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The Mendelian inheritance of genetic mutations can lead to adult-onset 

cardiovascular disease.  Several genetic loci have been mapped for the familial form of 

Thoracic Aortic Aneurysms (TAA), and many causal mutations have been identified for this 

disease.  Intracranial Aneurysms (ICA) also show linkage heterogeneity, but no mutations 

have been identified causing familial ICA alone.   

Here, we characterized a large family (TAA288) with an autosomal dominant pattern 

of inherited aneurysms.  It is intriguing that female patients predominantly present with ICA 

and male patients predominantly with TAA in this family.  To identify a causal mutation in 

this family, a genome-wide linkage analysis was previously performed on nine members of 

this family using the 50k GenChips Hind array from Affymetrix.  This analysis eventually 

identified a single disease-segregating locus, on chromosome 5p15. We build upon this 

previous analysis in this study, hypothesizing that a genetic mutation inherited in this locus 

leads to the sex-specific phenotype of TAA and ICA in this family 

First we refined the boundaries of the 5p15 disease linked locus down to the genomic 

coordinates 5p15: 3,424,465- 6,312,925 (GRCh37/hg19 Assembly).  This locus was named 

the TAA288 critical interval.  Next, we sequenced candidate genes within the TAA288 
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critical interval.  The selection of genes was simplified by the relatively small number of 

well-characterized genetic elements within the region.  Seeking novel or rare disease-

segregating variants, we initially observed a single point alteration in the metalloproteinase 

gene ADAMTS16 fulfilling this criteria.  This variant was later classified as a low-frequency 

population polymorphism (rs72647757), but we continued to explore the potential role of the 

ADAMTS16 as the cause of disease in TAA288.  We observed that fibroblasts cultured from 

TAA288 patients consistently upregulated the expression of this gene more strongly 

compared to matched control fibroblasts when treated with the cytokine TGF-β1, though 

there was some variation in the exact nature of this expression.  We also observed evidence 

that this protein is expressed at elevated levels in aortic aneurysm tissue from patients with 

mutations in the gene TGFBR2 and Marfan syndrome, shown by immunohistochemical 

detection of this protein.   
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1.1. Description of Aneurysms 

The Aorta and Intracranial Arteries 

The aorta is the largest blood vessel in the human body, directing the flow of 

oxygenated blood away from the heart into the progressively smaller branches of the 

systemic arterial circulation.  The ascending aorta originates from the left ventricle of the 

heart and briefly extends upward before arching down through the thoracic and abdominal 

cavities, where it terminally branches into the two common iliac arteries.  Thus, the aorta is 

divided into three anatomically and developmentally distinct segments: the ascending aorta, 

the aortic arch, and the descending aorta.  Of the smaller vessels that branch from the body of 

the aorta, the carotid arteries emerge superiorly from the aortic arch and are the primary 

suppliers of oxygenated blood to the neck and head  [1].  Blood supply to the brain is 

provided through the cerebral arteries, which originate from the internal carotid and vertebral 

arteries.   

As an elastic artery bearing the force of pulsatile blood flow from the heart, the walls 

of the aorta are comprised of three specialized tissue layers: the intima, media and adventitia.  

The intima is a monolayer of endothelial cells that directly interface with the blood and are 

separated from the rest of the wall by an elastic sheet called the internal elastic lamina.  The 

middle layer, or media, is a relatively thick layer of concentric lamellae, alternating layers of 

vascular smooth muscle cells (VSMCs) and organized elastic fibers, which function 

respectively to contract and distribute wall stress in order to provide much of the strength and 

elastic properties of this vessel [2].  The outer adventitial layer of the aorta is largely 

comprised of collagen fibers and fibroblast cells (Fb).  The walls of the aorta are thick 
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enough to require their own blood supply, the vasa vasorum (latin for “vessels of the 

vessels”), as blood nutrients from the arterial lumen are unable to reach the cells comprising 

the outer portions of the media and adventitia. 

The large elastic aorta differs from smaller arteries such as the intracranial arteries, 

also called muscular arteries, in several ways [1].  Compared to the aorta, the intracranial 

arteries have reduced medial thickness relative to their diameters. The media of these vessels 

also lack concentric layers of elastic fibers separating smooth muscle cell layers.  Vasa 

vasorum are only observed in regions of intracranial arteries located within 1.5 cm of 

extracranial segments of the same vessel, and are otherwise absent in intracranial vessels [3]. 

 

Description and Classification of Aneurysm 

An aneurysm is defined as an abnormal and localized dilation of an artery, exceeding 

1.5 times the normal vessel diameter [4].  These enlargements can exist asymptomatically in 

patients for long periods of time, remaining undetected until an acute dissection occurs.  A 

dissection is defined as a tear in the intimal layer of the artery wall, including the internal 

elastic lamina, allowing blood to flood into the medial layer, creating a false lumen between 

the medial and intimal layers.  The layers can continue to separate along the plane of the 

vessel anterograde or retrograde from the dissection site, increasing the length of the 

aneurysm.  In severe cases, a dissection can lead to vessel rupture, where the outer adventitial 

layer tears and blood hemorrhages into the cavities of the body.  A larger aneurysm diameter 

generally increases risk of a dissection or rupture, but rare exceptions apply; vessel rupture 

can even occur in the absence of an aneurysm [5].  Complications from these dilations are the 
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most prevalent form of aortic disease, responsible for over 16,000 deaths annually in the 

United States [6]. 

There are several classification systems for aneurysms.  One classification is 

according to the general morphological shape of the event.  A fusiform aneurysm is “spindle” 

shaped, having tapered ends and the widest point occurring in the middle.  In contrast, a 

saccular aneurysm is “berry” shaped, taking the form of a round asymmetrical protrusion 

from the vessel (Figure 1.1).  Aneurysms are also classified by their anatomical location 

within the body.  Under this classification, the most common form of aortic aneurysms are 

abdominal aortic aneurysms (AAA), followed by the thoracic aortic aneurysms (TAA).  

Aneurysms occurring in the cranial arteries are termed intracranial aneurysms (ICA).   ICA 

and TAA will remain the focus of this dissertation for two reasons.  The first is that recent 

studies have observed ICA at a higher prevalence in TAAD patients compared to the general 

population  [7;8], and screening for ICA in patients with TAAD is now recommended.  The 

second reason is that we will later discuss a single-family linkage analysis of a pedigree 

afflicted with the inherited forms of both TAAD and ICA.   

 

Aneurysm Subtypes: TAAD and ICA 

   Overall incidence of thoracic aortic aneurysms and dissections (TAAD) in 

Caucasians is 5.9/100,000 people per year [9], with an average age of 65 and slightly higher 

prevalence in males than females.  However, risk of rupture does not differ between genders 

[10;11].  Aneurysms of the ascending aorta tend to be fusiform in shape, and dissections at 

this site lead to high rates of morbidity and mortality [12].   
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TAAD can manifest in patients with genetic syndromes such as Marfan and Ehlers-

Danlos type IV [13-15], but is more commonly observed as an isolated, non-syndromic 

disease.  Eighty percent of non-syndromic TAAD patients do not have a first-degree relative 

with this disease, and are classified as sporadic cases.  The remaining 20% of non-syndromic 

TAAD patients have a family history of the disease, and are classified as having inherited or 

familial TAAD [16].  

ICAs are a prevalent form of aneurysm not involving the aorta, occurring most 

commonly at major bifurcations of the cranial arteries.  ICAs affect between 5-10% of the 

general population [17], with an estimated 2.3% of the population carrying undetected ICAs 

[18].  Estimates of ICA rupture rates are as high as 6.5% in the general population, with a 

risk of rupture that is proportional to aneurysm size [19].  ICA rupture can cause 

subarachnoid hemorrhage (SAH), which confers an overall risk of 12.4% for sudden death 

[20].  Risk factors for developing ICA include female gender, smoking, hypertension, and 

excessive alcohol consumption [21].   

Like TAAD, ICA can occur in an inherited or sporadic form, with 5-12% of ICA 

patients having first degree relative with this disease [22;23].  The inherited form of ICAs 

tend to rupture at an earlier age than sporadic cases [24], and there is a 7-fold increased risk 

of rupture among affected first degree relatives compared to second degree relatives [25].   
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Figure 1.1: Basic Aneurysm Morphology.  This image depicts the distinct morphological 

difference between saccular and fusiform aneurysms.  ICA tend to have a saccular shape, 

while TAAD tend to be fusiform. (This image used with permission from 

http://www.daviddarling.info/encyclopedia/A/aneurysm.html) 

 

1.2. Disease Genetics 

Genetic Basis of TAAD  

Familial TAAD is a genetically heterogeneous disease.  The familial form of TAAD 

is often inherited as an autosomal dominant trait, with a decreased penetrance and variable 

age of onset [26].  Genetic linkage studies of families having the inherited form of this 

disease have identified a number of disease-linked genetic loci, including the TAAD1 locus 

on chromosome 5q13-14 [27], the TAAD2 locus on chromosome 3p-24-25 [28], and the 

FAA1 (Familial Aortic Aneurysms) locus on chromosome 11q23-24 [29].  Another locus 

was identified in a family with inherited TAAD and patient ductus arteriosis (PDA), termed 

the TAAD/PDA locus located on chromosome 16p12.2-13.13 [30]. 
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Mutations causing the familial form of TAAD have been identified in several genes, 

using the candidate gene sequencing approach.  Some of these gene products are directly 

integrated into the VSMC intracellular contractile machinery, such as MYH11 (smooth 

muscle β-myosin heavy chain 11) located at 16p12 within the TAAD/PDA locus [31], and 

ACTA2 (actin, α2, smooth muscle, aorta) located at 10q21.31 [32].  Causal mutations for 

Marfan syndrome have also been observed at 15q21 in the gene FBN1 (fibrillin-1) [33], 

which is involved with the extracellular scaffolding that provides a source of contractile force 

for VSMC functions.  Mutations causing familial non-syndromic TAAD have also been 

observed in the gene TGFBR2 (transforming growth factor, beta receptor II) located at 3p22 

[34], which encodes the transmembrane receptor for TGF-β and is involved with VSMC 

differentiation.  Mutations in FBN1 cause Marfan syndrome and non-syndromic TAAD, 

reflecting the close relationship between this syndrome and TAAD [35].  Mutations in 

TGFBR2 have been observed in patients with Loeys-Dietz Syndrome, a syndromic cause of 

TAAD [36;37].  However, a number of families with inherited TAAD do not map to any 

known loci and lack mutations in any of the genes known to cause TAAD.  Thus, there are 

still undiscovered genetic causes of familial TAAD.   

Intriguingly, three of the genes known to cause inherited TAAD (FBN, TGFBR1, and 

TGFBR2) encode protein products implicated in signaling of the cytokine TGF-β1.  This 

multifunctional cytokine is secreted by cells as part of a biologically inactive complex known 

as the large latency complex (LLC) which binds to ECM components such as Fibrillin 

(FBN).  Fibrils of this gene product normally bind and sequester the inactive LLC within the 

ECM.  However, mutations in this gene are thought to alter the ability of fibrillin to sequester 

the LLC, causing excessive release of bioactive TGF-β1 to nearby cells[38].  The TGFBR1 
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and TGFBR2 genes encode transmembrane receptors for TGF-β1 ligand, which can bind 

these receptors after release from the LLC.  These receptors propagate the cellular signal 

initiated by TGF-β1 ligand binding their extracellular domain through cytoplasmic serine-

threonine kinase domains.  Strangely, an increase of downstream TGF-β signaling is 

observed in patients with mutations in these genes [39].   

 It is also important to note from studies of inherited TAAD that a single gene 

mutation can cause multiple forms of vascular disease.   ACTA2 mutations have been 

observed in multiple families having a diversity of vascular disease within the same pedigree 

[40].  In a large family with inherited TAAD, a mutation (R149C) in ACTA2 was observed in 

affected members having TAAD as well as livedo reticularis, a rash caused by occlusion of 

the dermal capillaries [41].  In a separate family study, a woman with a heterozygous 

mutation in ACTA2 (T326N) had an ascending aortic aneurysm at age 59, while her son 

carrying this same alteration had a stroke at age 25 [42].  Similarly, mutations in MYH11 are 

also associated with both inherited TAAD and PDA [43].  These observations suggest that 

common molecular mechanisms underlie certain distinct forms of vascular disease, and thus 

a single mutation can have pleotropic clinical manifestations with distinct disease 

phenotypes.   

  

Genetic Basis of ICA  

 There is considerable genetic heterogeneity of inherited ICA, indicated by the number 

of disease-linked loci in families with inherited ICA.  Linkage studies in these families have 

identified major disease-linked loci on chromosome 1p34.3-36.13 in a North American and 
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Dutch family [44; 45], chromosome 5p15.2-14.3 in a large French Canadian family [46], 

chromosome 7q11 in Japanese and Caucasian cohorts [47], chromosome 19q13.3 in Japanese 

and Finnish families [48; 49], and Xp22.2-22.32 in Japanese and Dutch families [50; 51].  

There are also many additional loci mapped with less suggestive evidence for linkage [52].  

ICA have also been observed in patients with Marfan syndrome [53], though there is not 

strong support for an association between these two diseases [54].   

Associations between genetic population polymorphisms and the ICA phenotype 

have been observed in several studies of Japanese populations.  Alleles of three SNPs in 

COL1A2 are more prevalent in ICA affected individuals compared to controls [55].  

Recently, associations have been verified in Japanese populations between ICA and the 

genotypes of several single nucleotide polymorphisms (SNPs) located on chromosome 9p21, 

in both the inherited and sporadic forms of this disease [56;57].  

 Despite the number of genetic loci linked to ICA, no novel causal mutations have 

been identified within any of the linked loci [58].  Sequencing of candidate genes for ICA 

involved with the TGF-β signaling pathway identified novel variants in the co-receptors 

endoglin (ENG) and betaglycan (TGFBR3) with some association between these variants and 

the aneurysm phenotype [59].  The ICA linked region on 7q11 contains the genes for elastin 

(ELN) and collagen type 1 alpha2 (COL1A2), which both encode products found in arterial 

walls.  However, no novel disease-causing alterations have been identified in the protein 

coding regions of these genes.  This suggests that mutations causing this disease may not 

reside in gene regions directly encoding a protein product, and may instead lie in noncoding 

regions such as introns and distal regulatory regions.  
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1.3. Extracellular Matrix and Aneurysm Pathology 

Aneurysm Pathology 

The most common pathological observation in aortic aneurysms and dissections is 

fragmentation of the medial elastic layers [60] (Figure 1.2).  Other pathological 

characteristics include loss of VSMCs, proteoglycan accumulation, and inflammation 

[61;62].  Although the muscular cranial arteries lack the medial elastic layers found in the 

aorta, abrupt disruption of  the internal elastic lamina and disorder of the media is also 

observed in ICA [63].  Histopathologcial examination of ruptured ICA often reveals 

disorganized VSMCs and hypocellular walls at the site of enlargement [64] (Figure 1.3).   

Matrix metalloproteinases (MMPs) target and degrade components of the 

extracellular matrix (ECM), and have been observed at elevated levels in both TAAD and 

ICA [65-67].  Specifically, MMP2 and MMP9  target and degrade elastic fibers and are 

observed at elevated levels in the medial layers of ascending aortic aneurysms, with MMP9 

protein detected at especially abundant levels in thoracic aortic dissections [68;69].  Genetic 

variants of MMP9 are also associated with an increased risk for developing ICA [70].   

Similar to MMPs, members of the ADAMTS gene family (A Disintegrin and 

Metalloproteinase with Thrombospondin type-1 motif) are extracellular matrix  proteases.  

Identified target substrates of this gene family, such as versican and procollagens, have the 

potential to play a role in the development of vascular disease.  In addition, members of this 

gene family have been implicated in TGF-β signaling, such as ADAMTS10 which may bind 

Fibrillin in the ECM [71].  A member of this gene gamily (ADAMTS16) is located within a 

genomic interval shared among all affected members of a family with inherited aneurysms, 
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which we later describe in chapter 1.4.  In addition, we observed a rare genetic variant of the 

ADAMTS16 gene which was enriched in the inherited aneurysm population (Chapter 3.2).  

These observations led to us investigate the potential role of this gene family in the 

development of aneurysms.   

 

 

 

Figure 1.2: Pathology of Aortic Aneurysms.  This figure shows a cross section of human 

aorta samples stained for elastin. (A) The figure on the left shows a normal healthy aorta, 

with elastin fibers of the media arranged in parallel.  (B) The image on the right is taken from 

a TAAD patient, showing disruption of these fibers.  (Image used with permission from Dr. 

Maximilian Buja, University of Texas) 
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Figure 1.3: Pathology of Cerebral Aneurysms.  This figure shows various cross sections of 

a human cerebral aneurysms, with staining types indicated in the upper right of each image.  

(A) Organized VMSCs are sometimes observed in these aneurysms, but (B) a thickened wall 

with disorganized VSMCs is more common.  (C) Initimal hypoplasia is observed in some of 

these aneurysms as wells as a (D) hypocellular wall, sometimes lines with luminal 

thrombosis.  (Image used with permission from Stroke.   Frosen J, et al: Remodeling of 

saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 

unruptured and 42 ruptured cases. Stroke 2004; 35:2287-2293) 
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The ADAMTS Gene Family 

 The first member of the ADAMTS metalloproteinase family was characterized in 

1997 [72]. Metalloproteinases are proteolytic enzymes requiring a metal ion in order to 

perform their catalytic activity; members of this specific family utilize zinc.  The ADAMTS 

proteins are large multidomain proteins, which are synthesized inside of cells and secreted 

into the extracellular matrix (ECM), where they reside in their mature form.  Members of this 

gene family share a number of common domains, including a propeptide domain, a zinc-

activated protease domain, and a disintegrin domain (Figure: 1.4).  Each member also has a 

unique C-terminal ancillary domain, containing at least one thrombospondin (TSP) type-1 

repeat, which is involved in the localization of the ADAMTS protein to its target substrate in 

the ECM.   

Several post-translational modifications of ADAMTS proteins may occur, presenting 

opportunities for regulation of protein levels and activity.  All members of this family are 

modified by the addition of an N-linked carbohydrate, which affects the secretion of these 

proteins into the ECM [73-75]; the only  exception is ADAMTS4.  Disruption of this process 

prevents the secretion of the protein, so this modification is thought to serve as a check for 

proper protein folding prior to secretion [76;77].  Members of the ADAMTS family must 

also be activated within the ECM by post-translational removal of their propeptide domain, 

which is thought to mechanically inhibit the adjacent protease domain.  The calcium-

dependant serine endopeptidase furin performs this excision extracellularly on several 

ADAMTS family members [78-82].  However, a notable exception to this mechanism is 

ADAMTS9, whose proteolytic activity decreases after furin processing [83].      
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Figure 1.4: Protein Domains of the ADAMTS Family.  The image above depicts the 

location and function, within the linear peptide, of the protein domains of each member of 

the ADAMTS gene family.  (This research was originally published in Biochem J. Porter et 

al. The ADAMTS Metalloproteinases. Biochem J. 2005; 15; 386:15-27. © the American 

Society for Biochemistry and Molecular Biology.) 
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Generation of ADAMTS Isoforms  

  Many ADAMTS proteins have multiple isoforms.  These isoforms can be generated 

from post-translational cleavage or via alternative splicing events during gene transcription.  

Post-translational modification has been well studied in ADAMTS4, and several isoforms of 

this protein have been have been observed in culture.  Inhibiting matrix metalloproteinases 

(MMPs) reduces the prevalence of the smaller isoforms in vitro [84], presumably because a 

subset of these proteins target ADAMTS proteins.  Many of these ADAMTS4 isoforms are 

truncated at the C-terminus and vary not only by proteolytic efficacy, but also by their 

specific cleavage target sequence within the same substrate [85].  Similar observations have 

been reported in other members of this gene, including ADAMTS12 [86;87]. 

 Alternative splicing events have also been observed in ADAMTS transcripts, usually 

resulting in a smaller form of the protein due to specific exons being omitted from the full-

length transcripts [88-90].   However, alternative splicing events in ADAMTS6 can generate 

transcripts that are longer or shorter than the canonical transcript of this gene, and the levels 

of these two alternative transcripts relative to each other vary in response to the cytokine 

TNF-α [91].  However, many of these alternative splicing events have only been observed at 

the transcriptional level, and it is not clear whether all alternative transcripts of these genes 

are translated into protein products.   

 

ADAMTS Genes and Human Disease 
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Mutations in members of the ADAMTS gene family have been implicated in a 

number of human diseases.  ADAMTS13 is the best characterized member of this gene 

family, and mutations in this gene cause inherited thrombotic thrombocytopenic pupura 

(TTP),  a thrombotic microangiopathy resulting the excess accumulation of blood clots in 

small vessels [92;93].  This protein cleaves large multimers of the plasma glycoprotein Von 

Willebrand Factor (vWF) into smaller units at the Y842-M843 peptide bond in vivo, and 

without this cleavage red blood cells experience excess shear stress in smaller vessels leading 

to hemolysis and anemia.  Multiple disease-causing ADAMTS13 mutations have been 

observed in patients with this disease, including some splice-site mutations.  Mutations in 

ADAMTS2 have been shown to cause the recessively inherited disorder Type VIIC Ehlers-

Danlos Syndrome (EDS) [94], characterized by extreme skin fragility,  due to decreased 

processing and maturation of procollagen, the target of this metalloproteinase.  Another 

connective tissue disorder, recessive Weill-Marchesani syndrome (WMS), is caused by 

mutations affecting the catalytic domain and at splicing sites of ADAMTS10 [95;96].  WMS 

is characterized by lens dislocation (ectopia lentis), unusually short fingers (brachydactyly), a 

short broad head (brachycephaly), and short stature.  Mutations causing truncated 

ADAMTS17 transcripts have also been observed in WMS patients, including a 1bp insertion 

at exon 18 and a mutation abolishing the donor sequence of intron 12 [97].  In vivo substrates 

for ADAMTS10 and -17 are not known.   

  There is emerging evidence for the role of the ADAMTS proteins in vascular disease.  

ADAMTS1 is normally observed at very low levels in the vasculature, but is dramatically 

upregulated in the VSMCs and foam cells of atherosclerotic plaques [98].  Similarly, 

ADAMTS7 levels have been positively associated with VSMC migration of balloon-injured 
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rat carotid arteries, and is thought to have a role in the development of atherosclerotic lesions 

[99].  Elevated expression of ADAMTS4 is observed in baboon aorto-iliac grafts exposed to 

high blood flow, and in VSMC cultures undergoing Fas ligand-induced cell death [100].  

Other groups have reported unpublished evidence suggesting that ADAMTS10 binds 

fibrillin-1, a protein with implications in TAAD and MFS [101].  Here, we investigated the 

potential of one member of this gene family, ADAMTS16, to cause inherited aneurysms (see  

below).   

1.4. Study Proposal    

Our study focuses on family TAA288, a large Caucasian family living in the United 

States with an autosomal dominant pattern of non-syndromic aneurysms.  Female patients in 

this family predominantly present with saccular ICA, while male patients predominantly 

present with TAA (Figure 1.4).   DNA sequencing of affected members of this family did not 

detect any mutations in the known TAAD-causing genes.  This family was also subjected to a 

genome-wide linkage on the 50k GenChips Hind array from Affymetrix.  Evidence of 

linkage was observed on only two chromosomes: 1q32 and 5p15.  This presents us with the 

opportunity to characterize a novel genetic locus associated with inherited aneurysms.   

The clinical criterion for diagnosis of TAAD in this study was an aortic root 

exceeding 4 cm in diameter, as determined by clinical imaging.  Imaging was either 

performed using 2D echocardiography or measurements were taken from medical records.  

The presence of ICA was similarly diagnosed by cerebrovascular imaging using MRA or CT 

angiography.  Clinical information on members of the TAA288 family is provided in Table 

1.1. 
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TAA288 Clinical Information 

The proband of TAA288 (III:8) is a female who was ascertained at age 29, with 

medical imaging revealing a dilation of the extracranial portion of her internal carotid 

arteries.  Subsequent imaging revealed more abnormal structures of her carotid arteries, 

including small infundibula at the origins of each of her posterior communicating arteries.  

Though her ascending aortic diameter at the sinus of Valsalva was normal (2.7 cm), all three 

of her brothers were observed with aortic aneurysms at this location.  Patient III:5 was 

ascertained at age 36 with a 4.6 cm aortic aneurysm at the sinus of Valsalva, III:7 at age 32 

measuring 4.6 cm, and III:6 underwent surgery at age 35 with an aortic root measuring 5.5 

cm.  The father of these individuals died suddenly of unknown causes at age 59.  Though no 

autopsy was performed, sudden death is characteristic of TAAD.  There is also significant 

occurrence of other cardiovascular disease in the extended family of these siblings.   

 A paternal aunt of the proband (II:1) died at age 54, with a CT scan revealing a left 

frontal hematoma with SAH.  Her son (III:3) died at age 42 from an acute type A aortic 

dissection.  His aortic root measured 8.9 cm at autopsy, but an echocardiogram three years 

prior had measured his aortic root merely 3.3 cm; a total increase of 5.6 cm in three years.  

His sister (III:2) has undergone echocardiogram and cerebrovascular imaging, showing no 

signs of cardiovascular disease herself. However, her son (IV:1) had borderline 

measurements at age 15 (3.75 cm), but quickly developed an enlarged aortic root of 4.19 cm 

by age 18.  Thus, III:2 was scored as an obligate carrier for the genetic disposition for 

vascular disease in this family.   
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 Another paternal aunt of the proband died suddenly at age 57 from a cerebral 

dissection.  Her son (III:9) underwent echocardiogram imaging at age 41, to reveal a TAA 

measuring 4.5cm in diameter.  Individual III:4 underwent thoracic imaging and did not meet 

our criteria for TAAD, but has not yet undergone cranial imaging.  Two other members of 

this pedigree (III:10, and III:11) have not undergone cranial imaging. Thus, the disease status 

of members III:4, III:10, and III:11 is currently unknown.  According to our genome-wide 

analysis, the genomic region most strongly linked to the disease phenotype of this family is 

located on chromosome 5p15.   

ADAMTS16 in TAA288 

The ADAMTS16 gene lies within the 5p15 genomic interval linked to the TAA288 

disease phenotype, and was first described in 2002 [102].  The target substrate of ADAMTS16 

in vivo is unknown, but the full length protein product has been shown capable of cleaving 

alpha-macroglobulin, a large blood protein inhibiting coagulation, in vitro [103].  Also, an 

artificial isoform of this protein truncated after TSP-1 was shown to have weak aggrecanase 

activity [104].  Initial expression profiling of this gene in human tissues revealed high levels 

of ADAMTS16 mRNA in adult brain and ovaries, and fetal lungs and kidneys [105].   

Several isoforms of ADAMTS16 have been reported.  The full length transcript for 

this protein or ADAMTS16-001 (ENST00000274181) contains 23 exons encoding a 

polypeptide 1224 amino acids in length.  The Ensembl database reports three alternative 

transcripts for this protein, one of which is protein coding isoform: ADAMTS16-002 is a 

transcript truncated after exon 11 and encodes a 570 aa product.  The alternative transcript 

ADAMTS16-003 (ENST00000433402) retains an intron and does not encode a protein 
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product.  The last alternative transcript of this gene is ADAMTS16-005 

(ENST00000513709) (there is no -004), which is a 189 bp fragment comprised of contiguous 

sequence from exon 13 and 15 combined, excluding exon 14.   

Recent studies have found an association between SNP variants of ADAMTS16 and 

hypertension [106].  This is intriguing since hypertension is a major risk factor for the 

development of aneurysms, as well as many other vascular diseases.  Another study showed 

that ADAMTS16 expression can be induced in cultured fibroblast cells treated with TGF-β1 

[107].  This cytokine treatment induces transformation of cultured fibroblasts into 

myofibroblasts, which express smooth muscle-specific proteins and have been suggested to 

play a role in the role of atherosclerotic lesion formation [108].  This observation also 

implicates ADAMTS16 as a downstream target of TGF-β1 signaling, which is a cytokine 

dysregulated in aneurysm patients with TGFBR2 mutations and Marfan syndrome.  We were 

interested in utilizing the fibroblast model in our own studies, as dermal fibroblasts are easily 

cultured from skin biopsies taken from patients in clinic.  In this interest, we successfully 

cultured dermal fibroblast samples from two members of the TAA288 family (III:5, IV:1).   
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Figure 1.5: The TAA288 Family.  This pedigree shows the family structure for TAA288, 

with the proband indicated with an arrow.  Ages provided are age at death (d), age of 

diagnosis (dx) or current age.  The nine samples indicated by “#” were genotyped on the 

Affymetrix 50k SNP platform for genome-wide linkage analysis. Note the prevalence of 

TAAD in males, and cranial aneurysms in females.  See section 1.4 for clinical details.   
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Myofibroblast Model in TAA288 

 Myofibroblast cells have been implicated in wound healing in a number of human 

tissues, including the vasculature [109].  In vivo, myofibroblasts commonly arise from the 

differentiation of local fibroblast cells at an injury site in response to mechanical stress or 

cytokines such as TGF- β1 [110-112].  In vitro treatment of fibroblasts with TGF- β1 also 

induces these cells to upregulate integrins and other ECM components [113;114].  In 

addition, these cells turn on a number of SMC contractile genes, like ACTA2 which encodes 

SM α -actin as is a marker for the differentiation of fibroblasts into myofibroblasts [115].   

This is a convenient model for our disease, as a simple skin biopsy can yield dermal 

fibroblast cells for our use in cell culture experiments.  Fibroblast cultures made from 

affected patients from TAA288 will carry the genetic alteration responsible for this 

phenotype.  This allows the direct observation of aberrant gene expression in patient cell 

lines, by comparing gene expression in cells derived from TAA288 patients to those derived 

from control subjects without disease.  Several members of TAA288 (discussed below) 

agreed to provide us with skin biopsies for our gene expression studies.   

 

Hypothesis & Specific Aims 

  Here, we hypothesize that the disease phenotype in family TAA288 is inherited as a 

single gene autosomal dominant disorder, with a gender influenced phenotype: TAAD in 

males and ICA in females.  A previously performed genome-wide linkage analysis of this 

family implicated only two loci, with neither one previously reported to be linked to either 
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aneurysm subtype.  This analysis is discussed in chapter 2.  Our objective is to identify the 

causal mutation in this family, in order to better understand the molecular mechanisms 

causing this disease and to identify the individuals in this family at risk of developing 

vascular disease.   

Two important observations support our hypothesis.  First, a single mutation causing 

TAAD can also be associated with other forms of vascular disease.  Mutations in the gene 

ACTA2 have already been described, where a single mutation causing inherited TAAD is also 

observed in family members with other early onset vascular diseases such as livedo 

reticularis [116;117].  Thus a single pleotropic mutation in the TAA288 family could be 

responsible for both the inherited form of TAAD and ICA observed in this family.  The 

second observation is that there are common pathological features shared by these two 

aneurysm types.  Degeneration of the medial layer is observed in both TAAD and ICA [118].  

This common pathology is suggestive of a common biological mechanism that can cause this 

inherited subtype of disease: concurrence of TAAD and ICA. 

There are three specific aims of this study.  First, we will verify and refine the disease 

linked genomic loci associated with the TAA/ICA phenotype in family TAA288, as indicated 

by a previously performed genome-wide analysis.  This will be performed by genotyping 

microsatellite markers within and adjacent to the 1q32 and 5p15 loci, in order to confirm and 

fine map linkage to each region.  The next aim is to identify rare and novel DNA sequences 

found within the disease-linked loci.   Online references will be used to identify candidate 

genes within this locus, and DNA Sanger sequencing methods will be used to detect genetic 

alterations.  The third and final aim will be to explore the effects of said variants, and 

characterize their potential to cause the disease phenotype in TAA288.  This will be 
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performed in fibroblast cultures available from patients in this family.  Potential roles for any 

novel candidate genes in the development of aneurysm phenotypes will also be discussed.   
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CHAPTER 2: METHODS 
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2.1 Linkage Analysis Methods 

Sample Collection 

Collection of all samples used in this study was approved by the Institutional Review 

Committee at the University of Texas Health Science Center Houston.  After obtaining the 

appropriate consent, biological samples were collected from members of the TAA288 family; 

these samples included buccal swabs, blood samples, autopsy samples and skin biopsies.   

 

DNA Extraction  

 Genomic DNA was isolated from blood and buccal samples according to the 

PureGene genomic DNA isolation kit protocol (Gentra Systems).  Two notable exceptions 

were patients II:2 and III:3, with their respective genomic DNA extracted from autopsy 

samples and fibroblast cultures.  

 DNA extraction from paraffin-embedded prostate from the autopsy of patient II:2 

was performed using the Agencourt
TM

 FormaPure Kit: Nucleic Acid Isolation from 

Formalin-Fixed, Paraffin-Embedded Tissue manufacturer’s protocol.  Five attempts were 

made in parallel, with each consisting of five sections (10 μm) made from paraffin-embedded 

slides.  Each sample containing tissue sections was incubated with 200 μl Lysis Buffer at 

72°C for 1 hour.  20 μl of Buffer PK containing isopropanol was added, and the samples 

were incubated at 55°C for an additional hour.  The sample was cooled on ice and treated 

with 150 μL of Bind I Buffer and 320 μl of Bind II Buffer containing DNA-affinity magnetic 

beads.  The sample was briefly incubated at 55°C for 5 minutes, and then allowed to separate 
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by magnetic force on the provided SPRIStand for tubes.  The supernatant was discarded and 

samples were washed with Wash Buffer and separated by magnetic force again.  The sample 

was then washed twice with 70% EtOH, once with 90% isopropanol, and then once more 

with 70% EtOH, separated each time by magnetic force.  Total nucleic acid was eluted in 80 

μl of nuclease-free H20 by incubation at 65°C for 30 seconds, and quantified on a 

Nanodrop
TM 

ND-1000 spectrophotometer using the nucleic acid setting at wavelength 260 

nm.  

DNA extraction was performed on perished fibroblast cultures from patient III:3, 

received from a cryo-storage facility in New Orleans.  While originally containing frozen 

fibroblast cultures from this patient, the facility lost electrical power in the wake of hurricane 

Katrina and samples were no longer viable upon arrival in Houston in the fall of 2008.  

Genomic DNA was purified from the received tissue sample from patient III:3, using the 

QIAamp DNA Mini and Blood Mini Handbook protocol: DNA purification from Blood or 

Body Fluids (Spin Protocol, 11/2007). 

 

Microsatellite Marker Selection and Genotyping 

Microsatellite markers were selected for fine-mapping of TAA288 disease-linked 

regions indicated by genome-wide SNP linkage analysis.  Marker selection criteria included 

a genomic physical position within a TAA288 disease-linked linked region, an inter-marker 

spacing of less than 5 MB, and preferably a >0.7 heterozygosity score.  Primer sequences and 

map location were obtained from the MAP-O-MAT (http://compgen.rutgers.edu/mapomat/) 

and NCBI UniSTS databases (http://www.ncbi.nlm.nih.gov/sites/entrez?db=unists) [119]. 
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  All oligonucleotide primers were synthesized by Integrated DNA Technologies (Coralville, 

IA).   

Genotyping of microsatellite markers was achieved through Polymerase Chain 

Reaction (PCR) amplification of genomic DNA.  Universal primer tags (FAM, HEX, NED) 

were added to one member of each oligonucleotide pair, to allow florescent end-labeling of 

PCR products [120].  Amplification was then performed using HotStar Taq DNA Polymerase 

in a 10μl amplification reaction.  Each reaction contained 10 ng genomic DNA, 1x PCR 

buffer, 1x Q Buffer, 2.5 mM dNTP, 25 mM MgCl2, 5 pM primers (forward, reverse, and 

universal) and 0.25 units of Taq (5 units/ul).  Generating fluorescently-labeled PCR products 

required a two-step amplification reaction as follows: initial activation at 95°C for 15 

minutes, followed by 10 cycles of florescent labeling (denaturing at 95°C for 30s, annealing 

at 60°C for 30s, elongation at 72°C for 30s) and 35 cycles of genomic amplification 

(denaturing at 95°C for 30s, annealing at 60°C for 30s, elongation at 72°C for 1 min). 

 Amplification products were diluted 1:100 in Formamide HiDi and combined with 

Genescan
TM

 400HD or 600HD Rox Size Standard.  After denaturing samples at 95°C for 5 

minutes, fragment sizes were analyzed on the ABI 3130 platform using GeneMapper v4.0 

software (Applied Biosystems). 

     Microsatellite fragment size alleles were analyzed for Mendelian consistency and 

disease-segregation within each pedigree.  Manual phasing was performed by observing for 

Mendelian inheritance consistency in parents and offspring within the TAA288 pedigree, and 

then inferring allele positions on individual chromosomes.  The results of manual genotyping 

and phasing were then verified for Mendelian consistencies using Pedcheck software [121]. 
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Linkage Statistical Analysis 

 Statistical tests of linkage on our acquired genotype data was performed using the 

affected-pedigree-member method [122].  Pairwise and Multipoint Logarithm of Odds 

(LOD) scores were calculated using FASTLINK software v3p, specifically the MLINK and 

LINKMAP programs [123;124].  An age-dependant penetrance model was used, based off 

known allele frequencies and observations from previous linkage studies of familial TAAD 

[125;126].  Specific penetrance values used for genome-wide SNP-based linkage were 10% 

for individuals <30 years of age, 30% for ages 30-40, 70% for ages 40-60, and 90% for ages 

> 60.   

 

2.2 Mutation Detection Methods 

Copy Number Variation Detection 

Genomic DNA from patient III:5 was analyzed on the Illumina 610-Quad BeadChip 

assay.  Genotyping results were analyzed under two algorithms, PennCNV [127] and CNV 

partition (Illumina) with events detected by both algorithms considered for further analysis.  

Results were compared to The Children’s Hospital of Philadelphia (CHOP) CNV project 

(http://cnv.chop.edu/) as a control reference database.  Genotyping analysis was performed 

by Dr. Siddharth Prakash of the Baylor College of Medicine.   
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Target Gene Selection 

   Genes were selected based on their genomic physical position within the TAA288 

critical interval.  Gene locations were ascertained through the NCBI website located at 

http://www.ncbi.nlm.nih.gov; specific NCBI genomic coordinates used were homo sapiens 

chromosome 5p15: 3,424,465- 6,312,925 bp (GRCh37/hg19 Assembly).  The exons of 

verified genes within these genomic coordinates were selected as the primary targets for 

DNA sequencing.   

 

Primer Design 

Intron-based, exon-flanking oligonucleotide primer sequences were manually selected 

for sequencing of target genes.  Primers were designed to anneal to genomic sequences of 

forward and reverse DNA strands, based off the Ensembl reference sequence available at 

http://uswest.ensembl.org/index.html.  General selection criteria for primers included a 

length of approximately 20 base pairs, a GC content of 40-60%, the absence of any known 

polymorphic nucleotide sites and an intronic position flanking target exon sequence by at 

least 100 bp.  Optimal amplicon size was 500 bp, and primers were designed to anneal at 

least 100 bp upstream of the target exon sequence.  Oligonucleotide primers were ordered 

from Integrated DNA Technologies (Coralville, IA). 

 

PCR & DNA Sequencing 
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PCR amplification of genomic DNA was performed using the selected primers.  Each 

PCR was carried out as a 10 microliter reaction containing 5 μM forward and reverse 

primers, 10ng genomic DNA, 2mM dNTPs, 25mM MgCl2, and 0.125 units of HotStar DNA 

polymerase (Qiagen, Valencia CA).  PCR conditions were as follows:  initial denature at 

95°C for 15 minutes, followed by 35 cycles of 95°C denature for 30 seconds, annealing at 

60°C for 30 seconds, and extension at 70°C for one minute.  A final hold of 72°C for 3 

minutes was used to ensure enzyme inactivation, and then samples were stored at 4°C until 

further use.  PCR products were then treated with 1μl of ExoSAP (GE Healthcare) to remove 

unused primers and dNTPs, and treated to the following incubations: 37°C for 45 minutes, 

followed by enzyme inactivation at 80°C for 15 minutes. 

Sequencing of ExoSAP-cleaned PCR product was performed using BigDye
TM

 

reagents (ABI, CA, USA).  Each 10μl reaction contained 5μl of cleaned PCR product, 5 μM 

either forward or reverse primer, 2.5μl of 5x Sequence Buffer, and 0.5μl of BigDye
TM

 

terminator V3.1.  Sequencing condition included 35 cycles of denaturing at 95°C for 15 

seconds, annealing at 60°C for 15 seconds, and extension for 90 seconds at 80°C.  Sequence 

products were then cleaned with 7μl of XTerminator
TM

 and 31μl of SAM
TM

 solution (ABI, 

CA, USA).  Sequences were read on the ABI 3730 platform using the 

BDX_Rapid36_POP7V3_96 module.   

Initial sequencing was performed on only a few affected patients in TAA288 and one 

unaffected spouse as a disease control, for efficient use of time and reagents.  Genotypes in 

these individuals at known population polymorphisms and novel alterations were 

documented.  Novel genetic alterations were then sequenced in the remaining affected 

members of TAA288 to investigate co-segregation with the disease phenotype.  
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Genotyping Analysis 

  Mutation detection was only performed on high quality chromatograms generated by 

the ABI3730 platform.  DNA chromatograms were first manually checked for quality using 

Chromas Lite freeware (www.technelysium.com.au/chromas_lite.html) to verify successful 

digestion of primer fragments and excess dNTPs.  Forward and reverse chromatograms were 

aligned and compared using Mutation Surveyor 3.01 software (SoftGenetics, State College, 

PA).  Bidirectional sequencing and mutational analysis of amplicons containing novel 

variants was repeated at least twice to verify authenticity.  Known genetic variants were also 

observed and documented. 

 

Statistical Test of Association 

Rare or novel alleles ascertained by DNA sequencing were tested for association to 

the aneurysm phenotype within three general population strata: patients with sporadic 

aneurysms, patients with inherited aneurysms, and controls with no aneurysms.  Criteria for 

distinguishing inherited and sporadic disease were discussed in chapter 1.  We tested each 

strata for allelic association separately using a 2x2 contingency table for this analysis, 

arbitrarily assigning allele states (genotypes) to columns and disease states (affected or 

unaffected) to rows.  A one-tailed Fisher’s exact test was used to calculate significant 

associations, with α = 0.05 as the threshold for statistical significance. 
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2.3 Transcript and Protein Level Detection Methods 

Immunodetection of ADAMTS16 in Aortic Tissues 

Immunohistochemical detection of protein in human tissues was performed by 

Tommy Reese at St, Luke’s hospital in Houston, TX.  Paraffin-embedded tissue sections 

were de-paraffinized with  xylenes and hydrated in distilled H2O.  Antigen retrieval was 

performed by submersion of slides in warmed EDTA buffer for 35 minutes, and quenched 

using 30% H2O2.  Slides were then blocked for 20 minutes, and incubated in sc-50490 

antibody 1:50 for one hour at room temperature.  Secondary antibody was applied for 30 

minutes at room temperature, and slides were developed with DAB chromogen solution until 

antigen sites turned a distinct brown color.  Slides were then counterstained for 45 seconds 

using Richard-Allan hematoxylin, and mounted with Permount reagent.   

 

Dermal Fibroblast Explants and Cultures 

We successfully explanted dermal fibroblasts from skin biopsies provided by two 

members of the TAA288 family (III:5 and IV:1).  Three millimeter dermal biopsies were 

obtained and stored in Dulbecco's Modified Essential Medium (DMEM) containing 10% 

fetal bovine serum (FBS) and an antibiotic/antimycotic supplement for transportation to our 

facilities.  The tissue was washed in 70% EtOH, rinsed with 1xPBS, and then placed in 

DMEM.  Here, the epidermal and adipose layers were manually removed and discarded, 

isolating the dermal layer.  The dermal layer was transported to a 60 mm cell culture dish, 

minced, and covered with a glass coverslip.  Complete media (DMEM containing 10% FBS 
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and antibiotic) was added to this dish to create a primary fibroblast culture, which was 

allowed to grow at 37°C with 5% CO2; media was changed twice weekly.   

 Fibroblast cultures created from successful explants were maintained in a sterile 

incubator under similar conditions (37°C with 5% CO2) at all times, except when being 

directly manipulated.  As with explants, we replaced complete media twice a week in 

fibroblast cultures.  Fibroblast cultures passage 2-5 were used for experiments.   

 

Myofibroblast Protocol, TGF- β1 Treatment 

Dermal fibroblasts were allowed to grow in T75 flasks containing complete media as 

described above.  Cells having reached confluence were trypsinized from their T75 flasks 

and plated onto replicate dishes, either 60 mm or 35 mm diameter, at 80-100% confluence in 

complete DMEM.  These plates sat undisturbed for 24 hours, allowing cells to settle, and 

then serum-starved for additional 24 hrs in 0.2% FBS DMEM.  Low serum media was then 

replaced with DMEM containing 0.2% FBS + 10 ng/mL TGF-β1(R&D Systems, inc).  Cells 

were harvested at pre-determined time points after receiving TGF-β1 by removing media and 

freezing at -80°C for future use of RNA or protein.  

 Previous experiments have shown that fibroblasts treated with TGF-β1 express high 

levels of SM α –actin,  used as a marker for myofibroblast differentiation [128].  For this 

reason we did not choose to harvest any time points beyond 72 hrs.   
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VSMC Cultures 

Vascular smooth muscle cells previously explanted from the aortas of control 

individuals were also used, taken from frozen aliquots stored a -80°C.  SMCs were grown in 

T75 flasks containing SmBm (Lonza) supplemented with 15% FBS, 0.5 mL insulin, 1.0 mL 

rhEGF, and 0.5 mL rhFGF, and an antibiotic/antimycotic reagent and housed in a sterile 

incubator at 37°C with 5% CO2; SmBm media was changed twice weekly.  Once confluent, 

SMCs were plated at 70 cells/mm
2
 in culture dishes, allowed to settle for 24 hours, then 

treated for 24 hours with SmBm (Lonza) supplemented with 0.2% FBS and an 

antibiotic/antimycotic reagent.  Media was then removed and plates were frozen at -80°C at 

predetermined time points for future use of RNA and  protein.   

 

RNA Extraction 

RNA was extracted from total cell lysate using Tri Reagent
TM

 (Sigma), according to 

the manufacturer protocol.  One mL of Tri ReagentTM was added directly to frozen cells 

immediately after removing from -80°C.  Plates with Tri Reagent
TM

 were incubated with 

slow agitation at room temperature for 15 minutes, and then mechanically scraped with 

Fisherbrand Disposable Cell Lifters.  Lysate was then passed through a 1 ml pipette tip 20 

times to ensure homogenization, and then transferred into a 1.7 mL Denville Posi-Click
TM

 

Tube (C-2170).  200 μl of Chloroform was added to the tube containing lysate, shaken by 

hand for 15 sec and incubated at RT for 5 minutes.  Samples were centrifuged at 13,000 rpm 

for 15 minutes at 4°C, and 400 μl of the clear supernatant layer was transferred to a fresh 1.7 

mL tube; only a small amount of supernatant was transferred to avoid genomic DNA 
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contamination.  500 mL of isopropanol was added to the supernatant, and tubes were inverted 

20x and incubated at RT for 5 mins to ensure efficient precipitation of RNA.  Tubes were 

again centrifuged at 10,000 rpm for 15 mins at 4°C to create an RNA pellet.  Excess 

isopropanol was removed by vacuum suction, and the pellet was then washed with 1 ml of 

75% EtOH.  After light mixing, the tubes were certrifuged one final time at 13,000 rpm for 5 

minutes at 4°C.  Excess EtOH was removed by suction down to a volume of ~100 μl, and the 

remaining liquid was carefully removed by pipette.  Samples were allowed to air dry for no 

more than 20 minutes, and then resuspended in 30μl of RNAse-Free H20.   

     Quantification of RNA concentration was performed by analysis of optical density.  

After blanking with H20, 1 μl of RNA samples was added to a Nanodrop
 
ND-1000 

spectrophotometer using the nucleic acid setting.  Nucleic acid content was quantified at 

wavelength 260 nm, and samples with a 260/280 ratio greater than 1.7 were used for further 

analysis.   

 

cDNA Synthesis  

cDNA was synthesized from isolated RNA using the High-Capacity cDNA Reverse 

Transcription Kit (ABI) using manufacturer's recommendations.  Each reaction contained 

200-500 ng of total RNA, 1x Reverse Transcription buffer, 1x dNTPs, 1x random primers 

and 50 units/uL of MultiScribe
TM

 Reverse Transcriptase.  Reactions were then incubated at 

25°C for 10 min, 37°C for 120 min, 85°C for 5 min and stored at 4°C until later use.   
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DNA Gels 

We performed PCR amplification of certain cDNA templates using the same 

reactions described in chapter III.  We visualized our PCR product on either 0.8% agarose 

gel or 8% polyacrylamide gels.   Gels were stained with EtBr and PCR products were 

visualized under ultraviolet light (UV).   

 

Quantitative RT-PCR 

Analysis of gene expression was performed using the TaqMan Gene Expression 

Assay system (ABI, CA).  Each reaction was performed as a 10.5 μl reaction, containing 1x 

target assay mix, 1x Taqman Universal PCR Master Mix, and 5 μL of cDNA synthesized as 

previously described.  Fluorescent signals from target assays were detected on the ABI Prism 

7000 SeqDet system under the relative quantification settings.  Specific cycling parameters 

used were 95°C for 10 minutes, followed by 40 cycles of: 95°C for 15 seconds and 60°C for 

1 minute.  We performed each reaction in triplicate on the same 96 well plate, along with 

reactions run in parallel containing GAPDH target assay mix as an endogenous control. 

 Relative expression of target genes was normalized to GAPDH expression using the ΔΔCT 

method, and tested for significance using Student’s T-Test.   

 

Protein Isolation 
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Plates containing cells intended for protein harvest were placed on ice after removal 

from -80°C freezers.  Samples remained on ice throughout the isolation procedure.  Protein 

isolation buffer was added to each dish, consisting of RIPA buffer (50 mM Tris-HCl at pH 

7.4, 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 0.25% Na-

deoxycholate), phosphatase inhibitors (10 mM NaF, 1 mM Na3VO4) and  30 μl/mL protease 

inhibitor (PMSF and P8340 cocktail, Sigma).  Cells were mechanically scraped from plates 

with Fisherbrand
R
 cell lifters and transferred to 1.7 mL Denville Posi-ClickTM Tubes.  

Samples were passed through a 22G needle 15x, then briefly vortexed every 5 minutes for a 

total of 30 minutes.  Samples were then centrifuged for 30 minutes at 13,000 rpm at 4°C.  

Supernatant was collected and quantified by Bradford assay using Bio-Rad protein reagents.   

 

 Immunoblotting 

Aliquots of 10 μg were taken from each protein sample, mixed with sample buffer, 

and incubated at 95°C in boiling water for 5 minutes.  Boiled protein samples were then 

loaded into 8% Acrylamide gels made by diluting 12.5% EZ-Run
TM

 Protein Gel Solution (cat 

no: BP7712-500, Fisher) with water, and adding crosslinking reagents (10% Ammonium 

Persulfate and N,N,N’N’-Tetra-methylethtlenediamene (TEMED, cat no: 161-0801, Bio-

Rad)).    Gels were run in 1x EZ-Run
TM

 Running Buffer at no more than 120V, and 

transferred to PVDF membranes in 20% MeOH transfer buffer at 80V for 60 min. 

Membranes were blocked in 1x Tris Buffered Saline containing 1% Tween-20 (TBST) and 

5% immunograde nonfat milk for 1 hour at room temperature.  
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PVDF membranes containing protein were incubated with primary antibody detecting 

ADAMTS16 (sc-67440) or GAPDH (10R-G109a) for 8-12 hrs at 4°C.  Membranes were 

then rinsed with TBST and incubated with HRP-conjugated secondary antibodies for 2 hours 

at room temperature. Proteins were visualized with Pierce ECL Western Blotting Substrate 

(Thermo Scientific) and exposed to Blue X-Ray Film (Phenix).  Films were processed on a 

SRX-101a Medical Film Processor (Konica).  
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CHAPTER 3: RESULTS 

 

 

 

 

 

 

 

 

 



42 

 

 

 

3.1 Linkage Analysis Results 

Microsatellite Fine-Mapping of Candidate Loci 

We first examined the TAA288 disease-linked genomic regions on chromosomes 

1q32 and 5p15.  From this linkage analysis, a small region on chromosome 1q32 (202-

212MB) displayed a Max LOD score of approximately 0.8 (Figure 3.1).   In order to verify 

this observation, six microsatellite markers (D1S1725, D1S249, D1S2692, D1S205, D1S425, 

and D1S237) were selected with an intermarker spacing ~2.5 MB for genotyping over the 

1q32 interval.  Upon genotyping, we did not observe any alleles of these markers shared 

among affected family members of TAA288 (Figure 3.2) As a result, chromosome 1 was not 

considered for further linkage analysis.   

     We performed a similar analysis on chromosome 5p15, initially selecting four 

microsatellite markers with an intermarker spacing ~2.5 MB (D5S2005, D5S2505, D5S1953, 

D5S2004).  Of these four markers, shared genotyped were observed among all affected 

members of TAA288 at one location (Figure 3.3). A single allele of the marker of D5S2505 

was observed in all affected members of TAA288, as well as some members scored with 

unknown and unaffected disease status (D5S2505: allele “6”, Figure 3.3).  As a result, 

additional markers in proximity to D5S2505 were selected for genotyping, in order to 

improve the mapping resolution of this area. 
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Figure 3.1: Genomic Regions Linked to the TAA288 Disease Phenotype.  Two genomic 

regions had evidence of linkage within the TAA288 family.  These two regions are located 

on chromosomes 1q32 and 5p15.  Details of the analysis performed are described in chapter 

2.2. 
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Figure 3.2: TAA288 1q32 Microsatellite Phasing.  The pedigree above shows the 

genotypes of microsatellite markers, given as recoded allele, located within the chromosome 

1q genomic region with evidence for linkage.    Genotypes given as “0” did not successfully 

amplify. Colored bars were added to highlight the movement of marker haplotypes across 

generations; black bars are not phased.  Genotyping and phasing of this region stopped when 

it was observed that no markers of these six alleles are shared between all affected members 

of this family.  This region was not characterized further due to this lack of a shared 

haplotype among all disease-affected members of TAA288.   
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Figure 3.3: TAA288 5p15 Microsatellite Phasing.  The pedigree above shows the results of 

manual phasing of 5p15 microsatellite markers, given as recoded alleles, in the TAA288 

family.  Genotypes given as “0” did not successfully amplify.  Genotypes in parenthesis are 

inferred genotypes.  Not all markers genotyped within this region are shown, for easier 

viewing.  Note the blue bar adjacent to the alleles 2, 3, 6 for markers D5S405, 406 and 2505, 

respectively.  These markers denote the TAA288 critical interval, which is the genomic 

region with the strongest evidence for linkage in this family.  Also note the single 

recombination event observed in patient III:3 defining the telomeric boundary of this region 

(the “3” allele of marker D5S2849, on the yellow bar).   
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Critical Interval Containing the Defective Gene in Family TAA288 

Further genotyping of microsatellite markers with proximity to D5S2505 revealed a 

subset of markers with alleles shared among all affected members of TAA288.  Preliminary 

manual genotype phasing was performed on microsatellite marker genotypes within this 

region, with results suggesting that certain alleles of three adjacent microsatellite markers 

(D6S405, D5S406, D5S2505) lay on the same chromosomal fragment and segregated with 

the TAA288 phenotype (Figure 3.3).  To confirm these observations, pairwise LOD scores 

were calculated for markers within the region.  The pairwise LOD scores for these three 

adjacent markers was 0.83 for D5S405, 0.48 for D5S406, and 0.57 at D5S2505 observed at θ 

= 0 (Table 3.1).  Under this analysis, these three markers have the strongest evidence for 

linkage in the 5p15 genomic region.  In contrast to this, many other markers in this region 

(D5S392, D5S2005, D5S678, D5S1970, D5S2849, D5S635, and D5S580) have LOD scores 

below -2.0 which is evidence for exclusion from linkage.  This observed evidence of linkage 

at three adjacent markers in this region led to still further selection and genotyping of 

microsatellite markers, in an attempt to refine genotyping resolution of this interval.   

Two crucial recombination events defined the boundaries TAA288 critical interval.  

The first defined the centromeric boundary at the marker D5S635, which we observed in the 

offspring of affected patient II:1.  The children of II:1 (III:2, III:3, and III:4) share the “1” 

allele at this marker on their diseased chromosome, while other affected members of 

TAA288 share a “4” allele (Figure 3.3).  It cannot be determined in which individual this 

recombination event occurred, due to insufficient DNA samples in generations I and II.   
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The second recombination event is observed in a single individual, III:3, and defines 

the telomeric boundary of the TAA288 critical interval.  This affected patient has a “3” allele 

at the marker D5S2849, which is not observed in either of his siblings (III:2, III:4) or his 

unaffected father (II:2) (Figure 3.3).  Therefore, we can infer that III:3 must have inherited 

the unique “3” allele from his affected mother (II:1) since his father does not carry this allele.  

Meanwhile, II:1 passed on her “2” allele to her other two children (III:2, III:4).  Since all 

three siblings in generation III share the remaining disease haplotype (critical linkage 

interval) on the same chromosome adjacent to D5S2849, a recombination event must have 

occurred during a meiosis event within individual II:1.  Our data suggest that this 

recombination occurred between markers D5S2849 and D5S405, on the chromosome passed 

on to III:3.   

  To define the boundaries of this region we observed the physical position of the two 

markers with the nearest outside-flanking positions relative to the five contiguous markers 

comprising the critical linkage interval.  Thus, the genomic coordinates 5p: 3,424,465 - 

6,312,925 (GRCh37/hg19) currently define the largest genomic region strongly linked to the 

disease phenotype in the TAA288 family.  

 

Linkage of Other TAAD/ICA Families to 5p15   

     Two other families having multiple members with TAAD and ICA inherited in an 

autosomal dominant pattern were selected for linkage analysis to the TAA288 critical 

interval, using the same microsatellite genotyping methods described.  TAA395 is a 

Caucasian family also having a dominant pattern of aneurysms.  Several men in this family 
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have TAA, and women in this pedigree have been observed with both TAA and ICA (Figure 

3.4).  DNA samples were only available for three affected members, but we observed shared 

alleles in these members at 4 markers: D5S2505, D5S635, D5S676, and D5S580.  This same 

marker D5S2505 was previously used to define the TAA288 critical interval and is linked to 

the disease phenotype in that family (Figure 3.3).  While DNA is not available from the 

deceased father of these three individuals in TAA395, the lack of these alleles in their 

unaffected mother allows us to infer that these alleles originated from their deceased father, 

who had aneurysms in his lifetime.   

 TAA480 is a small pedigree where we observed three brothers with TAAD, including 

the proband.  The mother of the proband had an ICA, and two of her brothers also had TAAD 

(Figure 3.4).  Three affected brothers (generation II) in TAA480 share a large chromosomal 

haplotype with undefined boundaries, possibly over 40 MB in size, which completely 

encompasses the TAA288 critical interval (Figure 3.5).  Though TAA480 and TAA395 are 

fairly small, the evidence of linkage in these two pedigrees can be combined with the 

TAA288 data to strengthen the evidence of linkage between aneurysms and the 5p15 locus.  

We can also combine our studies with previously published data.   

In 2006, a large French Canadian family with ICA inherited in an autosomal 

dominant pattern was observed with linkage to Chromosome 5p15.2-14.3 by Verlaan et al 

[129].  This observation was replicated by the same researchers in a second French Canadian 

family, implicating this genomic region in inherited ICA.  The genomic interval reported by 

this group overlaps with the genomic regions shared by affected members of TAA480, and 

may also overlap with TAA395 (border not yet defined).  However, the TAA288 critical 

interval does not directly overlap with this region (Figure 3.5). 
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MARKER θ = 0 θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 

D5S392 -2.26 -0.57 -0.24 -0.09 -0.02 0 

D5S2005  -2.62 -0.67 -0.33 -0.13 -0.03 0 

D5S678  -6.13 -0.17 0.13 0.16 0.09 0 

D5S1970  -6.4 -0.66 -0.26 -0.09 -0.02 0 

D5S2849  -2.8 -0.29 -0.09 -0.03 0 0 

D5S405  0.83 * 0.61 0.42 0.24 0.1 0 

D5S406  0.48 * 0.37 0.27 0.17 0.08 0 

D5S2505  0.57 * 0.41 0.28 0.18 0.09 0 

D5S635  -2.28 -0.26 -0.04 0.04 0.05 0 

D5S676  0.09 0.09 0.07 0.03 0.01 0 

D5S580 -6.35 -1.13 -0.5 -0.2 -0.05 0 

D5S580  -6.35 -1.13 -0.5 -0.2 -0.05 0  

Table 3.1: Two-Point LOD Scores of TAA288 5p15 Microsatellite Genotypes.  The table 

above contains two-point LOD scores calculated using microsatellite genotypes obtained 

from members of TAA288.  The highest scores with the best evidence of linkage are 

indicated with an asterisk, and occur at the three markers D5S405, D5S406, and D5S2505 

when θ = 0.  Affected members of TAA288 share one common allele at each of these three 

markers, as indicated in figure 2.6.  LOD scores below -2.0 is evidence for exclusion from 

linkage.  This statistical analysis was performed by Robert Yu of the MD Anderson Cancer 

Center. 
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Figure 3.4:  Other pedigrees with Evidence of Linkage to 5p15. Here we show two other 

pedigrees having a set of microsatellite alleles shared among affected members over this 

genomic interval.  The specific alleles shared between these tow families and TAA288 were 

not the same, and the genomic position of these intervals is shown in figure 3.5.  The specific 

marker genotypes in these families are not depicted, and bars with a dotted outline were 

inferred.   
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Figure 3.5:   Comparison of 5p15 Linked Regions of Pedigrees with Inherited 

TAAD/ICA.  This image depicts the relative position of possibly linked regions of 

chromosome five, compared between four different families from the Milewicz lab and the 

French Canadian families of Verlaan et al having inherited ICA.  The red box indicated 

genomic coordinates: 5p15.33-13.1.  Blue boxes show the relative positions of genomic 

linked regions for each family, and the positions of selected microsatellite markers in this 

genomic region.  Borders of linkage regions indicated by “…” are not yet defined by 

recombinant alleles. 
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3.2. Mutation Detection Results 

Target Gene Selection 

The NCBI Reference Sequence (RefSeq) collection currently indicates six transcripts 

within the 5p15 TAA288 critical interval: IRX1, LOC340094, ADAMTS16, LOC442131, 

KIAA0947, and FLJ33360 (Table 3.2). Of these transcripts, only ADAMTS16 and IRX1 are 

also described in the NCBI Online Mendelian Inheritance in Man (OMIM) database as 

having well characterized protein products.  NCBI Entrez classifies KIAA0947 as a protein 

coding gene with low complexity.   The biological functions of LOC340094 and FLJ33360 

mRNA transcripts are not known.  FLJ33360 was previously classified as a protein coding 

gene (NM_001001702.1), but this status was changed to non-coding as a significant portion 

of this transcript was found to be repetitive sequence.  LOC442131 is a predicted pseudogene 

with homology to the S.Cerivisae asparagine-linked glycosylation 3, alpha-1,3- 

mannosyltransferase (ALG3) gene. 

We considered the possible role of the only two well-characterized genes in this 

region, ADAMTS16 and IRX1, in the TAA288 disease phenotype.  Iroquois Homeobox 1 

(IRX1) belongs to a highly conserved family of transcription factors involved with complex 

pattern formation during embryonic development.  In vertebrates, it has been implicated in 

neural development [130], which is intriguing given the observance of ICA in TAA288.  

Another member of this gene family, IRX4, has been implicated in the expression of myosin 

isoforms in the developing chicken heart [131], and IRX4-deficient mice develop 

cardiomyopathy [132].  IRX1 has been studied in human carcinomas, and is regarded as a 

tumor-suppressing gene [133].  A Disintegrin and Metalloproteinase 16 (ADAMTS16) 

belongs to a family of matrix metalloproteinases with varied function.  Three members of 
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this gene family, ADAMTS2, -3, and -14 process procollagen type I-III, with type III being 

the major isoform observed in the aorta [134].  Mutations in ADAMTS2 also cause type VIIC 

Ehlers-Danlos syndrome [135;136].  ADAMTS16 itself has unknown function.   

Since there were so few genes within this region, all were selected for DNA 

sequencing with the exception of LOC442131, which was not listed in the NCBI database 

during the summer of 2008 when initial gene sequencing of this family commenced.  

Additionally, no protein product or RNA transcript has been observed for this predicted gene, 

lowering our confidence in its ability to cause human disease. 

Two other genes were selected for sequencing with positions outside the TAA288 

microsatellite-defined critical interval. SEMA5A and PDCD6 have physical positions within 

the 5p15 SNP-defined linkage interval, but outside the microsatellite-refined linkage interval; 

both were selected for sequencing prior to fine-mapping of this region using microsatellite 

genotypes. SEMA5A was selected for its implication in cranial vascular defects [137], and 

PDCD6 (also known as apoptosis-linked gene 2 (ALG-2)) plays a role in apoptosis [138], 

which could have implications in the arterial media degeneration observed in aneurysm 

pathology.  Sequencing of the SEMA5A gene was performed by Dr. Dongchuan Guo.      
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Name Description 
Physical 

Position Type Exons  
Longest 

Transcript (bp) 

D5s2849 
 

3,477,464 STR 

marker   

IRX1 Iroquois Homeobox 1 3,649,168 – 

3,654,904 
Protein 

Coding 
4 1858 

LOC340094 Hypothetical 

LOC340094 
5,087,470 – 

5,133,758 
miscRNA  

  

ADAMTS16 ADAM 

metallopeptidase with 
 thrombospondin type 

1 motif, 16 

5,193,443 – 

5,373,417 
Protein 

Coding 
23 4979 

LOC442131  Asparagine-linked 

glycosylation  
3, alpha-1,3- 

mannosyltransferase  
homolog (S. cerevisiae) 
pseudogene  

5,375,744 – 

5,376,956  
Pseudo / 

predicted 
1  1213  

KIAA0947 KIAA0947 protein 5,422,507 – 

5,490,338 
STR 

marker 
19 7927 

FLJ33360 FLJ33360 protein 6,363,554-

6,390,405 
miscRNA  2 2419 

D5s635 
 

6,365,580 STR 

marker   

 

Table 3.2: Sequencing Targets in the 5p15 Disease-Linked Region of TAA288.  The table 

above lists all genes of interest in the 5p15 genomic interval, according to the NCBI 

database.  The location of two microsatellite markers flanking this region is also shown to 

clarify genomic context.   
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Targeted Gene Sequencing of TAA288 

We observed no novel alterations in the DNA sequences obtained from affected 

TAA288 members within the genes SEMA5A, IRX1, PDCD6 or LOC340094.  We 

documented known population variants observed from these efforts but no variants within 

these four genes were considered for further analysis.  Further sequencing of PDCD6 and 

SEMA5A was discontinued when the TAA288 critical interval, defined by microsatellite 

genotyping, was observed to exclude the genomic regions encompassing these genes.   

We observed novel genetic alterations in three genes; KIAA0947, FLJ33360, and 

ADAMTS16 (Table 3.3).  Of these novel variants, we chose to further characterize novel 

alterations meeting two criteria: complete segregation with the disease phenotype of TAA288 

to confirm the variant on the haplotype associated with disease, and low frequency of the 

variant in controls.  Several novel point alterations were observed in KIAA0947, but were 

also observed in unaffected spouses of TAA288 and thus not characterized further.  A novel 

alteration in FLJ33360 was observed in one affected member of this family, but was not in 

any other affected members; it was not characterized further.  We observed three novel point 

alterations in ADAMTS16 located in intron 13, intron 20, and in the 3’UTR of this gene.  The 

3’UTR alteration was observed in an unaffected spouse of this family and not characterized 

further.  The intron 20 variant of this gene we observed was novel at the time of sequencing 

but did not fully segregate with the disease phenotype of TAA288, thus this variant was not 

located on the affected haplotype.  This point alteration was later characterized as the 

population variant rs57416330 in subsequent updates to reference databases.   

 



56 

 

 

 

 

Gene Name  
Gene 

Context  
Physical 

Coordinates  
Population 

Allele  Type  Genotyping Results  

     
Patient 1  Patient 2  Control  

KIAA0947 Intron 12 5: 5,510,392 C Indel  -/C -/C -/C 

 
Intron 12 5: 5,510,393 T Indel  -/T -/T -/T 

 
Intron 18 5: 5,540,037 T SNP  TA TA TA 

        
ADAMTS16 Intron 13 5: 5,237,001 G SNP  GA GA GG 

 
Intron 20  5: 5,306,548 A SNP  AG AA AA 

 
3’ UTR  5: 5319983  T  SNP  TA  TA  TA  

        
FLJ33360 3' UTR 5: 6,312,606 C SNP  CT CC CC 

 

Table 3.3:  Novel Sequence Alterations Observed in TAA288.  The table above briefly 

summarizes the location of novel genetic alterations detected within the TAA288 family, 

with altered alleles marked in red.  All novel alterations were point-alterations, and found in 

three genes.  No alterations were found the amino acid coding sequences.  The novel 

alterations in KIAA0947 and the ADAMTS16 3’UTR were immediately detected in control 

DNA samples.  The novel alteration in FLJ33360 did not segregate with the disease 

phenotype, as it was not found in patient 2; the pattern was observed for the intron 21 

alteration of ADAMTS16.  Only the ADAMTS16 intron 13 alteration was observed in both 

patient samples, and not the control sample sequenced.  
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Figure 3.6:  Segregation of ADAMTS16 Intron 13 Variant rs72647757 within TAA288.  

Individuals denoted in green carry the heterozygous altered allele located in intron 13 of 

ADAMTS16 (rs72647757).  This alteration is found in all affected individuals, and some 

unknown status individuals.  Note that individuals III:14 and III:12 have not undergone 

thoracic or cranial imaging, and may carry undetected aneurysms.  This alteration was 

initially investigated a possibly disease causing genetic variant due to the observed pattern of 

inheritance in this family.  It was later added to the dbSNP online database, described as a 

rare population variant.   
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The intron 13 alteration we observed in ADAMTS16 (initially novel) segregated with 

the disease phenotype of this family, and was not observed in the unaffected spouses of this 

pedigree (Figure 3.6); this was the only sequence alteration we observed to fulfill both of our 

criteria.  The common allele of this point alteration is a single guanine residue, which is 

changed to an adenine in the rare form (wildtype genotype: GG; altered genotype: GA).  Like 

the intron 20 alteration, this variant was not found in any population polymorphism databases 

during initial sequencing efforts, but was later reported as the population variant rs72647757.  

However, given the novel status of this variant at the time of discovery, we proceeded to 

characterize this variant (rs72646657) in other disease population strata.   

 

Population Strata Analysis of rs72647757 

 We first characterized the frequency of the rare allele of rs72647757 in our own 

Caucasian control cohort, observing 5/916 altered chromosomes in this population.  Later, 

the NCBI dbSNP reported a frequency of 3/184 altered chromosome in a separate Caucasian 

population cohort.  A distinction was made between these two control groups when 

comparing to disease populations, and they were also analyzed as a combined control cohort 

(Table 3.4).   

 We sequenced rs72647757 in several disease cohorts: sporadic TAAD, sporadic ICA, 

familial TAAD, familial ICA, and familial TAAD/ ICA (Table 3.4).  The rare allele of this 

variant was detected in 2/152 chromosomes from patients having sporadic ICA, and 3/308 

chromosomes from patients having sporadic TAAD.  We also pooled these two sporadic 

disease strata to form a Total Sporadic group (5/460), for separate analysis.  The rare form of  
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Fisher’s Exact Test (p value)  

Disease 
Altered 

Chromosomes  
Percent 

Altered  
 

 vs 

Milewicz 

Controls  
vs NCBI 

Controls 
vs Total 

Controls  

       Sporadic ICA 2/152  1.31 %  
 

0.2644  0.5907  0.3497  
Sporadic TAAD 3/308  0.97 %  

 

0.3273  0.4047  0.4463  
(Total Sporadic) 5/460  1.09 %  

 

0.2168  0.4146  0.3321  

       Familial ICA 2/90  2.22 %  
 

0.1269  0.5331  0.1752  
Familial TAAD  3/110  2.73 %  

 

0.0472*  0.4070  0.0735  
Familial TAAD & ICA 

(co-occurrence)  2/36  5.56 %  
 

0.0283* 0.1991  0.0407 * 
(Total Familial) 7/236  2.97 %  

 

0.0048* 0.2966  0.0097 * 

       Milewicz Controls  5/916  0.55  %  
    NCBI Controls  3/184  1.63 %  
    (Total Controls)  8/1100  0.73 %  
    

 

Table 3.4:  Rare rs72647757 Allele Compared in Aneurysm and Control Populations.  

Sporadic patients were defined as having no other first degree relatives with vascular disease; 

only one member of each pedigree (proband) was sequenced to represent the inherited 

disease population.   It should be noted that clinical information was not available for the 

NCBI controls.  Sporadic aneurysm populations were subdivided into ICA and TAAD 

occurrence and analyzed separately.  A similar analysis was performed on the inherited form 

of disease.  Statistically significant p-values are denoted with an asterisk. 
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this variant was also observed in probands from families with inherited TAAD (3/110), ICA 

(2/90), and co-occurrence of TAAD/ICA (2/36); as with sporadic disease, we also pooled 

familial strata into a Total Familial group (7/236).  Statistical analysis of allelic association 

revealed a significant association between the rare allele of rs72647757 in the familial TAAD 

strata compared to the Milewicz-only control group (p=0.0427) (Table 3.3).  Significant 

association of this allele was also observed in the combined familial disease strata compared 

to both the Milewicz-only (p=0.0048) and NCBI-Milewicz pooled control groups 

(p=0.0097).  For sporadic aneurysms, no significant association of this allele was observed 

compared to either control group.  

 

Segregation of rs72647757 With Inherited Vascular Disease 

As previously described, the minor allele of rs72547757 was observed in a total of 

7/236 probands of families having an inherited form of vascular disease, including TAA288.  

Each family (TAA171, TAA437, TAA259, TAA115, TAA050, CVL) was then analyzed for 

segregation of the rare rs72647757 allele with the disease phenotype within the family 

pedigree (Table 3.5).  Complete co-segregation of this allele with aneurysm phenotypes 

occurred in two of these families: TAA171 and TAA437 (Figure 3.7).  Incomplete 

segregation was observed in TAA050 and CVL where disease-affected members of these 

families did not carry the rare allele of this variant.  In TAA259 and TAA115, this rare allele 

was observed in unaffected spouses. 
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Family 
Individual Member 

Status  
Altered 

Genotype Notes 

TAA288 ф 

Affected: 8 8/8   
Unknown: 6 3/6   
Unaffected: 4 0/4   
Total: 18 11/18   

TAA171  ф 

Affected: 2 2/2 Possibly 3 affected 
Unknown: 15 7/15   
Unaffected: 4 0/4   
Total: 24 9/24   

TAA437 ф 

Affected: 2 2/2 Possibly 3 affected 
Unknown: 3 2/3   
Unaffected: 3 0/3   
Total: 8 4/8   

CVL ҹ  

Affected: 5 2/4 Two affected individuals without genotype  
Unknown:19 1/19   
Unaffected: 0 0/0   
Total: 25 3/25   

TAA050 ҹ   

Affected: 3 2/3 One affected individual without genotype  
Unknown: 6 2/6   
Unaffected: 0 0/6   
Total: 9 4/9   

TAA115 Ұ  

Affected: 2 2/2 Possibly 3 affected individuals  
Unknown:26 9/26   
Unaffected: 5 1/5 

 Total: 33 12/33   

TAA259 Ұ  

Affected:4 3/4 Possibly 2 more affected  
Unknown: 44 9/44   
Unaffected: 10 1/10 Need to re-genotype  
Total: 58 13/58   

                   

Table 3.5: Occurrence rs72647757 Minor Allele within Pedigrees having Inherited 

Vascular Disease.  The probands from these families were initially sequenced in an effort to 

characterize the prevalence of this rare allele in the inherited vascular disease population.  

The other members of each family were then sequenced, in order to investigate the 

segregation of this allele with the disease phenotype within each pedigree.   
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Figure 3.7:  Segregation of rs72647757 Minor Allele within Pedigrees having Inherited 

Vascular Disease.  In total, complete segregation of the rs72647757 minor allele was 

observed in three pedigrees: TAA288 (shown in figure 3.6), TAA437, and TAA171.  

Incomplete segregation was observed in two pedigrees: TAA050 and CVL.  Here, affected 

members do not carry the minor allele, as indicated with yellow arrows.  Finally, unaffected 

spouses were observed to carry the minor rs72647757 allele in two pedigrees: TAA115 and 

TAA259.   
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Other ADAMTS16 Targeted Sequencing 

 The updated status of rs72647757 as a population variant prompted the sequencing of 

other conserved regions of ADAMTS16, with the intention of observing a disease causing 

alteration closely linked to this rare population variant.  Introns 12, 13 and 14 of this gene 

were sequenced due to their physical proximity to rs72647757 but we detected no novel 

variants in these introns.  We are also sequencing the promoter region of ADAMTS16, not 

yet observing any novel sequence variants within the genomic regions ~1800 bp 5’ to exon 1 

of this gene.   

 

CNV Detection in TAA288 

 In addition to DNA sequencing, we sought to identify novel large genomic CNV 

events which may not be detectable by our sequencing methods, or may reside outside the 

TAA288 critical interval.  Genomic CNV analysis of III:5 on the Illumina 610-quad platform 

indicated the presence of seven genomic CNVs on six different chromosomes.  None of the 

events were novel, but we investigated a genomic deletion event reported on Chromosome 5 

in close proximity to the TAA288 critical interval (Table 3.6).  We attempted to verify this 

deletion by genotyping known population polymorphisms within the alleged deletion interval 

indicated by this platform: chromosome 5p: 7,230,740-7,246,456 (GRCh37/hg19).  For this 

analysis, we genotyped patients III:5 and III:4 at loci containing known population variation 

using our bidirectional sequencing methods, and observed heterozygous genotypes in both 

patients at the marker rs4355490, located at within the alleged deletion on chromosome 5p: 
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7,235,186 (GRCh37/hg19).  Thus, we did not attempt to characterize this genomic deletion 

event any further.  

 

 

 

 

PennCNV 

     Chr Start End Size Value Confidence 

1 103921620 104091739 170120 3 126 

4 162172873 162221357 48485 3 26 

5 7230740 7246456 15717 1 16 

11 51204244 51219066 14823 3 34 

17 20651 31586 10936 3 32 

17 31469658 31506122 36465 3 16 

19 1088304 1103656 15353 3 20 

      CNVP 

     Chr Start End Size Value Confidence 

1 103907158 104091739 184581 3 154 

4 162164752 162223074 58322 3 100 

5 7230740 7246456 15716 1 53 

11 51204244 51219066 14822 3 56 

17 20651 31497 10846 3 65 

17 31469658 31505872 36214 3 73 

19 1088823 1202115 113292 3 51 

 

 

     
Table: 3.6:  CNV Events in TAA288 Detected by Both PennCNV and CNVP 

Algorithms.  The table above lists all CNV events detected by both the PennCNV (left) and 

CNVP (right) algorithms.  The “value” column describes the number of genomic copies 

predicted at that interval, with 2 copies being the wildtype. “Confidence” describes the 

numbers of SNP markers within the CNV event.  All of these events are reported in the 

CHOP reference database.   
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3.3 Transcript and Protein Level Analysis of ADAMTS16 Results 

 

Detection of ADAMTS16 Protein in Aneurysm Tissues 

In order to determine if ADAMTS16 is expressed in aneurysm tissues, we sought to 

observe the levels of this protein using immunohistochemical detection methods on several 

paraffin-embedded human aortic tissue samples.  Compared to four controls (MG8978, 

MG8453, MG7751, and MG2954), we observed increased ADAMTS16-positive staining in 

two patients with TGFBR2 mutations (MG1606, MG2785) and two patients with Marfan 

Syndrome (MG3631, MG4520) (Figures 3.8, 3.9).  We also performed this procedure on an 

aneurysm patient with a mutation in the MHY11 gene and a patient with a mutation in 

ACTA2, but we did not observe a similar elevated protein level in these two patient types.   

 

Alternative Splicing of ADAMTS16 Exon 14  

The variant rs72647757 was initially ascertained as a novel, disease-segregating 

genetic alteration, and is located in intron 13 of ADAMTS16 81 bp 5’ to the start of exon 14.  

Several alternative transcripts of ADAMTS16 had been reported at the time of this study, 

including one lacking exon 14 reported in the hippocampus (ADAMTS16-005 

(ENST00000513709)); deletion of this exon results in a downstream frameshift generating an 

in-frame stop codon “TGA” in the 5
th

 codon downstream of exon 13.  Given the proximity of 

rs72647757 to an alternatively spliced exon, we investigated the potential role of this rare 

variant in the splicing of ADAMTS16 exon 14.  
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We performed PCR to amplify a fragment of the ADAMTS16 gene transcript 

immediately proximal to exon 14.  Here, we expected a fragment size of 488 bp from a full-

length amplicon, and 357 bp from a fragment with exon 14 deleted.  We amplified the 

ADAMTS16 transcript from total RNA isolated from two different dermal fibroblast control 

cell lines (MG3007, MG3002) differentiated into myofibroblasts by TGF-β1 treatment, as 

described earlier.  In this experiment, two sets of parallel time points were harvested: one 

receiving TGF-β1 treatment and the other remaining in media without receiving this 

cytokine; specific time points were 0 hr, 48 hr +TGF-β1, 72 hr +TGF-β1.  After PCR 

amplification using oligonucleotides annealing exons 12 and 16 of ADAMTS16, we observed 

a band of approximately 488bp in all samples receiving TGF-β1 treatment (TGF-β1 +).  

DNA sequencing also verified that these bands were from the correct region of the 

ADAMTS16 transcript (Figure 3.10).   

We then cultured fibroblast cells explanted from the TAA288 patient III:5 for a 

similar analysis.  An additional time point was harvested for this experiment 24 hrs after 

TGF-β1 treatment.  Unlike the control samples, our PCR reaction amplified fragments of 

approximate size 488 bp and 357 bp at all time points tested regardless of TGF- β1 treatment 

from patient III:5 (Figure 3.10).  No bands were at the 357 bp length were observed in 

control samples MG3002 or MG3028.   
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Figure 3.10: Amplification of ADAMTS16 Transcript from Patient and Control Fb 

Cells.  Depicted are polyacrylamide gels visualizing PCR products of ADAMTS16 

exon12/16 annealing primers.  Here, we expect a fragment 188bp in size from a full length 

fragment, and 357 bp from a transcript lacking exon 14.  On the left, we observed a 488 size 

fragment in two control samples 1 (MG3002) and 2 (MG3028) in samples treated with TGF-

β1 .  The gel on the right displays PCR fragments amplified from TAA288 patient III:5.  In 

this patient, we observe a fragment of size 488 and 357 bp in all samples regardless of TGF-

β1 treatment.   
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qPCR of ADAMTS16 Transcript in Cultured Cells 

 We performed quantitative real-Time PCR (qPCR) to detect the relative levels of 

mRNA transcript in fibroblasts receiving TGF-β1 treatment.  As with our analysis of 

alternative splicing, this analysis was performed on cDNA synthesized from total RNA 

harvested at specific time points after fibroblasts were exposed to TGF-β1 in supplemented 

media.  For this analysis, we used a fluorescent probe designed to bind the exon 17-18 

junction of the ADAMTS16 transcript (Taqman probe: Hs01046723) of the ADAMTS16 

transcript.   

We used three fibroblast control cell lines for this experiment (MG3000, MG3007, 

MG3029), which were closely matched to TAA288 patient III:5 by race, gender, and 

ethnicity.  These three control cell lines were grown in parallel with two fibroblast cell lines 

from TAA288 patients III:5 and IV:1.  Cells for this experiment were harvested at five time 

points (0, 6, 12, 18, 24, and 48 hours) after TGF-β1 treatment, and all  ΔΔCT values were 

normalized to control MG3000 at 0 hrs.   Elevated levels of ADAMTS16 transcript were 

observed in all three control cell lines starting 12 hours after TGF-β1 treatment, and 

remained significantly elevated compared to their zero hour time point (Figure 3.11).   

A statistically significant deviation from the control cell lines was observed in 

TAA288 patient IV:1 cells at the 12 hr time point (p=0.0025) following TGF-β1 treatment 

(Figure 3.12).  A significant deviation from the controls was observed in sample III:5 at the 

18 hr (p=0.0001) and 24 hr (0.0023) time points.  We performed this experiment several 

times (data not shown) and consistently observed significantly elevated levels of 

ADAMTS16 transcript in the TAA288 patient cell lines treated with TGF-β1.  Though the 
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specific temporal pattern varied, we consistently observed fibroblasts cultured from affected 

members of TAA288 to express elevated levels of ADAMTS16 transcript in at least one time 

point following TGF-β1 per experiment.  Thus we decided to investigate whether this 

upregulation was also observed in protein harvested from these cells. 

 

 

Figure 3.11: ADAMTS16 Transcript Levels in Control Fibroblasts Treated with TGF-

β1.  We observed elevated transcript levels on all three controls from 12-48 hours after 

receiving TGF-β1 treatment.  MG3007 has  a slightly different temporal pattern from the 

other two controls, indicating that some baseline variation of this gene expression exists 

within control populations.   
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Figure 3.12:  ADAMTS16 Transcript Levels in TAA288 Patient and Control 

Fibroblasts Treated with TGF-β1.  Here, we compare the ADAMTS16 transcript levels 

between two TAA288 Patients and the same set of three controls in Figure 3.11.  These five 

cell lines were all grown in parallel and subjected to the same TGF-β1 protocol.  Elevated 

levels of ADAMTS16 transcript were observed in patient IV:1 at 12 hrs after treatment, but 

quickly returned to baseline.  Elevated levels of ADAMTS16 transcript were observed in 

patient III:5  at 18 and 24 hours after treatment compared to all three controls.   
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Immunoblotting of ADAMTS16 Protein  

The expected full-length protein product of ADAMTS16 is 1224 aa, with a predicted 

mass of 130 kD, not accounting for post-translational modification.  For our initial 

characterization, we used the antibody sc-67440 (Santa Cruz) diluted 1:500 according to the 

manufacturer’s recommendation.  Sc-67440 is a rabbit polyclonal antibody raised against an 

epitope within the range of ADAMTS16 amino acids 986-1060 (exons 19-21) near the C-

terminus of ADAMTS-16.  As with our analysis of splicing, we first sought to observe the 

expression of this protein in control samples.   

We observed increased mRNA levels of ADAMTS16 in TAA288 patients at time 

points ranging from 12-48 hours after treatment with TGF-β1.  We expected that protein 

accumulation would be evident at time points following the observed upregulation of gene 

transcript.  Thus, we harvested protein from TGF-β1-treated fibroblast lysates at time points 

0, 24, 48, and 72 hrs following treatment.  For this analysis, we again used MG3002 as a 

fibroblast control, and VSMC cells from three healthy individuals (MG8131, MG8438, 

andMG8458) were also used.  Our initial immunodetection assay in these controls using 

antibody sc-67440 revealed a doublet of bands at approximately 130 kD in all samples 

(Figure 3.13).  In the fibroblasts from control MG3002, the relative intensity of the 130 kD 

band appears to increase slightly at the 24 hr time point following TGF-β1 treatment.   

We also detected a band approximately 150kD in size, which was more prominent in 

the VSMC lysates.   However, when we compared our results to previously published studies 

of this gene, we observed a similar 150 kD band in their negative control for ADAMTS16 

[139].  Therefore, we interpreted our observed 150kD band as nonspecific.   
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We next observed this protein in fibroblasts cultured from TAA288 patient III:5 in 

order to make direct comparisons with control MG3007.  Here, we harvested samples at 

additional time points to increase temporal resolution of expression leading up to the first 24 

hrs after TGF-β1 treatment, due to the variable gene expression we previously observed in 

patient cells (Figure 3.12); we harvested these samples from the 0, 6, 12, 24, 48, and 72 hr 

time points post TGF-β1 treatment.  Immunostaining with anti-ADAMTS16 antibody sc-

67440 detected prominent bands at 130 kD in the patient and control samples.  These bands 

stained more intensely in the patient compared to the control (Figure 3.14).  However, we 

also observed a similarly increased intensity in our immunodetection of the protein GAPDH, 

which we performed as a protein loading control.  This suggests that more total protein was 

loaded in the TAA288 samples, but we were unable to repeat this experiment due to apparent 

degradation of our total cell lysates.   
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Figure 3.13:  Immunoblot of Cultured Control Lysates Compared to Surridge et al.  

Left image: Surridge et al, α-Flag shown, later verified with α-ADAMTS16 (not shown).  

The 130 kD doublet is consistent with the expected size of ADAMTS16.  The 150 kD band is 

not identified, but is present in the media of their vector only (VO) negative control as well 

as their ADAMTS16 (TS16) over-expressing cell line.  Right top image: α -ADAMTS16 (sc-

67440), 1:500.  Right bottom image: α –GAPDH, 1:20,000 as a loading indicator.  The 

control cell line used for this experiment was MG3002.  The three SMC control cell lines are 

MG8131, MG8438, and MG8458 from left to right.   
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Figure 3.14:  Immunoblot of Cultured Control and TAA288 Patient Fb Lysates.  Top 

image:   α -ADAMTS16 (sc-67440), 1:500.  Bottom image: α –GAPDH, 1:20,000.  In this 

blot, we see increased immune signal at a size consistent with ADAMTS16 full length 

protein (130kD), though we also see a similar increase in the loading control GAPDH.  The 

patient cell line for this experiment was III:5, and the control cell line was MG3007.   
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CHAPTER 4: DISCUSSION 
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4.1 Selection of ADAMTS16 Candidate Gene 

 

 Our genome-wide linkage analysis did not reveal any genomic loci with strong 

evidence of linkage, as denoted by a LOD score of 3.0 or greater.  This was surprising, given 

the size of the pedigree and the number of informative meioses we could infer.  However, the 

5p15 genomic interval was the most strongly linked genetic interval in this family.  We also 

observed evidence of linkage to this region in two other pedigrees with similar inherited 

phenotypes (Figure 3.5).  Thus, the location of ADAMTS16 within this genomic interval 

prompted our investigation of this gene as a potential cause of disease in the TAA288 family.   

 In addition, our initial ascertainment of the ADAMTS16 rare variant rs72647757 in 

this family was intriguing given that it was not in any reference databases at the time.  It was 

also not observed in the first 376 Caucasian control chromosomes we sequenced.  With these 

initial observations, and the segregation of this variant with the disease phenotype of 

TAA288, we initially considered rs72647757 a strong candidate for the disease-causing 

alteration in this family.  However, there were two observations which caused us to redirect 

our investigation rs72647757:  The first was the frequency of this variant in the general 

population (0.73%, n=1100), and the second was the incomplete segregation of this allele in 

several pedigrees with inherited aneurysms.  Neither of these observations support our initial 

hypothesis of rs72647757 as the primary disease-causing variant in TAA288, so we shifted 

our consideration of this variant from disease-causing to a disease-associated variant closely 

linked to a cryptic causal mutation.   In hoping that the causal mutation was closely linked to 

this variant, we sequenced introns 12, 13 and 14 of ADAMTS16 but did not detect novel 

disease-segregating alterations within the DNA sequence of these introns.   
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4.2 ADAMTS16 in Aneurysm Tissues 

 

ADAMTS16 in TGFBR2 Mutation and Marfan Syndrome Tissues 

 We observed an increase of ADAMTS16 immunosignal in aortic tissues from two 

patients with MFS and two patients with TGFBR2 mutations (one of each shown).  Our 

observations of ADAMTS16 expression in these particular aneurysm patients were intriguing 

for two reasons.  First, it verified that ADAMTS16 was present in diseased arterial tissues 

from aneurysms.  This upregulation was observed in both the aortic media, and in the smaller 

vasa vasorum, which we used as an approximation to muscular arteries; intracranial artery 

tissue was not available from these patients for direct immunohistochemical detection.  

Second, patients with mutations in TGFBR2 and MFS both are thought to have dysregulation 

of TGF-β signaling [140;141].  Since expression of ADAMTS in induced in fibroblast cells 

treated with this cytokine, this provided additional evidence that ADAMTS16 may be 

involved with a pathway already implicated in the development of inherited aneurysms.    

We did not observe a similar increase in ADAMTS16 protein levels in aortic tissues 

from patients with MHY11 and ACTA2 mutations.  This suggests that ADAMTS16 is not 

upregulated in all aneurysm tissues; rather it is only increased in patients with mutations 

affecting the TGF-β signaling pathway.   

 

ADAMTS16 Expression in TAA288 Patient Fibroblast Cells 

We had two important observations of ADAMTS16 transcript levels in the TAA288 

patient cell lines.  The first was an apparent abundance of a gene transcript skipping exon 14 

(Figure 3.10).  This was especially interesting to us initially, since the rare variant is 
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rs72647757 is located in intron 13 of ADAMTS16, and mutations in intronic sequences can 

cause skipping of adjacent exons from  mRNA transcripts [142].  In addition, this variant is 

located 81 bp from the 5’ start of exon 14, and RNA splicing elements  have been observed 

as far as -273 bp 5’ to target exons [143].  However, we decided not to directly explore this 

possibility after ascertaining the rs72647757 variant in our control population.  Thus, we 

cannot say whether the increased deletion of exon 14 in TAA288 patient cells is directly due 

to this variant, or an undetected distal mutation. 

We next observed increased relative levels of ADAMTS16 transcript in TGF-β treated 

cells from TAA288 patients compared to controls (Figure 3.12).  Our qPCR detection 

methods consistently detected a significant difference between the TAA288 patient cell lines 

and controls, though the specific time point of this difference varied between experiments.  

However, even our control samples varied with respect to each other, suggesting that there 

are small baseline fluctuations in the expression of this gene in individuals without 

aneurysms. 

Since we hypothesize that the source of disease in the TAA288 family is due to a 

common inherited mutation, the increased levels of ADAMTS16 transcript we observed 

could result from a mutation leading to either over expression of this gene or from a mutation 

affecting transcript stability.  Since we could not distinguish between these two sources using 

our qPCR analysis, we decided to consider both options.   Thus, we sequenced the ~1800 bp 

promoter region [144] and the 3’ UTR of ADAMTS16.  We did not detect any novel variants 

in the promoter region of this gene, but we detected a novel point alteration in the 3’UTR of 

this gene.  However, that alteration was immediately observed in the first unaffected control 

sample we sequenced, and was not characterized further.  
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4.3 Possible Function of ADAMTS16 

Activation of ADAMTS16 by TGF-β Signaling  

The initial binding of TGF-β ligand to the extracellular domain of receptors initiates 

the canonical Smad-dependant signaling of this cytokine in fibroblast cells.  This initial wave 

of signaling causes the cell to upregulate the expression of matrix proteins and integrins 

within 12 hours of ligand binding.  Two observations indicate that ADAMTS16 is first 

activated through this canonical Smad signaling pathway.  The first is that we first observed a 

significant upregulation of ADAMTS16 gene transcript at 12 hours after TGF-β treatment in 

our control fibroblasts. The timing of the ADAMTS16 transcript elevation is consistent with 

the timing of the upregulation of matrix components by TGF-β treat fibroblasts, such as 

collagen and fibronectin.  Other members of the ADAMTS gene family are co-expressed with 

collagen isoforms, so the secretion of ADAMTS16 at this stage is also plausible [145].  The 

second observation implicating ADAMTS16 as a downstream Smad target is the presence of 

Sp1 and Egr1 transcription factor binding motifs in the promoter of this gene [146].  These 

factors can both bind Smad proteins, and are both implicated in the TGF-β induced 

upregulation of the ECM protein collagen [147;148].   

There is also a “delayed” component of TGF-β signaling that is focal adhesion and 

integrin dependant.  This secondary signal is necessary for the sustained maintenance of the 

myofibroblast phenotype, and begins 48 hours after initial ligand binding.  Given that we 

observed significantly elevated ADAMTS16 transcript in our control cells from 12-48 hours 

after exposure, it is possible that this protein is also secreted and plays a role in this 

secondary wave of adhesion dependent signaling.  However, it is difficult to elucidate the 

specific role of this protein without knowing its target substrate.   
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Potential ADAMTS16 Gene Functions 

 Though it is difficult to predict the function of a protease without knowing its 

substrate, we can predict the role of ADAMTS16 by the timing of its expression in 

fibroblasts treated with TGF-β.   If this protein is initially expressed by Smad-dependent 

signaling induced by this cytokine, it may be secreted by cells along with collagen, 

fibronectin, integrins, and other ECM components.  It is already known that some members 

of the ADAMTS gene family can modify ECM precursors into their mature active form 

[149], and ADAMTS16 may perform a similar function within this context.  Appropriate 

binding of certain integrins to ECM proteins may require prior modification by ADAMTS16 

metalloproteinase activity.  Thus, ADAMTS16 proteinase activity may have implications in 

initiating the “outside-in” adhesion-dependant signaling pathway needed to sustain the 

myofibroblast phenotype.   

We can also attempt to infer function from the location of this protein.  ADAMTS16 

contains several C-terminus thrombospondin type-1 repeats.  Thrombospondins are adhesive 

glycoproteins known to mediate both intercellular and cell-matrix interactions [150].  In 

addition, thrombospondin-1 can mediate the release of latent TGF-β from the LAP [151].  

Presuming that the TSP type-1 repeats on ADAMTS16 localize this metalloproteinase to 

thrombospondin-1, this would place it in a context to have implications in regulating TGF-β 

bioavailability.  Other members of the ADADMTS gene family may have similar roles in 

regulating cytokine availability.  Researchers have revealed evidence that ADAMTS10 can 

bind fibrillin, which sequesters the latent TGF-β within the LAP [152].  Given that members 

of the ADAMTS gene family can share functions [153;154], it is possible that these two 

proteins both have implications in regulating the bioavailability of this cytokine in the ECM.   
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Potential Role of ADAMTS16 in TAA288 Pathology 

Using the myofibroblast model system, we observed an increased deletion of exon 14 

from ADAMTS16 in TAA288 patient fibroblasts, independent of TGF-β treatment.  We 

currently do not know if this increase in exon 14 deletion in the TAA288 family  is due to the 

intron 13 variant rs72647757 or another undetected mutation.  It is possible that the variant 

rs72647757 does indeed affect splicing of ADAMTS16 exon 14 but is not enough to cause 

disease on its own.  This would mean that the hyper-responsiveness of TAA288 cells to 

TGF-β serves as a “second hit” which only causes disease when coupled with the abnormal 

splicing we observed.   

  A protein generated using the shortened transcript (truncated at exon 14) would lack 

C-terminal motifs, such as the thrombospondin type-1 repeats thought to localize this protein 

to its target substrate in vivo.  The metalloproteinase domains of ADAMTS16 are located at 

the N-terminus of this protein and would not be affected by truncation at exon 14.  Thus, we 

hypothesize that this truncated protein isoform could carry out non-specific protease activity 

within the ECM.  This increase in nonspecific protease activity coupled with a hyper-

expression of this gene in response to TGF-β leads to the aneurysm phenotype within 

TAA288 patients.  This abnormal protease activity could lead to a dysregulation of latent 

ECM cytokines, or a disruption of adhesion-dependant outside-in TGF-β signaling requiring 

proper formation of focal adhesions.  
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Figure 4.1:  Schema of ADAMTS16 Dysregulation in TAA288 Family.  The image above 

depicts our currently hypothesis of aneurysm formation  in this family.  Here, we believe that 

an unascertained mutation leads to both a increase in secretion of total and truncated form of 

ADAMTS16 into the ECM.  This increase in nonspecific protease activity within the ECM 

contributes to the formation of aneurysms in the TAA288 family.   
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4.4 Future Work 

 

 Since the ADAMTS16 intron 13 point variation rs72647757 was observed as a rare 

population variant, we do not believe that this variation alone is the causal mutation in the 

TAA288 family.  Therefore, we must continue to search for a novel mutation in the TAA288 

family.  Potential targets include distal regulatory DNA elements, predicted to influence 

expression of the ADAMTS16 gene or other genes in the 5p15 region.  Of particular interest 

are gene silencer and enhancer motifs, as they could directly contribute to the elevated levels 

of gene transcript we observed.  To ascertain such targets, we can utilize bioinformatic tools 

available on the web, available through: http://molbiol-tools.ca/DNA_Motifs.htm.   These 

free programs can detect candidate sequences based off their species conservation and 

similarity to known regulatory elements.  

 We also need to verify our observations in patient cell lines from affected members of 

TAA288.  Repeating the experiments we performed using the myofibroblast model is an 

effective way to verify that our observations are repeatable and reflect differences in 

biological processes and are not due to an undetected bias in the initial experiments.  For 

these future experiments, we will also modify our protein isolation methods to better isolate 

matrix proteins [155].  Importantly, we also need to obtain an effective antibody targeting a 

C-terminal epitope of ADAMTS16 in order to detect the isoform of this protein truncated at 

exon 14 that we hypothesize is contributing to the development of disease in this family.  

 We can also investigate the myofibroblasts from TAA288 in more detail.  If 

ADAMTS16 is necessary for the secondary wave of adhesion-dependant TGF-β signaling, 

the cells from TAA288 should not maintain the myofibroblast phenotype.  We can 

investigate this possibility by repeating our TGF-β treatment protocol and observing the 
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expression of smooth muscle alpha actin, which is a marker for myofibroblast differentiation.  

A disruption of this process could help elucidate the role of the ADAMTS16 gene which we 

can use to refine our hypothesis and elucidate the role of this gene in the development of 

disease in this family.     

 Since we observed ADAMTS16 protein at elevated levels in TGFBR2 and MFS 

patients, it would also be interesting to investigate the role of this protein in these aneurysm 

types.  It is not clear whether ADAMTS16 directly contributes to the development of these 

aneurysms, or whether the elevated protein levels we observed are merely the byproduct of 

TGF-β signaling defects in these patients.  Other future studies of this protein could 

investigate the localization of this protein within the ECM, as well as identify the target 

substrate of this gene in vivo.  With this knowledge, we can then begin to understand the role 

of this protein in TGFBR2 and MFS aneurysm tissue.   

Our evidence is not complete; many questions remain and some experiments must be 

repeated and optimized.  Despite our observations of elevated levels of ADAMTS16 

transcript in fibroblasts from the patient III:5, we have not identified a genetic alteration 

likely to be responsible.  Thus, we intend to continue sequencing the 5p15 region in this 

family until we uncover a strong candidate mutation.  We have also not been able to confirm 

whether the accumulation of the protein is also increased, and will continue to improve our 

techniques related to the visualization of this protein on immunoblots.  Currently, other 

members of our group are collaborating with a lab at Stanford University, learning 

techniques to induce the transformation of dermal fibroblasts into pluripotent stem cells 

which can then be transformed into VSMCs; such a model would be an improvement to the 

fibroblast model we have applied in this dissertation.  However, we believe the work 
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presented in this dissertation justifies a continued investigation of the potential role of this 

gene in the development of the disease phenotype observed in family TAA288.   
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