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Abstract
SURVIVAL PREDICTION FOR BRAIN TUMOR PATIENTS USINGGENE EXPRESSION
DATA

Vinicius Bonato, B.S., Universidade Estadual de Campinas, CampinaBre&i,

M.Sc., Universidade Estadual de Campinas, Campinas, SP, Brazil;
Ph.D., Universidade Estadual de Campinas, Campinas, SP, Brazil;
Supervisory Professor: Dr. Kim-Anh Do

Brain tumor is one of the most aggressive types of cancer iarigjrwith an estimated
median survival time of 12 months and only 4% of the patientsviugvimore than 5 years after
disease diagnosis. Until recently, brain tumor prognosis has beehdrdgen clinical information
such as tumor grade and patient age, but there are reportdimditet molecular profiling of
gliomas can reveal subgroups of patients with distinct suriates. We hypothesize that coupling
molecular profiling of brain tumors with clinical informationght improve predictions of patient
survival time and, consequently, better guide future treatehecisions. In order to evaluate this
hypothesis, the general goal of this research is to build mémtekurvival prediction of glioma
patients using DNA molecular profiles (U133 Affymetrix gemxpression microarrays) along with
clinical information. First, a predictive Random Forest masléluilt for binary outcomes (i.e. short
vs. long-term survival) and a small subset of genes whose ssipnevalues can be used to predict
survival time is selected. Following, a new statisticalhmdology is developed for predicting time-
to-death outcomes usirgayesian ensemble trees. Due to a large heterogeneity observed within
prognostic classes obtained by the Random Forest model, predictior daproved by relating
time-to-death with gene expression profile directly. We prepm<Bayesian ensemble model for
survival prediction which is appropriate for high-dimensiafath such as gene expression data. Our
approach is based on the ensemble "sum-of-trees" model whiaxildelto incorporate additive
and interaction effects between genes. We specify a fullyeday hierarchical approach and
illustrate our methodology for the CPH, Weibull, and AFT swalvimodels. We overcome the lack



of conjugacy using a latent variable formulation to model dbeariate effects which decreases
computation time for model fitting. Also, our proposed models providesdel-free way to select
important predictive prognostic markers based on contrdiéilsg discovery rates. We compare the
performance of our methods with baseline reference surviviloaie and apply our methodology to
an unpublished data set of brain tumor survival times and genessixprelata, selecting genes
potentially related to the development of the disease under fudpsing discussion compares
results obtained by Random Forest and Bayesian ensemble meatidetsthe biological/clinical
perspectives and highlights the statistical advantages aadvdistages of the new methodology in

the context of DNA microarray data analysis.
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1. Introduction

Glioma is a type of central nervous system (CNS) candectarfg the glial cells (Cairncross
al., 1998). Glial cells are responsible for building the neuronalimgbieath, forming the CNS structural
tissue, and providing physical protection to adjacent neurefial(dunqueira & Carneiro, 2005). Glioma
is the most frequent (~40%) type of primary brain tumor (PBith an average of worldwide annual
occurrence close to 190,000 cases (Castelik, 2009) resulting in more than 140,000 deaths each year
with 10,000 of them occurring only in the United States (Mutl., 2003). Despite major efforts to
reduce deaths caused by this disease, the mean survivabftimewly diagnosed malignant glioma
patients remains at approximately 12 months (Fureasl., 2007) and after 24 months of surgical
resection nearly 90% of patients are dead (Letiial., 2007; Nuttet al., 2003). In the list of deaths
caused by cancer, gliomas are ranked in first for children undexginef 15 years and are ranked in
second for individuals ranging from 15 to 34 years of age (Castell., 2009).

Glioma mainly develops in the brain and is usually classifiaseth on the glial cell type
primarily affected by the tumor such as astrocytomas (aseé®)cydligodendrogliomas (oligodendrocytes)
or oligoastrocytomas (astrocytes and oligodendrocytes)(lebals, 2007). There is a common sense in
the literature supporting the idea that neurodevelopment aaohagi are highly related. Supposedly,
malignant gliomas originate from uncontrolled neural stem/progeceity located in the forebrain which
manifest mesenchymal phenotypes and become able to invade surrowssliag {(Bachoet al., 2002;
Carro et al., 2010; Phillipset al., 2006). The typical glioma phenotype, which includes invasion,
proliferation, migration, necrosis, and angiogenesis, is triggéne factors present in the adjacent
extracellular matrix (ECM) and by the abnormal production of cefbse growth-factor receptors (Giese
et al.,, 2003). High tumor recurrence (95%), in spite of adjuvant theragpiels as surgical removal
followed by chemotherapy and/or radiotherapy, is attributed to tlaeitpaphat putative cancer stem cells
have to infiltrate the normal surrounding parenchyma of the taaior areas, making complete removal

rarely possible (Giesd al., 2003).



1.1. Glioma classification and diagnosis

Following the WHO grading system, gliomas can be classifieth@rbasis of histopathological
features as (l) slow-growing, circumscribed, benign tumors wtachbe surgically removed, (Il) diffuse
slow-growing tumors presenting well-differentiated cells widcie to its propensity of infiltration can
turn the cancer incurable by surgery, (lll) diffuse anajplaamors characterized by atypical nuclei and
significant proliferative activity with the capacity dffiltrating extensively throughout the brain
parenchyma being more fatal than lower-grades, and (IV) neoplammore characteristics of
malignancy such as predominance of undifferentiated cells, vascuiérptmn, atypical nuclei, cellular
polymorphism (hence the namwltiforme), high proliferative activity, and tissue necrosis (Fureaal.,
2007; Louiset al., 2007). The majority of malignant gliomas are specificaliptgped as:diffuse
astrocytoma (WHO Grade l), anaplastic astrocytoma (Ill), glioblastoma multiforme (IV),
oligodendroglioma (1l), anaplastic oligodendroglioma (lll), oligoastrocytoma (II), and anaplastic
oligoastrocytoma (lll).

Diffuse astrocytoma (DA) typically occurs in young adults (30 — 40 years o&)agnd is
commonly located in the supratentoral brain region. DA has an infteretgncy to become anaplastic
and, eventually, progress gtioblastoma multiforme. DA has an annual incidence rate of 1.4 new cases/1
million population with males being slightly more affected tfemales (M/F=1.18). The mean survival
time after tumor removal ranges between 6 to 8 years but theauime chiefly depends on its eventual
progression tglioblastoma multiforme, normally occurring after 4-5 years (Lowisal., 2007).

Anaplastic astrocytoma (AA) typically affects adults (45 — 55 years of age) anpréferentially
located in the cerebral hemispheres. AA is considered an imtiet@elioma subtype assigned between
DA andglioblastoma multiforme since after approximately 2 years of its diagnosis it temgsogress to
glioblastoma multiforme (secondarily). However, AA is also recorded to arise witlpoetvious history of
a less malignant tumor (primarily). Males are more aftetbtan females (M/F=1.31) and older patients

have shorter survival times (Lowsal., 2007).



Glioblastoma multiforme (GBM) is the most frequent glioma subtype (~90%), most commonly
affecting people between 45 and 75 years of age (lebualk, 2007). It preferentially develops in deep
white matter regions (Tatardt al., 2010) and is characterized by large histological/molecular
heterogeneity (Louist al., 2007). GBM can arise primarily, without previous history ofirbtamor, or
secondarily, progressing from lower grade glioma subtypes (DAA&ndSome evidence indicates that
anaplastic oligodendroglioma might also be a precursor to GBM (DeAngelis, 2009). Approximate
9,000 new cases are estimated to occur in the United Statgegrewith males being predominantly
more affected than females (M/F=1.26). GBM is consideredra aggressive cancer and due to its
invasive nature cannot be completely removed by surgery. Thigadwate for newly diagnosed patients
is estimated as 42.4% at 6 months, 17.7% at 1 year, and 3.3% at,2oyé@lder patients tend to have
even worse prognoses (Lowsal., 2007).

Oligodendroglioma (O) typically affects adults (40 — 45 years of age) ardepentially arises in
the cerebral hemispheres. Approximately 5-6% of gliomas assifital as O and tumors of this type
frequently present chromosomal deletions in the arms 1p and 19¢ delslightly more affected than
females (M/F=1.1). Estimates show that in the United Stdose to 50% of patients survive 10 years
after diagnosis and surgical resection (Laahial., 2007).

Anaplastic oligodendroglioma (AO) is reported mainly in adults between 45 and 50 yearseof ag
AO preferentially develops in the frontal lobe and can arigagpily or secondarily (from O) tumors.
Approximately 1.2% of the PBT are classified as AO with mdlesg slightly more affected than
females (M/F=1.1). Median survival time estimates quite variable ranging from 1 to 4 years
depending on the studied population (Laatial., 2007).

Oligoastrocytoma (OA) mainly affects adults between 35 to 45 years of agé waitnual
incidence estimated as 1 case per million population. Howeyenteel incidence has increased over the
last decade, probably due to improvements in histological recogniéchniques. Males are more
affected than females (M/F=1.3) and the median survival ismneported to be around 6 years (Logtis

al., 2007).



Anaplastic oligoastrocytoma (AOA) accounts for 1-4% of all gliomas and affects patievith
median age of 44 years. It is still uncertain if AOA ariealy primarily or also secondarily from OA.
Males are more affected than females (M/F=1.15) and the mediaival time of AOA patients is
estimated as 2.8 years (Loetsal., 2007).

Imaging techniques, as magnetic resonance imaging, are namgvachniques currently used
by clinicians to first diagnoses and assess the glioma and chizeadtesurrounding tissues (Diebinal .,
2008). Following tumor resection, a biopsy is performed and the diagisosonfirmed by histological
examination (Castellst al., 2009). However, some authors suggest that histopathological ctgsific
might be inaccurate sometimes (Castellsal., 2009; Nuttet al., 2003). For example, even though
primary and secondary gliomas are considered distinct dssetgy share histological similarities and
are distinguishable only if a lower grade lesion is previoustorded. The classification is, therefore,
subject to error in situations where secondary gliomas gapitle and progress (Nobusaetal., 2009).
Histopathological classification is also strongly susceptiblater-observer variability and is not easily
reproducible (Gravendeet al., 2009; Nuttet al., 2003). Coongt al. (1997) and Gianningt al. (2001)
show that the concordance in diagnosis based on histologicatefeatan range from only 5% to a
maximum of 80% among experienced neuropathologists and neurosurgéores. tige following
treatment decisions and therapy response predictions are baged glioma subtype, a more objective
and accurate method of glioma classification is urgently neededetNilitt 2003).

Lately, immunohistochemical markers have been used faifatasion of gliomas. Examples are
the GFAP (glial fibrillary acidic protein) which is vahys present in astrocytomas but seldom in
oligodendrogliomas, and OLIG2 (oligodendrocyte transcription fa&tpa specific oligodendroglioma
marker (Furnaret al., 2007). Recent research efforts indicate that molecular pgblfi gliomas is also a
promising tool for tumor classification and consequently for betécome prediction (Hayden, 2010).
For instance, losses on chromosomes 1p and 19q as well as nsulati@®KN2A, IDH1 and TP53
might be associated with a poor prognosis for oligodendroglioma (@@hgatients (Cairncross al.,
1998). Also, distinct patterns of gains and losses of chromosegiahs can distinguish primary (EGFR

4



amplification) and secondary (TP53 mutation) GBM lesions (Mahal., 2006). In addition, Phillipst

al. (2006) and Verhaakt al. (2010) identify three to four GBM subtypes, namely Proneuralyéle
Classical (Proliferative), and Mesenchymal, based on thgsamalf microarray expression of signature
genes suggesting that high-grade gliomas are associatedheibver-expression of “stem cell” genes
(proliferative/mesenchymal phenotype) while low-grade gliomage higher expression of neuronal

genes (well-differentiated phenotype).

1.2. Molecular alterationsin gliomas

The most common genetic alterations in gliomas occur in biabgrocesses directly involved
in cell proliferation, apoptosis, necrosis, angiogenesis, andiowgFurnariet al., 2007). The RB
(retinoblastoma) and p53 pathways are usually found altergtioimas (Furnariet al., 2007; TCGA,
2008) and are directly associated with cell cycle remulatia the control of mitogenic factors such as
MAPK (mitogen-activated protein kinase) and RTK (receptmogine kinase). RB controls cell
proliferation by inactivating mitogenic factors of the MAPKscade which induces the formation of
cyclins and their associations with CDK (cyclin-dependenbhase) complexes. Some PI3K
(phosphoinositide 3-kinase) family members are important pie€ehe RTK pathway and have been
reported to have their expression altered in gliomas (Kaal, 2006). Similarly, the p53 transcription
factor regulates the promoters of thousands of genes, among themCi&ngomplexes, and is best
known for its role in activating apoptosis and consequently tumor esgipn. Not only TP53 mutations
are commonly found in gliomas but also two of its key negatgelators — MDM4 (Mdm2-like p53-
binding protein) and CHD5 (Chromodomain-helicase-DNA-binding proteir Bave their expression
frequently altered. In addition, PTEN (phosphatase and tensin hgmotegimportant tumor suppressor
regulated by p53, is also downregulated in 50% of gliomas (Olegaki 2004). In approximately 40%
of GBM samples, the abnormal activation of the cell pr@iien pathway might be explained by the

overexpression of the EGFR (epidermal growth factor recepémg, a membrane receptor.



In addition to the p53 network, another group of molecules catled‘death-receptors” are
particularly involved in the control of apoptosis. The “deathptws” are membrane receptors such as
TNRF1 (tumor necrosis factor receptor 1), TRAIL R1 (Tidkated apoptosis-inducing ligand receptor
1), TRAIL R2 (TNF-related apoptosis-inducing ligand receptom@il FAS (TNF receptor superfamily,
member 6), which are linked to the activation of caspases avel heen reported altered in gliomas
(Furnariet al., 2007). Likewise, members of the Bcl-2 (B-cell CLL/lymphomdazjily are frequently
altered in gliomas (Furnaet al., 2007). Bcl-2 family members are known by their roles in modulating
cell death (pro-apoptotic or anti-apoptotic roles), through c@spathway activation, and by initiating
migration and invasion processes in glioma cells (Watkal.,, 2004). It is suggested that
apoptotic/necrotic pathways are, at some degree, interconnettietl, is/corroborated by the discovery
of the protein Bcl2L12 which shares homologies with members of thg Benily and has the ability to
deactivate caspases, hence switching apoptosis to necrosis in diMowsra & Melino, 2004).

Angiogenesis, microvascular proliferation of endothelial o@8kiver et al., 2004), is a marked
characteristic of both primary and secondary GBM and is onleeofnany histological features used to
identify distinct subtypes of gliomas. The underlying molecol@chanisms of angiogenesis involve
many different regulators (especially VEGF, PDGF, IL-8, thrombndins, endostatin, and interferons)
of the hypoxia-induced factor (HIF) pathway (Nybestgal., 2005) and it has been shown that many
common mutations found in gliomas — PTEN, EGFR, and CMYC genesodtlate angiogenesis via
the HIF pathway (Shchoet al., 2006). Likewise, underlying biochemical processes of ceflsion —
another hallmark of gliomas — have similarities with theedigpment of SNC (Furnaset al., 2007).
Many genes involved in cell invasion regulation have already kmmmted altered in gliomas, including
members of the family of metalloproteases (Wanhgl., 2003a), urokinase-type plasminogen activator
(Landauet al., 1994), cysteine proteases (McCormick, 1993), IGFBP2 (Waalg, 2003b), ephrins, and

P311 (Furnaret al., 2007).



1.3. Treatment and prognosis

Applying therapy to glioma patients is still a challengingktaince the majority of patients
experience undesirable side effects (Fureiaal. 2007) and show little improvement after neurosurgery,
chemotherapy, and radiotherapy (Fredjeal., 2004). Two factors are believed to contribute to the poor
prognosis (Cairncrosst al., 1998). First, gliomas present remarkable molecular heterogeei
consequently therapies targeting a specific pathway attmiival improvement for only a small fraction
of the patients. Second, the hemato-encephalic barrier provides tafi®with the ability to evade
chemotherapy and the invasive nature of gliomas makes comyiebe tesection almost impossible. In
spite of these difficulties, some good results have beennebtan recent years. A third of the
oligodendroglioma (O and AO) patients have been shown to beyarly sensitive to combined
treatment with procarbazine, lomustine, and vincristine (P€iIM)to mutations on chromosomes 1p and
19q (Cairncrosst al., 1998). Mixed gliomas (OA and AOA) have also been reported to have ardigdst
improvement in prognosis after PCV therapy (Cairncebss., 1998). In addition, glioma patients with
unmethylated MGMT promoters become more sensitive to alkylatygmts and respond positively to
temozolomide treatment (DeAngelis, 2009; Hegal., 2005; TCGA, 2008). Freijet al. (2004) also
report some improvement in a small group of patients treated witleicso.

Currently, prognosis is basically based on tumor grading/subtygesadient age (Furnagt al.,
2007). However, the molecular heterogeneity of gliomas along hétivdriability in response to therapy
highlight the importance of cataloging and discovering thécater genome alterations in glioma tumors
which, consequently, will improve prognosis and bring new perspsativiierapy for this disease in the
field of small molecule drugs, therapeutic antibodies oARNMerference based factors (Fregeal.,
2004). Further, increasing the sample size and using adequate m#ihbdsadle peculiarities of
molecular data can, in fact, improve survival prediction of ghiopatients and better guide disease

management.



1.4. Qurvival prediction using DNA microarray data

During the past few years, a new promising avenue in gen@mésnolecular biology became
available. Microarray data can provide information about thaissaf genes simultaneously and,
therefore, provide a complete picture of the functioning of whelgomes and, consequently, generate
alternatives for cancer treatment (Gentlengnal., 2005). Gene expression profiling using DNA
microarray technology has successfully identified moleculaypab of cancer and revealed associations
of gene expression patterns with disease recurrence andasymognosis of patients (Alizadeh al.,
2000; Berchucket al., 2005; Garbert al., 2001; Sorlieet al., 2001; Yeohet al., 2002). Survival
prediction is often formulated in terms of categorical outcofeas ‘poor’'vs. ‘good’ prognosis) which
might be useful for guiding decisions about cancer managemerteatohent (Ross, 2009). However,
due to a large heterogeneity observed within prognostic slagsediction of time to a clinical
event/occurrence can be poor. Improvement of survival predictiamaagccan be attained by relating
time-to-event to gene expression profiles directly. This reguspecific survival analysis methods to
account for the presence of censored outcomes, such as thergnaldte) Cox proportional hazards
(CPH) model (Cox, 1972) and the accelerated failure-time model (@&&in & Moeschberger, 1997).

In spite of their wide use in other settings, these standarianidble survival methods cannot
be directly applied to clinical outcome prediction using gene expressata since the number of
covariates (genes) under investigation is considerably l#ngarthe number of samples (patients) -- this
is called the farge p, small n problem” (West, 2003). Many different strategies have been employed to
solve this high dimensionality problem. For example, clusterimgniques have been applied for
grouping correlated sets of genes; the average expressarof@ach cluster is then used as a covariate
(metagene) in the survival model (D'haeseleer, 2005). Ldeewinear combinations of covariates
obtained by partial least squares (Nguyen & Rocke, 2002;dPatk 2002) or the principal components
of the design matrix (Li & Gui, 2004) have been used as explanasoigbles in survival regression
models. In addition, some authors propose the use of penalized verfsibesCPH model, L1-penalized
(Lasso regression) and L2-penalized (ridge regression), tionaging parameters while simultaneously

8



performing variable selection (Gui & Li, 2005; Patkal., 2002; Tibshirani, 1997; Zou & Hastie, 2005).
Similarly, Huanget al. (2006) and Dattat al. (2007) developed penalized variants of the AFT model for
fitting models in high-dimensional data settings. Bayesiahnigoes for variable selection have also
been developed for Weibull and CPH models (Lee & Mallick, 2003) as wileasFT model (Shet al.,
2006).

While these strategies address the high-dimensionality problem withdegnee of success, they
fail to incorporate complex interactions between genes, sincgeties are modeled in an additive and
linear manner. Ensemble methods like bagging (Breiman, 1996), imp@Btiedman, 2001), and random
forests (Breiman, 2001) are very flexible alternatives fmoemmodating variable interactions and are
notably more stable in high-dimensional settings (Breiman, 1996,).200de ensemble methods are
based on a recursive partitioning strategy, where a treelisipisuccessively splitting the observations
into binary nodes. IX,, denotes the splitting covariate, one node contains all observatitng,, < p,
while the other node contains all observations ifh> p. The covariateX,, and the thresholg are
selected based on a splitting criterion and the growing ol trees is based on a stopping criterion
(see details in the following sections).

Because ensemble methods use a linear combination of treedata fvariation where each tree
fits part of the data, these methods have been shown to have higttiygesiicuracy (Leet al., 2005).
These ensemble methods were originally developed for modelingy bimacontinuous responses.
Extensions for modeling survival data, often called survivadeires (Hothormt al., 2006), address the
censoring problem by growing relative risk forests (Ishwagg al., 2004), by imputing censored
observations (Ishwaraet al., 2008), or by using a Kaplan-Meier curve aggregation procegdypesdict
survival of a new observation (Hothoenhal., 2004). In general, survival ensemble methods estimate a
survival function for each terminal node of the tree, weiglsErgsored observations differently and then,
prediction is performed by dropping down the tree a new observatathdrnet al., 2006). A different

approach proposed by Schmid & Hothorn (2008) estimates both the préagiatioon of the AFT model



and simultaneously the scale parameter, so that a boostinghagoan be applied to minimize a pre-
defined loss function. Even though Bayesian estimation has been showmprtive the predictive
performance of tree models with nominal or continuous responsgai@tét al., 1998; Denisoret al.,
1998; Pittmaret al., 2004), Bayesian survival ensembles are still limited to tilndy sof Clarke & West
(2008) who proposes tree-based Weibull models for outcome predictiadvahced stage ovarian

cancer.
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2. Objectives

The hypothesis of this research is that molecular profilingraiih tumors coupled with clinical
information might better predict patient survival timeatidition, we hypothesize that the use of survival
methods which incorporate interactions and work well in highedisional settings can improve
prediction accuracy for survival times. We evaluate thegmthgses by building models for survival
prediction of glioma patients (section 3.1).

First, a predictive Random Forest model is built for binary outsothe. shors. long-term
survival) and a small subset of genes whose expression valuég aegsed to predict survival time is
selected (section 3.2). Random Forest predictive accalacg with a list of the most important genes
used for prediction are shown in section 4.1. Following, a nevst&tat methodology is developed for
predicting time-to-death outcomes usiBgyesian ensemble trees. Due to the large heterogeneity
observed within prognostic classes obtained by the Random Forest predaition can be improved by
relating time-to-death outcomes to the gene expression proiitaglyl The new approach is based on
the ensemble “sum-of-trees” model (Chipnshral., 2006) and hence is defined by a likelihood and a
prior. A fully Bayesian hierarchical approach is specifigthwncertainty in estimation being propagated
at each stage of hierarchy to make predictions. The new methgdsldlystrated using three popular
survival models - CPH (section 3.3.1), Weibull (section 3.3.2) Ad¥id models (section 3.3.3). The new
approach is unique as it overcomes the lack of conjugacy usatgna Variable formulation to model the
covariate effects and, as a result, model fitting beconfeseat and computationally less expensive
(section 3.3.4). The new approach is non-parametric and incorporatéiseaddd interaction effects
between genes which results in high predictive accuracy apacethto other methods. In addition, it
provides a model-free way to select important predictive proignogtrkers based on controlling false
discovery rates (section 3.5). The predictive accuradchieohew method is compared (section 4.2) with
baseline reference survival methods reviewed by van Wierigtggdn(2009) using the breast cancer data
set of Van't Veeet al. (2002). The results of the new methodology applied to the brain tumasedatee
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presented in section 4.3. A closing discussion compares resuitsedbity Random Forest and Bayesian
ensemble methods under the biological/clinical perspectivestersbes the statistical advantages and

disadvantages of the new methodology in the context of DNA microartaydalysis (section 5).
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3. Methods
3.1. The data set

A set of gene expression profiles for brain tumor patientsed here to identify molecular and
genetic signatures which could be of prognostic value. The detacantains gene expression
measurements, patient age, tumor grade, and survival infornfatigi84 patients obtained from nine
different cancer treatment institutions (Table 1).

The survival time after diagnosis ranges from 1 to 698 svedth 15% of the observations being
censored (Figure 1). Survival time was discretized intotdban survival (STS< 24 months — 70% of
patients)vs. long-term survival (LTS > 24 months — 30% of patients) beforegugie Random Forest
classification method. Gene expression values of 11,911 genes airedbusing three different
Affymetrix microarray chips (142 from HT-U133A, 355 from U133A, 237 from3BPIus2 -- Figure 2
and Table 1). The annotation was reformulated using a customiXedil€ organized by the BrainArray
Group, Department of Psychiatry, University of Michigan (s®ee details in Dagt al., 2005 and at the
group's website: brainarray.mbni.med.umich.edw/). The data was pre-processed using Batch
normalization available in the JMP Genomics $A®ftware and then quantile normalizaticaffy
package in R) in order to account for batch effects. The dataneaveen made publicly available by the
time when this thesis was written but, upon request, the dathecabtained from Dr. Erik P. Sulman
(Department of Radiation Oncology, MD Anderson Cancer Center).

Instead of the original set of 11,911 genes, we work with a redeted $42metagenes which
are obtained by applying an unsupervised clustering algorithm, Gevng (Doet al., 2003; Hastiest
al., 2001). Gene Shaving identifies the largest principal componleistecs the genes highly correlated
with it and shaves out the less correlated ones. Then the ifmjjdargest principal component is found
and the procedure repeats until around 85% of the genes wemrdshiaty The metagenes are then
constructed from the clusters as signed average of its members. AK, & 1888 genes were selected and

grouped in 142 metagenes ranging in sizes from 2 to 87 genes (Figure 3).

13



Even though the methods treated here are capable of handling ghiditiensional setting
(11,911 x 734), we decide to work with a lower dimensional data setx(Z34) to be able to compare
our results with multivariable versions of the linear competraghods using the same set of predictors.
In addition to the 142 metagenes, clinical covariates such as pageeand histopathological tumor grade
(11, 11, or IV) were also added as covariates in the swalvimodel. For the survival ensemble methods, a
cross-validation procedure was performed with the data bempmaly split 10 times into training and
test sets with a 2:1 ratio. We first build the predictongghe training set and then assess and compare

the performance of different methods using evaluation measures taddaliathe test set.

Surv prob

log(weeks)

Figure 1. Kaplan-Meier survival curve (solid line) for all 734 gliorpatients along with the 95%
confidence interval (dashed lines). Plus signs indicgte-oensored observations. Horizontal axis shows
the natural log of survival times in weeks.
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Samples

Figure 2. Heatmap of the top 2,000 genes selected by a t-test compariages/ef expression values
for STS and LTS groups of glioma patients. Green color spptesent under-expressed values and red
color spots represent over-expressed values. Samples ared@épithe horizontal axis and genes in the
vertical axis. Dendrograms were obtained'iard" method. Blue labels at the top of the figure indicate

STS patients while yellow labels indicate LTS patients.
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Figure 3: Distribution of sizes of the 142 metagenes obtalme&en-Shaving.
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Table 1. Cancer center providers and distributions of array types and suifnieal of glioma samples.

I nstitution Total of Array Type Survival
samples HT-U133A U133A  U133Plus2 STS LTS
UCLA 166 0 157 9 130 36
MDA 145 32 75 38 74 71
TCGA 110 110 0 0 97 13
Henry Ford 104 0 0 104 58 46
EORTC 65 0 0 65 54 11
Collins 61 0 61 0 46 15
UCSF 31 0 31 0 24 7
Duke 31 0 31 0 28 3
Belgium 21 0 0 21 3 18
Total 734 142 355 237 514 220

3.2. Random Forest

Random Forest (RF) is an ensemble tree-based method whighrdgp@ate for classification of
DNA microarray data because it handles high-dimensionaléi}, w is able to perform model-free
variable selection, and it is flexible enough to incorporatedot®mns between genes, which confers on it
a highly predictive accuracy when compared to alternativesz{DOriarte & Alvarez de Andres, 2006).
The Random Forest (RF) model is based on a collection of individeeistructured predictors
{l(X, 1))}, whereX is the data and/; represents a subset of randomly selected covariates chibken
replacement to build the trees (Breiman, 2001). Each tree fortdse most popular class at inpuaind
the size ofi has to be set a priori. [fis set equal to the total numbgrof covariates the bagging
algorithm is obtained (Breiman, 1996). RF is applicable for claeatidn or regression and does not
assume any patrticular stochastic model. The prediction witloin sample converges to a limit as the
number of trees increases (Breiman, 2001). Trees are golanga as possible and are not pruned as in
other tree-based methods. A bootstrap sample of samples fromdinelatata set is used to build each
tree in the forest and the samples not sampled are retert@sl out-of-bag (OOB) observations. OOB
prediction is obtained by the majority of the votes involving dhlyse trees that did not contain the
corresponding sample. The frequency that a covariate is usedldothmitrees defines a measure of

variable importance which is used here for feature selection (Slur&akh, 2006).
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3.3. Survival ensembles

We denote the observed data for tfepatient(i = 1, ...,n) ast;, the survival time, along with
é;, the event indicator function, whesge= 0 if data is right censored aig= 1 if it is not. In addition to
the survival response, thedimensional vector of covariates (genes/probes) potentafipciated with
theit" patient survival timeX;, is also available. Leat= (ty, ..., t,) denote the vector of survival times
and letX,,, (samples by metagenes) denote the matrix of gene expressiorindthe following, we
develop survival distribution models which aids to predict theigintime of a new patient with
covariateX,, o\ -

Modeling of survival data usually proceeds in two steps: sfigcification of a sampling
distribution p(t|f (X)), conditional on a function of the covariaté€X), such as modeling either the
hazard function (as in CPH models) or the survival time dir¢atdyin Weibull and AFT models) and (2)
the regression functiofi(X) which models the covariate effects. Usually, for computatiooavenience
it is assumed that the covariates are linearly and indep#ydelated to survival, such thA{X) = X'
wheref is a vector ofp unknown regression coefficients that captures the covariaet®®n survival
time or hazard. There are two drawbacks of this approachtierdhear and independent assumption is
a restrictive one. Second, and more importantly, in high throughpu¢stsich as gene expression data
the problem becomes much more complex wieihe dimension dX, is very large, possibly larger than
the sample sizer. This makes the estimation @f unstable and the high-dimensionality problem is
exacerbated if interactions between covariates are considamengion reduction approaches such as
feature selection or partial least squares alleviate the problem tiia ciegree. However, these methods
are based on linear relationships between the response ammyaniate which may not be very realistic.
If the actualf is nonlinear, these models may fail to produce reasonableciiweddue to lack of

flexibility. We propose to modef(X) in a flexible manner using ensemble methods that not only
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accommodate nonlinear effects but also incorporates interaaiforovariates to estimate the effects on

survival time as we describe below.

3.3.1 Ensemble-based Proportional Hazards Regression
The proportional hazards model (Cox, 1972) is one of the most popwaras models in the
statistical literature. Rather than modeling time-to-ewiractly, it models the hazard functide(t), at

any timet as

h(t]x) = ho(t)exp(w),

whereh, (t) is the baseline hazard function ands an unknown function modeling the associated latent

covariate effect. The joint conditional survival functiort @ the CPH model can then be written as

S(tjw,A) = exp(— Y A exp(wi)),

where A represents the cumulative hazard function. The associatedicateglform of the likelihood
makes it impossible to express conditional distributions of the pagestet A) in closed forms (Ibrahim
et al., 2001). As a result, the drawing of posterior distributions reguihe sampling of all model
parameters using complex MCMC procedures at each iteration, méiéngrocess computationally
intensive with potential poor mixing, especially in high-dimensionalnggsti

We simplify the joint likelihood in two ways. First, for the cuatiste hazard function we follow

the approach in Kalbfleisch (1978) by specifying a Gamma process prir$ach that

A ~GP(al*, a),
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where A* is the mean process anda is a weight parameter about the mean with
A(t)~Gamma(aA*(t),a). The utility of using the Gamma process prior is that Aheector can be

analytically integrated out such that the marginal likelihood conditmma can be written as

i=1

L(tlw) = exp (—Z awiA*(ti)) YOI
1

i=

whered; is the indicator for eveni); = Z{‘ER(ti) exp(w;), i =1,...,n, R(t;) is the set of individuals at
risk at timet;, andW; = {1 — exp(w;)/(a + V;)}.

Second, we modify the model by treating thgs as random latent variables, conditional on
which thet;'s are independent &X;'s by the following factorizationp(t;|w;)p(w;|X;). This latent
variable feature allows us to elicit conjugate priorsdigs, making the sampling from full conditionals
fast and more efficient. Specifically, we assume a Gaupsaess op(w;|X;), such thaw; = f(X;) +
€;, wheref (X;) is the regression function amgd are residual random effects assumed to be distributed
Normal(0,0?). The residual random effeats accounts for the unexplained sources of variation in the
data, most probably due to explanatory variables (genes) not included indhélLste & Mallick, 2003).

Therefore, the full conditional of tHensemble-based Proportional Hazards regression is written

as

n

P(w]AX.0%,t,8) o« exp (— Z awiA*(m) (@2" (¢)Wp)% X exp (— % (= FO) 1w — f(X))>
1

i=1 i=

log(p(w|4,X,02,t,8)) «« =¥ aWiA*(t;) + d XL, log(ar*(t;)W;) + MVN(f(X), a%I),

and the joint posterior survival function defined as

SW0) = (o)

a+exp (w)
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We approximatef(-) using a tree-based ensemble method to model not only the nan-line
effects of the genes but also account for the high-dimengiooélthe data. We use the "sum-of-trees"
approach of Chipmast al. (2006) (CGM, henceforth) called the Bayesian Additive Regrastiees
(BART) model as our candidate choice due to its excellent gihegliperformance on a variety of data
sets. Compared to other ensemble methods, BART is also prefedause it is explicitly defined in
terms of a full probability model, i.e. with likelihood and prioemd, therefore, a full Bayesian
hierarchical approach can be implemented for estimation oflalfant uncertainties. We present a brief
review of BART below and refer to CGM for more details.

Let T represent a single decision tree containing both intenthteaminal nodes. Internal nodes
of the tree are grown through recursive partitions of the whktey splitting rules. Splitting rules produce
binary splits of the data and are defined in terms of splittangalbles and cutoff values. Dropping an
individual with covariates; down the tree assigns it to a terminal node according ttrekesplitting
rules. Let each tree be indexedibyerminal nodes and defipe=(u,, ..., g) as the vector of averages
of individuals assigned to the same nadevhereb = 1,....B. So each observation can be mapped by a
functionf such thaff (x;) = g(x;, T,n).

Since BART is a "sum-of-trees" modétan be approximated by

fX) = %:19()(: T, ),

where M is the total number of trees. Compared to single tree modART Bs more flexible since
several trees incorporate the additive effects and, consequengipyve estimation.

We note that the number of regression trideset for the tree-ensemble methods dictates how
often a covariate will be selected to be part of the modeM GBow that setting a relatively small
number of trees benefits the variable selection procedure gar@bles compete with each other to

improve fit and therefore, relevant predictors should appear fremaently in the tree model. Because
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we are interested in exploring the BART variable selecfaature, we performed a previous study
examining the trade-off between total number of trees and congmatetime and found out that setting
M = 40 is a feasible number for all survival ensemble methods described setttion (Figure 4).

To complete the full Bayesian hierarchical formulation of oureere-based proportional
hazard regression model we need to specify the following pgi6agy (X), c2), p(a?|d), andp(f|d)

whered = (Ty, 4y, ..., Tm, im) represents the tree-specific parameters. Our prigi(foris of the form,

p(f) = [Th=1P(Tm, #m) = [Th=1P(Tm)p (s | Tin),

where the second equality is obtained by recursively conditioning orrthi@aénodes.

We follow CGM and defing(T,,) by three factors: (i) the distribution on the splitting ahte
assignments at each interior node is a uniform prior ovevaileble variables, (i) the distribution on the
splitting rule assignment in each interior node, conditional dttisglvariable is a uniform distribution
over the set of available splitting values, and (iii) thebpbility that a node at depthis nonterminal is
given byc(1 + d)~¢, wherec € (0,1) ande € (0,x) are fixed parameters controlling the size of the
tree. Following CGM we setc=095 and e=2 to give prior probabilities of
(0.05,0.55,0.28,0.09,0.03) for trees to havél,2,3,4,> 5) terminal nodes, respectively. As in CGM
we assume i.i.d conjugate normal priors g, | T,,). Assigning prior distributions for the set of tree
parametersT and u constrains the sizes of the trees avoiding the model being pegbudst non-
informative covariates. This imposed variation in treessgiants BART flexibility for accommodating
main effects as well as their interactions of differanaers (more than one splitting rule) which results in
a better predictive performance obtained by BART when comparembrhpeting methods such as
random forest and boosting algorithms. To complete the prior formogative assume a conjugate
inverse chi-square distribution on? as [o2]~vn/x2%, with v being a data-determined fixed

hyperparameter.
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Concisely, the complete hierarchical Bayesian model for erledmased CPH model can be

written as,

[tlw] ~ L(t|w),
[w;|f(X;), 0%] ~ Normal(f (X;),02),
f(X;) ~ Tree(),

0% ~ x2.
3.3.2. Ensemble-based Weibull Regression
The Weibull model is a parametric model used extensiveljestribing lifetimes and can be

reparameterized both as a CPH as well as an AFT modeih(&l Moeschberger, 1997). The Weibull

distribution is indexed by a shape parametend scale parameter and it models the probability of

survival at timet; for patienti as,

f(ti|T: \|’) = T\Viexp(_Witir)l(ti>0;r>0;wi>0)-

Reparameterizing the scale parameteks;as log(\yi) the Weibull likelihood can be written as,

ftilt wp) = 1t rexp(w; — exp(wit;))(¢;50:050)

and the survival function a(t;|t, w;) = exp(—exp(w;)t;"). Letting A =) §; represent the number of

censored observations, the joint likelihood function for the paramea®ad the vector of parameters

w = (wq, ..., w,) becomes
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n
L wlXt8) = | | Fltln w)%istl o'
i=1
Lt @lX,t,8) = (DZ%(¢;)* 6i(r_1)exp< (6ijw) — ) Siexp(wt" — ) (1 - 5i)exp(wi)tit)
200 e

n n
Lt @lX,t,8) = ()% % Vexp (Z(&'wi) - Z eXP(wi)tiT>

i=1 i=1
n n n
L(t, w|X, t,8) = rAexp (Z(&iwi) + 2 6;(t—Dlog(ty) — Z exp(a)i)tir>
i=1 i=1 i=1

L(t, w|X, t,8) = rAexp(Zin:l((Sia)i + 6;(t— 1)log(tl-)) — Yt exp(a)i)tit).

For convenience, we l6t= log(t) and write the conditional distribution of the veci®as

n n
p(w|X,t,6,0) < exp <9A + Z (6iwi + Si(eg - 1)log(ti)) - Z exp(wi)tiee>

i=1 i=1

X exp (—%(w — f(X))'I(a) - f(X))).

Since wi's are conditionally independent, we conveniently draw their postdistributions

componentwise from

plwilw4i, X, t,6,60) < exp (G‘A + S;w; + 6i(e9 — 1)log(ti) — exp(wi)tiee)

x exp (=573 (0 = F(XD)°).

Following, we also use Metropolis-Hastings to draw the conditiorfafiam
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n

n
p(flw, X, t,8) x exp <9A + Z (6iwi + 6;(e? — 1)log(ti)) - Z exp(a)i)tiee> x 01 g—koe? o0

i=1 i=1

As in the previous section, we model the covariate effegts as latent variables as
Normal(f(X;),c?), with f being modeled using BART. We complete our hierarchical modejrasgi
a conjugate gamma prior anas Gamma(t,, Kk,), with fixed but vague hyperparameters. Thus our

ensemble-based Weibull regression model can be written as,

[t;|t, w;] ~ Weibull(t, w;),
[t] ~ Gamma(z,, k),
[wilf (X;),0%] ~ Normal(f (X), 0?),
fX) ~ Tree(),
g% ~ x2.
3.3.3. Ensemble-based Accelerated Failure Time Model
The AFT model is a parametric survival model that assuh@sthe individual survival time
depends on the multiplicative effect of an unknown function of kates f (X;) over a baseline survival

time . The AFT model (on log-scale) can be written as,
log(t)) = a+ f(X;) + €, i=1,..,n

wheref captures the covariate effects affecting the (log) survival dingetly.
We assume the random errefs are normally distributed, however other distributions such as
extreme-value or t distribution (Klein & Moeschberger, 1997) easily be adopted. Note that under an

extreme-value distribution, the AFT model is equivalent to the Weilndletndescribed previously.
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As before, letw be a latent variable such thai; = f(X;) +¢;, where ¢;'s are i.i.d

Normal(0,0?%). The AFT model can now be expressed as

{log(ti*) = a+ f(Xp), if  6=1,
log(t;") > a+ f(Xy) if 6;=0,

wherea is assigned a conjugate normal prior distributioiesmal(«,, a.), wherea, anda, are fixed
hyperparameters.
After estimatingw, we definer; = log(t;*) — w; where[r|a, %] ~ Normal(a,d?). Now, we

specify a conjugate prior far as[a|a,, a.] ~ Normal(a,, a.), which makes the posterior distribution

2 + . 2
of [a|r,02 a, ] be an updatedVormal(a*,o*), where a* = 2% %" gng o+ = /U’;fr‘:m
c

oZ+na,
Therefore, the censored survival time% £ 0) are sampled from univariable normal distributions

Normal(a + w;, %) truncated atog(t;*).

Thus our ensemble-based AFT model can be succinctly written as,

[t;la, w;] ~ Normal(a + w;, 02),
[a|a,, @] ~ Normal(a,, a.),

[wilf (Xp), 0%] ~ Normal(f (X;), o),
fX) ~Tree(d),

2 2
o~ X5
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Figure 4: Size of trees. Figure shows the Brier Score for the téstddpending on the number of trees
set for the BART model. Left plot - AFT-TREE; center - WEREE; Right - CPH-TREE. Each line
represents one training/test split of data.
3.3.4. Modd fitting via MCMC

We use Markov Chain Monte Carlo (MCMC, Gilisal., 1996) algorithms to generate samples
from our posterior distributions. The specific drawing scheme fo€#id model uses a Gibbs sampler to
estimate the set of parametéas, ¢, 2). The Gibbs sampling method iterates- 1, ..., K times through
the following steps:

(1) Updatap using the Bayesian backfitting MCMC algorithm described in CGM,;

(2) Updatga?|¢] using a Gibbs sampler;

(3) Update[w; |}, c?], wherei = 1,...,n, using for eachw; a Metropolis-Hastings procedure
with a proposal density(w;, w;*) which generates moves from the current séat¢o a new state;”.

The probability of accepting the change is given by

p(w;" |w1¢i,X’t)Q(wi*,wi))

T, = min (1,
wi p(wilwzX,)q(w;,w;*)

The posterior distributions of the Weibull model paramei@;sp, t, %) are obtained in a similar
manner:

(1) Updatep using the Bayesian backfitting MCMC algorithm described in CGM;
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(2) Updatga?|¢] using a Gibbs sampler;

(3) Update [w;|®,1,0%] componentwise, wheré =1,...,n, using for eachw; a similar

Metropolis-Hastings procedure with probability of accepting the change bive

p(wi*lexi.X,t,Sﬂ)Q(wi*.wi))

T, = min (1,
@i p(wilwiz,X:t3,1)q(w;,0;*)

(4) Updatgt|w, ¢, a2] also using the Metropolis-Hastings procedure with acceptance probabili

p(t* Iw,¢,t,5)q(r*,r))
" pGlo,d,t8)q(nt) /-

T, = min (1
The drawing scheme for the AFT model paramei@st, 02) follows these steps:
(1) Updatep using the Bayesian backfitting MCMC algorithm described in CGM;
(2) Updatga?|¢] using a Gibbs sampler;
(3) Obtain[a|}, o2, t];
(4) Updatew; if §; = 1;

(5) Sample from &ormal(a + w;, o) truncated at; if §; = 0.

3.3.5. FDR-based Variable Selection for Ensemble Models

As mentioned before, BART offers a model-free mechanism to dablerselection. Lep(y, )

denote the posterior probability inclusion of ggnen the modelj =1,...,p. We approximatep(yp)

based on the relative frequency of occurrengef theit" covariate acrost MCMC samples as

p(r) = =8 oge,
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whereo;; is the indicator functiom(yj € Xk), whereXX is the set of covariates used to the build the tree
model in thekt® MCMC iteration.

We consider any covariate with p(y) < ¢, for some thresholg, as significantly used (true
discovery) in the model. The significance threshpldan be set to control the average Bayesian FDR
(Morris et al., 2008) and it is thus a Bayesian g-value (Storey, 2003). In our, stedgre interested in
finding the valuep; that controls the overall FDR at the legelmeaning that we expect orlp0¢% of
the covariates declared as significantly used in the madefatse discoveries. For all covariatgs
j=1,..,p, we first sortp; = p,y(y;) in descending order to yieja;), j = 1,...,p. Theng,, = p(¥;),
where y; = max {j*:j*‘1 (1 —Z;;lp(j)) < f}. The set of regiong,: then can be claimed to be

significant covariates based on an average Bayesian FBR of

3.3.6. Performance Assessment

We assess the performance of our method using cross-validatipme randomly split the data
10 times into mutually exclusive training and test sets irptbportion 2:1, build the predictor using the
training set, and then predict survival for the test set antpare it with the observed survival. We use
two measures of predictive performance, the Brier scorg 4B& the coefficient of determinatioR?.

The BS is a specialized measure of goodness-of-fit for survival m@elfet al., 1999) and is given by

~ 2 . 2
(Scixp) 1<t Asi=1)  (1-8(tIXp) 1(t;>t)
() R(D) ’

BS(D) = 31,

wherek(-) is the Kaplan-Meier estimate of the survival distribatfor the observationg,, ..., t,,) andl
denotes a indicator function. For BS we utilize the training tlatalX to fit a modelp (t|X) and use it to
obtain the survival distributioB(t,|t, X,) for a future patient with covaria®,. Brier score ranges from O

to 1 and the smaller the score the better is the fit.
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TheR? measure is the usual coefficient of determination of the fitted Inandeis estimated as
2 _ 1 _ _2(1() —
Re=1 exp( n(L(w) L(O))),

whereL(-) denotes the log-likelihood function. In order to obtainRAewe first estimatés, the vector

of latent covariate effects, using the median of the postdistribution and then use it as a predictor in
the univariable version of the specific underlying model. &@mple, the vectab estimated from the
AFT-Tree model is used as the predictor vector in a univaridBIT. R? also ranges from 0 to 1 and

values close to 1 indicate good fits.
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4. Results and Discussion
4.1. Random Forest

Random Forest model was used to fit the binary responsesv§SITES) of the patients studied
here. We first performed a study about the parametric settingun Random Forest models in R. The
default setting for theandomForest function sets the number of treesrée) to 500 and the number of
covariates sampled for each binary sptitry) as the square root of the total number of covariates. In our
casemtry=12. The bigger the number of trees used to build the model, thethetféting is expected to
be, however it increases computational time. Similarly, sammingmall number of covariates as
candidate for splitting the nodes of the trees can leave impadgariates out, hence compromising the
fitting. On the other hand, sampling a large number of caesriaan populate the model with non
informative covariates, resulting in overfitting and incregsof the computation time (Rodi al.,
2009). We run Random Forest 10 times for different settings qfdtemetersitree (50, 100, 200, 500,
1000) andmtry (1, 3, 6, 12, 25, 50, 100, 144) and a summary of the misclassificationagrtioe training
data is presented in Table 2. Clearly, the misclassificatimr & smaller when the number of trees is
equal to 1,000 as well as when the paranmateris equal to the default value already implemented in the
R function.

Followoing, a Random Forest model was fitted and the binary mespqSTSss. LTS) of the
patients studied here were predicted by this model. In codeiduce computation time and still obtain a
small misclassification error, we opted by using the defauéirpeters in the R functiomt(ee=500 and
mtry=12). The overall misclassification rate of the prediction for thiaitrg set data (Table 2) was 18.9%
(STS - 18.8% and LTS - 19%), and the overall misclassificatienfoa the testing set (OOB) was 25.3%
(STS - 22.6% and LTS - 31.8%) indicating a slight overfitting @&ntng set. Figure 5 allows a visual
evaluation of the predictive performance of RF model. For 1008aracy, one should find only red
symbols at the left side of the dashed line and only black synabdlse right. Besides the inherent
misclassification error, there is a large heterogeneitgrobg within classes which shows that splitting
the survival response in a binary category might cause sosseof information. The AUC, another
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measure of performance, obtained for the training data is 0.83 athek fmsting set is 0.77 (Figure 6). A
large misclassification error along with large heteroggr@iesented within classes do not allow us to
make any suggestion in order to change disease management.

The top 20 most important variables used to build the RF moeléistad in Table 3. Some gene
members of the top metagenes are highly related to the dewlbpicancer/glioma phenotypes based
on a search performed at the OMIM databaw&:{/www.nchi.nim.nih.gov/ominy). The top 3 most
important metagenes found by the RF method are the same fouineldoyvival -ensemble methods and
further investigation about them will be presented in thievidhg sections. In additiorpatient age is

also a factor commonly found important by both classes of methods.
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Figure 5. Plot comparing the observed survival times with classedigied by the Random Forest
model. Dots represent time of death and triangles representegtisoes. Red symbols are observations
predicted as STS and black symbols are observations predidt&® ashe vertical dashed line indicates

the value of 24 months used to discretize the survival time inv§T19'S.
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classification of STS and LTS by the Random Forest model.
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Table 2. Summary of the misclassification error obtained for the traisgtgusing different settings of
the parameterstree and mtry in therandomForest R function. Ten RF models were built using each
combination of parameters and the mean and s.d. of the overalhdraigi misclassification error are

reported. Parametattree represents the number of trees to grow aty is the number of variables
randomly sampled as candidates at each split.

ntree

mtry 50 100 200 500 1000

1 24.6+0.6 23.1+0.9 21.4+0.7 19.4+0.7 19.4+0.5
3 24.1+0.8 22.8+1.1 21.9+0.8 19.1+0.6 18.9+0.5
6 24.0+0.8 22.7+0.8 21.7+0.9 19.2+0.5 18.6+0.4
12 24.0+1.3 23.4+0.6 21.4+0.4 18.9+0.6 18.5+0.5
25 23.4+0.9 22.6+1.0 22.0+1.0 19.6+0.4 19.0+0.3
50 23.7+1.0 22.5+0.7 22.0+0.8 20.1+0.5 19.8+0.2
100 24.0+0.9 23.0+0.4 22.9+0.7 20.4+0.5 20.3+0.5
144 23.9+0.9 23.1+1.2 22.8+0.7 20.6+0.4 20.2+0.4
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Table 3: Top 20 covariates used to build the RF model. Starred valuesd{tpte metagenes containing
genes related to the cancer phenotype while double-starred yalu@sdicate metagenes containing
genes related to the development of glioma phenotype. The diw@iiio(DIR) information shows the
influence of the over-expression of a given metagene in thenpaurvival: "+" means that survival
increases with the metagene over-expression and rheans that survival decreases with the
upregulation. The measure of importance is the Gini index attribmtbdstcovariate.

Rank Covariate  DIR Measure of  Genes
importance

1 metagene82** + 15.34 ALDH2, DAAM2, SCG3, MXI1, RAP2A

2 metagene99* + 14.68 ZCCHC24, GLUD1, ID4,SCN3A

3 metagene52** + 10.49 C1QL1, OSBPL11, CLASP2, MPRIP, PHLPP, GARNL1, IIRBPJ,
IMPDH2, LRP4, PIK3R1, RIN2, PID1, BAI3, SALL2, TTGE110rf2,

4 metagene81l 0 7.40 ADM, HSPA5, TNC, MAOB, C1S

5 metagenel4l + 7.07 KCND2, ARHGAP12

6 metagenel27* [ 5.86 FSTL1, COL4A1, IGKC, RP11-35N6.1

7 metagene85 + 5.82 ATP9A, WASF3, TCEAL2, NAP1L3

8 metagene92* 0 4.77 MDK, MFAP2, THBS4, TPBG, SERPINH1

9 metagene60 + 4.64 SLC9A6, AKAP11, HSP90AB1, HMP19, GPRC5B, ATP6V1G2,
TERF2IP, SH3GL2, USP:

10 metagene83**  [] 4.62 GADD45A, LY96, LAMP2, PLSCR1, RBP1, ISG15

11 metagene55** [ 4.45 ARPC1B, IFITM2, CTSC, ADFP, SLC39A14, GUSB, HLA-DMA
IRAK1, SERPINEL, PLP2, RNASE1, SLN, SOD2, TUBB6, &

12 metagene51 + 4.42 RTN3, PLEKHB1, RTN1, AGXT2L1, TSPAN7

13 metagene45* + 4.12 CPE, APOE, PEA15

14 Age 3.97

15 metagene84 + 3.97 CIRBP, ABAT, LRIG1, ZBTB20, ZMIZ1, RASSF2

16 metagene54 0 3.83 NDRG1, NCAN, F13Al, FN1, MSN, P4HB, PTX3, ACTA2,
SERPING1, C1R, ACTN1, AKAP!

17 metagenel04 + 3.19 ALDOC, FXYD6

18 metagenel35* + 3.05 RPS23, TCF12

19 metagene69 0 3.01 IGFBP2, IGFBP3, PLS3, RPN2, CAPNS1, SRPX

20 metagene4?2 0 2.96 HOXC4, HOXC6, HOXC10, HOXC11
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4.2. Survival Ensembles
4.2.1. Performance Assessment using Breast Cancer Data

We compare the performance of our method with other surpieaiction methods tailored for
gene expression data as reviewed in van Wierirgah (2009). We use the breast cancer data set of
Van't Veeret al. (2002 -- available atttp://www.rii.com/publications/2002/vantveer.html), which
contains gene expression profiles for 295 breast cancer patieh&Qb7 gene expression values along
with the patient survival outcomes. We reapply the beshads found by van Wieringest al. (2009)
ensuring that we work under the same conditions, i.e., the mulbiatinear Cox Proportional hazard
model (hereafter CPH) with top 10 genes obtained using a univa@ax regression, the L1-penalized
Cox regression (CPH-L1) of Tibshirani (1997), and the L2-penalizedr€yression (CPH-L2) of Gui &
Li (2005). In addition, we ran a multivariable linear Weibull rmoali¢h the top 10 most significant genes
obtained by univariable Weibull models, as well as, multivariablediAd&T model with the top 10 genes
pre-selected using a univariable AFT analysis. As in van Wierietggn(2009), we use the top 200 most
significant genes obtained by the univariable underlying modealrtaur ensemble-model versions of
accelerated failure time (AFT-TREE), Weibull (WEI-TREE), arakQCPH-TREE). A simple long chain
(k=10,000 iterations) for each tree model with burning-in of the fiadf (5,000 samples) is enough to
make inferences since different initial values do not altein convergence. The cross-validation
procedure was repeated 10 times with the data being randomlynsplitgining and test sets with a 2:1
ratio. We use the training set to build the predictor and then assess thmaec®of competing methods
using the test set.

Figure 7 summarizes our results for all the methods considered hseal &8n Brier score (Figure
7 - left), the methodology proposed here substantially outperforms the cognpetihods. Brier score for
the ensemble-models is roughly 30% smaller than those for CPadl ICPH-L2 methods, which were
reported the top two performing methods in van Wieringeai. (2009). In terms oft — R?, the tree-
based methods are best performing methods (lowest values) akbnGmH-L2, which has a very high

variability and its performance is highly dependent on thaahdplit of the data. Interestingly, other
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ensemble methods such as bagging and random forest yielded aRfo\iiez. higherl — R?) in the
breast cancer data set compared to set of Bayesian enseodlgls studied here (mediansR3f equal to
0.058 and 0.061, respectively, from van Wieringeal., 2009). In summary, based on these 2 different
evaluation measures, we believe that our proposed methodology ing@edes the survival prediction

accuracy, which could be attributed to the added flexibility iroaetng for additive and non-linear

effects.
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Figure 7: Box plots of performance results for the Brier score (Bi8ft} and(1 — R?) measure (right)
applied to the breast cancer data. For both measuresyteethe value the better the performance of the

method.

As we mentioned before, one of the advantages of ensendhulels is that it is possible to assess
the importance of each covariate for survival predictisimgithe relative frequency of occurrence as
explained in Section 3.3.5. Using a FDR cutoff of 0.2 we found thatbaiol5 variables are significant
in the AFT-TREE, 11 in the WEI-TREE, and 14 in the CPH-TREEe&lyenes (CCT5; BCL2; IL8) are
simultaneously listed for AFT-TREE and WEI-TREE, and only one (NDUFS6) forNREE and CPH-
TREE. Genes identified by the models could represent promisirgets for further biological
investigation. A search at the OMIM databalstp(//vwww.nchi.nim.nih.gov/omimy) confirmed that many

of them are reported to be highly related to cancer developnamnindtance, BCL2 is known as one of
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the strongest predictors of shorter overall survival inuddflarge-B-cell lymphoma patients (Lossbs
al., 2004) and this gene also figures as a prognostic markeref@stlmancer in Van't Veet al. (2002)
studies. Another example is the STK12 gene which is localizedregion that is frequently deleted in
tumors and that contains tumor-related genes such as p53 (Tetsalkal998). Furthermore, BTG2
(Boiko et al., 2006) is known as a major downstream effector of p53-dependenegadh arrest in
human fibroblasts while SESN1 gene expression is known to be nmemibhatp53 transcripts (Velasco-

Miguel et al., 1999).

4.2.2. Application to the brain tumor data

The methods compared here include the multivariable lirerarons of AFT, Weibull, CPH, and
the proposed ensemble-model versions AFT-TREE, WEI-TREE, and CPH-TREE n@ie long chain
(k=10,000 iterations) for each tree model is enough for satisfactorvergence and the first half of
samples is discarded to make inference.

The Brier score calculated for the AFT-TREE (tree modeslightly better than the one for its
multivariable linear version (AFTpr—trge = 0.118 £ 0.01 vs. papr = 0.119 £+ 0.02) as well as for
the Weibull modelsy(wgi—treg = 0.116 + 0.02 vs. pywg; = 0.112 + 0.02). On the other hand, the BS
for the CPH models are essentially the sam@y_trgg = 0.110 £+ 0.01 vs. pcpy = 0.110 + 0.02). To
further evaluate the predictive ability of our proposed models, amelucted a time-dependent AUC
analysis (Figure 8) to compare the prognostic capacity ofwalimiodels in different binary splits of the
survival response. Time-dependent AUC analysis is frequentlyingbe clinical literature (Cerhaet
al., 2007) to help physicians to better categorize patients in t#rmsvival classes. Here, the proposed

ensemble-models do remarkably better than the competing methods showimg éisievity.
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Figure 8: Time-dependent AUC analysis. Figure shows the time-dependentafbl{sis comparing the
performance of the proposed ensemble methods with their multilaliiadar versions applied to the test
data. Dots represent the medians across splits of tragshg#ts and the lines depict the interquartile
limits. Left plot: CPH (dashed lines) and CPH-TREE (solé@nter plot: WEI (dashed) and WEI-TREE
(solid); Right plot: AFT (dashed) and AFT-TREE (solid).

A very small number of covariates (Table 4) are sigaifity used in the AFT-TREE, WEI-
TREE, and CPH-TREE models (Figure 9). There is a completdappeng between the first 3 more
important covariates in all models. In addition, the top five ipasted covariates by AFT-TREE and
WEI-TREE are the same. Tumor grade is known as one of the impsttant clinical factors for
predicting survival time in brain tumor patients (see sact) and it was confirmed in our results as one
of the covariates more frequently used by all models. IndeedetbEIV of the covariate tumor grade
(GBM patients) has a distinct survival curve than the &eWebnd IIl corroborating previous findings
(Figure 10). In addition, patient age, another important clinicahriate (see section 1), also figures in
the top for the AFT-TREE and WEI-TREE models. Glioma patiemidiesd here which are younger than
the median age (52 years) present much better prognosis thanspaitientthan 52 years of age (Figure

11).
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Figure 9: Posterior probability of a variable appearing in the CRHEE (top), WEI-TREE (center), and
AFT-TREE (bottom) survival ensemble models for the brain tuma. dadvariates from left to right:
patient age, tumor grade, metagene 1, ..., metagene 142. Vaviétblgmsterior probability above the
horizontal gray line are considered to be significantly used wherotlong the FDR at 20%.
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patients younger and older than the sample median age (52 yeaedlle was obtained by a log-rank
test.
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Table 4: Significant covariates (overall FDR of 20%) used to buildsthrgival-ensemble models along
with its probabilitiesp(y) of being included in the final model. Starred values (*) indicattagenes
containing genes related to the cancer phenotype while doubledstaiues (**) indicate metagenes
containing genes related to the development of glioma phenotypmeé)s that survival increases with
the metagene over-expression and (-) means that survival decreasdg®e wipregulation.

AFT p(y) Weibull p(y) CPH p(¥)
metagene99* (+) 0.029 Grade 0.032 Grade 0.082
Grade 0.028 metagene99* (+) 0.030 metagene52** (+) 0.037
Age 0.020 metagene82* (+) 0.018 metagene99* (+) 0.036
metagene82** (+) 0.017 metagene52** (+) 0.014 metagenel39%) (0.030
metagene52**  (+) 0.013 Age 0.009 metagene70** (+) 0.021

metagenellé () 0.011 metageneldl (+) 0.007
metagenel4l (+) 0.008 metagene85 (+) 0.005
metagene50 [() 0.007 metagened5* (+) 0.005
metagene97* (+) 0.005
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Metagenes 52 and 99 were also found to have one of the highestopgstaabilities of being
used in all survival-ensemble models as well as the RF mo@thgeine 82 appeared frequently used in
the AFT-TREE, WEI-TREE, and RF models while metagene 70 wag frequently used than other
variables to build the CPH-TREE model. A following search at t9&MIM database
(http://Amwww.ncbi.nim.nih.gov/ominy) revealed that these metagenes contain genes known to betasgsocia
with the development and progression of many tumors including mauociatked to brain tumor
development as the ones discussed in the section 1. For examipl@sgeaving values of expression of
metagene 52 above the median show significantly better progmosties (Figure 12A). A detailed
search shows that the metagene 52 has six genes associatedrtploamatype: PHLPP, GARNL1, ID1,
RBPJ, PIK3R1, and BAI3 (Figure 12B). PHLPP is known for its céydo dephosphorylate AKT,
triggering apoptosis and suppressing tumor growth via the p53 and Roienic pathways. PHLPP
appears downregulated in several colon cancers and glioblasedinimes (Gaoet al., 2005). In our
study, PHLPP also appears downregulated in patients with shaomédwvas (Figure 12B). Mouse
embryocarcinoma cells upregulated GARNL1 expression following tratuof neuronal differentiation
(Heng & Tan, 2002). We show that the gene GARNLL1 is upregulatEmhgnsurvival patients (Figure
12B) and hypothesize that the role of this gene in promoting neuiffegientiation prevents cells going
through migration or invasion processes, hence improving prognosis. dteenplD1 is a negative
transcriptional regulator of CDKN2A, which is associatéth the development of malignant melanoma
(Ohtaniet al., 2001). CDKs, as discussed in section 1, are important membties witogenic pathway
which control cell proliferation. We show (Figure 12B) that ID1 is overesees long survival patients
and hence we hypothesize that ID1 also negatively regulates @BiKcontrols cell proliferation. RBPJ
is known to be part of the Notch pathway. Activation of the Natascade is known to maintain the
undifferentiated state in cellvah Es et al., 2005) and as a result, it might be directly related with
mesenchymal phenotypes in gliomas. In addition, the Notch pathway gla}e in neuronal function
and development and stabilization of angiogenesis. Hence, the undssiaprof RBPJ in short survival
patients (Figure 12B) suggests alterations in the Notch patbausing the formation of mesenchymal
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and angiogenesis phenotypes. In addition, it is known that close to 9@®BMfpresent the PIK3R1
signaling pathway altered (TCGA, 2008) and BAI3 (Brain-specific angiogeimésbitor 3) is considered
to play a role in suppression of glioblastoma since its expreissairsent or significantly reduced in this
tumor type (Shiratsuclet al., 1997).

Also, patients having values of expression of metagene 70 aboweethi@n show significantly
better prognostic curves (Figure 13A). Metagene 70 containsefesdgEGFR, FAIM2, SASH1, and
PINK1. The EGFR gene is involved in cell signaling, cell peoétion, differentiation, motility, and in
tissue development (Wareg al., 2004) which makes it one of the most important genes relatéx to t
development of gliomas (see section 1). In our study we show thahtgawith upregulated EGFR
(Figure 13B) tend to survive less than other patients. In addithengéne FAIM2 which is a FAS
receptor for a tumor necrosis factor (TNF) (Somtial., 1999) is found altered (Figure 13B). FAS is a
“death-receptor”, as discussed in section 1, which is involvgdarapoptotic and anti-apoptotic roles.
The gene SASH1 which is downregulated in breast tumor tisstelter(et al., 2003) is also
downregulated in short survival glioma patients (Figure 13B), andjghe PINK1 which is a PTEN-
induced putative kinase is also downregulated in short survieahg patients (Figure 13B) suggesting
alterations in the mitogenic signaling and apoptotic pathways.

Likewise, patients presenting downregulation of metagenes §a@r@14A) and 99 (Figure 15A)
show significantly better prognostic curves than other patidmétagene 82 contains the gene MXI1
which negatively regulates MYC oncoprotein, an important gistbima tumor inductor (Albarosaal .,
1995). MYC plays an important role in regulating cell proliferation, sggp (controls the death-receptor
Bcl-2), and cell differentiation (Albarosa al., 1995). We show that glioma patients with short survival
present downregulation of MXI1 (Figure 14B) suggesting that the M¥Ebprotein is overexpressed
and, hence, causing cell proliferation, apoptotic, and mesenchymal phenotypes. lidezanetagene 99
contains the gene ID4 which is believed to be a putative leakenppressor (Yet al., 2005) and here
appears overexpressed in long term survival patients (FiguresiligiBesting an equivalent role in brain
tumor suppression as well.
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Figure 12: Metagene 52 — (A) K-M survival curves (solid) along with 95% C.I. (dasl). F-value was
obtained by log-rank test. (BJeatmap of the expression values of genes groupiihwnetagene 5:
Red color spots represent owxpressed values and green color spots reprunde-expressed values.
Samples are depicted in the horizontal axis andsarted by survival time (frorleft to right: longer to
shorer survival times). Genes are depicted in the e@rtaxis. Dendrogram was obtained "Ward"
method.
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Figure 13: Metagene 70 — (A) K-M survival curves (solid) along with 95% C.I. (dasl). F-value was
obtained by logank test. (B) Heatmap of the expression valuegeoies grouped within metagene
Red color spots represent owxpressed values and green color spots reft unde-expressed values.
Samples are depicted in the horizontal axis andsarted by survival time (from left to rigtlonger to
shorer survival times). Genes are depicted in the e@rtaxis. Dendrogram was obtained "Ward"
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Figure 14: Metagene 82 — (A) K-M survival curves (solid) along with 95% C.I. (dasl). F-value was
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Figure 15: Metagene 99 — (A) K-M survival curves (solid) along with 95% C.I. (dasl). F-value was
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Additionally, partial dependence (PD) functions (Friedman, 200l)airedd by the
marginalization of the posterior distribution ${X) with respect to the covariate(s) of interest are
particularly useful to illustrate the marginal effect of ae&vant covariate(s) directly on the survival
outcome as in the AFT-TREE model. PD function plots (Figuresh6yvs that marginal effects of the
metagenes 52, 82, and 99 on the survival time estimated by th&REE model. It shows that the
relative upregulation of metagene 52 increases the brain tumantpatigival time in roughly 170 weeks
(3.3 years), the relative upregulation of metagene 82 iseseglioma patients survival in 130 weeks (2.5
years), and the regulation of the metagene 99 between values 2 mrréakés the survival of glioma
patients in almost 200 weeks (around 4 years). However, jusk gpdéents have these metagenes
upregulated (> 4) which makes the confidence intervals biggethis region, indicating that the
interpretation of the PD plots at this region must be done wittiotea Another important tool used to
identify individual contributions of the covariates on the patgmvival time are nomograms. In Figure
17 we show a nomogram of the most important variables in theTAHE model. The interpretation is
performed as following. Identify the patient age and drawréceé line to the "points” axis on the top of
the nomogram. Repeat this process for the remaining varigBles the points for each individual
variable and locate this on the "Total Points" axidattiottom of the page. The width of a variable axis
represents how much it affects the overall survival timec&loulate the log of survival time in weeks,
draw a vertical line from the "Total Points" spot on tinedr predictor axis. Indeed our results show that
expression values of metagenes drastically impact the osearailal in brain tumor patients in addition
to clinical covariates. For example, a patient indexed byntkeedian values of the most important
covariates found by the AFT-TREE model, i.e., a patient 52 yeaagefpresenting tumor grade IV,
metagene 52 expression equal to -0.36, metagene 82 expression equal t@an@.ddetagene 99
expression equal to -0.75 will receive a "Total points" saooeind 93 and its expected survival time will

be of 75-80 weeks.
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5. Conclusion

We built a model for binary response using the Random Forest.nRadelom Forest is a tree-
based ensemble method with high predictive accuracy commonmlyirs¢ige Biostatistics literature. We
obtained a misclassification error of 19% for training dath 25% for testing data. We also present and
discuss a list of the variables most frequently used to blddtrees in the RF method. Besides the
unavoidable misclassification error, we show that splitting the resportategories (ST&. LTS) might
cause loss of information since the heterogeneity within classeatiselsl large.

We have proposed Bayesian ensemble methods for survival predittthe high-dimensional
context as in DNA microarray data analysis. We relied on a goMgayesian predictive tool (BART) to
estimate the covariate effects by means of a laterdiblarassumed to be normally distributed. BART
was chosen because it is flexible to accommodate a high numbevasfates and their interactions and
properly accounts for the uncertainty of parameter estimatiorrenhdo the Bayesian approach.
Nonetheless, the proposed method can be extended to allow the usg ather ensemble method
instead.

We incorporated the latent variable estimates in thrdelwiused survival models, named AFT,
Weibull, and CPH, and performed Bayesian estimation of additipacmeters simultaneously. Our
prior choices require less complex MCMC sampling techniques @ndtsnes, undesirable parameters
could be integrated out, as the baseline hazard function ilRHETREE model. In addition, our method
provides prediction of the survivor function which directly contéisuto an adequate personalized
management of patients.

The application of our methodology to two different data sets shdwatadtwr model outperforms
prediction accuracy of many available models.

The screening ability of BART identifies important predistacross trees and training-test splits
of data, which allowed us to reveal the impact of many importanésggand clinical covariates on the
survival of glioma patients. In addition to the predictive &hilihe variable selection procedure along
with PD functions and nomogram techniques grants high interpretabiltg foinal model.
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