region found to be statistically different from the baseline, and because this 

uniformity, the segmentation did not persist in time, but 

by monitoring the results in the 

be able to distinguish a true 

uniformity from a random false positive based on whether or not the segmented region 

dependent sensitivity as the region 

detected in the time 

nthetic_17.   

did not contain degradation that was isolated to a specific location 

within the UFOV of the detector, and yet the algorithm still detected diffuse regions across the UFOV 



 

 

as being statistically different from

techniques are sensitive to degradation even when it is not con

within the UFOV.  Given that false positives were effectively suppressed in the synthetic_control 

phantom and in regions outside of the attenuation disks in phantom ts_vol_3disk, the algorithm 

segmented distinct regions in the off

opposed to random false positive detection.  The diffuse pattern present in the off

maps was therefore indicative of the type of non

pattern of segmentation in the ma

the non-uniformity present.   

 

Figure 24 – Multi-resolution

Left: Original flood, day 50.  Integral uniformity: 

demonstrating non

The retrospective time series

some interpretive challenges.  The 

(ts_vol_S5) demonstrated regions identified by the algorithm early in time 

throughout the time series, indicating that the 

initial point.  These regions may be referenced in the high

of the time series, when the artifact was first visually observed. 

defects are noted in Figure 25: 
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from the baseline condition.  This demonstrates that such image

sensitive to degradation even when it is not confined to a specific shape or location 

Given that false positives were effectively suppressed in the synthetic_control 

phantom and in regions outside of the attenuation disks in phantom ts_vol_3disk, the algorithm 

the off-peak data set, indicating the presence of true systematic error

opposed to random false positive detection.  The diffuse pattern present in the off

maps was therefore indicative of the type of non-uniformity occurring in the detector.  Thus, the 

pattern of segmentation in the maps may be an effective diagnostic tool in determining the cause of 

resolution MDA Results for Off-peak Time Series, 

Left: Original flood, day 50.  Integral uniformity: 4.27%; Right: MDA parametric map 

demonstrating non-uniform segments throughout UFOV 

 

time series processed using the multi-resolution MDA algorithm presented 

some interpretive challenges.  The time series phantom that contained crystal hy

(ts_vol_S5) demonstrated regions identified by the algorithm early in time that

, indicating that the uniformity defects were continuously identified after an 

initial point.  These regions may be referenced in the high-count calibration flood acquired at the end 

, when the artifact was first visually observed.  Several corresponding 

 

that such image-space 

to a specific shape or location 

Given that false positives were effectively suppressed in the synthetic_control 

phantom and in regions outside of the attenuation disks in phantom ts_vol_3disk, the algorithm 

rue systematic error, as 

opposed to random false positive detection.  The diffuse pattern present in the off-peak parametric 

uniformity occurring in the detector.  Thus, the 

ps may be an effective diagnostic tool in determining the cause of 

 

, Day 50 

4.27%; Right: MDA parametric map 

MDA algorithm presented 

crystal hydration spots 

that were sustained 

were continuously identified after an 

count calibration flood acquired at the end 

Several corresponding uniformity 



 

 

Figure 25 – Crystal 

Left: High count calibration flood demonstrating regions of hydration.  Right:  Parametric map 

acquired at day 62 in the 99 day 

While the pixels identified at multiple resolution levels 

corresponding hydration regions wer

before the corresponding spots were seen in the high count flood), the quadrants that converge

these regions appeared as larger grayscale squares and contribute

outside of the non-uniform regions. 

image shown above that do not

the algorithm does demonstrate sensitivity, but at the cost of potential false positive identification.  
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Crystal Hydration Uniformity Defects Identified Using 

resolution MDA 

ation flood demonstrating regions of hydration.  Right:  Parametric map 

acquired at day 62 in the 99 day time series Bottom: Original flood (Integral NEMA 

corresponding flood: 3.24%) 

While the pixels identified at multiple resolution levels are brighter in appearance and 

hydration regions were discerned at a point very early in the time series

before the corresponding spots were seen in the high count flood), the quadrants that converge

s larger grayscale squares and contributed noise to the background pixels 

uniform regions.   Furthermore, there were regions identified in the 

image shown above that do not necessarily correspond to known regions of degradatio

the algorithm does demonstrate sensitivity, but at the cost of potential false positive identification.  

 

sing Multi-

ation flood demonstrating regions of hydration.  Right:  Parametric map 

(Integral NEMA uniformity of 

are brighter in appearance and 

time series (over 30 days 

before the corresponding spots were seen in the high count flood), the quadrants that converged to 

noise to the background pixels 

Furthermore, there were regions identified in the parametric 

necessarily correspond to known regions of degradation.  Therefore, 

the algorithm does demonstrate sensitivity, but at the cost of potential false positive identification.   
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Similar results were observed for the retrospective time series phantom leading up to the failure 

of a PMT.  As the time series advanced, distinct horizontal bands of non-uniform pixels were 

identified by the algorithm. These bands were sustained throughout the time series after their initial 

identification and grew more intense as the time series progressed.  It is unclear whether this artifact 

was the result of the PMT’s fluctuating prior to failure (the PMT location was in a region of banding) 

or non-uniformity in the radioactivity concentration in the rod source used to tomographically acquire 

the flood, causing a count gradient to appear in the parametric map. 

5.2.2.2 Multi-resolution Two Sample Z and t-tests 

The multi-resolution Z- and t-test algorithms each performed similarly to the multi-resolution 

MDA technique in terms of their sensitivity to the rate and size of the non-uniformities.  One notable 

distinction between these and the MDA method was an enhanced suppression of false positives 

outside of the regions of degradation, as well as an improved segmentation of the shape of these 

regions.  This was due to the elimination of the larger quad segments surrounding the converging 

pixels and was accomplished by averaging over the multiple resolution levels used and then 

thresholding based on the calculated probability values, rather than cubing the final map for contrast.  

It had the effect of statistically segmenting out only those pixels identified at multiple resolution 

levels.  The threshold also made intuitive sense, in that it was based upon an actual probability that 

differences between sub-volumes of pixels at two different time points were the result of random 

chance.  The Z- and t-test results were almost identical in performance for all of the phantoms used, 

but because the t-test was a more statistically appropriate test, as it does not assume that the variance 

was known, only its results are demonstrated below.   

The results of the algorithm for phantoms synthetic_13 and synthetic_15 identified the location of 

the degraded region beginning at day 14 and 10, respectively, when the respective NEMA integral 

uniformities were only 3.76 and 4.31%.  The uniformity defects were maintained in each of the 

subsequent parametric maps and became more visibly distinguished as the magnitude of the non-

uniformity increased in time. 

The algorithm results for the actually acquired phantom ts_vol_3disk segmented the 8 cm 

attenuation disk beginning at day 25 and this region persisted continuously in each of the subsequent 

parametric maps.  The 2 cm region of degradation was segmented beginning at day 67, when the 

integral NEMA uniformity was a mere 3.87% and the differential uniformity was only 2.83%.  The 

contrast gains for the two larger uniformity defects are illustrated using line profile plots (Figure 26).  
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Figure 26 - Uniformity Defect Contrast Enhancement of Image-space t-test 

Parametric Map 

Top Left: Profile through original flood at observation 67 (NEMA integral uniformity: 3.85%, 

differential: 2.83%).  Top Right: Profile through the t-test parametric map at observation 67, with the 

2 cm disk noted.  Bottom: Plot of superimposed line profiles 

Phantom: ts_vol_3disk 

 

These contrast gains demonstrated in the acquired flood time series using the hypothetical rate of 

degradation help prove the hypothesis that temporal image-space segmentation techniques may be 

used to segment true uniformity defects prior to the NEMA values being above the 5% threshold.  

The t- and Z- parametric maps did not segment any significant regions outside of the intentional 
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regions of degradation.  The algorithms did not detect the region of degradation in synthetic_17 and 

only detected the region in synthetic_19 consistently within the last 5 days of the time series.  This 

showed insensitivity in the techniques to very slowly progressing, small uniformity defects.  It should 

be noted, however, that none of the original floods in these time series ever resulted in a NEMA value 

that was greater than 5%.  

The multi-resolution t-test algorithm utilized a threshold value of p<0.01, resulting in rejection of 

false positives.  This was demonstrated by the rejection of any regional segmentation in the 

synthetic_control time series phantom.  

The regions of hydration in retrospective phantom ts_vol_S5 were better characterized using the 

multi-resolution t-test algorithm as opposed to the multi-resolution MDA method because of the 

suppression of the background quad regions in the former.  To demonstrate this, the MDA and t-test 

parametric results for day 73 in the time series are displayed side by side. In Figure 27, the grayscale 

quadrants around the most intense pixels in the MDA map have been suppressed in the t-test 

parametric result, providing an automated threshold.  However, when compared to the high count 

calibration flood acquired some 30 days later, the t-test parametric results still seem to indicate 

uniformity defects which were not necessarily observed in the 200 million-count flood image.  This 

indicates that the temporal image-space algorithms detected statistically significant changes in pixels 

from the baseline condition that were not captured in the single temporal resolution 200 million-count 

flood.  What is not clear, however, is the impact of such changes on clinical images, or whether these 

uniformity defects were the result of attributable causes of degradation or simply the expected 

fluctuation in detector response over time.   

 

 

 

 

 



 

 

Figure 27 – Detailed View of

Top Left: Multi-resolution

Bottom: 

When the algorithm was applied to the defective PMT series, the horizontal banding across the 

UFOV was more clearly demonstrated than in the 

to know whether the results indicate the instability of the PMT or the non

Kalemis’ single resolution pixelwise slope maps

effectively and have been provided with the 

important to note is that the regions identified by the 

as speckled, random noise throughout the parametric map, but were structured in appearance.  
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Detailed View of t-test Map Results for Hydration Spots

resolution MDA at day 73.  Top Right: Multi-resolution t-

Bottom: High-count flood for hydration reference 

 

When the algorithm was applied to the defective PMT series, the horizontal banding across the 

UFOV was more clearly demonstrated than in the original flood images (Figure 28

to know whether the results indicate the instability of the PMT or the non-uniform source decay. 

Kalemis’ single resolution pixelwise slope maps (“s-maps”) demonstrated the banding very 

effectively and have been provided with the multi-resolution t-test maps in Figure 

important to note is that the regions identified by the multi-resolution algorithm were not manifested 

random noise throughout the parametric map, but were structured in appearance.  

 

 

Map Results for Hydration Spots 

test at day 73 

When the algorithm was applied to the defective PMT series, the horizontal banding across the 

28). There is no way 

uniform source decay. 

the banding very 

Figure 28.  What is 

algorithm were not manifested 

random noise throughout the parametric map, but were structured in appearance.   



 

 

Figure 28 – Multi-

Top Row: Multi-resolution 

Middle Row: Slope Maps for corresponding days

Bottom Row: Original images for days 109, 139, and 151.  NEMA integral uniformity values 

were 

Bottom: Location of failed PMT

 

Although the single resolution 

was a contrast gain obtained in the 

plotting a line profile in the parametric results at day 42 in the 

synthetic_13. 
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-resolution and Single Resolution Parametric Maps for 

Ts_vol_T6 

 t-test maps for days 109, 139, and 151.  Failure occurred on day 156.  

Middle Row: Slope Maps for corresponding days (only CFOV shown)

Bottom Row: Original images for days 109, 139, and 151.  NEMA integral uniformity values 

were 3.42, 3.43, and 4.18% respectively 

Bottom: Location of failed PMT.  NEMA integral uniformity 19.56%

ngle resolution slope maps demonstrated the count gradients in the UFOV, there 

was a contrast gain obtained in the multi-resolution t-test algorithm.  This was

the parametric results at day 42 in the time series

 

 

 

Maps for 

maps for days 109, 139, and 151.  Failure occurred on day 156.   

(only CFOV shown). 

Bottom Row: Original images for days 109, 139, and 151.  NEMA integral uniformity values 

.  NEMA integral uniformity 19.56% 

demonstrated the count gradients in the UFOV, there 

was demonstrated by 

time series of the phantom 
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Figure 29 - Uniformity Defect Contrast Enhancement of Image-space t-test 

Parametric Map 

Top Left: Kalemis’ single resolution s-map at day 42 (only CFOV shown).  Top Right: Multi-

resolution t-test result at day 42.  Middle Row: Original flood at day 42.  Bottom: Line profile plots 

across uniformity defect 
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5.2.2.3 Multi-resolution Strength

The results of the multi-resolution

a slight gain in sensitivity in the time to detection of the 

rapidly degrading regions.  The degraded region in phantom sy

early as day 8 in the time series

method.  The region of non-uniformity in p

slower, was not clearly segmented

technique.  There were no false positive se

set, and no discernable false positive segmentations outside of the degra

acquired time series phantom ts_vol_3disk.  The

the non-uniformity as a function of the time to segmentation, in that the 2 cm disk in phantom 

ts_vol_3disk was first observed

of the multi-resolution t-test.   

This technique also demonstrated a similar insensitivity to the very small 

detected in phantoms synthetic_17 and synthetic_19, in which the 

segmented.  Furthermore, the multi

positive regions, or regions outside of the intentionally 

to random error.  These regions faded 

 

Figure 

Left: Location of uniformity defect

positive segmented region using 

The results for phantom ts_vol_

concentrated toward both the center and 

resolution t-test algorithm.  These regions fade as the energy window shifts toward the photopeak, 
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Strength-of-correlation 

resolution strength-of-correlation statistical decomposition demonstrated 

a slight gain in sensitivity in the time to detection of the uniformity defects in phantoms with more 

rapidly degrading regions.  The degraded region in phantom synthetic_15 was detected beginning as 

time series, which is 3 days prior to detection in the multi

uniformity in phantom synthetic_13, in which the rate of degradation was 

early segmented until observation 15, which is similar in performance to the 

technique.  There were no false positive segmentations observed in the 100-flood synthetic control 

set, and no discernable false positive segmentations outside of the degraded regions

phantom ts_vol_3disk.  There was an almost identical sensitivity to the size of 

uniformity as a function of the time to segmentation, in that the 2 cm disk in phantom 

ts_vol_3disk was first observed beginning at day 61 in the time series, which is similar to the results 

This technique also demonstrated a similar insensitivity to the very small uniformity defects

detected in phantoms synthetic_17 and synthetic_19, in which the uniformity defects

multi-resolution strength-of-correlation technique did detect some false 

positive regions, or regions outside of the intentionally degraded area, for phantom synthetic_19 due 

to random error.  These regions faded with time. 

Figure 30 – False Positive Segmentation 

uniformity defect in phantoms synthetic_17 and synthetic_19

positive segmented region using multi-resolution strength-of-correlation

 

results for phantom ts_vol_off-peak exhibited a similar pattern of diffuse segmented pixels 

the center and edges of the UFOV, as previously observed from the 

These regions fade as the energy window shifts toward the photopeak, 

statistical decomposition demonstrated 

in phantoms with more 

nthetic_15 was detected beginning as 

multi-resolution t-test 

hantom synthetic_13, in which the rate of degradation was 

until observation 15, which is similar in performance to the t-test 

flood synthetic control 

ded regions were seen in the 

re was an almost identical sensitivity to the size of 

uniformity as a function of the time to segmentation, in that the 2 cm disk in phantom 

, which is similar to the results 

uniformity defects 

uniformity defects were never 

technique did detect some false 

degraded area, for phantom synthetic_19 due 

 

in phantoms synthetic_17 and synthetic_19. Right: False 

correlation test 

exhibited a similar pattern of diffuse segmented pixels 

iously observed from the multi-

These regions fade as the energy window shifts toward the photopeak, 



 

 

and then worsen as the window moves away from the photopeak

parametric maps adapt to the 

improved when the window was centered on the photopeak, the m

and as the energy window was 

indicating the presence of systematic error.

 

Figure 31 – Multi-resolution

Left: Day 19, Integral Uniformity: 3.7%; Middle: Day 30, Integral Uniformity: 3.37; Right: Day 

 

The results for the retrospective phantom ts_vol_T6 demonstrated some enhanced sensitivity 

when the results of the multi-resolution

multi-resolution t-test.  The horiz

over time using the strength-of

pixels. 

 

Figure 32 – 

Left: Strength

 

The results for the time series

sensitivity to the multi-resolution
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and then worsen as the window moves away from the photopeak in time.  This demonstrate

parametric maps adapt to the actual changes of the detector performance.  As the uniformity 

improved when the window was centered on the photopeak, the map results became more uniform; 

was shifted away from the photopeak, uniformity defects

dicating the presence of systematic error. 

resolution Strength-of-correlation Results for Ts_vol_

Left: Day 19, Integral Uniformity: 3.7%; Middle: Day 30, Integral Uniformity: 3.37; Right: Day 

49, Integral Uniformity: 3.8% 

The results for the retrospective phantom ts_vol_T6 demonstrated some enhanced sensitivity 

resolution strength-of-correlation are compared to the results using the 

horizontal bands that were observed in the UFOV are better characterized 

of-correlation approach, due to the increased number of segmented 

 Multi-resolution Results for Ts_vol_T6, Day 121 

Strength-of-correlation; Middle: t-test; Right: Original flood

time series in which crystal hydration was observed demonstrated similar 

resolution t-test algorithm.  Some hydration spots were also di

This demonstrates that the 

actual changes of the detector performance.  As the uniformity 

ap results became more uniform;  

uniformity defects were segmented, 

 

s_vol_off-peak 

Left: Day 19, Integral Uniformity: 3.7%; Middle: Day 30, Integral Uniformity: 3.37; Right: Day 

The results for the retrospective phantom ts_vol_T6 demonstrated some enhanced sensitivity 

compared to the results using the 

better characterized 

, due to the increased number of segmented 

 

 

; Right: Original flood 

in which crystal hydration was observed demonstrated similar 

algorithm.  Some hydration spots were also difficult to detect 



 

 

when compared to the high count calibration image, but as with the previous algorithms, several 

consistent regions exhibited a sustained segmentation with time and seem to correspond 

regions observed in the high SNR flood. L

hydration noticed in the calibration flood image

explanation is that several hydration spots appeared later in the 

not significant enough to make the corresponding slopes of the linear fits statistically different

zero.   The Kalemis trend analysis demonstrated the hydration spots consistent with the 

calibration flood.  However, the background pixels 

of noise and obscure the locations of the artifact.

Figure 33 – Strength

Top Left: Kalemis S-map 10 days prior to artifact 

resolution Strength-of-correlation

image depicting location of hydration spots.
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when compared to the high count calibration image, but as with the previous algorithms, several 

consistent regions exhibited a sustained segmentation with time and seem to correspond 

high SNR flood. Likewise, the algorithm did not segment some regions of 

hydration noticed in the calibration flood image.  For the regions that went undetected, a possible 

explanation is that several hydration spots appeared later in the time series, but the degradation wa

not significant enough to make the corresponding slopes of the linear fits statistically different

The Kalemis trend analysis demonstrated the hydration spots consistent with the 

However, the background pixels within the UFOV contribute a significant amount 

of noise and obscure the locations of the artifact. 

 

Strength-of-correlation Results for Hydration Time Series

map 10 days prior to artifact discovery (only CFOV); Top Right: 

correlation Results 10 days prior to artifact discovery; Bottom: High SNR 

image depicting location of hydration spots. 

when compared to the high count calibration image, but as with the previous algorithms, several 

consistent regions exhibited a sustained segmentation with time and seem to correspond to several 

the algorithm did not segment some regions of 

.  For the regions that went undetected, a possible 

, but the degradation was 

not significant enough to make the corresponding slopes of the linear fits statistically different from 

The Kalemis trend analysis demonstrated the hydration spots consistent with the high-count 

within the UFOV contribute a significant amount 

 

Results for Hydration Time Series 

; Top Right: Multi-

Results 10 days prior to artifact discovery; Bottom: High SNR 



 

 

5.2.2.4 Sliding Window t-test

The results for the sliding window (convolution) 

in sensitivity to the smaller 

synthetic_17 and synthetic_19 

regions degraded the diameter of the segmented region widened, similar to other algorithms.

algorithm results also demonstrated an as

of the uniformity defect region is detected.  This was observed for several

sizes: 

Figure 34 – Sliding Window t

Note that the outer ring of the 
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test 

The results for the sliding window (convolution) t-test algorithm demonstrated a marked 

sensitivity to the smaller uniformity defects.  The regions were segmented early in both 

synthetic_17 and synthetic_19 time series phantoms and were sustained throughout time.  As the 

diameter of the segmented region widened, similar to other algorithms.

algorithm results also demonstrated an as-of-yet unexplained phenomenon in that only the outer edge 

region is detected.  This was observed for several different spatial window 

 

 

Sliding Window t-test Results for Synthetic_13, Day 81

Note that the outer ring of the uniformity defect was segmented. The diameter of the uniformity 

defect is 8 cm 

algorithm demonstrated a marked increase 

The regions were segmented early in both 

phantoms and were sustained throughout time.  As the 

diameter of the segmented region widened, similar to other algorithms.  The 

yet unexplained phenomenon in that only the outer edge 

erent spatial window 

test Results for Synthetic_13, Day 81 

The diameter of the uniformity 

 



 

 

Figure 35 – Synthetic_19 

The diameter of the uniformity defect is approximately 7 mm.  The ring cannot be fully seen due 

to the small size of the uniformity defect (only CF

 

The parametric maps calculated using Kalemis’ technique also demonstrated superior sensitivity 

in distinguishing smaller uniformity defects

multi-resolution techniques, but contrast wa

algorithm because all pixels outside of the region of non

parametric image.   

The limitations of the sliding window 

segmented outside of the region of 

segmented regions that faded quickly in time.  

for the off-peak time series, indicating that it is more sensitive 

linearly with time and were confined to particular spatial location

floods acquired in larger matrix sizes

The algorithm was insensitive to floods acquired with 

because the spatial window blurs out the distinct 

The algorithm results presented above

segmented in order to spatially identify degraded 

5% NEMA threshold.    The multi

most of the time series, but the larger grayscale quadrants characteristic

manual thresholding necessary to help identify 

an improved method of automatically thresholding the result using the calculated statistical p
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Synthetic_19 Sliding Window t-test Results and Original Floods, 

Days 48 and 84 

The diameter of the uniformity defect is approximately 7 mm.  The ring cannot be fully seen due 

ll size of the uniformity defect (only CFOV processed in map)

The parametric maps calculated using Kalemis’ technique also demonstrated superior sensitivity 

uniformity defects from the background when compared to the previous 

techniques, but contrast was enhanced when using the sliding window 

because all pixels outside of the region of non-uniformity took on a value of zero on the 

the sliding window t-test include an increased number of random regions 

segmented outside of the region of true non-uniformity.  The control time series

segmented regions that faded quickly in time.  In addition, the algorithm did not segment any regions 

, indicating that it is more sensitive to regions of degradation that worsen 

confined to particular spatial locations.  The algorithm was also limited to 

floods acquired in larger matrix sizes (i.e., smaller pixel sizes), due to the size of the spatial window.  

The algorithm was insensitive to floods acquired with smaller matrix sizes (coarser pixel sizes

because the spatial window blurs out the distinct uniformity defects. 

lts presented above demonstrate that regional non-uniformities c

segmented in order to spatially identify degraded portions of the detector prior to a violation of the 

multi-resolution MDA algorithm detected uniformity defects

, but the larger grayscale quadrants characteristic of the algorithm made 

manual thresholding necessary to help identify uniformity defects.  The multi-resolution

an improved method of automatically thresholding the result using the calculated statistical p

 

Results and Original Floods, 

The diameter of the uniformity defect is approximately 7 mm.  The ring cannot be fully seen due 

OV processed in map) 

The parametric maps calculated using Kalemis’ technique also demonstrated superior sensitivity 

background when compared to the previous 

s enhanced when using the sliding window t-test 

uniformity took on a value of zero on the 

include an increased number of random regions 

time series expressed a few 

, the algorithm did not segment any regions 

regions of degradation that worsen 

.  The algorithm was also limited to 

, due to the size of the spatial window.  

coarser pixel sizes) 

uniformities can be 

portions of the detector prior to a violation of the 

uniformity defects early on in 

the algorithm made 

resolution t-test offered 

an improved method of automatically thresholding the result using the calculated statistical p-value.  
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The multi-resolution strength-of-correlation method yielded similar results to the multi-resolution t-

test in terms of sensitivity to the size and rate of degradation and offered a means of characterizing 

degradation over the entire time series, as opposed to an advancing time window.   However, these 

multi-resolution methods still exhibited insensitivity to very small uniformity defects that had little 

impact on the calculated NEMA uniformity values.  The sliding window t-test algorithm along with 

Kalemis’ single resolution trending approach demonstrated an improved sensitivity to smaller regions 

of degradation over the multi-resolution decomposition techniques.   

The table below shows the numbers of days that elapsed until the region(s) of non-uniformity 

were segmented in the parametric maps by each algorithm for several of the time series phantoms 

used.   
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multi-resolution MDA 

phantom time to detection (days) integral uniformity (%,CFOV) 

synthetic_13 13 3.25 

synthetic_15 10 2.65 

synthetic_17 Not detected - 

synthetic_19 96 2.34 

ts_vol_3disk - 8 cm disk 25 2.39 

ts_vol_3disk - 4 cm disk 33 2.86 

ts_vol_3disk - 2 cm disk 50 3.23 

ts_vol_offpeak 18 3.6 

 

multi-resolution t-test 

phantom time to detection (days) integral uniformity (%,CFOV) 

synthetic_13 14 3.76 

synthetic_15 10 2.65 

synthetic_17 Not detected - 

synthetic_19 95 2.79 

ts_vol_3disk - 8 cm disk 26 2.39 

ts_vol_3disk - 4 cm disk 32 2.86 

ts_vol_3disk - 2 cm disk 67 3.85 

ts_vol_offpeak 18 3.6 

 

multi-resolution strength-of-correlation 

phantom time to detection (days) integral uniformity (%,CFOV) 

synthetic_13 14 3.76 

synthetic_15 9 3.44 

synthetic_17 Not detected - 

synthetic_19 Not detected - 

ts_vol_3disk - 8 cm disk 25 2.39 

ts_vol_3disk - 4 cm disk 32 2.86 

ts_vol_3disk - 2 cm disk 62 3.59 

ts_vol_offpeak 16 3.57 

 

sliding window t-test 

phantom time to detection (days) integral uniformity (%,CFOV) 

synthetic_13 19 2.82 

synthetic_15 13 3.76 

synthetic_17 33 2.39 

synthetic_19 19 2.38 

ts_vol_3disk - 8 cm disk 33 2.86 

ts_vol_3disk - 4 cm disk 41 3.32 

ts_vol_3disk - 2 cm disk 56 3.04 

ts_vol_offpeak Not detected - 

Table 5 – Summary of the Algorithm Performance on Phantoms 

 

In the table above, the time to detection was considered the first day on which the non-

uniformities were segmented in the maps and sustained throughout the subsequent parametric maps.  

The entire phantom non-uniformities were segmented by at least one of the algorithms employed 

prior to a single flood image resulting in a NEMA uniformity value that exceeded 5%.  Of note was 



 

 

the observation that each of the 

of the number of days taken to begin segmenting the non

time taken to begin segmentation of the 2 cm disk. 

demonstrated superior sensitivity to the other two 

location of false positives was similar between the 

better false positive performance was observed for the 

algorithm.  For example, consider the parametric maps produced for each algorithm at day 46 for the 
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the observation that each of the multi-resolution techniques demonstrated similar sensitivity in terms 

of the number of days taken to begin segmenting the non-uniformities.  The exception to this 

taken to begin segmentation of the 2 cm disk.  In that case, the multi-resolution

demonstrated superior sensitivity to the other two multi-resolution techniques.  

location of false positives was similar between the multi-resolution t-test and MDA algorithms, and 

better false positive performance was observed for the multi-resolution strength

algorithm.  For example, consider the parametric maps produced for each algorithm at day 46 for the 

Figure 36. 

resolution Parametric Results for Phantom Synthetic_19, Day 

46 

Left: MDA (false positives noted); Middle: t-test; Right: strength-of-correlation
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technique, demonstrated improved performance over the sliding window t-test in some scenarios, 

while the sliding window t-test showed improved performance in others.  

 

5.3 Specific Aim 3 – Statistical Process Control Techniques 

Apply statistical process control to conventional methods of quantitatively monitoring uniformity 

in order to characterize how these metrics change over time in response to the mimicked degradation 

processes.   

5.3.1 Materials and Methods 

The results in 5.2 indicate that the image-space methods of statistical segmentation provide an 

improvement in specificity over global figures-of-merit, such as NEMA or CRSD uniformity values, 

because they identify the spatial locations and extent of uniformity defects.  However, conventional 

measures of uniformity, such as the NEMA uniformity index, provide a widely accepted global 

figure-of-merit, and thus the natural reference against which to compare alternative techniques.   

Statistical process control is widely used in manufacturing to ensure the quality and consistency 

of products.  Fundamental to statistical process control is the characterization of what is called an “in-

control” process. This characterization includes the calculation of statistical parameters (such as the 

sample mean and variance) of certain quantitative attributes of a product at a time when they are 

deemed to be acceptable in quality and free from any defect that may be the result of a systematic, 

non-random cause (16).   Time Series observations of these attributes are plotted in control charts, 

which are graphical tools used to determine if a quality process is in a state of statistical control.  An 

out-of-control process is one in which the observations of the control parameters continuously fall 

outside of the established control limits (16).  The in-control parameters are used to calculate control 

limits against which future observations of the process are graphically compared in a control chart.  

Observed defects that result from systematic causes may introduce a sustained shift in the process 

observations in a time series.  These process shifts represent changes in the product characteristics 

that are outside of the expected statistical fluctuation and signal a problem with the process that 

should be addressed in order to maintain quality.  Control plots provide a sensitive means of 

determining trends in time series data by providing real-time signals for observations made outside of 

the previously established limits.  Methods of using control charts for quantitative quality control 

have been used extensively for bone density scanners (34). 

To cast this project in statistical process control terms, a baseline replicate set of acceptably 

uniform floods serves as the in-control portion of the daily flood processes.  The ‘product attributes’ 
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that were evaluated using statistical control methods were the global uniformity figures-of-merit.  The 

sample mean and variance of the sets of the baseline replicate NEMA uniformity (or CRSD) values 

were calculated (this is known as a phase I action).  These parameters were then used to monitor the 

performance characteristics of subsequently observed uniformity values (a phase II action (16)).   The 

control limits for the synthetic data were derived from the large sample synthetic_control time series 

(100 synthetic floods).  The control limits for the retrospective phantom data were based on the first 

20 floods in the time series because the NEMA values in this period were all under the 5% threshold.  

While it would have provided more statistical power had  more floods been utilized for the control 

limit characterization, twenty consecutive floods represented an adequate number of observations for 

a phase I action (16) while minimizing the time span over which detector performance could have 

changed.  Furthermore, twenty consecutive floods of 10-million counts each are consistent with the 

current practice of acquiring a 200-million count flood for calibration purposes.  For the acquired 

flood data (attenuation disk and off-peak time series), the phase I portion was observed over 40 

consecutively acquired uniform replicates, in order to provide a case in which greater statistical power 

was used. 

Several different types of control charts were constructed and applied to the time series phantom 

data and were used to monitor the points in time at which systematic causes of degradation occurred, 

indicating that the uniformity process was out-of-control.  Control plots signal both large and small 

shifts in the expected values of a time series and alert the reviewer of systematic changes in the 

uniformity performance. 

5.3.1.1 Shewhart Control Chart for Individual Observations 

Shewhart control charts are tools for monitoring a process mean and variance and are the most 

common type of control chart used for monitoring normally distributed data (15).  These charts are 

ideal for detecting large shifts in the mean and/or variance of a time series of observations.  In most 

applications of Shewhart charts, one observation of a process attribute in time is derived from the 

mean of several repeated measurements at that particular observation point.  For example, if 

measuring the weight of widgets on a conveyor belt, the observation at time t will be the average 

weight of 5 different widgets pulled off the belt at time t.  However, because the calculated uniformity 

observations are relatively infrequent for daily uniformity floods (4-5 per week, with 1 uniformity 

value per day), a chart that can be used to monitor individual measurements rather than individual 

sub-samples is necessary.  There is a version of the Shewhart control method for single-measurement 

processes, in which each observation in time on the control chart is a result of a single measurement 
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(15).  In order to derive the Shewhart single-observation control limits, the moving range is calculated 

for each of the phase I observations 

 

�F. �  |�. 	  � .B1| 
Equation 23 – Shewhart Moving Range Calculation 

 

where i denotes the point in time (observation number) among the baseline measures and xi and xi-1 

are the current and previous points in time NEMA values in the set of baseline observations (16).  The 

average of these moving range values is calculated over all of the baseline measurements.  Next, the 

control limits for the chart are calculated using the following equations (16). 

 

vE~ �  �̂��m�+.C� �  3 �F)))))��m�+.C�1.128  

Ed]�d¡��]d �  �̂��m�+.C� 

~E~ �  �̂��m�+.C� 	  3 �F)))))��m�+.C�1.128  

Equation 24 – Shewhart Control Limit Calculations 

 

�F))))) is the average moving range over the baseline replicate set of floods and �̂��m�+.C� is the average 

NEMA (or CRSD) value over the baseline set of images. The factor of 1.128 in Equation 20 is 

derived in the literature (16) for single-measurement time series.  The upper and lower control limits 

essentially reflect the 3σ limit for the phase I mean.  Obviously, the lower control limit may not be 

clinically relevant, as there is no limitation on how low a value would be desirable for the global 

figures-of-merit.  However, a minimum value is expected based upon the randomness of the count 

data, therefore if things were operating “too good” that might indicate a problem. 

5.3.1.2 CUSUM Control Chart 

Cumulative summation (CUSUM) control charts are an effective means of detecting subtle shifts 

in a process mean and variance and have been shown to operate well with Poisson distributed data 

(15).  The test statistic used to construct these charts is the continuous summation of the residuals 

about an expected process mean over time.  This form of statistical control is useful because it 

amplifies signals in the time series data by summing the differences from the baseline condition.  If 

there are no significant shifts in the mean value of a process, then the CUSUM statistic will always 
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have a value essentially of zero, as there is no expected significant difference between the current 

observation and the phase I mean value.   

A standardized test statistic was calculated for each phantom time series global uniformity by 

subtracting the phase I mean from the current uniformity value in the series and dividing by the phase 

I standard deviation (16): 

 

¢. �  �. 	  �̂��m�+.C�2��m�+.C�  

 

The standardized two-sided CUSUM values at time point i may be calculated using the following 

equations (16): 

E.D � ��_�0, ¢. 	  a �  E.B1D �             
E.B � ��_�0, 	a 	 ¢. �  E.B1B � 

Equation 25 – CUSUM Statistic Calculations 

 

where k is a reference value, usually taken to be one-half of one standard deviation (16), and E.B1 is 

the previous CUSUM statistic in the time series.  The MAX [0,*] notation indicates that the 

CUSUM value is actually the larger value of 0 and the calculated statistic.  The upper CUSUM 

reflects a positive shift in the process mean, while the negative CUSUM reflects a reduction in the 

process mean. The initial CUSUM value (E9D and E9B) is 0.  The smaller the value of k selected, the 

smaller the shift in the process mean that will be detected.  The reference value k is normally chosen 

in order to give good Average Run Length (ARL) values.  The ARL is the number of consecutive 

observations made before randomly indicating an out-of-control signal by chance. A tradeoff with 

ARL exists in the selection of k, in that larger values reduce the number of false positives shown to be 

outside of the control limits, but smaller values of k improve the sensitivity to detecting shifts in the 

process mean.  A value of k=1 was selected because it demonstrated good ARL performance for the 

uniform time series control data.  The CUSUM statistics were plotted as a function of time in the 

control chart, and if any values exceeded the decision value, H, an out-of-control shift was inferred, 

especially if the signal was sustained, or continuously above the decision value.  According to the 

literature, for the value of k chosen, a reasonable decision interval for normally distributed data is 

H=3 (16).  (One might argue for clinical practice that a QC measurement should be repeated 

immediately if it fails this test, and a true positive declared when H > 3).   
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5.3.1.3 EWMA Control Chart 

As with the CUSUM method of statistical control, exponentially weighted moving average 

(EWMA) control charts are ideal for monitoring relatively small shifts in process means and are very 

effective tools for single-measurement time series measurements (16), such as NEMA and CRSD 

uniformity values.  EWMA is distinct from the CUSUM in that it is actually a predictor of the process 

mean at a time point one day in advance of the process, and thus it is often used in time series 

analysis and forecasting applications (16).  Another benefit of this method of statistical control is that 

it is insensitive to the assumption of normality, meaning that data do not necessarily have to be 

normally distributed for changes in process parameters to be detected using this chart.  Both normally 

distributed data as well as data from other probability distributions may be plotted in CUSUM and 

EWMA control charts (16).  The Shewhart control chart is sensitive to detecting large process shifts 

and works best for normally distributed data. Shewhart charts are recommended by Montgomery (16) 

to be used concomitantly with control charts designed to detect small process shifts, such as EWMA 

and CUSUM charts.   

For an independent observation xi, the exponentially weighted moving average (EWMA) at the 

point of observation is defined as 

 

o. �  f�. � 
1 	 f�o.B1 

Equation 26 – EWMA Statistic 

 

The EWMA is effectively a weighted average of all past and current observations and is 

insensitive to normality (16).  The variable omega is the weighting coefficient that controls the 

relative influence of the current measurement, xi, and the previous EWMA value, zi-1.   The initial 

value for z0 in this case is the observed sample mean of the phase I observations.  For a derivation of 

the exponential weighting coefficient, the reader may refer to Montgomery (16).  The upper and 

lower control limits for this type of chart are as follows: 

 

vE~ �  �̂ �  ~�m� f
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Equation 27 – EWMA Control Limit Calculations 
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The centerline for the chart (�̂) is the mean value of the preliminary data, or phase I 

observations.  The value L is essentially the width of the control limits, or rather the threshold for 

number of standard deviations from the mean.  According to the literature (15), there are commonly 

selected values for ω and L, and for this application they were chosen to be ω=0.1 and L=3 (15).  

These values have been found by Montgomery to work well in most applications and demonstrate 

good ARL performance, meaning that false positives are rarely signaled in a time series run of 

observations (15).  

5.3.2 Results and Discussion 

NEMA uniformity and CRSD values were calculated for the CFOV of each image in the time 

series phantoms.  The results were plotted as a function of time using the statistical control chart 

methods described in 5.3.1 (see Appendix for charts).  The time series data for the uniform control 

floods were plotted within the calculated control limits and there were no false positives noted in the 

uniform time series data.  This indicates that appropriate limits were established. 

The CRSD control charts did not exhibit the same sensitivity to changes in uniformity 

performance as the NEMA calculations.  An out-of-control signal was noted when the value crossed 

the upper control limits and remained above this set limit.  This demonstrated a trend or change in the 

process parameters.  The time series plots for phantom synthetic_15, which had the highest rate of 

degradation, showed that both the integral and differential uniformity (Figure 37a.) signaled an out-

of-control shift weeks before control limits for the CRSD plot (Figure 37b.) were violated.   
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. 

b. 

Figure 37 – Shewhart Control Charts for Phantom Synthetic_15 

Top (a): Differential uniformity signals an early trend outside of the control limits (red lines).  

Bottom (b): CRSD uniformity is within the set limits for most of the time series. 

 

This observation is explained by the fact that the CRSD is calculated over all of the pixels present 

in the UFOV.  Any subtle differences in pixel values can be masked by the entire distribution of 

pixels.   The NEMA calculation, on the other hand, is essentially a range calculation between the 

maximum and minimum values within the FOV.  The result is that while NEMA may give rise to 

more random fluctuations in a time series plot of values (as demonstrated by Young, et al, (15)), it 

does seem to be more sensitive in identifying sustained parametric shifts.  Moreover, CRSD has not 

gained wide use in clinical settings.  The remaining results focus on the NEMA uniformity index. 

The integral uniformity value was more sensitive than the differential uniformity to detecting 

trends in most of the time series phantoms.  For the 8 cm diameter non-uniform region in phantom 

synthetic_13, the Shewhart control charts for the integral uniformity signaled a shift approximately 20 

days prior to shift detection by the differential uniformity method.  The off-peak phantom data 

yielded similar results, in that the differential uniformity Shewhart chart never signaled an out-of-

control process, while the integral uniformity Shewhart chart demonstrated multiple violations over 

the course of the time series as the energy window shifted toward and then away from the photopeak.  

The EWMA and CUSUM control charts exhibited similar differences between the integral and 

differential uniformity values.  The only exceptions to this observation were the results for the crystal 
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hydration time series, ts_vol_S5 (Figure 38).  The differential uniformity index signaled a process 

shift in both the CUSUM and EWMA control charts, while the integral uniformity never did.   
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Figure 38 – CUSUM and EWMA Control Charts for Crystal Hydration Time 

Series 

Phantom: ts_vol_S5 

The chart data for ts_vol_S5 also demonstrated the similarities in sensitivity between the EWMA 

and CUSUM methods.  Both methods signaled a violation at approximately day 50 in the time series, 

but the CUSUM statistic eventually fell back under the threshold of three.  While the CUSUM later 

exceeded this value again, the EWMA demonstrated a sustained shift above the upper control limit.  

Both the CUSUM and EWMA control charts showed improved sensitivity over the Shewhart method.  

For example, in the crystal hydration time series images, the Shewhart control limits were never 

violated for either the integral or the differential uniformity values as opposed to the violations noted 

in Figure 38 for the EWMA and CUSUM charts.   

The control plot results for the time series phantom ts_vol_T6, in which a defective PMT was 

observed in the last image of the image set, presented an interpretive challenge.  The control limits for 

the integral uniformity in all three plotting methods showed violation within the first few days of the 

time series.  The Shewhart and EWMA chart indicated an eventual return back within control limits, 

but the CUSUM chart never stabilized.  Because the control limits for the time series were based on 

only 20 floods acquired over successive days, the parameters may not have been accurately 

characterized in the control limit calculation.  However, this same approach was used for the 

hydration time series data and the performance of the charts suggests that the control limits were 

appropriate because no discernable false positives were present early in the time series.  Furthermore, 

the detector used to acquire the floods for ts_vol_T6 had several service events over the course of the 

time series run, indicating that image quality issues had been noticed by the imaging technologist who 

acquired the QC floods.  The performance of the detector was improved in order to address these 
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deficiencies.  Therefore, it is unclear 

systematic defect of the gamma camera detector

restrictive control limits need to be established.  

The multi-resolution decomposition algorithms complement

changes exhibited in the control charts.

large, as in synthetic_13 and synthetic_15, the control plots for the NEMA values effectively detect

the sustained shift in performance early on in

images calculated around the time points 

control limits illustrating that the specificity provided by the maps in terms of visually locating th

uniformity defects complement

the NEMA integral uniformity 

the time point of the control violation depict

progression.   

Figure 39 – Multi-resolution

Differential Uniformity 

Original flood shown to the
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deficiencies.  Therefore, it is unclear whether the initial control plot violations were due to a 

defect of the gamma camera detector or this was expected random error

control limits need to be established.   

decomposition algorithms complemented the sensitivity to unifor

in the control charts.  In cases where the size of the region of non

large, as in synthetic_13 and synthetic_15, the control plots for the NEMA values effectively detect

the sustained shift in performance early on in the time series.  The figures below depict the parametric 

images calculated around the time points at which the trends in uniformity values exceeded the 

the specificity provided by the maps in terms of visually locating th

complemented the sensitivity of the time series control charts.  

integral uniformity values was more sensitive, and the corresponding parametric map at 

the time point of the control violation depicted the region of non-uniformity in a nascent stage of 

resolution Strength-of-correlation at Point of Shewhart 

Differential Uniformity Control Violation 

Original flood shown to the left of the parametric result 

Phantom: synthetic_13 

olations were due to a 

or this was expected random error for which less 

the sensitivity to uniformity 

In cases where the size of the region of non-uniformity was 

large, as in synthetic_13 and synthetic_15, the control plots for the NEMA values effectively detected 

The figures below depict the parametric 

the trends in uniformity values exceeded the 

the specificity provided by the maps in terms of visually locating the 

  Again, the shift in 

the corresponding parametric map at 

uniformity in a nascent stage of 
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Figure 40 - Multi-resolution

Original flood shown to the
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resolution MDA at Point of EWMA Differential Uniformity 

Control Violation 

Original flood shown to the left of the parametric result 

Phantom: synthetic_13 

 

 

 

Differential Uniformity 



 

 

Figure 41 – Multi-resolution

EWMA Integral Uniformity 

 

 The time points of control limit violations in the attenuation d

three different statistical process control techniques.  

larger two disk sizes well in advance of the control limit violation, demonstrating a case when the 

image-space techniques offered

of degradation in this time series 

NEMA uniformity values were

FOV.  Linear, slower rates of degradation 

trends were signaled in the global control charts, while larger, rapidly changing regions 

degradation signaled trends in the charts prior to being segmented in the parametric maps.

Furthermore, small uniformity defects

segmented in the time series images using the sliding window 

sustained shift in the values above a control limit.  

contained points toward the end of the 

the trend returned to being within 

result well in advance of this. 
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resolution Strength-of-correlation Result at the Point of 

Integral Uniformity Control Chart Violation 

Phantom: synthetic_13 

The time points of control limit violations in the attenuation disk time series were

three different statistical process control techniques.  The multi-resolution algorithms segment

larger two disk sizes well in advance of the control limit violation, demonstrating a case when the 

ed greater sensitivity than the global uniformity trend analysis.  

of degradation in this time series was low (0.1%) compared to the synthetic phantom data 

were less sensitive to detecting the subtle, localized count losses in the 

rates of degradation were segmented the multi-resolution 

trends were signaled in the global control charts, while larger, rapidly changing regions 

degradation signaled trends in the charts prior to being segmented in the parametric maps.

uniformity defects such as those present in synthetic phantoms 17 an

images using the sliding window t-test approach, but never resulted in a 

sustained shift in the values above a control limit.  The CUSUM and EWMA results for synthetic_19 

ints toward the end of the time series run that crossed the control limit, but in each 

within control.  However, the region was segmented in the parametric 
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trends were signaled in the global control charts, while larger, rapidly changing regions of 

degradation signaled trends in the charts prior to being segmented in the parametric maps.  

such as those present in synthetic phantoms 17 and 19 were 

approach, but never resulted in a 

The CUSUM and EWMA results for synthetic_19 

run that crossed the control limit, but in each case, 

However, the region was segmented in the parametric 



 

 

Figure 42 – Parametric Results for Attenuation Disk Images at Day 40

Top: Shewhart chart for integral uniformity. Middle: 

of-correlation results at observation 40.  Bottom: EWMA control chart
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Parametric Results for Attenuation Disk Images at Day 40

Top: Shewhart chart for integral uniformity. Middle: multi-resolution t-test, MDA, and 

results at observation 40.  Bottom: EWMA control chart
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Figure 43

Violation of CUSUM differential uniformity 

 

The EWMA and CUSUM 

uniformity values for the crystal hydration 

well in advance of the hydration spots

While no confirmation is available 

CFOV, it does demonstrate the utility of using the global trend charts concomitantly with the 

parametric maps.  If the global uniformity results begin trending beyond the established control 
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43 – Parametric Result for Synthetic_19, Day 40 

differential uniformity control chart after day 80.  Non

segmented well in advance. 

The EWMA and CUSUM differential uniformity value control charts for the differential 

uniformity values for the crystal hydration time series signaled a change in uniformity performance 

well in advance of the hydration spots’ being discerned in the multi-resolution parametric results.

no confirmation is available that this was the result of the formation of hydration spots in the 

t does demonstrate the utility of using the global trend charts concomitantly with the 

parametric maps.  If the global uniformity results begin trending beyond the established control 

 

control chart after day 80.  Non-uniformity 

control charts for the differential 

uniformity performance 

parametric results.  

that this was the result of the formation of hydration spots in the 

t does demonstrate the utility of using the global trend charts concomitantly with the 

parametric maps.  If the global uniformity results begin trending beyond the established control 
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limits, the parametric maps help to confirm the presence of isolated uniformity defects.  Likewise, if 

segmented regions observed in the parametric maps correspond to the initiation of a trend in the 

global figures-of-merit, there is a more sound statistical case that a significant change in performance 

has occurred and that a service action should be initiated. 

The control charts effectively signaled trends in the non-linear degradation process demonstrated 

by the off-peak time series phantom (Figure 44).  As the acquisition energy windows fluctuated 

toward and away from the 
57

Co photopeak, corresponding shifts outside of the established control 

limits were noted.  This corresponded with the diffuse segmentation pattern that resulted in the 

parametric maps for days in which the shift was signaled in the control charts. 

 

 

 

 

 

 

 

 



 

 

     

Figure 44 – Comparison of 

Top: Shewhart Control Chart; Middle: 

respectively; Bottom: Original flood images for corresponding days
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Comparison of Multi-resolution Maps to Shewhart Control Chart

for Off-peak Time Series 

Top: Shewhart Control Chart; Middle: Strength-of-correlation maps for days 19, 30, and 48, 

respectively; Bottom: Original flood images for corresponding days

 

 

Maps to Shewhart Control Chart 

maps for days 19, 30, and 48, 

respectively; Bottom: Original flood images for corresponding days 
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6. CONCLUSIONS 

This project was a proof-of-principle study that implemented several novel methods of using 

registered time series floods in order to enhance spatial regions of performance degradation within the 

detector field-of-view for improving detectability.  The results demonstrated a sensitive means of 

monitoring gamma camera uniformity by improving the detectability of progressive uniformity 

defects.  Clinically, this is expected to minimize scanner downtime by identifying trends in 

uniformity performance at a point in time before they are manifested in patient images.  

The hypothesis stated a specific, clinically relevant rate of degradation against which to evaluate 

the algorithms.  The time series attenuation disk phantom (ts_vol_3disk) represented a degradation 

rate of less than 0.1%.  The highest value for the NEMA integral uniformity was 4.27%, which is 

below the 5% threshold.  The addition of attenuating material to the FOV was a linear process, 

occurring at evenly spaced time intervals, and the NEMA uniformity values were expected to 

eventually exceed 5%.  The multi-resolution parametric maps at observation 70 in the time series (10 

days prior to the last observation) showed that the 2, 4, and 8 cm attenuation disk regions were all 

segmented from the background pixels (Figure 45).  The NEMA integral uniformity value for this day 

was 3.37%.  Thus, given this rate of degradation over regions of diameter 2, 4, and 8 cm, multi-

resolution algorithms recognized the non-uniformities before there was a single flood with a NEMA 

value in excess of 5%. 

 

 

 

 

 

 

 

 

 



 

 

Figure 45 – Parametric Results for Attenuation Disk Phantom 

Top Left: Disk location reference; Top Right: Original daily flood at day 70.  Middle Left: 

resolution MDA map at day 70; Middle Right: Sliding Window 

Bottom Left: Multi-resolution

95 

Parametric Results for Attenuation Disk Phantom – Day 70

Top Left: Disk location reference; Top Right: Original daily flood at day 70.  Middle Left: 

MDA map at day 70; Middle Right: Sliding Window t-test map at day 70; 

resolution t-test map at day 70; Bottom Right: Multi-resolution

correlation map at day 70. 

 

 

 

Day 70 

Top Left: Disk location reference; Top Right: Original daily flood at day 70.  Middle Left: Multi-

map at day 70;  

lution strength-of-
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In addition to the algorithms’ segmentation of the non-uniformities in the FOV prior to the 

NEMA uniformity value being above 5%, the time series control plots identified the trend in the 

uniformity values before this threshold was crossed.  All three charts signaled a control limit violation 

approximately 30 days prior to the end of the time series.  This implies that a distinct trend in the data 

was signaled prior to the 5% threshold violation.  Furthermore, the segmentation algorithms were able 

to detect the two larger regions of degradation in the image before a trend was indicated in the NEMA 

uniformity values.  While this was the case for slowly progressing non-uniformities, larger, rapidly 

degrading regions were quickly detected by the control chart mechanisms, even before the spatial 

extent of the non-uniformity was fully realized in the parametric maps.  Overall, the phantoms 

synthetic_17, synthetic_19, ts_vol_S5, and ts_vol_3disk illustrated the scenarios in which the time 

series segmentation tools were most useful: smaller regions of degradation that slowly progress in 

magnitude as a function of time.  In these cases, the NEMA threshold was never violated and there is 

relatively little shift in the trending performance of the global figures-of-merit.  These methods 

provide the user with the spatial location and size of the region of non-uniformity based on a 

difference from the baseline value.  The effectiveness of the control charts at detecting rapid 

degradation and the sensitivity of the multi-resolution techniques at segmenting subtle degradation 

indicates that concomitant use of these tools would provide optimal sensitivity in monitoring flood 

uniformity.  There are time series plots of the NEMA uniformity values over time for each of the 

phantoms provided in 9.1, along with a summary table of the performance of the different monitoring 

techniques.  For the global figure-of-merit control chart techniques, the point in time at which each 

chart began to show multiple points plotted outside of the control limits is marked with a 

corresponding colored line.  For the image-space techniques, the point in time at which pixels are 

segmented in the parametric maps at the location of the true defect for at least 5 continuous days is 

marked with a corresponding colored line.  These plots demonstrate the relative performance of each 

technique.  In summary, the control chart techniques provide greater sensitivity to the size and rate of 

degradation than the image-space techniques.  The EWMA and CUSUM charts consistently out-

perform the Shewhart charts in terms of sensitivity.  The charts provided a truly autonomous method 

of monitoring for defects that is not dependent upon visual interpretation.  However, the image-space 

algorithms provide more specificity than the control chart results do because they provide the 

reviewer with the exact location and relative size of the defects.  For this reason it is recommended 

that the control charts be used to automatically monitor the time series uniformity performance, and 

when signals are triggered by observations that fall beyond the control limits, the parametric maps 

from the multiresolution t-test and strength-of-correlation test be used to diagnose the defects. 
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The tools developed and presented above provide methods of alerting the reviewer to subtle 

changes in uniformity performance by including a temporal component to both the images and global 

figures-of-merit.  They offer a predictive aspect to monitoring uniformity in that they make 

assumptions about expected behavior based on previous observations.  When significant changes in 

either uniformity indices or pixel values occur, the tools provide a method of signaling the reviewer 

of the change, either in the form of a control limit violation or the specific location of the degraded 

region in a parametric map.  The segmentation techniques enhance the contrast of statistical non-

uniformities and provide an automated method of isolating such regions from uniform pixels. 

This thesis has presented several novel, alternative methods of visually and quantitatively 

monitoring flood uniformity by exploiting the temporal nature of gamma camera detector 

degradation.  These methods were tested using several different types of time series data sets in order 

to demonstrate the feasibility of the algorithms.  Clinically, these algorithms should be run daily for 

every detector after new QC flood acquisitions are acquired.  The reviewer would inspect the 

parametric maps produced by each algorithm as well as review the control chart of the calculated 

NEMA uniformity values.  As was discussed in section 5.2, the multi-resolution techniques 

demonstrated similar sensitivity, but given the number of false positives identified by the MDA 

technique, as well as the somewhat arbitrary manner in which contrast is enhanced in the parametric 

maps, the most suitable multi-resolution techniques to implement clinically are the t-test, strength-of-

correlation, and sliding-window t-test algorithms.  In addition to this, the NEMA uniformity time 

series control charts demonstrate sensitivity to detecting shifts in uniformity performance, especially 

for larger uniformity defects, and using them concomitantly with the image-space algorithms would 

provide the reviewer with more certainty when determining the state of performance of the clinical 

system. 
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7. FUTURE WORK 

This project was a proof-of-principle study to demonstrate the utility of improving the sensitivity 

in uniformity monitoring by adding an automated, temporal component to QC floods as well as 

statistical process control.  Several potential project threads would further lay the foundation for its 

clinical implementation.   

 

7.1 Reviewer-based Studies 

Several aspects of this work should be verified in a reviewer-based study.  First, multiple 

reviewers should verify the time to detection of each of the algorithms for the different phantom types 

used.  While the automated segmentation algorithms essentially produce a high-contrast map of the 

non-uniformity locations, which is easily interpreted, the reviewer must still visually verify the 

presence and location of the segmented regions and the point at which they are first observed and 

compare this to the results in original raw flood images.  Because this still permits some subjectivity 

in the review process, a reviewer-based study would adequately characterize the performance of the 

algorithms.  Secondly, the threshold levels established (p < 0.01) for the multi-resolution techniques 

should be validated in a reviewer-based study in order to determine the optimality of the different 

levels of significance.  The levels chosen for this study were kept low in order to minimize false 

positive segmentations in the parametric maps, however, clinically there may be some benefit to 

using larger threshold values in terms of gaining sensitivity to detecting non-uniformities earlier in 

the time series.  This can be tested using a reviewer-based approach.  Furthermore, it was discovered 

during the course of this investigation that a potential method of viewing the parametric images 

produced by the algorithms is in a cine loop.  In order to discover if there are inherent sensitivity 

gains in reviewing QC in this manner, in terms of detecting any uniformity defects, a reviewer-based 

study would be needed. 

 

7.2 Algorithm Optimization 

To maximize the sensitivity to detecting steeper rates of degradation at an earlier time point, 

multi-resolution decomposition in the temporal dimension should be developed and applied to the 

time-windowed multi-resolution algorithms.  While using a larger time bin improves the SNR of the 

pixels as a function of time, it also has the potential for averaging out rapid changes as floods 

accumulate.  Decomposing the temporal dimension using successively smaller time windows should 

improve the sensitivity of the algorithm.  While this may increase the rate of false positives detected, 
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it may be beneficial to improve sensitivity to dramatic shifts in the pixel samples.  Weighting the time 

windows differently according to their temporal size such that larger time windows are weighted 

more heavily than smaller windows should help to minimize the false positive rate while gaining 

sensitivity to detecting more abrupt changes in the pixel sub-volumes. 

The correct registration of the FOVs in the time series is critical in order to ensure that same 

pixels are being compared between two time points in the multi-resolution techniques.  The data 

analyzed in this study was inherently registered, but shifts in the location of the UFOV within the 

digital image matrix can occur, and therefore the programs need to account for these potential shifts 

in order to make sure that the images are registered throughout the time series. 

Another project thread would be to use the temporal multi-resolution decomposition maps to 

derive a function that will help characterize the relationship between the size of the region of non-

uniformity, rate or magnitude of degradation, and time.  

A running log of the false positive pixels identified by each of the segmentation algorithms may 

also provide an effective global figure-of-merit that can be used in a similar manner as the NEMA 

uniformity indices.  Calculating the difference between the expected number of false positive pixels 

and the actual number present in the parametric maps may provide a sensitive method of monitoring 

flood uniformity.  The reviewer would then be able to use the visual specificity provided by the maps 

along with the statistical probability provided by the false positive rate. 

 

7.3 Extensive Retrospective Analysis 

The retrospective data sets processed in this study demonstrated that distinct trends were detected 

using both the multi-resolution algorithms as well as the time series statistical process control plots.  

However, the results were somewhat ambiguous and it is not well understood if many of the 

segmented regions in the parametric maps were true systematic non-uniformities or simply expected 

changes in the pixels from the baseline condition.  It is also not well understood whether the baseline 

replicate sets used in the retrospective time series data adequately characterized the expected 

uniformity behavior for these systems.  By processing the retrospective daily floods that did not have 

any noted performance defects, as well as processing more flood images from gamma cameras with 

both crystal hydration and PMT defects, the differences in expected behavior and systematic detector 

error can be assessed using the algorithms developed in this project.  In this way, it can be determined 

whether or not common clinical defects such as PMT failure can, in fact, be predicted. 
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7.4 Study of Clinical Implications of Uniformity Defects 

In terms of the global figures-of-merit, it would be valuable to investigate the direct relationship 

between the calculated uniformity in a single 10-million count flood, and the clinical significance of 

that uniformity in terms of patient image quality.  This would give the 5% threshold, which the 

algorithm results in this study were compared against, some clinical context in terms of how NEMA 

uniformity translates to patient image quality.  To do this, the binary PMT degradation map (using all 

PMT locations to adequately sample the UFOV) should be multiplied by the individual projection 

images of a SPECT data set, and the images tomographically reconstructed.  The same degradation 

map could then be multiplied into a daily flood image and the NEMA values calculated. This would 

provide a direct correlation of NEMA uniformity values to patient image quality.  The magnitude of 

the degraded regions could be varied in order to determine the percent uniformity at which patient 

image quality is adversely affected.  The degradation maps (see section 5.1.1.1) could also be 

multiplied directly into a planar patient acquisition, such as a bone scan, and the effects demonstrated 

using, for example, a contrast-to-noise calculation. 

 

7.5 Software Integration 

A final goal is to integrate the algorithm programs presented in the thesis into the clinical 

software environment at UT MD Anderson Cancer Center.  These tools can be used to help 

characterize actual clinical modes of non-uniformity, such as PMT failure or crystal hydration.  These 

processes are not well understood at this point, and by no means definitively predictable, but 

including a temporal component in order to improve the ability to detect them could provide useful 

information regarding their spatial and temporal characteristics. 

The groundwork laid in this thesis has identified novel methods of providing a functional, 

temporal aspect to clinical quality control images and has demonstrated the feasibility of these 

modifications to uniformity QC review.  The future work detailed above will provide several 

benchmarks for the continuation of research on this topic.   
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9. APPENDIX 

 

9.1 Summary of Results 
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R² = 0.9799y = 0.0899x + 2.8246
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y = 0.0185x + 2.2989
R² = 0.752
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y = 0.0185x + 2.2989
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Method  Pros  Cons  

Multiresolution 

MDA  

Sensitive; provides diagnostic 

information  

Prone to false-positives due to quad 

regions; somewhat qualitative to interpret  

Multiresolution t-

Test  

Improved false-positive performance; 

sensitive; provides diagnostic 

information  

Limited when detecting very small defects; 

while quantitative, still requires visual 

interpretation  

Multiresolution 

SoC  

Slightly more sensitive than t-Test; 

good false-positive performance  

Limited when detecting very small defects; 

while quantitative, still requires visual 

interpretation  

SWTT  Ability to detect very small, slowly 

progressive defects 

Larger matrix required; insensitive to 

larger, less defined defects (off-peak data)  

 

Shewhart 

Control Charts  

Autonomous detection (no interpretation needed); 

sensitive to non-linear degradation  

Less sensitive than 

EWMA or CUSUM to 

subtle shifts;  

CUSUM 

Control Charts  

Autonomous detection (no interpretation needed);  more 

sensitive than image-space methods; sensitive to non-

linear degradation  

Limited when detecting 

very small defects  

EWMA 

Control Charts  

Autonomous detection (no interpretation needed);  more 

sensitive than image-space methods; sensitive to non-

linear degradation  

Limited when detecting 

very small defects 

Table 6 – Summary of Observations 
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9.2 Results at Various Time Points from Image-space Algorithms 
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9.3 NEMA Uniformity Trends Using Statistical Process Control 
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