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Specific, Reversible Cytostatic Protection of Normal Cells Against 

Negative Effects of Chemotherapy 

Benjamin B. Mull, M.S. 

 

Supervisory Professor: Khandan Keyomarsi, Ph.D. 

 

Chemotherapy is a common and effective method to treat many forms of cancer. 

However, treatment of cancer with chemotherapy has severe side effects which often 

limit the doses of therapy administered.  Because some cancer chemotherapeutics target 

proliferating cells and tissues, all dividing cells, whether normal or tumor, are affected.  

Cell culture studies have demonstrated that UCN-01 is able to reversibly and selectively 

arrest normal dividing cells; tumor cells lines do not undergo this temporary arrest.  

Following UCN-01 treatment, normal cells displayed a 50-fold increase in IC50 for 

camptothecin; tumor cells showed no such increased tolerance. 

We have examined the response of the proliferating tissues of the mouse to UCN-

01 treatment, using the small bowel epithelium as a model system.  Our results indicate 

that UCN-01 treatment can cause a cell cycle arrest in the gut epithelium, beginning 24 

hours following UCN-01 administration, with cell proliferation remaining suppressed for 

one week.  Two weeks post-UCN-01 treatment the rate of proliferation returns to normal 

levels.  5-FU administered during this period demonstrates that UCN-01 is able to 

provide protection to normal cells of the mouse within a narrow window of efficacy, 

from three to five days post-UCN-01.  UCN-01 pretreated mice displayed improved 

survival, weight status and blood markers following 5-FU compared to control mice, 

indicating that UCN-01 can protect normal dividing tissues. 

The mechanism by which UCN-01 arrests normal cells in vivo was also 

examined. We have demonstrated that UCN-01 treatment in mice causes an increase in 

the G1 phase cell cycle proteins cdk4 and cyclin D, as well as the inhibitor p27.  

Phosphorylated Rb was also elevated in the arrested cells.  These results are a departure 

from cell culture studies, in which inhibition of G1 phase cyclin dependent kinases led to 
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hyposphosphorylation of Rb.  Future investigation will be required to understand the 

mechanism of UCN-01 action.  This is important information, especially for 

identification of alternate compounds which could provide the protection afforded by 

UCN-01. 
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Introduction 

The nondiscriminatory action of most chemotherapeutic agents still in use today is the 

major limiting factor in their successful use.  Most cytotoxic agents affect cells, which are 

actively dividing, including both the tumor and the normal dividing cells of the body 

(gastro-intestinal epithelium, hematopoietic cells and hair follicles).  The toxic effects on 

these normal tissues limit the doses of chemotherapy that can be administered, and this 

limitation can even lead to more resistant (multidrug resistant, MDR) tumors. 

 

To better direct the toxicity of treatment towards the cancer and away from the host, 

investigators have tried one of two methods; the first is directed therapy specific for a 

particular neoplasm.  Gleevec used in the treatment of chronic myelogenous leukemia 

(CML) is a successful example.  CML is caused by a chromosomal translocation which 

gives rise to a chimeric mRNA of the breakpoint cluster region of chromosome 22 (BCR) 

and the c-ABL tyrosine kinase gene from chromosome 9 (de Klein et al., 1982).   The 

resulting BCR-ABL kinase has increased tyrosine kinase activity and the ability to 

transform cells (Konopka et al., 1984; Lugo et al., 1990), and has been identified as the 

sole leukemogenic event in animal models (Daley et al., 1990; Heisterkamp et al., 1990).  

A screen for inhibitors of this kinase identified Gleevec as the most specific, and in 

clnical studies it was shown to be very effective in treating CML patients (Druker et al., 

1996).  For newly diagnosed CML patients treated with Gleevec, the overall survival at 5 

years was 89% (Druker et al., 2006).  The specific nature of the kinase inhibition and the 

decreased side effects in comparison to previous standard of care (IFN-α treatment) 

demonstrates the power of targeted therapy.   
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An alternative method seeks not to target the tumor, but rather to deflect the toxicity of 

chemotherapeutic agents away from the normal cells of the host.  This approach will be 

the focus of this study.  The idea of protecting normal cells from the toxicity of 

anticancer chemotherapeutics appeared more than 35 years ago.  The majority of the 

protective studies employ a two step approach: cells are reversibly arrested at one of 

several cell cycle checkpoints, and then are subsequently exposed to cytotoxic agents 

which preferentially act upon dividing cells.  The temporary arrest of the pretreated cells 

affords a measure of protection against agents, which take advantage of the processes of 

cell division, largely DNA synthesis and mitosis.  The arrest can be caused by a variety of 

actions, including inhibition of protein synthesis, growth factor deprivation, and direct or 

indirect inhibition of specific cell cycle enzymatic processes.  Other measures use 

modulation of growth factors to prevent the apoptotic signaling cascade following 

cytotoxic treatment or to stimulate cell proliferation prior to the cytotoxic insult.  The 

latter method increases the overall population of affected epithelial tissues to allow the 

host to better tolerate the loss of some of these cells when treated with a 

chemotherapeutic drug.  The following is a chronological summary of various methods 

used by several different laboratories over a 40 year period, all attempting to protect 

normal cells against toxic affects of chemotherapy in vitro and in animal studies.  

 

General Inhibition of macromolecules (i.e. DNA, RNA, protein) 

The first studies reported some success in protecting cells from cytotoxic agents by 

inhibiting either protein or DNA synthesis prior to treatment.  One inhibitor used is 
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cycloheximide (CHX), a drug of bacterial origin which prevents protein synthesis by 

blocking the movement of transfer RNA (tRNA) molecules along the ribosome (Obrig et 

al., 1971).  Two studies in rats demonstrated that simultaneous or initial treatment with 

CHX protected bone marrow and intestinal crypt cells from nitrogen mustard (HN2) 

toxicity (Ben-Ishay and Farber, 1975; Weissberg et al., 1978).  The rationale behind this 

protection is that dividing cells require protein synthesis to proceed through the cell 

cycle.  After treatment with CHX, the cells undergo an arrest in the G2 phase of the cell 

cycle (Verbin and Farber, 1967); later application of a toxic agent against either DNA 

synthesis or mitosis will fail if the cells are held outside of these target phases of the cell 

cycle.  Just as important as this cell cycle effect is that a differential protecting effect 

must exist such that normal cells are protected and tumor cells are not.  As a tumor cell 

by definition harbors one or more cell cycle defects, it is hoped that this difference can be 

exploited to better protect normal cells.  Using the CHX model, it has been demonstrated 

that normal cells are susceptible to cell cycle arrest following the loss of protein 

synthesis, while transformed cells can replicate independently of protein synthesis 

(Campisi et al., 1982; Medrano and Pardee, 1980).  This differential was demonstrated as 

protective in human myeloid progenitor cells (Slapak et al., 1985).  Normal 

granulocyte/macrophage progenitors (CFU-GM), malignant progenitor cells from CML 

patients, and two leukemia cells lines HL-60 and KG-1 were pretreated with CHX and 

then exposed to the antimetabolite cytosine arabinoside (ara-C).  The survival of normal 

CFU-GM cells were significantly increased by CHX pretreatment, while the malignant 

progenitors and cell lines were afforded no such protection.  However, it appears that 

some malignant cells are able to take advantage of the CHX cell cycle arrest and 
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protection from subsequent cytotoxic insult.  Studies on the human osteosarcoma cell line 

KSu demonstrated that CHX pretreatment afforded a degree of protection against 

vincristine, colchicine, and Δ12-prostagladin J2 (Sakai et al., 1989).  Thus it appears that 

CHX protection may not be specific for normal cells, and given its toxicity may not be 

clinically relevant. 

 

A similar protective strategy was utilized to afford protection to baby hamster kidney 

cells (BHK) but not their polyoma virus-transformed (Py-BHK) variant line (Pardee and 

James, 1975).  It had previously been shown that caffeine was able to reversibly arrest 

cells in G1 (Walters et al., 1974).  The exact nature of caffeine-mediated arrest is still 

unclear, but inhibition of either cyclin D/cdk4 (Hashimoto et al., 2004) or cyclin E/cdk2 

(Qi et al., 2002) or both, leading to hypophosphorylated Rb and subsequent G1 arrest.  

The authors showed that the arrest due to caffeine was similar to that seen following 

growth factor (serum) deprivation, and that streptovitacin A (SVA) also caused a 

reversible G1 arrest in the untransformed BHK cells.  The Py-BHK cells were not 

affected by any of the cell cycle arresting compounds (caffeine, SVA or serum 

deprivation).  Treating/arresting the BHK cells with SVA or caffeine significantly 

increased their survival when subsequently treated with ara-C or hydroxyurea (HU).  The 

Py-BHK cells had no such protective effect and were efficiently killed by both agents.  A 

more recent study demonstrated this differential between the immortalized MCF-10A 

cells and the tumor cell line MCF-7 (Blagosklonny et al., 2000a).  Withdrawal of 

epidermal growth factor (EGF) from MCF-10A cells caused them to undergo a G1/G0 

arrest; similar treatment of MCF-7 cells did not affect the cell cycle profile.  Growth 
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arrest in the MCF-10A cells prevented subsequent toxicity from the microtubule 

polymerizing effects of paclitaxel, while the tumorigenic MCF-7 cells were not protected.  

The same results were observed when each cell line was treated with the EGF receptor 

inhibitor AG1478; MCF-10A cells underwent a G1/G0 arrest, while MCF-7 cells were 

unaffected by low the same levels of AG1478. The fungal metabolite anguidine has been 

shown to protect normal cells from chemotherapeutics (Teodori et al., 1981).  Anguidine 

is another inhibitor of protein synthesis, and is thought to promote the disassembly of 

polyribosomes (Liao et al., 1976).  Pretreatment of Chinese hamster ovary cells (CHO) 

with anguidine arrested the cells and provided protection against ara-C, adriamycin, HU 

and fluorouracil (5-FU).  It was also demonstrated that anguidine can preferentially 

induce cytostasis and protection in normal but not transformed cells (Hromas et al., 

1983).  Normal WI-38 cells treated with a low concentration of anguidine exhibited a G1 

arrest, while the SV40 variant WI-38 VA13 cells were had no cell cycle perturbation.  

Following anguidine, the normal cells were protected against the growth inhibitory 

effects of ara-C and adriamycin, while the VA13 cells were potently inhibited.  However, 

as with CHX, not all tumor cells may evade the cell cycle arresting effect of anguidine.  

For example, the human andenocarcinoma cell line LoVo was treated with increasing 

concentrations of anguidine (1µg/ml – 50 µg/ml) and underwent an arrest in the S phase 

of the cell cycle at all concentrations (Dosik et al., 1978).  Anguidine may also not be a 

reversible inhibitor, further limiting any clinical utility (Liao et al., 1976).  In this study, 

treatment of HeLa cells with 1mM anguidine caused degradation of polyribosomes, 

preventing initiation of protein chain synthesis and cell death. 
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Growth arrest has been successfully used in vivo as a protective measure prior to high 

dose chemotherapy (Raffaghello et al., 2008).  Based on studies which showed a 

protective effect of serum deprivation in primary glial cells but not four glioma lines from 

oxidative (H2O2) damage, mice were starved for 48 to 60 hours and then treated with high 

dose etoposide.  While only 8 of the 23 mice treated with etoposide alone survived, 16 

out of 17 undergoing short-term starvation (STS) survived.  Unfortunately, the STS 

protocol seems to protect injected tumors as well.  Mice inoculated with the 

neuroblastoma line NXS2 were treated with high dose etoposide, with one group 

undergoing STS prior to treatment.  While the STS group initially had improved survival 

(7/8 alive at 36 days) compared to etoposide alone (3/6 dead by day 5), long term 

survival was worse for the STS group.  All STS/etoposide mice succumbed to tumor 

burden by day 53, while the 3 remaining etoposide-only mice lived for 83, 131, and 140 

days.  Thus, like some other measures of protection, it appears that STS may be non-

specific and protect tumors in addition to normal cells. 

 

 

Cell cycle arrest as a protective measure has also been induced by inhibiting protein 

synthesis using the histidine analogue L-histidinol.  L-Histidinol reversibly arrests the 

growth of cells in G0 by inhibiting both protein and ribosomal RNA synthesis 

(Warrington et al., 1977).  BALB/3T3 cells incubated with L-histidinol went into a 

G1/G0 arrest, and this arrest was reversible after up to 3 days of L-histidinol exposure 

(Warrington et al., 1977).  This arrest was duplicated in the normal CHO variant LR73, 
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while transformed TR3 line continued to proliferate (Warrington and Fang, 1982b).  

Subsequent treatment with ara-C had no effect on the normal arrest LR73 cells, while the 

TR3 line was potently growth-inhibited.  A similar study using cocultivated normal 

human foreskin fibroblasts (HFF) and transformed HeLa cells produced in identical result 

(Warrington, 1978).  It was demonstrated that pretreatment of HFF cells with L-histidinol 

and theophylline produced a G1/G0 arrest, while HeLa cells continued to grow and 

divide.  Subsequent exposure to HU or ara-C was toxic to the dividing HeLa cells, while 

the HFF cells survived.  HeLa cells form distinct colonies in culture and can be 

distinguished morphologically from HFF cells.  The two lines were cultured together and 

the experiment repeated.  L-Histidinol and theophylline followed by ara-C or HU allowed 

the selective eradication of HeLa cells.  The protective effect of L-histidinol was also 

established in murine spleen cells.  1 mM L-histidinol provided a reversible G1 arrest for 

up to 72 hours, and upon removal the cells did not enter into S phase until 96 hours 

(Warrington and Fang, 1982a).  While arrested, the cells were protected from the toxicity 

of both ara-C and 5-FU.  The same group found that mice inoculated with L-1210 

leukemia and then treated with L-histidinol had spared normal bone marrow cells and had 

enhanced antitumor effects of both ara-C and 5-FU (Warrington and Fang, 1985; 

Warrington et al., 1984).  Mice (both naïve and those with implanted L1210 tumors) 

were injected with 5 mg of L-histidinol (~ 167 mg/kg) or PBS control, followed by either 

15 or 30 mg of 5-FU (450 or 900 mg/kg) or 25 mg (130 mg/kg) ara-C.  All PBS mice 

receiving 5-FU died by day 13, while all mice pretreated with L-histidinol survived at 

least three months.  In addition, clonogenic assays of bone marrow cells of mice 

sacrificed 24 hours after 5-FU/ara-C treatment demonstrated a protection factor of up to 
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21,00 for the L-histindol pretreated mice versus PBS pretreated (ratio of relative cell 

survival of L-histidinol pretreated to PBS pretreated).  Additionally, the combination 

seemed to enhance to ability of 5-FU and ara-C kill the implanted tumor cells (by 

clonogenic assay), and was able to increase the survival of tumor bearing mice by 50%.  

Another group was able to demonstrate protection of normal cells in mice when L-

histidinol was given as a 24-hour infusion following 5-FU, perhaps demonstrating that the 

G1 arrest may not be the sole source of protection (Edelstein and Heilbrun, 1988).  In 

these experiments, mice were treated for with a 50 mg infusion of L-histidinol (or saline 

control) for 24 hours prior to receiving 10 mg 5-FU.  The pretreated group had a 30% 

survival rate versus 0% for the saline control group.  However, if the same 50 mg 

infusion began immediately following 5-FU injection, the survival rate increased to 100% 

(saline controls remained at 0% survival).  Because the arresting affect of L-histidinol 

was not present when 5-FU was administered in this experiment, it cannot completely 

account for the increase in survival.   

 

Unfortunately, not all L-histidinol treatments have been effective in exploiting the 

differences between normal and tumor cells.  A panel of murine cells including the 

normal A31 line and three transformed derivatives (BP-A31, M-A31 and SV-A31) 

exhibited the expected protective effect of L-histidinol against ara-C toxicity in the 

normal A31 cells (Warrington and Muzyka, 1983).  A 24-hour incubation in 1-3 mM L-

histidinol prior to 48 hours of 05. – 1.0 µg/ml ara-C significantly improved the survival 

of the A31 cells.  However, all three transformants were also afforded varying degrees of 

protection by L-histidinol pretreatment, all demonstrating improved survival to 48 hours 
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of ara-C alone.  It was further shown in the murine breast tumor model CD8F1 that L-

histidinol can increase the tolerance of mice for 5-FU (Stolfi et al., 1987).  7 mg of L-

histidinol given prior to 130 mg/kg of 5-FU resulted in a significant increase in white 

blood cell (WBC) counts, body weight, and survival compared to mice receiving saline 

prior to 5-FU treatment.  Pretreatment with 7 mg of L-histidinol also increased the LD50 

of a single dose of 5-FU from 283 mg/kg to 504 mg/kg.  However, the tumors were also 

afforded a measure of resistance to 5-FU, and the therapeutic result of L-histidinol plus 5-

FU were not superior to 5-FU alone at the lower, unprotected dose.  First passage 

transplants of spontaneous CD8F1 breast tumors were implanted into mice receiving 

either 5-FU alone or L-histidinol followed by 5-FU.  The mice receiving 5-FU alone had 

a maximal tolerated dose of 100 mg/kg/week, while the mice pretreated with L-histidinol 

had an increased tolerance, up to 150 mg/kg/week.  However, the weights of the 

implanted tumors in the 5-FU group (601 +/- 96 mg) were not significantly different from 

those in the 5-FU plus L-histodinol group (807 +/- 227 mg).   A more encouraging study 

exploits the antibiotic minocycline to protect the murine small intestine from 5-FU-

induced mucositis (Huang et al., 2009).  The mice receiving minocycline concurrently 

with 5-FU (30 mg/kg/day for 5 days for each drug) demonstrated decreased weight loss, 

lower diarrhea levels, and improved villus measurements compared to the PBS plus 5-FU 

(30 mg/kg/day X 5) control mice.  It was demonstrated that minocycline was able to 

repress apoptosis in the small bowel crypts by inhibiting the upregulation of PARP-1 

activity induced by 5-FU.  It does not appear that minocycline is exerting protection by 

modulating or arresting the epithelial tissues, as villi from mice sacrificed after the 5-day 

course of treatment were approximately the same lengths as control mice.  It was also 
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shown that the minocycline pretreatment did not protect implanted CT-26 colon cancer 

xenografts from 5-FU toxicity; by three weeks, the tumors in mice pretreated with 

minocycline were significantly smaller compared to the tumors in mice receiving PBS 

prior to 5-FU.  The mechanism for the improved tumor response is currently unknown, 

but the differential response between normal and tumor cells to minocycline treatment is 

encouraging.  Other studies have shown an anti-angiogenic effect of minocycline, which 

may explain the synergistic result seen when combined with 5-FU (Frazier et al., 2003; 

Saikali and Singh, 2003).  Similar results were observed in mice treated with the 

benzamidine derivative CR3294 three days prior to 5-FU treatment (Letari et al., 2009).  

By inhibiting cytokine release in the gut epithelium, CR3294 increased by 3-fold the 

number of mice not experiencing diarrhea and increased the surviving crypts per cross-

section by 2.8 fold compared to PBS controls.  CR3294 did not affect the growth of 

tumor xenografts (HT29 and MDA-MB231 cells) nor the efficacy of 5-FU to treat these 

tumors.  

 

Modulation of growth factors 

Other studies have attempted to differentiate normal cells from tumor cells to afford 

protection against toxicity have utilized substances that occur normally in cells.  The 

polypeptide growth factor transforming growth factor β (TFG-β) is a potent inhibitor of 

epithelial cell proliferation as well as an immune suppressor and hematopoietic regulator 

(Massague et al., 1987; Roberts et al., 1985; Sing et al., 1988).  To evaluate the possible 

protective effect of TFG-β, mice were treated with 5 µg/day TFG-β for 5 days and 

sacrificed; hematopoietic progenitor cells were decreased by more than 50% compared to 
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control mice, indicating an arrest in the marrow.  The same course of TFG-β was then 

given prior to a single injection of 150 mg/kg 5-FU.  Unfortunately, hematopoietic 

progenitor cells were lower in the TGF-β group at the hyperproliferative phase (9 days 

after 5-FU treatment) compared to 5-FU alone; by 16 days, the number of blood 

precursors in the two groups were not significantly different.  A similar study produced a 

different result, demonstrating that hematologic recovery following 150 mg/kg 5-FU was 

accelerated in mice treated given TFG-β (two doses of 2.5 µg daily for days -4 to 0), 

peaking at day 11 as opposed to day 16 after 5-FU (Grzegorzewski et al., 1994).  While 

TFG-β did not increase survival in mice receiving a single high dose (340 mg/kg) 5-FU, 

it was protective against a subsequent dose of 5-FU.  For this experiment, mice were 

treated with 150 mg/kg at day zero.  On days 9-13, mice were then treated with either 

twice-daily 2.5 µg TGF-β or saline control.  A second dose of 300 mg/kg 5-FU was then 

given on day 13.  Survival in mice given TFG-β was 90%, while the control mice 

survival was less than 40%.  Interestingly, mice treated with TFG-β and doxorubicin 

(DXR) were also protected.  As before, mice were treated from days -4 to 0 with twice-

daily 2.5 µg TGF-β or saline control, and then given a single dose of 14 mg/kg DXR.  All 

of the control mice had died by day 15, while 80% of the TGF-β mice survived beyond 

day 30.  This result was interesting, in that cell cycle arrest must not be the only 

protective effect of TGF-β; DXR can damage DNA in noncycling cells.  Cell culture 

studies using the CCL64 cell line (non-tumorigenic mink epithelial cells) demonstrated 

the protective effect of TFG-β in vitro against vinblastine, vincristine, etoposide, taxol, 

ara-C, methotrexate (MTX) and 5-FU (McCormack et al., 1997).  Cells were incubated 

with 15 pM TFG-β or control media for 24 hours, and the cytotoxic agent was added for 
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an additional 48 hours.  In all cases, the IC50 for each drug was increased (by CFU assay) 

by incubation with TFG-β versus control; the increase for each drug (in µg/ml) was: 0.04 

to 25 for ara-C; 0.05 to 50 for MTX; 0.5 to 1.0 for 5-FU; 0.15 to 0.45 for etoposide; 

0.002 to 0.1 for taxol; and 0.0002 to 0.02 for vincristine.  TFG-β was also protective in a 

hamster model of oral mucositis (Sonis et al., 1997).  Topical application of TFG-β to the 

oral mucosa prior to 5-FU treatment reduced cell proliferation (measured by PCNA IHC) 

and reduced weight loss, incidence of oral mucositis, and increased survival.  Protection 

was also afforded to the small intestine by TFG-β treatment prior to irradiation (Booth et 

al., 2000).  A single dose of TFG-β increased the surviving number of crypts by 3-4 fold, 

and a continuous infusion resulted in a 12-fold increase.  While the results using TFG-β 

are promising, it remains unclear as to what the exact mechanism of protection is.  The 

protection against toxicity that is not cell cycle specific (IR and DXR) is difficult to 

explain, and the likelihood that the protection could be extended to tumors seems 

substantial.  Growth factors have also been used to stimulate proliferation of tissues 

susceptible to chemotherapeutic agents to enhance recovery following treatment. 

Granulocyte colony stimulating factor (G-CSF) had been shown to increase the 

proliferative index of many blood cell lineages, including granulocytes, erythrocytes, and 

monocytes (Pospisil et al., 1995).  Rats given G-CSF 2 hours after 5-FU significantly 

increased the production of erythrocytes in the recovery period, indicating improved 

hematopoiesis in the G-CSF pretreated mice (Weiterova et al., 2000).   

 

Cytostatic agents 
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A more cell cycle-specific protection modality employs the kinase inhibitor 

staurosporine.   As kinases are an important factor in the regulation of the cell cycle (and 

one which can be lost in many tumors), modulation of kinases could result in a 

differential effect in the two populations of normal versus tumor cells (Hartwell and 

Kastan, 1994; Zhou and Elledge, 2000).  Indeed, it was demonstrated that three 

nontransformed mammalian cells (HSF-43, HSF-55 and HFL-1) were prevented from 

entering S phase by very low (1 ng/ml) levels of staurosporine (Crissman et al., 1991).  In 

contrast, three transformed cell lines (FT210 mouse mammary carcinoma, tumorigenic 

WCHE/5 Chinese hamster cells and HL-60 human leukemia cells) were unaffected at low 

levels (1-10 ng/ml) of staurosporine.  At high levels of staurosporine (50-75 ng/ml) the 

transformed cells were instead arrested at the G2 phase.  Similar findings were exhibited 

in comparing normal human lymphocytes with the lymphocytic leukemia MOLT-4 cell 

line treated with staurosporine (Bruno et al., 1992).  Normal lymphocytes treated with 

low (5-10 ng/ml) staurosporine accumulated in G1; high staurosporine levels (50-100 

ng/ml) resulted in both a G1 and G2 block.  However, the MOLT-4 cells accumulated 

only at G2 for all doses of staurosporine (5-100 ng/ml).  The specificity of staurosporine-

mediated arrest for normal cells was also shown in a panel of breast epithelial cells (Chen 

et al., 2000).  Four breast tumor cell lines (MDA-MB436, MDA-MB157, MCF-7 and 

T47D), the immortalized breast epithelial MCF-10A line, and two normal breast 

epithelial cells (76N and 81N) were treated with staurosporine and three specific cyclin 

dependent kinase (cdk) inhibitors: olomoucine, roscovitine and flavopiridol.  While the 

three cdk inhibitors caused a dose-dependent growth inhibition in all cells, staurosporine 

was able to distinguish the two normal cell lines from the transformed ones.  At 2nM, 
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greater than 50% inhibition was seen in both 76N and 81N cells, while no drug-mediated 

effect was observed in any of the transformed lines.  Further exploration with two 

variants of the 76N line, 76NE6 (degraded p53) and 76NE7 (degraded Rb), demonstrated 

a p53-independent, Rb-dependent arrest at both 0.5 and 10 nM staurosporine (see 

Mechanism below).  Induction of G1 arrest by 0.5 nM staurosporine was protective of the 

81N cells against the toxicity of doxorubicin (0.125 µM) and camptothecin (0.5µM); 

MDA-MB157 and MDA-MD436 cells realized no protective benefit from staurosporine 

pretreatment.  The staurosporine pretreatment increased the MTD for camptothecin in the 

normal cells by two orders of magnitude.  This protective effect was also realized when 

normal proliferating lymphocytes were treated with staurosporine prior to camptothecin.  

While staurosporine seems to select only normal cells for arrest and subsequent 

protection, its additional effects on normal cells are likely to prevent it from being used 

clinically (Way et al., 2000).  Staurosporine has been shown to initiate differentiation of 

epidermal cells (Sako et al., 1988), and may function as a tumor promoter in mouse skin 

(Fujiki et al., 1989).  Staurosporine may also prevent platelet aggregation, which could 

impair wound healing (Secrist et al., 1990; Takano, 1994).  The adverse effects of 

staurosporine spurred the development of analogs such as UCN-01 (see below). 

 

Low dose cytotoxic agents 

An alternative to using a cytostatic drug to arrest cells as a protective measure is to 

actually use chemotherapeutic agents to cause an initial, low level of damage to the cells.  

This initial event would not be so great as to cause cell death, but instead activate a cell 

cycle checkpoint, thus arresting the cells while the damage is repaired.  During this arrest, 
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a second, greater insult would theoretically not affect the arrested cells with functioning 

checkpoints; tumor cells with defective checkpoints should continue to grow and divide, 

leaving them susceptible to the second cytotoxic agent.  One such study uses a low level 

of a DNA damaging agent to cause a cell cycle arrest in cells with functioning 

checkpoints; subsequent treatment with microtubule-active drugs is ineffective in these 

arrested cells, while checkpoint-deficient cells continue to cycle and are sensitive to the 

secondary treatment (Blagosklonny et al., 2000b).  Low doses of DXR (50-100 ng/ml) 

for 16 hours caused a G2 arrest in HCT116 cells with wild-type p53.  Subsequent 

paclitaxel treatment (100 ng/ml for hours 17-48) of these cells was ineffective in causing 

significant cell death, unlike mock-pretreated controls.  MTT assay after 48 hours 

demonstrated that the paclitaxel-only group had a survival rate of 30%, the cells treated 

with DXR prior to paclitaxel had an improved survival rate of 70%.  HCT116 clones 

deficient in either p21 or p53 were also not protected by the low dose DXR pretreatment, 

suggesting that a p53-dependent induction of p21 is required to realize the G2 arrest and 

protection of primary DXR.  Indeed, adenovirus-mediated expression of p21 in the p21 -

/- cells was protective against the paclitaxel treatment, similar to DXR pretreatment. 

 

Specific cytoprotective agents 

Other agents have been reported to have cytoprotective effects for patients undergoing 

anticancer therapy.  Amifostine (WR-2721) is an organic thiophosphate which has been 

shown to protect against hematologic toxicity and some cumulative organ damage in 

patients receiving radiotherapy as well as some chemotherapeutic agents (Castiglione et 

al., 1999; Kemp et al., 1996).  Amifostine has selective efficacy in normal cells versus 
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tumor cells due to its activation; it is converted to the active WR-1065 by membrane-

bound alkaline phosphatases, which are more active in normal cells versus neoplasms 

(Culy and Spencer, 2001).  The active metabolite then acts as a free radical scavenger and 

can facilitate detoxification of cytotoxic agents (Pierelli et al., 1998).  The clinical 

experience with amifostine as a protective agent provides an unclear picture of its 

efficacy.  A small phase II trial on 10 patients with advanced esophageal cancer 

employed 500 mg amifostine administered subcutaneously prior to 25 fractions of 45 Gy 

radiation treatment, plus carboplatin and 5-FU (Jatoi et al., 2004).  It was unclear if 

amifostine was protective in this setting, as it did not allow a dose escalation and seemed 

to carry its own toxicities (nausea, hypotension and vomiting).  However, amifostine was 

effective in protecting salivary glands.  A meta-analysis of 14 separate trials (total 1451 

patients) indicates that amifostine is protective against mucositis when combined with 

radiotherapy compared to radiation treatment alone (Sasse et al., 2006).  A phase I trial 

for small cell lung cancer incorporated amifostine into a regimen with etoposide, 

radiation and cisplatin.  It was determined that the MTD of fractionated radiation in the 

group receiving amifostine could be increased from 45 Gy to 60 Gy (Garces et al., 2007).  

However, the authors point out that the fractions in this group were decreased from 1.5 

Gy to 1.2 Gy, which may also have improved tolerance of the higher total dose of 

radiation.  A phase II trial for advanced esophageal cancer enrolled 54 patients to be 

treated with a combination of carboplatin, 5-GU, paclitaxel and radiation (Jatoi et al., 

2007). Amifostine was given to 19 patients to evaluate its protective ability in this setting.  

No significant protection was observed among patients receiving amifostine, and one 

patient death was attributed to amifostine administration (acute hypotension immediately 
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following 500 mg subcutaneous amifostine) and its use was discontinued.  Overall, 

amifostine seems to be able to protect salivary glands and some epithelial cell 

populations against mucosotis, and does not adversely affect the efficacy of tumor 

treatment.  The efficacy of amifostine is still being investigated in two ongoing studies 

(NCT00409331 and NCT00167908). 

 

Another protective agent used to prevent mucositis following chemotherapy is 

palifermin/kertiocyte growth factor (KGF).  Recombinant KGF is administered to 

patients prior to a regimen of chemotherapy.  Palifermin binds the keratinocyte growth 

factor receptor (KGFR); KGFR is found in the epithelial cells of the gastrointestinal tract 

as well as the liver, pancreas and lung (Spencer et al., 2005).  Pretreatment with 

palifermin activates the KGFR leading to differentiation and maturation of epithelial cells 

and subsequent thickening of epithelium of the gastrointestinal tract.  This increase 

diminishes the DNA damage and apoptosis seen in these cells (McDonnell and Lenz, 

2007).  A phase III trial of non-Hodgkins lymphoma patients receiving total body 

irradiation utilized palifermin (or placebo control) for three days prior to radiation 

treatment and for three days following treatment (Spielberger et al., 2004).  Patients 

receiving palifermin had significantly reduced high grade oral mucositis, and the duration 

of mucositis was shortened (median day 6 versus day 9 for placebo).  A phase II study in 

head and neck squamous cell carcinoma patients also evaluated the protective ability of 

palifermin in a regimen of radiation, cisplatin and 5-FU (Brizel et al., 2008).  The 

duration of high grade mucositis was shorter in the patients receiving palifermin (median 

6.5 weeks versus 8.1 weeks for placebo), but the difference was not statistically 
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significant.  A much larger phase III study evaluating palifermin protection in head and 

neck cancer patients (NCT00626639) is currently underway. 

 

Unfortunately one common theme among the protective measures reported in the 

literature is the absence of any change in the progression of cancer or time to death of the 

patients receiving these measures.  While the decreased side effects experienced by some 

patients certainly enhance quality of life during and after treatment, the lack of 

meaningful improvement in therapeutic outcome relegates these methods to only an 

adjunct role in therapy.  It is hoped that our work will lead to a protective scheme that is 

more than simply supportive.  To this end, the work described in the future chapters of 

this thesis demonstrates how treatment of normal cells with UCN-01 can afford 

protection against the toxic affects of chemotherapy.  To appreciate the role of UCN-01 

as protector of normal cells, it is crucial to examine the journey that UCN-01 has taken as 

a chemotherapeutic agent in cultured cells and in animal models to its current use in 

clinical trials.  These studies has helped pave the way to the novel use of this agent which 

I have pursued in my dissertation work, namely use of UCN-01 to protect normal cells 

against the toxic affects of chemotherapy. 

 

UCN-01 

The understanding of mechanisms of cellular proliferation, malignant transformation, 

differentiation and apoptosis has produced a wide array of potential targets to control 

these events.  One such element is the serine/threonine kinase family protein kinase C 

(PKC), which was shown to be crucial in tumor-promoting process of plant-derived 
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phorbol esters (Castagna et al., 1982).  It has been demonstrated that in cell lines 

transformed with p21RAS that PKC is required for cell survival; inhibition of PKC drove 

transformed variants of NIH/3T3 and Balb cell lines to apoptosis, while no effect was 

seen in the parental lines (Xia et al., 2007).  The search for possible inhibitors of PKC 

lead to the discovery of staurosporine (ST) from the bacterium Streptomyces sp. (Omura 

et al., 1977).  Staurosporine was found to be a potent PKC inhibitor (IC50 of 2.7 nM), and 

was also very toxic to HeLa cells, with an IC50 of 4 pM for a 72-hour exposure (Tamaoki 

et al., 1986).  Staurosporine can drive most mammalian cells types into apoptosis via 

mitochondrial caspase activation, although the exact mechanism of its action is unknown 

(Bertrand et al., 1994; Jacobson and Evan, 1994; Takahashi et al., 1997).  In addition to 

its toxicity, ST has also been noted for its promiscuity of target molecules, including 

protein tyrosine kinases (Meggio et al., 1995; Ruegg and Burgess, 1989).  The inhibitory 

potential of ST against some of these targets is summarized in Table 1. 

 

UCN-01 (7-hydroxystaurosporine) is an indolocarbazole compound originally isolated 

from a culture broth of Streptomyces sp. as a selective protein kinase C (PKC) inhibitor 

(Takahashi et al., 1987).  UCN-01 was found to be more specific than staurosporine 

inhibition of PKC (Table 1); it was also shown to be an effective inhibitor of cAMP-

dependent protein kinase (PKA) and v-src tyrosine kinase (Takahashi et al., 1989; 

Takahashi et al., 1990).  These studies demonstrated that UCN-01 is a more selective 

inhibitor of PKC than staurosporine, affecting the α, β, and γ isozymes most potently; no 

effect on the atypical PKC ζ was measured (Seynaeve et al., 1994).  Subsequent studies 
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Table 1: IC50 values for UCN-01 and Staurosporine 
 
 

Kinase UCN-01 Staurosporine Reference 
PKC 4.1 nM 2.7 nM (Tamaoki, 1991) 

PKC-α 29 nM 58 nM (Seynaeve et al., 
1994) 

PKC-β 34 nM 65 nM (Seynaeve et al., 
1994) 

PKC-γ 30 nM 49 nM (Seynaeve et al., 
1994) 

PKC-δ 590 nM 330 nM (Seynaeve et al., 
1994) 

PKC-ε 530 nM 160 nM (Seynaeve et al., 
1994) 

PKC-ζ > 30 µM > 30 µM (Seynaeve et al., 
1994) 

PKA 42 nM 8.2 nM (Meijer, 1995) 
MAPK 910 nM 20 nM (Meijer, 1995; 

Tamaoki, 1991) 
Chk1 8-10 nM 4 nM (Busby et al., 2000; 

Luo et al., 2001) 
Chk2 500 nM 3.7 nM (Yu et al., 2002) 
Cdk 1 31 nM 3-9 nM (Gadbois et al., 

1992; Kawakami et 
al., 1996) 

Cdk 2 30 nM 7 nM (Gadbois et al., 
1992; Kawakami et 

al., 1996) 
Cdk 4 32 nM 10 mM (Gadbois et al., 

1992; Kawakami et 
al., 1996) 

p60v-src tyrosine 
kinase  

45 nM 6.4 nM (Meijer, 1995; 
Tamaoki, 1991) 
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indicate that UCN-01 is a somewhat promiscuous kinase inhibitor, with at least 23 

demonstrated targets (Komander et al., 2003).   

 

The effects of UCN-01 in cultured cells fall into one of two broad categories (cell cycle 

arrest and apoptosis), and vary with cell type, drug concentration, and interaction with 

other agents.  As a single agent, UCN-01 has been shown to either arrest cells in the G1 

phase of the cell cycle or to drive cells into apoptosis.  In concert with cytotoxic drugs or 

radiation, UCN-01 can abrogate S or G2 cell cycle arrest, preventing damage repair, also 

causing apoptosis.  While the effects of UCN-01 generally fall into one of these areas, the 

mechanism(s) underlying these responses are not entirely clear.  The studies on UCN-01 

will be detailed below. 

 

UCN-01 and cell cycle arrest (Table 2) 

An early study on UCN-01 demonstrated a spectrum of growth inhibition on a panel of 

five breast cancer cell lines (Seynaeve et al., 1993).  Differential sensitivity among the 

lines was noted, with MDA-MB468 being most resistant and MCF-7 most susceptible to 

growth inhibition.  The IC50 values for UCN-01 determined by MTT assay were as 

follows (all in nM): H85787 22+/- 3, MCF-7 30 +/- 1, SK-BR-3 45 +/- 4, MDA-MB453 

68 +/- 3, MDA-MB468 100 +/- 30.  A G1 to S block (DNA histogram, no quantification 

available) was seen following 150nM UCN-01 treatment in MDA-MB468 cells, 

demonstrated by propidium iodide flow cytometry. This block was accompanied by a 

decrease in overall cellular protein phosphorylation.  Decreased phosphorylation was 

demonstrated by autoradiography of whole cell lysate separated by SDS-PAGE following 
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Table 2: UCN-01 and Cell Cycle Arrest in Cultured Cells 
 
 

Cell line(s) Drug/Dose Experimental 
data 

Effect/Result Reference 

H85787 (breast 
tumor) 

22 nM UCN-01 MTT Assay IC50 Seynaeve et al., 
1993 

MCF-7 (breast 
tumor) 

30 nM UCN-01 MTT Assay IC50 Seynaeve et al., 
1993 

Sk-Br-3 (breast 
tumor) 

45 nM UCN-01 MTT Assay IC50 Seynaeve et al., 
1993 

MDA-MB453 
(breast tumor) 

68 nM UCN-01 MTT Assay IC50 Seynaeve et al., 
1993 

MDA-MB468 
(breast tumor) 

100 nM UCN-
01 
 

150 nM UCN-
01 

MTT Assay 
 

PI flow, 32P 
protein labeling 

IC50 
 

G1 block, 
↓ protein 

phosphorylation 

Seynaeve et al., 
1993 

A431 
(epidermoid 
carcinoma) 

50 nM UCN-01 PI flow G1 block Akinaga et al., 
1993 

A431 
(epidermoid 
carcinoma) 

0.26 µM UCN-
01 

PI flow G1 block (50% 
→ 70%) 

Akinaga et al., 
1994 

A431 
(epidermoid 
carcinoma) 

1.56 µM UCN-
01 

PI flow G1 block (50% 
→ 60%) 

Akinaga et al., 
1994 

A431 
(epidermoid 
carcinoma) 

5.8 nM 
staurosporine 

PI flow G1 block (50% 
→ 75%) 

Akinaga et al., 
1994 

A431 
(epidermoid 
carcinoma) 

58 nM 
staurosporine 

PI flow G2 block (16% 
→ 60%)  

Akinaga et al., 
1994 

Ma-31 (Rb+ 
lung cancer) 

2.197 µM 
UCN-01 

MTT Assay   IC50, ↓ 
phospho-Rb 

Shimizu et al., 
1996 

N417 (Rb- lung 
cancer) 

737 nM UCN-
01 

MTT Assay   IC50 Shimizu et al., 
1996 

H209 (Rb mut 
lung cancer) 

181 nM UCN-
01 

MTT Assay   IC50 Shimizu et al., 
1996 

Ma-31 (Rb+ 
lung cancer) 

602 nM 
staurosporine 

MTT Assay   IC50 Shimizu et al., 
1996 

N417 (Rb- lung 
cancer) 

54 nM 
staurosporine 

MTT Assay   IC50 Shimizu et al., 
1996 

H209 (Rb mut 
lung cancer) 

29 nM 
staurosporine 

MTT Assay   IC50, ↑ 
phospho-Rb 

Shimizu et al., 
1996 
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A549 (NSCLC) 100 nM UCN-
01 

PI flow, anti-Rb 
western 

G1 block, ↓ 
phospho-Rb 

Kawakami et 
al., 1996 

A431 
(epidermoid 
carcinoma) 

260 nM UCN-
01 

PI flow, 
western, 

histone H1 
kinase assay 

G1 block 
(37.7% → 
61.6%); ↓ 

phospho-Rb, 
cdk2 activity; ↑ 

p21, p27 

Akiyama et al., 
1997 

A431 
(epidermoid 
carcinoma) 

1.56 µM UCN-
01 

PI flow, anti-
cyclin B 
western 

G1 block, no 
change in 
cyclin B 

Akiyama et al., 
1999a 

A431 
(epidermoid 
carcinoma) 

58 nM 
staurosporine 

PI flow, anti-
cyclin B 
western 

G2 block, ↑ 
cyclin B 

Akiyama et al., 
1999a 

WiDr (Rb+ 
colon 

carcinoma) 

100, 300 nM 
UCN-01 

PI flow, 
western, 

histone H1 
kinase assay 

G1 block (Rb 
dependent),  

↓ cdk2 activity,  
↑ p21 

Akiyama et al., 
1999b 

HCT116 (Rb+ 
colon 

carcinoma) 

100, 300 nM 
UCN-01 

PI flow, 
western, 

histone H1 
kinase assay 

G1 block 
(Rb dependent), 
↓ cdk2 activity,  

↑ p21 

Akiyama et al., 
1999b 

WI-38 (Rb+ 
lung fibroblast) 

100, 300 nM 
UCN-01 

PI flow, 
western, 

histone H1 
kinase assay 

G1 block 
(Rb dependent), 
↓ cdk2 activity,  

↑ p21 

Akiyama et al., 
1999b 

Saos-2 (Rb- 
osteosarcoma) 

100, 300 nM 
UCN-01 

PI flow, 
western, 

histone H1 
kinase assay 

Apoptosis, 
↓ cdk2 activity, 

Akiyama et al., 
1999b 

WI-38 VA13 
(SV40 xform) 

100, 300 nM 
UCN-01 

PI flow, 
western, 

histone H1 
kinase assay 

Apoptosis, 
↓ cdk2 activity,  

↑ p21 

Akiyama et al., 
1999b 

A549 (Rb+ 
NSCLC) 

100 nM UCN-
01 

PI flow, 
western 

G1 block (73% 
→ 86%), ↑p21, 
↓ phospho-RB  

Mack et al., 
1999 

Calu1 (Rb+ 
NSCLC) 

100 nM UCN-
01 

PI flow, 
western 

G1 block (52% 
→ 72%), ↑p21, 
↓ phospho-RB 

Mack et al., 
1999 

H596 (Rb mut 
NSCLC) 

100 nM UCN-
01 

PI flow, 
western 

No G1 change, 
↑p21 

Mack et al., 
1999 

5637 (Rb- 
bladder cancer) 

100 nM UCN-
01 

PI flow, 
western 

No G1 change Mack et al., 
1999 

RB5 (Rb+ 5637 100 nM UCN- PI flow, G1 block (70% Mack et al., 
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subline) 01 western → 90%), ↓ 
phospho-RB 

1999 

DU-145 (Rb 
mut prostate 

cancer) 

100 nM UCN-
01 

PI flow, 
western 

No G1 change Mack et al., 
1999 

DU1.1 (Rb+ 
DU-145 
subline) 

100 nM UCN-
01 

PI flow, 
western 

G1 block (42% 
→ 66%), ↓ 

phospho-RB 

Mack et al., 
1999 

76N (normal 
human 

mammary 
epithlelium) 

80 nM UCN-01 
 

PI flow, 
western, HH1 
kinase assay 

G1 block (↑ 
11%), ↓ p53, 
pRb, cdk4, 
cdk2 kinase 

(Chen et al., 
1999) 

81N (normal 
human 

mammary 
epithlelium) 

80 nM UCN-01 
 

PI flow, 
western, HH1 
kinase assay 

G1 block (↑ 
15%), ↓ p53, 
pRb, cdk4, 
cdk2 kinase 

(Chen et al., 
1999) 

76NE6 (E6 
transformed 

76N)  

80 nM UCN-01 
 

PI flow, 
western, HH1 
kinase assay 

Increased G1 
phase (+20%), 
↓ pRb, cdk4 

(Chen et al., 
1999) 

76NE7 (E7 
transformed 

76N)  

80 nM UCN-01 
 

PI flow, 
western, HH1 
kinase assay 

Increased S 
phase (+10%), 
no protein Δ  

(Chen et al., 
1999) 

SBC-3 (small 
cell lung 
cancer) 

200 nM UCN-
01 

PI flow, 
western, kinase 
assay (HH1 and 

Rb) 

G1 block (36% 
→ 56%), ↓ 
pRb, cdk2, 

cdk2 kinase, ↑ 
p21 bound 
cdk2, IRF-I 

(Usuda et al., 
2000) 

SBC-3/UCN 
(UCN-01 

resistant SBC-3 
subline) 

200 nM UCN-
01 

PI flow, 
western, kinase 
assay (HH1 and 

Rb) 

No G1 block, 
no Δ in cell 

cycle proteins 
or IRF-I 

(Usuda et al., 
2000) 

HaCaT 
(HNSCC) 

100 nM UCN-
01 

PI flow, 
western, kinase 
assay (HH1 and 

Rb) 

G1 block (35% 
→ 52%), ↑ p21 
& p27, ↓ cdk4, 
↓ cdk2 & cdk4 
kinase activity  

(Patel et al., 
2002) 

HN12 
(HNSCC) 

100 nM UCN-
01 

PI flow, 
western, kinase 
assay (HH1 and 

Rb) 

G1 block (35% 
→ 52%), ↑ p21 
& p27, ↓ cdk4, 
↓ cdk2 & cdk4 
kinase activity 

(Patel et al., 
2002) 

HN30 (HNSCC 
p53 mut) 

100 nM UCN-
01 

PI flow, 
western, kinase 
assay (HH1 and 

G1 block (35% 
→ 52%), ↑ p21 
& p27, ↓ cdk4, 

(Patel et al., 
2002) 
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Rb) ↓ cdk2 & cdk4 
kinase activity 

HCT116 (colon 
carcinoma) 

100 nM UCN-
01 

PI flow, kinase 
assay, western 

G1 block, ↑ 
p21,  

(Facchinetti et 
al., 2004) 

HCCT p53-/- 100 nM UCN-
01 

PI flow, kinase 
assay, western 

↑ p21 (Facchinetti et 
al., 2004) 

HCCT p21 -/- 100 nM UCN-
01 

PI flow, kinase 
assay, western 

No G1 effect (Facchinetti et 
al., 2004) 

HaCaT 100 nM UCN-
01 

PI flow, kinase 
assay 

G1 block, ↑ 
ERK protein, 
kinase activity 

(Facchinetti et 
al., 2004) 

HSC-3 (oral 
squamous cell 

carcinoma) 

300 nM UCN-
01 

PI & Annexin 
V flow, western 

G1 block (53% 
→ 64%), ↑p21,  

↓ cdk2 

(Otsubo et al., 
2007) 

LMF4 (oral 
squamous cell 

carcinoma) 

300 nM UCN-
01 

PI & Annexin 
V flow, western 

G1 block (27% 
→ 63%), ↑p53, 

p21,  ↓cdk2, 
ppRb 

(Otsubo et al., 
2007) 

PrEC (normal 
prostate 

epithelium) 

20 – 400 nM 
UCN-01 

MTT assay, 
western 

Growth arrest,  
↑p21, ↓cyc D 

(Blagosklonny 
et al., 2001) 

DU145 
(prostate 
cancer) 

20 – 400 nM 
UCN-01 

MTT assay, 
western 

Growth arrest,  
↑p21, ↓cyc D 

(Blagosklonny 
et al., 2001) 

PC3/M 
(prostate 
cancer) 

20 – 400 nM 
UCN-01 

PI flow, 
western 

G1 arrest,  
↑p21, ↓cyc D 

(Blagosklonny 
et al., 2001) 

SK-GT5 
(gastric cancer) 

1 µM UCN-01 Western ↓ E2F1 
↑ p21, p27 

(Hsueh et al., 
2001) 

CHO (Chinese 
hamster ovary) 

50 nM UCN-01 Western ↑ Rb, ↓ ppRb, 
↑ Sp1 

(Penuelas et al., 
2003) 

K562 
(myelogenous 

leukaemia) 

50 nM UCN-01 PI flow, 
western 

G1 block (32% 
→ 65%), ↑Rb, 
↓ ppRb, ↑ Sp1 

(Penuelas et al., 
2003) 
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32P-orthophosphate labeling for 90 minutes.  Treatment of A431 human epidermoid 

carninoma cells with 0.05 µM UCN-01 also caused a G1 arrest as shown by propidium 

iodide flow cytometry (DNA histogram, no quantification available) (Akinaga et al., 

1993).  Further work with these cells showed that UCN-01 and staurosporine have 

different effects on cell cycle distribution, depending on concentration (Akinaga et al., 

1994).  At both 50% (0.26 µM) and 80% (1.56 µM) inhibitory levels, UCN-01 

consistently caused a G1 accumulation.  Propidium iodide flow cytometric analysis 

demonstrated an increase in the G1 fraction (from 50%) to 70% at 0.26 µM UCN-01, and 

to 60% at 1.56 µM.  Staurosporine treatment resulted in a G1 arrest (75%) at the lower 

effective dose (0.0058 µM), but shifted to a G2/M (G2 increased from 18% to 60%) 

accumulation at the 80% inhibitory level (0.058 µM).  It was also noted that UCN-01 did 

not alter the rate of DNA synthesis in these cells or the progression through mitosis; only 

the G1 to S phase transition was delayed.  The different effects of UCN-01 and 

staurosporine may be due to a divergence of their effects on the retinoblastoma (Rb) 

protein (Shimizu et al., 1996).  A panel of lung cancer cell lines (Ma-31 with wild-type 

Rb, N417 with null Rb, and H209 with mutant Rb) was treated with both agents and IC50 

values for each drug on each cell line were determined by MTT assay: values for UCN-

01 for Ma-31, N417 and H209 are 2197, 737 and 181 nM respectively.  For 

staurosporine, the IC50 values for Ma-31, N417 and H209 are 602, 54 and 29 nM, 

respectively.  Treatment with each drug at IC50 levels showed a decrease in the levels of 

Rb for Ma-31 and H209 cells.  However, in the wild-type Rb line (Ma-31), staurosporine 

increased the ratio of hyper- to hypophosphorylated Rb, while UCN-01 decreased this 

ratio.  Hypophosphorylated Rb can bind to E2F transcription factors, sequestering it away 

26



from genes required for cell growth and division.  A similar effect was seen in another 

lung cancer cell line, A549 (Courage et al., 1996; Kawakami et al., 1996).  Cyclin 

dependent kinases cdk2, cdk4 and cdk6 were immunopurified from the cells and 

incubated in vitro with UCN-01; subsequent kinase assays on purified Rb demonstrated 

dose-dependent inhibition of Rb phosphorylation.  In growing A549 cells, 100 nM UCN-

01 caused a G1 arrest (DNA histogram, no quantification cited) and a decrease in hyper-

phosphorylated Rb.  A G1 arrest induced in A431 cells also showed an increase in 

dephosphorylated Rb (Akiyama et al., 1997).  In addition, the levels of cyclin A and 

cyclin D1 were reduced, as was the activity of cdk2 and the levels of its active, threonine 

160-phosphorylated form.  The cell cycle inhibitors p21 and p27 were also increased in 

UCN-01 treated cells.  A431 cells synchronized at M phase with nocodazole and then 

treated with either UCN-01 or staurosporine showed a G1 or G2/M block, respectively 

(Akiyama et al., 1999a).  While staurosporine inhibited a reduction in cyclin B, UCN-01 

had no effect on cyclin B levels.   

 

The ability of UCN-01 to produce a cell cycle arrest may be determined in part by the Rb 

status of the cell being treated.  A study comparing Rb-proficient cell lines (colon 

carcinoma WiDr, HCT116 and lung fibroblast WI-38) to an Rb-defective line (Saos-2 

osteosarcoma) and an SV40-transformed line (WI-38 VA13) found that functional Rb led 

to a UCN-01-mediated G1 arrest (DNA histogram, no quantification available) at both 

100 and 300 nM, whereas lack of Rb resulted in apoptosis at both doses (Akiyama et al., 

1999b).  The G1 arrest was accompanied by a drop in the kinase activity of cdk2 and the 

levels of active (Thr-160 phosphorylated) cdk2 in all five cell lines.  Levels of p27 were 
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increased all cell lines except Saos-2 (p27 null), but p21 levels were not altered in any of 

these lines following UCN-01 treatment.  A similar finding was reported in non-small 

cell lung cancer (NSCLC) lines; wild-type Rb expressing lines A549 and Calu1 were 

arrested in G1 (increase in G1 from 73% to 86% in A549, and from 52% to 72% in H596, 

both at 100nM UCN-01) after UCN-01 treatment, while no arrest was observed in the 

Rb-null line H596 (Mack et al., 1999).    Unlike the previous cited work (Akiyama et al., 

1999b ), UCN-01 (100 nM) caused an increase in p21 in all three cell lines, regardless of 

Rb status.  (Hypophosphorylation of Rb was also noted in the wild-type lines, in both p53 

wild-type (A549) and mutant (H596) cell lines.  The role of Rb in the UCN-01-induced 

G1 arrest was further examined using isogenic cell lines: the bladder cancer cell line 5637 

(Rb-null), prostate cancer cell line DU-145 (Rb-mutant) and their Rb-expressing sublines 

(RB5 and DU1.1, respectively).  In both pairs, Rb hypophosphorylation and G1 were 

arrest were seen in UCN-01 treated sublines, whereas the parental lines had no arrest.  

The dispensability of p53 and requirement for Rb were confirmed in mammary epithelial 

cells as well (Chen et al., 1999).  Normal mammary epithelial cell lines (76N and 81N) 

underwent a G1 arrest at low levels of UCN-01 (increase in G1 population of 11% in 76N 

and 15% in 81N, both at 80nM).  Two breast cancer cell lines (p53-null and Rb-inactive 

MDA-MB157 and p53/Rb-null MDA-MB436) did not undergo this G1 arrest following 

low doses (20-80 nM) of UCN-01.  Two variants of the normal 76N line were also tested: 

76NE6 cells, which lack p53, and 76NE7 cells, which are p53 deficient.  At 20nM UCN-

01, 76NE6 cells were growth-arrested and accumulated in G1, similarly to the 76N cells.  

The 76NE7 cells did not, suggesting the requirement of Rb for the UCN-01 mediated 

arrest.  In the UCN-01 sensitive cells, UCN-01 induced arrest was accompanied by 
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decreases in cdk2 and cdk4, as well as cdk2-associated kinase activity.  As in the 

previous studies, Rb phosphorylation decreased concomitant with arrest, as were levels of 

cyclin D.  However, no changes were observed in the levels of p21 and p27 in these cells, 

unlike in the previous reports.  However, the authors demonstrated that the binding of 

p27 was altered following the UCN-01-mediated decrease in cdk4.  As cdk4 levels 

decreased, the freed p27 was able to bind and inhibit cdk2.  Similar to the Mack et al. 

study (Mack et al., 1999), the small cell lung cancer line SBC-3 and the UCN-01 resistant 

subline SBC-3/UCN were examined after UCN-01 treatment (Usuda et al., 2000).  In the 

responsive SBC-3 cells, 0.2 µM UCN-01 caused a G1 accumulation (36% G1 increased 

to 56%), loss of phosphorylated Rb, decreased cdk2 activity, and increases in p21 and 

p21 binding to cdk2.  The arrest resistant SBC-3/UCN cells demonstrated no arrest at up 

to 1 µM UCN-01, and none of the underlying cell cycle protein changes seen in the SBC-

3 cells were recapitulated.  As in other reports, p53 did not appear to play a role in the 

cell cycle arrest due to UCN-01.  Because p21 seems to be a crucial player in the growth 

inhibition observed, the authors looked for regulators of p21 other than p53.  One 

possibility is interferon regulatory factor I (IRF-I), which can bind to the promoter of p21 

and cause transactivation of the gene (Coccia et al., 1999).  The authors found that the 

UCN-01 responsive SBC-3 cells, IRF-I was basally expressed, and UCN-01 increased 

this expression in a dose-dependent manner.  In the resistant SBC-3/UCN cells, IRF-I 

was not seen in the untreated samples, and very little was induced, even after 1µM UCN-

01 treatment.   
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Three head and neck squamous cell carcinoma (HSNCC) cell lines treated with UCN-01 

displayed many of the same cell cycle alterations reported above (Patel et al., 2002).  

HaCaT, HN12, and HN30 cells were growth-arrested and accumulated in G1 following 

UCN-01 treatment, with an IC50 as low as 17nM.  The inhibitors p21 and p27 increased, 

and cyclin D levels and cdk2- and cdk4-associated kinase activities were diminished.  A 

subsequent study demonstrated the same G1 arrest in HaCaT cells, but with only an 

increase in the inhibitor p21, but not p27 (Facchinetti et al., 2004).  To explore this 

difference further, the authors utilized the colon carcinoma cell line HCT116 and two 

isogenic sublines, one p21-/- and the other p53-/-.  UCN-01 treatment (100 nM for 12 

hours) increased p21 expression regardless of p53 status, and only p21 expressing cells 

underwent the UCN-01 mediated G1 arrest.  Promoter deletion studies demonstrated that 

only the Ras-activation domain was required for increased levels of p21, and that the p53 

activation site was dispensable.  UCN-01 modulation of PKC, PDK1 and AKT was also 

ruled out as affecting the p21 levels in the cells.  As the Ras activation domain was 

required for p21 induction, the authors investigated pathways downstream of Ras.  The 

mitogen-activated protein kinase (MAPK) pathway is a cascade of 

kinase/phosphorylation interactions in which activated, upstream kinases phosphorylate 

and activate subsequent kinases leading to activation of several transcription factors.  In 

the canonical pathway, Ras activates Raf, the MAPK kinase kinase (MAPKKK), which 

then activates MEK (MAPKK), which then activates the ERK1 and ERK2 via 

phosphorylation (Figure 1).  HCT116 cells treated with UCN-01 displayed increased 

ERK kinase activity at doses that induced p21 accumulation, and the activation of ERK 

temporally preceded the increase in p21.  Inhibition of MEK (via PD98059 or UO126) 
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Figure 1: Proliferative pathways affected by UCN-01, 
resulting in cell cycle arrest. Green indicates activities  
enhanced by UCN-01, red designates inhibition by UCN-01. 
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prevented the p21 promoter activation following UCN-01 treatment, and no p21 

accumulation or p21 increase was seen.  Finally, p21 induced by UCN-01 was almost 

exclusively located in the nucleus.  While the exact nature by which UCN-01, a kinase 

inhibitor, is able to activate a proliferative pathway such as MAPK is unknown, it is not 

without precedent.  Other antiproliferative drugs have been shown to activate the MAPK 

pathway, such as cisplatin (Wang et al., 2000) and paclitaxel (Bacus et al., 2001).  It 

might also be possible that UCN-01 activates a stress response which can in turn activate 

the MAPK pathway (Benhar et al., 2002). 

 

The inhibitor p21 has been implicated in other cell lines as well.  A panel of 8 oral 

squamous cell carcinoma (OSCC) cell lines treated with UCN-01 demonstrated growth 

inhibition and G1 phase increase in both primary and metastatic cells (Otsubo et al., 

2007).  The levels of p21 were increased, and the levels cdk2 and Rb phosphorylation 

were diminished.  As in previous reports, levels of p27 were not affected.  Induction of 

p21 and decreased cyclin D were also correlated with a G1 arrest in both normal prostate 

epithelial cells (PrEC) and prostate cancer cell lines DU145, PC3 and PC3M 

(Blagosklonny et al., 2001).  UCN-01 was unable to inhibit the growth of LNCaP cells, 

and was able to abrogate a G1 arrest caused by phorbol ester (a PCK activator).  These 

disparate effects may tie in with the previous study concerning the actions of UCN-01 on 

the MAPK pathway (Facchinetti et al., 2004).  PKC can activate the MAPK pathway, 

which in turn can lead to increased levels of cyclin D and the inhibitor p21 (Dent et al., 

1998; Sherr, 1996).  The balance of proliferative response to growth arrest appears to be 

specific for each cell type, and may shape the response to UCN-01. 
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While many descriptions of mechanism of UCN-01 cell cycle arrest have focused on Rb 

phosphorylation and the cell cycle proteins implicated in that process, it has also been 

reported that UCN-01 can affect E2F-mediated transcription of G1 and S phase genes by 

directly affecting E2F protein levels (Hsueh et al., 2001).  In the gastric cancer cell line 

SK-GT5, 1µM UCN-01 treatment produced a 99% drop in the levels of E2F-1.  It was 

further shown that the decrease was due to ubiquitin/proteasome–mediated proteolysis.  

However, the cell cycle proteins p21, p27, and cyclin B were not diminished by the 

UCN-01-mediated proteolytic process responsible for degrading E2F; the levels of p21 

and p27 increased after UNC-01 treatment, and cyclin B was unchanged.  The authors 

also note that inhibition of E2F degradation (using proteasome inhibitor LnLL) was not 

able to prevent the UCN-01-mediated G1 arrest in these cells.  E2F repression has been 

shown to inhibit cell cycle progression by other agents, such as retinoic acid and IFN-α 

(Iwase et al., 1997; Zhu et al., 1997).  In bronchial epithelium, retinoic acid mediates 

degradation of cyclin D through the ubiquitin/proteasome pathway (Langenfeld et al., 

1997), similar to the results seen in A341 cells treated with UCN-01 (Akiyama et al., 

1997).  Whether or not the drop is cyclin D is dependent upon increased degradation 

through the unbiquitin/proteasome pathway is still under investigation. 

 

The ability of UCN-01 to modulate the transcription and stability of Rb has also been 

demonstrated in cultured cells (Penuelas et al., 2003).  Low levels of UCN-01 (30-50nM) 

were shown to cause cell cycle arrest in CHO, K562 and HeLa cells, and led to increased 

levels of Rb; 50 nM UCN-01 caused an increase in the G1 population from 35% to 65% 
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in K562 cells.  This increase in Rb was attributed to both increased Rb mRNA levels and 

decreased degradation of Rb.  The authors also noted an increase in the transcription 

factor Sp1 at these low concentrations of UCN-01.  Sp1 has been shown to interact with 

Rb to enhance the transcription of Sp1, and Rb can activate transcription of p21 through 

Sp1 (Decesse et al., 2001; Noe et al., 1998).  It is possible in this cell line that increased 

levels of Rb could both diminish the transcription of E2F-dependent genes (such as 

cyclins D and E) as well as increase levels of p21, leading to cell cycle arrest in G1. 

 

UCN-01 has also been demonstrated to inhibit endothelial cell growth (Kruger et al., 

1998).  UCN-01 prevented outgrowth from rat aortic explant cultures, and inhibited 

hypoxia-inducible factor (HIF-1) dependent transcription, and could possibly be used to 

prevent angiogenesis.   

 

In summary, these studies have demonstrated that UCN-01 can cause growth inhibition in 

many cell lines, and that the arrest is due to a block in the G1 phase of the cell cycle (see 

Table 2).  The cell cycle proteins involved in G1 and the transition to S phase are the 

most commonly indicated as the actors in this arrest.  Rb seems to be required in most 

cells, and hypophosphorylated Rb is a hallmark of the arrest and could putatively be 

sequestering the E2F transcription factor, preventing cell cycle progression.  The levels 

and activities of the G1 cyclin dependent kinases, and the levels of the cyclins D, E, and 

A, and the inhibitors p21 and p27 have all been implicated, although the effects of UCN-

01 on any specific protein vary among published reports and seem to be cell type 

specific.  It also appears that p53 is not required for this process, and that the MAPK 
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pathway may also be involved.  However, very few studies have been done on normal 

cell lines, and the mutations and abnormalities necessary in tumor cells can obscure any 

evaluation of cell cycle processes.  More importantly, none of these studies have 

examined the actions of UCN-01 in vivo, which are likely to be different than those in 

any immortalized cell culture line. 

 

 

UCN-01 and apoptosis (Table 3) 

In addition to inhibiting growth, UCN-01 has also been implicated as an inducer of 

apoptosis in various cancer cell lines.   Exposure of four T lymphoblast cell lines (Jurkat, 

Molt-3, Molt-4, and Hut-78) to UCN-01 for 24 hours led to decreased cell viability, 

G2/M phase cells, and total protein phosphorylation.  The sub-G1 (apoptotic) cell 

population increased, beginning 3 hours after UCN-01 treatment (Wang et al., 1995).  

Interestingly, the histone H-1 kinase activities of cdk1 and cdk2 immunoprecipitated 

from Jurkat cells showed a dose-dependent increase with UCN-01 treatment; the authors 

identified the lack of inhibitory phosphorylation at threonine 15 by the Wee1 kinase as 

the cause (Figure 2).  Exposure of purified cdk1 and cdk2 to UCN-01 in vitro led to the 

expected decrease in phosphorylation of histone H1.  This study highlights the possibility 

that a kinase inhibitor such as UCN-01 can impair the kinase ability of an upstream cell 

cycle inhibitor, thus potentiating downstream kinases, even if UCN-01 itself is able to 

inhibit the later enzymes when isolated in vitro.  A panel of eight ovarian carcinoma cells 

lines, both p53-proficient (OVCAR 429, 433, 3, and 420) and p53 mutant (SKOV 3, 

SKOV 3 R, and OVCAR 432), exposed to UCN-01 for 24 hours displayed increased 
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Figure 2: Apoptotic pathways affected by UCN-01.  Green 
indicates activities enhanced by UCN-01, red designates 
inhibition by UCN-01. 
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Table 3: UCN-01 and Apoptosis in Cultured Cells 
 

Cell line UCN-01 
dose 

Experimental 
Data 

Cellular 
effects 

Reference 

Jurkat (T-
lymphoblast) 

100-300 nM MTT assay, 32P 
labeling, PI 
flow, HH1 

kinase assay, 
western 

Growth 
inhibition, ↓ 
G2 (18% → 

10%), 
apoptosis, ↑ 
cdk1 & cdk2 

activity, ↓ 
Wee1 activity 

(Wang et al., 1995) 

OVCAR 429 
(ovarian cancer, 

p53 wt) 

100 nM MTT assay, 
EtBr flow 

Growth 
inhibition 

(30% survival), 
↑ G1 (42% → 
59%), ↓ G2 

(19% → 10%), 
apoptosis 

(Husain et al., 
1997) 

SKOV 3 
(ovarian cancer, 

p53 null) 

100 nM MTT assay, 
EtBr flow 

↓ G1 (50.7% 
→ 24.1%), ↑ 
G2 (5.7% → 

34%) 

(Husain et al., 
1997) 

SKOV SN3 
(ovarian cancer, 

p53 trans) 

100 nM MTT assay, 
EtBr flow 

↑ G1 (75% → 
88%), 

apoptosis 

(Husain et al., 
1997) 

HL60 
(myeloblastic 

leukemia) 
 
 
 
 

0.1 – 10 µM 
 
 
 
 

10 µM 

DNA 
fragmentation, 

HH1 kinase 
 
 

Western, 32P 
labeling 

↑ DNA 
fragmentation, 

apoptosis,   
↓cdk1 activity 

 
↑PKCα,  
↑ppPKCα 

(Shao et al., 1997b) 
 
 
 

(Shao et al., 1997a) 

K562 
(myeloblastic 

leukemia) 

0.1 – 10 µM DNA 
fragmentation, 

HH1 kinase 

↑ DNA 
fragmentation, 

apoptosis,   
↓cdk1 activity 

(Shao et al., 1997b) 
 

HT29 (colon 
carcinoma) 

0.1 – 10 µM DNA 
fragmentation, 

HH1 kinase 

↑ DNA 
fragmentation, 

apoptosis,   
↓cdk1 activity 

(Shao et al., 1997b) 
 

A549 (NSCLC) 400 nM PI flow, 
TUNEL assay, 
HH1 kinase, 

western 

↑ apoptosis 
(60%), ↓ G1 

(43% → 22%),  

(Sugiyama et al., 
1999) 
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no Δ in cdk2 
activity  

A549/UCN 
(UCN-01 

resistant A549 
subline) 

400 nM PI flow, 
TUNEL assay, 
HH1 kinase, 

western 

no ↑ apoptosis, 
↑G1 (43% → 
67%), ↓cdk2 

activity, ↓p21, 
↓p27, ↓ppRb 

(Sugiyama et al., 
1999) 

LS513 (colon 
carcinoma) 

100 nM – 1 
µM 

Condensed 
nuclei, western 

↑ apoptosis 
(50%), ↑PARP 

cleavage,  
↓bcl-xL, no 

NF-κB Δ 

(Bhonde et al., 
2005) 

SW48 (colon 
carcinoma) 

100 nM – 1 
µM 

Condensed 
nuclei, western 

↑ apoptosis 
(45%), ↑PARP 

cleavage,  
↓bcl-xL, no 

NF-κB Δ 

(Bhonde et al., 
2005) 

WiDr (colon 
carcinoma) 

100 nM – 1 
µM 

Condensed 
nuclei, western 

no apoptosis, 
no PARP 
cleavage,  
↑bcl-xL,  
↑NF-κB Δ 

(Bhonde et al., 
2005) 

HT29 (colon 
carcinoma) 

100 nM – 1 
µM 

Condensed 
nuclei, western 

no apoptosis, 
no PARP 
cleavage,  
↑bcl-xL,  
↑NF-κB Δ 

(Bhonde et al., 
2005) 

Cos-7 (monkey 
kidney) 

0.3 – 1 µM western  ↓ppAkt (Sato et al., 2002) 

HT1080 
(human 

fibrosarcoma) 

0.3 – 1 µM GSK-3 kinase, 
western,Casp-3 

assay 

↓ppAkt,  
↑caspase-3 

activity, 
↓PDK1 
activity 

(Sato et al., 2002) 

NL-17 (mouse 
colon 

carcinoma) 

0.3 – 1 µM GSK-3 kinase, 
western 

↓ppAkt, 
↓PDK1 
activity 

(Sato et al., 2002) 

293T 1 µM GSK-3 kinase, 
Casp-3 assay 

↓Akt activity, 
↑caspase-3 

activity, 
↓PDK1 
activity 

(Sato et al., 2002) 

SH-EP 
(neuroblastoma, 

50 – 500 nM MTT assay, 
TUNEL, 

Apoptosis, 
↑ active 

(Shankar et al., 
2004) 
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Bcl-2 null, p53 
wt) 

western, PI 
flow 

caspase-3, ↑G1 
(36% → 50%), 

↓ppAkt, 
↓ppGSK-3 

SH-SY5Y 
(neuroblastoma, 
Bcl-2 wt, p53 

wt) 

50 – 500 nM TUNEL Apoptosis (Shankar et al., 
2004) 

SK-N-MC 
(neuroblastoma) 

50 – 500 nM TUNEL, 
western 

Apoptosis, 
↑ active 

caspase-3, 
↓ppAkt, 
↓ppGSK-3 

(Shankar et al., 
2004) 

MSN 
(neuroblastoma, 

BCL-2 null) 

50 – 500 nM TUNEL, 
western 

Apoptosis, 
↑ active 

caspase-3, 
↑cleaved 
PARP, 
↓ppAkt, 
↓ppGSK-3 

(Shankar et al., 
2004) 

IMR32 
(neuroblastoma, 
Bcl-2 wt, p53 

wt) 

50 – 500 nM TUNEL Apoptosis (Shankar et al., 
2004) 

SK-N-SH 
(neuroblastoma, 
Bcl-2 +/-, p53 

wt) 

50 – 500 nM TUNEL Apoptosis (Shankar et al., 
2004) 

HN6 (HNSCC) 100 nM western,  
GSK-3 kinase 

↓ppAkt, 
↓Akt activity 

(Amornphimoltham 
et al., 2004) 

HN12 
(HNSCC) 

100 nM western ↓ppAkt 
 

(Amornphimoltham 
et al., 2004) 

HN13 
(HNSCC) 

100 nM western ↓ppAkt  (Amornphimoltham 
et al., 2004) 

HN19 
(HNSCC) 

100 nM western ↓ppAkt 
 

(Amornphimoltham 
et al., 2004) 

HN26 
(HNSCC) 

100 nM western ↓ppAkt 
 

(Amornphimoltham 
et al., 2004) 
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apoptosis regardless of p53 status (Husain et al., 1997).  However, the cell cycle response 

in these cells appears to depend on p53; wild-type p53 cells demonstrated a G1 arrest, 

while p53-null cells accumulated in G2.  Apoptosis after UCN-01 exposure was also seen 

in two myeloblastic leukemia cell lines (HL60 and K562) and one colon carcinoma line 

(HT29), all p53-null (Shao et al., 1997c).  The result was remarkable in that these lines 

have historically been resistant to apoptosis.  DNA fragmentation in these cells was 

preceded by increased activity of cyclin B/cdk1.  Inhibition of either caspases (via Z-

VAD-FMK) or serine proteases (by DCI) protected these cells from apoptosis.  In a 

subsequent study, the same group identified modulation of PKCα to coincide with 

apoptosis in the HL60 cells (Shao et al., 1997a).  The authors demonstrated that UCN-01 

did not directly affect PKCα; instead, the drug increased autophosphorylation of 

PKCα, leading to its activation, approximately 3 hours after UCN-01 treatment, at which 

time apoptosis also became apparent.  As in the previous study, caspase inhibition with 

Z-VAD-FMK protected the cells from apoptosis; the activity of PKCα was also inhibited.  

The involvement of PKCα is further supported by an analysis of a UCN-01 resistant cell 

line, A549/UCN, in which levels of PKCα were greatly diminished (Courage et al., 

1997).  When cultured without UCN-01 for six months, the cells regained their sensitivity 

to UCN-01 and also expression of PKCα. 

 

Further exploration of the A549 line and UCN-01-driven apoptosis-resistant A549/UCN 

subline helped to uncover a mechanism which determines the cellular response to UCN-

01 (Sugiyama et al., 1999).  After exposure to 0.4µM UCN-01, 62% of A549 cells were 

driven into apoptosis, while the resistant A549/UCN cells had no increase following 
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treatment; instead, 67% of these cells accumulated in G1 (compared to 22% in A549 

cells).  Similar to the arresting effects detailed in the previous section, the A549/UCN 

cells exhibited a dose dependent increase in p21 and p27, and decreases in cyclin A, 

phosphorylated Rb, and active cdk2.  Cdk2 kinase activity was reduced as well. None of 

these changes were observed in the parental A549 cells.  Finally, expression of the anti-

apoptotic bcl-2 protein was seen in A5549/UCN cells, both in UCN-01-treated cells and 

untreated controls.  No bcl-2 expression was seen in A549 cells (Figure 2).  Levels of the 

anti-apoptotic bcl-xL were diminished in both lines after UCN-01 treatment. Bcl-xL was 

also demonstrated as an actor in the apoptotic response of four colon carcninoma cell 

lines (Bhonde et al., 2005).  The cell lines LS513 and SW48, which undergo apoptosis 

following UCN-01 treatment also had a dose-dependent decrease in bcl-xL expression.  

However, the UCN-01-resistant WiDr and HT29 lines, which are resistant to apoptosis at 

levels of UCN-01 up to 1.0µM, had not such modulation; levels of bcl-xL were constant 

regardless of treatment.  PARP cleavage mimicked the bcl-xL and apoptotic responses, 

with increasing cleavage in the LS513 and SW48 cells, and no cleavage seen in the 

resistant WiDr and HT29 lines.  While the repression of bcl-xL by UCN-01 in the 

sensitive cells lines is a factor in the increased apoptosis observed, the authors also 

demonstrate that cell cycle arrest may be just as important to the survival of the resistant 

lines.  LS513 clones transduced with a bcl-xL retrovirus were resistant to UCN-01-

mediated apoptosis, unlike the mock-infected controls.  The bcl-xL overexpressing clones 

also entered a G1 arrest following UCN-01 treatment (from 45% G1 to over 60%); the 

mock-infected control cells had no change in the G1 population due to UCN-01 

treatment.  Thus, while UCN-01 can mediate apoptotic factors such as bcl-xL and thus 
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possibly enhance the toxic effects of other agents, this ability may be preempted by a 

UCN-01-mediated cell cycle arrest.  The mechanism of bcl-xL transcriptional control by 

UCN-01 is still under investigation. 

 

Apoptosis caused by UCN-01 was also shown in an ex vivo model of leukemia.  Cells 

harvested from chronic lymphocytic leukemia (CLL) patients treated with 0.4µM UCN-

01 for 4 days demonstrated a 50% loss in viability, correlated with induction of apoptosis 

(Byrd et al., 2001).  No changes in the anti-apoptotic bcl-2 protein or the pro-apoptotic 

bax protein were observed following UCN-01 treatment.  A dose dependent decrease in 

p53 was observed, but a subsequent study on mouse splenocytes with wild-type or null 

p53 showed no requirement for p53 to induce apoptosis.  The mechanism by which 

UCN-01 is able to induce apoptosis in these cells is uncertain, but the ability to do so 

without p53 present holds some promise for treating CLL patients who have become 

resistant to other modes of therapy such as chlorambucil and fludarabine, which require 

p53 to cause cell death (Mentz et al., 1996). 

 

While the PDK1-Akt survival pathway (Figure 2) was previously excluded as a possible 

mechanism in the G1 arresting effect of UCN-01 by Komander et al., it may be involved 

in the apoptotic response.  Cos-7, HT1080 and NL-17 cells treated with 1 µM UCN-01 

exhibited a dose-dependent reduction in phosphorylated (active) Akt; the kinase activity 

(GSK-3 peptide substrate) of Akt was also reduced, and caspase-3 activity and PARP 

cleavage (markers of apoptosis) were increased (Sato et al., 2002).  The lack of 

phosphorylation was shown not to be caused by direct inhibition of PI3K or Akt, but 
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rather by inhibition of the upstream kinase PDK1.  The inhibition of PDK1 and induction 

of apoptosis were also demonstrated in vivo using implanted NL-17 and PC-3 cells 

(discussed below).  Alteration of the Akt pathway by UCN-01 was also demonstrated in 

six neuroblastoma cell lines, SH-EP, SH-SY5Y, SK-N-MC, MSN, IMR32, ANS SK-N-

SH (Shankar et al., 2004).  Cells treated with 0.05µM UCN-01 were positive for 

apoptosis (TUNEL staining) and had active (cleaved) caspase-3 and cleaved PARP.  

Furthermore, UCN-01 diminished the levels of active (phosphorylated) Akt.  Acting as a 

prosurvival protein, Akt can phosphorylate (and thus deactivate) the proapoptotic kinases 

GSK3β and Bad, and can also modulate p53 (Khwaja, 1999; Pap and Cooper, 1998).  

Indeed, four hours after UCN-01 exposure, when phospho-Akt was diminished, GSK3β 

phosphorylation was also reduced, allowing GSK3β to remain in its active, proapoptotic 

state.  Blockade of Akt activity was also demonstrated in HNSCC cells 

(Amornphimoltham et al., 2004).  Both Akt and GSK3β phosphorylation were inhibited 

upon UCN-01 exposure in these cells, although these cells underwent growth inhibition 

rather than apoptosis. 

 

Analysis of the apoptotic mechanism following UCN-01 treatment in human colon 

carcinoma HT-29 cells uncovered some features seen previously (Chan et al., 2003).  

0.1µM UCN-01 resulted in 50% cell death within 48 hours.  Caspase-3 activity was 

induced, and the levels of anti-apoptotic bcl-xL were diminished.  Transfection with 

exogenous bcl-xL was able to rescue the cells from UCN-01, as apoptosis was reduced 

and caspase-3 was not activated; PARP was also not cleaved in these cells.  The MAPK 

pathway was also implicated in this study, although not the canonical growth factor 
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cascade shown to play a role in arrest in the study by Facchinetti et al.  Instead, the p38 

MAPK pathway was implicated.  This signaling pathway responds to cellular stress and 

increases in inflammatory response, and leads to cytokine production and apoptosis.  HT-

29 cells which were treated with 0.1µM UCN-01 exhibited increased p38 expression; 

exogenous bcl-xL experiment prevented this increase, as well as apoptosis. 

 

Several cells lines, all derived from tumors, have shown varying vulnerability to UCN-

01-mediated apoptosis (see Table 3).  As in the studies examining the G1 cell cycle 

arrest, many players have been implicated, and no clear mechanism of apoptotic 

induction yet exists.  While the purpose of the project detailed here is to exploit the 

temporary arrest of normal cells following UCN-01 treatment to prevent apoptosis, the 

pathways described above are important in that they illustrate both the pluripotency of 

UCN-01 and may help guide the selection of tumors which would be appropriate to treat 

under the protection protocol.  The fate of a particular cell type following UCN-01 

treatment seems to depend on the balance of various cell control pathways, and it appears 

that the difference between cell death and cell arrest could hinge on PKC, the original 

target for which UCN-01 was developed.  In a tumor cell, UCN-01 is able to activate 

PKC, likely due to constitutively active receptor tyrosine kinase signaling.  The activation 

of PKC can then trigger apoptosis both through bcl-2 inhibition and lack of GSK3β 

repression (Figure 2).  In normal cells, UCN-01 can inhibit PKC, leading to decreased 

NF-κB signaling and cell cycle arrest.  Cancers with mutated stress responses and lacking 

pro-apoptotic machinery may be resistant to growth inhibition, which would leave them 
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susceptible to other cytotoxic agents after UCN-01 exposure, while normal cells would 

be protected in a state of temporary cell cycle arrest. 

 

UCN-01 and  G2/M checkpoint abrogation (Table 4A-4D) 

While UCN-01 can clearly trigger G1 checkpoint stimulation (causing a G1 arrest) or 

drive some cells into apoptosis, the compound has also been exploited for its ability to 

prevent the G2/M phase cell cycle checkpoint from arresting cells and allowing for DNA 

damage repair to proceed (Eastman, 2004).  Following damage from either 

chemotherapeutic drugs or radiation, some tumor cells enter a G2 arrest.  Following 

cytotoxic treatment with UCN-01 can abrogate this checkpoint, forcing cells with damage 

to enter mitosis.  These crippled cells will then undergo apoptosis, thus enhancing the 

damage done to the tumor.  As with the studies focusing on apoptosis due to UCN-01 

alone, this project does not seek to take advantage of the G2 checkpoint abrogation.  It is 

our aim to arrest normal cells in the G1 phase of the cell cycle, thus preventing damage 

from agents which target actively dividing cells, not to enhance toxicity to tumor cells.  

However, as the mechanisms and targets of UCN-01 seem both numerous and not 

entirely clear, it is important to be cognizant of any and all actors in these processes.  

Below is a summary of the current knowledge of the ability of UCN-01 to abrogate the 

G2/M checkpoint arresting machinery.  The tables 4A – 4D summarize the different 

mechanisms of UCN-01 when used in combination therapy. 

 

The major pathway thought to be affected by UCN-01 in this paradigm is that of 

cdk1/cyclin B complex in G2.  When active, cdk1 is unphosphorylated at both Thr14 and 
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Table 4A: UCN-01 in S/G2 arrest abrogation when used with a second agent/IR 
 
 
 

Cell Line Damaging Agent Effect(s) Observed Reference 
CA46 (lymphoma) IR G2 arrest 

abrogation, ↑cdk1 
activity (loss of 

ppThr14 & ppTyr15) 

(Wang et al., 1996) 

MCF-7 (p53 wt) Cisplatin  Apoptosis resistance (Wang et al., 1996) 
MCF-7/E6 (p53-) Cisplatin Apoptosis, G2 arrest 

abrogation 
(Wang et al., 1996) 

CHO (hamster 
ovary, p21 & p53 

null) 

Cisplatin PCNA→DNA, S 
arrest abrogation, 

apoptosis 

(Bunch and 
Eastman, 1997) 

HT29 (colon 
carcinoma, p53 mut) 

Camptothecin ↓cyclin A levels & 
cdk2 kinase activity, 
S arrest abrogation, 
↑ cdk1 activity, 

apoptosis 

(Shao et al., 1997b) 

HCT116/E6 (colon 
carcinoma, p53 null) 

Camptothecin Apoptosis (Shao et al., 1997b) 

HCT116 (p53 wt) Camptothecin Apoptosis resistance (Shao et al., 1997b) 
MCF-7/ADR (breast 

cancer, p53 null) 
Camptothecin Apoptosis (Shao et al., 1997b) 

MCF-7 (breast 
cancer, p53 wt) 

Camptothecin Apoptosis resistance (Shao et al., 1997b) 

A431 (human 
epithelial 

carcinoma, p53 mut) 

Mitomycin C G2 arrest 
abrogation, 
apoptosis 

(Sugiyama et al., 
2000) 

PSN-1 (human 
pancreatic 

adenocarcinoma, 
p53 mut) 

Mitomycin C G2 arrest 
abrogation, 
apoptosis 

(Sugiyama et al., 
2000) 

HCT-116 (p53 wt) Mitomycin C Apoptosis resistance (Sugiyama et al., 
2000) 

MCF-7 (p53 wt) Mitomycin C Apoptosis resistance (Sugiyama et al., 
2000) 

WiDr (colon 
carcinoma, p53 null) 

Mitomycin C Apoptosis (Sugiyama et al., 
2000) 

WiDr/BM (colon 
carcinoma, p53 +) 

Mitomycin C Apoptosis resistance (Sugiyama et al., 
2000) 

MDA-MB231 
(breast cancer, p53 

mut) 

SN38 S/G2 arrest 
abrogation, 
apoptosis 

(Kohn et al., 2002) 
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MCF-10a (breast 
epithelium, p53 wt) 

SN38 Apoptosis 
resistance, ↓ cyclins 

A & B  

(Kohn et al., 2002) 

HCT116 (p53 wt) IR G2 arrest 
abrogation, Chk2 

inhibition 

(Yu et al., 2002) 

HCT116 (p53 null 
subline) 

IR G2 arrest 
abrogation, Chk2 

inhibition 

(Yu et al., 2002) 

HCT116 (p53 wt) SN38 G2 arrest 
abrogation, ↓p21,  

↑cyclin B 

(Levesque et al., 
2008) 

MCF-7 (p53 wt) SN38 G2 arrest 
abrogation, ↓p21,  

↑cyclin B 

(Levesque et al., 
2008) 

CAKI-1 (renal 
carcinoma, p53 wt) 

SN38 UCN-01 unable to 
block G2 arrest 

(Levesque et al., 
2008) 

U87MG (glioma, 
p53 wt) 

SN38 UCN-01 unable to 
block G2 arrest 

(Levesque et al., 
2008) 

SUM102 (breast 
cancer, p53 wt) 

SN38 UCN-01 unable to 
block G2 arrest 

(Levesque et al., 
2008) 

A549 (lung 
carcinoma, p53 wt) 

IR No UCN-01-
enhanced toxicity 

(Xiao et al., 2002) 

A549/E6 (p53 null) IR G2 arrest 
abrogation, 
apoptosis 

(Xiao et al., 2002) 

LXSN (lung 
carcinoma, p53 wt) 

IR No UCN-01-
enhanced toxicity 

(Xiao et al., 2002) 

A549 (p53 wt) IR G2 block 
abrogation, no 

increased toxicity 

(Mack et al., 2004) 

Calu (lung 
carcinoma, p53 wt) 

IR G2 arrest 
abrogation, 
apoptosis 

(Mack et al., 2004) 

HT29 (colon 
carcinoma, p53 mut) 

IR G2 arrest 
abrogation, 
apoptosis 

(Playle et al., 2002) 

SW480 (colon 
carcinoma, p53 mut) 

IR G2 arrest 
abrogation, 
apoptosis 

(Playle et al., 2002) 

SW260 (colon 
carcinoma, p53 mut) 

IR G2 arrest 
abrogation, no 

increased toxicity 

(Playle et al., 2002) 

S/KS (rectal 
carcinoma, p53 mut) 

IR G2 arrest 
abrogation, no 

(Playle et al., 2002) 
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increased toxicity 
S/KS (rectal 

carcinoma, p53 mut) 
IR G2 arrest 

abrogation, no 
increased toxicity 

(Playle et al., 2002) 

CHO Cisplatin G2 arrest abrogation (Bunch and 
Eastman, 1996) 

HT29 Camptothecin S arrest abrogation (Shao et al., 1997a) 
MDA-MB231, 
T47D (breast 

cancer) 

Cisplatin S/G2 arrest 
abrogation 

(Lee et al., 1999) 

MDA-MB231, GI 
101A 

Camptothecin Apoptosis, S/G2 
arrest abrogation 

(Jones et al., 2000) 

A341, PSN-1, 
HCT116, MCF-7 

Mitomycin C Apoptosis, S/G2 
arrest abrogation 

(Sugiyama et al., 
2000) 

U87MG Temozolomide G2 arrest 
abrogation, Chk1 

inhibition 

(Hirose et al., 2001) 

184B5, 184B5/E6 Adriamycin G2 arrest abrogation (Luo et al., 2001) 
HCT116 SN-38 S/G2 arrest 

abrogation 
(Tse and Schwartz, 

2004) 
A549, PC-3 Perifosine S arrest abrogation (Dasmahapatra et 

al., 2004) 
MCF10a SN38 S arrest abrogation,  

↓p21 
(Levesque et al., 

2005) 
HT29 Ara-C Apoptosis, ↑cdk1, 

chk1 inhibition, G2 
arrest abrogation 

(Shao et al., 2004) 
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Table 4B: UCN-01 and apoptosis in concert with a second agent 
 

Cell Line(s) Damaging Agent Effect(s) Observed Reference 
SKOV-3, OVCAR-
3, -420, -429, -432 

CDDP Apoptosis (p53 
dependent) 

(Husain et al., 1997) 

SK-GT5 5-FU Apoptosis, TS 
suppression 

(Hsueh et al., 1998) 

MCF-7, T47D, 
HS578T, BT549, 
MDA-N, MDA-

MB231, MDA435 

Camptothecin Apoptosis, growth 
inhibition (p53 
independent), 

inverse correlation 
with bcl-2, bcl-xL 

(Nieves-Neira and 
Pommier, 1999) 

U937 Ara-C Apoptosis, caspase 
activation, 

mitochondrial 
damage 

(Tang et al., 2000) 

NCI-H322M, 
MDA-MB435, NCI-
H23, HT29, MCF-7 

Mitomycin C, 
cisplatin, 5-FU, 

topotecan, 
fludarabine 

Apoptosis (p53 
dependent), growth 

inhibition 

(Monks et al., 2000) 

MCF-7, MCF-
7/ADR 

Danazol, 
mifepristone 

Apoptosis (ER/PR 
dependent) 

(Yokoyama et al., 
2000) 

U937, HL-60 Fludarabine Apoptosis (sequence 
dependent) 

(Harvey et al., 
2001) 

ML-1 Gemcitabine Apoptosis, no cell 
cycle progression 

(Shi et al., 2001) 

MDA-MD231, 
MCF-7, T47D, 
DU145, LNCaP 

PD98059 Apoptosis, MAPK 
inhibition, ↑Bax 

(McKinstry et al., 
2002) 

U937 17-AAG Apoptosis, ↓Akt, 
↓MAPK 

(Jia et al., 2003) 

Lymphocytes 
(normal and CLL) 

UV light, 4-HC Apoptosis, DNA 
repair inhibition 

(Yamauchi et al., 
2002) 

A431 FdUrd Apoptosis, 
inhibition of TS and 

DNA repair 

(Grem et al., 2002) 

K562, LAMA84 UO126, PD184352 Apoptosis, ↓Mcl-1, 
↓ cyclin D, 
↓Bcr/Abl, Jnk 

activation 

(Yu et al., 2002) 

ML-1 Fludarabine Apoptosis, cdk2 and 
cdc25a reactivation 

(Sampath et al., 
2002) 

RPMI8226, NCI-
H929, U266 MM 

PD184352 Apoptosis, 
inhibition of UCN-
01 MEK activation 

(Dai et al., 2002) 
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A549, Calu1, H596 Cisplatin Apoptosis, ↓cyclin 
A and cyclin B 

(Mack et al., 2003) 

U937, HL-60 Ara-C Apoptosis, ↓Bcl-2 (Wang et al., 2003) 
U266, MM.1S, 

MM.1R 
Bay 11-7082 Apoptosis, IκB, 

NFκB disruption 
(Dai et al., 2004) 

HMEC, HMEC/E6, 
MDA-MB231 

Topotecan Apoptosis, 
normal/tumor 

differential, p53 
dependence 

(Redkar et al., 2004) 

HT29 Ara-C Apoptosis, ↑cdk1, 
chk1 inhibition, G2 

arrest abrogation 

(Shao et al., 2004) 

HCT116 SN-38 Apoptosis, S/G2 
arrest abrogation, 
p53 independence 

(Tse and Schwartz, 
2004) 

A549, PC-3 Perifosine Apoptosis, S arrest 
abrogation, Akt 

activation 

(Dasmahapatra et 
al., 2004) 

U937, HL-60, Raji, 
Jurkat 

L744832 Apoptosis, MEK 
inactivation, Jnk 

activation 

(Dai et al., 2005) 

U937 Rapamycin Apoptosis, 
↓MEK/ERK, ↓Bcl-

2, ↓cyclin D 

(Hahn et al., 2005) 

MCF10A SN38 Apoptosis, S arrest 
abrogation, ↓p21 

(Levesque et al., 
2005) 

CD138+ L744832 Apoptosis, Jnk 
activation, Akt 

inactivation 

(Pei et al., 2005) 

TE2, TE12, H322, 
H460, H513, H211 

Valproic acid Apoptosis, NFκB 
suppression 

(Yeow et al., 2006) 

U266, RPMI8226 PD184352 Apoptosis, Bim 
dependence 

(Pei et al., 2007) 

MDA-MB231, GI 
101A 

Camptothecin Apoptosis, S/G2 
arrest abrogation 

(Jones et al., 2000) 

A341, PSN-1, 
HCT116, MCF-7 

Mitomycin C Apoptosis, S/G2 
arrest abrogation, 
p53 dependence 

(Sugiyama et al., 
2000) 

HCT116 Camptothecin Apoptosis, DNA ds 
breaks, ↑γH2AX, 

↓p21 

(Furuta et al., 
2006)` 
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Table 4C: Cell lines demonstrating growth arrest when treated with UCN-01 and a 
second agent 
 

 
Cell Line(s) Secondary Agent Effect(s) Observed Reference 

A431 Mitomycin C G1/S arrest (Akinaga et al., 
1993) 

A-172, T-98G BCNU and cisplatin n/a (Pollack et al., 
1996) 

MCF-7, T47D, 
HS578T, BT549, 
MDA-N, MDA-
MB231, MDA-

MB435 

Camptothecin p53 independence, 
inverse correlation 

to bcl-2, bcl-xL 

(Nieves-Neira and 
Pommier, 1999) 

HMEC, HE6, 
MDA-MB231 

Camptothecin DNA ds breaks, p53 
dependence 

(Jones et al., 2000) 

NCI-H322M, 
MDA-MB435, NCI-
H23, HT29, MCF-7 

Mitomycin C, 
cisplatin, 5-FU, 

topotecan, 
fludarabine 

p53 dependence (Monks et al., 2000) 

MCF-7 Tamoxifen ↓Rb 
phosphorylation 

(Koh et al., 2003) 

MDA-MB231, 
MCF-7, HCT116, 

HEPG2 

PD184352, 
AZD6244, FTI277, 

R115777 

Bax/Bak 
dependence, ERK 

activity 

(Hamed et al., 2008) 
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Table 4D: Studies demonstrating p53 dependence/independence for actions of UCN-01 
and a second agent 
 

 
Cell Line(s) Secondary Agent Effect(s) Observed Reference 

HMEC, HE6, 
MDA-MB231 

Camptothecin DNA ds breaks, p53 
dependence 

(Jones et al., 2000) 

NCI-H322M, 
MDA-MB435, NCI-
H23, HT29, MCF-7 

Mitomycin C, 
cisplatin, 5-FU, 

topotecan, 
fludarabine 

p53 dependence (Monks et al., 2000) 

SKOV-3, OVCAR-
3, -420, -429, -432 

CDDP Apoptosis (p53 
dependent) 

(Husain et al., 1997) 

A341, PSN-1, 
HCT116, MCF-7 

Mitomycin C Apoptosis, S/G2 
arrest abrogation, 
p53 dependence 

(Sugiyama et al., 
2000) 

HMEC, HMEC/E6, 
MDA-MB231 

Topotecan Apoptosis, 
normal/tumor 

differential, p53 
dependence 

(Redkar et al., 2004) 

    
MCF-7, T47D, 

HS578T, BT549, 
MDA-N, MDA-

MB231, MDA435 

Camptothecin Apoptosis, growth 
inhibition (p53 
independent), 

inverse correlation 
with bcl-2, bcl-xL 

(Nieves-Neira and 
Pommier, 1999) 

HCT116 SN-38 Apoptosis, S/G2 
arrest abrogation, 
p53 independence 

(Tse and Schwartz, 
2004) 
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Tyr15 (Ohi and Gould, 1999).  However, upon DNA damage, cdk1 is phosphorylated at 

both these sites and is inactivated.  The phosphorylation status of cdk1 is determined by 

the interplay of the Wee1 kinase and the Cdc25C phosphatase.  The ATM kinase, 

activated by DNA damage, can phosphorylate and activate the checkpoint kinases Chk1 

and Chk2 (Weinert, 1997).  These kinases are able to phosphorylate Cdc25C, allowing 

binding to 14-3-3 proteins and sequestering it in the cytoplasm.  The expulsion of 

Cdc25C from the nucleus prevents removal of the inhibitory phosphates on cdk1, leaving 

it inactive and the cell arrested in G2.  By inhibition of ATM, Chk1, Chk2 and other 

signaling molecules, UCN-01 is able to blunt this arrest.  The specific actions of UCN-01 

in the G2/M transition will be reviewed here (Figure 3). 

 

Most of the studies reviewed in this section first require induction of the G2 checkpoint 

prior to evaluating the ability of UCN-01 to then allow the cells to pass it.  The focus will 

be on studies which examine the mechanism of UCN-01 action; other studies which 

concentrate on the enhanced ability to kill cells via this abrogation will be mentioned as 

appropriate. 

 

The initial study on UCN-01 in this context was done using human lymphoma CA46 

cells (Wang et al., 1996).  Following γ irradiation (6.3 Gy), the cells were arrested at the 

G2/M phase of the cell cycle.  UCN-01 was able to inhibit the resultant G2 arrest in a 

dose- dependant manner.  30 nM of UCN-01 had little effect, but 100 nM allowed the 

progression of some cells into G1, and 300 nM completely abolished the G2 arrest (DNA 

histogram, no number cited).  UCN-01 was able to activate the cyclin B/cdk1 complex 
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Figure 3: Pathways implicated in the abrogation of S/G2 phase  
arrest by UCN-01.  Green indicates activities enhanced by  
UCN-01, red indicates inhibition by UCN-01. 
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3.5-fold in irradiated cells over the level seen with radiation alone; this activation of the 

cyclin B/cdk1 kinase complex was shown to be due to the absence of the inhibitory 

phosphorylations on cdk1 at Thr14 and Tyr15 (Figure 3).  In the same study, it was also 

discovered that p53 may play a role in the ability of UCN-01 to abrogate the G2 arrest.   

MCF-7 cells with functional p53 and treated with cisplatin (2.5-15 µM) followed by 100 

nM UCN-01 were much more resistant to cell death than MCF-7/E6 cells with defective 

p53 subjected to the same treatment.  At 10 nM cisplatin, control MCF-7 cells had a 10% 

survival rate, while the MCF-7/E6 survived at less than 0.01%. 

 

An alternate mechanism was demonstrated in Chinese hamster ovary (CHO) cells (Bunch 

and Eastman, 1997).  Cisplatin treatment induces an S phase arrest in these cells; UCN-

01 speeds the cells through S into G2 and then into apoptosis.  The S phase arrest was 

caused by sequestration of proliferating cell nuclear antigen (PCNA) away from the DNA 

(Figure 3).  PCNA is required for DNA replication, so its removal can effectively block S 

phase progression.  This process usually proceeds by the binding of PCNA to p21, which 

in turn has been induced by p53 (Figure 3).  In this setting another mechanism must be 

responsible, as both p53 and p21 are absent in CHO cells.  Nevertheless, UCN-01 

treatment after cisplatin was able to return PCNA to the DNA fraction of these cells, and 

the S phase arrest was circumvented.  However, the mechanism by which PCNA is 

sequestered away from the DNA and then returned via UCN-01 is unclear. 

 

Potentiation of UCN-01 cell killing in the absence of p53 was also demonstrated 

following camptothecin treatment (Shao et al., 1997b).  HT29 colon carcinoma cells (p53 
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mutant) entered into an S phase arrest after camptothecin treatment.  This alteration was 

marked by both increased levels of cyclin A and cyclin A/cdk2 kinase activity.  UCN-01 

prevented both these increases, and also increased cdk1 kinase activity.  In the same 

study, UCN-01 potentiated the cell killing ability of camptothecin in HT29 cells, 

reducing the amount needed to kill 50% of the cells by over 6-fold.  UCN-01 also 

potentiated the toxicity of camptothecin in HCT116/E6 and MCF-7/ADR cells, both of 

which are defective for p53 function (Shao et al., 1997b).  This enhancement was greatly 

diminished in the p53 wild-type HCT116 and MCF-7 cells.  A similar finding was 

reported when using UCN-01 to nullify the G2 arrest and therefore increase the 

cytotoxicity of mitomycin c (MMC) (Sugiyama et al., 2000).  UCN-01 significantly 

potentiated MMC in the p53 mutant cell lines A431 (human epithelial carcinoma) and 

PSN-1 (human pancreatic adenocarcinoma), but showed no such effect in p53 wild-type 

HCT116 or MCF-7 cells.  The same differential effect was observed when using p53-

defective WiDr cells and a wild-type p53-transfected derivative line, WiDr/BM 

(Sugiyama et al., 2000).  The effect of p53 on UCN-01 checkpoint abrogation was also 

demonstrated using two breast epithelial cell lines, the p53 mutant tumor cell line MDA-

MB231 and p53 wild-type MCF10a line (Kohn et al., 2002).  Treatment with the 

topoisomerase inhibitor SN38 generated a G2 arrest in both lines; subsequent UCN-01 

treatment was able to block the arrest in the p53 mutant MDA-MB231 line, but not in the 

MFF10A human mammary epithelial cell line (see Figure 3).  The resistance of MCF10A 

cells correlated with diminished expression of both cyclins A and B.   
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Not all studies have shown that UCN-01 acts primarily by inhibiting Chk1, or that p53 is 

important in this response.  Exposure of HCT116 cells and a p53 null subline to ionizing 

radiation (IR) lead to a G2 arrest; secondary UCN-01 was able to blunt this arrest, 

regardless of p53 status (Yu et al., 2002).  IR induced p53 upregulation and stabilization 

as well as increased activity of Chk2; Chk1 activity was not altered (Figure 3).  UCN-01 

was able to prevent this increase in p53 levels in the wild-type cells, and also blocked 

phosphorylation of the stabilizing serine-20 site, a target of Chk2 (Dumaz et al., 2001).  

This report seems to be in conflict with the previous body of work, indicating that the p53 

pathway may have differing sensitivity to UCN-01 in terms of cell lines and 

concentrations.  Also in conflict was the finding that UCN-01 can inhibit Chk2 in vitro.  

The vulnerability of p53 wild-type cells to this mechanism was demonstrated again, not 

only in the HCT116 cells, but also in MCF-7 cells (Levesque et al., 2008).  After SN38 

treatment, these cells went into a G2 arrest, concomitant with repression of cyclin B and 

enhancement of p21 expression.  UCN-01 was able to block these responses, and the cells 

entered mitosis and apoptosed.  However, three other p53 wild-type lines, CAKI-1, 

U87MG, and SUM102 demonstrated the same response to SN38, and UCN-01 was 

ineffective in reversing this response (Levesque et al., 2008).   One possible factor in the 

p53-related UCN-01 sensitivity/resistance may be the MDM2 assistant protein, MDMX 

(Jin et al., 2006).  MDMX is a recruiting factor for MDM2, the E3 ubiquitin ligase 

responsible for p53 degradation.  Active Chk1 phosphorylates MDMX, which enhances 

binding to the 14-3-3 proteins and sequesters it away from the nucleus.  293T cells 

stimulated to activate the DNA repair pathway via UV treatment demonstrated exactly 

this response, and subsequent UCN-01 exposure was able to repress all these effects.  
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One issue with many of these studies is that the expression and activity of the proteins 

noted is often correlated with the arrest and UCN-01-mediated release, but are not shown 

to be necessary or sufficient.  In fact, a recent study using short hairpin RNA (shRNA) to 

block Chk1, Chk2 or both in MDA-MB231 cells seems to indicate that neither is required 

for the G2 arrest after SN38 treatment, pointing to the possibility that an alternate kinase 

is instead acting to produce the arrest (Zhang et al., 2008).  Modulation of Cdc25A was 

seen in the absence of both kinases, and the alternate checkpoint kinase MAPKAPK2 

(MK2) was ruled out as the effector as well in MDA-MB231 cells.  To date, no clear 

mechanism for the DNA-damage arrest and its abrogation via UCN-01 exists. 

 

Further uncertainty about the involvement and importance of p53 in UCN-01 potentiation 

of cell killing comes from studies utilizing UCN-01 to enhance cell death following 

ionizing radiation (Xiao et al., 2002).  The human lung carcinoma cell lines A549 and 

LXSN are p53 wild-type.  Upon irradiation, these cells accumulated in both G1 and G2 

phases of the cell cycle.  However, a p53-disrupted E6 A549 subline exhibited only a G2 

arrest following the same treatment.  Application of UCN-01 six hours later resulted in a 

significant reduction in survival of the E6 cells; the p53-competent A549 and LXSN cells 

were not similarly sensitized, indicating that functional p53 may protect cells from the 

UCN-01 enhanced mortality.  However, a subsequent study on A549 and the p53 wild-

type Calu1 cell lines blurs this distinction (Mack et al., 2004).  Ionizing radiation 

treatment resulted in the cell cycle arrest seen previously, and in both cell lines UCN-01 

was able to abrogate the G2 arrest.  As before, A549 cells were resistant to UCN-01 

enhanced decrease in cell survival when given following irradiation.  However, Calu1 
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cells were sensitive to this treatment protocol, despite expressing functional p53.  The 

enigmatic reaction to irradiation plus UCN-01 treatment was likewise observed in a panel 

of five colorectal tumor cell lines with mutant p53 (Playle et al., 2002).  Exposure to 5 

Gy of radiation resulted in a G2 arrest in all five lines (HT29, SW480, SW260, S/KS, and 

S/RG/C2); successive UCN-01 was able to blunt this response in all cell types.  However, 

analysis of cell survival following this treatment demonstrated a significant decrease in 

survival in only the HT29 and SW480 lines when treated with UCN-01 compared to 

radiation alone.  An in vivo study of p53 wild-type RIF-1 tumors in mice demonstrated a 

significant reduction in tumor growth when UCN-01 was given prior to 20 Gy of 

radiation compared to either treatment alone (Khan et al., 2009).  These studies indicate 

that p53 may partially modulate the activity of UCN-01, but the drug may have distinct 

actions which do not involve p53. 

 

The ability of UCN-01 to move cells through the G2 phase of the cell cycle seems to lie 

at least in part upon the activation or maintenance of active cdk1.  Murine FT210 cells, 

which have a temperature sensitive cdk1, were placed into G2 arrest using γ irradiation 

(Yu et al., 1998).  Successive treatment with 0.3µM UCN-01 was able to abrogate the G2 

arrest at the permissive temperature.  However, at the non-permissive temperature for 

cdk1 activity in these cells, UCN-01 could no longer abrogate G2 arrest.  UCN-01 was 

still able to abrogate the G2 arrest in the parental cell line (FM3A), ruling out temperature 

as a complicating factor.  UCN-01 treatment also resulted in the inactivation of the Wee1 

kinase in FM3A cells, thus preventing it from adding inhibitory phosphate groups onto 

cdk1.  The inactivation of Wee1 does not appear to be due to direct inhibition by UCN-01 
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(in vitro incubations showed Wee1 to be quite resistant to UCN-01 inhibition) but rather 

via a feedback loop.  Cdk1/cyclin B can phosphorylate Wee1, thus targeting it for 

ubiquitination by cdc34 and proteasomal degradation (Michael and Newport, 1998).  The 

increased activity of cdk1 could thus result in decreased Wee1.  Finally, UCN-01 also 

prevented the phosphorylation/deactivation of the Cdc25C phosphatase (Yu et al., 1998).  

These two activities are likely to increase the activity of cdk1 and thus push cells into 

mitosis.  One possible upstream regulator of Cdc25C is the human checkpoint kinase, 

either Chk1 or Chk2.  In vitro studies have shown direct inhibition of Chk1 by UCN-01, 

with an IC50 of 11nM (Busby et al., 2000).  K562 erythroblastoid leukemia cells enter a 

G2 arrest following γ irradiation; subsequent UCN-01 treatment reduced the 

phosphorylation of Cdc25C, and completely relieved the G2 block.  However, Chk2 was 

shown to be highly resistant to UCN-01, suggesting to action of UCN-01 is most likely 

through Chk1 inhibition.  More evidence for the modulation of Cdc25C via Chk1 was 

obtained from HeLa cells arrested in G2 following γ irradiation (Graves et al., 2000).  In 

the absence of UCN-01, the prevailing status of Cdc25C was serine-216 phosphorylated 

and 14-3-3 bound (Figure 3).  Addition of UCN-01 reduced the phosphorylation at 

serine-216 and caused Cdc25C to detach from 14-3-3; cdk1 activation and mitotic entry 

soon followed.  One other item noted in this study was the inability of UCN-01 to induce 

freed Cdc25C (released from 14-3-3) to reenter the nucleus; the majority of the now 

serine-216 dephosphorylated, monomeric Cdc25C was still cytoplasmic.  How this 

cytosolic phosphatase could activate the nuclear cdk1 is unclear.  The role of Cdc25C is 

unclear in the breast tumor line MDA-MB231 as well (Kohn et al., 2002).  While UCN-

01 can block a G2 arrest in these cells, the levels of active Cdc25C seem to depend on the 
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dose of UCN-01 used.  While a high concentration of UCN-01 (500 nM) rapidly 

increased the levels of active Cdc25C, low UCN-01 (15 nM) produced very little active 

Cdc25C, even though this dose was sufficient to drive the arrested (p53 mutant) cells into 

mitosis. 

 

While the reports concerning the ability of UCN-01 to cause a cell cycle arrest implicate 

many pathways and protein effects, the abrogation of a G2/M arrest following a damage 

response seems to be less complicated.  Most of the experimental evidence indicates an 

increase in cdk1 kinase activity concomitant with cell cycle progression through mitosis.  

This increase can be due to inhibition of chk1 and/or chk2, leading to cdc25 phosphatase 

activity to remove the inhibitory phosphorylations on cdk1.  In addition, UCN-01 can 

diminish p53, leading to deceased levels of 14-3-3 proteins (thus keeping cdc25 in the 

nucleus and able to activate cdk1) and also lower levels of p21, in turn also increasing 

cdk1 activity.  While some of the pathways leading to G1 arrest may also be activated by 

UCN-01, the prior DNA-damaging stimulus may make those pathways unimportant.  

Damaged cells arrested in G2 and then forced through mitosis will most likely die, so 

activation of a G1 checkpoint may be of little consequence.  In addition, the loss or 

mutation of p53 in many of the cell lines examined may further prevent cdk1 inhibition, 

thus abrogating the G2 arrest.  The literature concerning UCN-01 synergism with or 

potentiation of secondary agents is quite extensive, but also outside the focus of this 

project.  While many studies have been discussed here to gauge the various possible 

mechanisms of UCN-01 actions, other reports focus mainly upon its effects (usually 

inhibition of proliferation or enhanced apoptosis).  Summarized in Tables 4A-D are 
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studies concerning UCN-01 in combination with either IR or other agents, grouped into 

four categories of effects and mechanisms: S/G2 arrest abrogation, growth inhibition, 

apoptosis, and p53 dependence/independence. 

 

UCN-01 in vivo (Table 5) 

While the volume of work examining UCN-01 in cell culture systems is quite extensive, 

the in vivo effects and mechanisms of UCN-01 action are poorly understood, as few in 

vivo studies have been done using UCN-01.  As with the in vitro work, UCN-01 was 

originally used to prevent or retard the growth of implanted tumors in mice.  The first 

such study demonstrated a functional difference between UCN-01 and staurosporine.  

Using three human tumor lines (A431, HT1080 and HL-60) and two murine tumor lines 

(K-BAL and M-MSV-BALB), it was found that while UCN-01 was much less potent at 

inhibiting growth in culture than staurosporine (IC50 for 72 hours of UCN-01 treatment 

was 9.2 – 87.4 fold less potent than staurosporine), it was effective at slowing the growth 

of all five lines when implanted into mice, while staurosporine had no effect (Akinaga et 

al., 1991).  The tumors were implanted into the flanks of nude mice (human tumors) or 

antigen-matched syngeneic mice (murine tumors), and were treated daily for 5 days with 

UCN-01 or staurosporine.  UCN-01 prevented tumor growth at doses between 5 and 7.5 

mg/kg; equivalent doses of staurosporine had no effect on these tumors.  The 

combination of MMC and UCN-01 was synergistic in killing implanted A431 cells, and 

this was confirmed as a viable treatment option in two other solid tumor models (Co-3 

and murine sarcoma 180) as well as the P388 murine leukemia model (Akinaga et al., 

1993).  A constant infusion of UCN-01 of 1 mg/kg/day for one week was also effective in 
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Table 5: In vivo studies using UCN-01 in tumor-bearing animals 
 

Tumor Drug Regimen Tumor Effect Mechanism Reference 
A431 5 mg/kg (ip) 

/day X 5 
60% growth 

inhibition 
n/a (Akinaga et al., 

1991) 
HT1080 7 mg/kg (ip)/ 

day X 5 
83% growth 

inhibition 
n/a (Akinaga et al., 

1991) 
HL-60 7 mg/kg 

(ip)/day X 5 
39% growth 

inhibition 
n/a (Akinaga et al., 

1991) 
K-BALB 7.5 mg/kg 

(ip)/day X 5 
73% growth 

inhibition 
n/a (Akinaga et al., 

1991) 
M-MSV-BALB 7.5 mg/kg 

(ip)/day X 5 
79% growth 

inhibition 
n/a (Akinaga et al., 

1991) 
A431 4 mg/kg 

mitomycin c + 
14.5 mg/kg 

UCN-01 (iv) 

83% growth 
inhibition 

n/a (Akinaga et al., 
1993) 

Co-3 4 mg/kg 
mitomycin c + 

14.5 mg/kg 
UCN-01 (iv) 

80% growth 
inhibition 

n/a (Akinaga et al., 
1993) 

Murine 
sarcoma 180 

6 mg/kg 
mitomycin c + 

14.5 mg/kg 
UCN-01 (iv) 

89% growth 
inhibition 

n/a (Akinaga et al., 
1993) 

P388 4 mg/kg 
mitomycin c + 

14.5 mg/kg 
UCN-01 (iv) 

Lifespan 
increased 105% 

n/a (Akinaga et al., 
1993) 

U-87 1 mg/kg/day 
UCN-01 X 7 

days (ip) 

50% decreased 
tumor volume, 
57% survival at 

60 days (vs. 
0.7% control) 

n/a (Pollack et al., 
1996) 

PAN-3-JCK 5 mg/kg/day 
UCN-01 X 5 

days (ip) 
 

10 mg/kg/day 
UCN-01 X 5 

days (ip) 

Tumor weight 
T/C = 36.3% 

 
 

Tumor weight 
T/C = 16.8% 

 

G1 arrest 
(37%→61%), 
↑p21, ↓cdk2 

activity 
G1 arrest 

(67%), ↑p21, 
↓cdk2 activity 

 

(Abe et al., 
2001) 

CRL 1420 5 mg/kg/day 
UCN-01 X 5 

days (ip) 
 

Tumor weight 
T/C = 32.3% 

 
 

G1 arrest 
(43%→61%), 
↑p21, ↓cdk2 

activity 

(Abe et al., 
2001) 
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10 mg/kg/day 
UCN-01 X 5 

days (ip) 

Tumor weight 
T/C = 16.2% 

 

G1 arrest 
(52%), ↑p21, 
↓cdk2 activity 

MX-1 5 mg/kg/day 
UCN-01 X 5 

days (ip) 
 

10 mg/kg/day 
UCN-01 X 5 

days (ip) 

Tumor weight 
T/C = 89.9% 

 
Tumor weight 
T/C = 66.1% 

 

↓cdk2 activity, 
No Δ in p21 or 

cell cycle 
↓cdk2 activity, 
↑p21, no Δ in 

cell cycle 

(Abe et al., 
2001) 

Br-10 7.5 mg/kg/day 
UCN-01 X 5 

days/week X 2 
weeks (ip) 

Tumor weight 
T/C = 27.0% 

 

↑p21, pRb de-
phosphorylation 

(Koh et al., 
2002) 

MCF-7 7.5 mg/kg/day 
UCN-01 X 5 

days/week X 2 
weeks (ip) 

Tumor weight 
T/C = 25.0% 

 

↑p21, pRb de-
phosphorylation 

(Koh et al., 
2002) 

MX-1 7.5 mg/kg/day 
UCN-01 X 5 

days/week X 2 
weeks (ip) 

Tumor weight 
T/C = 65.9% 

 

↑p21, no Δ in 
pRb 

phosphorylation 

(Koh et al., 
2002) 

HN12 7.5 mg/kg/day 
UCN-01 X 5 

days (ip) 

Tumor weight 
T/C = 0.3% 

Apoptosis 
(TUNEL), 
↑p27,  

↓cyclin D 

(Patel et al., 
2002) 

MDA-MB231 0.2 mg/kg 
UCN-01 X 3 + 

25 mg/kg 
PD184352 X 3 

Tumor weight 
T/C = 32% 

Apoptosis,  
↓ angiogenesis 

 

(Hamed et al., 
2008; Hawkins 

et al., 2005) 

MCF-7 0.1 mg/kg 
UCN-01 X 3 + 

25 mg/kg 
PD184352 X 3 

Tumor weight 
T/C = 34% 

Apoptosis,  
↓ angiogenesis 

 

(Hamed et al., 
2008; Hawkins 

et al., 2005) 

MDA-MB231 0.2 mg/kg/day 
UCN-01 X 2 
days + 100 
mg/kg/day 

R115,777 X2 
 

0.2 mg/kg/day 
UCN-01 X 2 

days + 25 
mg/kg/day 

PD184352 X2 
 

3-fold decrease 
in tumor 

volume vs. 
controls 

 
 

4-fold decrease 
in tumor 

volume vs. 
comtrols 

↓Ki-67 levels, 
decreased ex 
vivo plating 
efficiency of 

excised tumors 

(Hamed et al., 
2008) 
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NL-17 5 & 10 mg/kg 
UCN-01 (ip) 

No tumor effect 
noted 

↓PDK1 activity (Sato et al., 
2002) 

PC-3 6, 9, 13 mg/kg 
UCN-01 (ip) 

No tumor effect 
noted 

↓PDK1 activity (Sato et al., 
2002) 
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reducing the tumor volume of implanted (subcutaneous) U-87 malignant glioma tumors 

(Pollack et al., 1996).  28 days after the UCN-01 treatment, no mice had evidence of 

tumor re-growth, and postmortem analysis was unable to identify any tumor cells.  In the 

same study, intracranial gliomas were treated with 2 mg/kg/day for one week.  By day 60, 

only one of fourteen control mice had survived, whereas four out of seven UCN-01-

treated mice survived until day 90. 

 

The in vivo mechanism by which UCN-01 can inhibit tumor growth was examined using 

two implanted pancreatic cancer lines (PAN-3-JCK and CRL 1420) and the breast cancer 

line MX-1 (Abe et al., 2001).  The two pancreatic lines were potently inhibited by 5 

mg/kg UCN-01, while MX-1 was unaffected.  The pancreatic lines had increased levels 

of p21 and decreased cdk2 activities.  The cells were arrested in G1, and an increase in 

apoptosis was noted as well.  The levels of p27 were not affected by UCN-01.  

Interestingly, the resistant MX-1 line was demonstrated to have a baseline cdk2 activity 

more than 6 fold higher that the two responsive lines, leading to the conclusion that the 

balance between kinases and their acitvator/inhibitors plays a key role in determining 

response to UCN-01.  A later study examining implanted MX-1 cells as well as two other 

breast carcinomas (MCF-7 and Br-10) had similar findings (Koh et al., 2002).  7.5 

mg/mkg UCN-01 was effective in inhibting the in vivo growth of the Br-10 and MCF-7 

lines, but MX-1 was again resistant.  At this dose, p21 was induced in all three tumors, 

but only the responsive ones exhibited decreased Rb phosphoryation; MX-1 showed little 

change in Rb.  UCN-01 also demonstrated antitumor activity against HN12 (HNSCC) 

implanted in mice (Patel et al., 2002).  7.5 mg/kg/day for five days in these xenografts 
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models abolished tumor growth.  Analysis of tumor tissue following UCN-01 

demonstrated increased apoptosis versus vehicle-treated tumors as measured by TUNEL 

assay.  In addition, p27 levels were elevated and cyclin D levels diminished in the UCN-

01 treated tumors.  Unlike the in vitro studies on HNSCC lines, no changes in p21 were 

observed after UCN-01 injection. 

 

A different study demonstrated the efficacy of the combination of UCN-01 and a second 

inhibitor, PD184352 (and inhibitor of MEK1 and MEK2), in implanted MDA-MB231 

and MCF-7 tumors (Hawkins et al., 2005).  Treatment with either agent alone for two 

days had minimal effect on the implanted tumors, but the combination of 25 mg/kg 

PD184352 and 0.2 mg/kg UCN-01 greatly reduced the growth of MDA-MB231 tumors 

and completely eradicated MFC- tumor growth.  Reduced growth potential correlated 

with an increase in apoptosis at both 5 and 30 days post-treatment.  This study is in 

agreement with a similar report using PD184352 with UCN-01 to treat both implanted 

MDA-MB231 and MCF-7 tumors (Hamed et al., 2008).  The combination treatment 

significantly retarded tumor growth compared to either agent alone.  In addition, Ki-67 

immunoreactivity was completely abolished and CD31 reduced, indicating growth arrest 

and reduced angiongenesis.  Further experimentation with radiation and the drug 

combination revealed that while radiation during the drug treatment course encompassed 

no increase in cytotoxicity, irradiating the tumors 24 hours after the cessation of drug 

treat significantly increased cell death within the tumors, indicating a sequence-

dependent radiosensitization effect. 
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The Akt-PDK1 survival pathway, which has been previously implicated in some cell 

lines as a possible modulator of UCN-01 activity, has also been shown to be affected by 

UCN-01 in vivo (Sato et al., 2002).  Mice transplanted with either the murine colon 

carcinoma line NL-17 or the human prostate PC-3 line were treated with 6-13.5 mg/kg 

UCN-01 i.p. for one or four hours.  After tumor harvest, the authors found both decreased 

levels of PDK1 and PDK1 kinase activity.  However, conflicting reports about the 

potential effects of UCN-01 on this pathway make the importance of this finding 

questionable.  The ultimate effects of UCN-01 on tumors were not further explored, and 

the factor(s) that determine whether tumors apoptose, undergo growth arrest or remain 

unaffected is not currently understood.  The studies here are summarized below in Table 

5. 

 

UCN-01 in the clinic (Table 6) 

UCN-01 has been utilized in clinical trials, initially as a single agent to attempt cause 

apoptosis in refractory tumors and/or arrest tumor growth.  Much more frequently, UCN-

01 has been used in combination with cytotoxic drugs, either simultaneously or 

subsequently, to abrogate the G2 checkpoint response in damaged cells and force them 

into mitotic catastrophe or apoptosis.  The trials using UCN-01 alone to suppress tumors 

and/or cause tumor-specific apoptosis were an attempt to translate previous studies (see 

above) into meaningful clinical outcomes.  The Phase I trials using UCN-01 as a single 

agent will be discussed first; Phase I trials combining UCN-01 with other agents will be 

detailed next, followed by the Phase II trials.  
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Table 6: Clinical Trials of UCN-01 
 
 

Study Reference Study Design Dosing Schedule Status 
(enrolled) 

(Sausville et al., 
2001) 

Multiple dose, phase 
I trial in cancer 

patients 

Single 72 hour 
infusion of 5.4 – 53 

mg/M2 

Completed 
(n=47) 

(Dees et al., 2005) Multiple dose, phase 
I trial in cancer 

patients 

1-5 cycles of 1-3 
hour infusion of 3 – 

95 mg/M2 given 
every 28 days 

Completed 
(n=24) 

(Kortmansky et al., 
2005) 

Multiple dose 
combination phase I 

trial in cancer 
patients 

5-FU: weekly 24 
hour infusion, 250 – 

2600 mg/M2 
 

UCN-01: 72/36 
hour infusion of 
135/67.5 mg/M2 

every 28 days  

Completed 
(n=35) 

(Lara et al., 2005) Multiple dose 
combination phase I 

trial in cancer 
patients 

Cisplatin: 1 hour 
infusion 20 – 75 

mg/M2 
 

UCN-01: 72 hour 
infusion of 45 

mg/M2/day 

Early Closure 
(n=10) 

(Perez et al., 2006) Multiple dose 
combination phase I 

trial in cancer 
patients 

Cisplatin: 20-30 
mg/M2 22 hours 

prior to 
 

UCN-01: 34-45 
mg/M2/day over 72 

hours 

Completed 
(n=7) 

(Edelman et al., 
2007) 

Multiple dose 
combination phase I 

trial in cancer 
patients 

Carboplatin: 2-5 
AUC for 1 hour 

prior to  
 

UCN-01: 50/25 – 
90/45 mg/M2/day 

over 72 hours 

Completed 
(n=23) 

(Hotte et al., 2006) Multiple dose 
combination phase I 

trial in cancer 
patients 

Topotecan: 0.75 – 1 
mg/M2/day X 5 days 

 
UCN-01: 70/35 – 

90/45 mg/M2 over 3 

Completed 
(n=33) 
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hour infusion every 
21 days 

(Jimeno et al., 2008) Multiple dose 
combination phase I 

trial in cancer 
patients 

Irinotecan: 60 – 90 
mg/M2 on days 1&8 

 
UCN-01: 50/25 – 
90/45 mg/M2 for 3 
hour infusion every 

21 days 

Completed 
(n=16) 

(Kummar et al., 
2009) 

Multiple dose 
combination phase I 

trial in cancer 
patients 

Prednisone: 60 
mg/M2/day X 5 days 

 
UCN-01: 17 – 34 
mg/M2/day for 72 
hours on days 3-5 

Completed 
(n=15) 

(Sampath et al., 
2006) 

Multiple dose 
combination phase I 

trial in cancer 
patients 

Ara-C: 1 – 1.5 
g/M2/day for 4 days 

 
UCN-01: 45 

mg/M2/day for 3 
days 

Completed 
(n=13) 

(Rini et al., 2004) Single dose phase II 
trial in renal cell 

carcinoma patients 

90 mg/M2/day for 3 
days initial; 45 

mg/M2/day 
subsequent cycles of 

21 days 

Completed 
(n=21) 

(Welch et al., 2007) Single dose 
combination phase 
II trial in ovarian 
cancer patients 

Topotecan: 1 
mg/M2/day days 1-5 

 
UCN-01: 70/35 

mg/M2/day for days 
1-3, each cycle 21 

days 

Completed 
(n=29) 

NCI-04-C-0173 Phase II trial in 
lymphoma patients 

UCN-01 72 hour 
infusion every 28 

days 

Ongoing 
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Phase I trials using UCN-01 as a single agent 

In a phase I trial utilizing UCN-01 as a single agent, 47 patients with refractory tumors 

(10 renal cell carcinoma, 8 NSCLC, 7 non-Hodgkin’s lymphoma, 4 colorectal, 4 

melanoma, 3 leiomyosarcoma, 2 prostate, 2 head & neck, 2 Hodgkin’s, and five 

unspecified) were given 1.8 – 53 mg/M2/d UCN-01 over a 72 hour period; the rationale 

was based on an in vitro study (Seynaeve et al., 1993) in which the breast cancer cell line 

MDA-MB-468 required exposure of 72 hours to become irreversibly growth arrested 

(Sausville et al., 2001).  The initial treatment plan had called for the doses of UCN-01 to 

be re-administered every 2 weeks.  However, patients receiving the three lowest doses 

(1.8, 3.6 and 6 mg/M2/d) exhibited extremely long drug half-lives, ranging from 447-

1176 hours.  This unexpected result was determined to be caused by extremely tight 

binding to the human serum protein α1-acidic glycoprotein (hAGP); this binding 

decreases both the clearance of UCN-01 and unbound fraction of UCN-01 in plasma 

(Sausville et al., 1998).   

This complication caused the treatment schedule to be amended from every two weeks to 

every four weeks for the higher doses (12-53 mg M2/d).  The subsequent doses were also 

given over a 36-hour period instead of the initial 72 hours.  UCN-01 was generally well 

tolerated, with no dose limiting toxicity (DLT) until 34 mg/M2/d, and only one of eight 

patients treated at the 45 mg/M2/d dose experienced DLT.  Patients receiving 53 mg/M2/d 

experienced both hyperglycemia and pulmonary toxicity, and this dose was not 

recommended for further study.  All patients experienced at least transient 

hyperglycemia, which was attributed to peripheral tissue insulin resistance.  Insulin 

treatment resolved most cases of hyperglycemia.  It is believed that UCN-01 inhibits 
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glucose transport activity by inhibiting the phosphorylation of Akt at threonine 308, 

leading to the hyperglycemia observed in the patients (Kondapaka et al., 2004).  The 

response to treatment was small; 25 had disease progression within 2 months of 

treatment, 19 had stable disease, and one melanoma patient displayed a partial response 

for 6 months.  One interesting patient had recurrent large-cell lymphoma and was treated 

with UCN-01 and adenopathy following radiation treatment.  The patient displayed no 

disease progression after 38 months of UCN-01 treatment at a dose of 24 mg/M2/d. 

 

Another phase I trial utilizing UCN-01 as a single agent enrolled 24 patients with 

refractory solid tumors (9 colorectal, 4 prostate, 3 cervical, 2 kidney, 2 breast,  and one 

each of gastric, lung, leiomyosarcome, and unknown primary adenocarcinoma) (Dees et 

al., 2005).  Patients were given UCN-01 as a 1-3 hour infusion from 3-95 mg/M2.  

Hypotension was the DLT at the 95 mg/M2 dose.  As in the previous study, mild to 

moderate hyperglycemia was seen in many patients, 14 out of 22 receiving ≥ 12 mg/M2.  

No treatment responses were seen in this study.  21 patients displayed tumor progression 

following 1-5 courses of UCN-01 treatment, 2 were removed from the study for toxicity 

concerns, and one patient had stable disease for one year.   

 

Phase I trials of UCN-01 used in combination therapy 

The use of UCN-01 in combination with a cytotoxic drug appeared more frequently than 

the single agent trials.  These studies all attempted to use UCN-01 to abrogate the G2 

DNA-damage checkpoint response following an initial treatment with a cytotoxic drug.  

The rationale for this method is that inhibition of the arrest/repair pathways 
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(predominantly by inhibition of chk1) would prevent the tumor cells from undergoing 

cell cycle arrest in response to an initial toxic repairing damage and force damaged cells 

through mitosis and ultimately cell death. 

 

A phase I trial of UCN-01 combined with fluorouracil was conducted on 35 patients, 21 

of which were diagnosed with metastatic colon cancer (Kortmansky et al., 2005).  The 

treatment plan followed called for weekly doses of fluorouracil (250 – 2600 mg/M2); 

UCN-01 was given once every four weeks, immediately after cessation of fluourouracil 

administration.  UCN-01 was given at 135 mg/M2 for the initial dose, and 67.5 mg/M2 for 

subsequent doses.  The treatment plan was set up to mimic the synergism seen in the in 

vitro study by Hsueh, et al., in which gastric cancer cells treated first with fluorouracil 

followed by UCN-01 demonstrated apoptosis in 46% of the cells, versus 4% for 

fluorouracil alone and 17% for UCN-01 followed by fluorouracil (Hsueh et al., 1998).  

The in vivo treatment regimen was tolerated well by most patients, with one DLT at 560 

mg/M2 fluorouracil, one at 845 mg/M2, and one at 1900 mg/M2.  No DLT was observed 

at the highest fluorouracil doses, 2527 and 2600 mg/M2.  Of 32 patients assessable for 

response to the treatment regimen, no positive response to the treatment was observed, 

although 8 patients had stable disease.  UCN-01 did not affect the pharmacokinetics of 5-

FU (completely cleared within the first hour of UCN-01 administration), and the 

concentration of 5-FU had no effect on the plasma concentrations of UCN-01.  The 

authors felt that the treatment was safe, and planned a Phase II trial using 2600 mg/M2 5-

FU in combination with UCN-01.   
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Another phase I trial combined cisplatin with UCN-01 treatment on ten patients with 

advanced, malignant solid tumors (2 NSCLC, 2 soft tissue sarcoma, and one each on 

esophageal, head & neck, pancreatic, melanoma, gastric, and unknown primary 

adenocarcinoma cancer patients) (Lara et al., 2005).  Previous in vitro work examining 

the actions of UCN-01 plus cisplatin against glioma and NSCLC cells had indicated 

synergism between these two agents when UCN-01 was used secondarily (Mack et al., 

2003; Pollack et al., 1996).  The dose escalation scheme for the clinical study called for 

cisplatin to be administered at five dose levels from 20-75 mg/M2; cisplatin was to be 

given over a 2 hour infusion, followed 22 hours later by 45 mg/M2 UCN-01.  The first 

dose level (20 mg/M2 cisplatin) exhibited one DLT of grade 3 hypoxia; the other five 

patients in this cohort had no adverse events.  At the next dose (30 mg/M2 cisplatin), one 

patient experienced grade 5 sepsis along with respiratory failure, and another presented 

with grade 3 atrial fibrillation.  Grade 3 hypoxia, dysphagia, renal failure and 

hyponatremia were also observed at this dose, and the trial was ended due to toxicity.  

The authors were optimistic that alternative platinum agents could be used, but concluded 

that the UCN-01/cisplatin combination was too toxic for use in patients.   

 

A second trial treating seven patients (5 melanoma, one bladder carcinoma, and one 

thyroid carcinoma) using UCN-01 with cisplatin also found this limiting toxicity; using 

the treatment regimen above, with the exception of a one-hour cisplatin infusion (rather 

than two), the first two patients receiving 20 mg/M2 cisplatin followed by 45 mg/M2/d 

UCN-01 experienced grade 3 and 4 limiting toxicities, including subarachnoid 

hemorrhage, cardiac ischemia, hypoxia and hyperglycemia (Perez et al., 2006).  
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However, it was found that decreasing the UCN-01 administration from 45 to 34 

mg/M2/d allowed the remaining five patients to tolerate either 20 mg/M2 or 30 mg/M2 

cisplatin with no DLT.  An interesting aspect of this study was data collected on biopsies 

stained for geminin via IHC.  Geminin is a protein expressed only in S and G2 phases of 

the cell cycle, and is believed to function as a preventer of DNA re-duplication 

(Tachibana et al., 2005).  This group had previously demonstrated in vitro that cells 

undergoing DNA damage and subsequent G2 arrest stain positive for geminin using the 

active metabolite of irinotecan, SN38 (Eastman et al., 2002).  In patient biopsies, geminin 

was increased following cisplatin administration, and then markedly decreased after 

subsequent UCN-01 treatment, indicating that UCN-01 is inhibiting the G2 damage 

checkpoint and allowing progression through mitosis.  Of the seven patients, four only 

received one cycle of therapy and were not evaluated for impact on disease progression; 

the three remaining patients received two cycles of treatment, and all had progressive 

disease.  The authors are currently continuing this area of study with a new trial, using a 

revised 3-hour infusion of UCN-01; results of this study are as of yet unavailable. 

 

The platinum agent carboplatin has also been evaluated clinically in combination with 

UCN-01 (Edelman et al., 2007).  This Phase I trial included patients with the following 

cancers: NSCLC (10), small cell lung (3), bladder (2), head & neck (2), and one each on 

adrenotcortical carcinoma, esophagus, gastric, adenoid cystic, pancreatic, and unknown 

primary carcinoma.  Carboplatin was administered from an area under the curve (AUC, 

mg/mL min) of 2.5-5 over a one-hour infusion, followed by UCN-01 from 50-90 mg/M2 

given over three hours.  Each treatment cycle was 21 days long, and up to six cycles were 

75



allowed per patient.  The second and all subsequent UCN-01 doses were 50% of the 

initial dose.  23 patients were enrolled in the study, and no DLT toxicity was observed; 6 

patients were treated at the highest dose level (carboplatin AUC 5, UCN-01 90 mg/M2).  

No tumor response was observed, but seven patients did exhibit stable disease.  Two of 

the small cell lung cancer patients, whose tumors were chemotherapy-refractory, were in 

this category, and the authors suggest further exploration of combination therapy for 

small cell lung cancer.  It was also noted that the active metabolites of irinotecan were 

decreased upon UCN-01 administration.  As these products are inhibited by the 

cytochrome P450 CYP3A4, it was unexpected that UCN-01 somehow presumably  

inhibited the CYP3A4 pathway.  The specifics of UCN-01 and its effects on irinotecan 

metabolism are poorly understood. 

 

UCN-01 was used in one phase I trial in combination with topotecan; this trial was 

somewhat different that the others, in that UCN-01 treatment preceded the administration 

of the cytotoxic drug (Hotte et al., 2006).  Preclinical data indicated that UCN-01 and the 

topoisomerase inhibitor synergistically killed tumor cells, and that the order of 

administration of the two drugs was unimportant for this result (Monks et al., 2000; Tse 

and Schwartz, 2004).  33 patients were enrolled with the following malignancies: 20 

ovarian neoplasm, one ovarian epithelial cancer, three colorectal cancer, two peritoneal 

neoplasm, two salivary gland cancer, and one each of cervical carcinoma, endometrial 

cancer, renal pelvic cancer, cervical squamous cells carcinoma, and one unspecified solid 

tumor.  Topotecan and UCN-01 were administered to 33 patients on a 21-day cycle: on 

day one, UCN-01 was given over 3 hours, followed by a 30 minute topotecan infusion.  
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Topotecan only was then given on days 2-5.  Three dose levels were given, with no dose 

escalation.  Dose 1 utilized 70 mg/M2 UCN-01 for the first dose, 35 mg/M2 for 

subsequent doses, and 0.75 mg/M2 topotecan.  Dose 2 used the same UCN-01 amounts 

with 1.0 mg/M2 topotecan.  The third dose group received a primary dose of UCN-01 of 

90 mg/M2 and then 45 mg/M2 subsequently plus 1.0 mg/M2 topotecan.  Dose 2 was well 

tolerated, with one grade 3 neutropenia.  The third dose group experienced one grade 4 

febrile neutropenia, and thus the second dose group was considered the MTD for this 

protocol.  The response in this study to the treatment regimen was more positive than that 

seen in previous studies, especially for ovarian cancer patients.  Two out of three patients 

in dose 1 had stable disease, and 8 of 13 at dose two had stable disease, one with a partial 

response.  This work led to a phase II study of ovarian cancer patients with advanced 

disease at the same facility (see phase II section below, Welch et al., 2007).   

 

The topoisomerase inhibitor irinotecan was also evaluated in combination with UCN-01 

in a Phase I clinical trial (Jimeno et al., 2008). Sixteen total patients with incurable solid 

tumors (four colorectal, three pancreatic, and one each of the following tumor types: 

biliary, duodenal, hepatocellular, tongue base, mesothelioima, thyroid, overy, skin 

(Merkel), and unknown primary adenocarcinoma) were accrued in the study, fourteen of 

which could be evaluated for response.  The treatment plan used four dose levels of 

irinotecan and UCN-01 (50/60, 70/60, 90/60 and 70/90 mg/M2 of UCN-01/irinotecan 

respectively); irinotecan was administered as a one-hour infusion on day one, 

immediately followed by UCN-01 over three hours.  Irinotecan was given again on day 8, 

and the cycle lasted for 21 days.  Two of four patients experienced a DLT at the third 
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dose level, and two out of five had a DLT at the fourth dose level. One patient had 

progressive disease following one cycle, as did seven others when evaluated after two 

cycles.  The other six patients had stable disease, and four were able to receive ten or 

more treatment cycles.   

 

Predinosone was also evaluated in a Phase I trial in concert with UCN-01 in patients with 

refractory solid tumors and lymphomas (Kummar et al., 2009).  Three dose levels were 

used: level 1 used 51 mg/M2 UCN-01 for the initial cycle, level 2 used 72 mg/M2, and 

level 3 102 mg/M2.  The initial cycle was given over days 3-5.  Each additional cycle 

used 50% of the initial UCN-01 dose, given over 36 hours.  Each cycle was for 28 days, 

and prednisone was given orally on days 1-5 at 60 mg/M2daily.  Fifteen patients were 

enrolled in the study, and a total of 55 treatment courses were undertaken.  Two of the six 

patients at dose level 3 experienced DLT, including grade 3 hyperglycemia, 

hyponatremia, and leucopenia, and were dropped to dose level 2.  No tumor response to 

treatment was observed.  Five patients had stable disease for longer than 2 cycles, and 

two patients had stable disease for 8 and 18 months. 

 

A phase I trial of UCN-01 in combination with cytarabine (ara-C) was carried out in 

patients with relapsed acute myelogenous leukemia (AML) following some promising 

results using this combination in the leukemia cell line ML-1 and primary AML blasts 

obtained from patients (Sampath et al., 2006).  It was demonstrated that ML-1 cells were 

able to survive ara-C treatment by undergoing an S-phase arrest, via activation of Chk1.  

Subsequent UCN-01 was able to abrogate this arrest, as well as prevent the activation of 
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Akt and its downstream survival pathways (Figure 3).  Primary blasts treated with ara-C 

followed by UCN-01 also demonstrated reduced survival.  A clinical trial was undertaken 

to evaluate this treatment scheme, in which patients were first given ara-C over 4 days at 

1.0 mg/M2/d followed by 45 mg/M2/d starting on day 2; this was done for 11 patients.  

Two additional patients received 1.5 mg/M2/d ara-C, with the same UCN-01 given on 

day 2.  Blasts were collected from patients during the course of therapy to monitor the 

effects on the S-phase checkpoint and the Akt/Jnk survival pathways.  Unlike the cell 

culture samples examined previously, the pretreatment patient blasts had significant 

levels of phospho-Chk1 (Ser345) and also the inhibited form of cdk2 (phospho-Tyr15); as a 

result, few of the circulating blasts were actively cycling.  Levels of both phospho-

proteins were diminished upon both ara-C treatment and also after subsequent UCN-01, 

but in a very heterogenous manner; 2 samples showed less than 10% of initial phospho-

Chk1 after UCN-01, while another sample registered no effect due to UCN-01 

administration.  The ratios of phospho-Akt to total Akt were similarly varied, and were 

unaffected by ara-C, but 7 out of 8 samples exhibited loss of phospho-Ser345 due to UCN-

01 treatment.  The combination treatment resulted in only one complete response out of 

the thirteen patients receiving treatment.  While this was a disappointing response rate, 

the presence of phospho-Akt and inhibited cdk2 in this previously treated and relapsed 

patient group does give hope that a naïve population would better respond to this 

treatment regimen. 

 

Phase II trials utilizing UCN-01 
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A phase II trial of UCN-01 as a single agent was initiated in a population of renal cell 

carcinoma (RCC) patients (Rini et al., 2004).  Most clear cell renal carcinoma tumors 

have mutated von Hippel-Lindau (VHL) genes; the inactive VHL gene is unable to 

suppress the expression of the tumor promoter VEGF (vascular endothelial growth 

factor), presumably through lack of suppression of PKC (Gnarra et al., 1994; Herman et 

al., 1994; Nishizuka, 2001; Pal et al., 1997).  As a potent PKC inhibitor, it was hoped that 

UCN-01 would help inhibit this process.  21 patients were enrolled in this study.  UCN-

01 was given at an initial dose of 90 mg/M2, and then subsequently 45 mg/M2 every 21 

days.  Treatment was well tolerated, with hyperglycemia the only grade 3 toxicity 

observed.  All cases of hyperglycemia were successfully managed.  The trial was halted 

after four months (6 treatment cycles), as only 7 of the 21 patients exhibited stable 

disease.  No response was seen, and the authors concluded that this treatment regimen 

was not effective in RCC. 

 

Using previous Phase I data (Hotte et al., 2006), a Phase II trial for recurrent ovarian 

cancer combining UCN-01 with topotecan was undertaken.  Patients were treated with 

the dose 2 regimen (1 mg/M2/day topotecan for five days, with 70 mg/M2 UCN-01 on 

day 1 for the first cycle; UCN-01 was cut to 35 mg/M2 in subsequent cycles) from the 

phase I trial (Welch et al., 2007).  The expected toxicities of hyperglycemia and 

leucopenia were observed, but none precluded treatment continuation.  However, the 

results were not encouraging.  Of the 19 patients treated in the first stage of the protocol, 

only one responder was observed.  As the expected response for topotecan as a single 

agent in ovarian cancer is 10-15%, the study was halted.  While it may be possible that 
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the co-administration of the two drugs (rather than topotecan followed by UCN-01) may 

interfere with the actions of topotecan, the authors did not feel that this combination 

would be appopriate for further study in the ovarian cancer setting. 

 

A current Phase II study on UCN-01 in lymphoma patients is in progress (NCI-04-C-

0173). 

 

Summary of UCN-01 in clinical trials 

With the exception of the initial ovarian cancer study, the clinical data to date utilizing 

UCN-01 as a chemosensitizer and/or tumor suppressor has been disappointing.  Although 

the patient populations used are not ideal (patients with no prior exposure to 

chemotherapeutics and presumably harboring less resistant tumors might have better 

responses), it was to be expected that a better response would have been observed in 

some of the trials.  The trials reported are summarized in Table 6 below.  For Phase I 

trials using UCN-01 alone, 71 patients were treated, leading to 20 cases of stable disease 

and 2 partial responders.  For Phase I trials using combination therapy, 152 total patients 

led to only 46 cases of stable disease (some for as little as 6 weeks) and 3 responders.  40 

patients enrolled in the reported Phase II trials had 1 responder and 7 patients with stable 

disease.  The six responders across theses studies do not share any obvious 

commonalities; no overlap in disease types or dosing (UCN-01 levels vary as well across 

the responsive patients) exist among them.  It may be possible that the course of therapy 

received prior to UCN-01 treatment may be similar, but this information is not included 

in the reported data.  It is also possible the specific malignant alterations in these tumors 
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are similar, thus potentiating the ability of UCN-01 to invoke a response.  The lack of 

molecular characterization of the tumors in most of the clinical work makes this theory 

difficult to pursue as well.  If the nature of the cell cycle defect(s) in specific tumors were 

known prior to treatment, it would likely improve the success of therapy using UCN-01.  

Tumors with at least a partial impairment of the DNA damage response would likely be 

unable to survive a combination treatment (DNA-damaging agent followed by UCN-01), 

while tumors with complete or partial G1 checkpoint integrity would be more likely to 

respond to UCN-01 as a single agent.     

 

UCN-01 and Normal Cells 

One aspect of the UCN-01 has received little attention, specifically that of its effects on 

normal cells.  Only one published report focuses on the effects of UCN-01 on the normal 

tissues of the mouse, specifically the hyperproliferative bone marrow and gut epithelium 

(Redkar et al., 2001).  C57BL/6 mice were injected with 0-10 mg/kg UCN-01 for either 3 

or 24 hours; 20 mg/kg was lethal in these mice.  Analysis of BrdU incorporation in small 

intestinal epithelial cells demonstrated a significant inhibition of proliferation at both 3 

and 24 hours following the 5 mg/kg UCN-01 dose in all three small bowel tissues, 

duodenum, jejunum and ileum; colon was not affected.  The 10 mg/kg dose was not able 

to inhibit cell proliferation, possibly indicating a pleiotropic, dose-dependent effect of 

UCN-01.  Flow cytometric analysis of harvested bone marrow cells from these mice 

showed a G1 arrest at the 5 mg/kg dose; as before the 10 mg/kg dose did not induce the 

same effect.  Further work on bone marrow cells recovered from naïve mice also noted an 

interesting feature of UCN-01.  Simultaneous treatment of these cells with UCN-01and 
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the topoisomerase I inhibitor topotecan led to a less-than-additive growth inhibition 

compared to either agent used alone.  This antagonism between a cytotoxic drug and 

UCN-01 is an indicator that UCN-01 may be used in vivo to protect normal dividing cells 

from toxicity. 

 

Another in vivo study which examined the effects of UCN-01 in concert with 

chemotherapy or fractionated radiation also lends credence to the treatment protocol 

proposed below.  Implanted murine fibrosarcoma (FSa-II) tumors treated with UCN-01 

and γ irradiation were significantly growth-retarded compared to radiation treatment 

alone (Tsuchida and Urano, 1997).  However, the combination of UCN-01 and cisplatin 

was not any more effective than cisplatin alone.  Addition of UCN-01 to fluorouracil 5-

FU) was also had no effect on tumor growth compared to 5-FU alone.  Survival analysis 

of the FSa-II cells grown in culture also showed no syngerism of UCN-01 and cisplatin, 

and 5-FU plus UCN-01 had an effect that was less than additive, suggesting a protective 

action of UCN-01 in these cells. 

 

Little else is currently known concerning the actions of UCN-01 on the normal tissues of 

any organism, save for the toxicities explored in the clinical trials (see below) and a few 

reports which have sought to explore the pharmacokinetics of UCN-01 and the influences 

of its binding to AGP.  The maximum tolerated dose (MTD) of UCN-01 in mice is 20 

mg/kg via intravenous delivery and 10 mg/kg when injected subcutaneously (Hill et al., 

1994).  The terminal exponential phase of elimination (t1/2β) following intravenous 10 

mg/kg UCN-01 is 85 minutes, and the area under the plasma concentration-time curve 
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(AUC) is 117 µg/minutes/ml; the values for subcutaneous delivery are 130 minutes and 

113 µg minutes/ml respectively, indicating that the two routes may have substantially the 

same pharmacokinetics.  This study also demonstrated that UCN-01 is stable in mouse 

serum.  A second report sought to examine the altered pharmacokinetics of UCN-01 

reported in human trials and attributed to strong binding of the serum protein AGP 

(Hedaya and Daoud, 2001).  Rats were injected (i.v.) with either UCN-01 or UCN-01 

plus 30 mg/kg human AGP, and plasma and tissue concentrations of UCN-01 were 

determined from 30 minutes post-injection to 24 hours later.  As expected, the presence 

of AGP increased the plasma concentrations of UCN-01 by 5- to 7-fold, and reduced the 

ratio of drug/tissue for all organs examined (brain, skeletal muscle, heart, liver, kidney, 

spleen and lungs).  The AGP binding of UCN-01 will be further explored in the 

Discussion below.  Pertinent to the project discussed in this work, the authors also 

evaluated these parameters following intramuscular (i.m.) injection.  While the 

elimination and distribution kinetics were essentially the same as seen in the intravenous 

study, this is the only publication that has detailed them following the i.m. route.  The 

authors found that UCN-01 delivered intramuscularly had approximately the same initial 

plasma concentration as the i.v. delivery (240 ng/ml), and that UNC-01 was not 

detectable in plasma by 14 hours post-injection. 

 

Gap in Knowledge; UCN-01 as a protector of normal cells 

The clinical studies discussed previously focused primarily on the use of UCN-10 to 

enhance the toxicity of chemotherapeutic agents to eradicate tumors.  In fact, as UCN-01 

has been used in all of the reported clinical cases to either damage or suppress tumors, 

84



these studies do not exclude the possibility that UCN-01 could act as a protective agent 

for normal dividing cells.  The effects of UCN-01 seem to be highly dependent upon both 

the dose administered and the cell cycle status of a particular cell.  The clinical trials use 

very high doses of UCN-01 (up to 135 mg/M2), whereas the levels of UCN-01 used as a 

protective agent would be much lower.  The mouse protection study proposed in this 

thesis utilizes a much lower dose range (0.63-5.0 mg/kg, approximately equivalent to 

1.26-10 mg/M2).  This low dose of UCN-01 would presumably target only normal 

proliferating cells.  Another concern is the binding of UCN-01 to hAGP and the altered 

pharmacokinetics that ensue.  While this is not expected to complicate the mouse study, 

any clinical translation will have to account for this phenomenon to keep the unbound 

fraction of UCN-01 within the effective range for a reversible G1 arrest.  One possible 

solution would be the use of liposomes to deliver the drug to the target cell populations.  

Recent reports indicate some success using these vehicles to prevent hAGP binding in the 

bloodstream and to control the release rate of UCN-01 (Yamauchi et al., 2005; Yamauchi 

et al., 2008).  The plasma protein binding of UCN-01 and the clinical implications of this 

property will be further explicated in the discussion section below. 

 

The work described in this thesis explores the use of UCN-01 in protecting normal 

dividing cells of the mouse from the toxicity of chemotherapy.  The rationale for this 

approach is based on the in vitro and in vivo work previously mentioned.  It is known that 

UCN-01 is able to temporarily arrest the normal dividing tissues (intestinal epithelia and 

hematopoietic tissue) of the mouse in G1 (Redkar et al., 2001) and that no adverse effects 

accompany this effect.  It has also been shown that non-tumorigenic cells in culture 
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(wild-type Rb) can be arrested in G1 with UCN-01, and that the cells can return to a 

proliferative state once the drug has been removed (Chen et al., 1999).  This state of 

temporary arrest is protective from drugs (in this case camptothecin) which target 

actively dividing cells (Chen et al., 2000).  Tumor cells, which are not affected by this 

dose of UCN-01, are not similarly protected.  The ability of UCN-01-arrested normal 

cells to evade the toxicity of chemotherapeutic agents will be evaluated in vivo in a 

mouse model system.   

 

The other aspect of UCN-01 which will be examined is the molecular changes in the 

normal dividing tissues of the mouse following treatment.  UCN-01 is a very 

promiscuous compound, and the literature discussed above indicates many targets and 

effects due to its use.  However, the predominant setting for these studies has been in the 

tumor environment, and as a result, there has been quite a variety of molecular changes 

and cellular fates described.  The focus here will be on normal dividing cells in the 

mouse, and to better understand how UCN-01 affects these cells and causes an arrest in 

the cell cycle. 

 

86



RESULTS Chapter I.  Arrest and Recovery of Normal Cells by UCN-01 

 

Introduction:  Several studies discussed in the introduction which examined the actions 

of UCN-01 in both cell culture and in mice indicate that the drug can arrest proliferating 

cells, usually in G0/G1.  This project attempts to exploit the arrest of normal cells to 

protect them from chemotherapeutics which target dividing cells in an in vivo system 

(Chen et al., 2000).  In order to demonstrate the ability of UCN-01 to arrest normally 

dividing cells in the mouse, we have chosen to examine the epithelium of the small 

intestine of nude mice.  This is a rapidly dividing tissue, in which cells are continually 

replicating in the crypt and to replace the cells at the villus tip as they die and are shed 

into the lumen.  We have chosen to use the nude mouse in order to facilitate future 

studies in which human xenograft tumor-bearing mice are treated with the UCN-01 

protection protocol.  The hypothesis to be evaluated in this section is: The normal 

dividing cells of the mouse small bowel can be reversibly arrested by UCN-01 

administration.  In order to be able to exploit a cell cycle arrest to protect normally 

dividing tissues, we must be able to show that UCN-01-mediated arrest is temporary, and 

specifically when the cells enter into arrest and when they recover.   

The cell cycle kinetics in the mouse small bowel were analyzed by flow 

cytometry to identify changes due to UCN-01 treatment.  Cell cycle arrest of the dividing 

epithelial cells was demonstrated beginning 24 hours after UCN-01 administration, and 

this arrest was shown to reverse two weeks after treatment.  Additionally, an antagonistic 

effect of the UCN-01 carrier DMSO was observed in the small intestine epithelial cells.  
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However, this effect did not prevent the arrest and reversal of UCN-01 mediated cell 

cycle arrest. 

 

Material and Methods:  Mice: Male and female nude mice from 8-12 weeks of age 

(apprpoximately 24-30 grams) were obtained from the Experimental Radiation Oncology 

colony at M.D. Anderson Cancer Center.  Mice are maintained in the specific pathogen 

free barrier facility on sterilized normal chow and water with no restrictions.  UCN-

01/mock treatment:  Mice were injected with UCN-01 or carrier (dimethyl sulfoxide, 

DMSO, Sigma Aldrich, St. Louis MO) intramuscularly (i.m.) into the right hindlimb.  

UCN-01 was obtained from the NCI Chemotherapeutic Agents Repository, and is 

resuspended in DMSO at 7.5 mg/ml.  Prior to injection, the UCN-01 solution is diluted 

2:1 with sterile normal saline for a final concentration of 5 mg/ml.  DMSO given as 

vehicle control was diluted in the same fashion, and was given as a volume equivalent 

dose.   To obtain the normal mouse values for flow cytometry, mice either received no 

treatment or were given volume equivalent PBS in the right hindlimb. 

 

Bromodeoxyuridine (BrdU) labeling:  Mice were sacrificed at one of five timepoints 

following UCN-01/mock injection: 24 hours, 48 hours, and 7, 14 or 28 days.  On the day 

of sacrifice, mice were injected i.p. with 60 mg/kg BrdU (Sigma Aldrich, St. Loius MO) 

six hours prior to sacrifice.  Mice were staggered in injection and sacrifice times such that 

each mouse had exactly six hours of BrdU exposure.  Upon sacrifice, the jejunum was 

dissected out and flushed with ice-cold ethanol (60% in PBS, both Fisher Scientific, 

Pittsburgh, PA).  A small piece was fixed in formalin (10%, Fisher Scientific), and the 
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remainder fixed overnight in the 60% ethanol/PBS buffer.  To prepare the tissues for flow 

cytometry, the jejunums were opened longitudinally and placed on a glass microscope 

slide.  A second slide was dragged across the epithelial surface to dislodge the cells; care 

was taken not to apply excess pressure and disrupt the basement membrane.  The isolated 

cells were placed in a 50 ml glass flask and resuspended in 5 ml of 0.04% pepsin (Fluka 

chemical, obtained from Sigma Aldrich) and placed in a shaking water bath at 37ºC and 

90 Hz for one hour.  The cells were filtered through 35 µm mesh and centrifuged at 1200 

RPM for 5 minutes in a swinging bucket centrifuge (Beckman Coulter, Brea CA).  Cells 

were resuspended in 1.5 ml of 2N HCl (Fisher Scientific) for 20 minutes in a 37ºC 

incubator.  The acid was neutralized with 3 ml 0.1M sodium borate (Sigma Aldrich) and 

the cells were again centrifuged at 1200 RPM for 5 minutes.  The cells were washed with 

5 ml of PBTB (phosphate-buffered saline plus 0.5% Tween-20 (Sigma Aldrich) and 0.5% 

bovine serum albumin (Fisher Scientific)) and centrifuged at 1200 RPM for 5 minutes.  

Samples were resuspended in primary anti-BrdU antibody (IU-4, Caltag, Burlingame 

CA) diluted 1:100 in PBT (phosphate-buffered saline plus 0.5% Tween-20) for 60 

minutes.  Samples were washed in 5 ml of PBTB and centrifuged at 1200 RPM for 5 

minutes.  Samples were resuspended in 0.2 ml of secondary antibody ( goat anti-mouse 

fluorescein isothiocyanate (GAM-FITC), Beckman Coulter, Brea CA) diluted 1:100 in 

PBTG (PBT with 2% normal goat serum) for 60 minutes, then washed in PBTB and 

centrifuged at 1200 RPM for 5 minutes.  Samples were then suspended in propidium 

iodide solution (1 mg/ml  PI (Roche, Branford CT) in 95% ethanol diluted 1:100 in PBT) 

and stored at 4ºC overnight. 
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Flow Cytometry:  Intestinal digests were analyzed using a Beckman Coulter flow 

cytometer.  An example of the output of the bivariate analysis is shown in Figure 4.  

DNA content (PI, x-axis) and BrdU-positive nuclei (log BrdU, y-axis) are both counted 

and exported to the ModFit LT program (Verity software, Topsham ME).  Labeling index 

is calculated by dividing the number of BrdU-positive nuclei by the total number of 

nuclei analyzed.  The fraction of labeled divided cells (fld) is the number of BrdU-positive 

nuclei which are in G1 phase divided by the total number of nuclei counted (upper left 

box, Figure 4).  The fraction of labeled undivided cells (flu) is the number of BrdU-

positive nuclei which correspond to the S and G2/M phases of the cell cycle divided by 

the total number of cells analyzed.  A complete explication of the flow analysis 

parameters and other values which may be calculated can be found in a recent methods 

article (Terry and White, 2006) 

 

Immunohistochemistry:  Jenunum sections were embedded in paraffin and 5 µM sections 

were cut onto superfrost/plus slides (Fisher Scientific).  To visualize BrdU in the 

sections, slides were processed as for IHC.  Slides were hydrated in 3 washes of xylene 

(Fisher Scientific) for five minutes each, and then 3 minutes each of 100%, 90% and 70% 

ethanol.  Slides were washed for five minutes in water, and then digested in 0.1% 

protease (Sigma Aldrich) for one hour.  Slides were washed twice for five minutes in 

PBS and placed into 2 normal hydrochloric acid for fifty minutes.  The acid was 

neutralized in 0.1 M sodium borate.  Slides were washed twice in PBST (PBS plus 0.5% 

Tween 20, Sigma Aldrich) for five minutes and then blocked in normal horse serum 

(Vector Labs, 3 drops in 10 ml PBST) at 37º for thirty minutes in a humidified chamber.  
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Figure 4. Typical output for bivariate analysis of mouse jejunum  
after 6 hours of BrdU labeling.  The large upper box gates all cells positive 
BrdU (y-axis).  The x-axis represents propidium iodide (PI), and cells are 
sorted by DNA content; the first large population (1) is G1/G0 cells,  
the second large population is G2 (2).  The cells in between the two are 
in S phase.  The small box on the upper left (3) delineates the fraction of  
labeled, divided cells (fld), which are BrdU positive cells which have gone  
through mitosis.  The upper left box (4) represents the BrdU positive cells 
which have yet to divide (fraction of labeled, undivided cells, flu). 
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The slides were incubated with primary IU-4 antibody (1:100 in PBST) for one hour in a 

humidified chamber at 37ºC.  After two five-minute washes in PBST, the slides were 

incubated with secondary GAM-FITC (1:100 in PBST plus 1% normal goat serum) for 

one hour at 37ºC in a dark humidified chamber.  After two washes of five minutes each in 

PBST, the nuclei were stained with 0.1 µg/ml Propidium iodide (Sigma Aldrich) for 

fifteen minutes.  Slides were mounted in antifade medium (Vectasheild, Vector Labs, 

Burlingame CA) and sealed with a glass coverslip. 

 

Microscopy:  BrdU was visualized on stained jejunum sections using a Leica DM400B 

(Wetzlar, Germany) fluorescent microscope.  Images were taken using a Spot digital 

camera and Spot Advanced software (Spot Imaging Solutions, Sterling Heights MI). 

 

Statistics:  Pairwise comparison of means was performed using Student’s t-test; a 

confidence level of 95% was considered to be statistically significant in these studies.  

All calculations were performed using the Prism software package (GraphPad Software, 

Inc.). 

 

Results: 

Initial dose range study for UCN-01 in mouse jejunum: 

The results from the study by Redkar et. al. (Redkar et al., 2001) demonstrated that the 

proliferating tissues of the mouse (intestinal epithelium and bone marrow) could be 

arrested by UCN-01 at doses of 5 and 10 mg/kg.  In order to establish the efficacy of this 

arrest in our mouse model system, an initial pilot study was performed (Figure 5).  Nude 
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* 

Figure 5.  Flow cytometric analysis of mouse jejunums harvested 48 hours 
after treatment with 10 mg/kg UCN-01 (n=6), 0.63 mg/kg UCN-01 (n=5) or  
DMSO control (n=5).  (A) Fraction of labeled divided cells (fld) was significantly 
decreased in the 10 mg/kg UCN-01 group compared to vehicle (*, p<0.05).  
The 0.63 mg/kg UCN-01 group was not significantly lower than DMSO 
control (p=0.0516). (B) Percentage of all BrdU-labeled cells which have  
divided.  No change is evident after treatment with UCN-01, suggesting the 
decrease in Fld in (A) is not due to a block in G2/M phase, but rather  
a decrease in cells entering S phase. [Calculation: (Fld/2)/(Flu+ Fld/2)] 

A 

B 
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mice were injected with DMSO control (n=5), 0.63 mg/kg UCN-01 (n=5), or 10 mg/kg 

UCN-01 im.  48 hours after treatment, the mice were injected with BrdU and sacrificed 

six hours later.  Jejunum was harvested and fixed overnight for flow cytometric analysis.  

The six-hour BrdU labeling of the mice allows time for some proliferating cells which 

incorporate label in S phase and pass the label through G2 phase and mitosis.  This 

population of cells is termed the fraction of labeled, divided cells (fld).  The visual 

representation of this population is shown in Figure 4 by arrow 3.  A complete 

description of the parameters measured by the flow analysis is described in the Materials 

and Methods section above.  A decrease in fld cells is indicative of a decrease in cells 

progressing through the cell cycle.  As shown in Figure 5, the 10 mg/kg UCN-01 treated 

mice had a significantly lower fld value than the DMSO vehicle control group.  The 0.63 

mg/kg UCN-01 mice also had a lower fld compared to controls, but the difference was not 

statistically significant (p=0.0516).  Our results are in agreement with the previous report 

(Redkar et al., 2001), and it appears that UCN-01 at either concentration used in this 

experiment is able to arrest the proliferating cells of the nude mouse small intestine. 

 

Baseline fld for untreated mice: 

While it is clear from the study in Figure 5 that DMSO is not causing the decrease in cell 

proliferation seen in the jejunum of UCN-01 treated mice, we felt it was important to 

establish a baseline fld value for untreated mice.  To this end, mice were either injected im 

with PBS (n=7) or left untreated (n=9).  48 hours later, BrdU was injected and mice 

sacrificed six hours later.  Flow cytometric analysis (Figure 6) demonstrated no 

significant difference between the two groups.  However, the combined values for the 
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Figure 6.  Flow cytometric analysis of mouse jejunums 48 hours after 
im injection of PBS (volume equivalent to 5 mg/kg UCN-01 treatment, 
n=7) or null (no treatment, n=9).  The two groups were not significantly  
different (p=0.378), and the mean fld for all control mice is 0.99%. 
The pooled values of fld for the null and PBS treated mice are  
significantly different from the DMSO treated mice (p=.0073) 
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“untreated” mice in this experiment are significantly different from the value of the 

DMSO mice (Figure 5), which is also included in Figure 6 for comparative purposes.  

The mean fld value for all mice in this experiment was 0.99%.  This will be used as the 

baseline untreated value for the rest of the studies in this section.  It is also important to 

note that DMSO appears to stimulate proliferation in the mouse intestinal epithelium. 

However, the combined values for the “untreated” mice in this experiment are 

significantly different from the value of the DMSO mice (Figure 5), which is also 

included in Figure 6 for comparative purposes.  The fld value in the previous experiment 

(Figure 5) for the DMSO control group is 1.729%, a significant increase over the 

untreated value of 0.99% obtained in this group of “untreated” mice.  The antagonism 

between the effects of UCN-01 and its carrier is not particularly a desirable feature, and 

will be addressed in future studies.  However, as the DMSO values may skew future 

analyses of UCN-01 activity in the mouse epithelial cells, we will use the control value 

for normal mice from Figure 6. 

 

UCN-01 arrest and time to recovery: 

While our work to this point and the previous study by Redkar et. al. demonstrated that 

UCN-01 can arrest the proliferating cells in the mouse small bowel, the time course of 

this effect is not known (Redkar et al., 2001).  In order to take advantage of any arrest to 

prevent chemotherapy-induced toxicity, it is crucial to know when the UCN-01-mediated 

arrest commences and also how long it takes for cells to return to normal levels of 

proliferation.  To this end, we conducted a time course study in the UCN-01 treated mice 

to examine the reversibility of arrest following treatment.  A mouse study was designed 
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to analyze the time course of UCN-01 effect.  Nude mice were treated with 5 mg/kg 

UCN-01 or DMSO control, 30 mice per group.  10 mice from each group were BrdU-

labeled and sacrificed each at one, two and four weeks post-treatment.  Shown in Figure 

7a (experiment A), the fld values for the UCN-01 treated mice are lower than the baseline 

level (blue bar, results of experiment in Figure 6) at one week post-treatment, suggesting 

that UCN-01 treatment has inhibited proliferation of the jejunum epithelial cells.  By the 

two-week time point, the proliferation of the gut epithelial cells increases to 

approximately the baseline value established in Figure 5 (0.99%, indicated by the blue 

bar).  At four weeks post-UCN-01, the mouse jejunum has a slightly higher than normal 

proliferative level.  It is likely that this response is a reaction to the lack of proliferation 

caused earlier by UCN-01, in which greater cell proliferation is intended to repopulate the 

villi; this is similar to the response seen when mice are treated with γ-irradiation (Farrell 

et al., 1998).  Figure 7b displays the fld values obtained by mice treated with DMSO for 

one, two and four weeks.  As seen previously in Figure 5, DMSO treatment appears to 

stimulate cell proliferation in the jejunum, as fld levels are elevated above baseline 

(0.99%, blue bar) at one week.  By two weeks, the intestinal epithelial cells have returned 

to normal levels of proliferation, and the four-week samples remain at this level.  This 

experiment provides us with the time course for UCN-01 effects on the small bowel 

proliferating cells; it also corroborates the previous data (Figure 5) which shows an 

antagonistic effect of the carrier DMSO.  This information is crucial to planning future 

protection experiments using UCN-01 prior to a chemotherapeutic agent.  Additionally, 

these results show that the antagonistic action of DMSO (i.e the stimulation of cell 
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Figure 7a.  Flow cytometric analysis of mouse jejunums at one, two, and 
four weeks after 5 mg/kg UCN-01 (n=10 for each group).  Cell cycle arrest  
persists through one week, recovers to approximately normal levels (figure  
202, 0.99% indicated by blue line) by week 2, and gives way to a slight  
increase in proliferation by week 4.  The second set of mice was evaluated at 
1 and 4 weeks post-UCN-01 (B), confirming the results of the first experiment. 

Figure 7b.  Flow cytometric analysis of mouse jejunums at one, two, and 
four weeks after DMSO treatment (n=10 for each group).  DMSO causes  
increased cell proliferation at one week, and this effect diminishes to normal 
levels by week 2.  This indicates an antagonism between UCN-01 and DMSO.  

1(A) 1(B) 2 4(A) 4(B) 
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proliferation) on the gut epithelium does not inhibit the UCN-01 mediated inhibition 

cellular proliferation or the subsequent recovery from this arrsest. 

A section of jejunum for each mouse from this experiment was also fixed in 

formalin and embedded in paraffin for histological analysis.  Sections from each time 

point were probed by anti-BrdU antibodies and visualized by fluorescent microscopy.  In 

this analysis, BrdU positive cells are labeled with fluorescein and appear as green signals.  

A green cell indicates that BrdU was successfully incorporated into the cell, which is an 

indicator of active cell proliferation.  In addition, the nuclei have been stained with 

Propidium iodide, and appear as red signals.  In Figure 8, the sample from the one week 

time point has fewer BrdU positive cells compared to the two and four week time point 

samples.  This indicates that gut epithelial cells are in a less proliferative state than the 

two and four week samples, as less BrdU has been incoporated during S phase.  This 

staining provides visual evidence confirming the flow data shown in Figure 7. 

 

Repeat analysis of UCN-01 time course: 

To examine the reproducibility of UCN-01 mediated arrest and subsequent reversibility 

of this arrest over time, a new experiment repeating the one and four week time points for 

UCN-01 at 5 mg/kg was planned to both validate the results in Figure 7 and to verify that 

a new batch of UCN-01 (from a different source) was similarly effective in affecting the 

small bowel epithelial cells.  For this experiment, 20 mice were injected with 5 mg/kg of 

the new batch of UCN-01 10 mice were BrdU-labeled and sacrificed one week after 

UCN-01 treatment, and the remaining 10 mice labeled and sacrificed at week four.  

Similar to the results shown in Figure 7, the one-week mice had a lowered fld value, 
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1 week 

2 weeks 

4 weeks 

Figure 8.  Anti-Brdu immunohistochemistry of mouse jejunums harvested 
at one, two and four weeks after treatment with 5 mg/kg UCN-01.  Mice were 
sacrificed six hours after BrdU injection.  The qualitative levels of BrdU 
incorporation appear lowest in the one week sample, and increase as UCN-01 
inhibition recedes over two and four weeks.  White arrows indicate crpyt to villus 
orientation.  Green signal indicates BrdU incorporation, and nuclei are 
stained in red with proidium iodide.  Quantitave analysis of BrdU IHC is shown in  
Figure 9. 
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indicative of cell cycle arrest in the repeat experiment (Figure 7, experiment B).  This 

value increased to a slightly higher than normal value at week four, also in agreement 

with our previous results.  This experiment demonstrates both that our previous results 

are reproducible, and that the new batch of UCN-01 is effective in causing a cell cycle 

arrest in the proliferating tissues of the mouse.  Both experiments clearly show that not 

only is UCN-01 able to inhibit cell proliferation in the epithelial tissue of the jejunum, but 

that the arrested cells can resume normal proliferative activity within two weeks of UCN-

01 treatment.  Hence, UCN-01 causes a reversible inhibition of cell proliferation in vivo. 

 

Solving the solvent problem – reducing the effect of DMSO: 

UCN-01 is able to arrest the proliferating cells of the mouse small bowel, and does this 

despite an apparent stimulatory effect of its solvent DMSO.  The results in Figures 5 and 

7b indicate that DMSO causes an undesirable increase in cell cycle proliferation in the 

jejunum, in opposition to the arresting effect of UCN-01.  To mitigate this conflict, an 

alternative solvent for UCN-01 was sought.  UCN-01 poorly soluble in most buffers, but 

some previous studies have used sodium citrate as a solvent (3% w/v, pH 3.5) both in 

vitro (Hamed et al., 2008) and in vivo (Patel et al., 2002).  An experiment to evaluate 

both UCN-01 in the citrate buffer as well as a higher concentration UCN-01 solution was 

planned (10 mg/ml UCN-01 versus 4.8 mg/ml in all previous studies; the higher 

concentration reduces the volume of DMSO injected by more than 50%).  10 mice each 

would be injected with (a) 5 mg/kg UCN-01 in sodium citrate, (b) sodium citrate control, 

(c) 5 mg/kg UCN-01 (at 10 mg/m in DMSO), or (d) DMSO control (volume equivalent to 

the 10 mg/ml UCN-01 solution).  24 hours later, the mice were injected with BrdU and 
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Figure 9.  Quantiative analysis of anti-BrdU IHC on jejunum sections of mice 
treated for 48 hours with 5 mg/kg UCN-01 or DMSO control.  The results mirror 
the analysis by flow, demonstrating a drop in DNA synthesis due to UCN-01  
treatment, suggesting a block before S phase.  An image of this analysis is  
shown in Figure 48. 
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sacrificed, and the jejunum processed for flow cytometry.  In Figure 10a, it can be seen 

that both methods attempting to reduce the solvent effect of DMSO were ineffective.  

UCN-01 dissolved in the citrate buffer was unable to produce any cell cycle arrest, with a 

fld value above the baseline (blue bar).  The higher concentration UCN-01 in DMSO has 

a significant arrest (mean fld 0.615%), but the volume equivalent DMSO control group 

had elevated levels of cellular proliferation.  The fld value for DMSO in this study 

(2.269%) is very close to the 2.048% value obtained previously using the more dilute 4.8 

mg/ml UCN-01 solution (Figure 7b).  However, neither the approach of a higher 

concentration of UCN-01 in DMSO nor the switch to sodium citrate as a solvent for 

UCN-01 were effective methods to minimize the unwanted solvent effects of DMSO. 

Another attempt to minimize the DMSO effect used an even higher concentration 

of UCN-01 in DMSO, this time 60 mg/ml (versus 10 mg/ml used in Figure 10a).  At this 

concentration, a 30 gram mouse would only receive 2.5 µl of DMSO, compared to 15 µl 

at the 10 mg/ml concentration.  However, this volume is too small to be reliably injected, 

and the UCN-01 solution was brought up to 15 µl total for each mouse immediately prior 

to injection with warm (37ºC) saline.  10 mice were injected with the high concentration 

UCN-01/saline mixture, and 10 mice received the volume equivalent of DMSO/saline.  

However, this method also failed to alleviate the DMSO effect.  Seen in Figure 10b, the 

DMSO group had an observed fld of 2.154%, similar to the elevated values for DMSO in 

both 10a and 7b.  Additionally, the UCN-01-treated mice did not undergo an arrest of the 

small bowel epithelial cells.  It is possible that the mixing of UCN-01/DMSO with saline 

prior to injection caused a significant amount of drug to come out of suspension; this may 
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Figure 10a.  Flow cytometric analysis of mice 24 hours after treatment  
with 5 mg/kg UCN-01 dissolved in 3% sodium citrate, pH 3.5 or higher 
concentration UCN-01 in DMSO (10 mg/ml versus 4.8 mg/ml in figures 
7 and 8) and vehicle controls, injected im (n=10 for each group). 
No arresting effect was observed in the mice receiving citrate/UCN-01, 
and the diminished DMSO still caused an increase in fld. 

Figure10b.  Flow cytometric analysis of mice 24 hours after treatment  
with 5 mg/kg UCN-01 dissolved at a higher concentration in DMSO (60 
mg/ml versus 10 mg/ml in figure 10a).  DMSO stimulation of cell  
proliferation was still present, but the UCN-01 at this concentration  
was unable to effect a cell cycle arrest. 
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in turn have prevented proper absorption of UCN-01 and resulted in the ineffectiveness 

of this treatment.   

None of the attempts made to minimize the cellular proliferation stimulated by 

DMSO (i.e. UCN-01 antagonism) were successful.  This solvent antagonism is an 

undesirable feature of our treatment plan, it does not appear to have any effect of the 

UCN-01 mediated arrest of cell proliferation and release from arrest over time.  All future 

experiments in this study will use DMSO and the solvent for UCN-01. 

 

Effect of dosing schedule on effectiveness of UCN-01-mediated arrest: 

While UCN-01 treatment can significantly arrest the normal proliferating cells of the 

small bowel (Figures 5, 7a, and 9), it was questioned whether a single treatment with 

UCN-01 was the most effective way to bring about this arrest.  Figure 11 shows anti-

BrdU staining of jejunum sections of mice treated with either 5 mg/kg UCN-01 or PBS 

for 24 hours.  The bright green signals indicate incorporation of BrdU, a marker of 

cellular proliferation.  While the degree of BrdU incorporation (bright green signals, 

marked with white arrows) is much lower in the UCN-01 treated samples (indicative of 

reduced cellular proliferation) compared to the PBS controls, there is still a significant 

number of cells in the UCN-01 mice which are continuing to cycle and incorporate the 

BrdU label.  As the half-life of UCN-01 in mice is approximately 4 hours, we questioned 

whether a different treatment plan would capture more cells in an arrested state.  

Specifically, if we were to administer UCN-01 in two half doses separated by 12 hours, it 

might be possible to affect cells with the second dose which were not in the correct phase 

for UCN-01’s action during the first dose.  To test this hypothesis, 10 mice were treated 
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Figure 11.  Anti-BrdU immunohistochemical analysis of jejunum sections of 
mice treated with either 5 mg/kg UCN-01 or PBS im for 48 hours.  The UCN- 
01 treated mice have qualitatively lower levels of incorporated BrdU compared  
to PBS (this has been confirmed by flow analysis, Figure 7) controls, but some  
cells are still actively cycling even after UCN-01 treatment. 
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with a single 5 mg/kg dose of UCN-01, and then injected with BrdU 24 hours later and 

sacrificed.  Another 10 mice were injected with 2.5 mg/kg at the same time, and then 

again with an additional 2.5 mg/kg UCN-01 12 hours later.  These mice were also labeled 

with BrdU 24 hours following the initial injection and sacrificed for flow cytometric 

analysis.  Shown in Figure 12, the two half-dose treatment group had lower levels of 

BrdU incorporation than the single full dose of UCN-01.  However, the difference was 

not statistically significant (p=0.0944).  While this experiment did not show a significant 

improvement in cell cycle arrest when UCN-01 was administered over a greater time 

frame, it is possible that a treatment schedule that is even more spread out could result in 

greater cell cycle arrest. 

 

Discussion: 

The main purpose of the studies in this section was to demonstrate that UCN-01 could 

cause a reversible cell cycle arrest in our model system, the small bowel of the nude 

mouse.  Our results indicate that 5 mg/kg UCN-01 can cause a significant arrest of the 

gut epithelial cells as early as 24 hours after treatment.  This arrest persists through day 7 

post-UCN-01 treatment, and the intestinal epithelia return to the normal level of 

proliferation by two weeks post-UCN-01 treatment.  This information is critical in 

planning the experiments for protection against chemotherapeutics for normal cells, 

which is the goal of the next chapter.   In order to take advantage of cell cycle arrest to 

evade the toxicity of agents targeting dividing cells, we will need to time the exposure of 

the cytotoxic agents to occur during the period of cell cycle arrest.  As some 

chemotherapeutic agents are only able to target dividing cells, protection will only be 
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Figure 12. Comparison of the arresting effects of a single dose of 
5 mg/kg UCN-01 versus two 2.5 mg/kg doses injected 12 hours apart. 
The level of BrdU positive nuclei is lower in the two-dose method, but 
the difference is not significant (p=.0944). 
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afforded to the normal dividing cells if the cytotoxic agent is administered while they are 

in an arrested state.  The exact timing of this treatment scheme will be examined in the 

next chapter. 

 

The antagonism of UCN-01 by its solvent DMSO was also demonstrated.  Neither 

alternative solvents nor minimal use of DMSO (via high concentration UCN-01) were 

able to alleviate this effect.  While the DMSO mediated antagonism is not desirable, the 

use of DMSO as a solvent does not affect the inhibition of cellular proliferation by UCN-

01 or this subsequent release from arrest.  In our experiments, DMSO is the most 

effective solvent for delivering UCN-01 in vivo.  As such, DMSO will be used for all 

subsequent experiments in this thesis. 

The idea of separating UCN-01 doses over a 12 hour period to induce a greater 

level of cell cycle arrest was also found to be not statistically significant.  However, the 

two-dose treatment plan did result in a somewhat lower level of BrdU incorporation.  It 

may be possible that a continuous infusion of 5-10 mg/kg of UCN-01 over a 24 hour 

period could more effectively capture a greater percentage of dividing cells into a state of 

arrest.  This method might also allow for an alternative solvent to be used, alleviating the 

DMSO complication.  However, the effects of UCN-01 are dose dependent.  A 5 mg/kg 

dose spread over time may never reach a concentration sufficient to cause a significant 

level of cell cycle arrest.  Alternatively, a constant exposure to UCN-01 could also lead to 

induction of other unwanted effects of UCN-01 (see Introduction), especially those 

leading to apoptosis or prevention of DNA damage repair.  The possible complications of 

this treatment plan render it beyond the scope of this investigation. 
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II. Improved Tolerance of Fluorouracil following UCN-01 Administration 

 

Introduction: The study by Chen et al. demonstrated that UCN-01 is able to specifically 

arrest normal cells in culture, while tumor cell lines are unaffected and continue to 

proliferate (Chen et al., 1999).  In another study examining the effects of the UCN-01 

parent analog staurosporine, normal mammary epithelial cell lines 70N and 81N and Rb 

wild-type 76NE6 cells entered into a G0/G1 arrest after 48 hours of treatment with 0.5 

nM of staurosporine; the tumor cell lines MDA-MB157 and MDA-MB436 as well as the 

Rb-deleted 76NE7 were resistant to this arrest (Chen et al., 2000).  Subsequent treatment 

with doxorubicin or camptothecin was tolerated in the arrested lines, while the tumor cell 

lines were susceptible apoptosis induced by the chemotherapeutic drugs.  The temporary 

arrest increased the MTD for the normal cell lines by two orders of magnitude for 

camptothecin.   

In the previous chapter, UCN-01 was demonstrated to cause a significant cell 

cycle arrest in the small bowel epithelium of the nude mouse as early as 24 hours 

followng a single administration at 5 mg/kg im.  This arrest persisted through day 7, and 

the cells returned to normal proliferative levels by day 14.  These results indicate that the 

first requirement for the protection strategy (UCN-01-mediated arrest of normal cells in 

the mouse) has been met.  The next part of this in vivo strategy is to demonstrate a 

protective arrest persists in the mouse while undergoing treatment with chemotherapeutic 

agents.  In order to evaluate any potential protective effect of this arrest, mice pretreated 

with either UCN-01 or DMSO control will be subsequently treated with fluorouracil (5-

FU).  5-FU was chosen as an agent which targets dividing cells and has been show to 
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cause significant toxicity to the gut epithelium system, especially when administered in a 

bolus fashion (Sobrero et al., 1997).  5-FU is able to kill cells in at least three ways, by 

thymidylate synthase inhibition (when metabolized into FdUMP), misincorporation into 

DNA (when metabolized into FdUTP), and prevention of rRNA maturation (Longley et 

al., 2003).  Cell death following 5-FU treatment is concomitant with an increased 

bax/bcl-2 ratio (Inomata et al., 2002) or induction of apoptosis or permanent quiescence 

through the p53/p21 pathway (Pritchard et al., 1998), although the exact cause of cell 

death is still under investigation.  In patients treated with 5-FU (370-400 mg/M2), both 

oral and gastrointestinal mucositis can be limiting side effects, along with neutropenia 

and myelosuppression (Schwab et al., 2008).  The ability of the mice to tolerate 5-FU 

following UCN-01 will be evaluated by examining alterations in weight, blood markers 

and survival.  The hypothesis for this section is that the temporary arrest of the normal 

dividing tissues of the nude mouse by UCN-01 pretreatment will improve tolerance 

of the toxicity caused by 5-FU administration.   

Mice were treated with UCN-01 to cause a cell cycle arrest (as demonstrated 

chapter 1), followed by administration of the chemotherapeutic agent fluorouracil (5-FU).  

5-FU was injected at time points from one to seven days post-UCN-01, and the tolerance 

of this treatment was evaluated by measuring weight, blood markers and survival.  We 

show here that UCN-01 pretreated mice had significant improvements in all these facets 

after 5-FU treatment when compared to DMSO pretreated control mice.  However, this 

improvement is only observed when 5-FU is administered during a window of efficacy, 

approximately three to five days post-UCN-01 treatment.   
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Materials and Methods: Mice: Female nude mice from 8-12 weeks of age 

(apprpoximately 24-30 grams) were obtained from the Experimental Radiation Oncology 

colony at M.D. Anderson Cancer Center.  Mice are maintained in the specific pathogen 

free barrier facility on sterilized normal chow and water with no restrictions.  UCN-01 

treatment: Mice were injected with 5 mg/kg UCN-01 (or volume equivalent DMSO for 

controls) im in the right hindlimb via a 0.5 ml insulin syringe with a 32 gauge needle.  

Fluorouracil treatment: Mice were given 5-FU (50 mg/ml, Abraxis Pharmaceuticals, 

Schaumburg IL) ip via a 0.5 ml insulin syringe with a 32 gauge needle.  Mice were 

treated with either a single bolus dose or 5 daily injections, depending on the 

experimental protocol (see below).  For doses below 80 mg/kg, normal saline was added 

to 5-FU to increase volumes to 50 µl. Mice were weighed using a Scout Pro balance 

(Ohaus, Pine Brook NJ).   

 

Blood collection: Mice were anesthetized by inhalation of isoflurane (Baxter Healthcare, 

Deerfield IL).  Once sedated, the mice were bled via retro-orbital puncture of the sinus 

with a sterile capillary tube.  For liver chemistry (aspartate aminotransferase (AST), 

alanine aminotransferase (ALT), and alkaline phosphatase) 50µl of blood was sampled 

and placed into a microtainer with a clotting activator (Becton Dickinson, Franklin Lakes 

NJ) and cenrifuged at 1100 X g.  Serum supernatant was collected and stored at -80º until 

analyzed.  Enzyme levels were detected using a Roche Integra 400 Plus analyzer with 

liver panel cassettes (both from Roche Diagnostics, Branchburg NJ).  For complete blood 

counts (CBC), 200µl of blood was collected using heparinized capillary tubes (Fisher 

Scientific) and placed into EDTA-coated microtainer (Becton Dickinson); these samples 
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were rotated at 8 RPM on a Labquake tube rotator (Barnstead, from Fisher Scientific) to 

prevent clotting prior to analysis.  Blood counts were determined using an Advia 120 

hematology analyzer (Siemens Diagnostic, Deerfield IL); results were confirmed by 

microscope analysis of blood smear.  All samples were analyzed by the Hematology Core 

in the Department of Veterinary Medicine at M.D. Anderson Cancer Center.     

 

Tissue collection:  Mice were sacrificed by cervical dislocation.  Sternums were 

harvested and preserved in 10% formalin prior to embedding in paraffin.  Small bowel 

sections (jejunum) were dissected from the abdomen, flushed with PBS and then 

preserved in 10% formalin.   

 

Hematoxylin and eosin (H&E) staining: Sternum sections were hydrated by placing 

slides into Histoclear (National Diagnostics, Atlanta GA) three times for five minutes 

each.  This was followed by 100% ethanol (twice for three minutes), 95% ethanol (twice 

for three minutes) and 70% ethanol for three minutes.  Slides were rinsed in distilled 

water for five minutes.  Slides were stained in Gill’s hematoxylin (Vector Labs) for 6 

minutes and then rinsed in running tap water for 20 minutes.  Slides were decolorized for 

two seconds in acid alcohol (1% hydrochloric acid in 70% ethanol) and rinsed in water 

for five minutes.  Slides were next immersed in ammonia water (0.1 ammonia in distilled 

water) five times and were rinsed in water for five minutes.  Counterstaining in eosin was 

done for fifteen seconds, and the slides were washed in water for five minutes.  

Dehydration was accomplished by immersion in 95% ethanol twice for five minutes 

followed by 100% ethanol twice for five minutes.  Slides were washed twice in 
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Histoclear for five minutes each, and samples were mounted behind a coverslip using 

Permount (Sigma Aldrich). 

 

Microscopy:  Mouse sternum H&E sections were visualized using a Leica DM400B 

(Wetzlar, Germany) microscope.  Images were taken using a Spot digital camera and 

Spot Advanced software (Spot Imaging Solutions, Sterling Heights MI).  The total area 

of the blood precursor cells was determined using the histogram analysis function in 

Photoshop (Adobe Systems, San Jose CA).  This area was normalized to the total stained 

area of each section analyzed.  Five sections were analyzed per mouse, and five mice per 

treatment group (UCN-01 or DMSO pretreated mice) were examined.   

 

Statistics:  Pairwise comparison of means was performed using Student’s t-test; a 

confidence level of 95% was considered to be statistically significant in these studies.  

Survival analysis was interpreted using the Kaplan-Meier method and significance for 

comparing treatment outcomes was performed using the Mantel-Cox Log Rank test.  All 

calculations were performed using the Prism software package (GraphPad Software, 

Inc.). 

 

 

Results: 

Serial injection of 5-FU beginning day 7 post-UCN-01/DMSO: 

The BrdU incorporation results presented in chapter 1 indicate that the arresting effect of 

UCN-01 in the small bowel was present through seven days, and that the proliferative 
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rate of these cells had returned to normal levels by two weeks.  These results pose the 

question as to whether UCN-01 can be used to protect normally proliferating tissues 

against the toxic effects of 5-FU during this period of arrest.  The ability of UCN-01 to 

protect mice against the toxic effects of 5-FU during this period was examined in an 

experiment using six groups of mice, five mice per group; the treatment protocol is 

shown in Figure 13.  The groups were as follows:  

 

 • 1: 5 mg/kg UCN-01, followed in 7 days with 5 X daily PBS ip 

 • 2: 5 mg/kg UCN-01, followed in 7 days with 5 X daily 25 mg/kg 5-FU ip 

 • 3: 5 mg/kg UCN-01, followed in 7 days with 5 X daily 35 mg/kg 5-FU ip 

 • 4: DMSO, followed in 7 days with 5 X daily 25 mg/kg 5-FU ip 

 • 5: DMSO, followed in 7 days with 5 X daily 35 mg/kg 5-FU ip 

 • 6: DMSO, followed in 7 days with 5 X daily PBS ip 

 

The levels of 5-FU administered in this experiment were chosen for their ability to induce 

sub-lethal enzymatic and structural damage in the mouse small bowel (Kaufmann et al., 

1967). The hypothesis for this experiment is that the temporary arrest of the proliferating 

cells of the mouse will allow better tolerance of subsequent 5-FU treatment.  It was 

expected that the UCN-01-treated groups would have less weight loss following 5-FU 

compared to DMSO controls, an indication of improved gastrointestinal health.  The mice 

were weighed daily and sacrificed one day following the final 5-FU/PBS treatment.  The 

percent change in weight is shown in Figure 14.  The weights of mice pretreated with 

UCN-01 and then injected with 25 mg/kg/day 5-FU were almost identical to those of 
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Figure 13.  Treatment protocol for first mouse 
protection experiment.  5 mg/kg UCN-01 or DMSO 
injected on Day 0 (15 mice each), and then 5 mice per 
group injected daily with 25 or 35 mg/kg/day or PBS 
daily for days 7 through 11.  Weight was measured daily 
during 5-FU treatment. 

Figure 14.  Percent change in  daily weights for mice treated  
with 5-FU or PBS daily for days 7 through 11 (treatment 
 protocol in shown in figure 13). 
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mice pretreated with vehicle (DMSO) and prior to 25 mg/kg/day 5-FU.  Mice injected 

with 35 mg/kg/day 5-FU had slightly improved weight status if pretreated with vehicle as 

opposed to UCN-01, although this difference is not significant (p=0.435, Student’s t-test).  

As such, the hypothesis for the concentrations and timing of 5-FU administered was 

tested and found to be incorrect.  It is possible that the seven-day gap between UCN-01 

treatment and 5-FU treatment is too long for optimal protection, especially with a daily 

injection of chemotherapy (the last injection would be on day 12, very close to the time at 

which normal proliferation returns).  The arrested cells of the mouse will be resuming 

cell cycle activities at this point, and may be susceptible to 5-FU toxicity.  While this 

protocol failed to demonstrate any protective effect of UCN-01, perhaps a different 

treatment schedule would be more successful.  It was also noted that the doses of 5-FU 

(25 mg/kg/day and 35 mg/kg/day) were very well tolerated in the mice (greatest weight 

loss was just over 5%, Figure 14); further experiments will use the 35 mg/kg/day as a 

starting dose. 

 

Serial injections of 5-FU beginning day 3 post-UCN-01/DMSO: 

The previous experiment failed to demonstrate in improvement in the tolerance to 5-FU 

toxicity in mice pretreated with UCN-01.  These results raised the question as to whether 

a shorter interval between the two drugs would better exploit the arresting effect caused 

by UCN-01.  The hypothesis for this new protocol is that earlier 5-FU administration 

would be better tolerated in UCN-01 pretreated mice compared to vehicle control.  In 

order to evaluate this idea, the timing of 5-FU administration was moved from seven days 

post-UCN-01 to 3 days following UCN-01.  The ability of UCN-01 to protect mice 
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against the toxic effects of 5-FU using this altered timing scheme was examined in an 

experiment using four groups of mice, five mice per group (Figure 15).  The groups were 

as follows:  

 

 • 1: 5 mg/kg UCN-01, followed in 3 days with 5 X daily PBS ip 

 • 2: 5 mg/kg UCN-01, followed in 3 days with 5 X daily 35 mg/kg 5-FU ip 

 • 3: DMSO i.m. followed in 3 days with 5 X daily 35 mg/kg 5-FU ip 

 • 4: DMSO i.m., followed in 3 days with 5 X daily PBS ip 

  

As before, it was expected that the UCN-01 pretreated mice would have improved weight 

status compared to control mice after subsequent exposure to 5-FU.  The mice were 

weighed daily and sacrificed one day following the final 5-FU/PBS treatment.  To 

evaluate hepatotoxic effects of this treatment and the status of the hematopoietic system, 

blood was collected upon sacrifice for both complete blood counts (CBC) and liver 

enzyme analysis.  The percent change in daily weight is shown in Figure 16.  Unlike the 

previous experiment, pretreatment with UCN-01 was able to improve the weight status of 

the mice receiving 35 mg/kg/day 5-FU when administered 3 days post-UCN-01 (Figure 

16).  The difference was significant at day 6 (p = 0.0131).  The liver enzymes measured 

in the blood (AST, ALT and alkaline phosphatase) were not significantly elevated by the 

treatments, and no difference between UCN-0/ 5-FU and DMSO/5-FU were observed 

(Figure 17 a-c).  5-FU is primarily metabolized in the liver, while UCN-01 is mostly 

excreted.  As such, it was possible that the two groups receiving 5-FU would have 

elevated liver enzymes in the blood.  However, as can be seen in Figures 17a and 17b, 
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Figure 15. Treatment protocol for the second mouse 
protection experiment.  5 mg/kg UCN-01 or DMSO 
injected on Day 0 (10 mice each), and then 5 mice per 
group injected daily with 35 mg/kg/day or PBS 
daily for days 3 through 7.  Weight was measured daily 
during 5-FU treatment.  Mice were bled and sacrificed 
on day 8. 

Figure 16. Percent change in  daily weights for mice treated  
with 5-FU or PBS daily for days 3 through 7 (treatment 
 protocol in shown in figure 15).  The difference in weights 
between the DMSO/5-FU mice and the UCN-01/5-FU mice 
was significant on day 8 (p<0.05). 
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Figure 17a.  ALT levels in serum for mice treated with protocol 
shown in figure 15.  No elevation consistent with hepatic  
damage was seen in the mice treated with either UCN-01 or 5-FU. 

Figure 17b.  AST levels in serum for mice treated with protocol 
shown in figure 15.  No elevation consistent with hepatic  
damage was seen in the mice treated with either UCN-01 or 5-FU. 
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Figure 17c.  Alkaline phosphatase levels in serum for mice treated  
with protocol shown in figure 15.  Some elevation consistent with hepatic  
damage was seen in the mice treated with either UCN-01 or 5-FU. 

Figure 17d.  Platelet counts in whole blood for mice treated with the  
protocol in figure 15.  The difference in platelets between the UCN-01 
pretreated mice receiving 5-FU and the DMSO pretreated mice receiving 
5-FU was significant at day 8 (*, p<0.05) 
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Figure 17e.  White blood cell counts in whole blood for mice treated with the  
protocol in figure 15.  No significant difference between the 5-FU mice  
pretreated with either DMSO or UCN-01 was seen at day 8. 

Figure 17f.  Hemoglobin counts in whole blood for mice treated with the  
protocol in figure 15.  No significant difference between the 5-FU mice  
pretreated with either DMSO or UCN-01 was seen at day 8. 
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ALT and AST levels were actually reduced in all treated groups compared to PBS 

control.  Alkaline phosphatase levels were higher in all treated groups (Figure 17c), but 

overall no evidence for either UCN-01 or 5-FU related liver toxicity seems to be present 

at these doses.  Whole blood counts demonstrated a significant improvement in platelets 

(Figure 17d) for the UCN-01 pretreated 5-FU group in comparison to the 5-FU/DMSO 

group (p = 0.043).  Hemoglobin and white blood cells were not significantly different 

between the UCN-01/5-FU and DMSO/5-FU (Figures 17e and 17f), although a later time 

point would be more appropriate to measure these parameters.  This will be addressed in 

a later experiment (see below).  In summary, this experiment did show tangible 

improvements in weight status (a marker for intestinal health) and platelets, which 

indicates an improvement in the hematopoietic system.  The cause for this improvement, 

in comparison to the initial study, is likely the shortened time frame between UCN-01 

and 5-FU treatments.  The arrested status of the dividing tissues in the UCN-01 pretreated 

mice throughout the five-day 5-FU treatment can afford protection to these cells, and may 

explain the improvements observed. 

 

High dose 5-FU administered 24 hours after UCN-01/DMSO: 

The results thus far suggest that cytotoxic treatment is better tolerated in the UCN-01 

pretreated mice when 5-FU is administered when the UCN-01-mediated arrest is at a high 

level (days 3-7 post-UCN-01); the improvement in tolerance is not observed if 5-FU is 

administered later in the post-UCN-01 recovery period (days 7-11 post UCN-01).  These 

results raised the question as to the best timing of 5-FU treatment relative to UCN-01 

administration.  To determine the optimal dosing schedule for UCN-01 and 5-FU, it was 
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decided to evaluate the protective effect of UCN-01 at 24 hours post-administration, the 

time of the greatest measured cell cycle arrest (see chapter 1).  The hypothesis for this 

experiment is that UCN-01 pretreated mice would best tolerate 5-FU during the period of 

greatest UCN-01-mediated arrest (24 hours following UCN-01 treatment).  For this 

experiment, two groups of 15 mice were analyzed, one treated with two doses of UCN-01 

separated by 12 hours, and the other naïve (treatment and bleeding schedule shown in 

Figure 18).  The two UCN-01 doses separated by 12 hours were shown to decrease the 

fraction of labeled, divided cells compared to a single dose treatment (chapter 1).  To 

clarify the effect of timing, a single bolus dose of 5-FU was given, rather than a 5-day 

serial injection; the effects of UCN-01 in the gut epithelium may undergo daily changes 

as the cells move towards recovery from arrest.  A single dose administration of 5-FU 

would limit the effects of this process from affecting our results.  24 hours after the 

second administration of UCN-01, all mice were given a single ip dose of 450 mg/kg 5-

FU.  Blood was collected weekly, including a pretreatment measurement, and weight was 

recorded daily.  Unlike the experiment with a 3 day separation of UCN-01 and 5-FU, the 

bolus dose of 5-FU given 24 hours after UCN-01 was more detrimental than in the mice 

pretreated with vehicle control in terms of weight status, survival and blood markers.  As 

seen in Figure 19, weight loss is significantly greater in the UCN-01 pretreated group, 

both in the initial weight loss period (through day 8) and also in the second period, from 

day 11 until day 15 (* indicates p <0.05).  The numbers in days 8-15 are somewhat 

skewed, due to the diminishing survival of the UCN-01 pretreated mice.   Shown in 

Figure 20, survival of UCN-01 pretreated mice is diminished (23% versus 60% for the 

untreated mice) compared to DMSO pretreated mice, although the difference was not 

124



Figure 18. Treatment plan for the third mouse experiment.  15 mice 
each were treated with either 2.5 mg/kg UCN-01 or DMSO on Day 0  
and then again 12 hours later.  450 mg/kg 5-FU was given to both  
groups 24 hours after the last UCN-01/DMSO treatment.  Mice were 
bled one week prior to treatment, and then weekly beginning on Day 0. 

Figure 19. Percent change in weight from Day 0 for mice after 450 
mg/kg 5-FU.  The weight change was significantly worse in the UCN- 
01 pretreated mice on days marked with * (p<0.05). 
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Figure 20. Survival of mice receiving 450 mg/kg 5-FU 24 hours after  
pretreatment with either 2 X 2.5 mg/kg UCN-01 or DMSO (15 mice per  
group), as shown in figure 18. Mice pretreated with UCN-01 had  
diminished survival compared to DMSO control mice. 

Figure 21a. Weekly platelet counts for mice before and after 450 mg/kg 
5-FU (protocol in figure 18).  No significant differences were observed 
in mice pretreated with UCN-01 versus DMSO.  Poor survival of UCN-01 
mice prevented collection of blood at the 3 week time point. 
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Figure 21b. Weekly white blood cell counts for mice before and after  
450 mg/kg 5-FU (protocol in figure 18).  No significant differences were  
observed in mice pretreated with UCN-01 versus DMSO.  Poor survival  
of UCN-01 mice prevented collection of blood at the 3 week time point. 

Figure 21c. Weekly red blood cell counts for mice before and after  
450 mg/kg 5-FU (protocol in figure 18).  Counts were significantly diminished 
at 2 weeks in the UCN-01 pretreated mice (*, p<0.05).  Poor survival  
of UCN-01 mice prevented collection of blood at the 3 week time point. 

* 
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significant (p=0.0714).  Platelets, white blood cells and red blood cells were also lower in 

the UCN-01 pretreated group two weeks following 5-FU administration, although not 

significantly so (Figure 21a-c).  Insufficient UCN-01 mice survived to obtain CBC values 

for the three week time period, so any comparison at this time point is not possible.  A 

possibility raised by this data is that the decreased survival of the UCN-01 pretreated 

mice is due to the early administration of 5-FU; perhaps a time closer to the recovery of 

the normal dividing cells would be more appropriate.  Mice treated with serial 5-FU 

treatment from days 3 until 7 post-UCN-01 (previous experiment, Figure 15) seem to 

obtain some benefit due to cell cycle arrest.  However, when given only 24 hours after 

UCN-01, 5-FU seems to be more toxic than 5-FU in mice pretreated with vehicle control.  

These results strongly suggest that the timing of 5-FU administration after UCN-01 is a 

critical parameter in providing protection for the normal dividing tissues of the mouse, 

which requires further refinement.  It may be most beneficial if the cytotoxic treatment 

occurs during the period of UCN-01 arrest (thus protecting some dividing cells), but very 

close to the recovery time from that arrest, such that the protected cells are quickly able 

to resume proliferation and repopulate the gastrointestinal and hematopoietic tissues after 

the toxic agent has been eliminated. 

 

High dose 5-FU administered on day 5 post-UCN-01/DMSO: 

The results of the different treatment strategies thus far place the optimal protective 

window for UCN-01 protection against 5-FU somewhere between three and seven days 

following UCN-01 administration.  A new experiment was designed to more closely 

investigate this effect, using a bolus dose of 5-FU in the center of this window (day 5 
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post-UCN-01).  As shown in the treatment scheme in Figure 22, mice were injected with 

either UCN-01 (7 mice) or DMSO (5 mice), both groups im as before.  Five days 

following treatment, 400 mg/kg 5-FU was injected, and the mice were weighed daily, and 

blood was drawn for CBCs once a week.  The lower 5-FU bolus dose (400 mg/kg vs. 450 

mg/kg in the previous experiment) was chosen to increase the survival of both groups, in 

hopes of having sufficient blood samples for each group for comparative purposes.  In 

contrast to the previous experiment (24 hour separation between UCN-01/DMSO and 5-

FU), the UCN-01 pretreated mice in this treatment protocol had improved weight status 

and survival compared to the DMSO/5-FU control mice.  Shown in Figure 23, the UCN-

01 pretreated mice had significantly improved weight status on days 13 and 14 (p<0.05), 

although the diminished survival of the DMSO group prevented any meaningful analysis 

beyond that time.  As seen in Figure 24, no DMSO mouse survived beyond 14 days post-

5-FU, while 43% of the UCN-01 pretreated mice survived until day 28; at this point the 

surviving mice were bled and sacrificed.  Blood was collected for comparative CBC 

analysis, but the poor survival once again prevented any meaningful differences to be 

measured, as no DMSO pretreated mice survived beyond two weeks.  For the earlier time 

points, no significant differences in any blood markers were noted, although these were 

likely collected too soon following 5-FU to reflect the damage done to the hematopoietic 

system.  The results from the surviving UCN-01 mice seem to indicate that the platelets 

decrease within about one week following 5-FU administration and then recover by two 

weeks (Figure 25c) while the red and white blood cells decrease at two weeks post-5-FU 

and then recover at 3 weeks (Figures 25a & 25b).  While the protocol for this experiment 

(5-FU at 5 days post-UCN-01) seemed to demonstrate a protective effect of UCN-01, the 
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Figure 22. Treatment plan for the fourth mouse experiment.  Mice  
were treated with either 5 mg/kg UCN-01 (n=7) or DMSO (n=5) on  
Day 0.  400 mg/kg was administered to both groups on Day 5.  Mice  
were weighed daily following 5-FU treatment, and bled weekly. 

Figure 23. Daily weight changes for mice treated with 400 mg/kg 5-FU 
five days after 5 mg/kg UCN-01 (n=7) or DMSO (n=5) treatment.  Weight  
loss was significantly greater in the DMSO mice on days 13 and 14  
(*, p<0.05), and no DMSO mice survived beyond day 14. 

* * 
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Figure 24. Survival of mice treated with 400 mg/kg 5-FU five days after 
administration of either 5 mg/kg UCN-01 (n=7) or DMSO (n=5).   

Figure 25a. Weekly red blood cell counts in mice treated with 400 mg/kg 
5-FU five days after 5 mg/kg UCN-01 (n=7) or DMSO (n=5).  Lack of 
surviving DMSO mice prevented collection of data for weeks 3 and 4. 
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Figure 25b. Weekly white blood cell counts in mice treated with 400 mg/kg 
5-FU five days after 5 mg/kg UCN-01 (n=7) or DMSO (n=5).  Lack of 
surviving DMSO mice prevented collection of data for weeks 3 and 4. 

Figure 25c. Weekly platelet counts in mice treated with 400 mg/kg 
5-FU five days after 5 mg/kg UCN-01 (n=7) or DMSO (n=5).  Lack of 
surviving DMSO mice prevented collection of data for weeks 3 and 4. 
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low numbers of mice in both groups and the lack of control mice surviving for 

comparison of blood markers prevented a statistical interpretation of the results.  Even 

though the dose of 5-FU was decreased in this experimental protocol (400 mg/kg instead 

of 450 mg/kg), the poor survival of the control mice is problematic and will be addressed 

in future experiments to ensure sufficient numbers of mice for comparison of blood 

markers.  It is likely that weekly bleeds for CBCs are too harsh for mice which are 

already suffering 5-FU-induced damage to the hematopoietic system. 

 

Repeat high dose 5-FU on day 5 post-UCN-01/DMSO (no CBCs): 

The diminished survival of control (DMSO) mice given a bolus dose of 5-FU in the 

previous experiment prevented a meaningful analysis of changes in weight status 

(Figures 23 and 24) and blood markers (Figure 25).  It is possible that the pre-bleed and 

weekly bleeds are too deleterious to the mice when being treated with high levels of 5-

FU, so the protocol was altered in hopes of improving the survival of the control mice; no 

blood was collected in this experiment.  To evaluate the tolerance of mice receiving a 

bolus dose of 5-FU, two groups of fifteen mice each were treated with either 5/mg/kg 

UCN-01 or volume equivalent DMSO (see Figure 26).  As in the last experiment (Figure 

22), five days post-UCN-01 treatment both groups were injected with 400 mg/kg 5-FU.  

Weight was measured daily (Figure 27).  The weight status of the UCN-01-pretreated 

mice was significantly improved compared to DMSO control from days thirteen until 

twenty-two, with the exception of day twenty-one (p < 0.05, day 21 p=0.16).  One UCN-

01 mouse died at day 13, and two DMSO mice died at day 10, but there were no 

statistical differences in survival.  While this level of 5-FU (400 mg/kg) does lead to 
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Figure 26. Treatment plan for the fifth mouse experiment.  Mice were 
treated with either 5 mg/kg UCN-01 or DMSO on Day 0 (n=15 for each). 
400 mg/kg was administered to both groups on Day 5.  Mice were 
weighed daily following 5-FU treatment. 

Figure 27. Daily change in weight for mice following 400 mg/kg 5-FU  
given 5 days post-UCN-01 or DMSO (n=15 for each group).  Weight 
loss was significantly greater for the DMSO groups on days marked 
with an asterisk (p<0.05).   

* * * * * * 
* * 

* 
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some significant loss of weight, the dose will have to be increased slightly to obtain any 

possibly differences in the survival rates of mice protected by UCN-01 pretreatment 

versus controls. 

 

Serial injections of 5-FU beginning on day 3 post-UCN-01/DMSO: 

The results of the previous two studies (Figure 23, 24 and 27) reveal that the ability of 

UCN-01 to protect mice from the toxicity of a bolus dose of 5-FU appears to be effective  

at five days post-UCN-01 administration.  Weight loss and survival are both improved in 

the mice pretreated with UCN-01 using this treatment scheme.  The initial experiments 

with serial dosing demonstrate that UCN-01 given three days prior to 5-FU is protective 

(Figure 16) and that waiting until seven days post-UCN-01 treatment before commencing 

serial 5-FU administration can nullify this protective effect (Figure 14).  The previous 

results (Figure 17d) also demonstrated that platelets are significantly elevated one week 

after 5-FU injection in mice pretreated with UCN-01 in comparison to DMSO pretreated 

mice.  However, the doses used (25 and 35 mg/kg/day for five days) were not very toxic 

in either the UCN-01 or DMSO pretreated groups.  The ability of UCN-01 to protect 

mice from a higher dose of serial injections of 5-FU was evaluated, to determine if a 

more potent dose would increase the separation in the tolerance of the UCN-01 versus 

DMSO pretreated mice.  This experiment (serial 5-FU beginning day 3 post-UCN-

01/DMSO) was repeated with a greater number of mice per group (ten versus five) and a 

slightly higher serial dose of 5-FU (40 mg/kg/day versus 35 mg/kg/day, see Figure 28).  

The higher dose was chosen to better demonstrate the ability of UCN-01 to protect 

against increased levels of a toxic agent.  Mice were weighed daily and blood was 
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collected prior to 5-FU and weekly for three weeks to evaluate the effects on the 

hematopoietic system (Figure 28).  Similar to the previous experiments in which 5-FU 

was given three days after UCN-01 (Figure 15), the weight status of the mice pretreated 

with UCN-01 was improved significantly (p < 0.05) from day 2 until the end of the 

experiment compared to the DMSO pretreated mice (Figure 29).  The platelet counts of 

the UCN-01 pretreated mice were significantly (p < 0.05) improved at 2 weeks (Figure 

30a).  Red blood cell counts were similarly improved at the three week time point for the 

UCN-01 group, but were lower than the DMSO mice at weeks one and two (Figure 30b).  

This may be due to the temporary arrest caused by UCN-01.  The white blood cells 

counts were significantly lower in the UCN-01 pretreated group compared to DMSO at 

week one (Figure 30c), likely due to the same cause.  While arrested hematopoietic cells 

may indeed evade 5-FU mediated toxicity, the cell cycle arrest caused by UCN-01 can 

also prevent those cells from dividing and contributing to maturing blood cell counts, at 

least initially.  Even though the red and white cell counts do not unequivocally 

demonstrate a protective effect of UCN-01, his experiment both corroborates the previous 

(35 mg/kg/day X 5 days 5-FU, Figures 16 and 17) experimental results and gives a more 

complete picture of the changes in the hematopoietic system in the mice after 5-FU 

administration, both with UCN-01 pretreatment and without.  The lack of surviving 

control mice in the previous experiment prevented the collection of this data (Figures 24 

and 25).  Future experiments will also examine bone marrow to provide a visual analysis 

of the health of the blood-forming tissues of the mice after 5-FU treatment.  As the CBC 

numbers indicate improved platelets and red blood cells in the UCN-01 pretreated mice, 

136



Figure 28. Treatment plan for the sixth mouse experiment.  Mice were 
treated with either 5 mg/kg UCN-01 or DMSO on Day 0 (n=10 pre group). 
40 mg/kg/day was administered to both groups daily on days 3-7.  Mice were 
weighed daily following 5-FU treatment.  Mice were bled on day 2 (prior to 
5-FU) and then every seven days for a total of five bleeds. 

Figure 29. Percent change in weight following 40 mg/kg/day 5-FU for 5  
days begun 3 days post UCN-01/DMSO (protocol in figure 28).  Weight  
loss for the DMSO group was significantly greater than the UCN-01 group 
for all days marked with an asterisk (*, p<0.05). 
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Figure 30a. Weekly platelet counts in mice treated with five daily doses of 
40 mg/kg/day 5-FU beginning on day 3 post UCN-01 or DMSO (n=10 
for each group).  Counts were significantly higher in the UCN-01 pretreated 
group at week 2 (*, p<0.05); however, when using the adjusted p-value  
for multiple comparisons (α = 0.0125) the difference is not significant. 

* 

* 
* * 

Figure 30b. Weekly red blood cell counts in mice treated with five daily  
doses of 40 mg/kg/day 5-FU beginning on day 3 post UCN-01 or DMSO  
(n=10 for each group).  Counts were significantly higher in the UCN-01  
pretreated group at week 3, and significantly lower at weeks 1 and 2 
 (*, p<0.05) ; however, when using the adjusted p-value for multiple  
comparisons (α = 0.0125) the difference is not significant. 
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Figure 30c. Weekly white blood cell counts in mice treated with five daily  
doses of 40 mg/kg/day 5-FU beginning on day 3 post UCN-01 or DMSO  
(n=10 for each group).  Counts were significantly lower in the UCN-01  
pretreated group at week 1 (*, p<0.05); ; however, when using the adjusted  
p-value for multiple comparisons (α = 0.0125) the difference is not significant. 
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the hematopoietic tissues of these mice (i.e. bone marrow) should have increased 

numbers of blood precursors compared to the control mice after 5-FU treatment. 

 

High dose bolus 5-FU administered on day 5-post UCN-01/DMSO (survival study): 

The ability of UCN-01 to improve the blood counts and weight status of mice exposed to 

5-FU has been shown both in bolus (Figures 22, 23, and 27) and daily serial injections 

(Figures 16, 17, 29, and 30) of 5-FU.  These studies clearly show that we can achieve the 

goal of protection of the normal proliferating cells of the mouse against high levels of 5-

FU.  The next study was designed to obtain robust numbers examining survival of mice 

given high dose 5-FU (Figure 31).  Two treatment groups of twenty-two mice each were 

pretreated with either two doses of 5 mg/kg UCN-01 or volume equivalent DMSO 

(carrier control) separated by 12 hours.  Five days after the second injection, mice were 

injected with 450 mg/kg 5-FU.  Mice were monitored for survival and weighed daily.  As 

in the last bolus 5-FU experiment, no blood was collected in order to prevent deaths due 

to exsanguination.  Mice were also given moistened food in the bottom of cages if needed 

(upon signs of dehydration or the inability to feed from suspended pellets).  As can be 

seen in Figure 32, the weight status of the UCN-01 pretreated mice was significantly 

improved from days eleven through twenty-one, with the exception of day fourteen.  Also 

significantly improved was the survival of the UCN-01 pretreated group (Figure 33).  

Mice pretreated with UCN-01 had a survival rate of 91%, while the DMSO pretreated 

group had a survival rate of only 50%.  This is similar to the rate seen in the 24 hour 

UCN-01 treatment experiment for “unprotected” mice (Figure 20).  Sternums were also 

harvested from surviving mice at day 21 and paraffin embedded sections visualized via 
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Figure 31. Treatment protocol for the seventh mouse experiment.  
Mice were treated with 5 mg/kg UCN-01(n=22) or DMSO (n=22) on 
 day 0 and then again 12 hours later.  On day 5, all mice were injected 
with 450 mg/kg 5-FU.  Weights were recorded daily, and all surviving 
mice were sacrificed on day 21. 

Figure 32. Percent change in weight after 450 mg/kg 5-FU, given 5 days 
after UCN-01 or DMSO (n=22 for each group).  UCN-01 pretreated mice 
had significantly lower weight loss for days 11 through 21, with the 
exception of day fourteen (*, p<0.05). 

* * * * * * * * * * 
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Figure 33. Kaplan-Meier survival analysis of mice treated with a 
bolus dose of 450 mg/kg 5-FU on day 5 following UCN-01 or DMSO 
pretreatment (n=22 for each group).  Survival for the UCN-01 pretreated 
group was significantly higher (p=0.0025).  Error bars are 95% 
confidence intervals. 
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H&E staining.  Shown in Figure 34, the blood precursors (small purple cells) in the 

UCN-01 pretreated mice are more abundant than in the DMSO pretreated mice.  The area 

of blood precursors in the sections was quantified as a ratio of the total stained area, and 

the UCN-01 pretreated mice had significantly more blood precursors than the DMSO 

mice (Figure 35). 

 

Discussion:  The ability of UCN-01 to improve the tolerance of 5-FU in the mouse 

appears to depend critically on the dosing schedule of the two compounds.  The arrest of 

the small bowel epithelium occurs within 24 hours of UCN-01 administration and this 

suppression is in effect for at least seven days (the peak is at 24 hours and decreases with 

time).  In order for the normal proliferating tissues to take advantage of this arrest, 5-FU 

must be administered during this time period.  However, as the major toxicity due to 

bolus 5-FU treatment is observed in the gut, and is also due in part to permanent 

suppression of cell cycling via p53 and p21 (Pritchard 1998), it is likely that 5-FU given 

too early is even more toxic than 5-FU alone.  The cells arrested by UCN-01 will take 

better than seven days to recover, and the cells which evade UCN-01 arrest continue to 

cycle are then susceptible to 5-FU toxicity.  As seen in the experiment dosing UCN-01 

and 5-FU separated by 24 hours (Figure 18), this combination increases mortality; the gut 

cannot replenish the required enterocytes (and presumably the bone marrow cannot form 

sufficient blood cells) while still under arrest; unarrested cells can be killed by 5-FU, and 

the mouse succumbs to this combined pressure.  However, when 5-FU is given closer to 

the time of recovery (3-5 days post-UCN-01, Figures 22, 26, 28 and 31), the mouse can 

evade the damage to the temporarily arrested cells, and those cells can begin cycling 
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Figure 34. Sternum H&E samples of mice given 450 mg/kg 5-FU on day 
five post DMSO (top row) or UCN-01 (bottom row).  Mice were sacrificed 
on day 21.  The UCN-01 mice appear to have more abundant levels of 
blood precursors compared to the DMSO mice.  This is quantified in figure 
35. 

DMSO 

UCN-01 
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Figure 35.  Quantification of blood precursors cell in mouse sternums 
after treatment with 450 mg/kg 5-FU.  The area of blood precursor cells 
was normalized to the total stained area of a 40X section.  Five fields were 
quantified per mouse, and five mice for each group were evaluated.  
The UCN-01 pretreated mice have significantly greater levels of blood 
precursors than the DMSO pretreated mice (*, p<0.05). 
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anew within 2-3 days after 5-FU treatment ceases.  This likely explains the improved 

tolerance and survival seen in the final two experimental protocols.  Given the sum of the 

results of all seven mouse studies, it appears that the optimal time for protection from the 

toxicity of a bolus dose of 5-FU is five days post-UCN-01.  For a series of 5 daily 

injections, beginning 5-FU administration on day 3 post-UCN-01 appears to be the 

optimal schedule.  This treatment protocol allows the last dose to be given while some of 

the arresting effect of UCN-01 still persists, but also very close to the time of recovery 

from arrest.  Based on the results of all the mouse studies, the best chance for protection 

against toxicity during treatment to kill tumors is the scheme shown in Figure 31. 
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III. Mechanism of UCN-01 Cell Cycle Arrest in Mouse Small Bowel 

 

Introduction:  The analysis of BrdU incorporation into the cells in the jejunum of mice 

treated with UCN-01 demonstrates a slowdown in the proliferation of gut epithelium as 

early as 24 hours following treatment; this arrest persists through day seven post-UCN-

01, and is eliminated by two weeks (Figures 5 and 7).  While UCN-01 has many targets, 

both direct and indirect (see Introduction), the exact mechanism by which it arrests the 

crypt cells of the small bowel is unknown.  It is the aim of this portion of the project to 

determine what changes in proteins governing the cell cycle are affected by UCN-01 and 

can contribute to the arrest seen.  Previous work in our laboratory has indicated that the 

UCN-01 analog staurosporine causes a G1 arrest in cultured epithelial cells by 

downregulating the kinase cdk4 and causing subsequent hypophosphorylation of Rb 

(McGahren-Murray et al., 2006).  The hypothesis for this section of the project is: UCN-

01 causes a decrease in cdk4 levels in the jejunum of the mouse, leading to the cell 

cycle arrest demonstrated in chapter 1.  Our analysis of mouse small bowel epithelium 

treated with UCN-01 revealed modulation of some key cell cycle proteins, including 

cdk4 and p27.  However, unlike the in vitro studies, we have shown that level of cdk4 are 

increased following UCN-01 administration.  In addition, the inhibitor p27 was increased 

by UCN-01.  No changes in the activities of G1 phase cyclin dependent kinases (cdk2 

and cdk4) were observed, and the levels of cdk2, cyclin E and active cdk2 were unaltered 

as well.  UCN-01 had no effect on the levels of Rb or p53.  Interestingly, the levels of 

phospho-Rb were increased in the UCN-01 treated mice.  However, analysis of BrdU 

incorporation demonstrates that the UCN-01 treated mice have reduced cellular 
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proliferation, so the increase in phospho-Rb is unexpected.  It is thought that UCN-01 is 

preventing the arrested cells from traversing the restriction point, but may not be 

inhibiting the early G1 phase phosphorylation of Rb by cdk4.   

 

Materials and Methods:  Mice:  Nude mice (see Chapter 1) were injected with 5 mg/ml 

UCN-01 in the right hindlimb muscle.  24 hours later, the mice were sacrificed by 

cervical dislocation.  For studies using whole epithelial tissue, the jejunum was dissected 

from the abdomen and flushed with 10 ml of ice-cold PBS.  A small section (~1 cm) was 

removed and fixed in 10% formalin for histology.  The tissue was then opened 

longitudinally and placed on a glass microscope slide.  A second glass slide was dragged 

across the surface of the tissue to dislodge the epithelium.  The cells were suspended in 

ice-cold PBS and spun down at 1100RPM for 5 minutes at 4ºC.  The cells were then  

resuspended in a minimum (40-50 µl) of protease/phosphatase inhibition (PPI) buffer: 

25µg/ml leupeptin, 25µg/ml aprotinin, 10µg/ml pepstatin, 1 mM benzamidine, 10µg/ml 

soybean trypsin inhibitor, 0.5mM PMSF (Phenyl methyl sulfonyl fluoride), 50mM 

sodium fluoride, 0.5 mM sodium orthovanadate.  Cells are lysed by 2 rounds of 

sonication (one round = 3 minutes sonication, 1 minute rest, 3 minutes sonication) and 

are vortexed between rounds.  Sonication is performed in a ice/water bath by a Sonicator 

XL (Misonix, Inc., Farmingdale, NY).  The protein suspension is then separated by 

centrifugation at 125000 x g for 45 minutes at 4º.  The protein suspension is stored at -

80ºC.  In order to minimize the background of nondividing villus cells, serial 

fractionation to enrich for cypt cells was performed.  For the serial fractionation of the 

gut epithelium, the jejunum is dissected out of the abdomen and flushed with 10 ml ice-
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cold PBS, followed by 10 ml ice-cold PBS plus 1 mM dithiothreitol (DTT).  The tissue is 

then tied closed on one end with 3-0 silk suture (Ethicon/Johnson & Johnson, Warsaw 

IN) and then everted.  The everted tissue is filled with ice-cold PBS to distension and 

then tied closed.  The tissue is incubated in a citrate buffer (96 mM NaCl, 1.5 mM KCl, 

27 mM Na citrate, 8 mM KH2PO4, and 5.6 mM Na2HPO4, pH 7.3) for 15 minutes at 

37ºC.  The tissue was then placed in a 50 ml glass flask in 15 ml of a PBS buffer  with 

1.5 mM EDTA, 0.5 mM DTT and 1 mg/ml bovine serum albumin (BSA).  The flask is 

placed in a 37ºC water bath shaking at 90Hz for 25 minutes.  The buffer with dislodged 

cells is collected and spun down at 1100 RPM for 5 minutes at 4ºC; the cell pellet is 

washed with 10 ml ice-cold PBS, spun down again, and resuspended in PPI and 

processed as above.  This is designated as fraction 1.  The tissue is placed in a new flask 

and shaken at 37ºC for an additional 35 minutes; the cells are processed as before and 

comprise fraction 2.  A third incubation for 60 minutes is collected and processed as 

fraction 3.  All fractions are processed using the sonication/centrifugation procedure 

shown above. 

 

Western analysis:  Samples are separated on a either a 10% or 7% (for Rb blots) SDS-

PAGE vertical denaturing gel.  Concentration matched extracts are boiled in denaturing 

sample buffer: 1.4M β-mercaptoethanol (Samples are run at 150 volts for 90-120 

minutes, depending on the location of the proteins of interest.   After running, the gels are 

transferred to polyvinylidene fluoride (PVDF) membranes (Immobilon-P, Millipore, 

Billerica, MA) using a BioRad (Hercules, CA) transfer cell.  Transfer buffer is: 57.6g 

glycine, 12g Tris base, 800ml methanol; bring up to 4l with H2O.  Transfer in overnight 
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at 35 volts or for 90 minutes at 85 volts (quick transfer requires ice block in the transfer 

cell).  Following transfer, membranes are blocked at 4º overnight in TBS/Tween Blotto: 

20mM Tris base, 500mM sodium chloride, 0.05% Tween 20 with 5% nonfat dry milk.  

Blots are incubated in primary antibody for one hour, are washed for 6 x 10 minutes in 

TBS/Tween, and are placed in secondary antibody (Immunopure HRP, diluted 1:25,000 

in Blotto) for one hour.  Membranes are again washed 6 x 10 minutes in TBS/Tween.  

Membranes are developed with “Western Lightning” chemiluminescense reagent 

(PerkinElmer, Wellesley, MA) and exposed on Blue x-ray film (Phenix, Hayward, CA).  

The primary antibodies used in this aim are: anti-cyclin E (0.3 µg/ml), anti-CDK2 (1.0 

µg/ml) – both from SantaCruz.  Anti-p21 is 1.0 µg/ml from Calbiochem.  Anti-p27 (1.0 

µg/ml) is from BD TransLab.  Anti-Rb is from Millipore. 

 

Immunoprecipitation assays:  Protein samples are collected as above.  For 

immunoprecipitation, protein g sepharose beads (GE HealthCare, ?  ) are washed in a 

lysis/protease/phosphatase buffer (0.5M tris, pH 7.5, 2.5M sodium chloride, 1% NP-40 

(Igepal), 25µg/ml leupeptin, 25µg/ml aprotinin, 10µg/ml pepstatin, 1 mM benzamidine, 

10µg/ml soybean trypsin inhibitor, 0.5mM PMSF (Phenyl methyl sulfonyl fluoride), 

50mM sodium fluoride, 0.5 mM sodium orthovanadate.  The buffer is added to the beads 

at a 2:1 ratio, mixed, and then centrifuged at 4º for 5 minutes at 1000 x g.  This wash is 

carried out 3 times.  After the wash buffer is removed, the beads (30 µl/sample) are added 

to a 10mM DTT/lysis buffer (36 µl/sample).  Anti-FLAG antibody (1 µl/sample) is added 

to the mixture, and the beads plus antibody are left to rotate slowly at 4º overnight.  The 

following day, 150 µg of protein sample is added to each mixture, and allowed to mix at 
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4º for one hour.  The beads are then washed in 250 µl of the lysis/protease/phosphatase 

buffer 4 times.  For a Western analysis of the immunoprecipitated samples, 3 further 

washes are carried out, and then the beads are centrifuged for 5 minutes at 1200 x g.  

 

Kinase assays:  Immunoprecipitation for kinase assays was carried out as above.  

Following the final wash, four additional washes in H1 buffer (10mM MgCl2, 1mM 

DTT, 0.1 mg/ml BSA, 25mM Tris HCL pH 7.5, 125mM NaCl) are done.  Following the 

washes, the wash solution is removed as for the IP Western.  Beads are then resuspended 

in the kinase reaction buffer: 10mM magnesium chloride, 1mM dithiothreitol, 0.1 mg/ml 

bovine serum album, 25mM Tris hydrochloride pH 7.5, 125mM sodium chloride, along 

with 60mM ATP, 5µCi of γ-32P ATP and 5µg of histone H1 substrate (for cdk2 kinase 

assay, Roche Diagnostics) or GST-Rb substrate (for cyclin D kinase assay, Santa Cruz 

Biotechnology).  The reaction proceeds for 30 minutes at 37ºC, and is then inactivated by 

addition of 15µl of sample buffer.  The samples are separated on a 13% SDS-PAGE gel.  

The gel is stained in Brilliant Blue (Sigma, St. Louis, MO) overnight.  The following day, 

the gel is destained and dried onto Whatman filter paper.  The dried gel is exposed to a 

phosphorimager screen  for one hour and analyzed for quantiation by a Typhoon scanner 

(Molecular Dynamics). 

 

Immunohistochemistry:  Sections of jejunum were embedded in paraffin, sectioned onto 

slides and processed for immunohistochemical analysis.  Deparaffination was done with 

three washes in Histoclear for five minutes each.  Samples were rehydrated by washing in 

100%. 90% and 70% ethanol for five minutes each, and then washed in PBS for five 
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minutes.  Antigen retrieval was performed in antigen unmasking solution (Vector Labs) 

heated in a steam chamber for 20 minutes.  Slides were allowed to cool for 20 minutes in 

the unmasking buffer, and were washed twice in distilled water and twice with PBS for 

three minutes each.  Endogenous peroxidase was blocked by incubation in 90 % 

ethanol/3% hydrogen peroxide for ten minutes.  After three washes in PBS for five 

minutes each, excess buffer was removed around the samples and 50-100 µl of blocking 

buffer (5% BSA/0.5% Tween-20 in PBS) was applied to the tissue sections.  Blocking 

was accomplished by overnight incubation in a humidified chamber at room temperature 

for one hour.  Blocking solution was drained from the slides, and 50-100 µl of primary 

antibody (diluted blocking buffer) was applied to the sections.  Primary antibody was 

incubated overnight in a humidified chamber at 4ºC.  After incubation, slides were 

washed three times for ten minutes each in PBS.  Secondary antibody (diluted in blocking 

buffer) was applied to the sections and incubated for one hour in a humidified chamber at 

room temperature.  Slides were washed in PBS (three times for ten minutes) and then 

dried to remove excess solution around samples.  Avidin-biotin complex (ABC, Vector 

Labs) was applied to the sections and incubated for 30 minutes at room temperature.  

Slides were washed in PBS for five minutes.  Staining with daiminobenzidine (DAB 

peroxidase substrate kit, Vector Labs) was performed for two to ten seconds under a 

microscope; slides were washed in water once desired levels of staining were attained.  

Counterstaining in hematoxylin (DAKO) for 10 seconds was followed by two washes in 

tap water for 5 minutes.  Slides were dehydrated in 70, 90 and 100% ethanol for five 

minutes each.  Slides were washed with Histoclear twice for five minutes, and then 

mounted behind a glass coverslip using Permount.  Primary antibodies used for IHC: 
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anti-phospho T160 cdk2, Cell Signaling, used at 1:100.  Anti-phospho S807/811 Rb, 

from Cell Signaling, was used at 1:500.  Both of these rabbit primary antibodies were 

used with the secondary anti-rabbit ABC elite kit from Vector for development.  For the 

BrdU staining, the primary antibody (rat anti-BrdU) from GeneTex was used at a 1:500 

dilution, and the secondary anti-rat biotin antibody (Vector) was used at a 1:200 dilution.  

For quantification of IHC results, ten crypts of complete integrity (both sides of the crypt 

visibly transitioning to villi) were counted for both positive cells and total crypt cells; 

results were reported as a percentage of positive crypt cells. 

 

Densitometry:  Films produced in the western analyses above were scanned using a 

Microtek 9800TM scanner and saved in the TIFF format.  Signals were quantified using 

IP Lab Gel H software (Signal Analytics, Vienna, VA). 

 

Statistics:  Pairwise comparison of means was performed using Student’s t-test; a 

confidence level of 95% was considered to be statistically significant in these studies.  

All calculations were performed using the Prism software package (GraphPad Software, 

Inc.). 

 

Results:   

This chapter focuses on identifying the molecular changes which accompany the UCN-

01-mediated arrest in the dividing small bowel epithelial cells.  One complication in this 

endeavor is the makeup of the crypt/villus architecture in the gut.  The area of interest is 

the small proliferating region of the crypt, approximately cell positions 4-8 upward from 
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the crypt base.  However, the majority of the epithelial cells in the small bowel are 

differentiated enterocytes, which exist in a quiescent state.  This is a very large 

background of nondividing cells, against which changes in the small region of 

proliferation will likely be dwarfed.  To help alleviate this problem, we have adapted a 

method of isolating cells along the crypt-villus axis in fractions.  This method, detailed in 

the Material and Methods above, was first described by Weiser (Weiser, 1973) for use in 

rats, and was further refined for use in the mouse small bowel (Ferraris et al., 1992).  

This method uses heat and shaking of everted intestinal sections to detach “fractions” of 

gut epithelial cells into a buffered PBS solution over a 2-hour period.  The early fractions 

contain cells near the villus tip, while the late fractions are enriched for cells from the 

crypt region.  This separation method has been validated by immunohistochemistry and 

gene array analysis (Mariadason et al., 2005; Smartt et al., 2007).  Protein isolated using 

the fractionation method was first evaluated for efficacy of this process.  10 mice were 

injected with either 5 mg/kg UCN-01 or DMSO.  24 hours later, the mice were sacrificed 

and the jejunum harvested and serially digested.  The fractions from the villus to the crypt 

(1 -> 3) were analyzed for PCNA via Western blotting.  As seen in Figure 36, the levels 

of PCNA were lowest in the outermost villus tip fraction (#1), and highest in the 

proliferating crypt (fraction 3).  Analysis by densitometry indicates a 2-fold increase in 

PCNA levels from fraction 1 to fraction 2, and a 2.5 fold increase to fraction 3.  In 

addition, H&E sections taken after each incubation are shown in Figure 37, 

demonstrating visually the digestive process in the tissue from the villus tip inward.  As 

proliferation in the jejunum occurs exclusively in the crypt region, all subsequent analysis 

will focus on fraction 3 of the mouse gut samples.  
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Figure 36. Serial fractions of jejunum epithelium separated using the 
Weiser method (see Material and Methods).  The image represents  
protein from four mice, each divided into three fractions.  The three mice 
on the right side were treated with UCN-01; the mouse on the left side is 
a DMSO control.  The first fraction, taken after 24 minutes of incubation,  
is low in PCNA (a proliferative marker) and high in the structural β-actin. 
The second fraction (taken after an additional 36 minute incubation) has 
increased levels of PCNA, and the third fraction (final 60 minute incubation) 
contains the highest levels of PCNA, indicative of the proliferating cells 
found in the crypt.  The control DMSO mouse, which should have a greater 
level of proliferation than the UCN-01 mice, has a greater amount of PCNA 
at all three fractions; this indicates that the UCN-01 treatment was  
effective in causing a cell cycle arrest.  Densitometry of UCN-01 fractions 
Indicates increased levels of PCNA in the crypt fraction (3). 

UCN-01 DMSO 
3 2 1 3 2 1 3 2 1 3 2 1 
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A B 

C D 

Figure 37.  H&E stained sections of everted small bowel at the 4 stages 
of the serial fractionation procedure.  Samples were processed to display the  
tissue at time zero (A), and after incubation times of 24 minutes (fraction 1  
cells removed), (B) 60 minutes (fraction 2 cells removed) and (C) 120  
minutes (fraction 3 cells removed).  The images demonstrate the continual  
digestion of the epithelial cells from the villus tip downwards into the crypt. 
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Examination of early G1 cell cycle proteins: 

The work with cultured cells arrested by the UCN-01 analog staurosporine (McGahren-

Murray et al., 2006) demonstrated that cell cycle arrest was dependent on wild-type Rb 

and that staurosporine treatment caused a decrease in cdk4 levels and its kinase activity.  

To determine if UCN-01 will have a similar effect on proliferation in vivo, fraction 3 

samples from UCN-01 treated mice and DMSO controls were analyzed by western 

blotting for cdk4 expression.  For each biochemical analysis performed (western blot, 

immunoprecipitation, and kinase assays), we used the fraction 3 material from five 

different mice per treatment group, loaded into five different lanes.  Densitometry was 

performed on each lane, and values for each treatment group averaged.  This method was 

chosen to reduce the variability naturally seen among mice.  As shown in Figure 38a, the 

levels of cdk4 in the UCN-01 treated mice are higher than the levels in the DMSO mice.  

Densitometric analysis (Figure 38b) confirms that the levels of cdk4 are significantly 

higher in the UCN-01 treated mice compared to the DMSO control mice. 

 

As UCN-01 treatment causes an increase in the levels of cdk4, the mechanism of UCN-

01-induced arrest likely differs from that of staurosporine.  This led us to examine the 

other proteins controlling the early events of the G1 phase.  The first candidate was the 

cyclin binding partner for cdk4, cyclin D.  In Figure 39a, the western analysis for cyclin 

D shows a higher level in the UCN-01 treated mice compared to DMSO control, although 

the difference is not statistically significant when the results of all five mice are averaged 

(densitometry in Figure 39b).  Also analyzed were the levels of the cyclin dependent 
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Cdk4 

UCN-01 DMSO 

Figure 38. (A) Western analysis of mouse jejunum crypt fractions for  
levels of cdk4. β-actin is used as a loading control.  (B) Densitometry  
of western shown in (A).  Levels of cdk4 are significantly elevated in  
the UCN-01 treated mice in comparison to DMSO controls (*, p<0.05). 

A 

β-actin 

B 
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Figure 39. (A) Western analysis of mouse jejunum crypt fractions for  
levels of cyclin D.  β-actin is used as a loading control. (B) Densitometry  
of western shown in (A).  Levels of cyclin D are not significantly altered 
 in the UCN-01 treated mice compared to DMSO control mice. 

β-actin 

UCN-01 DMSO 
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kinase inhibitors p21 and p27.  The levels of p21, shown in Figure 40, did not differ 

between the mice treated with UCN-01 and the DMSO control mice.  Levels of p27, 

however, were altered by UCN-01 treatment.  Shown in Figure 41, p27 was significantly 

higher in the UCN-01 treated mice compared to the DMSO control mice.  These results 

both agree and conflict with the data from A549 cells (which were analyzed ini vitro), in 

which UCN-01 treatment significantly increased both p21 and p27 levels (Akiyama et al., 

1999). 

 

To assess any change in the kinase activity due to UCN-01 treatment, cyclin D was 

immunoprecipitated from both sets of lysates (from UCN-01 and DMSO treated mice).  

The immunoprecipitated complexes were incubated with 32P (gamma) and the substrate 

GST-Rb to determine the cyclin D associated kinase activity of both groups of samples.  

Figure 42a is the phosphor screen image of the kinase reactions.  Lysate incubated with 

beads only (no cyclin D antibody) was used as a negative control, and MCF-7 cell lysate 

was the positive control.  The cyclin D associated kinase activity of the UCN-01 treated 

group samples appears to be slightly higher than the activity of samples from the DMSO 

control mice; however, the difference is not significant (densitometry in Figure 42b).  

The results of this experiment can be reconciled with the previous data demonstrating the 

altered levels of cyclin D and p27 in the UCN-01 treated group.  It is possible that any 

increase in cdk4 activity that could result from an abundance of cyclin D is being blunted 

by the increased levels of the kinase inhibitor p27.   

 

Examination of late G1 cell cycle proteins: 
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Figure 40. (A) Western analysis of mouse jejunum crypt fractions for  
levels of p21.  β-actin is used as a loading control. (B) Densitometry  
of western shown in (A).  Levels of p21 are not significantly altered 
 in the UCN-01 treated mice compared to DMSO control mice. 

UCN-01 DMSO 
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Figure 41. (A) Western analysis of mouse jejunum crypt fractions for  
levels of p27.  β-actin is used as a loading control. (B) Densitometry  
of western shown in (A).  Levels of p27 are significantly higher in  
the UCN-01 treated mice compared to DMSO control mice (*, p<0.05). 

UCN-01 DMSO 
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Figure 42. (A) Kinase assay of cyclin D immunoprecipitated complexes 
from the jejunums of mice treated with 5 mg/kg UCN-01 or DMSO control. 
GST-Rb peptide is used as the substrate.  Positive control is lysate from 
MCF-7 cells.  (B) Densitometry of the results shown in (A).  The cyclin D 
associated kinase activity does not differ significantly between the  
UCN-01 treated mice and the DMSO control mice. 
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The results of the analysis of early G1 cell cycle proteins are both in agreement and in 

conflict with previous reports; the increased level of p27 after UCN-01 treatment had 

been demonstrated by Akiyama et al, but the same report showed a decrease in cdk4 

levels and kinase activity, which is differs from our results here (Akiyama et al., 1997).  

This unique response to UCN-01 in the mouse gut epithelial cells persuaded us to look 

elsewhere for other possible molecular changes, since it is likely that proliferating tumor 

cells in culture respond differently to UCN-01 than normal proliferative mouse 

epithelium.  The next logical step was to examine the late G1 cell cycle protein cyclin E 

and its kinase binding partner cdk2.  Western analysis for both proteins is shown in 

Figure 43; UCN-01 did not alter the levels of either protein.  Although the levels of both 

cdk2 and cyclin E were unaffected by UCN-01, it is possible that the increased levels of 

the inhibitor p27 (Figure 41) have an effect on the kinase activity of cdk2.  To examine 

this possibility, cdk2 was immunoprecipitated from jejunum lysates from both UCN-01 

treated mice and DMSO treated controls and incubated with 32P (gamma) and the 

substrate histone H1.  Jejunum lysate incubated with naked beads (no antibody) was used 

as a negative control, and MCF-7 cell lysate was used as a positive control.  The 

phosphor screen image of the kinase assay is shown in Figure 44a.  Similar to the results 

of the cyclin D associated kinase assay (Figure 42a), treatment with UCN-01 did not 

significantly alter the kinase activity of cdk2 in comparison to DMSO control treatment 

(densitometry in Figure 44b).  This lack of change in cdk2 kinase activity following 

UCN-01 differs from other reports in which UCN-01-mediated cell cycle arrest is 

accompanied by a decrease in cdk2 activity and subsequent lack of Rb phosphorylation, 
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β-actin 

Figure 43. Western analysis of mouse jejunum crypt fractions for  
levels of cdk2 and cyclin E.  β-actin is used as a loading control. 
Levels of each protein were not significantly different in the UCN-01 
samples compared to the DMSO samples. 
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Figure 44. (A) Kinase assay of cdk2  immunoprecipitated complexes 
from the jejunums of mice treated with 5 mg/kg UCN-01 or DMSO control. 
Histone H1 used as the substrate.  Positive control is lysate from MCF-7  
cells.  (B) Densitometry of the results shown in (A).  The cdk2 kinase activity  
does not differ significantly between the UCN-01 treated mice and the  
DMSO control mice. 
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although these studies were all done on cells in culture rather than in an animal model 

system (Akiyama et al., 1999b; Chen et al., 1999; Facchinetti et al., 2004). 

 

UCN-01 and the phosphoproteins p53 and pRb: 

The reported data on the necessity vs. dispensability of p53 for cellular response to UCN-

01 was a feature of many UCN-01 studies presented in the Introduction.  Some studies 

indicated that active, wild-type p53 was required for UCN-01-mediated cell cycle arrest 

(Byrd et al., 2001; Facchinetti et al., 2004; Husain et al., 1997), while others 

demonstrated that the absence or presence of p53 did not modulate the cellular response 

to UCN-01 (Chen et al., 1999; Shao et al., 1997c; Wang et al., 1996).  The 

hypophosphorylation of Rb accompanying UCN-01-mediated cell cycle arrest was also 

shown in previous work (Chen et al., 1999; Courage et al., 1996; Kawakami et al., 1996).  

Even though the kinase assays for this study did not demonstrate any change in cdk2 

(Figure 44) or cyclin D-associated (Figure 42) kinase activities following UCN-01 

treatment in the mice, it was possible that modulation of either p53 or Rb was occurring 

in the mouse gut epithelium.  Western analysis of the crypt fractions (Figure 45), 

however,  showed no significant alterations in the levels of Rb or p53 in the mice treated 

with UCN-01 compared to the DMSO controls.  While total Rb levels did vary somewhat 

within each treatment group, no consistent pattern of change is present when the results 

of five mice were averaged.  Also of note is the fact that no shift due to phosphorylation 

is present in the Rb western analysis.  As hypophosphorylation has been shown in some 

studies to accompany UCN-01-mediated arrest, this result provided little insight into this 

mechanism.  The samples were also probed with anti-phospho Rb antibodies (S780, 
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Figure 45. (A) Western analysis of mouse jejunum crypt fractions for  
levels of Rb and p53.  β-actin is used as a loading control.  No shifts 
in Rb migration due to phosphorylation are evident.  (B) Densitometry  
of Rb levels shown in (A).  Levels of Rb do not differ significantly 
between UCN-01 treated mice and DMSO control mice. 
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S795, and S807/811) but unfortunately no signal was observed in these analyses (data not 

shown).   

 

The data collected to this point do not give a clear indication of how UCN-01 is able to 

arrest the proliferating cells in the mouse small bowel.  One concern with the serial 

fractionation method is that the long incubation (up to 2 hours) in heated (37ºC) buffer 

may negatively affect the proteins harvested.  While no sample degradation was observed 

in the western analyses shown in this study, it may be possible that the activities of 

certain proteins are affected by the separation process.  To address this concern, we 

decided to directly assess kinase activity via immunohistochemistry.  For these analyses, 

the jejunum samples taken for IHC are harvested immediately after sacrifice, flushed and 

placed into formalin.  The remainder of the tissue is then processed for serial fractions.  

As such, the proteins in the fixed tissue should be unaltered.  We decided to assess the 

levels of active cdk2 in the crypts of the mice by IHC.  The levels of cdk2 kinase activity 

measured in the UCN-01 treated mice were similar to the levels seen in the DMSO 

control mice.  If the process of fractionation does not affect the integrity of cdk2 activity, 

it should then be true that levels of active (phospho Thr 160) cdk2 are similar in the two 

groups when the tissue sections (which do not undergo fractionation) are analyzed.  IHC 

using anti-phospho-Thr 160 cdk2 is shown in Figure 46a (UCN-01) and 46b (DMSO).    

Positive cells were specific to the crypt region, and no difference was observed in the 

levels of active cdk2 in the UCN-01 mice versus the DMSO control mice.  This result is 

in agreement with the cdk2 kinase activity levels shown in Figure 44, and indicates that 

cdk2 has not been altered by the serial fractionation process.  It should also be noted that 
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Figure 46:  IHC analysis of active (phospho-Thr160) cdk2 in  
jejunum of mice treated with DMSO (A) or 5 mg/kg UCN-01 (B) for 
24 hours.  10 crypts per mouse were analyzed, with 5 mice per  
treatment group.  Results of the quantification of positive cells (C)  
indicates no difference in the levels of active cdk2 between the two  
treatment groups. 
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B 
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A 

C 
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the serial digestion method has been successfully used to assess cdk2 kinase activity in a 

recent publication (Smartt et al., 2007).  The authors of this study were able to 

demonstrate an increase in cdk2 kinase activity in the crypt fraction of transgenic mice 

harboring defective p27 compared to cdk2 from wild-type mice.  It therefore seems 

probable that the proteins isolated using the serial fractionation method are not altered by 

the process. 

 

UCN-01 and Rb phosphorylation: 

While the assessment of active cdk2 by IHC (Figure 46) does indicate that our 

methodology for examining changes in the crypt cells of the mouse gut is sound, the 

results to this point do not give a clear indication of how UCN-01 is able to arrest these 

cells.  One piece of information of great interest in this process is the phosphorylation 

status of Rb.  Attempts utilizing phospho-specific antibodies for Rb (S708, S795 and 

S807/811) in western analyses were unsuccessful, even when Rb was first isolated from 

whole lysates via immunoprecipitation and then examined (data not shown).  The 

positive staining of active cdk2 via IHC was encouraging, so we applied the same battery 

of phopho-specific anti-Rb antibodies to sections of mouse jejunum.  While the phospho-

S780 and phospho-S795 antibodies failed to display a specific signal, the phospho-

S807/S811 antibody resulted in specific staining of cells in the crypts.  Shown in Figure 

47a, this staining shows that phospho-Rb is significantly increased in the UCN-01 

samples compared to DMSO controls.  These results were quantified, with 10 crypts per 

mouse analyzed, five mice per treatment group.  The results indicate that UCN-01 treated 

mice have a significantly increased level of phospho-Rb compared to the DMSO control 
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UCN-01 

Figure 47a. IHC analysis of phospho-Ser 807/811 Rb on jejunums 
from mice treated with either DMSO control (top panel) or 5 mg/kg  
UCN-01 (bottom panel) for 24 hours. 

DMSO 
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Figure 47b. Quantification of IHC analysis of phospho-Ser 807/811 
Rb positive crypt cells.  10 crypts per mouse were analyzed, with 5  
mice per treatment group.  Statistical analysis indicates a significant  
increase in phospho-Rb cells in the UCN-01 treated mice in  
comparison to DMSO treated mice. 
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mice.  While the results clearly show a difference in Rb phosphorylation, the increase in 

phospho-Rb was not expected, as cell culture results using UCN-01 have shown a 

decresase in Rb phosphorylation in cells arrested by UCN-01 treatment (Chen et al., 

1999; Courage et al., 1996; Kawakami et al., 1996).  While the results of animal studies 

can often depart somewhat from findings in cultured cells, this alteration in phospho-Rb 

was a very intriguing result.  The preponderance of phospho-Rb in cells arrested in G1 is 

perplexing, as Rb phosphorylation is a hallmark of progress through G1 phase and into S 

phase.  To ensure that this result truly reflected the arresting action of UCN-01 that was 

demonstrated in chapter 2, the proliferative status of the crypt cells in these mice were 

analyzed.  Six hours prior to sacrifice, both the UCN-01 treated mice and the DMSO 

control mice had been injected with BrdU.  Sections of jejunum were stained with anti-

BrdU and analyzed for incorporation via IHC.  In Figure 48, it can be seen that the UCN-

01 treated mice had fewer BrdU positive crypt cells than the DMSO control mice.  The 

percent of BrdU-positive crypt cells was significantly lower in the UCN-01 treated mice 

versus the DMSO control mice (Figure 48c), indicating a decreased level of DNA 

synthesis in the UCN-01 mice.  The combination of low levels of DNA synthesis 

(indicative of cell cycle arrest) and high levels of phospho-Rb seems to indicate that the 

cells exposed to UCN-01 are traversing the post-mitotic portion of G1 (thus 

phosphorylating Rb) but are not crossing the restriction point into S phase (leading to the 

diminished levels of BrdU incorporation).  Further investigation will be required to better 

understand how UCN-01 is causing this block, although the exact mechanism governing 

passage through the restriction point is not completely understood (Ekholm et al., 2001).   
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Figure 48:  IHC analysis of BrdU incorporation into nuclei of the  
jejunum of mice treated with DMSO (A) or 5 mg/kg UCN-01 (B) for 24 
hours. 10 crypts per mouse were analyzed, with 5 mice per treatment  
group. Results of the quantification of positive cells (C) indicates a  
significant decrease in the level of BrdU incorporation in the mice treated  
with UCN-01 
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Conclusions: 

The data presented in this chapter sought to uncover the mechanism responsible for the 

UCN-01-mediated cell cycle arrest in the mouse small bowel epithelium.  Some of the 

results, such as the increased levels of p27 following UCN-01 treatment (Figure 41), are 

in agreement with previous reports on cultured cells treated with UCN-01.  However, the 

increases in cdk4 (Figure 38), cyclin D (Figure 39), and phospho-Rb (Figure 47) are a 

departure from the effects of UCN-01 observed in cell culture.  A common motif of cells 

arrested in G1 is lack of Rb phosphorylation, due to decreased cyclin levels (D and/or E), 

increased inhibitor levels (p21, p27, p16), and the concomitant suppression of E2F-

governed transcription of genes required for entrance into S phase.  The greatly increased 

levels of phospho-Rb and the increases in cdk4 and cyclin D were unexpected, but might 

simply be a consequence of increased numbers of cells arrested in late G1; a greater 

proportion of cells in late G1 phase would lead to increased levels of early G1 proteins.  

High levels of cyclin D and cdk4 could then increase the levels of phospho-Rb.  The lack 

of an increase in cyclin E (Figure 43) and the drop in BrdU incorporation (Figure 48) in 

the UCN-01 treated mice indicate that the crypt cells are unable to cross the restriction 

point into S phase.  It has been demonstrated that accumulation of cyclin E occurs after 

passage through the restriction point (Ekholm et al., 2001), so it is likely that the UCN-01 

treated cells are arrested at this point.  The lack of increased cdk2 kinase activity in the 

UCN-01 treated mice (Figure 44) supports this conclusion as well.   

 

The mechanism by which UCN-01 is able to arrest the normal proliferating cells of the 

mouse small intestine will require further investigation.  The results reported here show 
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some unexpected consequences of UCN-01 treatment, especially the increased levels of 

phospho-Rb.  An understanding of the in vivo mechanism of UCN-01 is important not 

only in the setting of normal proliferating cells, but may also be important in identifying 

appropriate tumor tissues for treatment with the UCN-01 protection protocol.  Successful 

treatment would require that a tumor not respond to UCN-01-mediated arrest, leaving it 

vulnerable to chemotherapeutic treatment, while the normal dividing tissues are spared 

this toxicity due to temporary arrest.  Possible future directions to further uncover the 

mechanism of UCN-01 cell cycle arrest are presented in the Discussion below. 
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Discussion: 

 

Our findings indicate that UCN-01 is able to reversibly arrest the normal dividing tissues 

of the nude mouse, and that this arrest commences 24 hours following treatment and 

persists for seven days.  Two weeks following UCN-01 treatment, the proliferation rate 

returns to normal levels.  This arrest can provide protection from the toxicity of 5-FU if 

administered during a specific window of efficacy.  Mice treated with 5-FU between 

three and five days post-UCN-01 administration demonstrate improvements in weight 

status, survival and blood markers.  However, if 5-FU is given either too early or too late 

following UCN-01, no protective effect is realized.  5-FU administered 24 hours 

following UCN-01 is actually more toxic than in control mice treated with 5-FU, likely 

due to the combined toxicity of 5-FU and the length of time until cessation of the UCN-

01 mediated arrest.  Mice treated with 5-FU at one week following UCN-01 

administration also failed to benefit from pretreatment, perhaps due to the initiation of 

recovery from UCN-01 mediated arrest.  The mechanism of this arrest was also examined 

in the mouse small bowel.  Treatment with UCN-01 caused an increase in the early G1 

phase cell cycle proteins cdk4 and cyclin D, as well as the inhibitor p27.  However, no 

increase in cdk4 kinase activity was measured.  Late G1 phase proteins cyclin E and cdk2 

were also unaltered by UCN-01 treatment, and the level of cdk2 activity was unchanged 

as well.  Interestingly, the levels of phosphorylated Rb in the UCN-01 treated samples 

were significantly higher than in control mice.  While BrdU analysis demonstrates that 

the UCN-01 treated mice had reduced levels of proliferation in the gut epithelium, the 
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increase in Rb phosphorylation was unexpected.  The mechanism of UCN-01 arrest in 

normal tissues will require further investigation. 

 

The work presented in this thesis has been divided into three parts.  The initial work was 

done to assess the ability of UCN-01 to arrest the dividing cells of the small bowel and 

the time frame for commencement and release of this arrest.  While the arrest of the 

dividing tissues of the mouse had already been demonstrated (Redkar et al., 2001), it was 

important to identify both the commencement and the cessation times for UCN-01-

mediated cell cycle arrest in these tissues.  If this cell cycle arrest is to be properly 

exploited to minimize damage to dividing cells, it is critical to understand when the arrest 

is in effect.  Our results indicate that UCN-01 is able to arrest the gut epithelial cells as 

early as 24 hours following treatment, and that this arrest persists through day 7 post-

treatment.  The arrest ceases by week two, and week four samples displayed a slightly 

hyperproliferative state, likely the result of increased epithelial cell division to repopulate 

the villi after the arrest.  An interesting finding was the antagonistic effect of the solvent 

DMSO.  Attempts to mollify this effect by decreasing the volume of DMSO injected or 

by using an alternative solvent (sodium citrate) were unsuccessful.  UCN-01 was also 

administered in a fractionated fashion (2 doses separated by 12 hours) in hopes of 

increasing the number of cells susceptible to UCN-01-mediated arrest.  While it is likely 

that some cells which escaped the effects of the first injection of UCN-01 were affected 

by the second dose, the increase in arrest measured was not significant.  While the 

DMSO antagonism is undesirable, the goal of this part of the study was to understand the 

time frame of UCN-01-mediated arrest, which was accomplished. 
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The timing of UCN-01-mediated arrest was crucial knowledge for designing experiments 

to evaluate the protective ability of UCN-01 in mice receiving 5-FU, the aim of the 

second part of this thesis.  Our results demonstrate that treatment with 5-FU either too 

early after cell cycle arrest (24 hours, Figure 18) or too close to recovery from arrest 

(days 7-11, Figure 13) did not benefit from UCN-01 pretreatment.  Only when cytotoxic 

treatment was given during the period of arrest but proximal to the time of recovery from 

arrest was a protective effect of UCN-01 pretreatment realized (figures 15, 22, 26, 28 and 

31).  Pretreatment with UCN-01 three to five days prior to high dose 5-FU led to 

improvements in weight status, blood cell counts (platelets and red and white blood cells) 

and overall survival compared to control mice.  While protection from apoptosis has been 

shown to be responsible for the enhanced survival of arrested normal cells in culture after 

cytotoxic treatment (Chen et al., 2000), this type of protection may only be part of the 

effect in vivo.  The toxicity to gut epithelial cells following high dose 5-FU treatment is 

not solely apoptosis, but also conversion of proliferating cells to a permanent state of 

quiescence (Pritchard et al., 1998).  Mice treated with 400 mg/kg 5-FU displayed similar 

levels of apoptosis to mice treated with only 40 mg/kg at both 24 and 48 hours after 

treatment.  The large difference observed between the two treatment groups was the 

induction of p21 through p53.  After treatment with 400 mg/kg 5-FU, cells in the 

proliferating region of the crypt displayed a significant and prolonged increase in the 

levels of p21, leading to a permanent decrease in cellular proliferation and breakdown of 

the crypt-villus architecture by 96 hours.  Mice null for p53 had significantly less 

inhibition of cell proliferation and displayed improved numbers of crypt cells and total 
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villus area after 5-FU treatment.  The permanent arrest caused by p21 after high dose 5-

FU treatment was also demonstrated in a different study (Inomata et al., 2002).  The fate 

of cells in the crypt hinged upon the comparative levels of p21 and bax after 5-FU 

treatment.  High levels of bax led to apoptosis, while high p21 led to a permanent state of 

arrest.  Our treatment plan may help avoid both of these fates.  Arrested cells should be 

spared some toxicity of 5-FU if they are unable to enter S phase.  In addition, the cells 

pretreated with UCN-01 might also evade the p53/p21 mediated permanent arrest 

pathway; in a fashion, activating one type of cell cycle arrest may prevent the cells from 

entering into the permanent p21-mediated arrest seen in these two studies.  An interesting 

future experiment would be to examine the levels of p53 and p21 in the mouse small 

bowel after treatment with 5-FU following UCN-01 pretreatment.  A lack of increase of 

these proteins in the UCN-01 pretreated mice would indicate that UCN-01 is able to 

prevent the p21 increase and subsequent quiescence caused by high dose 5-FU. 

 

An alternative possibility to explain the protection afforded by UCN-01 is to think of the 

arrested population of cells as similar to a potential energy source.  Villus structure is 

maintained by balancing the loss of apoptotic cells at the villus tip with proliferation of 

cells in the crypt.  The newly divided cells differentiate into mature enterocytes and 

migrate upwards along the crypt-villus axis as more cells continue to be produced in the 

proliferative zone of the crypt.  This balance is maintained by signaling through at least 

two zinc-finger transcription factors, Kruppel-like factors 9 (Klf9) and 5 (Klf5) (Shindo 

et al., 2002; Simmen et al., 2007).  This homeostasis has also been linked to the Wnt 

pathway through c-Myc (Pinto et al., 2003), although later work has demonstrated that 
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mice lacking c-Myc in the intestine were able to maintain normal epithelial turnover and 

maintenance (Bettess et al., 2005).  A lack of cellular proliferation due to UCN-01 

treatment may activate one or more of these control pathways, leading to initiation of  

signaling to increase proliferation.  If UCN-01 continues to block cells in G1, this could 

lead to a feedback loop in which the Klf5/9 pathway attempts to further stimulate cellular 

proliferation in the crypt.  When the arrest caused by UCN-01 treatment recedes, the 

buildup of cells stimulated to proliferate could quickly repopulate the villi.  If this release 

occurs very soon after cytotoxic treatment, this repopulation could ameliorate the effects 

of cell death due to treatment.  This seems similar in principle to the palifermin protocol 

discussed in the introduction, in which stimulation of cellular proliferation is used to 

improve patient tolerance of chemotherapeutics.  Transcriptional activation of targets of 

Klf5 and Klf9 would demonstrate that this hypothesis is responsible for at least some of 

the protection afforded by UCN-01. 

 

A third possibility for the response to UCN-01 pretreatment may also account for the 

increased levels of phospho-S708/811 Rb shown in chapter three (Figure 47).  One 

notable feature of the phospho-Rb staining is that the positive cells in the UCN-01 treated 

groups are not only in the proliferative region of the crypt (approximately positions 4 – 8 

from the base of the crypt), but in cells above and below this range as well.  These Paneth 

cells and maturing enterocytes are largely quiescent or are terminally differentiated and 

are in G0.  Cell cycle arrest due to UCN-01 treatment may stimulate these cells to re-

enter the G1 phase of the cell cycle to help repopulate the villus.  It has been shown that 

inactivation (phosphorylation) of Rb can force G0 cells to enter G1 (Sage et al., 2003).  It 
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has also been shown that cyclin C can bind to cdk3 in G0 cells and phosphorylate Rb on 

serines 807 and 811, and that this phosphorylation is required for entry into G1 (Ren and 

Rollins, 2004).  The increase in phospho S/870/811 Rb observed in the UCN-01 treated 

cells may not be due to cdk4 kinase activity, but rather a consequence of cyclin C/cdk3 

activity attempting to stimulate G0 cells to re-enter the cell cycle.  As with the previous 

“potential energy” theory, this increase in cells which can quickly repopulate the gut after 

cytotoxic treatment could account for the protective benefit observed with UCN-01 

treatment.  Future examination of cyclin C and cdk3 activity could determine whether 

this mechanism is responsible for the increased phospo-Rb seen in the UCN-01 treated 

mice. 

 

The unexpected increases in the G1 phase proteins cdk4, cyclin D and phosphorylated Rb 

may also be a consequence of comparison with DMSO as the control group.  As shown in 

the first results section, DMSO appears to increase the proliferative rate of gut epithelial 

cells.  The increase in proliferation may cause alterations in cell cycle proteins; it is 

possible that some of these changes occur even when UCN-01 is administered, as DMSO 

is required as the solvent.  Further investigation of this mechanism will require an 

assessment of the actions of DMSO as well as UCN-01 versus untreated mice to help 

distinguish the actions of these two agents. 

 

The most common criticism of the protection protocol has been the failure of UCN-01 in 

clinical trials to produce improvement in patient response or survival.  A second concern 

has been the pharmacologic problems associated with the strong binding of UCN-01 to 
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hAGP in the blood.  This indeed is a problem, and will be discussed below.  However, 

the initial concern (the disappointing clinical trials reports) is more a product of faulty 

comparison than truly a robust criticism of the concept of protection via cell cycle arrest.  

The UCN-01 clinical trials (see Introduction above) have either sought to prevent tumor 

growth/induce apoptosis (single agent trials) or to enhance the toxicity in tumors by 

treating patients with a primary cytotoxic agent and then a simultaneous or subsequent 

dose of UCN-01 to prevent a G2/M arrest and enhance cell killing.  There is a fair 

argument that neither of these treatment protocols has been successful, and in some 

settings the UCN-01 treatments have performed worse than the standard of care.  

However, the protection of normal cells afforded by a temporary cell cycle arrest by 

UNC-01 pretreatment prior to administration of a cytotoxic agent (5-FU) has not been 

addressed by any of the clinical protocols.  An important feature of this proposed 

treatment scheme is that UCN-01 does not arrest the growth of some tumor types, while 

causing a G1/S arrest in normal proliferating tissues (Chen et al., 2000).  It could be 

argued that any tumors which did respond to the UCN-01 single agent protocols should 

be excluded from evaluation of the protection protocol, as the tumor might benefit from 

protection due to cell cycle arrest; only tumors which can divide in the presence of UCN-

01 would be appropriate for this scheme.  The double agent (UCN-01 following cytotoxic 

agent) protocols would be less relevant to evaluating the work presented in this thesis.  

The protective effect of cell cycle arrest necessitates that the arresting agent (UCN-01) be 

administered prior to any cytotoxic treatment.  The temporary arrest allows the normal 

cells to evade toxicity of a subsequent chemotherapeutic drug.  However, when UCN-01 

is given after chemotherapy, it may actually be more damaging to these tissues.  Some 
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damaged cells which had arrested in the G2/M phase would be unable to complete DNA 

repair and could be forced instead into mitotic catastrophe.  Other cells could be 

potentially arrested in G1; this arrest can last more than one week, preventing 

repopulation of damaged tissues and further increasing the toxicity borne by the patient.  

This effect can be seen in the protection experiment in which mice were treated with 5-

FU only 24 hours after UCN-01 treatment.  While some of the intestinal and 

hematopoietic cells were potentially spared from 5-FU toxicity, the combined loss of 

some “unprotected” cells to apoptosis plus the weeklong arrest of the “protected” cells 

culminated in worse survival for the UCN-01 pretreated mice than DMSO control mice 

after 5-FU treatment.  Only when 5-FU was administered closer to the release of UCN-

01-induced arrest was a protective effect demonstrated. 

 

The second concern with UCN-01 use in humans is the strong binding of the drug to the 

plasma protein hAGP, which maintains UCN-01 at a high concentration in the blood 

while greatly diminishing the distribution volume and clearance.  Initial UCN-01 studies 

in mice demonstrated a half-life of 3-4 hours, and greater distribution to implanted PSN-1 

tumors than in plasma (Kurata et al., 1999).  However, initial data from Phase I clinical 

trials in the United States (Sausville et al., 2001) and in Japan demonstrated a different 

behavior of UCN-01 in humans (Fuse et al., 1998).  The elimination half-life in patients 

was between 253 and 1660 hours, and the distribution volume was extremely low.  This 

altered behavior was attributed to extremely tight, specific binding to the serum protein 

hAGP.  Rats infused with 150 nmol/h/kg of hAGP prior to injection of UCN-01 had 

significantly reduced distribution volumes (1/250) and clearance (1/700) of UCN-01 
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compared to control rats (Fuse et al., 2000).  The pharmacokinetics of UCN-01 in 

humans is responsible for the altered dosing in clinical trials, in which subsequent doses 

of UCN-01 are typically half that of the initial dose (see Table 3).   

 

This aspect of UCN-01 in humans is problematic in the context of our protection 

protocol.  As demonstrated in chapter 3, the protective effect of UCN-01 is limited to a 

narrow window of efficacy, approximately 3 -5 days after UCN-01 treatment.  Cytotoxic 

treatment (5-FU) outside this period is at best unaffected (later) and can be even more 

detrimental than 5-FU alone (earlier).  As the half-life for UCN-01 in humans can be 

greater than two months, coordinating the administration of a chemotherapeutic agent 

during the period of UCN-01-mediated arrest would likely be impossible.  Moreover, it is 

possible that constant exposure to UCN-01 alone would be detrimental to normal 

proliferative tissues; a semi-permanent arrest would prevent the replenishment of tissues 

which undergo frequent turnover. 

 

Some effort has been made to address this concern.  Liposomes (capsules of polyethylene 

glycol (PEG)) have been used as carriers for drugs such as cisplatin and topotecan to 

increase delivery to tumor sites and reduce interaction with blood components (Burke and 

Gao, 1994; Newman et al., 1999).  Initial studies using liposomes to encapsulate UCN-01 

showed some efficacy in shielding the drug from hAGP when coadministered in rats 

(Yamauchi et al., 2005).  Six hours after administration, almost 18% of the UCN-01 

injected was still present in the liposomes, shielded away from the coadministered hAGP.  

However, by 24 hours very little protected UCN-01 remained.  Refinement of this 
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method focused on increasing the size of the liposomes, with the hope that a greater lipid 

shield would enhance the protection of UCN-01 from serum interaction (Yamauchi et al., 

2008).  The results were somewhat promising, with almost 25% of the injected UCN-01 

remaining encapsulated in the liposome at 24 hours when the size was increased from 

112 nm to 155 nm.     

 

The use of UCN-01 to protect normal dividing cells from the toxicity of 5-FU in this 

study was successful when employed during a limited window of efficacy.  Weight loss, 

blood markers and survival were all significantly improved, proving the validity of this 

model of protection.  The ability of UCN-01 to place normal dividing cells into a 

reversible state of arrest and the length of this arrest have also been determined.  The 

exact mechanism behind this arrest remains largely unknown, and the pharmacokinetics 

of UCN-01 further complicate any potential use in humans.  The idea of protecting 

normal cells from chemotherapeutic damage is an attractive one, but its implementation 

may require identification of other agents which mimic the differential arresting effects of 

UCN-01 without the complications associated with its use.   

 

An optimal agent to protect normal cells by inhibiting proliferation would need three 

features.  First, it must have a very specific rate of clearance, and preferably one short in 

duration.  The results with UCN-01 pretreatment clearly indicate that protection is 

available only in a short time period.  This time frame would be easier to evaluate for a 

drug which had a short, defined period of bioavailability.  A prolonged clearance process 

would make this definition less clear, especially when taken in context of the cell cycle.  
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If a candidate compound took longer than 24 hours to clear from the system, it could 

affect more than one cycle, so having a truly uniformly affected cell population would be 

difficult, and again a window of efficacy difficult to predict.  Unlike UCN-01, an ideal 

compound would also have a much shorter duration of effect.  The effect(s) of UCN-01 

take longer than 7 days to recede; this is a very long time for cells to be held from 

dividing, and is not ideal for the host.  Replenishment of rapidly dividing tissues is 

essential for maintenance of homeostasis, and a prolonged interruption plus a second 

toxic insult is not an ideal situation.  It would be preferred that the reduction in cell 

proliferation last no more than 48 hours; this would allow protection from toxic agents 

targeting the cell cycle, but then allow for a rapid return to cell division and maintenance 

of the bone marrow and intestinal epithelium.  This would be preferable to the situation 

with UCN-01, in which proliferation is impaired for more than seven days.  There are 

few side effects of UCN-01 at the doses used in this study, but the prolonged inhibition of 

cycling cells is undesirable, and any alternative compound would hopefully have a much 

shorter period of action. 

 

Screening for potential protective compounds can be initially done in cultured primary 

cells, and any candidate drugs could subsequently be evaluated as UCN-01 has been in 

this dissertation.  It is essential that any new potential agents cause a reversible cell cycle 

arrest in only normal cells, and that tumor cells derive little or no protection.  If animal 

studies are successful, the screening in a Phase I toxicity trial would require not only 

assessment of dosing and side effects, but also a way to measure proliferation of normal 

dividing tissues.  DNA labeling methods would likely not be appropriate; in this case, 
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profiling of blood markers (red & white blood cells and platelets) would be less invasive 

and still powerful method to determine the period of attenuation of normal cycling cells.  

Once the times of cell cycle inhibition and return to proliferation are understood, 

treatment with a toxic chemotherapeutic compound can be scheduled during the period of 

inhibition.  Successful protection would be measured in terms of both intestinal health 

(weight, appetite, nausea, and diarrhea) and the blood markers previously mentioned.  

Hair loss could also be assessed, although this would be difficult to quantify and would 

be a qualitative indicator.  Successful protection would improve most or all of these 

parameters compared to patients without the protective regimen. 

 

The results of this study indicate that temporary cell cycle inhibition can be exploited to 

improve the survival and health of mice receiving high dose chemotherapy.  While the 

pharmacokinetic issues of UCN-01 in humans will likely prevent this protocol from being 

taken into a clinical setting, the work discussed here provides a framework for developing 

alternative agents which could also provide this protection.  It is hoped that other 

compounds will be identified to carry the protection protocol successfully into a clinical 

trial setting. 
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