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 Signaling through epidermal growth factor receptor (EGFR/ErbB) family 

members plays a very important role in regulating proliferation, development, and 

malignant transformation of mammary epithelial cells.  ErbB family members are often 

over-expressed in human breast carcinomas.   Lapatinib is an ErbB1 and ErbB2 tyrosine 

kinase inhibitor that has been shown to have anti-proliferative effects in breast and lung 

cancer cells.  Cells treated with Lapatinib undergo G1 phase arrest, followed by apoptosis.  

Lapatinib has been approved for clinical use, though patients have developed resistance 

to the drug, as seen previously with other EGFR inhibitors.  Moreover, the therapeutic 

efficacy varies significantly within the patient population, and the mechanism of drug 

sensitivity is not fully understood.  Expression levels of ErbB2 are used as a prognostic 

marker for Lapatinib response; however, even among breast tumor cell lines that express 

similar levels of ErbB2 there is marked difference in their proliferative responses to 

Lapatinib.  

 To understand the mechanisms of acquired resistance, we established a cell line 

SkBr3-R that is resistant to Lapatinib, from a Lapatinib-sensitive breast tumor cell line, 

SkBr3.   We have characterized the cell lines and demonstrated that Lapatinib resistance 

in our system is not facilitated by receptor-level activity or by previously known 

mutations in the ErbB receptors.  Significant changes were observed in cell proliferation, 
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cell migration, cell cycle and cell death between the Lapatinib resistant SkBr3-R and 

sensitive SkBr3 cell lines.  Recent studies have suggested STAT3 is upregulated in 

Lapatinib resistant tumors in association with ErbB signaling.  We investigated the role 

that STAT3 may play in Lapatinib resistance and discovered higher STAT3 activity in 

these resistant cells.  In addition, transcriptional profiling indicated higher expression of 

STAT3 target genes, as well as of other genes that promote survival.  The gene array data 

also revealed cell cycle regulators and cell adhesion/junction component genes as 

possible mediator of Lapatinib resistance.  Altogether, this study has identified several 

possible mechanisms of Lapatinib resistance. 

 
  

 iv 
 



TABLE OF CONTENT 
 
ABSTRACT ....................................................................................................................... iii 

TABLE OF CONTENT ...................................................................................................... v 

LIST OF FIGURES ......................................................................................................... viii 

LIST OF TABLES .............................................................................................................. x 

CHAPTER 1:  INTRODUCTION AND LITERATURE REVIEW .................................. 1 

BREAST CANCER ........................................................................................................ 1 

ADVANCES AND THERAPIES ................................................................................... 2 

ERBB RECEPTORS ....................................................................................................... 4 

ERBB1 AND ERBB2 IN CANCER ............................................................................... 7 

ERBB TARGETED THERAPEUTICS .......................................................................... 8 

LAPATINIB .................................................................................................................. 10 

LAPATINIB RESISTANCE......................................................................................... 12 

STAT3 ........................................................................................................................... 13 

HYPOTHESIS .............................................................................................................. 15 

CHAPTER 2:  DEVELOPMENT AND CHARACTERIZATION.................................. 17 

OF RESISTANT CELLS .................................................................................................. 17 

INTRODUCTION ......................................................................................................... 17 

ESTABLISHMENT OF RESISTANT CELLS ............................................................ 18 

MATERIALS AND METHODS .................................................................................. 21 

Cell lines and reagents ............................................................................................... 21 

Antibodies .................................................................................................................. 21 

Cell viability assay..................................................................................................... 22 

SDS-PAGE and immunoblotting............................................................................... 22 

Polymerase chain reaction ......................................................................................... 23 

Sequencing................................................................................................................. 24 

Wound healing assay ................................................................................................. 24 

Matrigel invasion assay ............................................................................................. 24 

Cell cycle analysis ..................................................................................................... 25 

Annexin V apoptosis assay ........................................................................................ 25 

 v 
 



Statistical analysis ..................................................................................................... 26 

RESULTS...................................................................................................................... 26 

No differences in ErbB receptor levels or phosphorylations between sensitive and 
resistant cells.............................................................................................................. 26 

Resistant cells have higher invasive index ................................................................ 29 

Cell cycle distributions  between resistant and sensitive ........................................... 31 

Early apoptosis occurs in sensitive cells at 48hours .................................................. 35 

CONCLUSIONS ........................................................................................................... 36 

CHAPTER 3:  STAT3 SIGNALING ACTIVITY IN RESISTANT CELLS................... 39 

INTRODUCTION ......................................................................................................... 39 

MATERIALS AND METHODS .................................................................................. 40 

Cell lines and reagents ............................................................................................... 40 

Antibodies .................................................................................................................. 41 

Reverse phase protein array ....................................................................................... 41 

Transfection with reporter constructs ........................................................................ 42 

Luciferase assay ......................................................................................................... 43 

Immunofluorescence imaging ................................................................................... 44 

Statistical analysis ..................................................................................................... 44 

RESULTS...................................................................................................................... 45 

The resistant cells have higher level of phosphorylated STAT3 ............................... 45 

The resistant cells have higher level of translocated activated STAT3 ..................... 46 

The resistant cells have higher level of transcriptional activity of STAT3 ............... 46 

Targeting STAT3 with STATTIC ............................................................................. 48 

CONCLUSIONS ........................................................................................................... 51 

CHAPTER 4:  GENE EXPRESSION CHANGES IN RESISTANT CELLS ................. 53 

INTRODUCTION ......................................................................................................... 53 

MATERIALS AND METHODS .................................................................................. 53 

Transcriptional profiling ............................................................................................ 53 

Quantitative real-time polymerase chain reaction (RT-PCR) ................................... 54 

Transfection of siRNA oligonucleotides ................................................................... 54 

Statistical analysis ..................................................................................................... 54 

 vi 
 



RESULTS...................................................................................................................... 55 

Resistant cells:  higher gene expressions in cell cycle regulators and DNA 
replication/repair genes .............................................................................................. 55 

Resistant cells:  lower gene expressions in cell adhesion genes and TGFb pathway 
genes .......................................................................................................................... 57 

Resistant cells:  PAGE genes ..................................................................................... 58 

Resistant cells:  STAT3 target genes ......................................................................... 61 

DISCUSSION ............................................................................................................... 61 

CHAPTER 5 SUMMARY AND FUTURE DIRECTION ............................................... 65 

APPENDIX A ................................................................................................................... 68 

BIBLIOGRAPHY ............................................................................................................. 69 

VITA ................................................................................................................................. 89 

 
  

 vii 
 



LIST OF FIGURES 
 
Figure 1. Ligands that bind known dimerizations and phosphorylation sites of the ErbB 

family of receptors. ............................................................................................................. 6 

Figure 2. Current anti-EGFR drugs and the sites at which they target the receptor. .......... 8 

Figure 3. Panel of 47 breast cancer cell lines and their characteristics. ............................ 18 

Figure 4. Crystal violet cell viability assays. .................................................................... 20 

Figure 5.  Western blots of ErbB receptors in sensitive and resistant cells. ..................... 28 

Figure 6.  Matrigel invasion assay shows resistant cells have higher invasive index than 

the sensitive cells. ............................................................................................................. 29 

Figure 7.  Wound healing scratch assay to measure cell migration. ................................. 30 

Figure 8.  Cell cycle analysis. ........................................................................................... 33 

Figure 9.  Cell cycle analysis of only live cells. ............................................................... 34 

Figure 10.  Identification of three subpopulations of dead and dying cells after 1 µM 

Lapatinib treatment for 48hours. ....................................................................................... 36 

Figure 11.  RPPA analysis of phospho STAT3 Y705 levels on a panel of breast cell lines.

........................................................................................................................................... 40 

Figure 12.  Analysis of STAT3 phosphorylation in sensitive and resistant cells. ............ 45 

Figure 13.  IN-Cell image and quantification of phosphorylated STAT3 at residue Y705.

........................................................................................................................................... 47 

Figure 14.  STAT3 transcriptional activity. ...................................................................... 48 

Figure 15.  Dose response of sensitive and resistant cells to STAT3 inhibitor. ............... 49 

Figure 16.  Cell viability assays using combination of STATTIC and Lapatinib. ........... 50 

 viii 
 



Figure 17.  Gene array:  higher expressed genes in resistant cells in response to Lapatinib.

........................................................................................................................................... 56 

Figure 18.  Gene array:  lower expressed genes in resistant cells in response to Lapatinib.

........................................................................................................................................... 57 

Figure 19.  Levels of PAGE genes as measured from the gene array in sensitive and 

resistant cells. .................................................................................................................... 58 

Figure 20.  RT-PCR for PAGE2 mRNA levels. ............................................................... 59 

Figure 21.  PAGE2 siRNA validation using RT-PCR. ..................................................... 60 

Figure 22.  Cell viability assay using PAGE2 siRNA. ..................................................... 60 

 
 

  

 ix 
 



 x 
 

LIST OF TABLES 
 
Table 1:  Current ErbB targeting drugs ............................................................................... 9 

Table 2:  Gene array data on STAT3 target genes. ........................................................... 61 



CHAPTER 1:  INTRODUCTION AND LITERATURE REVIEW 
 

Understanding the acquired resistance of breast tumor cells to pharmacological 

agents remains an open and challenging area of research.  This report investigates the 

acquired resistance from prolonged treatment of Lapatinib in a breast tumor cell line.  

The background provided here covers breast cancer, advances in the field, specifically in 

the area of targeted therapy, the drug Lapatinib and its targets, and previous studies in 

drug resistance.  Additionally, a review of the literature on STAT3 and its link to ErbB 

signaling and drug resistance will be discussed.  Finally, the specific aims of this project 

will be discussed. 

 

BREAST CANCER 

Worldwide, breast cancer is the leading cause of death from cancer in women (3).  

It is the second most common cause of cancer death among women in the US, following 

lung cancer.  In 2009, the American Cancer Society estimated that 192,370 new cases of 

invasive breast cancer would be diagnosed among women in the United States, and over 

40,170 deaths by year’s end (4).  Historically, incident rates increased in the 1980s and 

mid 1990s, afterwhich it reached a plateau, when the use of mammography screening was 

increased.  Between 1999 and 2006 incident rates dropped 2.0% annually (4), likely due 

to decreased use of menopausal hormones as well as increase in mammography 

screening. 

The breast anatomy includes the glands (lobules), the ducts (small tubes that 

connect the lobules to the nipple), fatty and connective tissue, blood vessels, and lymph 
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vessels.  Milk is produced by the glands and carried to the nipple through the ducts.  The 

connective tissue holds everything together.  Breast cancer can be classified based on 

tissue of origin:  lobular and ductal.   Both type of carcinoma can be classified into two 

subgroup based whether cancer cells are in situ or invasive.   Invasive carcinoma 

accounts for about 80 percent of breast cancer (5).   

 Breast cancer, like many other forms of cancer, is believed to be caused by both 

environmental and hereditary factors.  Exposure to chemicals, viruses, or radiation can 

cause DNA damage that leads to genetic mutations (6).  Another risk factor is the failure 

of early stage immune surveillance system (7).  Abnormal growth factor signaling in the 

cells has also been linked to tumor expansion (2).  Inherited defects in DNA repair genes, 

such as BRCA1, BRCA2, PTEN and TP53, can also contribute to breast cancer 

development (8). 

 

ADVANCES AND THERAPIES 

Over the past decades there have been many advancements in the areas of 

prevention, diagnosis, and treatment of breast cancer.  Today, nearly 90% of patients who 

have been diagnosed with breast cancer will survive at least five years (9).  Mastectomy 

alone is no longer the only accepted surgical option for treatment.  Lumpectomy, 

followed by radiation therapy has replaced mastectomy as the preferred approach for 

women with early stage breast cancer (10).  Mammographic screening has reduced 

mortality (11).  It is now routinely utilized as an accepted standard for early detection.  

Combinational chemotherapy has become standard in the adjuvant treatment of patients 

in early stage of cancer.  The use of chemotherapy is to help reduce metastatic tumors.  
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Clinical trials are currently underway using neoadjuvant chemotherapy, which is a 

treatment given before surgery to shrink tumor mass.  Hormonal therapy with selective 

estrogen receptor modulators (SERMs) such as tamoxifen, and aromatase inhibitors is 

also standardized in the treatment of women with estrogen receptor (ER) positive breast 

cancer.  SERMs prevents estrogen from binding to its receptor, thus preventing growth 

stimulation by estrogen (11).  In contrast, aromatase inhibitors block estrogen production 

(11).  Some Food and Drug Administration (FDA) approved aromatase inhibitors include 

anastrozole, exemestane, and letrozole.  The use of hormonal therapy has been adapted 

for both early stage and advanced stage of cancer.  Tamoxifen and another SERM, 

raloxifene, have been shown to prevent the development of invasive breast cancer.  

Hence, tamoxifen has been an effective treatment option as well as prevention strategy. 

Her2 (human epidermal growth factor receptor 2), also known as ErbB2, is 

overexpressed in about 20% of breast cancer, and therapies targeting activity of this 

protein are being investigated (12-14).  Monoclonal antibodies and small-molecule 

tyrosine kinase inhibitors are currently in clinical use for the advanced and metastatic 

ErbB2 positive breast cancer patients.  For the next few sections of this chapter, we will 

focus on the role of ErbB2 protein in cancer. 
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ERBB RECEPTORS 

ErbB2 is a member of the epidermal growth factor receptor family of tyrosine 

kinases [ErbB1/EGFR, ErbB2/Her2/Neu, ErbB3, and ErbB4] that regulate cell growth, 

survival, migration, adhesion, proliferation and differentiation (15-17).   Members of this 

family have an extracellular ligand binding region, single membrane spanning region, 

and a cytoplasmic tyrosine kinase containing domain.  The epidermal growth factor 

(EGF) family of growth factors serve as ligands for the ErbB receptors and is divided into 

three groups based on the receptors they bind.  The first group includes EGF, 

transforming growth factor (TGFα), amphiregulin (AR), and epigen (EPG); this group 

binds to EGFR.  The second group binds to EGFR and ErbB4, and includes beta-cellulin 

(BTC), heparin-binding EGF (HB-EGF) , and epiregulin (EPR).  The third group is 

further divided into two subgroups of neuregulins (NRGs):  1) NRG1 and NRG2 which 

are specific for ErbB3 and ErbB4, and 2) NRG3 and NRG4 which are specific for ErbB4 

only (18).  

Following ligand binding, an ErbB receptor homodimerizes or heterodimerizes 

with another ErbB family member, followed by autophosphorylation of specific tyrosine 

residues in the intrinsic kinase domain (2).  See Figure 1.  The known combinations of 

dimerization are shown in Figure 1A where ErbB1, ErbB3, and ErbB4 can all form 

homodimers or heterodimers with ErbB2.  ErbB2 lacks the extracellular binding domain 

and therefore does not bind to a ligand; it can however dimerize and activate itself and is 

a preferred partner for heterodimerization with the other ErbB receptors (Hynes and Lane 

2005). 
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 The phosphorylation sites serve as docking sites for recruitment of proteins that 

lead to activation of intracellular signaling pathways.  Several different signaling 

pathways may be activated depending on which specific receptor residues phosphorylated 

and the proteins recruited, as shown in Figure 1B.  For example, the mitogen-activated 

protein kinase (MAPK) cascade that affect growth, differentiation and apoptosis is 

activated by recruitment of growth-factor-receptor-bound protein 2 (GRB2) and Src 

homology 2 domain-containing (SHC) protein to the receptor.  The recruitment of GRB2 

is dependent on the phosphorylation on EGFR at residues 1068/1086 and 1173 and on 

ErbB2 at residues 1139 while SHC recruitment depends on ErbB2 phosphorylation at 

121/122.  Another important pathway, the phosphatidylinositol 3-kinase (PI3K)−AKT, 

which mediates anti-apoptotic activities, is stimulated through recruitment of the p85 

adaptor subunit of PI3K to the ErbB3 receptor (2).  Other pathways, such as those 

containing effectors like SRC tyrosine kinase, mammalian target of rapamycin (mTOR), 

are also activated as a result of EGFR activation (2).  Alternative signaling cascades, such 

as those of the signal transducer and activator of transcription (STAT) family, leads to 

activation of transcription factors; for example STAT3, which translocates to the nucleus 

and activate pro-survival factors (2).  
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Figure 1. Ligands that bind known dimerizations and phosphorylation sites of the 
ErbB family of receptors.  
A) Different homo and hetero dimers that can be formed by the ErbB receptors, 
along with ligands that can bind and activate the corresponding dimers.  B) The 
phosphorylation sites in the kinase domain of the ErbB receptors and the 
intracellular signaling proteins that are recruited to the corresponding sites.  
Reprinted by permission from Macmillan Publishers Ltd:  Nature Review Cancer 
(2), copyright 2005. 

A 
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ERBB1 AND ERBB2 IN CANCER 

Many studies have shown that EGFR and ErbB2 have been associated with a 

variety of characteristics of cancer, such as increased proliferation, decreased apoptosis, 

metastasis, and resistance to chemotherapy and radiotherapy (19, 20).  In addition, EGFR 

and ErbB2 have been reported to be amplified, overexpressed, or mutated in numerous 

solid tumor types, including 20-30% of breast cancers where they are linked to aggressive 

cancer category and poor patient outcome (12-14).  For example, in gliomas EGFR 

amplification was found concomitantly with mutations in the extracellular domain of type 

3 variant of EGFR (21).  Furthermore, many EGF-related growth factors are produced 

either by the tumor cells themselves or the surrounding stomal cells, causing constitutive 

activation of EGFR (22, 23).   

The ErbB2 gene has also been reported to be amplified in human breast cancer 

(24), and its overexpression by transfection methods results in transformation of normal 

human fibroblasts (25).  In nude mice, ErbB2 amplified breast cancer cells exhibit higher 

rates of DNA synthesis, proliferation, invasion and metastatic potential (26, 27).  It has 

been demonstrated that ErbB2 transgenic mice develop breast cancer (28).  ErbB2 

overexpression has shown to increase the outgrowth of metastatic tumor cells in the 

brain. 

  

 7 
 



ERBB TARGETED THERAPEUTICS 

The established role of EGFR and ErbB2 in promoting growth and survival of 

various tumor types make them attractive therapeutic targets.  Drugs that are in clinical 

use or advanced pre-clincal studies comprise of monoclonal antibodies and tyrosine 

kinase inhibitors (TKIs) (1).  Several companies have developed monoclonal antibodies 

targeting the extracellular domains of these receptors and preventing activation.  Other 

drugs include the TKIs that enter the cells and target the ATP binding sites, thus 

preventing receptors from phosphorylating target proteins.  See Figure 2 for illustration 

of their mechanisms.  Table 1 below shows current drugs used to target EGFR or ErbB2, 

or both.   

 

 
Figure 2. Current anti-EGFR drugs and the sites at which they target the receptor.   
Reprinted by permission from Elsevier:  Cancer Cell (1), copyright 2006. 
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Table 1:  Current ErbB targeting drugs. 

Source: (2) 

Monoclonal 
Antibodies Target 

Tyrosine Kinase 
Inhibitors Target 

TTrraassttuuzzuummaabb  
((HHeerrcceeppttiinn))  

EErrbbBB22  GGeeffiittiinniibb  ((IIrreessssaa))  EEGGFFRR  

PPeerrttuuzzuummaabb  
((OOmmnniittaarrgg))  

EErrbbBB22  EErrlloottiinniibb  ((TTaarrcceevvaa))  EEGGFFRR  

CCeettuuxxiimmaabb  
((EErrbbiittuuxx))  

EEGGFFRR  LLaappaattiinniibb  EEGGFFRR  //EErrbbBB22  

MMaattuuzzuummaabb  EEGGFFRR  EEKKBB--556699  EEGGFFRR  //EErrbbBB22  
PPaanniittuummuummaabb  EEGGFFRR  AAAAEE778888  EEGGFFRR//EErrbbBB22//VVEEGGFF  

        CCII--11003333 EEGGFFRR  //EErrbbBB22  
 

The drug trastuzumab (Herceptin) by Genetech has been the focus of many 

studies.  Trastuzumab is a monoclonal antibody that binds to the extracellular domain of 

ErbB2.  FDA approved the use of trastuzumab in clinics in 1998.  Several publications 

have shown that in conjunction with adjuvant chemotherapy, trastuzumab lowers the risk 

of recurrence in ErbB2 positive breast cancer patients, compared to chemotherapy alone 

(29-31) and has significant effect on patient survivorship (32).  However, trastuzumab, 

like the rest of the monoclonal antibody drugs, is controversial because of its cost in 

production. 

The introduction of the tyrosine kinase inhibitors as therapeutics has been more 

recent.  These drugs can target either EGFR or both EGFR and ErbB2 receptors.  Among 

these inhibitors, gefitinib and erlotinib both target only one receptor, EGFR, while newer 

FDA approved drugs, such as Lapatinib target both EGFR and ErbB2.  Increased 

expression of EGFR and ErbB2 occurs in about 30% of breast cancers and since these 

two receptors are heterodimer partners, strategies in which the use of drugs like Lapatinib 

or combination of drugs are being considered for clinical trials. 
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Several studies have shown that targeting both EGFR and ErbB2 may have 

synergistic effects on proliferation for the BT474 and SkBr3 breast tumor cell lines (33).  

Our work focuses on Lapatinib because it targets both EGFR and ErbB2 that are 

implicated in cancer.  Among the receptor tyrosine kinase inhibitors, it has been shown to 

be most specific to these two receptors, which is important in our study of acquired 

resistance.   

 

LAPATINIB 

Lapatinib is an orally active small molecule tyrosine kinase inhibitor developed 

by GlaxoSmithKline.  This compound is a potent ATP-competitive inhibitor that targets 

EGFR and ErbB2.  In cell free biochemical kinase assays it has been shown to inhibit 

EGFR and ErbB2 tyrosine kinases by 50% (IC50) at concentrations of 10.8 and 9.3 nM, 

respectively (Rusnak, Lackey et al. 2001).  In a study where the binding affinity of 20 

kinase inhibitors for 100 different kinases were screened, Lapatinib was found to be the 

most specific because it bound EGFR and ErbB2 almost exclusively (34). Compared to 

other ErbB receptor tyrosine kinase inhibitors, Lapatinib has slower dissociation from 

receptor, resulting in prolonged effect on receptor downregulation (35).  In vitro, it has 

been shown that Lapatinib blocks EGFR and ErbB2 phosphorylation and decreases 

phosphorylation of downstream MAPK and Akt (36).  Lapatinib has shown to have anti-

proliferative effects on breast and lung cancer cells (37, 38).  In cell lines across multiple 

tumor types, it has been observed that Lapatinib-treated cancer cells undergo apoptosis or 

G1 cycle arrest (39, 40).    
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In phase I clinical studies, Lapatinib was tolerated up to 1800 mg once daily in 

breast cancer patients, with side effects of diarrhea, nausea, rash, fatigue, anorexia, and 

vomiting.  Clinical activity was observed at a minimum of 650 mg/day (41).  

Pharmacokinetic data from these studies showed serum level of Lapatinib peaked 4 hours 

after dosing, accumulate two fold with daily dosing, with steady state achieved in 7 days.  

A phase II trial showed that Lapatinib was effective in approximately 20% of patients 

with ErbB2-positive metastatic breast cancer who had not received first-line 

chemotherapy (42).  In a phase III trial, it was demonstrated that women with ErbB2-

positive metastatic breast cancer benefit from Lapatinib, whereas ErbB2-negative breast 

cancer did not (43).  In 2007, FDA approved Lapatinib for use in combination with 

capecitabine for patients (previously treated with anthracycline, taxane, or trastuzumab) 

who have metastatic breast cancer that overexpresses ErbB2 (44), after several phase III 

trials that demonstrated the synergistic effect compared to either alone (45-47).   

 Lapatinib offers improvements over trastuzumab.  Aside from its specificity to 

EGFR and ErbB2, Lapatinib induces apoptosis in trastuzumab-resistant breast SkBr3 

cancer cells (48).  In 2009, Scaltriti et. al showed that Lapatinib enhances the effects of 

trastuzumab in MCF7 and SkBr3 breast cancer cell lines (49).  Additionally, Lapatinib’s 

anti-tumor activity was observed in Japanese patients with ErbB2-positive metastatic 

breast cancer that relapsed after trastuzumab-based therapy (50).  Furthermore, several 

studies demonstrated synergistic effects for Lapatinib in combination with trastuzumab in 

xenograft tumor reduction (36, 51). 
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LAPATINIB RESISTANCE 

Therapeutic efficacy of Lapatinib in patient populations is limited by both 

primary and acquired resistance.  Multiple phase II trials have revealed that only 20% to 

35% of patients with ErbB2-positive metastatic breast cancer respond to Lapatinib (42, 

52).   Similar to trastuzumab, the medium duration of response to Lapatinib is less than 

one year (52, 53).  Thus, Lapatinib resistance is a vital issue, especially considering 

ErbB2 is used as a biomarker to initiate Lapatinib treatment in patients.  However, the 

mechanisms of drug sensitivity and acquired resistance are not fully understood at this 

time. 

In an in vitro model, it was discovered that Lapatinib resistance in BT474 breast 

tumor cells was mediated in part by estrogen receptor (ER) and progesterone receptor 

(PR) signaling upregulations in response to Lapatinib, with evidence in increased activity 

in FOXO3a and caveolin-1, as well as Bcl-2 anti-apoptotic protein (38).  Furthermore, 

ErbB2+/ER+ tumor biopsies after 14 days of Lapatinib treatment also reflect increased 

expression of FOXO3a, PR, and Bcl-2.  Consequently combinational treatment with 

tamoxifen demonstrated resistance prevention, suggesting such therapeutic approach is 

appropriate for ErbB2+/ER+ patients (38).   

Within the past decade, many studies have investigated EGFR/ErbB2 tyrosine 

kinase inhibitors and the development of subsequent resistance following treatment in 

lung and breast cancer patients.  The major contributing factor was identified as 

mutations in the kinase domain of EGFR and/or ErbB2.  Recent studies by Tam et. al 

identified mutations in EGFR which confer different degree of sensitivities to gefitinib in 

lung adenocarcinomas (54).  Earlier work by Wang and collaborators discovered that 
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lung cancer NCI-1781 cells with mutated ErbB2 are insensitive to EGFR inhibitors while 

remain sensitive to ErbB2 inhibitors (1).  These studies confirmed that mutations in 

EGFR and ErbB receptors may confer anti-ErbB drug resistance.  However, there have 

been several studies in lung cancer patients harboring specific mutations in EGFR which 

have been linked to increased sensitivity to tyrosine kinase inhibitors, such as gefitinib 

and erlotinib, compared to patients that express wild type EGFR (55-57).  Some groups 

proposed the activation of alternate pathways when EGFR and ErbB2 are inhibited as the 

sources of resistance.  In 2007, Engelman et. al discovered that hepatocyte growth factor 

receptor (MET) amplification leads to gefitinib resistance in lung cancer cells by 

activating ErbB3 leading to increased Akt signaling (58).  Besides the ErbB receptors, 

other molecules have been implicated in ErbB targeted drug resistance.  Activated Src 

and Ras were also implicated as causes of gefitinib resistance by activating either or both 

Akt and MAPK signaling pathways in human gallbladder adenocarcinoma cells (59).  

Another study by Martin et al. reported that in the HCT116 colorectal carcinoma cell line, 

Lapatinib resistance was mediated by elevated induced myeloid leukemia cell 

differentiation protein (MCL-1) and decreased Bcl-2 homologous antagonist/killer 

(BAK) activation, and not by an ErbB mutation (60). 

 

STAT3 

Recent studies have suggested a role for signal transducer and activator of 

transcription 3 (STAT3) in anti-ErbB resistance.  In 2005, Greulich et al. observed that 

cell lines harboring EGFR mutations have increased levels of phosphorylated STAT3 

which correlated with gefitinib sensitivity (61, 62).  Interleukin-6 (IL-6) and STAT3 
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signaling were also linked to cetuximab and radiation resistance in pharyngeal cancer 

(63).  Thus, we hypothesize that STAT3 may play a role in the Lapatinib acquired 

resistance. 

 STAT3 is one of seven members of the STAT family:  STAT1, STAT2, STAT3, 

STAT4, STAT5A, STAT5B, and STAT6.  The proteins of this family have two roles:  1) 

transduce signal through cytoplasm and 2) initiate transcription of genes involved in cell 

cycle, apoptosis, proliferation, survival, differentiation and development (64-66).  STATs 

were originally discovered as mediators of signaling from IL-6 and IFN receptors 

following ligand binding (67, 68).  Each STAT family member responds to specific 

cytokines, and each regulates a specific set of genes.  Following receptor activation, the 

Janus kinase (JAK) family kinases (JAK1, JAK2, JAK3, JYK2) phosphorylates STAT 

proteins.   In response, STATs homodimerize or heterodimerize with other STAT 

members via phosphotyrosine Src homology 2 (SH2) domain interaction.  The dimers 

then translocate to the nucleus where they function as transcription factors for target 

genes, many of which encode for cytokines and growth factors, thus providing a 

mechanism for autocrine and paracine STAT activation (69, 70).   

 Like other STATs, STAT3 is activated by tyrosine phosphorylation in response to 

stimulation by cytokines and growth factors.  Its activation is specifically mediated by IL-

6 cytokine family members, oncostatin M (OSM), and leukemia inhibitory factor, and by 

growth factors such as platelet-derived growth factor (PDGF), fibroblast growth factor 

(FGF), vascular endothelial growth factors (VEGF) and EGF (71-74).  STAT3 is 

phosphorylated at tyrosine residue 705 and at serine residue 727, which results in 

maximal activation of STAT3’s transcriptional activity (75).  In addition to JAK family 
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members, STAT3 is tyrosine phosphorylated by two other types of kinases:  1) receptor 

tyrosine kinases such as EGFR, FGFR, or PDGFR, and 2) nonreceptor-associated 

tyrosine kinases like Src, Ret, or Bcl-Abl protein (76).     

Following tyrosine phosphorylation, STAT3 either homodimerizes or 

heterodimerizes with STAT1, then translocates to the nucleus to begin transcription of 

numerous genes, including survivin, bcl-2, bcl-xL, mcl-1, p21, c-Myc, VEGF, and cyclin 

D1 (74, 77-80).  STAT3 is regulated by several different mechanisms.  Suppressors of 

cytokine signaling (SOCS) proteins attenuate STAT3 activity by inhibiting upstream JAK 

activation (81).  Other mechanisms include protein inhibitors of activated STATs (PIAS) 

proteins and protein tyrosine phosphatases that target STAT3 directly (81-83).   

 Studies have implicated STAT3 in oncogenesis, promoting abnormal apoptosis, 

cell cycle progression, angiogenesis, and tissue invasion (64).  Bromberg et al. in 2002 

demonstrated that STAT3 is required for many cancer cell lines to maintain a 

transformed phenotype (84).  Numerous studies have shown that STAT3 is constitutively 

activated in a variety of cancer types including:  breast (85), prostate (86), leukemia (87), 

lung (88), thyroid (89), and head and neck squamous cell carcinoma (90).  Consequent 

studies show that small molecule tyrosine inhibitors targeting STAT3 activation result in 

growth suppression and apoptosis (87, 91, 92).  Similar effects were observed using 

dominant-negative STAT3 and antisense oligonucleotides (92-94). 

HYPOTHESIS 

 We wanted to show that for a particular breast cancer cell line that acquired 

resistance to Lapatinib is mediated by alterations in the gene regulatory and signaling 

networks.  Specifically in this project, we aimed to characterize the resistant cell line and 
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identify changes in the ErbB signaling proteins and gene expressions that may be 

involved in Lapatinib resistance.  This study consisted of three specific aims.  Aim 1 was 

to develop and characterize a Lapatinib resistant cell line derived from SkBr3, a 

Lapatinib-sensitive breast cancer cell line.  Aim 2 was to identify ErbB signaling network 

changes in the developed resistant cell line and to compare it to the parental line.  Aim 3 

was to determine gene expression changes in the resistant cell line in response to 

Lapatinib.  The details of the study for Aim 1, 2, and 3 will be discussed in chapters 2, 3, 

and 4, respectively. 
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CHAPTER 2:  DEVELOPMENT AND CHARACTERIZATION 

OF RESISTANT CELLS 
 

INTRODUCTION 

 To understand how breast cancers may acquire resistance to Lapatinib, we 

developed a Lapatinib-resistant cell line.  Studies performed by Xia et. al described the 

establishment of a Lapatinib-resistant clonal cell lines using the breast cancer BT474 cell 

line (38).  We adapted their protocol to develop a Lapatinib-resistant SkBr3 breast cancer 

cell line, named SkBr3-R.  The parental SkBr3 cell line, like BT474, has a GI50 value of 

0.03 µM  and is among the most sensitive cell lines to Lapatinib, as shown in Figure 3 

(51, 95).  It is interesting, though not surprising that the most sensitive cell lines all 

overexpress ErbB2. 

In this chapter, the protocol used in establishing the SkBr3-R cell line will be 

discussed first.  The remaining sections of the chapter will report our findings in the 

characterization of this Lapatinib resistant cell line, including cell viability assays that 

verify the increased in Lapatinib resistance. 
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Figure 3. Panel of 47 breast cancer cell lines and their characteristics.  
 A) The cells are ranked based on their sensitivity to Lapatinib, with tissue subtype 
indicated.  B) Overexpression and mutations for certain proteins have been identified for 
the cell lines.  Source:  Communication Drs. Joe Grey and Gordon Mills. 

 

ESTABLISHMENT OF RESISTANT CELLS 

Initially, the SkBr3 cells were grown in Lapatinib at concentration 0.01 µM, well 

below GI50 value of 0.03 µM.  We adopted a set of rules that allowed us to increase 

Lapatinib concentration while maintain viable cells.  First, following each passage (when 

confluency hit 90%), cells were allowed to attach overnight, after which Lapatinib was 

added.  Second, Lapatinib was removed from the media for the remaining time of that 
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passage whenever confluency stalled for more than two weeks.  Third, the media were 

refreshed every three to six days, depending on the confluency.  Our prior protocol called 

for Lapatinib-containing media to be refreshed every day; however, that resulted in non-

viable plates after two to three weeks.  This modification of changing from continuous 

exposure to periodic acute exposure of Lapatinib allowed the concentration-increasing 

process to continue past the one month time point.  Fourth, we increased Lapatinib 

concentration only after a minimum of four successful passages.  Fifth, regarding the 

pace of concentration increase, we doubled the concentration until 0.2 µM was reached, 

at which point we increased at increments of 0.2 µM.    After 12 months, the Lapatinib-

insensitive SkBr3-R reached 1.5 µM and could not tolerate higher concentrations.  We 

attempted single-cell cloning but were unsuccessful.  Two techniques were tested:  

cloning cylinder isolation of cells and 96-well serial dilution cell isolation.  Both resulted 

in non-viable wells of cells after three weeks.  Subsequently, using the pooled SkBr3-R 

cells we performed Lapatinib dose response assays to determine the cells’ GI50 value. 

Cell viability assays confirmed a right shift in the dose response curve for the 

resistant cell line, which we named SkBr3-R, with GI50 value at 2.6 µM, over 100 fold 

decrease in sensitivity compared to the parental cell line.  See Figure 4.   
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MATERIALS AND METHODS 

Cell lines and reagents  
 
 SkBr3 breast cancer cell line was obtained from UT M.D. Anderson Cancer 

Center Characterized Cell Line Core Services.  Both SkBr3 and SkBr3-R cell lines were 

characterized by Core Services to be related and known mutations verified.  Cells were 

routinely maintained in RPMI 1640 (Invitrogen, Carlsbad, California) supplemented with 

10% fetal bovine serum (FBS)( Sigma-Aldrich, St. Louis, Missouri) and 

penicillin/streptomycin (Mediatech, Manassas, Virginia).  Other cell culture supplies 

include trypsin-EDTA (Invitrogen, Carlsbad, California), cloning discs (Fisher Scientific, 

Waltham, Massachusetts), phosphate buffered saline (PBS) (Mediatech, Manassas, 

Virginia).  Lapatinib (LC Laboratories, Woburn, Massachusetts) was dissolved in 

dimethyl sulfoxide (DMSO) from EMD.  Triton X-100 (EMD, Gibbstown, New Jersey), 

RNase A(Fisher Scientific, Waltham, Massachusetts), propidium iodide (MP 

Biomedicals, Solon, Ohio), and ethanol (Pharmaco-Aaper, Brookfield, Connecticut) were 

used to fix and stain cells in cell cycle analyses.   Crystal violet (Sigma-Aldrich, St. 

Louis, Missouri), sodium citrate (Fisher Scientific, Waltham, Massachusetts), methanol 

(Ricca Chemical Co, Arlington, Texas) were used in crystal violet cell viability assays.  

Bovine serum albumin (BSA)(Fisher Scientific, Waltham, Massachusetts) was used for 

western blots.  For DNA gel electrophoresis, we used ethidium bromide (EMD, 

Gibbstown, New Jersey) and agarose (EMD, Gibbstown, New Jersey).  

Antibodies 
 

The following antibodies were used for immunoblotting: anti-phospho-EGFR 

(Y1068); anti-phospho-EGFR(Y992); anti-phospho-EGFR (Y1045); anti-phospho-EGFR 
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(Y845); anti-phospho-HER3/ErbB3 (Y1289); anti-phospho-HER2/ErbB2 (Y1248); anti-

EGFR; anti-ErbB2; anti-ErbB3; anti-ErbB4;  (Cell Signaling Technology, Boston, 

Massachusetts); and anti-β-Actin (Sigma-Aldrich, St. Louis, Missouri).   

Cell viability assay 
 
 Cells were seeded (5 x103 per well) in 96-well plates.  Next day, cells were 

treated with Lapatinib for 8 concentrations (0, 0.01, 0.05, 0.10, 0.5, 1.0, 5.0, 10.0, 25.0 

µM) and for another 8 concentrations (0, 0.1, 0.5, 1.0, 5.0, 10.0, 50.0, 100.0 µM).  At the 

0, 48, 96, 120 hour time points, plates were collected for reading.  Volume of 50µL of 

crystal violet solution (0.5% crystal violet w/v, 20% methanol v/v) was added to each 

well to allow staining for 10 minutes, followed by gentle rinse with water to remove 

excess stain.  Once dried, the wells were filled with 100µL of sorensins buffer (0.1M 

sodium citrate [pH4.2], 50% v/v ethanol) to redissolve crystal.  After one hour with the 

crystal violet uniformly dissolved, cell viability was determined by measuring the 

absorbance at 570nm using a Vmax kinetic microplate reader (Molecular Devices, 

Sunnyvale, California).  Each sample was measured in quintuplicate. 

SDS-PAGE and immunoblotting 
 
 Assays were performed as previously described (96).  SkBr3 and SkBr3-R cells 

were seeded in 6-well plates (500,000 cells per well) in triplicates.  The following day, 

cells were treated with Lapatinib at 1 µM.  Controls were DMSO used in equal volumes.   

Cells were lysed by incubation on ice for 15 minutes in a sample lysis buffer (50 mM 

Hepes, 150 mM NaCl, 1 mM EGTA, 10 mM sodium prophosphate, pH 7.4, 100 nM NaF, 

1.5 mM MgCl2, 10% glycerol, 1% Triton X-100 plus protease inhibitors; aprotinin, 

bestatin, leupeptin, E-64, and pepstatin A).  Cell lysates were centrifuged at 15,000 g for 
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20 minutes at 4°C. The supernatant was frozen and stored at −20°C.  Protein 

concentrations were determined using a protein-assay system (BCA, Bio-Rad, Hercules, 

California), with BSA as a standard. For immunoblotting, proteins (25 µg) were 

separated by SDS-PAGE and transferred to Hybond-C membrane (GE Healthcare, 

Piscataway, New Jersey).  Blots were blocked with 3% BSA TBS-T for 60 minutes and 

incubated with primary antibodies overnight, followed by goat anti-mouse IgG-HRP 

(1[ratio]30,000; Cell Signaling Technology, Boston, Massachusetts) or goat anti-rabbit 

IgG-HRP (1[ratio]10,000; Cell Signaling Technology) for 1 hour.  Secondary antibodies 

were detected by enhanced chemiluminescence (ECL) reagent (GE Healthcare, 

Piscataway, New Jersey).  Quantification of bands were performed by ImageJ (National 

Institutes of Health). 

Polymerase chain reaction 
 
 DNA templates were isolated from cells using FlexiGene DNA Isolation kit 

(QIAGEN).  Primers were designed using Primer3 Online (See Appendix A for primer 

sequences).   PCR master mix consisted of the following µL amount per sample:  10x Hif 

buffer 2.5, dNTPs 1.5, forward primer (0.05µg/µL) 1, reverse primer (0.05µg/µL) 1, Taq 

Hif 0.2, MgSO4 0.5, H2O 8.3, DNA template (1µg) 10.  Total volume per PCR reaction 

was 25µL.  PCR reactions were carried out in Bio-Rad MyCycler thermal cycler 

(SN#580BR).  Two sets of PCR programs were used:  1) [94C, 2’ (94C, 30”; 54C, 30”; 

68”, 1’) 35 cycles, 68C, 10’; hold 4C] and 2) [94C, 2’ (94C, 30”; 60C, 30”; 68”, 1’) 35 cycles, 

68C, 10’; hold 4C].  
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Sequencing 
 
 PCR products were visualized using ethidium bromide on a 1% agarose gel and 

separated based on product size using electrophoresis.  Desired DNA fragments were 

extracted from PCR products using QIAquick PCR Purification Kit (QIAGEN).  DNA 

samples were submitted to UT M.D. Anderson Cancer Center DNA Core Services for 

sequencing. 

Wound healing assay 
 
 SkBr3 and SkBr3R cell lines were plated to confluency in 6-well plates and 

treated with Lapatinib (1 µM) or DMSO for 24 hours prior to scratches with a sterile 

P200 pipette tip (SureOne:  Fisher Scientific, Pittsburg, PA).  The scratch was 

photographed with an inverted microscope (Eclipse TE2000E: Nikon, Melville, NY) over 

a 3 days period after medium was refreshed to observe any healing migration. 

Matrigel invasion assay 
 
 BD BioCoat matrigel Invasion Chamber (BD Biosciences) was utilized.  

Following rehydration of Matrigel inserts and control inserts, cells were seeded (5x104 

cells/mL) in a 24-well chamber plate in triplicates per condition.  FBS was used as 

chemoattractant, Lapatinib was used at 1 µM.  Inserts were transferred to wells 

containing FBS and cells were placed on inserts.  The chamber plate was incubated for 22 

hours in a humidified tissue culture incubator, at 37C, 5% CO2 atmosphere.  After 

staining, cells were counted per Matrigel.  Analysis was performed by calculating % 

invasion using ratio of cells invading through Matrigel insert to cells migrating through 

control insert.  Invasion Index = % Invasion Test Cell / % Invasion Control Cell. 
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Cell cycle analysis 
 
 Cells were seeded into 6-well plates in triplicates, with consideration of the 50-

hour doubling rate, growth retardation by Lapatinib, and harvesting at confluency of 70-

90%.  Harvesting time points were day 0 (when 1 µM Lapatinib was added), day 2, day 

4, and day 6.  At each harvest, cells were trypsinized for 2-5 minutes, resuspended in 

medium, followed by centrifugation for 6 minutes at 200g at room temperature.  After 

two centrifugations to remove supernatant using media containing serum, cells were 

counted and single-cell-resuspended in PBS (1x106 to 107 cells in 0.5mL).  Cells mixture 

was added to 4.5mL of 70% ethanol in 12x75mm centrifuge tubes for fixation and kept in 

4C for storage (2 hours minimum).  After all time points collected, the samples were 

resuspended in 5mL PBS, centrifuged after which supernatant was decanted.  The cells 

were incubated at room temperature for 30 minutes with 1mL propidium iodide staining 

solution (0.1%(v/v) Triton X-100 in PBS, 0.2mg/mL RNase A, 0.02mg/mL propidium 

iodide).  Cell fluorescence was measured by flow cytometry.  For each sample, 20000 

cells were scanned.  Analyses of data were done with DNA content histogram 

deconvolution software Cell Quest Pro. 

Annexin V apoptosis assay 
 
 Cells were seeded into 6-well plates (500,000 per well) in triplicates.  Following 

day, cells were treated with Lapatinib (1 µM).  Controls were DMSO used in equal 

volume.   At the 24 and 48 hour time points, cells were washed by cold PBS, trypsinized, 

and resuspended in 1X binding buffer (10X Binding Buffer:  0.1 M Hepes, pH 7.4; 1.4 M 

NaCl; 25 mM CaCl2) at a concentration of 1 x 106 cells/mL.  100µL of cell mixture was 

added to 5mL culture tube where it was stained with 2µL Annexin V-FITC solution (BD 
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Biosciences).  After gentle mix and incubation for 15 min at room temperature in the 

dark, 400µL of 1X binding buffer was added to each tube.  Addition of propidium iodide 

staining solution was followed immediately by analysis by flow cytometry, performed at 

the UT M.D. Anderson FACS Services department.  Controls included unstained cells, 

Annexin V-FITC stained and propidium iodide (to account for sub G1 cells) stained 

samples. 

Statistical analysis 

 
 Microsoft Excel and GraphPad prism software (GraphPad Software) were utilized 

in the analyses of cell viability assays and generation of bar graphs and boxplots.   

 

RESULTS 

No differences in ErbB receptor levels or phosphorylations between sensitive and 
resistant cells 
 
 To assess whether change in sensitivity to Lapatinib is characterized by changes 

at the receptor level, we performed immunoblotting using antibodies against total EGFR 

and ErbB2 and found no significant differences between the two cell lines in their ErbB 

receptor protein expressions, with or without Lapatinib treatment (48 hours).  See Figure 

5.  Concentration of Lapatinib used was 1 µM because it was the concentration at which 

resistance cells were maintained; above GI50 value of sensitive but below that of resistant 

cells.  It has been previously shown that Lapatinib-resistant BT474 cells do not differ 

from its parental Lapatinib-sensitive cells in ErbB receptor expression (38).  Thus, we 

find our result similar to that of Xia’s group.  We also examined the effect of Lapatinib 

on the phosphorylation of the ErbB receptors, after 48 hours of treatment.  Again, similar 
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to Xia’s reported results, Lapatinib decreased phosphorylated EGFR and ErbB2 in both 

the sensitive and resistant cells. 

 It was previously demonstrated in BT474 and SkBr3 cells that gefitinib (another 

anti-ErbB TKI drug) decreases both EGFR and ErbB2 phosphorylations.  In another 

study, gefitinib was shown to initially inhibit the phosphorylation of ErbB3 but loses its 

suppression after 48 hours (97).  In our cell lines we did not observe differential changes 

in EGFR or ErbB2 phosphorylation upon exposure to Lapatinib, that is, Lapatinib 

similarly inhibits receptor activity for both cell lines.  Based on the data, we hypothesized 

that ErbB receptors do not contribute to Lapatinib resistance. 

Since mutations in the ErbB receptors have been found in previous cases of other 

tyrosine kinase inhibitors’ resistances, we sequenced exons (exons 18, 19, 20, 21, 22, and 

25 in EGFR, exons 19, 20, 21, 22 in ErbB2, and exons 20 in ErbB3) in the ErbB 

receptors where mutations have been reported in breast and lung cancer (98-100).  In our 

analyses, both cell lines did not have any mutations within these exons.  Unless mutations 

occurred in the complement set of exons for these receptors, the mechanisms of 

resistance may lie downstream. 
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Resistant cells have higher invasive index 
 

Previous studies have found that in the acquisition of resistance to a drug, cell 

lines often significantly increase their invasive and mobile nature—like MCF7 breast 

carcinoma cells resistant to tamoxifen (101),  HCT116 colorectal carcinoma cells 

resistant to Lapatinib (60), and A549 lung carcinoma cells resistant to gefitinib (102).  

We performed wound healing and Matrigel invasion assays to determine if the resistant 

cells have increased invasiveness and mobility.  From the results of the Matrigel invasion 

assay, we determined the resistant cells have a higher invasive index value than the 

sensitive (1.42±0.07 vs. 1.00±0.10).  However, in the presence of Lapatinib, their 

invasive indices are not significantly different.  See Figure 6. 
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Figure 6.  Matrigel invasion assay shows resistant cells have higher invasive index 
than the sensitive cells. 
Matrigel assay shows that the resistant cells have a higher basal invasion index (1.4) 
as compared to the parental cells (1.0), significant with p<0.05.  Lapatinib treatment 
reduced the invasion index of both parental and resistant cells. 

  
 

The effect of Lapatinib on sensitive and resistant cells’ mobility was observed 

using wound healing assay.  See Figure 7.  Both cell lines had similar profiles within the 
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first 24 hours (103), with no detectable wound healing.  In the absence of Lapatinib, both 

sensitive and resistant cells slowly grew in the wound area over the period of three days.  

In the presence of Lapatinib, both cell lines reflected even slower wound healing over the 

three days period.  Considering wound healing typically occurs within the first 24 hours, 

we conclude the resistant cells’ migrative capacity is similar to the sensitive cells, which 

is minimal.  

 
Figure 7.  Wound healing scratch assay to measure cell migration.   
Results from the scratch assay shows no difference between sensitive SkBr3 and 
Lapatinib resistant SkBr3-R cells, at Days 1-3.  In the presence of Lapatinib, there was 
no difference on day 1 and the differences observed on day 2 and 3 are a function of 
decreased cell numbers in the Lapatinib treated sensitive cells.  
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Cell cycle distributions  between resistant and sensitive 
 

It was previously demonstrated that Lapatinib-treated cancer cells undergo 

apoptosis or G1 cycle arrest (39, 40).   From our dose response cell viability assays, we 

discovered sensitive cells start to die after two days of 1 µM Lapatinib treatment, with 

greater contrast between sensitive and resistant cells after six days.  In order to stratify 

that contrast, we performed the cell cycle analysis to identify sub G0/G1, G1, S, and G2M 

subpopulations.  Aside from cell cycle phase distributional changes, we wanted to know 

if the resistance cells evade cell cycle arrest; and if not, whether they evade apoptosis 

within this time frame (of three normal doubling cycles).  Figure 8 shows the results from 

four time points collected after Lapatinib addition:  days 0, 2, 4, and 6. 

At day 0, prior to the addition of Lapatinib, both cell lines had similar cell cycle 

distribution:  49% cells in G1 phase, 15% in S phase, 33% in G2 and M phases, and 3% 

spontaneous deaths on average.  Two days after the Lapatinib treatment, G1 phase cell 

number increased in both cell lines, up to 70%, where as in the control groups, G1 

subpopulation remains closer to 50%.  Though there were more cells in S phase in the 

resistant cell line, the sensitive cell line had significantly more dead cells, increased from 

3% to 7%.  Deaths in resistant cell lines remain at 3%, with or without Lapatinib 

conditions.  On day 4, deaths jumped to 21% in sensitive cells treated to Lapatinib, 

compared to 5% in control.  Resistant cells’ deaths remain low for both control and 

Lapatinib condition, 5% and 7% respectively .  Also to note at day 4 is that there was a 

higher percent of resistant cells in G1 arrest than of sensitive cells, though that difference 

can be mirrored in the sensitive cells’ dead population increase.  
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Figure 8.  Cell cycle analysis. 
Using FACS of 20,000 cells per condition, per day, collected at days 0, 2, 4, and 6 with 
and without Lapatinib treatment.  A).  Sensitive and resistant cells were treated with 
vehicle (columns 1 and 3) or 1 µM Lapatinib (columns 2 and 4) and cell cycle assayed 
by FACS analysis.  B-D) Cell cycle analysis of sensitive and resistant cells on days 2, 
4,6 without Lapatinib (columns 1 and 3) and with Lapatinib (columns 2 and 4).   
Lapatinib treatment had similar effect on the cell cycle for both sensitive and resistance 
cells leading to increase in cells with G1 arrest.  In the sensitive cells there was a 
significant increase in cell death and by day 6 up to 66% of the cells were dead, while in 
the resistant cells only 18% were dead cells. 

Finally, after six days of Lapatinib treatment, deaths in sensitive cells skyrocketed 

to 66%, compared to accumulation of cell deaths at 8% in control condition.  In the 

resistant cells, deaths increased to 18%, with control condition deaths at 7%. 
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Figure 9.  Cell cycle analysis of only live cells. 
Days 0, 2, 4, and 6 after Lapatinib (1 µM) treatment.  Deceased cells were excluded 
from the analysis as seen in Figure 9.  Lapatinib treated cells entered G1 arrest, evident 
at day2 and day4.  Day6 indicated smaller percentages of G1 arrested cells in both cell 
lines, compared to days 2 and 4. 

At this point, cell deaths appear to be the main defining difference between the 

sensitive and resistant cells.  A significant subpopulation of resistant cells do evade 

apoptosis, thus answering our first question.  To answer whether resistant cells evade G1 

arrest, we re-examined the data by excluding the dead cells of our results and rescaled the 

population percentages of G1, S, and G2M such that the sum is 100%.  See Figure 9.  Two 

days after Lapatinib treatment, both sensitive and resistant cells increased G1 

subpopulation to 70%.  At day 4, G1 subpopulation increased further to 75% in both cell 

lines.  At day 6, G1 subpopulation drops below 70% for both cell lines.  Thus, for cells 

that evade Lapatinib-induced apoptosis, it appears they eventually escape G1 arrest as 
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well.  However, this hypothesis assumes no new cells proliferated, which was the case 

here since confluency increased over the days in the wells containing the resistant cells.  

Whether resistant cells escape G1 arrest in addition to apoptosis remain uncertain at this 

point and may require studying extended time frame of more than three doubling 

generations. 

 

Early apoptosis occurs in sensitive cells at 48hours 
 
 Since the major defining difference between the sensitive and resistant cells is cell 

deaths, we performed an apoptosis assay, Annexin V, to identify and separate cells in 

early apoptosis (when phosphatidylserine flips to extracellular membrane layer, marking 

the cell for phagocytosis), in late apoptosis/necrosis, and in necrosis after 48 hour 

treatment with Lapatinib at 1µM.  See Figure 10.  As before, the population of 

spontaneous dead cells was below 5% at the 48 hour time point (Figure 10A).  For cells 

in late apoptosis and cells in necrosis, the populations were comparable across the 

conditions with exception of the resistant cells treated with Lapatinib, which was lower 

(Figure 10B).  Finally, the subpopulations of cells undergoing early apoptosis provided 

greater contrast between the sensitive and resistant cell lines, showing almost three fold 

increase in cells in early apoptosis after 48 hour Lapatinib treatment, in the sensitive cells 

compared to the resistant cells (Figure 10C). 
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Figure 10.  Identification of three subpopulations of dead and dying cells after 1 µM 
Lapatinib treatment for 48hours. 
Fewer resistant cells underwent apoptosis.  A) Necrotic cell populations were below 5% for 
all conditions.  B) Lower population of late apoptotic and necrotic cells in the SkBr3-R cells 
treated with Lapatinib.  C) Lower population of early apoptotic cell populations with/without 
Lapatinib for the resistant cells.  Thus, sensitive cells have significantly higher population of 
cells in early apoptosis after Lapatinib exposure. 

 

CONCLUSIONS 

 
 Mechanisms have been proposed for the development of acquired resistance to 

anti-ErbB therapies.  One such proposal is that resistance is caused by mutations 

developed in the ErbB receptors.  Numerous studies with other ErbB targeted drugs in 

various cancer types have discovered mutations in the EGFR (54-57) and ErbB2 (1, 104), 
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receptors that render cells to be insensitive to the drugs.  Specific to Lapatinib, it was 

found in HCT116 cells that resistance is mediated by elevated MCL-1 and decreased 

BAK and not by ErbB mutation (60).  However, in a recent study, randomly mutagenized 

ErbB2 expression library screen in murine bone marrow–derived Ba/F3 cells identified 

16 mutations in ErbB2 (spanning from exons 11 to 27, many in the kinase domain) that 

affect sensitivity to Lapatinib (105).  The exons that we sequenced for EGFR, ErbB2, and 

ErbB3 did not have mutations.  At the time, our defined set of mutational hotspots only 

included exons 19-22 for ErbB2.  Thus, since we did not sequence all exons of these 

receptors, we do not know fully if mutations did developed in these receptors in the 

resistant cell line during resistance acquisition.  We do know that mutations did not 

develop for EGFR exons 18-22, 25, ErbB2 exons 19-22, and ErbB3 exon 20.  However, 

together with our results where we examined phosphorylated and total ErbB receptors 

and discovered similar basal and response to Lapatinib in both sensitive and resistant 

cells, it is likely that no kinase domain mutations occurred in the exons for which we did 

not sequence.  Nevertheless, further sequencing for all the ErbB receptor exons is needed 

to fully answer the question of whether mutations occurred in the ErbB receptors during 

acquisition of Lapatinib resistance. 

 We sought to determine if Lapatinib resistance was attributed by increase in 

migrative and invasive capacity.  A previous study demonstrated adaptation in growth in 

A431-GR squamous cancer cells that had developed resistance to gefitinib from A431 

cells; in 3D Matrigel, the resistant cells were able to form large colonies whereas the 

parental cells had impaired growth (106).  Another gefitinib-resistant prostate cancer cell 

line PC3-GR was found by Boyden chamber assays to exhibit 2-fold greater migration 
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capability (107).  Our wound healing assays indicated the resistant SkBr3-R cells have 

similar wound healing capacity compared to the sensitive cells.  However, Matrigel assay 

demonstrated the resistant cells have higher invasive index than the sensitive cells.  In 

this respect, Lapatinib resistance may contribute to an aggressive phenotype, similar to 

the case with gefitinib (106).   

 We made the observation during our proliferative assays that Lapatinib treatment 

at 1 µM was sufficient to demonstrate contrast between the sensitive and resistant cells.  

The cell cycle analysis performed using that concentration stratified the contrast and 

indicated difference in sub-G0/G1 populations.  Lapatinib effectively induced G0/G1 arrest 

in both cell lines initially, but as the days passed more of the sensitive cells in cell cycle 

arrest underwent apoptosis.  Since the cell cycle analysis does not identify live cells 

undergoing apoptosis, we performed Annexin V assay which differentiate live cells 

undergoing apoptosis from cells in late apoptosis and necrotic cells.  From the apoptosis 

assay, we found significant difference in early apoptosis subpopulations between in the 

sensitive cells and resistant cells 48 hours after Lapatinib treatment.  In the resistant cell 

line, the arrested cell population eventually decreased while sub-G0/G1 cells increased 

slowly (spontaneous deaths accumulated).  When discarding the population of difference 

(sub-G0/G1) and considering only the live population, the cell cycle distributions of both 

cell lines appeared similar.  This observation can be explained by either the result of 

either a mechanism that allows the resistant cells to continue cell cycle progression into 

the S phase or of the outgrowth of a subpopulation that does not undergo cell cycle arrest 

in response to Lapatinib.  The latter case is possible since our SkBr3-R cell line is a 

pooled cell line. 
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CHAPTER 3 STAT3 SIGNALING ACTIVITY IN RESISTANT CELLS 

 

INTRODUCTION 

 STAT3 is a signal transducer and transcription factor and has been found to be 

constitutively active in various tumor types (84-90).  As research continues in elucidating 

the role of STAT3 in tumorigenesis, increasing evidence implicates STAT3’s role in 

growth and survival dysregulation, angiogenesis promotion, immune suppression, and 

invasion and metastasis (64, 90, 108).  Furthermore, recent studies have implicated 

STAT3 in cancer resistant to anti-ErbB drugs, such as gefitinib and cetuximab (61-63).   

 We discovered a correlation between STAT3 phosphorylation and Lapatinib 

sensitivity in a panel of breast cancer cell lines that were assayed using reverse phase 

protein array (RPPA).  See Figure 11.  Going from left to right are the cell lines in their 

order of increasing Lapatinib resistance.  With the exception of SkBr3 cell line, the levels 

of phosphorylated STAT3 at tyrosine 705 increased with increased Lapatinib-resistance. 

 In our characterizations of the SkBr3 and SkBr3-R cell lines, we found the 

resistant SkBr3-R cells have higher invasive index than the sensitive cells.  We also 

found that the resistant cells evade apoptosis after Lapatinib exposure whereas many of 

the sensitive cells did not.  Considering STAT3’s role in invasion, metastasis, survival, 

and its recent link in resistance to other ErbB inhibitors, we investigated STAT3’s role in 

acquired Lapatinib resistance. 
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Figure 11.  RPPA analysis of phospho STAT3 Y705 levels on a panel of breast cell 
lines. 
Increasing levels of phospho Y705 STAT3 shows correlation with increasing 
Lapatinib resistance among breast tumor cell lines, with the exception of SkBr3 
which show basal level of STAT3 phosphorylation. 

 

MATERIALS AND METHODS 

Cell lines and reagents 
 

SkBr3 breast cancer cell line was obtained from UT M.D. Anderson Cancer 

Center Characterized Cell Line Core Services.  Cells were routinely maintained in RPMI 

1640 supplemented with 10% fetal bovine serum (FBS) and penicillin/streptomycin.  

Lapatinib was purchased from LC Laboratories and dissolved in dimethyl sulfoxide 

(DMSO).  Ly6E luciferase construct (1ug/mL) and beta-galactosidase construct (1ug/mL) 

were previously obtained from Dr. J Darnell Jr. (Rockefeller University, NY).  Luciferase 

assay system kit (E1501) and reporter lysis buffer 5X (E397A) (Promega, Madison, 

Wisconsin) and beta-galactosidase assay reagents (Clonetech cat#631712, Mountain 
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View, California) were used for luciferase reporter assay.  JetPRIME transfection kit was 

purchased from Polyplus Transfection, Inc (New York, New York) for the DNA 

transfection experiments. Reagents used in immunofluorescence assays include 

phalloidin (Oregon Green 488)( Invitrogen, Carlsbad, California), paraformaldehyde 

(USB Corp, Cleveland, Ohio), and DAPI (Sigma-Aldrich, St. Louis, Missouri).  

STATTIC (EMD, Gibbstown, New Jersey) stock solution was made at 50mM using 

DMSO. 

Antibodies 
 
 The following antibodies were used for immunoblotting: anti-phospho-

STAT3(Y705); anti-phospho-STAT3(S727); anti-STAT3;  Anti-rabbit IgG (H+L), 

F(ab')2 Fragment (Alexa Fluor® 647 Conjugate) (#4414 )(Cell Signaling Technology, 

Boston, Massachusetts); and anti-β-Actin (Sigma-Aldrich, St. Louis, Missouri).  

Reverse phase protein array 
 
 Assays were performed as previously described (109).  Cells were seeded 

(300,000 per well) in 6-well plates in triplicates.  Next day, cells were treated with 

Lapatinib at 1 µM for 4 hours, followed lysis using lysis buffer (as prepared for 

immunoblotting).  Controls were DMSO used in equal volumes.  In 1% SDS, cell lysates 

(1 µg/µl) were boiled and hybridized under stringent conditions.  Using a GeneTac G3 

DNA arrayer (Genomic Solutions, Ann Arbor, MI, USA), seven two-fold serial dilutions 

of cell lysates are arrayed on multiple nitrocellulose-coated glass slides (FAST Slides, 

Whatman Schleicher & Schuell, Keene, NH, USA).  RPPA slides were produced in 

batches of 20.  Printed slides were stored in desiccant at –20°C.  Antibodies were 

screened for specificity by Western blotting with 25 µg of lysate protein per lane.  An 
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antibody was accepted only if it produced a single predominant band at the expected 

molecular weight and if it behaved similarly between immunoblotting and RPPA across a 

dynamic range.  Each slide was incubated with specific primary antibody, which was 

detected by using the catalyzed signal amplification (CSA) system (DAKO, Carpinteria, 

CA, USA).  Briefly, each slide was washed in a mild stripping solution of Re-Blot Plus 

(Chemicon International, Temecula, CA, USA) then blocked with I-block (Tropix, 

Bedford, MA, USA) for 30 minutes. Following the DAKO universal staining system, 

slides were then incubated with hydrogen peroxide, followed by avidin for 5 minutes, and 

biotin for 5 minutes.  Slides were incubated with primary and secondary antibodies then 

incubated with streptavidin-peroxidase for 15 minutes, biotinyl tyramide (for 

amplification) for 15 minutes, and 3,3-diaminobenzidine tetrahydrochloride chromogen 

for 5 minutes.   Between steps, the slide was washed with TBS-T buffer.  Loading is 

determined by comparing phosphorylated and nonphosphorylated antibodies. Multiple 

controls are placed on each slide to facilitate quantification and validation of the assay.  

Spot intensity was measured using MicroVigene by VigeneTech.  Protein 

phosphorylation levels are expressed as a ratio to equivalent total proteins.  Fold 

increases in spot intensities were calculated against nonstimulated control samples. 

Transfection with reporter constructs 
 
 SkBr3 and SkBr3-R cells were seeded in 6-well plates (500,000 cells per well) in 

triplicates.  The following day, the cells were co-transfected with Ly6E-luciferase and 

beta-galactosidase constructs [4:1 Ly6E:b-gal ratio (w/w)] using Polyplus transfection 

jetPRIME reagent at 1:2 DNA:jetPRIME ratio (w/v).  One µg of DNA was diluted into 

200µL jetPRIME buffer, followed by vortexing.  Two µL jetPRIME was added.  The 
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mixture was vortex for 10 seconds and spun down briefly.  After incubation at room 

temperature for 10 minutes, 100µL of mixture was added dropwise to the cells, which 

were in 1mL medium.  Transfection was allowed to occur 24 hours before replacement of 

transfection medium by complete medium.  48 hours after initial transfection, the cells 

were exposed to 1 µM Lapatinib.  Controls were DMSO used in equal volumes.   

Luciferase assay 
 
 Twenty-four hours after Lapatinib treatment, the cells were collected, washed 

with PBS and lysed with 100µL reporter lysis buffer.  Lysates were freeze-thawed to lyse 

the cells completely, scraped and transferred to microcentrifuge tubes and kept on ice.  

Following 10 second vortex, the tubes were centrifuged at 12000g for 15 seconds.  The 

supernatant was then used for the luciferase signal readout.  With all reagents and 

samples at room temperature, 100µL of luciferase assay reagent was aliquot into each 

illuminometer tube.  20µL of sample lysate was added to each tube, followed by 

immediate reading on the Monolight 3010 illuminometer.  The illuminometer was set to 

perform 2-sec measurement delay followed by 10-sec measurement read.  The control 

used was 20µL of lysis buffer alone.  To account for the number of cells successfully 

transfected, beta-galactosidase reporter system was used.  For each sample, 100µL of 

beta-galactosidase assay reagent was added to an illuminometer tube prior to the addition 

of the sample, which was in the amount of 10µL.  Sample lysates were added to the 

tubes.  Samples were incubated for an hour at room temperature and the tubes were 

placed in the illuminometer for reading.  The control was 10µL of lysis buffer alone.  

Luciferase readout of each sample required background subtraction from control readout, 

followed by division by the corresponding beta-galactosidase readout for that sample.   
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Immunofluorescence imaging 
 
 SkBr3 and SkBr3-R cells were seeded (10000, 5000, 2500 per well per row) in 

Packard Bell 96-well immunofluorescence plates.  Each condition was done in triplicates.  

The following day, cells were treated with Lapatinib at 1 µM.  Controls were DMSO 

used in equal volumes.  After 48 hours, the cells were washed with PBS two times.  The 

wells were then covered to a depth of 2-3mm with 4% formaldehyde in PBS.  Cells were 

allowed to fix for 15 minutes at room temperature.  Fixative was then aspirated and the 

wells were rinsed three times in PBS for five minutes each.  The cells were then 

permeabilized with 0.3% TritonX-100/PBS for 10 minutes and rinsed again with PBS for 

5 minutes.  After rinse, the cells were blocked in 0.3% TritonX-100/PBS with 5% BSA 

for 60 minutes.  The blocking solution was aspirated and cells were incubated with anti-

phospho-STAT3 (Y705) diluted (1 to 100 ratio) in 200µL of 0.3% TritonX-100/PBS.  

Primary antibody incubation lasted 48 hours at 4C.  After three rinses in PBS for five 

minutes each, the cells were incubated in fluorochrome-conjugated secondary antibody 

diluted (10ug/mL) in 200µL PBS/Triton for two hours at room temperature in the dark.  

At this point, cells were stained sequentially with fluorescent nuclear stain DAPI and 

actin stain phalloidin.  Each stain was diluted 1:100 in 200µL PBS and incubation time 

was 20 minutes at room temperature.  To avoid evaporation, the wells were covered.  

After the two staining, the cells were again washed with PBS twice.  Finally, 200µL of 

PBS was added to each well prior to imaging.  IN-Cell Analyzer 1000 was utilized in 

image acquisitions.  Images were obtained using 20X objective.  The quantifications of 

phospho-STAT3(Y705) were performed using IN-Cell Analyzer software.  

Statistical analysis 
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 Two-tailed t tests were used to assess the difference between two population’s 

means.  Differences were considered significant at p < 0.05.  Microsoft Excel and 

GraphPad prism software (GraphPad Software) were utilized in the analyses of cell 

viability assays and generation of bar graphs and boxplots.  The Student's t test was used 

to evaluate the statistical significance of the results.  Statistical techniques were 

performed with the R statistical package (version 2.8) for Microsoft Windows (R 

Development Core Team). 

RESULTS 

The resistant cells have higher level of phosphorylated STAT3 
 

Since STAT3 can be activated by EGFR, we wanted to determine if there were 

any changes in phosphorylation of STAT3 after treatment of Lapatinib in the sensitive 

and resistant cells.  Our western blots show that STAT3 phosphorylation is decreased in 

the sensitive cells, but was not affected significantly by Lapatinib treatment in the 

resistant cells, even after 48 hours of exposure.  See Figure 12. 

 
Figure 12.  Analysis of STAT3 phosphorylation in sensitive and resistant cells. 
Sensitive and resistant cells were treated with l µM Lapatinib for 48 hours and 
probed for phospho Y705 STAT3.  Lapatinib significantly decreased 
phosphorylation of STAT3 by 85% in the sensitive cells, while there was only a 
30% inhibition of STAT3 phosphorylation in the  resistant cells.  Quantification 
of bands was performed with ImageJ.
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The resistant cells have higher level of translocated activated STAT3 
 
 Transcriptional activation of STAT3 activity requires dimerization and 

translocation to the nucleus.  To determine if there were changes in STAT3 nuclear 

translocation, we performed IN-Cell imaging assay to determine and visualize the 

localization of STAT3 from the cytoplasm to the nucleus in both sensitive and resistant 

cell lines.  The cells were treated with Lapatinib at 1 µM for 48 hours, then imaged with 

IN-Cell Analyzer 1000.  See Figure 13A.  Quantification of phosphorylated STAT3 at 

tyrosine 705 using IN-Cell Analyzer software revealed higher level in the resistant cells, 

though levels did decrease after Lapatinib treatment.  See Figure 13B.  As illustrated by 

the box-plot, the ratio of nuclear to cytoplasmic phosphorylated STAT3 is higher in the 

resistant SkBr3-R cells than in the sensitive SkBr3 (median ratio), indicating higher level 

of STAT3 localized in the nucleus in the resistant cells, suggesting increased STAT3 

activity.  See Figure 13C.   

 

The resistant cells have higher level of transcriptional activity of STAT3 
 

To determine if the increased phosphorylation and nuclear localization of STAT3 

resulted in an increase in STAT3 transcriptional activity, we performed a transcriptional 

activation assay in which cells were transfected with a STAT3-responsive luciferase 

reporter construct Ly6E.  The results showed STAT3 transcriptional activity was 

significantly higher in the resistant cells and remained high even after treatment with 1 

µM Lapatinib for 24 hours.  See Figure 14.  In the sensitive cells, basal STAT3 activity 

was four fold lower and decreased further upon Lapatinib treatment. 
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Figure 14.  STAT3 transcriptional activity. 
The transcriptional activity of STAT3 was determined using a luciferase based 
reporter assay using the Ly6E promoter STAT3 binding response element.  STAT3 
activity was higher in resistant cells under basal conditions.   STAT3 activity in 
sensitive cells showed a 50% decrease in response to Lapatinib; however, STAT3 
activity was not inhibited by Lapatinib in the resistant cells.  

 

Targeting STAT3 with STATTIC 
 

Since we observed an increase in STAT3 phosphorylation, nuclear translocation, 

and transcriptional activity, we wanted to determine if STAT3 interference or inhibition 

can reverse the Lapatinib resistance phenotype.  We used STATTIC, which has been 

demonstrated to inhibit the function of the STAT3 SH2 domain and prevent the 

activation, dimerization, and translocation of STAT3 (110), and performed cell viability 

assays.  Our observation indicated the GI50 value for STATTIC is 0.7 µM for both cell 

lines.  See Figure 15 for dose response result.  In combination with Lapatinib in gradient 

concentrations, we found that STATTIC at 0.3 µM  significantly inhibited cell 

proliferation in the sensitive cells, whereas in the resistant cells, STATTIC 0.3 µM 

decreased Lapatinib GI50 value from 2.6 µM to 0.1 µM.  At higher concentration of 10 
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µM, STATTIC plus Lapatinib inhibited cell proliferation in both cell lines.  See Figure 

16.  
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Figure 15.  Dose response of sensitive and resistant cells to STAT3 inhibitor. 
Cell proliferation assay of sensitive and resistant cells treated with different 
concentrations of STATTIC shows both sensitive and resistant cells have GI50 0.7 µM 
in response to  STATTIC. 

  

 49 
 



Proliferation:  STATTIC+Lapatinib
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Figure 16.  Cell viability assays using combination of STATTIC and Lapatinib. Figure 16.  Cell viability assays using combination of STATTIC and Lapatinib. 
A) STATTIC at 0.3 µM completely inhibited cell proliferation in combination with 
Lapatinib in the sensitive cells, but not in the resistant cells.  B) STATTIC at 10 µM killed 
all cells in combination with Lapatinib. 

A) STATTIC at 0.3 µM completely inhibited cell proliferation in combination with 
Lapatinib in the sensitive cells, but not in the resistant cells.  B) STATTIC at 10 µM killed 
all cells in combination with Lapatinib. 
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CONCLUSIONS 

From the RPPA we discovered a correlation between STAT3 phosphorylation and 

Lapatinib resistance across six breast tumor cell lines, with SkBr3 Lapatinib sensitive cell 

line being a special case.  Here, the assays demonstrated 1) STAT3 phosphorylation is 

even higher in the SkBr3-R resistant cells, 2) more translocated STAT3 in the nuclei of 

the resistant cells than SkBr3, and 3) higher STAT3 activity reported by Ly6E-luciferase.  

Taken together, we have shown that STAT3 activity is further elevated in the resistant 

cells than in the sensitive cells.  Since this project began, we have provided evidence that 

Lapatinib resistance has been linked growth acceleration and apoptosis evasion and 

increased invasive index.  Interestingly, constitutive activation of STAT3 has been linked 

to those transformational phenotypes in breast carcinoma cells (94).  Plus, in a study of 

lung cancers, gene array revealed that increased STAT3 activity increases expressions of 

genes involved in cell cycle progression, apoptosis suppression, angiogenesis and 

invasion (111). 

 Thus, the question to answer now is how STAT3 activity has increased in the 

SkBr3-R resistant cells and how this change may mediate Lapatinib resistance, or at least 

how it is attributed to it.  Overactivation is thought to be either a consequence of 

dysregulation of upstream kinases or loss of endogenous inhibitors (112).  Inhibition of 

STAT3 by SOCS3 (which inhibits JAK activation) or by PIAS3 (which inhibits STAT3 

DNA binding in the nucleus) may be suppressed.  Protein tyrosine phosphatases such as 

SHP1 and SHP2 which dephosphorylates active STAT3 complexes may also be 

suppressed.  Further, in squamous cell carcinoma, breast cancer, and prostate cancer, 
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constitutive STAT3 activity is thought to be result from autocrine stimulation (Song and 

Grandis, 2000; Berclaz et al., 2001; Giri et al., 2001; Li and Shaw, 2002).  STAT3 

functions as a transcription factor for genes that encode for cytokines and growth factors, 

thus providing a mechanism for autocrine STAT activation (69, 70). 

 STAT3 overactivation may also be a result from dysregulation in other pathways 

that activate or inhibits STAT3.  Besides JAK-STAT3 pathway, STAT3 activation is also 

regulated by the MAPK pathway.  MEK kinase 1, in its inactive form inhibits STAT3 

while its active form phosphorylates S727 and Y705 via Src and JAK (113).  In another 

study, it was demonstrated that p38 MAPK activation by IL13 regulates STAT3 S727 

phosphorylation (114). 

 It was previously demonstrated that constitutively activated STAT3 frequently 

coexpresses with EGFR in gliomas and targeting STAT3 sensitizes them to gefitinib 

(115).  In our study, we targeted STAT3 using STATTIC that prevents activation and 

translocation of STAT3 to determine if the combination of STATTIC and Lapatinib will 

resensitize the resistant cells to Lapatinib.  Our preliminary results indicated the resistant 

cells are more resistant to the combination of Lapatinib and STATTIC than the sensitive 

cells, though both cell lines are equally sensitive to STATTIC.  It remains for us to 

explore further the combination of STATTIC and Lapatinib using different 

concentrations of STATTIC between 0 and 10 µM, at which toxicity is too great. 
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CHAPTER 4:  GENE EXPRESSION CHANGES IN RESISTANT CELLS 
 

INTRODUCTION 

For the past decade, the use of DNA microarrays has accelerated research in the 

biomedical field.  One of the most important applications for arrays is gene expression 

profiling where mRNA levels are measured that correspond to transcripts of tens of 

thousands of genes.  The transcription of genes is the first step in the process of protein 

synthesis.  Thus, gene expression changes can result in phenotypic differences or can be 

reflective of cellular responses to stimulation or perturbation.  In order to get a global 

perspective of the transcriptional programming that may facilitate Lapatinib resistance, 

we next performed gene array on the pair of cell lines to identify patterns of gene 

expressions that may provide clues.  Specifically, we sought to find differences in 

expression of genes involved in regulation of invasion, migration, cell cycle, survival and 

apoptosis. 

MATERIALS AND METHODS 

Transcriptional profiling 
 
 SkBr3 and SkBr3-R cells were seeded in 6-well plates (500,000 cells per well) in 

triplicates.  Next day, the cells were treated with Lapatinib at 1 µM.  Control was DMSO 

in equal volumes.  After 48 hours of treatment, the cells were lyzed and total RNA was 

extracted using Ambion mirVana miRNA Isolation Kit (Applied Biosystems) and 

amplified using Illumina Totalprep RNA Amplification Kit (Applied Biosystems), 

according to the manufacturer’s recommendations.  RNA was quantified by measuring 

absorbance at 260 nm by spectrophotometric analysis (NanoDrop).  RNA samples were 
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loaded onto HumanHT-12 Expression BeadChip (Illumina, San Diego, CA) that probes 

for 25,000 annotated genes with more than 48,000 probes.  The chips were hybridized for 

16 hours at 58Cand were scanned by UT Health Science Center Houston Microarray 

Services.  Gene array data were analyzed using BeadStudio by Illumina. 

Quantitative real-time polymerase chain reaction (RT-PCR) 
 
 Cells were lyzed and RNA was isolated by 1mL Trizol reagent (Invitrogen Life 

Technologies), following manufacturer’s recommendations.  RNA was quantified by 

measuring absorbance at 260 nm by spectrophotometric analysis (NanoDrop).  RT-PCR 

was performed by reverse transcription-PCR, triplicate samples, using Applied 

Biosystems Taqman 1-step RTPCR Reagent kit and ABI Prism 7700 Sequence Detector.  

Samples were normalized to actin housekeeping gene.   

Transfection of siRNA oligonucleotides 
 
 siRNA for PAGE2 was obtained from Dharmacon (Lafayette, CO).  Control cells 

were transfected with non-targeting (N/T) siRNA (Dharmacon, Lafayette, Colorado).  

For siRNA validation via RP-PCR, cells were seeded (600,000 per well) in triplicates for 

each condition in 6-well plates.  For cell viability assay, cells were seeded (3000 per 

well) in quintuplicates per condition per cell line.  Next day, the cells were transfected 

with PAGE2 siRNA at 20nM, 50nM, and 100nM. 

Statistical analysis 
 
 Two-tailed t tests were used to assess the difference between two population’s 

means.  Differences were considered significant at p < 0.01.  GraphPad prism software 

(GraphPad Software) and Microsoft Excel were utilized in the analyses of cell viability 
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assays.  The Student's t test was used to evaluate the statistical significance of the results.  

Statistical techniques were performed with the R statistical package (version 2.8) for 

Microsoft Windows (R Development Core Team).  Pearson’s correlation was utilized on 

the SkBr3/3R microarray data and the Gray’s 47 breast tumor cell line microarray data. 

 

RESULTS 

Resistant cells:  higher gene expressions in cell cycle regulators and DNA 
replication/repair genes 
 
 Transcriptional profiling microarray identified 394 genes (250 higher in resistant 

cells, 144 lower) in which their expressions were at least two-fold change between the 

sensitive and resistant cells when the cells were treated with Lapatinib (1 µM ) for 48 

hours.  Figure 17 shows the connected subnetworks of the 250 higher expressed genes in 

response to Lapatinib.  The graph was generated using Netwalk, created by Dr. Kakajan 

Komurov in Dr. Prahlad Ram’s laboratory. 
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Figure 17.  Gene array: higher expressed genes in resistant cells in response to 48 hour 
treatment of Lapatinib. 

 Two main subnetworks of genes populate this figure:  cell cycle regulators and 

DNA replication and repair genes.  Cell division control protein 2 homolog (CDC2), a 

central hub of this network, is required for S and M entry (116).  Other cell cycle 

regulators include Aurora kinase B (AURKB)(M phase regulator), cyclins B2 and A2 

(CCNB2, CCNA2)(CDC2 interactors) and cell division control protein 20 homolog 

(CDC20)(spindle checkpoint).  On the other hands, genes involved in DNA replication 

and repair such as Aurora kinase A (AURKA)(centrosome separation), Aurora Kinase B 

(AURKB)(chromosome passenger complex), DNA topoisomerase 2-alpha (TOP2A) and 

TOP2B (breaks and rejoins DNA), and Bloom syndrome protein (BLM)(unwinds DNA 

 56 
 



during DNA replication and repair), are also at least two times in magnitude in transcript 

expressions.. 

  

Resistant cells:  lower gene expressions in cell adhesion genes and TGFb pathway genes 
  

 We also looked at two-fold minimal, transcriptional differences between the 

sensitive and resistant cells, in response to Lapatinib.  Figure 18 shows the lower gene 

expressions in the resistant cells.  Many of the claudin genes (CLDNs) were 

Figure 18.  Gene array: higher expressed genes in resistant cells in response to 48 hour 
treatment of Lapatinib. 
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downregulated during Lapatinib treatment in the resistant cells, compared to the sensitive 

cells.  These genes encode for proteins that are either components of or involved in cell 

junction and cell adhesion (117) and have been shown to be underexpressed in 

metaplastic breast cancers.  Also a major part of the network are members of the tumor 

growth factor beta (TGFβ) pathway:  activin receptor type-1 (ACVR1), TGFB2, Mothers 

against decapentaplegic homolog 3 (SMAD3), SMAD6, and FOXO3A, a proapoptotic 

gene. 

Resistant cells:  PAGE genes 
 

Gene array mRNA:  PAGE genes
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Figure 19.  Levels of PAGE genes as measured from the gene array in sensitive and 
resistant cells. 
*p<0.0001; **p<0.02 

Among the genes that were found to be most differentially expressed between the 

sensitive and resistant cells were members of the prostate-associated gene proteins 

(PAGEs):  PAGE2, PAGE2B, and PAGE5, all located on chromosome X location 

p11.21.  Alternatively known as putative G antigen family E members, the functions for 

their encoded proteins are unknown at the moment.  See Figure 19 for gene array data on 

the PAGE genes.  The mRNA levels for all three PAGE genes were found to be relatively 
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abundant (up to 20X) in the resistant cell line whereas in the sensitive cells, they were 

low.  

To determine whether a PAGE gene is essential for the resistant cells to 

proliferate in the presence of Lapatinib treatment, we first validated the gene array 

mRNA data for one of the members, PAGE2.  Using a customized set of primers 

purchased from AB Biosystems for PAGE2, we performed RT-PCR and verified the 

contrast in mRNA levels for PAGE2 between the two cell lines.  See Figure 20.  In the 

resistant cells, PAGE2 transcripts were abundant, even in the presence of Lapatinib. 
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Figure 20.  RT-PCR for PAGE2 mRNA levels. 
Resistant cells have abundant PAGE2 transcripts, 
compared to sensitive cells. 

 Next, we purchased 

PAGE2 siRNA 

oligonucleotides from 

Dharmacon and transfected 

the pair of cell lines to 

determine optimal siRNA 

concentration for 

knockdown of PAGE2 

transcript.  Concentrations 

used for testing were 20nM, 50nM and 100nM of PAGE 2 siRNA.  From the RT-PCR 

result, we determined 50nM PAGE2 siRNA concentration to be optimal for an 

approximate 80% knockdown.   See Figure 21.  Again note, in the sensitive cells, mRNA 

for PAGE2 was low.  Finally, using the 50nM siRNA concentration, we performed cell 

viability assays using Lapatinib gradient concentrations.  See Figure 22.  Comparing the 

Lapatinib dose response curves, there is no significant difference between N/T siRNA 
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and the 50nM PAGE2 siRNA conditions.   Thus, our data indicated that PAGE2 

knockdown does not increase nor decrease Lapatinib sensitivity in the resistant cells. 
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Figure 21.  PAGE2 siRNA validation using RT-PCR.  
Different concentrations of PAG2 siRNA 20, 50, 100nM were 
transfected and PAG2 transcript measured using qPCR. 50nM was 
sufficient for ~80% knockdown in the resistant cells. 

 
Figure 22.  Cell viability assay using PAGE siRNA. 
Cells were transfected with PAGE2 siRNA and treated with 
Lapatinib.  Proliferation assay showed no difference in the sensitivity 
to Lapatinib when PAGE2 is knocked down. 
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Resistant cells:  STAT3 target genes 

 
 In the gene array, we examined genes downstream of STAT3 and found several 

target genes’ expressions higher in the resistant cells after 48 hours Lapatinib treatment:  

Ly6E which promotes proliferation, BIRC5 which codes for an inhibitor of caspase 3 and 

7, HBG1 which is involved in oxygen transporter activity, TIMELESS which is required 

for S-phase progression and involved in cell survival upon DNA damage and replication 

stress, CCND1 which controls cell cycle, and CBX5 which functions as a component of 

heterochromatin during mitosis.  IRF1, which is a negative regulator of proliferation, was 

expressed lower in the resistant cells.  See Table 2 below for gene array data values.  Fold 

change (of mRNA levels) corresponds to ratio of resistant value over sensitive values for 

the Lapatinib condition. 

Table 2:  Gene array data on STAT3 target genes. 

GENE FOLD CHANGE p-value 
LY6E 1.39 0.1135
BIRC5 2.58 0.0003
HBG1 2.20 0.0719
TIMELESS 1.92 0.0219
CCND1 1.74 0.1369
CBX5 1.62 0.0548
IRF1 0.46 0.0028

 

DISCUSSION 

Utilizing transcriptional profiling, we wanted to determine what genes are 

upregulated and downregulated in response to Lapatinib in the resistant cells compared to 

the sensitive cells.  From the array data, we found many cell cycle regulating genes 

expressed higher in the resistant cells, most of which determine mitosis phase entry.  
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Additionally, genes involved with DNA replication and repair were higher expressed in 

the resistant cells.  These two networks of genes involved have overlapping genes, which 

is not surprising considering how intertwined these two cellular processes are.  

Considering Lapatinib puts cells into G1 arrest in sensitive cells, the data suggest that a 

significant subpopulation of the resistant cells were not in G1 arrest but were progressing 

through the S and G2M phases. 

On the other hand, genes whose expressions were significantly lower belong in 

networks of genes that are involved in cell junction or cell adhesion, particularly genes of 

the claudin family.  Low-claudin tumors has been identified to be aggressive, metastatic, 

chemoresistant and ”stem-cell like” (117).  We have demonstrated in our characterization 

assays that the resistant cells have higher invasive index.  Thus, the metastatic potential 

may be linked to the downregulations of the claudin genes.  Claudin-low cancers have 

been shown to have elevated CD44/CD24 ratio, which has been proposed as a breast 

cancer stem cell-like marker (118).  In our gene array, we did notice similar correlation 

between claudin-low and elevated CD44/CD24 ratio in the resistant cells, however, the 

correlation has low statistical significance in our dataset. 

Several target genes of STAT3 were discovered to be expressed higher in the 

resistant cells compared to the sensitive cells:  Ly6E, BIRC5, HBG1, TIMELESS, and 

CCND1, and CBX5.  With the exception of HBG1, these genes code for proteins that 

promotes proliferation or survival or cell cycle progression.  CBX5 was recently 

discovered by Gray’s lab to be upgregulated in Lapatinib resistant cells in vivo.  IRF1 is 

also a target gene of STAT3 that is a negative regulator of proliferation, and in the array 

it is expressed significantly lower in the resistant cells.   
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Our gene array identified a family of genes that was abundantly present in the resistant 

cells but not in the sensitive cells.  These PAGE genes were interesting in that their 

products and functions are unknown at this time.  However, their sequences are similar to 

the G antigen family members (GAGEs) that are expressed abundantly in germline cells, 

associated with high proliferation, and may have antiapoptotic functions (119).  

Nevertheless, our cell viability assays using PAGE2 siRNA showed that knockdown of 

the gene did not reverse the Lapatinib resistance phenotype.  It remains for us to test 

RNA interference for the other PAGE family members.  However, given our preliminary 

results from PAGE2 experiments, it is likely that the PAGE2 is a passenger rather than 

driver of Lapatinib resistance. 

So how did our array compared to array done by others in similar conditions?  In 

another study, gene array was performed on the pair of Lapatinib-sensitive cell lines 

BT474 and SkBr3 (120).  Consistent with their array with 12 hour Lapatinib treatment, 

we discovered in our array decreased transcripts for AKT1, IRAK1, and CCND1 and 

increased FOXO3A in the sensitive SkBr3 cells in response to 48 hours treatment of 

Lapatinib at the same concentration (1 µM).  Interestingly, in our resistant SkBr3-R cells, 

AKT and IRAK1 did not decrease, CCND1 actually increased and FOXO3A only 

increased slightly.  Previously, in a BT474 and a Lapatinib resistant clonal cell line 

treated with Lapatinib, FOXO3A was showed to be upregulated which resulted in a 

switch to ER signaling, survival factors regulation, and the cell line’s ability to evade 

apoptosis (38).  In our SkBr3-R Lapatinib resistant cell line, FOXO3A is one of the 

tumor suppressor genes shown to be expressed lower in the resistant cells than in the 

sensitive cells, see Figure 18 (previous Netwalk graph).  Thus, ER signaling does not 
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appear to be an alternative pathway for pro-survival for the SkBr3-R cells, though BIRC5 

(which codes for survivin) is significantly expressed, similar to Xia’s observation.  

Another argument for the hypothesis that ER signaling not active in the SkBr3-R cells is 

that BT474 is ER+ while SkBr3 is ER-.  The resistant SkBr3-R cells is also ER- based on 

the gene array data, though we have not determine ER protein expression experimentally. 
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CHAPTER 5 SUMMARY AND FUTURE DIRECTION 
 
 
 In human breast carcinomas, EGFR and ErbB2 are often overexpressed and 

associated with poor patient outcome.  Thus, pharmacological agents that target these 

receptors provide attractive therapeutics.  Lapatinib is one of the latest drugs approved by 

FDA for the treatment of breast cancer patients.  However, acquired Lapatinib resistance 

has been recognized as a major concern today.  Since mechanisms of drug sensitivity and 

acquired drug resistance were not fully elucidated, the purpose of this study was to 

understand acquired resistance to Lapatinib in breast cancer cells. 

 To understand acquired Lapatinib resistance, we established a system of isogenic 

cell lines in which one cell line is sensitive to Lapatinib (SkBr3) and the other resistant to 

it (SkBr3-R).  The resistant cell line was established by gradual increase of 

concentrations of the drug over a span of 12 months.  Once its Lapatinib resistance was 

verified, we began experimentation to determine mechanisms that may contribute 

resistance. 

In our characterizations of the Lapatinib sensitive SkBr3 and resistant SkBr3-R 

cell lines, we first examined the usual suspects for drug resistance.  Western blots 

indicated no significant difference in receptor expression or phosphorylation for ErbB1, 

ErbB2, ErbB3, and ErbB4.  Since mutations have been identified to confer resistance in 

previous studies of other anti-ErbB drugs, we sequenced ErbB receptors of the resistant 

SkBr3-R cells for exons that have been reported to contain mutations in different tumor 

types.  However, we did not find any mutations occurred in either cell line for those 

exons.  It remains for us to sequence the remaining exons for these ErbB receptors, 

particularly those exons in the kinase domains.  Other characterization assays performed 
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included wound healing and Matrigel; they provided evidence that the resistant cells have 

similar wound healing capacity, but higher invasive potential.   

Cell cycle and apoptosis assays identified apoptosis evasion and cell cycle 

progression as attributes of Lapatinib acquired resistance.  From the cell cycle analyses, 

we demonstrated that both sensitive and resistant cells initially underwent G1 arrest upon 

Lapatinib treatment.  However, as the days passed, the resistant cell population 

eventually decreased its G1 phase population, indicating progression of cell cycle.  That 

observation was further supported in our gene array where expressions of many cell cycle 

dependent genes that assist in cell cycle progression were higher in the resistant cells.  In 

addition, several pro-apoptotic genes were expressed higher in the sensitive cells whereas 

anti-apoptotic genes were expressed higher in the resistant cells. 

Because of STAT3 overactivation has been linked to abnormal growth and 

survival, invasion and metastasis in cancer and its involvement in other anti-ErbB drug 

resistance, we investigated into its role in Lapatinib resistance.  From our western blots, 

IN-Cell images, and luciferase reporter assay, we showed that the resistant cells have 

elevated STAT3 activity.  Complementary, the gene array showed increased STAT3 

transcripts upon Lapatinib treatment, though for the sensitive cells it is not clear why 

transcript level increased despite inhibition of STAT3 phosphorylation in the western 

blots.  Nevertheless, many STAT3 target genes’ transcript levels were higher in the 

resistant cells, and their expression may contribute to Lapatinib resistance through 

promotion of cell cycle progression and cell survival. 

We targeted STAT3 activity using STATTIC, an inhibitor of its activation.  

Preliminary results showed the resistant cell line to be more resistant to the combination 
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of STATTIC and Lapatinib despite same STATTIC GI50 value for both sensitive and 

resistant cell lines.  It remains to determine if STAT3 inhibition in combination with 

Lapatinib will inhibit proliferation in the resistant cells. 

 In the gene array, we discovered a family of genes that provided the highest level 

of contrast in terms of mRNA levels between the resistant and sensitive cell lines.  Little 

is known about this PAGE family, though information on a related family GAGE 

suggests PAGE proteins may have antiapoptotic functions and may be exclusive to 

germline cells.  We performed cell viability assay using siRNA against one of the 

members (PAGE2) to determine its role in Lapatinib resistance, but did not confirm it as 

a driving force in resistance.   

From the gene array, we also identified a family of genes, the claudins, that were 

lower expressed in the resistant cells in response to Lapatinib treatment.  These genes 

code for proteins that are essential for cell junction and cell adhesion.  The results suggest 

that the increase in metastatic potential may be contributed by the downregulation of 

these claudin genes.  The clinical significance of these genes is that they are lowly 

expressed in metaplastic breast cancers with metastatic and chemoresistant characteristics 

and are stem-cell like.  

Altogether, this study has identified genes and proteins implicated in several 

cellular processes that are involved in Lapatinib resistance, some of which may be 

contributors to the resistance:  STAT3 and its target genes, PAGE genes, claudin genes, 

cell cycle regulatory genes, TGFb pathway genes.  Further research is required in 

determining if targeting them will resensitize resistant cells to Lapatinib. 
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APPENDIX A 

 

Receptor  Exon 
Primer 
type  Tm 2ndary Sequence

product 
size

EGFR  18  forward  59.4 weak TGTAGAGAAGGCGTACATTTG  457
EGFR  18  reverse  58.2 none TTTCCTCTCAATAACTTGGG 
EGFR  19  forward  72.6 strong GCAATATCAGCCTTAGGTGCGGCTC  357
EGFR  19  reverse  61.4 weak CATAGAAAGTGAACATTTAGGATGTG 
EGFR  20  forward  66.7 none ATTCATGCGTCTTCACCTGGA  367
EGFR  20  reverse  64.0 moderate ATGGCAAACTCTTGCTATCCC 
EGFR  21  forward  63.1 none ACATGACCCTGAATCGGAT  308
EGFR  21  reverse  55.9 none ACAATACAGCTAGTGGGAAG 
EGFR  22  forward  56.7 none CACTCGTAATTAGGTCCAGA  255
EGFR  22  reverse  57.6 very weak TGCATGTCAGAGGATATAATG 
EGFR  25  forward  66.2 weak GACCCCTGCTCCTATAGCCAA  331
EGFR  25  reverse  55.1 none CACTAGATGGTTATTTTCCC 
ErbB2  19  forward  60.4 weak GGATGTTTGGAGGACAAGTAA  275
ErbB2  19  reverse  64.6 none AACCCCAATGAAGAGAGACCA 
ErbB2  20  forward  65.7 none TGGTTTGTGATGGTTGGGAG  346
ErbB2  20  reverse  64.1 none CAGCAAGAGTCCCCATCCTA 
ErbB2  21  forward  71.2 weak GGACTCTTGCTGGGCATGTGG  298
ErbB2  21  reverse  65.9 weak CCACTCAGAGTTCTCCCATGG 
ErbB2  22  forward  65.2 weak GTGGAGTGGTGTCTAGCCCAT  244
ErbB2  22  reverse  64.5 none TAATTCTCCCCATCCCAGCT 
ErbB3  20  forward  63.8 none TATGCCGCTAGGAGAGAGGA  534
ErbB3  20  reverse  68.5 very weak TGCCGCTCACATGCTCTGT 
EGFR  18  forward  64.1 moderate GGCACTGCTTTCCAGCAT  249
EGFR  18  reverse  67.5 none TCCCCACCAGACCATGAGAG 
EGFR  19  forward  64.6 moderate CATGTGGCACCATCTCACA  230
EGFR  19  reverse  64.2 none CAGCTGCCAGACATGAGAAA 
ErbB3  20  forward  63.5 weak TGTGCACATGCTGAGTGTATG  299
ErbB3  20  reverse  64.2 very weak CCCCCAGACAAGCAGTTCT 

 

Primers used to amplified exons in EGFR, ErbB2, and ErbB3.  Sequences used for primer 

designing program Primer3 were extracted from genomic intron sequences 100 base pairs 

before and after each exon sequence. 
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